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Abstract. Some results on the pathwise exponential stability of the

weak solutions to a stochastic 2D-Navier-Stokes equation are estab-

lished. The first ones are proved as a consequence of the exponential

mean square stability of the solutions. However, some of them are im-

proved by avoiding the previous mean square stability in some more

particular and restrictive situations. Also, some results and comments

concerning the stabilizability and stabilization of these equations are

stated.

1. Introduction

The long-time behaviour of flows is a very interesting and important
problem in the theory of fluid dynamics, as the vast literature shows (see
Temam [19], Hale [13], Ladyzhenskaya [14], among others, and the refer-
ences therein), and has been receiving very much attention over the last
three decades.

One of the most studied models is the Navier-Stokes one (and its variants)
since it provides a suitable model which covers several important fluids (see
Temam [17]-[19] and the references inside these).

On the other hand, another interesting question is to analyze the effects
produced on a deterministic system by some stochastic or random distur-
bances appeared in the problem. These facts have motivated the present
work whose main objective is to show some aspects of the effects produced
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in the long-time behaviour of the solution to a two dimensional Navier-Stokes
equation under the presence of stochastic perturbations.

In the deterministic case, it is well known for a long time that, for small
enough Reynolds number (or, equivalently, large viscosity), the solutions of
2D-Navier-Stokes equations tend to a stationary one (unique, in fact) when
time goes to infinite and, as this number increases, the dynamics of the
system turns more and more complex (see, e.g. Temam [18] for a detailed
description of the Couette-Taylor experiment). The problem of detecting
the critical value where the instability appears is a difficult challenging one.
Thus, in a general framework, one can only ensure that for small values of
the Reynolds number the stationary solution is stable but we do not know
when it becomes unstable. This motivates that people working in this kind
of problems use to consider particular examples in order to obtain sharper
results.

Our first aim in this work is to provide some light in some aspects con-
cerning the stability of the stationary solutions of the following stochastic
2D-Navier-Stokes:

dX = [ν∆X − 〈X,∇〉X + f(X) +∇p]dt+ g(t,X)dW (t)
divX = 0 in [0,∞)×D,

X = 0 on [0,∞)× Γ,
X(0, x) = X0(x), x ∈ D,

where D is a regular open bounded domain of R2 with boundary Γ, u is
the velocity field of the fluid, p the pressure, ν > 0 the kinematic viscosity,
X0 the initial velocity field, f the external force field and g(t, x)dW (t) the
random field where W (t) is an infinite dimensional Wiener process.

Concerning the effects produced by random perturbations in deterministic
systems, it is worth mentioning that this is a very difficult task which is being
investigated actually by many authors within the framework of the theory of
random attractors recently introduced by Crauel and Flandoli [10]. On the
one hand, existence of random attractors is only known for specific random
terms (see, for instance, Crauel and Flandoli [10], Capinski and Cutland
[6]). On the other hand, almost nothing is known on the structure of these
random sets, so that many challenging open problems, as those related to
stability and instability, are still open.

Also, it is very interesting to investigate if a fluid subjected to random
influences is asymptotically more or less stable than the deterministic un-
perturbed one. In the finite dimensional case, there exits a wide literature
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on this topic (see Arnold [1] and the references therein) which proves that
some kind of multiplicative noise may produce a stabilization effect on de-
terministic unstable systems. However, for the infinite dimensional case,
a similar result has not been proved yet, mainly due to the fact that the
technique developed in the finite dimensional framework cannot be extended
to this case or, at least, it is not known how to do that. The main result
proved in [1] ensures that an unstable linear differential system in Rn, namely
·
x(t) = Ax(t) with trace A < 0, can be stabilized by adding a multiplica-
tive noise in the Stratonovich sense containing a suitable skew-symmetric
matrix. One interesting remark is that when the stochastic multiplicative
perturbation is considered in the Ito sense, this uses to imply a general
stabilization effect on the system. In a limit sense, the Ito equations with
multiplicative noise correspond to deterministic equations with a mean-zero
fluctuating control plus a stabilizing systematic control (see Section 4 for
more details and comments). This would mean that only the stabilization
produced by Stratonovich terms could be considered as proper stabilization
produced by random noise, since the Stratonovich multiplicative noise acts
like a periodic zero-mean feedback control, and consequently, its stabilizing
effect is unexpected and therefore very interesting. In this paper, we consider
the stochastic disturbances in Ito sense, so the stabilization results proved
should be interpreted in a suitable sense (see also Caraballo and Langa [7]
for an analysis on the different long-time behaviour of Ito and Stratonovich
equations in the linear case).

The content of this paper is as follows. In Section 2, we include some pre-
liminaries. In Section 3, we shall prove some results on pathwise exponential
stability by extending to this case the stability theory previously developed
for semilinear stochastic partial differential equations (see Caraballo and
Liu [8], Taniguchi [16]). Finally, in Section 4, we deal with the interesting
stabilizability problem, that is, we shall analyze the possible reasons imply-
ing a stabilizing effect on the deterministic problem by the appearance of a
random disturbance.

2. Preliminaries

Firstly, we introduce the following Hilbert spaces:
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H = the closure of the set
{
u ∈ C∞

0 (D,R2) : div u = 0
}

in L2(D,R2)
with the norm |u| = (u, u)

1
2 , where for u, v ∈ L2(D,R2),

(u, v) =
2∑
j=1

∫
D
uj(x)vj(x)dx,

V = the closure of the set
{
u ∈ C∞

0 (D,R2) : div u = 0
}

in H1
0 (D,R2)

with the norm ‖u‖ = ((u, v))
1
2 , where for u, v ∈ H1

0 (D,R2),

((u, v)) =
2∑
j=1

(
∂u

∂xj
,
∂v

∂xj

)
.

Then, it follows that H and V are separable Hilbert spaces with associated
inner products (·, ·) and ((·, ·)) and the following is safisfied:

V ⊂ H ≡ H ′ ⊂ V ′,

where injections are dense, continuous and compact. Now, we can set A =
−P4 where P is the orthogonal projector from L2(D,R2) ontoH, and define
the trilinear form b by

b(u, v, w) =
2∑

i,j=1

∫
D
ui(x)

∂vj

∂xi
(x)wj(x)dx.

As we shall need some properties on this trilinear form b, we list here the
ones we will use later on (see Temam [19]):

(2.1)
|b(u, v, w)| ≤ c1 | u |

1
2 ‖u‖

1
2 ‖v‖ | w |

1
2 ‖w‖

1
2 , ∀u, v, w ∈ V,

b(u, v, v) = 0, ∀u, v ∈ V,
b(u, u, v − u)− b(v, v, v − u) = −b(v − u, u, v − u), ∀u, v ∈ V,

where c1 > 0 is an appropriate constant which depends on the regular open
domain D (see Constantin and Foias [9, (6.9), p.50]) . Furthermore, we can
define the operator B : V × V → V ′ by

〈B(u, v), w〉 = b(u, v, w), ∀u, v, w ∈ V,

where 〈·, ·〉 denotes the duality 〈V ′, V 〉 . We also set
B(u) = B(u, u), ∀u ∈ V.

Let (Ω, P,=) be a probability space on which an increasing and right con-
tinuous family {=t}t∈[0,∞) of complete sub-σ-algebra of = is defined. Let
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βn(t) (n = 1, 2, 3, · · · ) be a sequence of real valued one-dimensional stan-
dard Brownian motions mutually independent on (Ω, P,=). Set

W (t) =
∞∑
n=1

√
λ′nβn(t)en, t ≥ 0

where λ′n ≥ 0 (n = 1, 2, 3 · · · ) are nonnegative real numbers such that∑∞
n=1 λ

′
n < +∞, and {en} (n = 1, 2, 3, · · · ) is a complete orthonormal basis

in the real and separable Hilbert space K. Let Q ∈ L(K,K) be the opera-
tor defined by Qen = λ′nen. The above K-valued stochastic process W (t) is
called a Q-Wiener process.

Thus the stochastic 2D-Navier-Stokes equation can be rewritten as follows
in the abstract mathematical setting:

(2.2) dX(t) = [−νAX(t)−B (X(t)) + f(X(t))] dt+ g(t,X(t))dW (t),

where f : V → V ′, g : [0,∞)×V → L(K,H) are continuous functions satis-
fying some additional assumptions (see conditions below). Also we consider
the deterministic version of this equation, namely,

(2.3) dX(t) = [−νAX(t)−B (X(t)) + f(X(t))] dt.

First, we give the definition of the weak solutions to stochastic 2D-Navier-
Stokes equation (2.2)

Definition 2.1. A stochastic process X(t), t ≥ 0, is said to be a weak
solution of (2.2) if

(1a) X(t) is =t−adapted,
(1b) X(t) ∈ L∞(0, T ;H) ∩ L2(0, T ;V ) almost surely for all T > 0,
(1c) the following equation holds as an identity in V ′ almost surely, for

t ∈ [0,∞)

X(t) = X(0) +
∫ t

0
[−νAX(s)−B(X(s)) + f(X(s))] ds

+
∫ t

0
g(s,X(s))dW (s).

As we are mainly interested in the analysis of the exponential stability of
the weak solutions to the problem (2.2), we will assume the existence of such
weak solutions (see, for instance, Bensoussan [2] or Capinski and Gatarek
[4] for results on the existence and uniqueness of solutions).

Now we are going to establish an Ito’s formula which is going to be nec-
essary for our purposes (see Pardoux [15])
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Let C(1,2)([0,∞) × H,R+) denote the space of all R+−valued functions
Ψ defined on [0,∞)×H with the following properties:

(1) Ψ(t, x) is differentiable in t ∈ [0,∞) and twice Frechet differentiable
in x with Ψt(t, ·),Ψx(t, ·) and Ψxx(t, ·) locally bounded on H

(2) Ψ(t, ·), Ψt(t, ·) and Ψx(t, ·) are continuous on H,
(3) for all trace class operators R, tr(Ψxx(t, ·)R) is continuous from H

into R.
(4). if v ∈ V then Ψx(t, v) ∈ V, and u → 〈Ψx(t, u), v∗〉 is continuous for

each v∗ ∈ V ′,

(5). ‖Ψx(t, v)‖ ≤ C0(t)(1 + ‖v‖), C0(t) > 0, for all v ∈ V .

Theorem 2.1. (Ito’s formula) Let Ψ ∈ C(1,2)([0,∞)×H,R+). If stochastic
process X(t) is a weak solution to (2.2), then, it holds that

Ψ(t,X(t)) = Ψ(0, X(0)) +
∫ t
0 LΨ(s,X(s))ds

+
∫ t
0 (Ψx(s,X(s)), g(s,X(s))dW (s)) ,

where

LΨ(s,X(s)) = Ψt(s,X(s))
+ 〈−νAX(s)−B(X(s)) + f(X(s)),Ψx(s,X(s))〉
+1

2 tr (Ψxx(s,X(s))g(s,X(s))Qg(s,X(s))∗) .

Definition 2.2. We say that a weak solution X(t) to (2.2) converges to
x∞ ∈ H exponentially in mean square if there exist a > 0 and M0 =
M0(X(0)) > 0 (which may depend on X(0)) such that

E |X(t)− x∞|2 ≤M0e
−at, t ≥ 0,

In particular, if x∞ is a solution to (2.2), then it is said that x∞ is expo-
nentially stable in mean square provided that every weak solution to (2.2)
converges to x∞ exponentially in mean square with the same exponential
order a > 0.

Definition 2.3. We say that a weak solution X(t) to (2.2) converges to
x∞ ∈ H almost surely exponentially if there exists γ > 0 such that

lim
t→∞

1
t

log |X(t)− x∞| ≤ −γ, almost surely.

In particular, if x∞ is a solution to (2.2), then it is said that x∞ is al-
most surely exponentially stable provided that every weak solution to (2.2)
converges to x∞ almost surely exponentially with the same constant γ.
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3. The exponential stability of solutions

In this section we discuss the moment exponential stability and almost
sure exponential stability of weak solutions to stochastic NSE (2.2). Let λ1

> 0 be the first eigenvalue of A. We remark that ‖v‖2 ≥ λ1 | v |2,∀v ∈ V.

We also denote by

‖ g(t, u) ‖2
L0

2
= tr(g(t, u)Qg(t, u)∗).

Throughout this section we will use the following condition:

Condition A. There exists β > 0 such that

‖ f(u)− f(v) ‖V ′≤ β ‖ u− v ‖, β > 0, u, v ∈ V.

In this paper, we first consider the existence of the stationary solution to
the next equation

(3.1) νAu+B(u) = f(u) (equality in V
′
).

Then we have the following lemma. The proof is similar to the one of
Theorem 10.1 in Temam [18]. But, since the proof depends on the conditions
of the function f, we give the proof for the convenience of the reader.

Lemma 3.1. Suppose that condition A is satisfied and the function f satis-
fies that f(vm) converges to f(v) weakly in V ′ whenever {vm} ⊂ V converges
to v ∈ V weakly in V and strongly in H. Then,

(a) if ν > β, there exists a stationary solution u∞ ∈ V to (3.1);

(b) furthermore, if ν >
c1‖f(0)‖

V
′

√
λ1(ν−β)

+ β, then the stationary solution to
(3.1) is unique.

Proof. (a) Let v1, v2, v3, ···, vm, ··· be the orthonormal basis of V. Consider
the finite dimensional Hilbert space Vm spanned by {v1, · · ·, vm} with the
scalar product [·, ·] and norm [·] induced by the corresponding ones in V.

Now we define a mapping Rm : Vm → Vm as follows

(3.2) [Rmu, v] = ((Rmu, v)) := ν ((u, v))+b(u, u, v)−〈f(u), v〉 ,∀u, v ∈ Vm.

If we prove that this mapping is continuous in Vm with respect to the norm
[·], and that [Rmu, u] > 0 for some u ∈ Vm with [u] = k > 0, then Lemma
1.4 in Temam [17, p. 164] guarantees that there exists um ∈ Vm such that
[um] ≤ k and Rmum = 0.
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The continuity of Rm follows easily from the properties of b and the
assumptions on f. Now, from (3.2) it holds for u ∈ Vm

[Rmu, u] = ν ((u, u)) + b(u, u, u)− 〈f(u), u〉
≥ ν ((u, u))− ‖f(u)‖V ′ ‖u‖
≥ ν ‖u‖2 − (‖f(0)‖V ′ + β ‖u‖) ‖u‖

Since ν > β, we can choose a positive real number k > 0 such that (ν−β)k2−
‖f(0)‖V ′ k > 0, and for u ∈ Vm such that ‖u‖ = k, we have [Rmu, u] > 0.
Then, there exists an element um ∈ Vm ⊂ V which is a solution of (3.2)
with ‖um‖ ≤ k. Furthermore, we can easily deduce (see estimation (3.3)
below) that

‖um‖ ≤
‖f(0)‖V ′
(ν − β)

,

and, consequently, we have that a suitable subsequence of {um} converges
weakly in V to some limit u∞ and, thanks to the compact injection, strongly
in H. Now, the properties of b and assumptions on f enable us to prove that
this u∞ is a solution of (3.1).

(b) As for the uniqueness statement, let us assume that u1 and u2 are two
solutions, then

ν ((u1, v)) + b(u1, u1, v) = 〈f(u1), v〉 ,∀v ∈ V,

ν ((u2, v)) + b(u2, u2, v) = 〈f(u2), v〉 ,∀v ∈ V.

Setting v = u1 − u2, by substracting the second relation from the first one,
and taking into account the properties of the trilinear form b and condition
A we obtain that

ν ‖u1 − u2‖2 = −b(u1, u1, u1 − u2) + b(u2, u2, u1 − u2)

+ 〈f(u1)− f(u2), u1 − u2〉

= −b(u1 − u2, u2, u1 − u2) + 〈f(u1)− f(u2), u1 − u2〉

≤ c1√
λ1
‖u1 − u2‖2 ‖u2‖+ β ‖u1 − u2‖2 .

Observing that

ν ‖u2‖2 = 〈f(u2), u2〉

≤ ‖f(u2)‖V ′ ‖u2‖(3.3)

≤ β ‖u2‖2 + ‖f(0)‖V ′ ‖u2‖ ,

if follows that

‖u2‖ ≤
‖f(0)‖V ′
ν − β

.
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Consequently,

ν ‖u1 − u2‖2 ≤
(
c1 ‖f(0)‖V ′√
λ1(ν − β)

+ β

)
‖u1 − u2‖2 ,

and as ν >
c1‖f(0)‖

V
′

√
λ1(ν−β)

+ β, uniqueness follows immediately. This completes
the proof of the lemma.

Now, using this lemma, we discuss the long-time behaviour of weak solu-
tions X(t) to the stochastic Navier-Stokes equation (2.2) under some con-
ditions including that the kinematic viscosity ν is sufficiently large. Hence
throughout this paper we assume that there exists a unique stationary so-
lution u∞ ∈ V to (3.1). In this section, we use the following condition.

Condition B. ‖ g(t, u) ‖2
L0

2

≤ γ(t) + (ξ + δ(t)) | u− u∞ |2,
where ξ > 0 is a constant and γ(t), δ(t) are nonnegative integrable functions
such that there exist real numbers θ > 0, Mγ , Mδ ≥ 1 with

γ(t) ≤Mγe
−θt, δ(t) ≤Mδe

−θt, t ≥ 0.

Theorem 3.2. Let u∞ ∈ V be the unique stationary solution to (3.1) and
let 2ν > λ−1

1 ξ + 2β + 2c1√
λ1

‖ u∞ ‖ . Suppose that conditions A and B are
satisfied. Then, any weak solution X(t) to (2.2) converges to the stationary
solution u∞ to (3.1) exponentially in mean square. That is, there exist real
numbers a ∈ (0, θ),M0 = M0(X(0)) > 0 such that

E | X(t)− u∞ |2≤M0e
−at, t ≥ 0.

Proof . Since 2ν > λ−1
1 ξ + 2β + 2c1√

λ1
‖ u∞ ‖, we can take a positive real

number a ∈ (0, θ) such that 2ν > λ−1
1 (ξ + a) + 2β + 2c1√

λ1
‖ u∞ ‖ . Then, by

applying the Ito formula to the function eat | X(t)− u∞ |2, we have that

eatE | X(t)− u∞ |2 = E | X(0)− u∞ |2 +
∫ t
0 ae

asE | X(s)− u∞ |2 ds

−2
∫ t
0 e

asE 〈νAX(s), X(s)− u∞〉 ds
−2

∫ t
0 e

asE 〈B(X(s)), X(s)− u∞〉 ds
+2

∫ t
0 e

asE 〈f(X(s)), X(s)− u∞〉 ds
+

∫ t
0 e

asE ‖g(s,X(s))‖2
L0

2
ds.

Since u∞ satisfies the identity (3.1),∫ t
0 e

asE 〈νAu∞, X(s)− u∞〉 ds +
∫ t
0 e

asE 〈B(u∞), X(s)− u∞〉 ds

=
∫ t
0 e

asE 〈f(u∞), X(s)− u∞〉 ds.

Therefore, noting the next identity:
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〈B(X(s))−B(u∞), X(s)− u∞〉 = b(X(s)−u∞, u∞, X(s)−u∞),

we obtain that

eatE | X(t)− u∞ |2

≤ E | X(0)− u∞ | 2 +
∫ t
0 ae

asE | X(s)− u∞ |2 ds

− 2
∫ t
0 νe

asE ‖ X(s)− u∞ ‖2 ds

+ 2
∫ t
0 e

asE 〈f(X(s))− f(u∞), X(s)− u∞〉 ds

− 2
∫ t
0 e

asEb(X(s)− u∞, u∞, X(s)− u∞)ds

+
∫ t
0 e

asE ‖g(s,X(s))‖2
L0

2
ds

≤ E | X(0)− u∞ |2

+
∫ t
0 (λ−1

1 a+ 2β + 2 c1√
λ1
‖ u∞ ‖ −2ν)easE ‖ X(s)− u∞ ‖2 ds

+
∫ t
0 e

as(γ(s) + (ξ + δ(s))E | X(s)− u∞ |2)ds.

Here we used that λ1 | X(s) − u∞ |2≤‖ X(s) − u∞ ‖2 and the esimate of
the function b as follows:

| b(X(s)− u∞, u∞, X(s)− u∞) |

≤ c1 | X(s)−u∞ |
1
2 ‖ X(s)−u∞ ‖

1
2 ‖ u∞ ‖| X(s)−u∞ |

1
2 ‖ X(s)−u∞ ‖

1
2

= c1 | X(s)− u∞ |‖ X(s)− u∞ ‖‖ u∞ ‖

≤ c1√
λ1
‖ u∞ ‖‖ X(s)− u∞‖2.

Therefore, we obtain that

eatE | X(t)− u∞ |2≤ E | X(0)− u∞ |2

+
∫ t
0 e

as(γ(s) + δ(s)E | X(s)− u∞ |2)ds.

Noticing that θ > a, we have by applying the Gronwall lemma that

eatE | X(t)− u∞ |2 ≤ (E | X(0)− u∞ |2) exp(
∫ t
0 2δ(s)ds)

+ exp(
∫ t
0 2δ(s)ds)(

∫ t
0 e

as(γ(s) + 2δ(s) | u∞ |2)ds.

Thus, there exists a positive real number M0 = M0(X(0)) > 0 such that

E | X(t)− u∞ |2≤M0e
−at for all t > 0.

This completes the proof.
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Theorem 3.3. Suppose that all the conditions in Theorem 3.2 are satisfied.
Then, any weak solution X(t) to (2.2) converges to the stationary solution
u∞ of (3.1) almost surely exponentially.

Proof. Let N be a natural number. By the Ito formula, it follows for any
t ≥ N,

| X(t)− u∞ |2 = | X(N)− u∞ |2

−2
∫ t
N 〈νAX(s), X(s)− u∞〉 ds

−2
∫ t
N 〈B(X(s)), X(s)− u∞〉 ds

+2
∫ t
N 〈f(X(s)), X(s)− u∞〉 ds

+
∫ t
N ‖g(s,X(s))‖2

L0
2
ds

+2
∫ t
N (X(s)− u∞, g(s,X(s))dW (s)) .

Furthermore, by the Burkholder-Davis-Gundy lemma,

2E
[
supN≤t≤N+1

∫ t
N (X(s)− u∞, g(s,X(s))dW (s))

]
≤ n1E

[∫ N+1
N | X(N)− u∞ |2‖ g(s,X(s)) ‖2

L0
2

ds

]1/2

≤ n1E

[
supN≤s≤N+1 | X(N)− u∞ |2

∫ N+1
N ‖ g(s,X(s)) ‖2

L0
2

ds

]1/2

≤ n2

∫ N+1
N E ‖ g(s,X(s)) ‖2

L0
2

ds

+1
2E

[
supN≤t≤N+1 | X(t)− u∞ |2

]
,

where n1, n2 > 0. Therefore, we obtain a positive real number n0 > 0 such
that

E
[
supN≤t≤N+1 | X(t)− u∞ |2

]
≤ E | X(N)− u∞ |2

−2ν
∫ N+1
N E ‖ X(s)− u∞ ‖2 ds

+ 2c1√
λ1
‖ u∞ ‖

∫ N+1
N E ‖ X(s)− u∞ ‖2 ds

+2β
∫ N+1
N E ‖ X(s)− u∞ ‖2 ds

+n0

∫ N+1
N E ‖ g(s,X(s)) ‖2

L0
2

ds

+1
2E supN≤t≤N+1 | X(t)− u∞ |2 .
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Thus, since 2ν > λ−1
1 ξ + 2β + 2c1√

λ1
‖ u∞ ‖ , by simple computations,

1
2E supN≤t≤N+1 | X(t)− u∞ |2

≤ E | X(N)− u∞ |2

+ n0

∫ N+1
N (γ(s) + (ξ + δ(s))E | X(s)− u∞ |2)ds.

Since γ(t) ≤ Mγe
−θt and δ(t) ≤ Mδe

−θt, a ∈ (0, θ),Mγ ≥ 1,Mδ ≥ 1, we
obtain, thanks to Theorem 3.2, that there exists M1 = M1(X(0)) ≥ 1 such
that

E

[
sup

N≤t≤N+1
| X(t)− u∞ |2

]
≤M1e

−aN .

Finally, using the Borel-Cantelli lemma one can easily finish the proof.

Theorem 3.4. Let u∞ ∈ V be the unique stationary solution to (3.1).
Assume that condition A and the following ones hold:

(3.4a) g(t, u∞) ≡ 0, t ≥ 0,

(3.4b) ‖ g(t, u)− g(t, v) ‖
L0

2

≤ cg ‖ u− v ‖, cg > 0, u, v ∈ V.

If 2ν > 2β + c2g + 2c1√
λ1

‖ u∞ ‖, then any weak solution X(t) to (2.2)
converges to u∞ exponentially in mean square and so u∞ is exponentially
stable in mean square. That is, there exists a real number γ > 0 such that

E | X(t)− u∞ |2≤ E | X(0)− u∞ |2 e−γt, t ≥ 0.

Furthermore, pathwise exponential stability with probability one of u∞ also
holds.

Proof . We have that the following equality is satisfied:

X(t)− u∞ = X(0)− u∞ +
∫ t
0 −(νAX(s)− νAu∞)

+
∫ t
0 {−(B(X(s))−B(u∞)) + [f(X(s))− f(u∞)]} dt

+
∫ t
0 [g(t,X(s))− g(s, u∞)] dW (t).
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Now, we can take γ > 0 small enough (fixed later) and, applying the Ito
formula and taking expectation,

eγtE | X(t)− u∞ |2 = E | X(0)− u∞ |2

+γ
∫ t
0 e

γsE | X(s)− u∞ |2 ds

−2
∫ t
0 νe

γsE ‖ X(s)− u∞ ‖2 ds

−2
∫ t
0 e

γsE 〈B(X(s))−B(u∞), X(s)− u∞〉 ds
+2

∫ t
0 e

γsE 〈f(X(s))− f(u∞), X(s)− u∞〉 ds
+

∫ t
0 e

γsE ‖ g(s,X(s))− g(s, u∞) ‖2
L0

2

ds

≤ E | X(0)− u∞ |2 +γ
∫ t
0 e

γsE | X(s)− u∞ |2 ds

−2
∫ t
0 νe

γsE ‖ X(s)− u∞ ‖ 2ds

+2
∫ t
0 e

γsE [‖ f(X(s))− f(u∞) ‖V ′‖ X(s)− u∞ ‖] ds

+
∫ t
0 e

γsc2gE ‖ X(s)− u∞ ‖2 ds

−2
∫ t
0 e

γsE 〈B(X(s))−B(u∞), X(s)− u∞〉 ds.

Then, arguing as before, it follows that

〈B(X(s))−B(u∞), X(s)− u∞〉 = b(X(s)− u∞, u∞, X(s)− u∞)

≤ c1√
λ1
‖ u∞ ‖‖ X(s)− u∞ ‖2 .

Therefore,

eγtE | X(t)− u∞ |2

≤ E | X(0)− u∞ | 2

+ 2
∫ t
0

[
γλ−1

1 − 2ν + 2β + c2g + 2c1√
λ1
‖ u∞ ‖

]
eγsE ‖ X(s)− u∞ ‖2 ds.

As −2ν+2β+ c2g + 2c1√
λ1
‖ u∞ ‖< 0, we can choose a real number γ > 0 such

that

γλ−1
1 − 2ν + 2β + c2g +

2c1√
λ1

‖ u∞ ‖< 0,

which completes the proof of the first part of the theorem. As the rest of the
theorem is proved by a similar method to the one in the proof of Theorem
3.3, we omit it.

Remark 3.1. Assume that νAu + B(u) = f(u) has a unique stationary
solution u∞. If the stochastic NSE (2.2) has a time-independent solution
u1 ∈ V, then u1 = u∞, almost surely. Indeed, assume u1 ∈ V is a solution
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to (2.2). Then we have∫ t

0
(−νAu1 −B(u1) + f(u1))dt+

∫ t

0
g(t, u1)dW (t) = 0,

(−νAu1 −B(u1) + f(u1))t+
∫ t

0
g(t, u1)dW (t) = 0,

−νAu1 −B(u1) + f(u1) +
1
t

∫ t

0
g(t, u1)dW (t) = 0.

Letting t→∞, we obtain that −νAu1−B(u1)+f(u1) = 0 P -almost surely,
which implies that u1 = u∞.

Remark 3.2. It is worth pointing out that if g satisfies an additional as-
sumption, namely,

(u− v, (g(u)− g(v))h) = 0, u, v ∈ V, h ∈ K,

(this condition is used by Capinski and Cutland [6]), then the almost sure
exponential stability can be obtained directly by the computations in the the-
orem, since it is not necessary to take expectation in order to eliminate the
stochastic integral. Also, the above condition is implied by the following one,
(u, g(v)) = −(g(u), v), which is fulfilled, for example, for some particular ex-
amples of first order partial differential operators (e.g. solenoidal ones ) in
the case of a one dimensional Wiener process.

In the final of this section we consider the case where the external force
f can depend on time, that is, f : [0,∞)× V → V ′. In this case, we assume

Condition C. 〈f(t, x), x〉 ≤ α(t) + (c+ β(t)) | x |2, c > 0,
where α(t), β(t) are integrable functions such that there exist real numbers
θ > 0, Mα, Mβ ≥ 1 with

α(t) ≤Mαe
−θt, β(t) ≤Mβe

−θt, t ≥ 0.

Then, we prove the following result.

Theorem 3.5. Suppose that condition C is satisfied and there exists a con-
stant ζ > 0 such that ‖ g(t, u) ‖2

L0
2

≤ γ(t)+(ζ+ δ(t)) | u |2where the functions

γ(t), δ(t) satisfy the same condition as the ones in Condition B. Further-
more, let 2νλ1 > ζ + 2c. Then any weak solution X(t) to (2.2) converges to
zero almost surely exponentially.
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Proof. We can take a positive number a ∈ (0, θ) such that 2νλ1 >

a+ 2c+ ζ. First we have

eatE | X(t) |2 = E | X(0) |2 +
∫ t
0 ae

asE | X(s) |2 ds

−2
∫ t
0 e

asE 〈νAX(s), X(s)〉 ds

−2
∫ t
0 e

asE 〈B(X(s)), X(s)〉 ds

+2
∫ t
0 e

asE 〈f(s,X(s)), X(s)〉 ds

+
∫ t
0 e

asE ‖ g(s,X(s)) ‖2
L0

2

ds.

Therefore, since (−2νλ1 + a+ 2c+ ζ) < 0, we have that

eatE | X(t) |2 ≤ E | X(0) |2

+
∫ t
0 e

as(γ(s) + 2α(s) + (2β(s) + δ(s))E | X(s) |2)ds.

By the Gronwall lemma, we get that any weak solution X(t) to (2.2) con-
verges to zero exponentially in mean square.

Now, the proof can be finished by the same method as the one in the
proof of Theorem 3.3.

4. Stabilizability and stabilization of solutions

In this Section, we shall analyze some aspects related to the problem of
stabilizability and stabilization of our Navier-Stokes model. Firstly, notice
that the pathwise stability in the previous Section has been deduced as a
by product of the mean square stability. However, it may happen that a
solution of a stochastic equation can be pathwise exponentially stable and
not exponentially stable in mean square.

Indeed, let us consider the following scalar ordinary differential equation
to illustrate this fact,

dx(t) = ax(t)dt+ bx(t)dW (t),

where a, b are real numbers and W is a one dimensional Wiener process. As
this equation can be solved directly, we can easily check that the solution is
given by

x(t) = x(0) exp
{(

a− b2

2

)
t+ bW (t)

}
.

Thus, it is easy to see that the zero solution is pathwise exponentially stable
with probability one if and only if a− b2

2 < 0. Also, one can prove that

E |x(t)|2 = E |x(0)|2 exp
{(

2a+ b2
)
t
}
,
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and therefore, the zero solution is exponentially stable in mean square if
and only if a+ b2

2 < 0. So, we observe that there exist many possibilities of
being the zero solution pathwise exponentially stable and, at the same time,
exponentially unstable in mean square.

Consequently, it would be very interesting to obtain pathwise exponential
stability results by avoiding the method of using mean square stability as a
previous step. This will be one of the aims of this section. However, it is
worth pointing out that to get some results in this direction, we will need
to assume some additional hypotheses on the stochastic perturbation so
that we can obtain better stability criteria but for more specific situations.
In particular, in some of our situations, the noise is so special that one
can perform a time change, a substitution that transform the stochastic
equation into a deterministic one. For example, the Ito formula for the
logarithm in the proof of Theorem 4.2 in this section is one way to perform
this transformation; another is to multiply by the exponential of the noise
(see Crauel and Flandoli [10, p. 382]).

To this end let us firstly state the following condition
Condition D. f : H → H, and satisfies

|f(u)− f(v)| ≤ c |u− v| , c > 0, u, v ∈ H,

g(t, ·) : H → L(K,H), and satisfies

‖g(t, u)− g(t, v)‖L(K,H) ≤ Cg |u− v| , ∀t ∈ [0,∞),∀u, v ∈ H.

Observe that if νλ1 > c and f(0) = 0, then the zero solution to (2.3) is
exponentially stable. But when νλ1 ≤ c and f(0) = 0 we do not know, in
general, if the zero solution is exponentially stable or not. The following
theorem is going to state that, under some particular conditions, any weak
solution of the stochastic Navier-Stokes equation converges to zero almost
surely exponentially stable. So, in a sense, we can interpret that a kind of
stabilization could have taken place in the system.

Theorem 4.1. In addition to condition D, assume that f(0) = 0 and
g(t, 0) = 0 for all t ≥ 0, and that there exists ρ > 0 such that

Q̃ψ(s, x) := tr [(ψx(x)⊗ ψx(x))(g(s, x)Qg(s, x)
∗)] ≥ ρ2 |x|4 ,

where ψ(x) = |x|2 (recall that (ψx(x) ⊗ ψx(x))(h) = ψx(x) (ψx(x), h) , for
x, h ∈ H). Then, there exists Ω0 ⊂ Ω, P (Ω0) = 0, such that for ω /∈ Ω0 there
exists T (ω) > 0 such that any weak solution X(t) to (2.2) satisfies

|X(t)|2 ≤ |X(0)|2 e−γt for any t ≥ T (ω),
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where γ := 1
2(λ1ν−c−

C2
g

2 + ρ2

2 ). In particular, exponential stability of sample
paths with probability one holds if γ > 0.

Proof. Let us apply Ito’s formula for our solution X(t).Then, it follows

|X(t)|2 = |X(0)|2 + 2
∫ t
0 〈−νAX(s)−B(X(s)) + f(X(s)), X(s)〉 ds

+
∫ t
0 ‖g(s,X(s))‖2

L0
2
ds

+2
∫ t
0 (X(s), g(s,X(s))dW (s))

= |X(0)|2 + 2
∫ t
0

[
−ν ‖X(s)‖2 + 〈f(X(s)), X(s)〉

]
ds

+
∫ t
0 ‖g(s,X(s))‖2

L0
2
ds

+2
∫ t
0 (X(s), g(s,X(s))dW (s)) ,

and, applying once again Ito’s formula to the function log |X(t)|2 , and taking
into account the hypotheses, it follows

log |X(t)|2 = log |X(0)|2 + 1
2

∫ t
0

1
|X(s)|2

[
−2ν ‖X(s)‖2 + 2 〈X(s), f(X(s))〉

]
ds

+1
2

∫ t
0

1
|X(s)|2 ‖g(s,X(s))‖2

L0
2
ds

+2
∫ t
0

1
|X(s)|2 (X(s), g(s,X(s))dW (s))− 1

2

∫ t
0
Q̃ψ(s,X(s))

|X(s)|4 ds

≤ log |X(0)|2 +
∫ t
0

1
|X(s)|2

[
−νλ1 + c+ C2

g

2

]
|X(s)|2 ds

+2
∫ t
0

1
|X(s)|2 (X(s), g(s,X(s))dW (s))− ρ2

2 t.

Now, due to our assumptions, the termM(t) =
∫ t
0

2
|X(s)|2 (X(s), g(s,X(s))dW (s))

is a real martingale and it is not difficult to prove, by means of the law of
iterated logarithm,

lim
t→+∞

M(t)
t

= 0, P − almost surely.

Thus, we can assure that there exists a set Ω0 ⊂ Ω with P (Ω0) = 0, such
that for every ω /∈ Ω0 there exists T (ω) > 0 such that for all t ≥ T (ω)

M(t)
t

≤ 1
2
(λ1ν − c−

C2
g

2
+
ρ2

2
).

Therefore, it easily follows that for any t ≥ T (ω)

log |X(t)|2 ≤ log |X(0)|2 +
1
2
(−λ1ν + c+

C2
g

2
− ρ2

2
)t.

The proof is now complete.

Remark 4.1. Observe that although we do not know whether the stationary
solution to the deterministic problem is stable or not, it is possible to ensure
sample exponential stability of the stochastic equation provided that the
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lipschitz constant and the lower bound on the stochastic term (namely, Cg
and ρ) imply that γ > 0. For instance, in the particular case of a linear
term, i.e., when g is given for example as

g(t, x)k =
σ√
λ
′
1

x(k, e1)K , t > 0, x ∈ H, k ∈ K,

the constants appearing in the previous theorem are:

Cg = σ, ρ = 2σ, γ =
1
2
(λ1ν − c−

C2
g

2
+
ρ2

2
) =

1
2
(λ1ν − c− σ2

2
+ 2σ2).

Consequently, although λ1ν − c < 0, one can always choose σ large enough
so that γ > 0.

Remark 4.2. For the finite dimensional case, there exists a wide literature
on stabilization by noise (see Arnold [1] and the references therein), but
for the infinite dimensional case, as far as we know, this question remains
open, mainly due to the fact that the technique used in the finite dimensional
case seems very difficult to extend to this situation. However, we have to
point out that, in general, when one considers a deterministic system and a
perturbed version of it by adding a stochastic Ito term, for instance a linear
multiplicative one of the form σudW (t) (being u the solution), in a limit
sense, the stochastic equation corresponds to a deterministic equation with a
mean-zero fluctuation feedback control plus a stabilizing systematic control,
in fact, one can say that an Ito multiplicative noise with intesity σ, acts like
a feedback stabilizing control of the form −σ2

2 u, so maybe not the noise is
responsible of the stabilizing effect but this additional damping one. However,
the most interesting results in the literature concerning stabilization deals
with the one produced by considering the stochastic term in the Stratonovich
sense. In this case, as this term is like a periodic zero-mean feedback control,
its stabilizing effect is unexpected and very interesting since there is no new
damping terms in the equations and when the stabilization is produced, one
can properly say that the noise has stabilized the system.

Remark 4.3. Noticing that, in order to produce a stabilization effect, it
is sufficient to consider a one dimensional Wiener process, in the rest of
this section we assume that K = R, Q = 1 and W (t) is a one dimensional
Wiener process.

Lastly, consider the case where f(0) 6= 0. If ν > β, ν >
c1‖f(0)‖

V
′

√
λ1(ν−β)

+ β

and all the conditions of Lemma 3.1 are satisfied, we have the existence of
a unique stationary solution u∞ ∈ V to (3.1). Here we note that this u∞
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is also the stationary solution to (2.3). Then, we shall show that it can
be chosen g(t, x) = σ(x − u∞) so that the stationary solution u∞ to the
deterministic equation, becomes an almost sure exponentially stable solu-
tion to the stochastic 2D-Navier-Stokes equation (2.2), when the kinematic
viscosity ν is large enough and, for simplicity, when W is a one dimen-
sional Wiener process. By the following lemma we get that if the Lipschitz
constant c > 0 of the external force field f is sufficiently small, that is, if
λ1ν > c1

√
λ1 ‖ u∞ ‖ +c, then the stationary solution u∞ to (2.3) is expo-

nentially stable. This lemma can be proved by the similar method as in the
proof of Theorem 10.2 (Temam[18, p.69]).

Lemma 4.2. Let u∞ ∈ V be the unique stationary solution to (3.1). If
the function f satisfies condition D and λ1ν > c1

√
λ1 ‖ u∞ ‖ +c, then the

stationary solution u∞ to (2.3) is exponentially stable.

But if the Lipschitz constant c > 0 is sufficiently large, that is, if λ1ν ≤
c1
√
λ1 ‖ u∞ ‖ +c, then we do not know if u∞ is exponentially stable or not.

However, we can prove the following result:

Theorem 4.3. Let u∞ ∈ V be the unique stationary solution to (3.1). Let
c0 := λ1ν − c1

√
λ1 ‖ u∞ ‖ > 0 and let λ1ν ≤ c1

√
λ1 ‖ u∞ ‖ +c. Assume

that σ is a real number such that 2λ1ν − 2c1
√
λ1 ‖ u∞ ‖ +σ2 > 2c . If the

function f satisfies condition D, then there exists Ω0 ⊂ Ω, P (Ω0) = 0, such
that for ω /∈ Ω0 there exists T (ω) > 0 such that

|X(t)− u∞|2 ≤ |X(0)− u∞|2 e−γt for all t ≥ T (ω),

where γ := 1
2( σ2 − 2c + 2c0) > 0, and X(t) is any weak solution to (2.2)

where the function g is given by g(t, x) = σ(x− u∞).

Proof. Applying Ito’s formula to the function |X(t)− u∞|2 , we have that

|X(t)− u∞|
2 = |X(0)− u∞|

2

−2
∫ t
0 〈νAX(s), X(s)− u∞〉 ds

−2
∫ t
0 〈B(X(s)), X(s)− u∞〉 ds

+2
∫ t
0 (f(X(s)), X(s)− u∞) ds

+
∫ t
0 ‖g(s,X(s))‖2

L0
2
ds

+2
∫ t
0 (X(s)− u∞, g(s,X(s))dW (s)) .
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And so

| X(t)− u∞ |2 = | X(0)− u∞ |2

−2
∫ t
0 ν ‖ X(s)− u∞ ‖2 ds

−2
∫ t
0 b(X(s)− u∞, u∞, X(s)− u∞)ds

+2
∫ t
0 (X(s)− u∞, f(X(s))− f(u∞))ds

+
∫ t
0 ‖ g(s,X(s)) ‖2

L0
2
ds

+2
∫ t
0 (X(s)− u∞, g(s,X(s))dW (s)) .

Hence, since c0 := λ1ν − c1
√
λ1 ‖ u∞ ‖ > 0, using the inequality | b(X(s)−

u∞, u∞, X(s)− u∞) |≤ c1√
λ1
‖ u∞ ‖‖ X(s)− u∞ ‖2, we obtain that

−2ν ‖X(s)− u∞‖2 + 2 | b(X(s)− u∞, u∞, X(s)− u∞) |

≤ (−2ν + 2c1√
λ1
‖ u∞ ‖) ‖ X(s)− u∞ ‖2

≤ (−2λ1ν + 2c1
√
λ1 ‖ u∞ ‖) | X(s)− u∞ |2 .

Therefore,

log |X(t)− u∞|2 = log |X(0)− u∞|2

+
∫ t
0

1
|X(s)−u∞|2 (−2ν ‖X(s)− u∞‖2

+σ2 |X(s)− u∞|2

−2b(X(s)− u∞, u∞, X(s)− u∞)

+2(f(X(s))− f(u∞), X(s)− u∞)ds

+2
∫ t
0
σ|X(s)−u∞|2
|X(s)−u∞|2

dW (s)

−1
2

∫ t
0

4σ2|X(s)−u∞|4
|X(s)−u∞|4

ds

≤ log | X(0)− u∞ |2 +(2c− 2c0 − σ2)t+ 2σW (t).

As limt→∞
W (t)
t = 0, almost surely, we can find a set Ω0 ⊂ Ω with P (Ω0) = 0,

such that, for each ω /∈ Ω0, there exists T (ω) such that for all t ≥ T (ω)

2σW (t)
t

≤ 1
2
(−2c+ 2c0 + σ2).

Thus, we obtain that for any t ≥ T (ω)

log |X(t)− u∞|2 ≤ log |X(0)− u∞|2 +
1
2
(2c− 2c0 − σ2)t.
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This completes the proof of the theorem.
Acknowledgements. The authors want to express their sincere gratitude

to the referee since, thanks to his interesting, detailed, helpful and clarifying
comments and suggestions, the paper has been greatly improved.

Also, they wish to thank Hans Crauel for interesting comments on the
stabilization by Stratonovich noise.

The two first authors have been partially supported by Proyecto DGICYT
(Spain) PB98-1134.

T. Taniguchi would like to express his gratitude to Department of Differ-
ential Equations and Numerical Analysis, University of Sevilla, for hospital-
ity when he was visiting.

References

[1] L. Arnold, Stabilization by noise revisited, Z. angew. Math. Mech. 70 (1990), 235-246.

[2] A. Bensoussan, Stochastic Navier-Stokes equations, Acta Applicandae Math., 38

(1995), 267-304.

[3] Z. Brzezniak, M. Capinski and F. Flandoli, Pathwise global attractors for stationary

random dynamical systems, Prob. Th. Rel. Fields, 95 (1993), 87-102.

[4] M. Capinski and D. Gatarek, Stochastic equations in Hilbert spaces with application

to Navier-Stokes equations in any dimension, J. of Funct. Anal. 126(1994), 26-35.

[5] M. Capinski and N. Cutland, Measure attractors for stochastic Navier-Stockes Equa-

tions, Electronic J. of Prob., 3(1998), 1-15.

[6] M. Capinski and N.J. Cutland, Existence of global stochastic flow and attractors for

Navier-Stokes equations, Prob. Th. and Rel. Fields 115(1999), 121-151.

[7] T. Caraballo and J.A. Langa, Comparison of the long-time behaviour of linear Ito

and Stratonovich partial differential equations, Stoch. Anal. Appl., to appear.

[8] T. Caraballo and K. Liu, On exponential stability criteria of stochastic partial differ-

ential equations, Stochastic Processes and their Applications 83 (1999), 289-301.

[9] P. Constantin and C. Foias, ”Navier-Stokes Equations”, The University of Chicago

Press, Chicago and London, 1988.

[10] H. Crauel and F. Flandoli, Attractors for random dynamical systems, Prob. Th. Rel.

Fields, 100(1994), 365-393.

[11] G. Da Prato and J. Zabczyk,“ Stochastic Equations in Infinite Dimensions”, Cam-

bridge, 1992.

[12] F. Flandoli and D. Gatarek, Martingale and stationary solution for stochastic Navier-

Stokes equations, Prob. Th. Rel. Fields, 102(1995), 367-391.

[13] J. Hale, Asymptotic behaviour of dissipative systems, Math. Surveys and Monographs

25, (1988).

[14] O. Ladyzhenskaya, Attractors for semigroups and evolution equations, Cambridge

University Press, (1991).
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