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Abstract

Moving breathers is a means of transmitting information in DNA. We study the
existence and properties of moving breathers in a DNA model with short range
interaction, due to the stacking of the base pairs, and long range interaction, due
to the finite dipole moment of the bond within each base pair.

In our study, we have found that mobile breathers exist for a wide range of
the parameter values, and the mobility of these breathers is hindered by the long
range interaction. This fact is manifested by: (a) an increase of the effective mass
of the breather with the dipole–dipole coupling parameter; (b) a poor quality of
the movement when the dipole–dipole interaction increases; and (c) the existence
of a threshold value of the dipole–dipole coupling above which the breather is not
movable.

An analytical formula for the boundaries of the regions where breathers are mov-
able is calculated. Concretely, for each value of the breather frequency, it can be
obtained the maximum value of the dipole–dipole coupling parameter and the max-
imum and minimum values of the stacking coupling parameter where breathers are
movable. Numerical simulations show that, although the necessary conditions for
the mobility are fulfilled, breathers are not always movable.

Finally, the value of the dipole–dipole coupling constant is obtained through quan-
tum chemical calculations. They show that the value of the coupling constant is
small enough to allow a good mobility of breathers.
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1 Introduction

Discrete breathers (DBs) are periodic localized oscillations that arise in dis-
crete nonlinear systems. Their existence was proven by MacKay and Aubry
[1], and ever since discrete breathers have been widely studied in systems
with short range interactions (for a review, see, e.g., [2,3]). Energy and de-
cay properties of DBs in systems with long range interactions have also been
studied in the framework of the Klein–Gordon [4,5] and the Discrete Nonlinear
Schrödinger equations [6].

These localized oscillations can be static, but, under certain conditions can
move along the system. They are usually called moving breathers (MBs).
In contrast to static breathers, which are exact numerical solutions, mov-
ing breathers cannot be obtained by continuation methods and there are no
existence theorems for them. However, they have been obtained by simulation
methods in models for systems like muskovite mica [7,8] and cuprate–like lat-
tices [9], and there exist methods to obtain moving breathers systematically
[10–12] which will be explained in section 5.2.

Among the systems that can be studied through discrete nonlinear models is
DNA (for a review see, e.g. [13]). A phenomenon for which the study of discrete
breathers can provide information is DNA denaturation. Peyrard and Bishop
introduced a model for the study of this phenomenon in 1989 [14] and, later on,
in 1992, Dauxois, Peyrard and Willis suggested that breathers could appear in
DNA models [15]. Afterwards, numerical simulations performed by Dauxois,
Peyrard and Bishop suggested that localized oscillations can be precursors
of the bubbles that appear in thermal denaturation of DNA [16–18]. Moving
breathers can be a means of transmitting information along the double strand.
The transmission must exist due to the fact that the promoter and the tran-
scription regions are situated hundreds or thousands of base pairs apart. Also,
experiments in irradiated DNA suggest that a localized entity travels from
the primary breaks hit by the radiation to points where secondary breaks take
place [19].

These models take into account short range interactions, due to the stacking
coupling. Other DNA models ignore this kind of interaction and only consider
long range interactions, whose origin lies in the dipole moments that charac-
terize the hydrogen bonds between the nucleotides within each base pair of
the DNA strand. These models have been studied by Gaididei et al [20] within
the framework of the Discrete Nonlinear Schrödinger equations. Breathers in
a bent chain with LRI have been studied by the same group in [21,22].

Before obtaining the results presented in this paper, we tried to find moving
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breathers in a DNA model with only dipole–dipole interaction, but we were
not able to observe them. This fact suggested us to consider a more realistic
DNA model with both stacking and dipole–dipole interactions and study the
possibility of obtaining moving breathers.

In this paper we give an affirmative answer to the question of the existence
of moving breathers in a DNA model with both stacking and dipole–dipole
interactions. The study of static breathers in the parameters space obtains
the range of their existence and stability. Moreover, the existence of regions
where a change of stability occurs is necessary in order to obtain a moving
breather. We have observed the existence of a threshold value of the dipole–
dipole interaction above which, the breathers are not movable. Finally, we
have also observed that the dipole–dipole interaction hinders the mobility of
the breathers

This article is organized as follows. In section 2, the model object of our study
is introduced. It is a modification of the Peyrard-Bishop model, augmented
with a long range interaction term due to dipole–dipole interactions.

In section 3, we summarize the methods for obtaining static breathers and
determining their stability.

Section 4 describes the regions of existence and stability of static breathers in
the parameters space. The values of the parameters where the breathers change
their stability, i.e., the bifurcation loci, are specially relevant for obtaining
moving breathers.

Some properties of moving breathers, such as their effective mass, velocity and
domain of existence are studied in section 5.

In section 6 we relate our results with DNA parameters.

Finally, we pose the conclusions of our work in section 7.

2 The model

We consider a modification of the Peyrard-Bishop model [14], which consists
in the addition of an energy term that takes into account the long range
interaction due to dipole–dipole forces. Thus, the Hamiltonian can be written
as:

H = HPB + UDD (1)
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where HPB is the hamiltonian of the Peyrard–Bishop model and HDD is the
dipole–dipole energy term.

Let us explain both terms in more detail:

2.1 The Peyrard–Bishop model

The Peyrard–Bishop model only considers short range interactions due to the
stacking of base pairs. The hamiltonian is [14]:

HPB = T + UBP + UST , (2)

where T is the kinetic energy:

T =
1

2
m

∑
n

u̇2
n, (3)

being un the transverse stretching of the hydrogen bonds connecting the two
bases and m the mass of a nucleotide.

The term UBP represents the interaction energy due to the hydrogen bonds
within each base pair:

UBP =
∑
n

V (un), (4)

where V (u) is the Morse potential, i.e., V (u) = D(e−b u − 1)2. D is the well
depth and represents the dissociation energy of a base pair, and b is a spatial
scale factor of the Morse potential.

UST is the short range interaction term, representing the stacking energy be-
tween base pairs:

UST =
1

2
C

∑
n

(un+1 − un)
2, (5)

where C is the stacking coupling constant.
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2.2 The dipole–dipole energy

The hydrogen bonds responsible for the interbase coupling has a finite dipole
moment, which cause a long range interaction decaying as r−3 [20].

The dipole–dipole interaction energy is [23]:

UDD =
∑
n

∑
i̸=n

1

4πεo

1

|r⃗in|3
[p⃗n · p⃗i − 3(p⃗n · r̂ni)(p⃗i · r̂in)], (6)

where p⃗n and p⃗i are, respectively, the dipole moments of the base pairs situated
in the n-th and i-th site, and r⃗in is a vector that connects the centres of the
dipole moments.

In our model the bending, twisting and inhomogeneity of the DNA are not
taken into account. Thus the dipole moments are parallel and oriented in the
same sense. Therefore, p⃗n and p⃗i will be perpendicular to r̂in and the last
equation can be written as:

UDD =
∑
n

∑
i ̸=n

1

4πεo

1

|d(n− i)|3
pnpi, (7)

where d is the distance between neighbouring base pairs. In equilibrium, all
the dipole moments have the same value, pn ≡ po, ∀n, and, therefore, the
equilibrium interaction energy is:

U o
DD =

∑
n

∑
i̸=n

1

2

1

4πεo

1

|d(n− i)|3
p2o, (8)

Considering excited states of the system, we assume that

pn = po + q un , (9)

with un being the deviations from the equilibrium, i.e., the stretching of the
hydrogen bonds, and q the charge transfer due to their formation. Inserting
the expression (9) into equation (7) we obtain the dipole–dipole contribution
to the potential energy of the system. It has the form:

UDD = U o
DD + U1

DD +
∑
n

∑
i̸=n

1

2

q2

4πεo

1

|d(n− i)|3
unui, (10)
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where U o
DD and U1

DD stand for the constant and linear terms on {un}. It is
worth noting that this terms do not appear in the Hamiltonian (1) because,
in accordance with the definition of equilibrium, the first order terms in the
Taylor expansion of the total potential energy of the system should vanish
in equilibrium, where the variables un are zero. Therefore, we can write the
dipole–dipole interaction contribution to the Hamiltonian as:

HDD =
∑
n

∑
i̸=n

1

2

q2

4πεo

1

|d(n− i)|3
unui . (11)

This formula provides an expression for the dipole–dipole coupling constant:

J =
q2

4πεod3
, (12)

and the dipole–dipole Hamiltonian can be written as:

HDD =
1

2

∑
n,i

Jiun+iun, (13)

where,

Jm =


J
|i|3 for 1 ≤ |i| ≤ (N − 1)/2

0 otherwise,
(14)

being |i| is the normalized distance between base pairs. In practice, if N is
the size of the system, we limit the long range interaction to (N − 1)/2, if
N is odd, or (N − 2)/2, if N is even, in each direction to keep the spatial
homogeneity in a finite system with periodic boundary conditions [4].

2.3 Dimensionless equations

The Hamiltonian can be written as:

H =
N∑

n=1

1

2
mu̇2

n +D(e−b un − 1)2 +
1

2
C(un+1 − un)

2 +
1

2

∑
n

∑
i̸=n

Jiun+iun

 ,

(15)
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and the dynamical equations are:

F ({un}) ≡ mün+2Db(e−b un−e−2b un)+C(2un−un+1−un−1)+
∑
i ̸=n

Jiun+i = 0.

(16)

The following changes of variables are introduced:

t → ωot, un → bun, C → C

mω2
o

, J → J

mω2
o

, (17)

where

ωo =

√
2b2D

m
, (18)

is the frequency of the oscillators in the harmonic limit.

With these changes the dynamical equations become:

F ({un}) ≡ ün+(e−un − e−2un)+C(2un−un+1−un−1)+
∑
i̸=n

Jiun+i = 0. (19)

2.4 Discussion

Although the dipole interaction manifests as a long range force, it also includes
nearest–neighbour terms, due to the form of the potential. So, it is interesting
to write apart the terms that involve nearest–neighbour interactions from the
rest. Thus, the dynamical equations can be written as:

F ({un}) ≡ ün+(V ′(un)+2Cun))+(J−C)(un+1+un−1)+
∑
|i|≥2

Jiun+i = 0. (20)

For J = C, the nearest–neighbour term vanishes in (20) so, for these values
of the parameters, the only interactions that explicitly appear are those due
to the second and further neighbours.
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3 Numerical methods for obtaining breathers and determining their
stability

3.1 Obtaining breathers

In order to obtain a static breather we have used the methods developed
in [24–27]. Discrete breathers in Hamiltonian lattices are periodic and time–
reversible solutions, i.e., they can be expressed as a Fourier series of the form:

un(t) = zo + 2
∑
k

zkn cos(kωbt). (21)

In this paper we choose a frequency with value ωb = 0.8ωo and the number
of particles is N = 21, which proves to be large enough to study breathers as
long as they are localized a few particles, and, moreover, the phenomena that
we observe are independent on the number of particles. We have also choose
periodic boundary conditions.

A static breather can be obtained for given values of the dipole–dipole coupling
parameter, J , and the stacking coupling parameter, C. This solution can be
continued by varying C and maintaining J constant or vice versa.

In order to study the existence of bifurcations, it is useful to analyze the eigen-
values of the Jacobian operator, J (u) ≡ ∂uF (u). Its domain is the space of
functions of t that are time–reversible, with period T = 2π/ωb, continuous sec-
ond derivative, and an appropriate norm, E2

s (ωb). When J acts on a function
ξ in this space, the following eigenvalue equations are obtained:

(J (u).ξ)n ≡ ξ̈n+V ′′(un)ξn+C(2ξn− ξn+1− ξn−1)+
∑
m̸=n

Jmξn+m = λξn. (22)

We will refer to this operator, for short, as the Jacobian. When it has no zero
eigenvalues, the implicit function theorem conditions are satisfied, and there
exists a unique branch of solutions in a neighbourhood of {un}. It allows us
to continue a solution using the Newton–Raphson method, starting from the
anticontinuous limit (i.e., zero coupling). The dependence of the eigenvalues
with the parameters will also give us valuable information about the system.
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3.2 Breather stability

The same operator can be considered with a different domain, the space of
functions with continuous second derivative, without constrictions on time–
reversibility and periodicity, C2. This operator will be referred here as the
Newton operator and denoted N (u) 2 . The eigenvalue equation for the New-
ton operator with λ = 0 gives the linear evolution of small perturbations of the
breather, which allow us to study its stability [2]. Hereafter it will be referred
to as the stability equation. The functions in C2, are determined by the initial
conditions, Ω(0) ≡ ({ξn(0)}, {ξ̇n(0)}). Integration of the stability equation un-
til t = T , gives Ω(T ) ≡ ({ξn(T )}, {ξ̇n(T )}). As the space is finite and linear,
there exists a matrix of dimension 2N corresponding to the Floquet operator,
which is called the monodromy. This operator is thus defined by:

 {ξn(T )}

{ξ̇n(T )}

 = M0

 {ξn(0)}

{ξ̇n(0)}

 (23)

The Floquet operator is here a symplectic and real map. As a consequence,
if λ is an eigenvalue, then λ∗, 1/λ and 1/λ∗ are also eigenvalues. Therefore,
stability implies that all the eigenvalues have modulus unity. The Floquet
operator corresponding to λ ̸= 0, denoted as Mλ, will also be used later.

3.3 Linear modes

Static breathers can be continued until that an integer multiple of their fre-
quency does not resonate with any of the frequencies of the linear modes (or
phonons), which are given by:

(
ωph

ωo

)2

= 1 + 4C sin2 q

2
+ 2J

∑
m

cos(mq)

m3
, (24)

where q is the wave vector of the linear modes. The second harmonic of the
breather is the responsible for the resonance with the phonon band. Besides,
this resonance involves the phonon with vector q = π so this phenomena occurs
when:

2 This term is usually used for the two operators, J and N , but we will use this
terminology to distinguish easily between them.
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C =
(
ωb

ωo

)2

− 1

4
− 2J

∑
m

(−1)m

m3
. (25)

If we suppose an infinite system 3 , the sum can be expressed in terms of the
Riemann’s zeta function:

C =
(
ωb

ωo

)2

− 1

4
+

3

8
ζ(3)J (26)

This equation is an analytical expression for the upper boundary of the exis-
tence of static breathers, both 1–site and 2–site.

4 Bifurcations

In this section we study the bifurcation loci of static breathers. It is interest-
ing for three different reasons: a) It gives the range of existence of the static
breathers; b) It gives the regions in the parameter space where the breathers
are stable (and, therefore, physically observable in real systems) or unstable;
c) Finally, but of paramount importance, it gives the values of the parame-
ters where the breathers are movable, as it will be explained in the following
section.

In this system there appear two types of bifurcations as C and J are varied:

• Stability bifurcations: they occur when a monodromy eigenvalue correspond-
ing to a localized mode abandons the unit circle. They also correspond to
a change of sign of a Jacobian eigenvalue, as it is explained in appendix
A. The existence of this type of bifurcation is a necessary condition for the
existence of movable breathers (see section 5).

• Breather extinctions: they occur when a Jacobian eigenvalue becomes zero
and the breather is not continuable any longer.

The points where these bifurcations occur are independent of the number of
particles of the system. This result was established by Aubry in [2], and we
have checked it by increasing and decreasing the number of particles during
our calculations.

We proceed to explain the bifurcations in the limits of only stacking or dipole–
dipole interactions and, finally, in the case where both interactions are present.

3 This is not our case, although the results for N = 21 particles only differs 1%
from the results for the infinite system
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Fig. 1. Jacobian eigenvalues, λ, versus stacking coupling constant, C, when there is
only stacking interaction. Note the existence of two zero crossing which correspond
to stability bifurcations.

4.1 Bifurcations with only stacking interaction (J = 0)

In this case, the only parameter is C. When it is varied, there are only stability
bifurcations at two points Co and C1. The evolution of the Jacobian eigenvalues
with C, for a 1–site breather, is shown in figure 1. Two eigenvalues, which
correspond to localized modes [28], detach from the linear modes band, and one
of them, change its sign at the values Co and C1. In the interval (Co, C1) this
eigenvalue is negative (see appendix) and, therefore, the breather is unstable,
while in the interval (0, Co) and above C1, the eigenvalue is positive and the
breather is stable.

4.2 Bifurcations with only dipole–dipole interaction (C = 0)

In this case, there are no stability bifurcations (and, therefore, there are no
moving breathers with C = 0) 4 . The breather is annihilated when the phonon
band expands and one of its eigenvalues becomes zero (figure 2). In other
words, the breather resonates with the phonons.

4 Actually, there exists a change of stability for a high value of J . However, it
cannot be used to move a breather because the eigenmode of the Floquet operator
which detaches from the unit circle is not localized.

11



0.02 0.04 0.06 0.08 0.1 0.12 0.14 0.16 0.18 0.2

−0.2

−0.1

0

0.1

0.2

0.3

0.4

0.5

0.6

J

λ

Fig. 2. Jacobian eigenvalues, λ, versus dipole–dipole coupling constant, J , when
there is only dipole–dipole interaction. Note that the only bifurcation is due to the
crossing of an eigenvalue corresponding to a phonon.

4.3 Bifurcations in the general case

We find the bifurcation loci of the stability bifurcations in the parameter space
(C, J), for both the 1–site and the 2-sites breathers. The occurrence of these
two bifurcations is a necessary condition for the existence of moving breathers.

4.3.1 Bifurcation study of 1-site breathers

There exists a critical value of the dipole–dipole interaction parameter, Jc1,
with the following characteristics:

(i) For J < Jc1, the behaviour is qualitatively similar to the observed for
J = 0, i.e., there are stability bifurcations at two points, C = Co and
C = C1 (which depend on J), as C is increased.

(ii) For J > Jc1, there are no stability bifurcations, but only an extinction for
some value of C, above which, the breather is not continuable. Therefore,
there are no moving breathers.

4.3.2 Bifurcation study of 2-site breathers

For the 2–site breathers there exist two critical values of J : Jc2, which is
analogous to Jc1, and Jo, which is called the mobility limit. They define three
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intervals of J with the following properties:

(i) J ∈ [0, Jc2). The breather is unstable for small values of C. When C
increases, there are two stability bifurcations.

(ii) J ∈ (Jc2, Jo). Only the first stability bifurcation appears, thereafter the
breather is annihilated. At J = Jo, the values of C for the annihilation
and the stability bifurcation coincide and turn out to be equal to Jo.
This point has the characteristic (cfr. equation (20)) that the nearest–
neighbour interaction disappears.

(iii) J > Jo. The only bifurcation is a breather extinction.

4.4 Discussion

The bifurcation analysis for the 1–site breathers shows that they can be moved
only for J < Jc1. The study of 2–site breathers shows that they are movable
for J < Jc2 being Jc2 > Jc1. They are also movable for J ∈ [Jc2, Jo). Therefore,
Jo establishes the maximum value of J (and also the minimum value of C)
for which breathers can be movable, i.e., there are no moving breathers for
C < Jo and for J > Jo. This is the reason why Jo is called the mobility limit.

The bifurcation loci for the stability bifurcations are shown in figure 3. In
figure 4 the dependence of the mobility limit on the frequency is shown. This
curve fits very well to the equation

Jo = Aωr
b, (27)

where A=0.1921 ± 0.0002 and r=2.377 ± 0.005. So the range of existence of
moving breathers will be determined, for a given frequency, in the following
way:

• The minimum value of C is the mobility limit (equation 27). The maximum
value of C is given by the resonance with the phonons (equation 26).

• Clearly, the minimum value of J is 0. The maximum value of J is the
mobility limit.
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Fig. 3. Bifurcation loci for the first and the second exchange of stability in 1-site
and 2-site breathers. The values corresponding to ωb = 0.8ωo are: Jc1 = 0.076,
Jc2 = 0.085, Jo = 0.11263.

5 Moving breathers

5.1 Preliminaries

One of the open fields on the study of localized oscillations is the question of
mobility of discrete breathers. There exists a lack of knowledge on this field
mainly owing to the fact that moving breathers are not exact solutions 5 of
the dynamical equations of the system and, besides, a proof of existence of
them has not been found so far.

Many authors [29,11] agree that breathers must be perturbed in the velocity
in a similar way to a pendulum overcoming the separatix which separates the
oscillating solutions from rotating ones. In the case of discrete breathers we are
dealing with a movability separatrix separating static solutions from moving

5 For exact solutions we mean solutions that can be obtained using continuation
methods
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b, where A=0.1921± 0.0002 and r=2.377± 0.005.

ones. The application of this concept is the basis of the marginal mode method
for obtaining moving breathers, which has been used in our calculations and
is explained below (section 5.2)

Moving breathers can also be seen as a solution that repeats itself after a time
shifted by one lattice site [30]. This kind of solutions are called exact moving
breathers by some authors [11,12] and have certain special features due to the
commensurability. However, a perturbation is also needed in order to calculate
them.

Another important characteristic of moving breathers is that they have a
finite life because they radiate phonons. This fact occurs because a moving
breather has two frequencies: one due to the internal vibration and another
one due to the periodic translation which is smaller than the first one and is
the responsible for the resonance with the phonons, and so, of the emission of
them.
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5.2 The marginal mode method

A moving breather is obtained by ‘kicking’ a static breather, i.e., perturbing its
velocity components. However, not every breather can be moved, and not every
kick can move a breather. Therefore, the problem is to know the conditions
that a breather must fulfill in order to be moved and what the characteristics
of the perturbation are.

A systematic method used for obtaining moving breathers was proposed by
Chen, Aubry and Tsironis [10]. They considered a Klein-Gordon chain of par-
ticles with nearest neighbour interactions, modulated by a coupling parameter,
and a double well on–site potential. It is observed that a linear mode becomes
localized as the coupling parameter in increased and the breather becomes
unstable for a critical value of the coupling parameter. The optimum condi-
tions for obtaining a moving breather are satisfied for a range of values close
to the critical one. The direction of the perturbation is given by the velocity
components of the localized mode.

Later on, Aubry and Cretegny [11,12] have studied the possibility of obtaining
moving breathers under more general conditions. They demonstrate that if
a conjugate pair of monodromy eigenvalues corresponding to localized linear
modes detach from the phonon band, collide at 1+0i and abandon the Floquet
circle, one of them becomes a marginal mode at the collision point, i.e., a
perturbation along its direction grows linearly with time and, therefore, is the
optimum one to move a breather.

Furthermore, at the point where the breather becomes unstable, there is an
exchange of stability bifurcation, that is, a solution is stable before reaching the
bifurcation point and becomes unstable just after crossing it, whereas another
solution does the opposite at a point nearby. These solutions are usually a
1–site and a 2–site breather. The latter is a breather with two neighbouring
sites excited and corresponds to a breather centered at the bond.

One of the most important consequences of the results of Aubry and Cretegny’s
work is that the existence of this bifurcation is a necessary but not a sufficient
condition to obtain a moving breather.

Therefore, as indicated in [10–12], the following steps must be performed in
order to obtain a moving breather:

1) To look for the existence of the two complementary stability bifurcations for
the 1–site breather and the 2–site breather. Their bifurcation loci must have a
region where they are fairly close. The static breather to be moved should be
obtained for values of the parameters close enough to these bifurcation loci.
However, our numerical experiments have shown that breathers are not only
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movable in these regions, as we explain in section 5.3

2) To perturb the breather with the velocity components of the marginal mode
at the neighbouring bifurcation.

Effective mass

An useful concept used for describing the breather dynamics is its effective
mass [10,11]. It is a measure of the breather inertia to external forces.

The breather velocity must be perturbed in a direction colinear to the marginal
mode, in order to obtain moving breathers. If the normalized marginal mode is
V, the perturbation added to the breather velocities, which are zero at t = 0,
is given by µV, and µ is the magnitude of the perturbation.

Thus, the kinetic energy added to the breather by the initial kick is 1/2µ2.
It is found [10] that the resulting translational velocity of the breather, v, is
proportional to µ. Then, the concept of effective mass can be defined through
the relation 1

2
m∗v2 = 1

2
µ2. Therefore:

m∗ = (µ/v)2. (28)

Nevertheless, this linear relation is fulfilled only for low values of µ. The rela-
tion between µ and v for high values of the perturbation is an open question
which needs more research [31].

Consequently, moving breathers can be considered as a quasi-particle with
massm∗. The effective mass is a quantitative measure of the breather mobility.
Larger mass indicates smaller mobility.

5.3 Study of moving breathers

In this section, we take advantage of the results obtained in the bifurcation
study (section 4) in order to know the conditions necessary to move a breather.
We have numerically obtained that a breather is not only movable near a
stability bifurcation but it is also movable for a wide range of parameters.
Moreover, we have observed that, in several cases, breathers could not be
moved although the necessary conditions for the movement were fulfilled.

The temporal evolution of the moving breather has been obtained by means
of numerical simulations, using the symplectic algorithm developed by Calvo
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Fig. 5. Evolution of a moving breather for C = 0.1244, J = 0.06 and an initial ‘kick’
µ = 0.10. The breather involves basically three sites that oscillate in phase.

[32]. An example of the evolution of a moving breather for certain values of
the parameters J and C, is shown in figure 9. We can see that the breather
moves uniformly during 350 breather periods with a slight change of shape
and emitting a 0.12% of phonon radiation, which is a small value but bigger
compared with the emission of only 0.01% for J = 0. It can also be seen that
the breather is extremely localized with only three sites basically involved and
oscillating in phase.

We must remark that all the numerical results of this section have been ob-
tained for a value of the breather frequency ωb = 0.8ωo.

We summarize our results as follows:

(i) From a bifurcation study of static breathers (section 4), it is obtained
the existence of a maximum of the dipole–dipole interaction parameter,
J , above which there are no mobile breathers. This value is J = Jo ≈
0.1162, but there is a smaller value, J = Jc1 ≈ 0.076, above which the
1–site breather cannot be moved. These values have been obtained for a
frequency ωb = 0.8ωo and are independent of the size of the system.

(ii) For low J , the 1–site and the 2–site breathers can be made mobile for
values of C above the first stability bifurcation . These values of J are
J . 0.5 and J . 0.4, respectively.

(iii) For high J :
(a) The 1–site breather can be moved in the proximity of the first sta-

bility bifurcation curve, and above the second one.
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(b) The 2–site breather can only be moved above the second stability
bifurcation curve.

An explanation for these phenomena is that breathers have to be
‘metastable’ in order to be moved, i.e. their Jacobian eigenvalue respon-
sible for the stability bifurcation must be close to zero. In figure 6 can
be seen that for J = 0, where mobility is possible for all the values of C
above the first stability bifurcation, this eigenvalue is closer to zero than
for J = 0.06 where breathers are not movable for all of the values of C.
These results demonstrate that the conditions for the mobility posed in

section 5.2 are necessary but not sufficient. In figures 7 and 8 a diagram
of the range of existence of moving breathers for ωb = 0.8ωo is depicted.

(iv) The dependence of the effective mass with the parameters is not simple.
However, two general properties can be established:
(a) The effective mass has its maximum value in the vicinity of the first

stability bifurcation curve. See figure 9.
(b) This maximum value of the effective mass increases with the dipole–

dipole interaction parameter, J . See figure 10
(v) The smoothness of the movement decreases when J increases. In other

words, the long range interaction emphasize the discreteness of the sys-
tem. This can be observed in figure 11, where the temporal evolution of
energy the center is plotted. This magnitude is defined as:

XE =

∑
n nen∑
n en

, (29)

being en, the energy of the nth-particle.

6 Application to DNA

The results obtained in the paper are valid for all chains with both short range
and long range interactions given by equations (5) and (13). They can be
particularized for a DNA model with stacking and dipole–dipole interactions
using the transformations (17).

The values for model parameters D, b and m are not well known for DNA.
We will use here the proposed in [16,17]. Concretely, they are D = 0.04 eV,
b = 4.45 Å−1 and m = 300 amu. Thus, with these values, ωo = 7.05 · 1012 s−1.

If the breather frequency is chosen so that ωb/ωo ∈ (0.67, 1) in order to avoid
phonon resonances, its value will oscillate between ωb = 4.5 · 1012 s−1 and
ωb = 7 · 1012 s−1.

For these values of the frequency, the minimum value of C for obtaining moving
breathers, which can be calculated from equations (27), oscillates between
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J = 0.06. In the first case, the breather is mobile for all C greater than the value
where the stability bifurcation occurs, but, in the second case, the breather is mobile
only at the first stability bifurcation and above the second one.

C = 0.11 eV/Å2 and C = 0.30 eV/Å2 (these values correspond to C =
0.0690 and C = 0.1921 in dimensionless units). Therefore, for the existence
of moving breathers in the Peyrard–Bishop DNA model, C must be greater
than 0.11 eV/Å2. Furthermore, this minimum value of C coincides with the
maximum value of J . Thus, in order to exist moving breathers, J must be
smaller than 0.30 eV/Å2 (The minimum value of J is, of course, zero).

From equation (12), the value of the charge transfer q can be calculated. As
the distance between base pairs is d = 3.4 Å, the maximum value of q for
having moving breathers is q = 0.91 e. Quantum chemical calculations (see
appendix B) show that q < 0.062 e, which is very much lower than that value.
Thus, moving breathers can exist if the dimensionless dipole–dipole coupling
parameter, J < 8.2 · 10−4, which indicates that the dipole–dipole interaction
does not hinder breather mobility in breather mobility.
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7 Conclusions

Up to now, the effect on breather mobility of the interplay between long range
and short range interactions had not been considered. However, apart from
its theoretical interest, both types of interaction do exist in DNA. This is the
reason why we have performed a study of discrete breathers in a modified
Peyrard-Bishop model which takes into account long range interactions due
to dipole–dipole forces and short range interactions due to stacking forces.

From a bifurcation study of static breathers we have obtained that they can-
not be moved if there is no stacking coupling and if the dipole–dipole coupling
is larger than a critical value. This critical value of the dipole–dipole coupling
coincides, in a 2–site breather, with the value of the stacking coupling param-
eter where the stability bifurcation occurs, and is also the minimum value for
the occurrence of these bifurcations. This point has an important property,
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as can be seen in (20), which is that the only interactions which explicitly
appear are those due to the second and further neighbours. This could indi-
cate that when the dipole–dipole interaction coupling constant is smaller than
the critical value, the stacking interaction dominates and the breathers are
movable. However, when the dipole–dipole interaction constant is larger than
the critical value, this interaction dominates and breathers are not movable.

The range of existence of moving breathers does not depend on the number of
particles of the system, because the bifurcations are due to localized modes,
so that the only particles to be taken into account are the central ones 6 .

A numerical study of moving breathers show that breather are movable not
only at the neighbourhood of the stability bifurcations, but also for all the
values of the short range coupling parameter above this bifurcation. However,
for high values of the dipole–dipole coupling, this range of existence decreases
and, in some cases, it is impossible for the breather to be moved even in
the neighbourhood of the stability bifurcations. Another important result is
that the dipole–dipole interaction affects to the mobility of the breathers. The
study of the dependence of the breather effective mass, shows that the mobility
decreases when the dipole–dipole interaction increases.

We have performed some quantum chemical calculations in order to find the
value of the dipole–dipole coupling constant. This calculations show that mov-
ing breathers in our DNA model are not hindered by the dipole–dipole inter-
action.

There exists a study performed by Flach and Kladko [30] which relates, for a
system with only short range interaction, the moving breather velocity with
the localization length of the tails. This study could be done for our model,
in order to explain analytically how the long range interaction affects to the
mobility. However, this study presents several difficulties, being the main the
absence of a definition of localization length in a system with algebraically
decaying interaction.

Some extensions of our work, which are underway, consist in performing con-
tinuations at constant energy and studying the mobility of breathers in bent
DNA.

6 The phonon resonances do depend on the size of the system but the values where
they occur do not change appreciably with it
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A Relationship between the Jacobian eigenvalues and the Floquet
eigenvalues

A means of determining the bifurcations where a breather changes its sta-
bility, is to find the point where a Jacobian eigenvalue changes its sign. Of
course, the eigenvalues related to the stability are the Floquet ones, but the
relationship between them can be easily understood within the framework of
Aubry’s band theory [2]. Integrating the equations N (u) = λu (see section
3.2), we can obtain the monodromy matrices, Mλ. For each λ there are 2N
eigenvalues. They can be writen as exp(jθ), with θ real if their moduli are
the unity, and complex otherwise. If θ = 0, the corresponding eigenfunctions
are periodic of period T and they will be eigenfunctions of the Jacobian with
their corresponding eigenvalues, as they are also time reversible. If the set of
points (θi(λ), λ) is represented, a band structure is obtained. Each band is
symmetric with respect to the axis θ = 0, as the Floquet matrices are real and
each eigenvalue have a corresponding complex conjugate.

The breather is stable if there are 2N crossings at the λ = 0 axis, i.e., if
all the eigenvalues have modulus unity and they are not degenerate, except
for a double eigenvalue at +1, which is always present. It corresponds to the
eigenfunctions u̇(t) and ∂u/∂ωb, which are time antisymmetric.

The stability bifurcations in this paper appear in the following way 7 (see
figure A.1):

(i) The breather is stable; a band crosses the θ = 0 axis at λo > 0 and the
λ = 0 axis at ±θo with θo ̸= 0. Then λo appears as a Jacobian eigenvalue.

(ii) As a parameter changes, the band moves downwards, both λo and |θo|
diminish, and, eventually, they become zero. This is the bifurcation point
and it will appear as a zero of the Jacobian eigenvalues and as another
double +1 of the Floquet eigenvalues.

(iii) As the band moves further downwards, λo becomes negative and ±θo
become non real, as there are no crossings of the θ = 0 axis. The breather
is unstable.
Further change of the parameters may cause that the band moves up-

wards and the stability bifurcation is reversed.

7 The way how the band changes with the parameters also depends on the convexity
of the band
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B Quantum chemical computational details

Ab initio RHF and DFT calculation have been performed using the Gaus-
sian 98 suite of programs [33]. DFT calculations employed either the Perdew
and Wang exchange-correlation (PW91) functional [34] or the three parame-
ter hybrid Becke fuctional for the exchange [35] and the Lee-Yang-Parr [36]
(B3LYP). In all cases, the standard 6-31G** basis set has been used for all
atoms and the geometry of the base pairs has been fully optimized by stan-
dard analytical gradient techniques at the theoretical level used. The amount
of charge transfer has been estimated from the results of Mulliken population
analysis.

Table 1: Computed bond distances and charge transfer
for A-T and G-C base pairs
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A-T base pair

Method H bond distance / Å charge dipole moment

C=O · · · H-N N-H · · · N C=O H-Ca) transferb) (Debye)

RHF 2.0571 1.9204 2.9482 -0.0014 6.4420

PW91 1.8900 1.6975 2.6722 -0.0211 5.7547

B3LYP 1.9649 1.7772 2.7381 -0.0183 5.9817

G-C base pair

Method H bond distance / Å charge dipole moment

N-H · · · O=C N-H · · · N C=O · · · H-N transferc) (Debye)

RHF 1.8947 2.0115 1.9987 -0.0248 6.4834

PW91 1.8476 1.8249 1.6635 -0.0612 6.0038

B3LYP 1-9026 1.8949 1.7475 -0.0548 6.0935

a) not really a H bond (actually, there is no hydrogen bond but is necessary
for the calculation)

b) A is the negative end
c) G is the negative end
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