
AN EFFICIENT ORDERING ALGORITHH TO IMPROVE SPARSE VECTOR KKTHODS

A. Gomez
Member IEEE
Dep. de Ingenieria
Electrica

L.G. Franquelo
Member IEEE
Dep. de Ingenieria
Electronica, de Sistemas
y Automatica

Univ. de Sevilla
Spain

Keywords: Sparse Techniques, Ordering Algorithms, Linear Equations.

Abstract.

This paper presents a new node ordering algorithm to
enhance sparse vector methods. The proposed technique
locally minimizes the number of non-zero elements of
the inverse of the table of factors. It uses the
cardinality of the set of nodes which precede each node
in the path graph as a tie-break criterion in the
minimum degree elimination process. Test results are
included showing that the method performs better than
previously published methods.

INTRODUCTION.

A great deal of Sparse Matrix problems still
represent a challenge for Electrical Engineers,
especially if the large scale of these problems and
real-time requirements are considered. Nowadays,
advances in computer hardware and development of
efficient algorithms permit to afford certain problems
that only a few years ago did not seem to have a
practical solution.

Sparse Matrix techniques introduced in the sixties
[1] had a great transcendence in the efficient solution
of the power flow problem. More recently, Sparse Vector
techniques were introduced to speed up a number of
important power system problems [2]. Two kinds of
papers can be found in the literature related with
these topics: Basic developments and applications.
Among these, reference [3] can be mentioned, where two
Partial Refactorization methods are applied to Newton
Load Flow, Fast Decoupled Load Flow and Security
Analysis. Other recent papers related to applications
deal with the following problems: Parallel Inversion of
Sparse Matrices [4), Fault Analysis [5) and Linear
Contingency Analysis [6]. The first kind of papers are
devoted to the development of algorithms and basic
concepts that permit to get better performances when
these techniques are applied to particular problems [2,
7-9).

This paper falls under
presents a new ordering
application.

this category because it
algorithm of general

RBVIEV OF SPARSE VECTOR CONCEPTS.

Consider the solution of the equation:

(1)

where A is sparse. If we restrict ourselves, for
simplicity, to the case in which A is symmetric and
positive definite (e.g . the matrix B' in the Fast
Oecoupled Load Flow), then A could be factorized as
UtU. Once this requisite has been fulfilled, the
standard forward and backward operations on the
independent vector give the desired result, x.

In this paper the attention is focused on two kinds
of problems:

a) Solution of (1) when either vector b has only a
few non-zero elements or a small number of elements in
the unknown vector x are needed (Sparse Vector
problem) .

b) Repeated solution of (1) when matrix A is
slightly modified (Partial Matrix Refactorization
problem) •

It is a common practice to use an undirected graph
associated to matrix A so that the elimination process
can be easily visualized. Each time a row in A is
eliminated, the graph must be updated by deleting the
corresponding vertex and incident arcs and adding the
required fill-ins, giving the reduced graph at this
stage. Also, a filled graph may be associated to the
matrix U+Ut which depends, obViously, on the ordering
adopted during the elimination process, i.e., on the
number of fill-ins generated.

As an example, consider the 10- node system shown in
Figure 1. The structure of the resultant U matrix is
shown in Figure 2, when the Minimum Degree strategy
(MD) is adopted. The leftmost column indicates the
order in which the nodes have been eliminated.

5

Fig. 1. 1O-fude Systan.

1234567890
5 1X X 1

10 2 x x 1
4 3 xx X 2
7 4 X 0 X 2 X: Orlginal eleoent
2 5 XXX x 3 o : Fill-in elEllle!lt
1 6 XXXX 3
3 1 XOOX 3
6 8 xxx 2
8 9 xx 1
9 10 X 0

Fig. 2. Structure of U.

For both problems formerly
interesting to introduce, moreover,
following [2].

mentioned it is
other concepts,

First of all,
non-zero element
singleton is an
follows:

a singleton is a vector with only one
(e.g. in location k). A path for a

ordered list of rows of U defined as

1) Include k in the path. If k is the last row of 0,
exit.

2) Replace k with the first non-zero column in row k
of 0, and go to step 1).

If b is a singleton, then only the rows of its path
are needed during the forward elimination process.
Analogously, if only the k-th entry of x is wanted,
only the rows of this path are strictly required during
the backward substitution process. In this case the
path is swept in the reverse order. These processes are
called the Fast Forward (FF) and Fast Backward (FB)
processes respectively. Taking into account the analogy
between factorization and forward elimination
processes, it is clear that only the rows involved in
the appropriate path should be updated in 0 when the
k-th row of A is modified (Partial Matrix
Refactorization, or simply PHR).

A path graph may be built by union of all possible
singleton paths. Figure 3 shows the path graph for
IlI8trix 0 in Figure 2.

The appropriate subset of this tree determines the
rows involved in FF, FB or PMR processes when b has
several non-zero elements, more than one element is
wanted in x, or various rows are modified in A
(provided in this case that the structure of 0 remains
the saae). Each row of 0 with d non-zero ele~ents
contributes with dt mult-adds in t~e FF/FB process and
d

i
(dt +l)/2 in PMR.

There is an interesting relationship between this
path graph and the structure of 0-1 which is the key

-for the development of more efficient orderinf
algorithms. The non-zero columns of the k-th row of 0-
give the path for the node at k-th position.

10

5

1

3

6

8

9

4

2

Fig. 3. Path Graph of the 10-N:x1e Systen.

Conversely, the non-zero rows of the k-th column of 0-1

give the subset of the tree' which precedes the node at

this position. Figure 4 shows the S:tructure of 0-1 for
the same earlier examplei and viSualizes the mentioned
relationship between 0- and the path graph for the
case of.node 1 which is numbered at 6th position.

1234567890
5 lX' XXXXX

10 2 X X XXXXX
4 3 XX XXXXX
7 4 X XXXXX
2 5 XXXXXX
1 6 XXXXX
3 1 XXXX
6 8 XXX
8 9 XX
9 10 X

Column
of node

Fig. 4. Structure of U-1 and RelationShip with the Path Graph.

From the preceding comments it is clear that the
number of non-zero elements of ur1 is a measure of the
average singleton path lenfth. Actually, the number of
non-zero elements iD ur (including the diagonal)
divided by the number of nodes gives the average
singleton path length. Also the number of non-zero
elements of 0 is a measure of the average number of
mult-adds required to perform the FF/FB or the PKR
proceSS. Bence, what is required is that both 0 and ur1

remain as sparse as possible. Sometimes, a less sparse
o is permissible if this is counteracted by the saving
achieved in ur1

•

KOTIVATIOH AND DESCRIPTION OF THE ALGORITBK.

In order to allow comparisons the KD algorithm (or
Tinney's second scheme) will be first described. This
description will be somewhat conventional as the actual
computer implementation will depend strongly on the
storage-accessing scheme adopted (e.g., steps 4 and 5
below could be probably merged into ' only one step).

For this purpose the next vectors will be used:

f(i) : Position of node i in the final ordering.
Initially set to zero; f(i).O means that node i has not
yet been considered.
0(1) :. Degree of node i in the reduced graph. Initially
set to the degree in the original graph.

Then, for a graph with N nodes:

Minimum Degree Algorith. (MO):

1) Let It-!.
2) Pick up a node i with f(i)=O such that Dei) is
minimum. The ties are brakeD arbitrarily, although for
programming convenience, the first or the last eligible
node in the natural order is usually choseD. Set
f(i)=k.
3) If k equals H then stop.
4) For each j adjacent to i such that f(j)=O, set
O(j)_O(j)-l.
5} For each pair of nodes a, n adjacent to i but not
adjacent to each other, such that f(.)=f(n)=O, create a
new edge joining a and n, and increase O(m), OeD) in
one unit.
6) Set k-k+l and go to. step 2).

The main weakness of this algorithm is the large
number of ties which appear in step 2). The way these
ties are broken may Dot have a strong influence on the

sparse structure of U [10], but this is not the case
when U- 1 or, equivalently, the average path length is
considered. For instance, the average path length for
the 118-node IEEE test system is 9.46 when the first
minimum-degree node encountered in the natural order is
chosen. This value rises to 11.77 when the last
eligible node is taken. Examples could be found where
just the opposite would happen. That is, the behaviour
of the MD strategy, as far as the efficiency of sparse
veetor methods is concerned, depends strongly on the
natural order of the nodes, which is not a desirable
feature (see Comparative Results).

Reeognizing this faet three st!:ategies were ploposed
in reference [7] intended to enhance the spa!:sity of
ur 1 without sacrificing the sparsity of U, by simply
using a second criterion to break the ties which appear
during the execution of MD algorithm. Among these
strategies, Algorithm I (AI) seemed to be the best one.
When a tie appears, it numbers in the first place the
node with fewer adjacent nodes which have been already
elimina ted. More precisely, when more than one node has
a minimum degree in the reduced graph, the one with a
minimum degree in the filled graph is first eliminated.
As an example consider Figure 5. In the reduced graph
there are 2 nodes with a degree of 3. Node b is first
chosen by Al because it has 3 adjacent nodes in the set
of eliminated nodes, against node a which has 4 of such
nodes.

More recently [8], a new algorithm has been proposed
which t!:ies to improve the MD strategy in a similar
way. This algorithm, which is called Minimum Degree,
Minimum Length (MD- ML), uses the concept of the depth
(or the length) of a node in the path graph, which is
updated very easily. The MD-ML algorithm is also
described in the discussion and closure of [7] where a
preliminary and brief comparison is made with AI.
Figure 6 shows the path graph for the 10-node system
when the logic of Al is used, while Figure 7 shows the
same example following the MD-ML strategy. In this
particular case Al gives a shorter average path (3.2)
than MD- ML does (3.7), though, in general, the MD-ML
st!:ategy performs bette!: than AI.

Once these two algorithms have been revised, the
rest of the section will be devoted to the new
algorithm proposed in this paper. Consider once more
the lO-node system when nodes 1, 8 and 9 remain to be
eliminated and the other nodes were eliminated in the
order 5, 10, 4, 7, 2, 6, 3. Figure 8 shows the filled
graph under this situation. Three fill-ins have been
generated. Figures 9.a, 9.b and 9.c show how the path
graph would grow if nodes 1, 8 and 9 respectively were

5
10

4
7
2
6
3
9
8
1

eliminated nodes
\ I
I I

)

f i lled
graph

Fig. 5. Sample Illustrating the Logic of AI.

1234567890
Ix X 0
2 X X 0 10 6
3 XX X 0
4 X XO 2
5 X X XX 0
6 X XXX 0
7 XXOX 1
8 XXO 2
9 XX 5

10 X 8

Fig. 6. Struc=e of U and Path Graph Foll~ Al.

eliminated at this point (the degree of all of them is
2). In this situation the MD-ML strategy would not be
useful since the length is 2 in all three cases. The
squa!:ed nodes are the set of already-eliminated nodes
which are adjacent to the node in hand, i.e., the
cardinality of this set is used as a tie-break
criterion by AI. Hence, node 9 should be chosen firstly
if this strategy were adopted. Notice that this set of
nodes represents the non-zero rows in the corresponding
column of U (see, for instance, the last three columns
in Figure 6). However, the nodes inside the closed

1234567890 2
5 IX X 0

10 2 X X 0
4 3 XX X 0
7 4 X OX 1
2 5 X XXX 0
6 6 X XXX 0
3 7 XXOX 1
1 8 XXO 2 8
8 9 xx 3
9 10 X 4 9

depth=4
Fig. 7. Structure of U and Path Gra\Yl FollCllli~ MD-ML.

Fig. 8. Filled Graj:tlllefore Nodes 1, 8 and 9 Have Been Eliminated.

005 ylO 4 6t!] /2
, 7 /

" /" 3 , / ",

5 •

(al

6
ij]
r

I

length=Z

2

wlI
length=2

VWI
9 (f 1 ength=2

(c)

Fig. 9. Growth of the Path Graj:tl under Tht:ee Different Hypothesis.

,curve represent the non-zero rows in the same column of
0- (remember Figure 4). Obviously, the squared nodes
are always included within the closed curve, as the
structure 'of U is a .subset of the structure of 0-1 •

Vhat we are proposing is to use. the cardinality of this
new set, i.e., the set of nodes which precede the node
under consideration in the: path graph, as a tie-break
criterion. This i~ equivalent to locally minimize the
number of nor-zero eleml!!nts in 0-1 and, hence, better
results are expected. The only drawback of this method
is that this set is more difficult , to coapute or update
than the parameters used bY 'competitive algorithms.

Following this new strategy, nOoe 9, is also the
first to be eliminated. The ' reSUlting path graph is
shown in Figure 10 where the precedinJ sets for nodes 1
and 8 are abo outlined. It is clear that the next node
to be chosen is node 8, leaving node 1 at .the bottom
(see' the final resul t in Figure 6) • .

, A careful analysis of the changes produced from
Figure 9 to, Figure 10 will provide us with a method to
update . the preceodiilg set each tille a node is '
eliminated . . Let us deUne the foiiowing vectors:

P(i) : Number , of nodes in the path graph which
precede node ' 1 (plus one to incl~de 1 itself).
Initially set to one. '

F(i) : Bpolean variable. It is ~ true' if node i is
the last node added to any connected COmponent of the
pa th graph, 1. e. , if node i i,s a bordering (or
frontier) node. Initially set to 'false'.

The importance of bordering nodes is that it is only
required to know P(k) for such nodes. For instance, in
Figure <:I nodes 3, 5, 6 and 7 are bordering nolles and
P(3)z2, p(5)ml, P(6)=l, P(7):3. , It is immediate to see
that: '

P(1)-P(3)+P(5)+P(6)+P(7)+1-8
P(8).P(3)+P(6)+P(7)+1_7
P(9).P(3)+P(6)+1.4

Let us now retul:n to Figure 10 whel:e node 9 is a new
bordering nolle and nodes 3 and 6 have left this set of
nodes. O!>serve that the new values of PO) and peS) can
be updated as follows: .

P(1)~P(1)+P(9)-P(3)-P(6)-9
P(8)_P(B)+P(9)-P(3)-P(6)=B

These considerations lead finally to the following
algorithm (see Appendix for a practical
implementation). For a graph with. nodes:

Minimum Degree. Klniawa Humber of Predeceossors
Algorithm (KD-KNP).

1) Let kat.
2) Pick up a node i with f(i)~O such that D(i) is
minimum. Break the ties which appear in this process
selecting the node with minimum P(i). Set f(i)-k,
F(i)-'true'. .
3) If k equals H then stop.
4) For each j adjacent to i in the filled graph 00 the
follOwing:

4.1) If [(j)-O then set P(j).P(j)+P(i), D(j)zO(j)-1.
4.2) If F(j)-'true' then set F{j)-'false' and for

each m adjacent to j such that· f(a)_O do
P(a)=P(.)-P(j) .
5) For each pail: of nodes a, 0 adjacent to i but not
adjacent to each other, such that f(a)~f(o)aO, create a
new edge joining m and D, and increase D(m), 0(0) in
one unit. .
6) Set kak+1 and go to step 2).

Figure 11 shows the, results of applying this
algorithm to the 10-node system. The SaDe avel:age path
length as in Al is ·obtained though the resultant
ordering is different.

Nodes
preceding
node 1

1 ength=3

Nodes
preceding
node 8

Fig. 10. Path GIajn Before NodeS 1 and 8 !lave Been Eliminated.

1234567890
10 IX X I

5 2 X X 1 10
4 3 XX X 1
7 4 x xo' 3
9 5 x XXX 1
2 6 it XXX 1
6 7 XOXX 2
3 8 XOX 4
8 9 xx 8
1 10 X 10

Fig. 11. Structure of U and Path GraIn Foll~ IO-IH'.

orDBR POSSIBLE VERSIONS.

2

In view of the proposed algorithm, some
modifications may ' be intuitively introduced which
should lead eventually to \ further improvements. For
instance:, instead of using P(i) as a merit factor, 5(i)
could be used, where SCi) is defined as the addition of
all possible path lengths from the nodes which precede
node t, like in Figure 12.&. Figul:e 12.b shows how node
b should be chosen following this new criterion while
node a is preferable from the point of view of MD-MNP
strategy. This version which may be called ' Minimum
Degree, Minimum Total Path Length (MD-HTP) differs from
the main version in' what follows: The ties in step 2)
are brOken by means of S(l) which is initially set to
zero. In step 4), each time P is updated, 5 must be
also recomputed, depending on the case, as follows:

4.1) S(j)_S(j)+(P(i)+5(i»
4.2) 5(a)=S(m)-(P(j)+S(j»

That is, this version uses P only as a means of
easily updating S.

By using any of the , algorithms described or revised
until now, a large number of ties still appear in the
second criterion. In order to decrease such a 1al:ge
number of draws, it is possible to use the mean path,
computed as the real value S(i)/P(i), in step 2).

Another way of decreasing the number of ties could
be by using a third criterion. Among others, the
following ones can be mentioned: KP-HNP-ML, HD-HNP- HTP

(a) (b)
Fig. 12. Illustration of the It>-M1'P Strategy.

and MD- MNP-Maximum distance appart from the centre of
the graph.

Unfortunately, these more complex strategies have
not yielded good enough results, when they are applied
to our networks, to be further considered.

Finally, a refinement of the MD-MNP strategy stands
out which is based on the following reasoning: Assume
you are interested in minimizing the total mult-adds
required in the FF/FB process. When node k is involved
in a singleton path it contributes with D(k) mult-adds.
Considering that node k appears in P(k) paths, its
overall contribution is D(k).P(k) mult - adds. So it
seems logical to use the product P.D as a merit factor.
However, using this product as the main ordering
criterion causes a large number of fill-ins in U
because the MD strategy is perturbed.

It would be interesting, then, to find a compromise
solution between this strategy and MD-MNP. In this
sense, MD-MNP could be modified so that a small
difference in D is less important than a big difference
in P. Formally: once a minimum degree node k is
considered as a candidate in step 2), choose a node j
which satisfies D(j)<D(k)+h and P(j).D(j) is as small
as possible. When h -ranges from 1 to 4 better results
are obtained as may be seen in the next section.
Typically h=3 gives the best results.

COMPARATIVE RESULTS.

Appart from the tutorial examples used in previous
sections, other real systems, including the IEEE test
systems and several larger Spanish networks, have been
tested [9].

Tables I, II and III summarize some of the results
obtained with MD, MD- ML and MD- MNP algorithms
respectively for four selected networks. Each table
contains the following items from left to right: Size
of the system (nodes)I number of non- zero off - diagonal
elements of U and ur , mult-adds required in the full
factorization process, ordering execution time and,
finally, the average and standard deviation, for every
possible singleton, of the path length, mult-adds in
the FF/FB and mult-adds in the PMR process. Actually,
the results refer to B' matrix and, therefore, the
slack node is not included.

Figures 13 and 14 compare the savings obtained by
A1, MD-ML and MD-MNP with respect to MD when they are

50

-1 Opr. TinE PATH OPffi.FF/Fl 0Pffi. 00
thI U U Fac. sec. Mean SO Mean SO Mean SO

118 253 990 425 0.15 9.46 2.6 21.11 7.2 40.09 15.0
265 549 3622 972 0.63 14.72 3.8 48.84 12.4 132.97 36.1
448 1189 10667 28!:O 1.96 24.86 6.9 140.68 41.3 563.70 162.4
661 1851 17638 4972 4.18 27.72 8.6 189.62 72.1 900.90 367.7

Table I. Results obtained with MD (T-2) method.

-1Opr. TinE PIilll OPffi. FF IFB OPffi. H1R
thI U U Fac. sec. Mean SO Mean SD Mean SO

118 251 893 419 0.18 8.63 2.1 1B.04 6.2 33.37 14.2
265 549 3002 983 0.80 12.37 3.5 37.74 15.6 99.15 48.2
448 1180 9475 2755 2.30 22.20 6.7 100.82 37.1 378.53 130.0
661 1830 15746 4778 4.92 24.86 6.8 152.18 49.4 781.00 1B9.7

Table ll. Results obtained with MD-ML method.

-1Opr. TinE PIilll OPffi. FF IFB OPffi. H1R
lbl U U Fac. sec. Mean SD Mean SO Mean SO

11B 251 805 419 0.20 7.88 2.1 15.93 6.5 29.01 14.8
265 548 2870 977 0.83 11.87 2.8 33.71 10.9 83.46 38.7
448 1179 7667 2761 2.35 18.15 4.6 B3.87 23.7 289.52 86.2
661 1799 14634 4514 4.83 23.17 5.7 129.14 38.4 518.60 174.9

Table Ill. Results obtained with MlJ...WI' method.

applied to these systems. The figures show clearly that
the method proposed in this paper (MD-MNP) is superior
to MD-ML which is the best algorithm published up to
date.

In table IV the average savings achieved with a
larger number of networks are presented. Again, it can
be seen that the proposed algorithm yields better
results than previous methods for the three items
considered. Notice that even a slight improvement can
be attained by using the refined version described
earlier. Observe also that the largest savings are

Mean Number Ooerations
Method Mean Path FF/FB Par t. Re fac t.

A1 ref. [7] 5.63 12.75 17.28
MD-ML ref. [8J 12.33 20.89 26.60
MD-MNP 19.70 32.01 39.71
Refined MD-MNP 25.66 35.56 40.88

Table IV. Savings with respect to MD (X).
350

40 C=:J ND-NL
_MD-MNP
C=:JAl

C=:J ~1D-~lL
_ND-NNP
C=:JA1

300
I --- 11inim. Degree
~ --- -- Propo£"d r1"thod

~ " v

i:I 30 --
E

...,
'-

.30 ...,

3
,~

2513

~
r

:3 20

'" c ...
>
II'

(/) 10

I

j L I::lJAL-.l'~LA-J~ l
~ 150
<I
I ...,
-; 100
E

50

o

448 Nodes

2 3 4 2 3 4 25 50
No. o~ Singletons

Fig. n. Saving in FF/FB w.r. t. MD. Fig. 14. Saving in 00 w.r. t. MD. Fig. 15. Mult -Adds in FF IFB.

obtained in the PHR process (the rightllOst column) as
may be expected, since the non-zero elements of any row
involved in the path contribute quadratically to the
overall operations count of this process while only
linearly to the FF/FB process.

As the number of singletons grows, the advantage of
using sparse vector methods decreases. When this number
tends to the size of the system, the average number of
mult-adds required in the FF/FB approach the second
column of the tables (i.e., the number of non-zero
elements in U). This fact may be seen in Figure 15,
where the proposed algorithm (HD-KNP) is compared to HD
for as many singletons as approximately a 10% of the
network's size (in this case the 448-node system).
Analogously, as the number of modified rows in the
matrix increases, the use of PMR techniques is less
useful. Now, the required mult-adds tend to the fourth
column of the tables (operations count in the full
process). ,Figure 16 illustrates how tbe HD-KNP method
behaves compared to MD for the same network. In both
figures, the operations count was computed from a total
of 100 trials except, logically, for one singleton.

As was cOlDIDented in a previous section, the
behaviour of the MD strategy, as far as the path length
is concerned, has a strong dependence on the natural
order of the buses. Consequently, the performance of
this metbod may be, in certain cases, almost as good as
that of tbe proposed algorithm and very poor in otber
cases. However, tbose methods wbicb use a second
criterion have a more regular behaviour. To prove tbis
assertion a simple test has been done .consisting in
generating randomly four ditferent node orderings for
several networks. Figure 17 shows the results of this
test for the l18-node system. The black bar refers to
the natural order while the white ones correspond to
the four random orders. It is apparent that the
proposed method (HD-KNP) is quite insensitive to the
way the nodes are ordered whereas, in the other
extreme, HDproduces notably disperse results in spite
of the small size of the test case considered.

Execution times of the proposed algorithm (Table
III) are only slightly larger than those of the MD
algorithm (Table I) though they depend on the
efficiency of the impleeentations (see Appendix). These
tiaes were obtained on a pVAX-II.

Finally, though the aim of this paper is not to
present specific applications, it aay be interesting to
point out that about a 15% reduction in the execution
time has been achieved when MD-HNP is applied to the
parallel solution of linear equations (e.g. those which
appear in the Fast Decoupled Load Flow).

1000

809

til

~ 600
<I
I

.jJ
£ 400

--- Minim. Degree
----- Proposed !'Ietho

o 25 50
No. oT ~lodiTi.ed Rows

Fig. 16. Ihl t-Mds in 00.

118 Nodes

MD-tIL

I1D-MNP

2::i L-. _____ il.lL-_..LlJ~ ____ lll.LL __ _

2 3
Alsorithm

Fig. 17. Ihlt-Mds in 00 for DifferEnt ~.

CORCLUSIORS.

In this paper a node ordering algorithm to enhance
sparse vector .. thods is presented. The method proposes
a way to' break the draws which appear during the choice
of the pivot in the elimination process when the
minimua degree strategy is adopted. A vector that
contains the nmaber of predecessors for each node in
tbe path graph is used as a second criterion, yielding
a local minimization of tbe number of non-zero elements
in uri or, equivalently, of the mean path length. A way
to compute " this vector which requires a more complex
logic than other simpler methods is suggested. However,
the promising results obtained with the test networks
(above a 35% saving in operations count w.r.t. minimum
degree) justify its use.

Further work is necessary to better understand how
local minimum fill-in strategies interact with local
minimum path length strategies in a global sense. Vhile
einieum fill-in strategies (like KD) may eventually
lead to satisfactory results fro. the point of view of
path length, the opposite 1s not true. Using HNP as the
main criterion gives an excessive number of fill-ins
which, in turn, produce longer paths. This is why KNP
is only used as a tie-break criterion. Is it possible,
however, that other combinations of MD and HNP
strategies lead to better results7 Some data are
presented in the paper which suggest that the answer is
affirlll8tive.

RBPBRBNCBS •

(11 - Tinney V.F., lIalker J.V.~ Direct Solutions of
Sparse Network Equations by Optimally Ordered
Triangular Factorization. Procee. IEEE vol. 55
pp. 1801-1809, 1967.

[2) - Tinney II.F., Brandwajn V., Chan S.H., Sparse
Vector Methods. IEEE Trans. on PAS-I04, pp •
295-301, 1985 •

[3) - Chan S.M., Brandwajn V., Partial Hatrix
Refactorization. IEEE Trans. on PIIRS-1, pp.
193-200, 1986.

[4) - Betancourt R., Alvarado F.L.,
Inversion of Sparse Matrices. IEEE
PIIRS-l, pp. 74-81, 1986.

Parallel
Trans. on

[5) - Brandwajn V., Tinney II.F., Generalized Method
of Fault Analysis. IEEE Trans. on PAS-104, pp.
1301-1306, 1985.

[6) - Brandwajn V., Efficient Bounding Method for
Linear Contingency Analysis. IEEE/PES 1987
Yinter Meeting, New Orleans. 1987.

[7] - G6mez A., Franquelo L.G., Node Ordering
Algorithms for Sparse Vector Method
Improvement. IEEE/PES 1987 Yinter Meeting.

[8] - Betancourt R., An Efficient Heuristic Ordering
Algorithm for Partial MatriK Refactorization.
IEEE/PES 1987 Summer Meeting.

[9] - G6mez A., Franquelo L.G., A Node Ordering
Algorithm to Speed up the Solution of Sparse
Matrix and Sparse Vector Linear Equation
Systems. AMSE Int. Conf. Sept. 1986.

[10] - Duff 1.5., Erisman A.M., Reid J.K., Direct
Methods for Sparse Matrices. OKford University
Press, N.Y., 1986, Chapt. VII.

APPENDIX: Practical implementation.

There may be several alternatives to actually
implement both MD and MD-MNP algorithms, depending
mainly on the way the graph's structure is stored and
dealt with. An iml ementation is proposed here which is
not necessarily the most efficient one but it is only
intended to show that MD-MNP is not so compleK compared
to MD as it seems at first glance.

The usual linked data structure is adopted to store,
for each node, the set of adjacent nodes. Vector FIRST
points to the beginnings of these sets. CREATE is a
routine which inserts a pair of symmetric elements into
the chain and updates D (degree) provided the elements
did not already exist. NEXADJ gives the
currently-pointed adjacent node back and updates the
pointer (only two statements are required). MINIMUM is
a function which computes the minimum degree node
according to step 2 in the main text. Following the
notation introduced in the paper and assuming all
vectors and the data structure are properly
initialized, the MD-MNP algorithm might be as follows:

BEGIN
k-l
while (k<BN) do

begin
i=MINIMUM(f,D,P)
f(i)=k
F(i)='true'
pointl=FIRST(i)
while (point1<>0) do

begin
NEXADJ(point1,n)
if (f(n)~O) then
begin
D(n)=D(n) - l
P(n)=p(n)+P(i)
point2=pointl
while (point2<>0) do

begin
NEXADJ(point2,m)
if (f(m)=O) CREATE(n,m,D)

end
end

else
begin
if (F(n)='true') then
begin
F(n)='false'
point2=FIRST(n)
while (point2<>0) do

begin
NEXADJ(point2,m)
if (f(m)=O) P(m)=P(m)-P(n)

end
end

end
end

k=k+1
end

END

$

*

*

*
*
*
*
*
*
*
*
*
*
*
*
*

Note that step 4 has been embedded into step 5 in
order to avoid duplicated accesses to the structure. By
omitting P in the line marked with '$' and all of the
lines marked with' *' the MD algori thm is obtained.
Since the MD algorithm is very well known, its
computational compleKity is not going to be discussed
here [10). Rather it will serve as a reference to
compare the proposed method.

Each time a tie appears in the searching of the
minimum degree node an additional comparison is
required to break it. The resultant number of
comparisons is unknown "a priori" but they are peculiar
(inherent) to any method which eKploits a second
criterion.

The other major difference appears in the logic that
updates vectors F (frontier) and P (predecessors).
Every node becomes a bordering node when it is
eliminated. Later, it leaves forever the boundary when
any of its adjacent nodes is eliminated. Hence, at the
end of the ordering process the condition F(n)='true'
has been realised N-l times, once for each node (eKcept
the last one). This means that only one extra swept of
the graph's overall structure is required, compared to
MD. In addition, 2b updatings of F and P are carried
out, where b is the number of nonzero elements in U.

It is clear from the above paragraph that the
overhead introduced is not very significant.
Furthermore, since the proposed method gives usually
less fill-in, the resultant time is even better than
was eKpected, mainly because CREATE, which has an
involved logic, is called fewer times. Other refined
versions commented in the paper maybe, however, more
time- consuming. Due to space limitations they will not
be analyzed here.

ACKNOYLEDGEKENTS.

The authors acknowledge support of
Spanish Comisi6n Interministerial
Tecnologia (PAB6-0233).

this work by the
de Ciencia y

Antonio G6mez Exp6sito was born in Andbjar, Jaen,
Spain, on August 26, 1957. He received the Ingeniero
Industrial and the Doctor Ingeniero Industrial degrees
from the Universidad de Sevilla, Spain, in 1983 and
19B5, respectively. Since 1982 he has been an Assistant
and Associated Professor at the Departamento de
Ingenieria Electrica in the Escuela Superior de
Ingenieros Industriales of the Universidad de Sevilla.
His current research interests lie in sparse matrices
and reactive power control.

Leopoldo Garcia Franquelo was born in MAlaga, Spain,
on April 14, 1954. He received the Ingeniero Industrial
and the Doctor Ingeniero Industrial degrees from the
Universidad de Sevilla, Spain, in 1977 and 1980,
respectively. Since 1978 he has been Assistant,
Associated and Professor at the Departamento de
Ingenieria Electr6nica, de Sistemas y AutomAtica in the
Escuela Superior de Ingenieros Industriales of the
Universidad de Sevilla. His current interests include
mathematical modelling of circuits, computer
applications and programming techniques.

