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Nonequivalence of phonon modes in the sine-Gordon equation
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We study the resonances in the sine-Gordon equation driven by an ac force using a linear perturbation
theory. We show that resonances take place when the driving frequencyd is equal to half of the phonon
modes’ frequencies as has been shown numerically in our earlier work@N. R. Quintero, A. Sanchez, and F. G.
Mertens, Phys. Rev. E62, R60 ~2000!#, however, we find that the ac force is able to excite not all the phonon
modes, but rather only the odd phonons~i.e., the ones with odd eigenfunctions!.
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I. INTRODUCTION

The 111 dimensional sine-Gordon~sG! equation@uxx
2utt5sinu# appears in a wide variety of physical system
including charge-density-wave materials, magnetic flux
Josephson lines, splay waves in membranes, Bloch wall
tion in magnetic crystals, and models of elementary partic
among others@2#. In most realistic physical contexts th
completely integrable partial differential equation appe
under the effect of damping and dc@3# or ac @1,4# driving.

In this work we focus on the resonances of the lineari
tion spectrum of the sG equation under the effect of varia
frequency ac driving in the presence of damping. In orde
study the resonances of the sG system perturbed by a
force, we investigate the approximate solution of the follo
ing equation by using a linear perturbation theory

f tt2fxx1sin~f!52bf t1 f ~ t !, ~1!

whereb ande are small parameters,f (t)5e sin(dt1d0) is an
ac force with an amplitudee, a frequencyd, and phased0.
Here we also include the effect of dissipation through
damping coefficientb. For this model it has been numer
cally observed in Ref.@1# that the energy of the system
grows when the driving frequencyd is nearly half the fre-
quency of the extended~phonon! eigenmodes pertaining t
the continuous spectrum~due to resonance effects!. In Ref.
@1#, following Ref. @5#, the present authors use
the dispersion relationvn'A11(2np/L)2, ~where n
51,2, . . . ,N21; N5L/Dx, Dx is the lattice spacing
and L is the length of the finite computational domain! for
the frequencies of the phonon modes of Eq.~1!; however, we
will show that for the model of Eq.~1! considered with free
boundary conditions, the dispersion relation should readvn

'A11@(n21)p/L#2, (n51,2, . . . ) when n/L!1. It
was thus observed in Ref.@1# that when the sG system i
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driven by an ac force and the driving frequency is close
being half of the frequency of the oddn ~in the last formula!
phonon eigenfrequencies, these phonon modes are ex
while, unexpectedly, the same was not true for the e
eigenmodes. From this picture the main question that ar
is why are the rest of the phonon modes~evenn) not excited
by the ac force?

The aim of this work is to analyze these resonance p
nomena by using a linear perturbation theory. We will sh
why the ac driving is responsible for the ‘‘preferrential’’ ex
citation of only some~i.e., the ‘‘odd’’! of the phonon modes

II. PERTURBATION THEORY

We assume that the solution of Eq.~1! has the form

f~x,t !5f0„x2X~ t !…1E
2`

1`

dkAk~ t ! f k„x2X~ t !…, ~2!

wheref0(x) is the exact static kink solution of the sG equ
tion, and f k(x) are the eigenfunctions of the phonon mod
with the corresponding frequenciesvk ,

f k~x!5
eikx

A2pvk

@k1 i tanh~x!#, vk5A11k2, ~3!

which along with the zero frequency (vb50) Goldstone
mode f b(x)5]f0 /]x52/cosh(x) form an orthonormal basis
set ~for more details see, e.g., Ref.@6#!. The unknown, time
dependent functionsX(t) andAk(t)[@ak(t)1 ibk(t)#/2 rep-
resent the position of the center of the kink and the amplitu
of phonon modes, respectively. If we impose free bound
conditions~FBC! on Eq. ~1! at 6` and consider the static
kink centered atX(0)50, ]f(x,t)/]x in Eq. ~2! should van-
ish at 6L/2→6`, Ẋ(0)50, Ak(0)50, and Ȧk(0)50.
Taking finite but large enoughL we find that the FBC hold if

ak

]Fk

]x
~6L/2!1bk

]Gk

]x
~6L/2!50, ~4!
©2001 The American Physical Society08-1
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where the functionsFk(x) andGk(x) are the real and imagi
nary part off k(x), respectively. Notice that,Fk(x) is an even
function, whereasGk(x) is an odd one~see in Fig. 1 the
functionsG1 andF2), and soak(t) andbk(t) in Eq. ~2! are
related with the even and odd eigenfunctions of the pho
modes, respectively.

In order to obtain the equations forX(t) and Ak(t), we
insert Eq.~2! into Eq. ~1! and then project the obtained e
pression on the basis of eigenfunctions of the lineariza
operator $ f b , f k% using the orthogonality relations. Afte
straightforward calculations we obtain the evolution eq
tions for the kink’s center,

LbX52
q f~ t !

M0
1

1

M0
E dk@~Ẍ1bẊ!bk1Ẋḃk#N1~k!

2
i

4M0
E dkE dk1~akbk1

1ak1
bk!I 1~k,k1!, ~5!

whereL j[]2/]t21b]/]t1v j
2 ( j 5b,k) is the second or-

der linear differential operator,M058 is the kink’s mass,
andq[*du f b52p is the topological charge of the sG kin
~here and throughout the paper we omit the limits6` in the
integrals!, and for the phonon amplitudes

LkAk5 f ~ t !N2~k!2Ẋ2iN1~k!

2 i E dk8Fq f~ t !

M0
Ak82ẊȦk8G I 2~k8,k!

1
i

2E dk1E dk2Ak1
Ak2

! I 3~k1 ,k2 ,k!, ~6!

with

N1~k![
1

i E du f b

] f k

]u
5Ap

2

vk

coshS pk

2 D ,

N2~k![E du f k
!52Ap

2

vk

sinhS pk

2 D , k5” 0,

FIG. 1. We plot the spatial profile of the first odd (G1) and even
(F2) eigenfunctions by solid and dashed lines, respectively.
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-

I 1~k,k8![
1

2i E du
] f b

2

]u
f k f k8

!
5

~k22k82!

4vkvk8 sinhS pD

2 D ,

I 2~k8,k![
1

i E du
] f k

]u
f k8

!
~u!5kd~k82k!1I 1~k,k8!,

I 3~k1 ,k2 ,k![
1

i E du
] f b

]u
f k1

~u! f k2

! ~u! f k
!~u!,

where D5k2k8. Notice that in Eqs.~5! and ~6! we have
neglected the terms proportional toẊ2ak and Ẋ2bk .

To solve the coupled nonlinear evolution equations~5!

and~6! with the FBC~4!, we use the fact thatẊ(t) andAk(t)
vanish whene50 and so, ife is a small parameter, we
expand these two functions in powers ofe, i.e., Ẋ(t)
5( j 51

` e j Ẋ j (t) and Ak(t)5( j 51
` e jAk

( j )(t) with the initial

conditionsẊj (0)50 andȦk
( j )(0)50. Inserting these two se

ries into Eqs.~5!, ~6!, and~4! we obtain a hierarchy of linea
equations for the coefficients of these series. For the orde
ande2 these equations read

Ẍ11bẊ152
q sin~dt1d0!

M0
,

äk
(1)1bȧk

(1)1vk
2ak

(1)52Ap

2

sin~dt1d0!

vk sinhS kp

2 D ,

b̈k
(1)1bḃk

(1)1vk
2bk

(1)5sin~dt1d0!E duGk50 ~7!

and

Ẍ21bẊ250,

äk
(2)1bȧk

(2)1vk
2ak

(2)50,

b̈k
(2)1bḃk

(2)1vk
2bk

(2)52Ẋ1
2Ap

2

vk

coshS kp

2 D
2

q sin~dt1d0!

M0
E dk8ak8

(1)I 2~k8,k!

1Ẋ1E dk8ȧk8
(1)I 2~k8,k!

1
1

2E dk1E dk2ak1

(1)ak2

(1)I 3~k1 ,k2 ,k!,

~8!

where$ak
(1) ,bk

(1)% and$ak
(2) ,bk

(2)% also satisfy Eq.~4!. Since
our purpose is to explain from an analytical point of view t
resonances observed numerically in Ref.@1# in the undamped
8-2
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case, we continue the analysis of Eqs.~7! and ~8! settingb
50. In this case the solution of Eq.~7! reads

Ẋ152
q

M0d
@cos~dt1d0!2cos~d0!#,

ak
(1)5c1 sin~vkt !1c2 cos~vkt !1r k sin~dt1d0!,

c152
dr k cos~d0!

vk
, c252r k sin~d0!,

r k5
A2p

2vk~d22vk
2!sinh~kp/2!

, ~9!

and bk
(1) is zero. Notice that whend is close tovk the ex-

pansion forAk is not valid sinceak
(1) goes to infinity, so

when d'vk , the ac force excites the even modes, givi
rise to the resonances in the system. Also, notice that, at
in the first order correction, there are no resonances ad
'vk/2.

It is interesting to note that not all phonon modes a
solutions of the starting problem~1! with FBC ~4!. Indeed,
by inserting this solution in Eq.~4! we obtain

ak
(1)@sin~kL/2!@k21cosh22~L/2!#1k cos~kL/2!tanh~L/2!#

50. ~10!

This equation yields the allowed values of the wave num
k5km (m51,2, . . . ,N), so in the above equations w
should change the integral overk to a sum over theN wave
numbers. If we considerL large enough in Eq.~10!, we find
that if

km5
~2m21!p

L
, ~11!

Eq. ~10! is approximately equal to zero for the first mode
however, for the largest values ofk5km , ak

(1) should vanish
@7#. Coming back to the evolution equations~8!, and substi-
tuting the solutions~9! in the right-hand side of~8!, we ob-
tain thatẊ250, ak

(2)50, and the equation forbk
(2) reads

b̈k
(2)1vk

2bk
(2)52

A2pvk

4 coshS kp

2 D
q2

M0
2d2

@21cos~2d0!

1cos~2dt12d0!24 cos~d0!cos~dt1d0!#

2
q

M0
sin~dt1d0!Fkc1 sin~vkt !

1kc2 cos~vkt !1krk sin~dt1d0!

1E dk8ak8
(1) ~k22k82!

4vkvk8 sinh~pD/2!
G

05660
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,

2
q

M0d
@cos~dt1d0!2cos~d0!#

3S kȧk
(1)1E dk8ȧk8

(1) ~k22k82!

4vkvk8 sinh~pD/2!
D

1
1

2E dk1E dk2ak1

(1)ak2

(1)I 3~k1 ,k2 ,k!. ~12!

It can be seen from Eq.~12! that when we drive the origina
system with an ac force of frequencyd, the odd phonons
‘‘feel’’ an external force of frequency 2d, so the resonance
arise whend'vk/2 @8#. Analogously withak

(1) , if we take
into account the FBC, we obtain thatbk

(2) also satisfies

bk
(2)$cos~kL/2!@k21cosh22~L/2!#2k sin~kL/2!tanh~L/2!%

50, ~13!

whose solution is given by

km5
2~m21!p

L
, ~14!

for small integerm(m!L) and bk
(2)50 otherwise. So, the

resonances atd'vk/2 are related with the excitation of th
odd phonon modes. Combining Eqs.~11! and ~14! we find
that the allowed wave number for the partial different
equation~PDE! ~1! with FBC are

kn5
~n21!p

L
, n51,2, . . .N, n!L, ~15!

where the odd~even! values ofn are related with the odd
~even! phonon modes. Moreover, these results are consis
with the numerical findings of Ref.@1#.

III. INTERPRETATION OF THE RESULTS

In analyzing the results of the perturbation theory, w
observe that to first~linear! order, the effect of the ac driving
in exciting the phonon modes is independent of the nonlin
wave ~the kink! but rather related to the ‘‘integrate
strength’’ of the mode that is to be excited@notice the term
N2 in Eq. ~6!#. Consequently, as odd modes bear vanish
integrated strength, ford'vk , only resonances with the
even phonon modes can be identified~to leading order!. On
the contrary, higher order resonances involve the nonlin
wave@notice the termN1 in Eq. ~6!#. In the latter case, as w
observe in Figs. 2 and 3, the excitation of modes that res
the symmetry of the nonlinear wave becomes preferren
~as we would expect on symmetry grounds!. Hence ford
'vk/2, the excitation of phonon modes that have the sa
parity as the wave will be favored. In Fig. 1 we show the fi
odd and the first even phonon mode eigenfunction profi
while in Figs. 2 and 3 we show their respective effects on
motion of the kink. Notice that the former results in a brea
ing type oscillation of the whole kink profile, while the latte
affects only the steady states on the background of which
8-3
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kink ‘‘lives.’’ The latter observation justifies the remark
above, as the first order excitation~at d'vk) of the even
modes is related only to the steady states~unrelated to the
kink!, while the second order excitation of the odd modes~at
d'vk/2) is predominantly related to the kink~rather than to
the steady states!. Notice that we can extend the obtaine
results by including the effect of damping in the system. I
natural to take into account the dissipative effects in the
alistic cases of interest in applications. Furthermore it sho
be noted that in this way the divergences in the solutions
the Eqs.~7! and~12! are avoided and the perturbation theo
is valid even whend'vk ,vk/2.

IV. CONCLUSIONS

We have shown by using a linear perturbation theory t
the ac force excites only the odd phonon modes at driv

FIG. 2. Effect of the odd phonon modes on the sG kink: with
solid line we represent the static kink,f0, which is an exact solu-
tion of the sG equation. Under the effect of the first odd phon
mode @linear superposition of the sG kink and the functio
b1G1(x), with b1560.5, see Eq.~2!#, the sG kink oscillates be
tween the two profiles represented by the dashed and dash-d
lines.
.

s,
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frequenciesd'vk/2. These modes of odd parity are ene
getically favored as they respect the symmetry of the kink
was also shown that the even phonon modes~of even spatial
parity! can be excited at driving frequenciesd'vk . So, at
least in this problem ‘‘not all phonons are equivalent.’’ W
should remark that this phenomenon is not only restricted
the action of the ac force in the sG system, but is, in fa
more general: Indeed, takingd50 andd05p/2 in Eqs.~7!
and~8!, one can show that the nonequivalence of the pho
modes also arises when the system is driven by a dc fiel
even if we start from a distorted kink in the numerical sim
lations @9#.
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FIG. 3. Effect of the even phonon modes on the sG kink: wit
solid line we represent the static kink,f0, which is an exact solu-
tion of the sG equation. Under the effect of the first even phon
mode@linear superposition of the sG kink and the functiona2F2(x),
with a2561, see Eq.~2!#, the sG kink oscillates between the tw
profiles represented by the dashed and dash-dotted lines.
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