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Abstract. In this paper we analyse the almost sure exponential stability and
ultimate boundedness of the solutions to a class of neutral stochastic semilinear
partial delay differential equations. This kind of equations arises in problems

related to coupled oscillators in a noisy environment, or in viscoeslastic mate-
rials under random or stochastic influences.

1. Introduction. In this paper we are mainly interested in the analysis of the
exponential stability of some types of stochastic neutral partial functional differen-
tial equations. To motivate and justify our work, let us first describe the general
framework in which our study will be carried out.

Let Z be a Banach space, Cr = C([−r, 0], Z) the Banach space of all continuous
mappings φ from [−r, 0] into Z where r > 0 is a real number. Let A : Z → Z be
a closed operator and let A0 : Z → Z be a bounded linear operator. Define the
functional difference operator

D(·) : [0,∞)× Cr → Z

by
D(t)ϕ = ϕ(0)− g(t, ϕ), t ∈ [0,∞), ϕ ∈ Cr,

where g : [0,∞)× Cr → Z is a continuous function. Let G : [0,∞)× Z → Z be a
continuous function and let Xt ∈ Cr be defined by Xt(θ) = X(t+ θ) for θ ∈ [−r, 0].
If g 6= 0, then the following stochastic problem{

d [D(t)Xt] = [AX(t) +A0Xt]dt+G(t,Xt)dW (t), t ≥ 0,
X(t) = φ(t), t ∈ [−r, 0], φ ∈ Cr,

(1)
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where, for simplicity, W (t) is a standard Brownian motion, is termed a stochastic
neutral functional differential equation.

When Z = Rn andG ≡ 0, the deterministic neutral equation has been extensively
studied in the literature (see, e.g. [10], [11], [13], [12] and the references therein).
As for the stochastic version (i.e., for G 6= 0), one can find some results in [14] and
[18] amongst others.

However, when Z is an infinite-dimensional Hilbert space, i.e. when operators
A,A0, and G involve partial derivatives, only a few results have been obtained in
this field despite the importance and interest of the model (1). In this respect, it is
worth mentioning that this kind of neutral equations arises from problems related to
coupled oscillators in a noisy environment, or in problems of viscoeslastic materials
under random or stochastic influences (see [24] for a description of these problems
in the deterministic case). To the best of our knowledge, there exist only a few
papers already published in this field. To be more precise, in [16] (see also [17])
it is considered a linear version of (1) in the particular case in which the delays
are constant, and some stability properties of the mild solutions are analysed in
a similar way as Dakto proved in [8] in the deterministic case, while in [9] it is
studied the existence and uniqueness of mild solutions to a semilinear model, as
well as some results on the stability of the null solution. Here we are concerned
with a non-autonomous semilinear model containing different types of finite delays
(constant, variable, distributed, etc), treated within a variational formulation (as in
[19], [1], [2]), and we analyse the ultimate boundedness and asymptotic behaviour
of solutions even when zero is not a solution to our model. In addition, the partial
differential operators appearing in the right-hand side of our equation are more
general than the ones in [16] and [9].

Our main objective is to provide sufficient conditions ensuring the exponential
pathwise stability of solutions to (1). Nevertheless, we will also prove a result on
the existence and uniqueness of solution to our model by using the method of steps.
In particular, our stability results can also be applied to stochastic delay partial
differential equations, extending in some sense, some of the results previously proved
in that field (see, e.g. [3] and [1]).

The contents of this paper are as follows. In Section 2 we recall some preliminar-
ies on the Hilbert-valued stochastic integral. In Section 3 we discuss the existence
and uniqueness of solution to our neutral semilinear stochastic partial differential
equation. We present some auxiliary lemmata in Section 4. The moment exponen-
tial stability and ultimate exponential boundedness of the solutions, as well as the
almost sure exponential stability of solutions are analysed in Section 5. Finally, in
Section 6 we present an application example which illustrates the theory previously
developed in this paper.

2. Preliminaries. In this section we first introduce the variational framework in
which our analysis will be developed. Let V and H be a reflexive Banach space and
a separable Hilbert space with their respective norms ‖ · ‖ and | · |, and such that

V ⊂ H ∼= H∗ ⊂ V ∗,

where V is a dense subspace of H and the injections are continuous. We denote by
〈·, ·〉 the duality between V and V ∗, and by λ1 a constant satisfying

λ1|u|2 ≤ ||u||2, for all u ∈ V.
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Assume that {Ω,F , P} is a complete probability space, and let {Ft}t≥0 be an
increasing and right continuous family of sub σ-algebras of F , such that F0 contains
all the P -null sets of F . We will denote Ft = F0 for t < 0. Let {βj(t), t ≥
0, j = 1, 2, ...} be a given sequence of mutually independent standard real Ft-
Wiener processes defined on this space, and suppose given K, another separable
Hilbert space, and {ej ; j = 1, 2, ...}, an orthonormal basis of K. We denote by
{W (t); t ≥ 0}, the cylindrical Wiener process with values in K defined formally as
W (t) =

∑∞
j=1 β

j(t)ej .
It is well known that this series does not converge in K, but rather in any Hilbert

space K̃ such that K ⊂ K̃, being the injection of K into K̃ Hilbert-Schmidt (see
e.g. Da Prato & Zabczyk [7] for more details).

Given real numbers a < b, and a separable Hilbert space H we will denote
by M2

Ft
(a, b;H) the space of all processes X ∈ L2(Ω × (a, b),F ⊗ B((a, b)), dP ⊗

dt;H) (where B((a, b)) denotes the Borel σ−algebra on (a, b)) such that X(t) is
Ft−measurable a.e. t ∈ (a, b). The space M2

Ft
(a, b;H) is a closed subspace of L2(Ω×

(a, b),F ⊗ B((a, b)), dP ⊗ dt;H).
We will write L2

Ft
(Ω;C([a, b];H)) to denote the space of all continuous and Ft-

progressively measurable H-valued processes {ϕt; a ≤ t ≤ b} satisfying
E
(
supa≤t≤b ‖ϕt‖2H

)
<∞.

For our separable Hilbert space H, with scalar product (·, ·), let us denote by
L2

0(K;H) the separable Hilbert space of Hilbert-Schmidt operators from K into H,
and by ((·, ·))L2

0
and ‖ · ‖L2

0
the scalar product and its associated norm in L2

0(K;H),
where for all R and S in L2

0(K;H),

((R,S))L2
0

=
∞∑

j=1

(Rej , Sej).

For any process Ψ ∈ M2
Ft

(0, T ;L2
0(K;H)), we define the stochastic integral of Ψ

with respect to the cylindrical Wiener process W (t), denoted by
∫ t

0
Ψ(s) dW (s),

0 ≤ t ≤ T, as the unique continuousH-valued Ft-martingale such that for all h ∈ H,

(
∫ t

0

Ψ(s) dW (s), h) =
∞∑

j=1

∫ t

0

(Ψ(s)ej , h) dβj(s), 0 ≤ t ≤ T,

where the integral with respect to βj(s) is understood in the sense of Itô, and
the series converges in L2(Ω;C([0, T ])). See e.g. Da Prato & Zabczyk [7] for
the properties of the stochastic integral so defined. In particular, we note that
if Ψ ∈ M2

Ft
(0, T ;L2

0(K;H)) and φ ∈ L2(Ω;L∞(0, T ;H)) is Ft-progressively mea-
surable, then the series

∑∞
j=1

∫ t

0
(Ψ(s)ej , φ(s)) dβj(s), 0 ≤ t ≤ T, converges in

L1(Ω;C([0, T ])), and defines a real valued continuous Ft-martingale. We will use
the notation∫ t

0

(Ψ(s), φ(s)dW (s)) =
∞∑

j=1

∫ t

0

(Ψ(s)ej , φ(s)) dβj(s), 0 ≤ t ≤ T.

Let r > 0 denote a positive real number and let Cr = C([−r, 0],H) be the Banach
space of all continuous mappings from [−r, 0] into H equipped with the sup-norm.
Given u ∈ C([−r,+∞),H), for any t ≥ 0, we denote by ut the element in Cr

defined by
ut(θ) = u(t+ θ), θ ∈ [−r, 0].
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In this paper we consider the exponential stability and exponential ultimate
boundedness of solutions to the following neutral stochastic delay partial differential
equation:{

d [X(t)− k(t,X(t− r))] = [A(t)X(t) + f(t,Xt)] dt+ g(t,Xt)dW (t)
X(t) = ϕ(s), −r ≤ t ≤ 0, (2)

where ϕ(s, ·) is F0−measurable for all s ∈ [−r, 0], A(t) : V −→ V ∗ is a linear
operator for almost all t ∈ [0,∞), k : [−r,∞) × V −→ V is a globally Lipschitz
function, and f : (0,∞)×Cr → V ∗ and g : (0,∞)×Cr −→ L2

0(K,H) are continuous
and globally Lipschitz mappings.

3. Existence and uniqueness of solutions. Although the existence and unique-
ness of solutions of a problem more general than (2) (for instance, in which the term
k takes the form k(t,Xt) and A(t, ·) is a family of nonlinear operators) will be the
aim of our forthcoming paper [5], we will content ourselves now with this case since,
as far as we know, there are only a few works dealing with stochatic neutral partial
differential equations (e.g. Liu [16] and [9] for the existence of mild solutions to
semilinear neutral equations), but none of them analyse the variational framework
in the present paper.

On the other hand, it is remarkable that, allowing the initial datum to be defined
in the interval [−2r, 0] instead of [−r, 0], a suitable method of steps will give us the
existence and uniqueness of solutions in a straighforward way. Bearing in mind that
our main objective in this paper is to study the asymptotic behaviour of (2), we
will consider this situation.

Let A(t) : V → V ∗ be a family of linear operators defined a.e. t ∈ (0,+∞) such
that A(·) ∈ L∞(0, T ;L(V, V ∗)) for all T > 0, and satisfying the following coercivity
assumption:
(C) there exist α > 0 and λ ∈ R such that

−2 〈A(t)u, u〉+ λ |u|2 ≥ α ‖u‖2 , ∀u ∈ V, a.e. t ∈ (0,+∞).

Let f : Ω × (0,+∞) × Cr → V ∗ and g : Ω × (0,+∞) × Cr → L2
0(K,H) be two

families of nonlinear operators defined a.e. t ∈ (0,+∞) such that:
(f.1) ∀φ ∈ Cr, the stochastic process f(·, φ) is Ft−progressively measurable,
(f.2) f(·, 0) ∈M2

Ft
(0, T ;V ∗), for all T > 0,

(f.3) there exists Cf > 0 such that

‖f(t, φ1)− f(t, φ2)‖2∗ ≤ Cf |φ1 − φ2|2Cr
, ∀φ1, φ2 ∈ Cr, a.e. t ∈ (0,+∞),

(g.1) ∀φ ∈ Cr, the stochastic process g(·, φ) is Ft−progressively measurable,
(g.2) g(t, 0) ∈M2

Ft
(0, T ;L2

0(K;H)) for all T > 0,
(g.3) there exists Cg > 0 such that

‖g(t, φ1)− g(t, φ2)‖2L2
0
≤ Cg |φ1 − φ2|2Cr

, ∀φ1, φ2 ∈ Cr, a.e. t ∈ (0,+∞),

Let us now consider the problem for any T > 0,

u ∈M2
Ft

(−r, T ;V ) ∩ L2(Ω;C(−r, T ;H)),

u(t) = ψ(0) +
∫ t

0
A(s)u(s) ds+

∫ t

0
(f(s, us) + f̃(s)) ds

+
∫ t

0
(g(s, us) + g̃(s)) dW (s), t ∈ [0, T ],

u(t) = ψ(t), t ∈ [−r, 0].

(3)
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Caraballo et al. proved in [1] the following result∗:

Theorem 1. Assume that hypotheses (C), (f.1)-(f.3) and (g.1)-(g.3) hold. Then,
for every ψ ∈M2

F0
(−r, 0;V )∩L2(Ω;Cr), f̃ ∈M2

Ft
(0, T ;V ∗) and g̃ ∈M2

Ft
(0, T ;L2

0(K;H)),
there exists a unique solution u to the problem (3).

Based on this result we can prove the existence and uniqueness of solutions to
our problem (2) but for an initial value in [−2r, 0].

Theorem 2. Assume that A, f and g satisfy assumptions in Theorem 1 for any
T > 0. Suppose that k : [−r,+∞) ×H → H is a globally Lipschitz function (with
respect to its second variable) such that k([−r,+∞)× V ) ⊂ V , and is also globally
Lipschitz in V, i.e., there exists Lk > 0 such that

|k(t, u)− k(t, v)| ≤ Lk|u− v|, for all u, v ∈ H, t ≥ −r,
||k(t, u)− k(t, v)|| ≤ Lk||u− v||, for all u, v ∈ V, t ≥ −r,

and it satisfies that, k(·, 0) ∈ L2(−r, T ;V ) for all T > 0, and for each v ∈ H, the
mapping k(·, v) ∈ C([−r,+∞);H). Then, for any initial datum ϕ ∈M2

F0
(−2r, 0;V )∩

L2(Ω;C2r) there exists a unique solution to the problem
X ∈M2

Ft
(−2r, T ;V ) ∩ L2(Ω;C([−2r, T ];H) for all T > 0,

d [X(t)− k(t,X(t− r))] = [A(t)X(t) + f(t,Xt)] dt+ g(t,Xt)dW (t),

X(t) = ϕ(s), −2r ≤ t ≤ 0,
(4)

or, in its integral form,
X(t)− k(t,X(t− r)) = ϕ(0)− k(0, ϕ(−r))

+
∫ t

0
[A(s)X(s) + f(s,Xs)] ds+

∫ t

0
g(s,Xs)dW (s), t ≥ 0,

X(t) = ϕ(t), − 2r ≤ t ≤ 0.

(5)

Proof. Let us first consider the problem for t in the interval [0, r]. Let us denote by
h(t) = k(t, ϕ(t− r)) for t ∈ [−r, r]. Then, problem (5) can be rewritten as

X(t) = X(0) + h(t)− h(0) +
∫ t

0
[A(s)X(s) + f(s,Xs)] ds

+
∫ t

0
g(s,Xs)dW (s), t ∈ [0, r],

X(t) = ϕ(t), − 2r ≤ t ≤ 0,

(6)

and making the change of variables Y (t) = X(t)− h(t), we obtain
Y (t) = Y (0) +

∫ t

0
[A(s)Y (s) +A(s)h(s) + f(s, Ys + hs)] ds

+
∫ t

0
g(s, Ys + hs)dW (s), t ∈ [0, r],

Y (t) = ϕ(t)− k(t, ϕ(t− r)), − r ≤ t ≤ 0.

(7)

It is straightforward to check that the operators and the initial value in this problem
satisfy the assumptions in Theorem 1, so that we can ensure the existence of a unique
solution Y (·) of (7) inM2

Ft
(−r, r;V )∩L2(Ω;C(−r, r;H)), and thus a unique solution

X(·) = Y (·) + h(·) of (5) in [−r, r].
It is clear that we can iterate again in the interval [r, 2r] and, recursively, in any

[nr, (n+ 1)r] for n ∈ N. Thus there exists a unique solution in [−r,+∞).

∗In [1] the result was proved for a standard Wiener process but it can be easily extended to

the actual situation.
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In what follows we assume that our problem (2) possesses a unique solution
defined globally in time (what may happen under different assumptions than those
in Theorem 2).

4. Some auxiliary lemmata. In this section we prove several lemmata which will
be helpful for our later stability analysis. We start with a result which is based on
an inequality for real numbers.

Lemma 1. Let 0 < c < 1. Then, for any u, v ∈ H, it follows that

|u|2 ≤ 1
1− c

|u− v|2 +
1
c
|v|2. (8)

Proof. Observe that, for any u, v ∈ H, if follows from the Young inequality that

(u, u) = (u− v, u− v) + 2 (u, v)− (v, v)

≤ |u− v|2 − |v|2 + c|u|2 +
1
c
|v|2,

whence (8) holds.

Given a H−valued stochastic process X(t), t ≥ −r with X(s) = ϕ(s),−r ≤ s ≤
0, let us first assume that there exists a positive real number B0 > 0 such that

sup
−r≤t≤0

E|ϕ(t)|2 ≤ B0. (9)

Then, we have the following result.

Lemma 2. Let (9) hold and let Mδ and Mγ be nonnegative constants. Assume that
the continuous function k : [−r,∞)×H → H satisfies the following inequality

|k(t, x)|2 ≤ c2|x|2 + δ(t), 0 < c < 1, t ≥ −r, (10)

where δ : [−r,+∞) → [0,+∞) is a continuous function with 0 ≤ δ(t) ≤Mδ.
If a stochastic process X(t), t ≥ −r with X(s) = ϕ(s),−r ≤ s ≤ 0, satisfies the
following inequality:

E|X(t)− k(t,X(t− r))|2 ≤M0e
−θt + γ(t), M0 > 0, θ > 0, t ≥ 0, (11)

where γ : [−r,+∞) → [0,+∞) is another continuous function with 0 ≤ γ(t) ≤Mγ ,
then there exist positive real numbers ρ > 0 and M1 > 0 such that

E|X(t)|2 ≤M1e
−ρt + c0, t ≥ 0,

where c0 = Mδ

c(1−c) + Mγ

(1−c)2 .

Proof. By Lemma 1 we have that

E|X(t)|2 ≤ 1
1− c

E|X(t)− k(t,X(t− r))|2 +
1
c
E|k(t,X(t− r))|2,

and, by (10)-(11),

E|X(t)|2 ≤ M0

1− c
e−θt + cE|X(t− r)|2 +

Mδ

c
+

Mγ

1− c
.
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Since 0 < c < 1, we can take a β ∈ (c, 1) such that 0 < 1
r log β

c < θ. Let α = 1
r log β

c .

We note that c < ceαr = β < 1 and cje−α(t−jr) = βje−αt. For any fixed t > 0,
there exists an integer n ≥ 0 such that −r ≤ t− nr < 0. Thus, since 0 < α < θ,

E|X(t)|2 ≤ M0

1− c
e−αt + cE|X(t− r)|2 +

Mδ

c
+

Mγ

1− c

≤ M0

1− c

n−1∑
j=0

cje−α(t−jr)

+ cnE|ϕ(t− nr)|2 +

n−1∑
j=0

cj

(Mδ

c
+

Mγ

1− c

)

≤ M0

1− c

n−1∑
j=0

βj

 e−αt + cnB0 +

n−1∑
j=0

cj

(Mδ

c
+

Mγ

1− c

)
.

On the other hand, since c = βe−αr and −r ≤ t− nr < 0, we have that

cn = βne−nαr < βne−αt < e−αt.

Hence we obtain that

E|X(t)|2 ≤
(
M0β0

1− c
+B0

)
e−αt + c0,

where β0 = 1
1−β . This completes the proof of the lemma.

Next we assume that

E

(
sup

−r≤t≤0
|ϕ(t)|2

)
≤ B1. (12)

Then we can establish the following lemma.

Lemma 3. Let (12) hold and let N be a natural number. Assume that all the
conditions of Lemma 2 are fulfilled except condition (11) which is replaced by

E

(
sup

Nr≤t≤(N+1)r

|X(t)− k(t,X(t− r))|2
)
≤M0e

−θN + γ(t), t ≥ 0. (13)

Then, there exist positive real numbers ρ > 0 and M2 > 0 such that

E

(
sup

Nr≤t≤(N+1)r

|X(t)|2
)
≤M2e

−ρN + c0, t ≥ 0.

Proof. By Lemma 1 it follows that

E

(
sup

N≤t≤N+1
|X(t)|2

)
≤ 1

1− c
E

(
sup

Nr≤t≤(N+1)r

|X(t)− k(t,X(t− r))|2
)

+
1
c
E

(
sup

Nr≤t≤(N+1)r

|k(t,X(t− r))|2
)
.
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Thus, we have

E

(
sup

Nr≤t≤(N+1)r

|X(t)|2
)

≤ M0

1− c
e−θNr + cE

(
sup

Nr≤t≤(N+1)r

|X(t− r)|2
)

+
Mδ

c
+

Mγ

1− c
.

Since the real number c satisfies 0 < c < 1, we can choose µ > 0 such that

0 < µ < θ and 0 < µ <
1
r

log
1
c
.

Then we obtain that

E

(
sup

Nr≤t≤(N+1)r

|X(t)|2
)
≤ M0

1− c

N−1∑
j=0

(ceµr)j

 e−µNr

+ cNE

(
sup

Nr≤t≤(N+1)r

|X(t−Nr)|2
)

+ c0

N−1∑
j=0

cj

 .

Thus, since cN < e−µNr, we obtain that

E

(
sup

Nr≤t≤(N+1)r

|X(t)|2
)
≤ M0e

−µNr

(1− c)(1− ceθr)
+ cNB1 +

c0
1− c

≤
(

M0

(1− c)(1− ceµr)
+B1

)
e−µNr +

c0
1− c

,

which completes the proof of the lemma.

Now, thanks to these previous lemmata, we can discuss the ultimate exponential
boundedness and the exponential stability of the solutions to the neutral stochastic
delay differential equation (2).

5. Exponential stability under a coercivity condition. It is known that some
kind of coercivity conditions may play the rôle of stability criteria (see, e.g., [3]
or [2]) in dealing with the analysis of stability of solutions to partial differential
equations (either deterministic or stochastic). In this section we will show that the
same is true in our neutral case. However, we will formulate this condition under an
integral form which is, in fact, weaker. To this end, we assume that the operators
in the neutral stochastic delay partial differential equation (2) satisfy the following
condition:

There exists m0 > 0 such that for each m ∈ [0,m0] there exist constants α1(m) >
0, α2(m) ≥ 0 and a function ξ (·,m) : R+ → R+ such that for all T > 0 and all
u ∈ L2(−r, T ;V ) ∩ C(−r, T ;H) it holds∫ t

t0

ems
[
2 〈u(s)− k(s, u(s− r)), A(s)u(s) + f(s, us)〉+ ||g(s, us)||2L2

0

]
ds

≤ −α1(m)
∫ t

t0

ems||u(s)||2 ds+ α2(m)
∫ t0

t0−r

ems||u(s)||2 ds+ ξ(t,m), (14)



THE EXPONENTIAL STABILITY FOR NSDDE 9

for a.e. t ∈ (t0, T ), and all t0 ∈ [0, T ]. We assume in this section that k(t, ·) : H → H
is continuous, maps V into itself, satisfies (10) and

||k(t, u)||2 ≤ c2||u||2 + δ(t), 0 < c < 1, for u ∈ V, (15)

for the same constant c and function δ as in (10).

Remark 1. Observe that a stronger condition implying (14) is the following:
There exist a constant α1 > 0 and a nonnegative function ξ1 (·) such that, for any
φ ∈ Cr it follows

2 〈φ(0)− k(t, φ(−r)), A(t)φ(0) + f(t, φ)〉+ ||g(t, φ)||2L2
0
≤ −α1||φ(0)||2 + ξ1(t). (16)

Notice that (16) seems to be a strong condition since it indicates that the final
value φ(0) plays a dominant rôle in the analysis, what in addition may restrict the
possibilities for the operators f and g. Nevertheless, some types of integral inequal-
ities imposed on f and g allow that more general cases fall within this framework.
Indeed, assume that f and g satisfy the following assumptions:
There exists m0 > 0 such that for all m ∈ [0,m0], T > 0, and any u, v ∈
L2(−r, T ;V ) ∩ C(−r, T ;H)∫ t

t0

ems||f(s, us)− f(s, vs)||2∗ds ≤ L2
f

∫ t

t0−r

ems|u(s)− v(s)|2 ds, (17)∫ t

t0

ems||g(s, us)− g(s, vs)||2L2
0
ds ≤ L2

g

∫ t

t0−r

ems|u(s)− v(s)|2 ds. (18)

We remark that these conditions are fulfilled for functions f, g which contain con-
stant, variable or distributed bounded delays (see [4] for some illustrative examples).
In addition, let us suppose that k satisfies (10), (15) and that A satisfies (C) with
λ = 0 (or with α− λλ−1

1 > 0). Then

I =
∫ t

t0

ems
[
2 〈u(s)− k(s, u(s− r)), A(s)u(s) + f(s, us)〉+ ||g(s, us)||2L2

0

]
ds

≤
∫ t

t0

2ems 〈u(s), A(s)u(s)〉 ds+
∫ t

0

2ems 〈u(s), f(s, us)〉 ds

−
∫ t

t0

2ems 〈k(s, u(s− r)), A(s)u(s)〉 ds

−
∫ t

t0

2ems 〈k(s, u(s− r)), f(s, us)〉 ds+
∫ t

t0

ems||g(s, us)||2L2
0
ds

≤ −α
∫ t

t0

ems||u(s)||2 ds+
∫ t

t0

2ems||u(s)||||f(s, us)||∗ ds︸ ︷︷ ︸
=I1

+
∫ t

t0

2ems||k(s, u(s− r))||||A(s)u(s)||∗ ds︸ ︷︷ ︸
=I2

+
∫ t

t0

2ems||k(s, u(s− r))||||f(s, us)||∗ ds︸ ︷︷ ︸
=I3

+
∫ t

t0

ems||g(s, us)||2L2
0
ds︸ ︷︷ ︸

=I4

.
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Let us now estimate the integrals Ii, i = 1, 2, 3, 4, by using the assumptions on
A, f, g, k, and Hölder’s and Young’s inequalities. To start, we assume that A(·) ∈
L∞ ((0,+∞) ,L(V, V ∗)) and denote a = ||A||L∞((0,+∞),L(V,V ∗)).
First, for positive constants l1 > 0, l2 > 0, to be chosen later, we have

I1 ≤
∫ t

t0

ems

(
l1||u(s)||2 +

1
l1
||f(s, us)||2∗

)
ds

≤ l1

∫ t

t0

ems||u(s)||2 ds+
2
l1

∫ t

t0

ems
(
||f(s, us)− f(s, 0)||2∗ + ||f(s, 0)||2∗

)
ds

≤ l1

∫ t

t0

ems||u(s)||2 ds+
2λ−1

1 L2
f

l1

∫ t

t0−r

ems||u(s)||2 ds+
2
l1

∫ t

t0

ems||f(s, 0)||2∗ ds

≤

(
l1 +

2λ−1
1 L2

f

l1

)∫ t

t0

ems||u(s)||2 ds

+
2λ−1

1 L2
f

l1︸ ︷︷ ︸
=α21(m)

∫ t0

t0−r

ems||u(s)||2 ds+
2
l1

∫ t

t0

ems||f(s, 0)||2∗ ds︸ ︷︷ ︸
=ξ1(t,m)

,

and

I2 ≤
∫ t

t0

ems

(
l2||k(s, u(s− r))||2 +

1
l2
||A(s)u(s)||2∗

)
ds

≤ l2

∫ t

t0

ems||k(s, u(s− r))||2 ds+
a2

l2

∫ t

t0

ems||u(s)||2 ds

≤ a2

l2

∫ t

t0

ems||u(s)||2 ds+ l2

∫ t

t0

ems
(
c2||u(s− r)||2 + δ(s)

)
ds

≤
(
a2

l2
+ c2l2e

mr

)∫ t

t0

ems||u(s)||2 ds+ l2

∫ t

t0

emsδ(s) ds︸ ︷︷ ︸
=ξ2(t,m)

+ l2c
2emr︸ ︷︷ ︸

=α22(m)

∫ t0

t0−r

ems||u(s)||2 ds.

As for I3, we choose another positive constant l3 and observe that

I3 ≤
∫ t

t0

ems

(
l3||k(s, u(s− r))||2 +

1
l3
||f(s, us)||2∗

)
ds

≤ l3

∫ t

t0

ems
(
c2||u(s− r)||2 + δ(s)

)
ds+

1
l3

∫ t

t0

ems||f(s, us)||2∗ ds

≤ c2emrl3

∫ t

t0

ems||u(s)||2 ds+
1
l3

∫ t

t0

ems||f(s, us)||2∗ ds
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+ l3

∫ t

t0

emsδ(s) ds+ l3c
2emr

∫ t0

t0−r

ems||u(s)||2 ds

≤ c2emrl3

∫ t

t0

ems||u(s)||2 ds+
2λ−1

1 L2
f

l3

∫ t

t0−r

ems||u(s)||2 ds

+
2
l3

∫ t

t0

ems||f(s, 0)||2∗ ds

+ l3

∫ t

t0

emsδ(s) ds+ l3c
2emr

∫ t0

t0−r

ems||u(s)||2 ds

≤

(
c2emrl3 +

2λ−1
1 L2

f

l3

)∫ t

t0

ems||u(s)||2 ds

+

(
2λ−1

1 L2
f

l3
+ l3c

2emr

)
︸ ︷︷ ︸

=α23(m)

∫ t0

t0−r

ems||u(s)||2 ds

+
2
l3

∫ t

t0

ems||f(s, 0)||2∗ds+ l3

∫ t

t0

emsδ(s) ds︸ ︷︷ ︸
=ξ3(t,m)

and, finally, we have for I4 that

I4 =
∫ t

t0

ems||g(s, us)||2L2
0
ds

≤ 2
∫ t

t0

ems
(
||g(s, us)− g(s, 0)||2L2

0
+ ||g(s, 0)||2L2

0

)
ds

≤ 2L2
gλ
−1
1

∫ t

t0−r

ems||u(s)||2 ds+ 2
∫ t

t0

ems||g(s, 0)||2L2
0
ds

≤ 2L2
gλ
−1
1

∫ t

t0

ems||u(s)||2 ds

+ 2L2
gλ
−1
1︸ ︷︷ ︸

=α24(m)

∫ t0

t0−r

ems||u(s)||2 ds+ 2
∫ t

t0

ems||g(s, 0)||2L2
0
ds︸ ︷︷ ︸

=ξ4(t,m)

.

Consequently, for any choice of positive constants l1, l2 and l3 we have that

I ≤
∫ t

t0

ems
(
[−α+ C(l1, l2, l3,m, Lf , Lg, λ1, r)] ||u(s)||2

)
ds

+ α2(m)
∫ t0

t0−r

ems||u(s)||2 ds+ ξ(t,m),

where

C(l1, l2, l3,m, Lf , Lg, λ1, r) = l1 + 2λ−1
1 L2

f

(
1
l1

+
1
l3

)
+
a2

l2
+ (l2 + l3) c2emr + 2L2

gλ
−1
1 ,

α2(m) =
4∑

i=1

α2i(m) and ξ(t,m) =
4∑

i=1

ξi(t,m).
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So, for any suitable choice of the constants li we can have different assumptions on
the coefficients of our problem so that −α1(m) = −α+C(l1, l2, l3,m, Lf , Lg, λ1, r) <
0, and thus assumption (14) is satisfied. Observe that the best chioce for these
constants (i.e. the ones which impose less restrictions on the smallness of operators
f, g and k is achieved when

l1 =
√

2λ−1/2
1 Lf , l2 = ac−1e−mr/2, l3 =

√
2λ−1/2

1 Lfc
−1e−mr/2

what yields that

−α1(m) = −α+ 2
√

2λ−1/2
1 Lf

(
1 + cemr/2

)
+ 2acemr/2 + 2L2

gλ
−1
1 . (19)

Now, it is clear that there exists m0 > 0 such that (19) holds for all m ∈ [0,m0]
provided that

−α+ 2
√

2λ−1/2
1 Lf (1 + c) + 2ac+ 2L2

gλ
−1
1 < 0.

Then we have

Lemma 4. Assume (14), (15) and (10) with α1(m) ≥ α̃1 > 0 for all m ∈ [0,m0].
Assume that the function δ in (10) and ξ(·,m) in (14) are bounded and that, for any
initial value ϕ ∈ M2

F0
(−r, 0;V ) ∩ L2(Ω;Cr) the corresponding solution X(·) to (2)

is globally defined in the future. Then, there exists θ ∈ (0, ρ), and two nonnegative
constants M2,M3 > 0 (which may depend on the initial datum ϕ) such that

E|X(t)− k(t,X(t− r))|2 ≤M2e
−θt +M3, for all t ≥ 0.

If, in addition, the function δ(·) has subexponential decay to zero as t goes to ∞,
i.e. if there exist constants δ̃ > 0 and ρ > 0 such that

δ(t) ≤ δ̃e−ρt, t ≥ 0, (20)

then, without loss of generality we assume θ < ρ and, there exists a constant M4 > 0
such that

E|X(t)− k(t,X(t− r))|2 ≤M4e
−θt for all t ≥ 0.

Proof. Let X(t) be the solution to (2) corresponding to the initial value ϕ. By the
condition of the theorem we can choose θ ∈ (0, ρ) such that

−α̃1λ1 + 2θerθ(1 + c2) < 0.

Then, applying Itô’s formula to the process eθt|X(t)− k(t,X(t− r))|2 we obtain

d[eθt|X(t)− k(t,X(t− r))|2]

= θeθt|X(t)− k(t,X(t− r))|2 dt

+ eθtd[|X(t)− k(t,X(t− r))|2]

= eθt[θ|X(t)− k(t,X(t− r))|2 + ||g(t,Xt)||2L2
0
] dt

+ 2eθt 〈X(t)− k(t,X(t− r)), A(t)X(t) + f(t,Xt)〉 dt

+ 2eθt (X(t)− k(t,X(t− r)), g(t,Xt)dW (t)) .
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Integrating, taking expectation and taking into account condition (14) we have

eθtE|X(t)− k(t,X(t− r))|2

= E|ϕ(0)− k(0, ϕ(−r))|2 +
∫ t

0

eθs[θE|X(s)− k(s,X(s− r))|2 + E||g(s,Xs)||2L2
0
] ds

+
∫ t

0

2eθsE 〈X(s)− k(s,X(s− r)), A(s)X(s) + f(s,Xs)〉 ds

≤ E|ϕ(0)− k(0, ϕ(−r))|2 +
∫ t

0

eθsθE|X(s)− k(s,X(s− r))|2 ds

− α1(θ)
∫ t

0

eθsE||X(s)||2 ds+ α2(θ)
∫ 0

−r

eθsE||ϕ(s)||2 ds+ ξ(t, θ)

≤ E|ϕ(0)− k(0, ϕ(−r))|2 + 2erθc2θ

∫ 0

−r

eθsE|ϕ(s)|2 ds+ α2(θ)
∫ 0

−r

eθsE||ϕ(s)||2 ds

+ ξ(t, θ) +
∫ t

0

eθs[−α1(θ)E||X(s)||2 + 2θerθ(1 + c2)E|X(s)|2 + 2θerθδ(s)] ds

≤ E|ϕ(0)− k(0, ϕ(−r))|2 + 2erθc2θ

∫ 0

−r

eθsE|ϕ(s)|2 ds+ α2(θ)
∫ 0

−r

eθsE||ϕ(s)||2 ds

+ ξ(t, θ) +
∫ t

0

eθs
[
[−α1(θ)λ1 + 2θerθ(1 + c2)]E|X(s)|2 + 2θerθδ(s)]

]
ds

≤ E|ϕ(0)− k(0, ϕ(−r))|2 + 2erθc2θ

∫ 0

−r

eθsE|ϕ(s)|2 ds

+ α2(θ)
∫ 0

−r

eθsE||ϕ(s)||2 ds+ ξ(t, θ) + 2θerθ

∫ t

0

eθsδ(s) ds.

If we now assume that δ(·) and ξ(·, θ) are bounded functions, then it follows that
the existence of constants M2 and M3 such that

E|X(t)− k(t,X(t− r))|2 ≤M2e
−θt +M3, for all t ≥ 0.

If, in addition, we assume that (20) holds, we then obtain that there exists a constant
M4 > 0 such that

E|X(t)− k(t,X(t− r))|2 ≤M4e
−θt, for all t ≥ 0.

Hence, the proof of the lemma is complete.

On account of Lemma 2 and Lemma 4 we have the following moment exponential
stability theorem.

Theorem 3. Assume that conditions (14) and (10) are satisfied with α1(m) ≥
α̃1 > 0 for all m ∈ [0,m0]. If the initial datum ϕ satisfies E

∫ 0

−r
||ϕ(s)||2ds < ∞,

and ξ(·,m), δ(·) are bounded functions (as in Lemma 4), then its associate solution
X(·) to (2) is exponentially ultimately bounded in mean square. If furthermore,
condition (20) is satisfied, then any solution X(t) converges to zero exponentially
in mean square.

Now, before establishing a sufficient condition for the exponential stability with
probability one of the solutions to (2), we need an auxiliary technical lemma.
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Lemma 5. Assume that conditions (14), (15), (10) and (20) are satisfied. Then,
there exists a constant θ > 0 such that any solution X(·) to problem (2) satisfies∫ t

τ

E||X(s)||2 ds ≤ Ce−θτ , for all 0 ≤ τ ≤ t < +∞,

where the constant C ≥ 0 may depend on the initial datum associated to the solution
X(·).

Proof. First, let us choose θ > 0 as in the proof of Lemma 4. Then we can choose
α3(θ) > 0 and α4(θ) > 0 such that α1(θ) = α3(θ)+α4(θ) and −α3(θ)λ1 +2θerθ(1+
c2) < 0. Thus, it follows that

eθtE|X(t)− k(t,X(t− r))|2 + α4(θ)
∫ t

0

eθsE||X(s)||2 ds

≤ E|ϕ(0)− k(0, ϕ(−r))|2 + 2erθc2θ

∫ 0

−r

eθsE|ϕ(s)|2 ds

+ α2(θ)
∫ 0

−r

eθsE||ϕ(s)||2 ds+ ξ(t, θ) + 2θerθ

∫ t

0

eθsδ(s) ds.

So, for this positive θ we have that∫ t

0

eθsE||X(s)||2 ds ≤ C, for all t ≥ 0.

Then, for 0 ≤ τ < t, we easily conclude that

eθτ

∫ t

τ

E||X(s)||2 ds ≤
∫ t

τ

eθsE||X(s)||2 ds ≤
∫ t

0

eθsE||X(s)||2 ds ≤ C,

and the proof is now complete.

Theorem 4. Assume that conditions (14), (15), (10) and (20) are satisfied. In
addition, assume that∫ t

t0

||g(s, us)||2L2
0
ds ≤ g0

∫ t

t0

|u(s)|2 ds+ g1

∫ t0

t0−r

||u(s)||2 ds+ g2e
−ρ3t,

for some ρ3 > 0, g0 > 0, g1, g2 ≥ 0, and for every u ∈ C(−r,+∞;H), t ≥ 0, and
that there exist ξ̃ ≥ 0 and ρ > 0 such that

ξ(t, 0) ≤ ξ̃e−ρt, for all t ≥ 0. (21)

Then, for any initial datum ϕ, the corresponding solution X(·) to (2) converges to
zero exponentially almost surely. That is, there exist constants ρ > 0 (independent
of ϕ), M1 > 0, and a T (ω) > 0 (which may depend both on ϕ) such that for a.e.
ω ∈ Ω

|X(t)|2 ≤M1e
−ρt, for t ≥ T (ω).
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Proof. Let X(t) be any fixed solution to (2). Let N be a natural number. By the
Itô formula we have for any t ≥ Nr

|X(t)− k(t,X(t− r))|2 = |X(Nr)− k(Nr,X(Nr − r))|2

+ 2
∫ t

Nr

〈X(s)− k(s,X(s− r)), A(s)X(s) + f(s,Xs)〉 ds

+
∫ t

Nr

||g(s,Xs)||2L2
0

+ 2
∫ t

Nr

(X(s)− k(s,X(s− r)), g(s,Xs) dW (s)) .

By (14) it follows

|X(t)− k(t,X(t− r))|2 ≤ |X(Nr)− k(Nr,X(Nr − r))|2

− α1(0)
∫ t

Nr

||X(s)||2 ds+ α2(0)
∫ Nr

Nr−r

||X(s)||2 ds

+ ξ(t, 0) + 2
∫ t

Nr

(X(s)− k(s,X(s− r)), g(s,Xs) dW (s))

≤ |X(Nr)− k(Nr,X(Nr − r))|2 + α2(0)
∫ Nr

Nr−r

||X(s)||2 ds

+ ξ(t, 0) + 2
∫ t

Nr

(X(s)− k(s,X(s− r)), g(s,Xs) dW (s))

Next, by the Burkhölder-Davis-Gundy lemma

2E

(
sup

Nr≤t≤(N+1)r

∣∣∣∣∫ t

Nr

(X(s)− k(s,X(s− r)), g(s,Xs) dW (s))
∣∣∣∣
)

≤ n2

∫ (N+1)r

Nr

E||g(s,Xs)||2L2
0
ds

+
1
2
E

(
sup

Nr≤t≤(N+1)r

|X(t)− k(t,X(t− r))|2
)

≤ n2

[∫ (N+1)r

Nr

g0E|X(s))|2ds+ g1

∫ Nr

Nr−r

E||X(s)||2 ds+ g2e
−ρ3(N+1)r

]

+
1
2
E

(
sup

Nr≤t≤(N+1)r

|X(t)− k(t,X(t− r))|2
)
,
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where n2 > 0 is a suitable constant. Then, we have

E

(
sup

Nr≤t≤(N+1)r

|X(t)− k(t,X(t− r))|2
)

≤ 2E | X(Nr)− k(Nr,X(Nr − r)) |2

+ 2n2

[∫ (N+1)r

Nr

g0E|X(s))|2ds+ g1

∫ Nr

Nr−r

E||X(s)||2 ds+ g2e
−ρ3(N+1)r

]
+ sup

t∈[Nr,(N+1)r]

ξ(t, 0)

Therefore by condition (21), Lemma 2, Lemma 4 and Lemma 5, there exist positive
real numbers M5 > 0, ρ1 > 0 such that

E

(
sup

Nr≤t≤(N+1)r

|X(t)− k(t,X(t− r))|2
)
≤M5e

−ρ1N

Thus by Lemma 3 we obtain that

E

(
sup

Nr≤t≤(N+1)r

|X(t)|2
)
≤M4e

−ρ2N , M4 > 0, ρ2 > 0.

Now, thanks to the Borel Cantelli lemma, it is a standard matter to prove the
pathwise exponential stability.

As a corollary of our previous results (i.e. by simply setting k = 0) we can
establish a result for the exponential stability of solutions to the following stochastic
delay partial differential equation (see [2] for similar results)

dX(t) = [A(t)X(t)) + f(t,Xt)] dt+ g(t,Xt)dW (t) (22)

X(t) = ϕ(s), −r ≤ t ≤ 0, (23)

where E
∫ 0

−r
||ϕ(s)||2ds < ∞ and the function g satisfies the same condition as in

Theorem 4. Then we have

Corollary 1. Let α1, η > 0 and ξ1(t) = δ0(t)e−ηt with δ0(t) a bounded integrable
function. Assume that there exists m0 > 0 such that for all m ∈ [0,m0], T > 0,
and any u ∈ L2(−r, T ;V ) ∩ C(−r, T ;H) the following inequality holds:∫ t

t0

ems
[
2 〈u(s), A(s)u(s) + f(s, us)〉+ ||g(s, us)||2L2

0

]
ds

≤ −
∫ t

t0

emsα1(m)||u(s)||2 ds+
∫ t0

t0−r

emsα2(m)||u(s)||2 ds+ ξ1(t),

for a.e. t ∈ (t0, T ), and all t0 ∈ [0, T ). Then, any solution to the stochastic delay
partial differential equation (22)-(23) converges to zero exponentially almost surely.

Remark 2. The reader is referred to the papers [2], [3] in order to compare Corol-
lary 1 with the results in these papers.
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6. An example. Although we could consider several applications to show how
our theory can be applied, we have preferred to treat a simple situation in which a
usual coercivity condition (which is easier to check than the integral condition (14))
ensures the asymptotic behaviour of the model. Indeed, let us consider the problem

d [X(t)− k(t,X(t− r))] = [A(t)X(t) + f(t,X(t− r))] dt+ g(t,X(t))dW (t)

X(t) = ϕ(s), −r ≤ t ≤ 0,

where A and k satisfy the assumptions in the previous sections, f : R+ ×H → V ∗

and g : H → L2
0(K,H) are Lipschitz continuous and it holds

2 〈u− k(t, v), A(t)u+ f(t, v)〉+ ||g(t, u)||2L2
0

(24)

≤ −α1||u||2 + α2|u|2 + β1||v||2 + β2|v|2 + ξ1(t),

for u, v ∈ V where α1 > β1 ≥ 0 and α2, β2 ≥ 0. If we assume that (α1 − β1)λ1 >
α2 + β2, then (24) implies (14) since for any u ∈ L2(−r, T ;V ) ∩ C(−r, T ;H) it
follows∫ t

t0

ems
[
2 〈u(s)− k(s, u(s− r)), A(s)u(s) + f(s, u(s− r))〉+ ||g(s, u(s))||2L2

0

]
ds

≤
∫ t

t0

ems
(
−α1||u(s)||2 + α2|u(s)|2 + β1||u(s− r)||2 + β2|u(s− r)|2 + ξ1(s)

)
ds

≤
∫ t

t0

ems
(
−α1||u(s)||2 + α2|u(s)|2 + ξ1(s)

)
ds

+
∫ t

t0

ems
(
β1||u(s− r)||2 + β2|u(s− r)|2

)
ds

≤
∫ t

t0

ems
(
−α1||u(s)||2 + α2λ

−1
1 ||u(s)||2 + ξ1(s)

)
ds

+ emr

∫ t−r

t0−r

ems
(
β1||u(s)||2 + β2|u(s)|2

)
ds

≤
∫ t

t0

ems
((
−α1 + α2λ

−1
1

)
||u(s)||2 + ξ1(s)

)
ds

+ emr

∫ t−r

t0−r

ems
(
β1 + β2λ

−1
1

)
||u(s)||2 ds

≤
∫ t

t0

ems
((
−α1 + α2λ

−1
1 + emr

(
β1 + β2λ

−1
1

))
||u(s)||2 + ξ1(s)

)
ds

+ emr

∫ t0

t0−r

ems
(
β1 + β2λ

−1
1

)
||u(s)||2 ds

≤
∫ t

t0

ems
((
−α1 + α2λ

−1
1 + emr

(
β1 + β2λ

−1
1

))
||u(s)||2

)
ds

+
∫ t

t0

emsξ1(s) ds+
(
β1 + β2λ

−1
1

)
emr

∫ t0

t0−r

ems||u(s)||2 ds.

As (α1−β1)λ1 > α2 +β2, there exists m0 > 0 such that for all m ∈ [0,m0) we have
that

−α1+α2λ
−1
1 +emr

(
β1 + β2λ

−1
1

)
= −(α1−emrβ1−λ−1

1 (α2 + emrβ2)) = −α1(m) < 0.
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On the other hand, setting

α2(m) =
(
β1 + β2λ

−1
1

)
emr and ξ(t,m) =

∫ t

0

emsξ1(s) ds

we have the desired conclusion. Now, if

−α1 + α2λ
−1
1 + β1 + β2λ

−1
1 < 0, (25)

it is obvious that there exists m0 > 0 such that for all m ∈ [0,m0] it follows that
α1(m) > 0 and our theory can be applied to ensure exponential stability of our
problem.

Finally, we will especialise this situation to a more explicit one. Indeed, let
H = L2(0, π), V = H1

0 (0, π) and V ∗ = H−1(0, π), with the usual norms in the spaces
H and V defined as |ξ| =

(∫ π

0
ξ2(x)dx

)1/2
for ξ ∈ H, and ||u|| =

(∫ π

0
(∂u

∂x )2dx
)1/2

for u ∈ V, respectively.
Let us define

A(t) =
∂

∂x

(
a(t, x)

∂

∂x

)
,

where a(t, x) is measurable in (0,+∞)× (0, π), and satisfies

0 < ν ≤ a(t, x) ≤ α in (0,+∞)× (0, π).

The family of operators A(t) satisfies A(·) ∈ L∞(0, T ;L(V, V ∗)) for all T > 0,
and it is known that

〈A(t)u, u〉 ≤ −ν‖u‖2, u ∈ V,
and λ1 = 1.

Consider the following neutral stochastic delay differential equation.
d(X(t, x)− cX(t− r, x))

=
∂

∂x

(
a(t, x)

∂X(t, x)
∂x

)
+ bX(t− r, x) + g(t,X(t, x))dW (t),

X(t, 0) = X(t, π) = 0, t ≥ 0,
X(t, x) = ϕ(t, x), t ∈ [−r, 0],

(26)

where W (t) is a cylindrical Wiener process with values in L2(0, π), ϕ(t) is an ade-
quate continuous square integrable process and b, c ∈ R. We assume that

||g(t, u)||2L2
0(L

2(0,π)) ≤ cg|u|2 + g1(t), cg > 0, t ≥ −r,

|c| < 1 y 2ν > |b|(2 + |c|) + cg + α|c|, (27)

with 0 ≤ g1(t) ≤ g0e
−ρt, g0 > 0, ρ > 0 for any t ≥ 0. Let k(t, v) = cv and

f(t, v) = bv. Then we have

2 〈u− k(t− r, v), A(t)u+ f(t− r, v)〉+ ||g(t, u)||2L0
2

= 2 〈u− cv,A(t)u+ bv〉+ ||g(t, u)||2L0
2

≤ −2ν||u||2 + 2|b||u||v|+ α|c|||u||||v||+ |bc||v|2 + cg|u|2 + g1(t)

≤ −(2ν − α|c|
2

)||u||2 + (|b|+ cg)|u|2 + (|b|+ |bc|)|v|2 +
α|c|
2
||v||2 + g1(t).

Thanks to our condition (27), we can ensure that (25) holds and, therefore, any
solution to (26) converges exponentially to zero almost surely.
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