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In this paper we study the asymptotic behaviour of solutions of a first-order stochastic lattice
dynamical system with an additive noise.

We do not assume any Lipschitz condition on the nonlinear term, just a continuity as-
sumption together with growth and dissipative conditions, so that uniqueness of the Cauchy
problem fails to be true.

Using the theory of multi-valued random dynamical systems we prove the existence of a
random compact global attractor.
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1. Introduction

In this paper we study the asymptotic behaviour of solutions of the stochastic first
order lattice dynamical system with an additive noise given by

{

dui

dt
= ν (ui−1 − 2ui + ui+1) − hi (ui) − fi (ui) + ai

dwi (t)

dt
, i ∈ Z,

ui (0) = u0
i ,

under some growth and dissipative conditions on the nonlinear terms f and h. Here
wi (t) are real independent two-sided Brownian motions.

We prove the existence of a random global pullback attractor for such systems,
extending in this way the results given in [3] (see [11] for the case of a multiplicative
noise, and also [21] for a partial dissipative stochastic lattice dynamical system
with additive noise). The main difference with [3] is the fact that we do not assume
conditions ensuring the uniqueness of solutions for the Cauchy problem. Hence, we
use the theory of multi-valued random dynamical systems [6] in order to prove the
existence of the pullback attractor. Comparing our results with the single-valued
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case from [3], the main technical difficulty appears in proving the measurability of
the attractor.

Our stochastic lattice dynamical system can be obtained by the spatial dis-
cretization of a stochastic reaction-diffusion equation in an arbitrary domain for
the spatial variable (which can be unbounded and even the whole space R

N ). So,
such systems can be viewed as approximations for reaction-diffusion equations in
unbounded domains.

In the deterministic case the theory of attractors for lattice dynamical systems
has been intensively studied over the last years (see e.g. [1], [4], [5], [14], [15], [17],
[18], [20], [22], [23], [24] and the references therein).

This paper is organized as follows.
In Section 2 we recall the general theory of multi-valued random dynamical

systems as developed in [6]. First, we establish some preliminaries concerning the
definitions of multi-valued non-autonomous dynamical systems (MNDS) and multi-
valued random dynamical systems (MRDS) which turns to be an MNDS with
an additional measurability property. Then, we recall two theorems ensuring the
existence of the global pullback attractor for an MNDS and the random global
pullback attractor for an MRDS.

In Section 3 we describe the setting of our problem. By a standard change of
variable (involving the Ornstein-Uhlenbeck process), we transform the stochastic
equation into a random one depending on a parameter ω. We then show that the
Cauchy problem for the transformed lattice system possesses, at least, one global
solution for each ω, although it can be non-unique.

In Section 4 we first define an MNDS associated to our problem, and prove the
existence of a global pullback attractor. In this part it is crucial to obtain suitable
estimates of the tails of solutions leading to the pullback asymptotic compactness
of the MNDS. Finally, we prove some measurability properties of the MNDS which
imply that we have in fact a MRDS having a random pullback attractor. As re-
marked before, these last results are much more difficult to obtain than in the
single-valued case.

2. Multi-valued random dynamical systems

We recall now some basic definitions for set-valued non-autonomous and random
dynamical systems and formulate sufficient conditions ensuring the existence of a
pullback attractor for these systems.

A pair (Ω, θ) where θ = (θt)t∈R is a flow on Ω, that is,

θ : R × Ω → Ω,

θ0 = idΩ, θt+τ = θt ◦ θτ =: θtθτ for t, τ ∈ R,

is called a non-autonomous perturbation.
Let P := (Ω,F , P) be a probability space. On this probability space we consider

a measurable non–autonomous flow θ :

θ : (R × Ω,B(R) ⊗F) → (Ω,F).

In addition, P is supposed to be ergodic with respect to θ, which means that every
θt-invariant set has measure zero or one for t ∈ R. Hence P is invariant with respect
to θt. The quadruple (Ω,F , P, θ), which is the model for a noise, is called a metric
dynamical system.
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If we replace in the definition of a metric dynamical system the probability space
P by its completion Pc := (Ω, F̄ , P̄) the above measurability property is not true
in general (see Arnold [2, Appendix A]). But for fixed t ∈ R we have that the
mapping

θt : (Ω, F̄) → (Ω, F̄)

is measurable.
Let X = (X, dX ) be a Polish space. Let D : ω → D(ω) ∈ 2X be a multi–

valued mapping. The set of multi–functions D : ω → D(ω) ∈ 2X with closed and
non–empty images is denoted by C(X). Let also denote by Pf (X) the set of all
non-empty closed subsets of the space X. Thus, it is equivalent to write that D is
in C(X), or D : Ω → Pf (X) .

Let D : ω → D(ω) be a multi–valued mapping in X over P. Such a mapping is
called a random set if

ω → inf
y∈D(ω)

dX(x, y)

is a random variable for every x ∈ X. It is well known that a mapping is a random
set if and only if for every open set O in X the inverse image {ω : D(ω) ∩ O 6= ∅}
is measurable, i.e., it belongs to F [13, Proposition 2.1.4].

Clearly, this is also valid if we replace P by Pc and F by F . It is straightforward
to see that, if D is a random set with respect to P, then it is also random with
respect to Pc.

We now introduce non-autonomous and random dynamical systems.

Definition 2.1 . A multi-valued map G : R
+ × Ω × X → Pf (X) is called a

multi-valued non-autonomous dynamical system (MNDS) if

i) G(0, ω, ·) = idX ,
ii) G(t + τ, ω, x) ⊂ G(t, θτω,G(τ, ω, x)) (cocycle property) for all t, τ ∈ R

+, x ∈
X,ω ∈ Ω.

It is called a strict MNDS if, moreover,

iii) G(t + τ, ω, x) = G(t, θτω,G(τ, ω, x)) for all t, τ ∈ R
+, x ∈ X,ω ∈ Ω.

An MNDS is called a multi–valued random dynamical system (MRDS) if the
multi–valued mapping

(t, ω, x) → G(t, ω, x)

is B(R+) ⊗ F ⊗ B(X) measurable, i.e. {(t, ω, x) : G(t, ω, x) ∩ O 6= ∅} ∈ B(R+) ⊗
F ⊗ B(X) for every open set O of the topological space X.

For the above composition of multi-valued mappings we use that for any non-
empty set V ⊂ X, G(t, ω, V ) is defined by

G(t, ω, V ) =
⋃

x0∈V

G(t, ω, x0).

We now formulate a general condition ensuring that an MNDS defines an MRDS.
We need the particular assumption that Ω is a Polish space and F the associated
Borel σ-algebra.



January 25, 2011 12:44 Journal of Difference Equations and Applications 102JDEArevised

4 T. Caraballo, F. Morillas & J. Valero

Lemma 2.2 . [6, Lemma 2.5] Let Ω be a Polish space and let F be the Borel
σ–algebra. Suppose that (t, ω, x) 7→ U (t, ω, x) is upper-semicontinuous. Then this
mapping is measurable in the sense of Definition 2.1.

A multi–valued mapping D is said to be negatively, strictly, or positively invariant
for the MNDS G if

D(θtω)
⊂
=
⊃

G(t, ω,D(ω)) for ω ∈ Ω, t ∈ R
+.

Let D be the family of multi–valued mappings with values in C(X). We say that
a family K ∈ D is pullback D-attracting if for every D ∈ D

lim
t→+∞

distX(G(t, θ−tω,D (θ−tω)),K(ω)) = 0, for all ω ∈ Ω.

B ∈ D is said to be pullback D-absorbing if for every D ∈ D there exists T =
T (ω,D) > 0 such that

G(t, θ−tω,D (θ−tω)) ⊂ B(ω), for all t ≥ T. (1)

The following definition provides the main objective of this article. We have to
introduce a particular set system (see Schmalfuß [19]). Let D be a set of multi–
valued mappings in C(X) satisfying the inclusion closed property: if we suppose
that D ∈ D and D′ is a multi–valued mapping in C(X) such that D′(ω) ⊂ D(ω)
for ω ∈ Ω, then D′ ∈ D.

Definition 2.3 . A family A ∈ D is said to be a global pullback D-attractor for
the MNDS G if it satisfies:

(1) A (ω) is compact for any ω ∈ Ω;
(2) A is pullback D-attracting;
(3) A is negatively invariant.

A is said to be a strict global pullback D-attractor if the invariance property in
the third item is strict.

A natural modification of this definition for MRDS is the following.

Definition 2.4 . Suppose that G is an MRDS and suppose that the properties of
Definition 2.3 are satisfied. In addition, we suppose that A is a random set with
respect to Pc. Then A is called a random global pullback D-attractor.

Now we recall two general results on the existence and uniqueness of pullback
and random attractors associated to MNDS and MRDS respectively, which were
proved in [6].

Theorem 2.5 . Suppose that the MNDS G(t, ω, ·) is upper-semicontinuous for
t ≥ 0 and ω ∈ Ω. Let K ∈ D be a multi-valued mapping such that the MNDS
is pullback D-asymptotically compact with respect to K, i.e. for every sequence
tn → +∞, ω ∈ Ω every sequence yn ∈ G(tn, θ−tn

ω,K(θ−tn
ω)) is pre–compact. In

addition, suppose that K is pullback D-absorbing. Then, the set A given by

A (ω) :=
⋂

s≥0

⋃

t≥s

G (t, θ−tω,K (θ−tω)) (2)
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is a pullback D-attractor. Furthermore, A is the unique element from D with these
properties. In addition, if G is a strict MNDS, then A is strictly invariant.

Remark 1. When the property A ∈ D is not satisfied, some difficulties may appear,
for example, in proving the strict invariance of the attractor. This is the case if D
is just the set of all bounded subsets of X (see [9]-[10]).

Theorem 2.6 . Let G be a MRDS. Under the assumptions in Theorem 2.5, let
ω → G(t, ω,K(ω)) be a random set for t ≥ 0 with respect to Pc. Assume also that
G(t, ω,K(ω)) is closed for all t ≥ 0 and ω ∈ Ω. Then the set A defined by (2) is a
random set with respect to Pc, so that it is a random global pullback D-attractor.

3. Setting of the problem

Let us consider the lattice stochastic system











dui

dt
= ν (ui−1 − 2ui + ui+1) − hi (ui) − fi (ui) + ai

dwi (t)

dt
, i ∈ Z,

ui (0) = u0
i ,

(3)

where u = (ui)i∈Z
∈ l2, u0 =

(

u0
i

)

i∈Z
∈ l2, ν > 0, a = (ai)i∈Z

∈ l2, wi are

real independent two-sided Brownian motions (so they satisfy wi (0) = 0) and
fi, hi : R → R, i ∈ Z, are functions satisfying the following conditions:

(H1) For all x ∈ R,

hi (x)x ≥ α |x|2 − c1,i,

|hi (x)| ≤ β |x| + c2,i,

where c1 ∈ l1, c2 ∈ l2, c2,i ≥ 0, α, β > 0.
(H2) For all x ∈ R,

fi (x)x ≥ γ |x|p − c3,i,

|fi (x)| ≤ η |x|p−1 + c4,i,

where p ≥ 2, c3 ∈ l1, c4 ∈ l2, c4,i ≥ 0, γ, η > 0.
(H3) The maps hi, fi : R → R are continuous.

We define the operators A,B,B∗ : l2 → l2 given by

(Bu)i = ui+1 − ui, (B∗u)i = ui−1 − ui,

(Au)i = −ui−1 + 2ui − ui+1.

It is easy to see that A = B∗B = BB∗ and (B∗u, v) = (u,Bv), for all u, v ∈ l2,
where (·,·) denotes the scalar product in l2.

Using conditions (H1)−(H2) it is not difficult to see that the Nemytski operators
f, h : l2 → l2 given by f (u) = (fi (ui))i∈Z

, h (u) = (hi (ui))i∈Z
are well defined. On
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the other hand, we can obtain the following estimates for the norms of f (u) , h (u) :

‖h (u)‖2
l2 ≤

∑

i∈Z

(c2,i + β |ui|)
2 ≤ 2

(

‖c2‖
2
l2 + β2 ‖u‖2

l2

)

, (4)

‖f (u)‖2
l2 ≤

∑

i∈Z

(

c4,i + η |ui|
p−1
)2

≤ 2
(

‖c4‖
2
l2 + η2 ‖u‖2p−2

l2p−2

)

≤ C
(

‖c4‖
2
l2 + ‖u‖2p−2

l2

)

.

Moreover, the maps f, h are continuous and weakly continuous.

Lemma 3.1 . The maps f, h : l2 → l2 are continuous.

Proof . Let un → u0 in l2. It is clear that for any ǫ > 0 there exist k0 (ǫ) such that

∑

|i|>k0

∣

∣u0
i

∣

∣

2
≤ ǫ,

∑

|i|>k0

|c4,i|
2 ≤ ǫ,

∑

|i|>k0

|un
i |

2 ≤ ǫ, ∀n.

Also, by (H3) we can choose n0 (ǫ, k0) such that if n ≥ n0, then

∑

|i|≤k0

∣

∣fi (u
n
i ) − fi

(

u0
i

)∣

∣

2
≤ ǫ.

Therefore, using (H2) we obtain

∥

∥f (un) − f
(

u0
)∥

∥

2
=
∑

|i|≤k0

∣

∣fi (u
n
i ) − fi

(

u0
i

)∣

∣

2
+
∑

|i|>k0

∣

∣fi (u
n
i ) − fi

(

u0
i

)∣

∣

2

≤ ǫ + 4
∑

|i|>k0

(

|c4,i|
2 + η2 |un

i |
2(p−1)

)

+ 4
∑

|i|>k0

(

|c4,i|
2 + η2

∣

∣u0
i

∣

∣

2(p−1)
)

≤ 9ǫ + 4C0η
2





∑

|i|>k0

|un
i |

2 +
∑

|i|>k0

∣

∣u0
i

∣

∣

2



 ≤ C1ǫ,

where C0 = supi∈Z,n∈N∪{0} |u
n
i |

2p−4. Thus, f (un) → f
(

u0
)

in l2, which implies the
continuity.

For h the proof is similar. �

Lemma 3.2 . The maps f, h : l2 → l2 are weakly continuous.

Proof . We note that as the space l2 endowed with the weak topology satisfies the
first axiom of countability, it is not difficult to show that f is weakly continuous if
and only if un → u0 weakly in l2 implies f (un) → f (u0).

Take an arbitrary ξ ∈ l2. Then for any ǫ > 0 there exists K1 (ǫ, ξ) such that
∑

|i|≥K1
|ξi|

2 ≤ ǫ. Due to (4), if ‖u‖l2 ≤ R, then there exists M = M (R) such that
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‖f (u)‖l2 ≤ M . Thus if un → u weakly in l2 we have

|(f (un) − f (u) , ξ)| ≤
∑

|i|≤K1

|(fi (u
n
i ) − fi (ui)) ξi|

+ (‖f (u)‖l2 + ‖f (un)‖l2)





∑

|i|≥K1

|ξi|
2





1

2

≤ ‖ξ‖l2





∑

|i|≤K1

|(fi (u
n
i ) − fi (ui))|

2





1

2

+ 2Mǫ,

for some M . For any ε > 0 we choose ǫ =
ε

4M
. Since un

i → ui for

all i and fi are continuous, we obtain the existence of N1 (ε, ξ) such that
(

∑

|i|≤K1
|(fi (u

n
i ) − fi (ui))|

2
)

1

2

≤
ε

2 ‖ξ‖l2
(for ξ 6= 0). Hence

|(f (un) − f (u) , ξ)| ≤ ε if n ≥ N1.

For h the proof is similar. �

We rewrite (3) in the abstract form











du

dt
= −νAu − h (u) − f (u) +

dW

dt
,

u (0) = u0 ∈ l2.

(5)

We will transform equation (5) into a random one by using a suitable change of
variable.

First let us describe the probability space associated to the Wiener processes wi.
Let W (t, ω) (W (t) for short when no confusion is possible) be the white noise with
values in the space l2 given by

W (t, ω) = (aiwi (t))i∈Z
∈ l2

with the probability space (Ω,F , P), where

Ω = {ω ∈ C
(

R, l2
)

: ω (0) = 0} = C0

(

R, l2
)

.

F is the Borel σ-algebra on Ω with respect to the compact open topology and P is
the Wiener measure on F . If we define the shift operator

θtω (·) = ω (· + t) − ω (t) , for t ∈ R,

then we obtain the metric dynamical system
(

Ω,F , P, (θt)t∈R

)

.
We consider the filtration on Ω given by

F t
s = σ{W (τ2) − W (τ1) : s ≤ τ1 ≤ τ2 ≤ t},
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where σ{W (τ2) − W (τ1) : s ≤ τ1 ≤ τ2 ≤ t} is the smallest σ-algebra generated
by W (τ2) − W (τ1) for all τ1, τ2 satisfying s ≤ τ1 ≤ τ2 ≤ t. We have the property
θ−1
r F t

s = F t+r
s+r .

The completion of (Ω,F , P) will be denoted by
(

Ω,F , P
)

.
We introduce now an Ornstein-Uhlenbeck process in l2 on the metric dynamical

system
(

Ω,F , P, (θt)t∈R

)

generated by the Wiener process. Namely, put

z (θtω) := −α

∫ 0

−∞
eαsθtω (s) ds,

where α > 0 is taken from condition (H1). This integral makes sense for every
path ω having sub-exponential growth. It is well known that z solves the stochastic
differential equation

dz + αz = dW (t) ,

as t → z (θtω) is a θt invariant stationary solution known as the Ornstein-Uhlenbeck
process. This process is adapted with respect to F t

−∞, where

F t
−∞ =

∨

s≤t

F t
s.

Moreover, there exists a θt-invariant set Ω′ ⊂ Ω of full measure such that the
mapping s → z (θsω) is continuous for each ω ∈ Ω′ (so that the process has
continuous trajectories) and

lim
t→+∞

‖W (t)‖

t
= 0 for all ω ∈ Ω′. (6)

Also, z (θtω) has sub-exponential growth, which means that

lim
t→±∞

log+ ‖z (θtω)‖

t
= 0, for ω ∈ Ω′. (7)

See [3] for more details.

Remark 2. In the sequel, all the statements are understood to hold on a θt-
invariant set Ω′ ⊂ Ω of full measure, although we shall write for simplicity that
they are true for any ω ∈ Ω. That is, we keep the notation Ω for the set Ω′.

We now perform the change of variable v (t) = u (t) − z (θtω), and problem (5)
turns (formally) into











dv

dt
= −νAv − h (v + z (θtω)) − f (v + z (θtω)) + αz (θtω) − νAz (θtω) ,

v (0) = v0 = u0 − z (ω) .

(8)

Let gω : R
+ × l2 → l2 be the Nemytski operator given by

gω
i (t, vi) = hi (vi + zi (θtω)) + fi (vi + zi (θtω)) − αzi (θtω) + ν (Az (θtω))i , i ∈ Z.
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From (H1) − (H2) we obtain that, for every x ∈ R,

gω
i (t, x) x = hi (x + zi (θtω))x + fi (x + zi (θtω))x − αzi (θtω) x + ν (Az (θtω))i x

≥ α |x + zi (θtω)|2 − hi (x + zi (θtω)) zi (θtω) − c1,i

+ γ |x + zi (θtω)|p − fi (x + zi (θtω)) zi (θtω) − c3,i

− αzi (θtω)x + ν (Az (θtω))i x

≥ α |x + zi (θtω)|2 − β (|x + zi (θtω)| + c2,i) |zi (θtω)| − c1,i

+ γ |x + zi (θtω)|p − η
(

|x + zi (θtω)|p−1 + c4,i

)

zi (θtω) − c3,i

− αzi (θtω)x + ν (Az (θtω))i x.

Using Young’s inequality and

α |x + zi (θtω)|2 ≥
2α

3
|x|2 − 2α |zi (θtω)|2 ,

we have

gω
i (t, x) x ≥

α

2
|x|2 − K

(

|zi (θtω)|2 + |zi (θtω)|p + |(Az (θtω))i|
2
)

(9)

− c1,i − c3,i − c2
2,i − c2

4,i.

On the other hand, and thanks again to (H1) − (H2), we obtain

|gω
i (t, x)| ≤ β |x| + η |x|p−1 + c2,i + c4,i + α |zi (θtω)| + ν |(Az (θtω))i| . (10)

Since s → z (θsω) is continuous for every ω ∈ Ω′, it follows from (9)-(10) and the
definition of the operator A, that the following properties hold:

(G1) For all x ∈ R,

gω
i (x) x ≥ λ |x|2 − d1,i (t) ,

where λ > 0, d1 ∈ C
(

[0, T ], l1
)

for any T > 0.
(G2) For all x ∈ R,

|gω
i (t, x)| ≤ C (|x|) |x| + d2,i (t) ,

where d2 ∈ C
(

[0, T ], l2
)

for any T > 0, d2,i ≥ 0, and C (·) ≥ 0 is a continuous
increasing function.

(G3) gω
i : [0, T ] × R → R are continuous.

Remark 3. Of course, the elements d1, d2 depend on ω but we omit this for sim-
plicity of notation.
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Let Fω : R
+ × l2 → l2 be defined by F (v) = −νAv − gω (t, v). Then (8) is

rewritten as











dv

dt
= Fω (t, v) ,

v (0) = v0.

(11)

By (4) and ‖Av‖l2 ≤ 4 ‖v‖l2 we have

‖Fω (t, v)‖l2 ≤ R1

(

1 + ‖v‖l2 + ‖v + z (θtω)‖l2 + ‖v + z (θtω)‖p−1
l2 + ‖z (θtω)‖l2

)

≤ R2

(

1 + ‖v‖l2 + ‖v‖p−1
l2 + ‖z (θtω)‖l2 + ‖z (θtω)‖p−1

l2

)

. (12)

From the continuity of the maps h, f : l2 → l2 and t → z (θtω) we obtain that
the map (t, v) → Fω (t, v) is continuous for any ω ∈ Ω.

From the weak continuity of the maps h, f : l2 → l2, and the continuity of
t → z (θtω), we obtain that the map (t, v) → Fω (t, v) is weakly continuous for any
ω ∈ Ω. Hence, by [16, Theorem 2 and Remark 2], for any v0 ∈ l2 there exists at
least one solution v (·) = v

(

·, ω, v0
)

∈ C1
(

[0, α], l2
)

defined on some interval [0, α].
The same result can be obtained arguing as in [17]. Also, by standard arguments
it can be proved that every solution is defined on the whole interval [0, T ], and,
moreover, it can be extended to a global one in [0,∞) (see [17]).

Now, we say that u (·) = u
(

·, ω, u0
)

is a solution of (5) with initial data u0

if u (t) = v (t) + z (θtω), where v (·) is a solution of (11) with initial data v0 =
u0 − z (ω). Hence, our intention is to study the asymptotic behaviour of such
generalized solutions of (5).

4. Existence of the global attractor

Let S
(

v0, ω
)

be the set of all solutions to (11) corresponding to v0 ∈ l2 and ω ∈ Ω.
We define the multi-valued map G : R

+ × Ω × l2 → P (l2) as follows

G(t, ω, u0) = {v(t) + z (θtω) : v(·) ∈ S(u0 − z (ω) , ω)}.

In the sequel let us consider the system D given by the multi–valued mapping
D in l2 with D(ω) ⊂ Bl2(0, ̺(ω)), the closed ball with center zero and radius ̺,
which is supposed to have a sub-exponential growth, i.e.

lim
t→±∞

log+ ̺(θtω)

t
= 0 for ω ∈ Ω.

D is called the family of sub-exponentially growing multi–functions in C(l2). Of
course, the property on D given in Definition 2.3 holds.

The following lemma can be proved in a standard way (see e.g. [9, Proposition
4] or [6, Lemma 5.1]).

Lemma 4.1 . The map G satisfies G(0, ω, ·) = idX and G(t + τ, ω, x) =
G(t, θτω,G(τ, ω, x)) for all t, τ ∈ R

+, x ∈ l2, ω ∈ Ω.
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4.1 The non-autonomous attractor

In this section we prove the existence of a strict global pullback D-attractor.
We first show the existence of a pullback D-absorbing set K ∈ D.

Lemma 4.2 . The set defined by

K (ω) = {y ∈ l2 : y = v + z (ω) with ‖v‖ ≤ R (ω)}, (13)

where R2 (ω) = C
∫ 0
−∞ eατ

(

‖θτz (ω)‖2
l2 + ‖θτz (ω)‖p

l2 + 1
)

dτ , for some C > 0, is

sub-exponentially growing and pullback D-absorbing for G.

Proof . Taking the scalar product of (8) with v, and using (9) and l2 ⊂ lp we have

d

dt
‖v‖2

l2 + 2ν (Av, v) + α ‖v‖2
l2 ≤ C1

(

‖z (θtω)‖2
l2 + ‖z (θtω)‖p

lp + 1
)

≤ C2

(

‖z (θtω)‖2
l2 + ‖z (θtω)‖p

l2 + 1
)

.

By Gronwall’s lemma

∥

∥v
(

t, ω, v0
)∥

∥

2

l2
≤ e−αt

∥

∥v0
∥

∥

2

l2
+ C2

∫ t

0
e−α(t−s)

(

‖z (θsω)‖2
l2 + ‖z (θsω)‖p

l2 + 1
)

ds.

(14)
Put

R (ω) =

(

2C2

∫ 0

−∞
eατ

(

‖θτz (ω)‖2
l2 + ‖θτz (ω)‖p

l2 + 1
)

dτ

)

1

2

.

Since z (θtω) has sub-exponential growth, this random variable is well-defined
and sub-exponentially growing (this can be shown by arguing as in [3, p.13]
or [8, Lemma 4.6]). Also, the ball K (ω) is pullback D-absorbing for G. In-
deed, for every y ∈ G (t, θ−tω,B (θ−tω)) there exists a solution v

(

t, θ−tω, v0
)

of (8), with v0 = v0 (θ−tω) = u0 (θ−tω) − z (θ−tω), u0 ∈ B (θ−tω), such that
y = v

(

t, θ−tω, v0 (θ−tω)
)

+ z (ω). We note that z has sub-exponential growth and
that B ∈ D, so that

lim
t→+∞

∥

∥u0 (θ−tω) − z (θ−tω)
∥

∥

2

l2
e−αt = 0 for all ω ∈ Ω.

Thus (14) implies the existence of T (ω,B) such that

∥

∥v
(

t, θ−tω, v0 (θ−tω)
)∥

∥

l2
≤ R (ω) ,

and then y ∈ K (ω), if t ≥ T (ω,B) . �

Further we will prove that G is pullback D-asymptotically compact with respect
to K (ω) .

Define a smooth function θ satisfying

θ(s) =







0, 0 ≤ s ≤ 1,
0 ≤ θ(s) ≤ 1, 1 ≤ s ≤ 2,
1, s ≥ 2.
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Obviously |θ′(s)| ≤ C, for all s ∈ R
+. Put ρN,i := θ

(

|i|
N

)

.

First, in the following lemma we establish suitable estimates of the tails of the
solutions.

Lemma 4.3 . Let K (ω) be the absorbing set given in (13). Then, for every ǫ > 0,
there exist T (ǫ, ω) > 0 and N (ǫ, ω) > 0 such that any solution u (·) of (3), given
by u (t) = v (t) + z (ω), with v (·) ∈ S

(

u0 (θ−tω) − z (θ−tω) , θ−tω
)

and u0 (θ−tω) ∈
K (θ−tω) , satisfies

∑

|i|≥2N(ǫ,ω)

|ui (t, θ−tω, u0 (θ−tω))|2 ≤ ǫ, for all t ≥ T (ǫ, ω) .

Proof . Consider the random equation (8) with v (t) = u (t)−z (θtω) and (xi)i∈Z
:=

ρN,ivi. Taking the inner product of (8) with (xi)i∈Z
in l2 we have that

1

2

d

dt

∑

i∈Z

ρN,i |vi|
2 = −ν

∑

i∈Z

(Bvi, Bxi) −
∑

i∈Z

ρN,ihi (vi + zi (θtω)) vi

−
∑

i∈Z

ρN,ifi (vi + zi (θtω)) vi + α
∑

i∈Z

ρN,izi (θtω) vi

−ν
∑

i∈Z

ρN,i (Az (θtω))i vi. (15)

Now, we estimate the terms of the right-hand side of (15) in several steps.

Step 1 First, in a similar way as in Lemma 4.1 in [3] we obtain

∑

i∈Z

(Bvi, Bxi) ≥
∑

i∈Z

ρN,i |vi+1 − vi|
2 −

D

N
‖v‖2

l2 , (16)

where D = 2C and C satisfies |θ′ (s)| ≤ C.
Step 2 Second, we have

−
∑

i∈Z

ρN,ihi (vi + zi (θtω)) vi = −
∑

i∈Z

ρN,i [hi (vi + zi) (vi + zi) − hi (vi + zi) zi]

and using conditions in (H1) we obtain that

−
∑

i∈Z

ρN,ihi (vi + zi (θtω)) vi

≤
∑

i∈Z

ρN,i

(

c1,i − α |vi + zi|
2
)

+
∑

i∈Z

ρN,i (β |vi + zi| |zi| + c2,i |zi|) .
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From here, using Hölder’s inequality,

−
∑

i∈Z

ρN,ihi (vi + zi (θtω)) vi

≤
∑

i∈Z

ρN,i |c1,i| −
α

2

∑

i∈Z

ρN,i |vi|
2 + α

∑

i∈Z

ρN,i |zi|
2

+
1

2

∑

i∈Z

ρN,i |c2,i|
2 +

1

2

∑

i∈Z

ρN,i |zi|
2 +

α

4

∑

i∈Z

ρN,i

(

|vi|
2 + |zi|

2
)

+
2β2

α

∑

i∈Z

ρN,i |zi|
2 ,

where we have used the inequality |u|2 = |u + s − s|2 ≤ 2
(

|u + s|2 + |s|2
)

, and

whence |u + s|2 ≥ 1
2 |u|

2 − |s|2. Then,

−
∑

i∈Z

ρN,ihi (vi + zi (θtω)) vi ≤
∑

i∈Z

ρN,i

(

|c1,i| + |c2,i|
2
)

−
α

4

∑

i∈Z

ρN,i |vi|
2 (17)

+

(

α +
1

2
+

α

4
+

2β2

α

)

∑

i∈Z

ρN,i |zi|
2 .

Step 3 In this third step, we estimate the term concerning f . Using Young’s inequality
and the condition (H2) we obtain that

−
∑

i∈Z

ρN,ifi (vi + zi (θtω)) vi

= −
∑

i∈Z

ρN,ifi (vi + zi) (vi + zi) +
∑

i∈Z

ρN,ifi (vi + zi) zi

≤
∑

i∈Z

ρN,ic3,i − γ
∑

i∈Z

ρN,i |vi + zi|
p +

∑

i∈Z

ρN,i

[

η |vi + zi|
p−1 + c4,i

]

|zi|

≤
∑

i∈Z

ρN,ic3,i −
γ

2

∑

i∈Z

ρN,i |vi + zi|
p + K1 (p, γ, η)

∑

i∈Z

ρN,i |zi|
p

+
∑

i∈Z

ρN,i |zi| c4,i

≤
∑

i∈Z

ρN,i

(

c3,i + c2
4,i

)

−
γ

2Cp

∑

i∈Z

ρN,i |vi|
p + K2

∑

i∈Z

ρN,i |zi|
p

+
1

2

∑

i∈Z

ρN,i |zi|
2 , (18)

where K2 is a constant depending only on γ, p and η.
Step 4 As for the fourth term,

α
∑

i∈Z

ρN,izi (θtω) vi ≤
α

8

∑

i∈Z

ρN,i |vi|
2 + 2α

∑

i∈Z

ρN,i |zi|
2 . (19)
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Step 5 Finally

− ν
∑

i∈Z

ρN,i (Az (θtω))i vi

= −ν
∑

i∈Z

BziB (ρN,ivi)

= −ν
∑

i∈Z

(zi+1 − zi) (ρN,i+1vi+1 − ρN,ivi)

= −ν
∑

i∈Z

ρN,i+1vi+1 (zi+1 − zi) + ν
∑

i∈Z

ρN,ivi (zi+1 − zi)

≤
α

16

∑

i∈Z

ρN,i |vi|
2 + K3

∑

|i|≥N−1

|zi|
2 . (20)

Then, from (16)-(20), and simplifying, we have that

d

dt

∑

i∈Z

ρN,i |vi|
2 +

α

8

∑

i∈Z

ρN,i |vi|
2

≤
2Dν

N
‖v‖2

l2 + 2
∑

i∈Z

ρN,i

(

|c1,i| + |c3,i| + |c2,i|
2 + |c4,i|

2
)

(21)

+ K4

∑

|i|≥N−1

|zi|
2 + K5

∑

|i|≥N

|zi|
p ,

where D, K4 and K5 only depend on the parameters of the problem.
We take N0 (ǫ) verifying that

16

α

∑

i∈Z

ρN0,i

(

|c1,i| + |c3,i| + |c2,i|
2 + |c4,i|

2
)

≤
ǫ

4
.

Thanks to Gronwall’s lemma,

∑

i∈Z

ρN,i |vi (t, ω, v0 (ω))|2

≤ e−
α

8
t
∑

i∈Z

ρN,i |v0,i (ω)|2 (22)

+

∫ t

0
e−

α

8
(t−s) 2νD

N
‖v (s, ω, v0 (θ))‖2

l2 ds +
ǫ

4

+ K6

∫ t

0
e−

α

8
(t−s)





∑

|i|≥N−1

|zi (θsω)|2 +
∑

|i|≥N−1

|zi (θsω)|p



 ds.

Now, after replacing ω by θ−tω we can estimate this expression in several steps.

Step 1 For the first term, using the definition of the absorbing set in Lemma 4.2 and
u0 (θ−tω) ∈ K (θ−tω), we can find T1 (ǫ, ω,K) > 0 such that

e−
α

8
t
∑

i∈Z

ρN,i |v0,i (θ−tω)|2 ≤ e−
α

8
tR2 (θ−tω) ≤

ǫ

4
,
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for t ≥ T1.
Step 2 For the second term, using (14) we have

1

N

∫ t

0
e−

α

8
(t−s) ‖v (s, ω, v0 (θ−tω))‖2

l2 ds

≤
1

N

∫ t

0
e−

α

8
(t−s)e−αs

∥

∥v0
∥

∥

2

l2
ds

+ C2
1

N

∫ t

0

∫ s

0
e−

α

8
(t−s)e−α(s−r)

(

‖z (θr−tω)‖2
l2 + ‖z (θr−tω)‖p

l2 + 1
)

drds.

Then, we estimate the two last integrals. On the one hand,

1

N

∫ t

0
e−

α

8
(t−s)e−αs

∥

∥v0 (θ−tω)
∥

∥

2

l2
ds ≤

t

N

∥

∥v0 (θ−tω)
∥

∥

2

l2
e−

α

8
t

and, on the other hand, using that ‖z (ω)‖ is sub-exponentially growing, and
z (θtω) is continuous in t, we have that

C2
1

N

∫ t

0

∫ s

0
e−

α

8
(t−s)e−α(s−r)

(

‖z (θr−tω)‖2
l2 + ‖z (θr−tω)‖p

l2 + 1
)

drds

≤ C2
1

N

∫ t

0

∫ s

0
e−

α

8
(t−r)

(

e
α

16
(t−r)r (ω) + 1

)

drds

≤ C2
82

α2

1

N
(1 + 4r (ω)) ,

where r (ω) has sub-exponential growth [2, p. 189]. Then, we can find N1 (ǫ, ω)
large enough such that

1

N

∫ t

0
e−

α

8
(t−s) ‖v (s, ω, v0 (θ−tω))‖2

l2 ds ≤
ǫ

8Dν
, if N ≥ N1, for all t ≥ 0.

Step 3 Finally, we estimate the last term in expression (22). For this, we consider an
arbitrary T ∗ > 0, to be determined later on, and we take t > max {T1, T

∗}. Then

K6

∫ t

0
e−

α

8
(t−s)





∑

|i|≥N−1

|zi (θs−tω)|2 +
∑

|i|≥N−1

|zi (θs−tω)|p



 ds

= K6

∫ 0

−t

e
α

8
s





∑

|i|≥N−1

|zi (θsω)|2 +
∑

|i|≥N−1

|zi (θsω)|p



 ds

and we split the integration domain in the last integral, (−t, 0) , into two others,
(−t,−T ∗) and (−T ∗, 0). Then, we can estimate these new integrals.

Again, using that ‖z (ω)‖l2 has sub-exponential growth and z (θtω) is contin-
uous in t, we have that

K6

∫ −T ∗

−t

e
α

8
s
[

‖z (θsω)‖2
l2 + ‖zi (θsω)‖p

lp

]

ds ≤ K7r (ω)
1

α
e−

α

16
T ∗

.
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Then, if we take T ∗ ≥ 16
α

log
(

8r(ω)K7

αǫ

)

we have that

K6

∫ −T ∗

−t

e
α

8
s
[

‖z (θsω)‖2
l2 + ‖zi (θsω)‖p

lp

]

ds ≤
ǫ

8
.

As for the other integral we use Lebegue’s theorem to find N2 (ǫ, ω, T ∗) such
that, if N ≥ N2,

K6

∫ 0

−T∗
e

α

8
s





∑

|i|≥N−1

|zi (θsω)|2 +
∑

|i|≥N−1

|zi (θsω)|p



 ds ≤
ǫ

8
.

Then, if we take N̂ > max{N0, N1, N2}, N ≥ N̂ and T (ǫ, ω) > max{T1, T
∗}, we

deduce from (22) that

∑

|i|>2N

|vi (t, θ−tω, v0 (θ−tω))|2 ≤
∑

i∈Z

ρN,i |vi (t, θ−tω, v0 (θ−tω))|2 ≤ ǫ, if t ≥ T .

This implies that

∑

|i|≥2N(ǫ,ω)

|ui (t, θ−tω, u0 (θ−tω))|2

≤ 2
∑

|i|≥2N(ǫ,ω)

|vi (t, θ−tω, v0 (θ−tω))|2 + 2
∑

|i|≥2N(ǫ,ω)

|zi (ω)|2

≤ 4ǫ,

for some N ≥ N̂ , if t ≥ T . �

Lemma 4.4 . G is pullback D-asymptotically compact with respect to K ∈ D.

Proof . Let ω ∈ Ω. Consider {tn}n∈N with limn→∞ tn = +∞ and ξn ∈
G (tn, θ−tn

ω,K (θ−tn
ω)). We can find xn ∈ K (θ−tn

ω) such that

ξn ∈ G (tn, θ−tn
ω, xn) .

We will show that {ξn}n∈N
possesses a convergent subsequence.

Let T (ω,K) be the time such that G (t, θ−tω,K (θ−tω)) ⊂ K (ω) if t ≥ T . There
exists n0 verifying that tn ≥ T (ω), for n ≥ n0. Then {ξn} ⊂ K (ω), so it is weak
convergent, that is, there exists ξ ∈ l2 and a subsequence such that

ξn → ξ weakly in l2. (23)

We shall check that this convergence is, in fact, strong.
Let ǫ > 0 be arbitrary. Using Lemma 4.3 we obtain the existence of n1 (ǫ, ω),

M0 (ǫ, ω) such that

∑

|i|≥M0

|ξn
i |

2 ≤ ǫ, if n ≥ n1.
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Also, as ξ ∈ l2, one can find M1 (ǫ) ≥ M0 such that

∑

|i|≥M

|ξi|
2 ≤ ǫ, if M ≥ M1.

We take M (ǫ, ω) = max {M0,M1}. The weak convergence (23) ensures that for
each |i| ≤ M,

ξn
i → ξi as n → ∞.

From this convergence, there exists n2 (M, ǫ, ω) ≥ n1 such that

∑

|i|≤M

|ξn
i − ξi|

2 ≤ ǫ, if n ≥ n2.

Then, using these estimates for n ≥ n2 we have that

∑

i∈Z

|ξn
i − ξi|

2 ≤
∑

|i|≤M

|ξn
i − ξi|

2 +
∑

|i|>M

|ξn
i − ξi|

2

≤ ǫ + 2
∑

|i|≥M

|ξi|
2 + 2

∑

|i|≥M

|ξn
i |

2 ≤ 5ǫ.

The proof is therefore finished. �

Let us now prove other properties of the cocycle G.

Lemma 4.5 . Let v0n be a sequence converging to v0 in l2 and fix T > 0. Then,
for any ω ∈ Ω and ǫ > 0, there exists K (ǫ, ω) such that for any solution vn (·) ∈
S
(

v0n, ω
)

it follows

∑

|i|≥2K(ǫ,ω)

|vn
i (t)|2 ≤ ǫ, ∀ t ∈ [0, T ] . (24)

Moreover, there exists v (·) ∈ S
(

v0, ω
)

and a subsequence vnk satisfying

vnk → v in C
(

[0, T ] , l2
)

. (25)

Proof . For any ǫ > 0 there exist K1 (ǫ), N1 (ǫ) such that

∑

i∈Z

∣

∣v0n
i − v0

i

∣

∣

2
<

ǫ

4
, ∀n ≥ N1,

∑

i∈Z

ρK,i

∣

∣v0
i

∣

∣

2
<

ǫ

4
, ∀K ≥ K1.

Hence,

∑

i∈Z

ρK,i

∣

∣v0n
i

∣

∣

2
≤ 2

(

∑

i∈Z

ρK,i

∣

∣v0n
i − v0

i

∣

∣

2
+
∑

i∈Z

ρK,i

∣

∣v0
i

∣

∣

2

)

< ǫ, (26)
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if n ≥ N1 and K ≥ K1. Obviously, modifying K1 appropriately, the result holds
true for all n. Also, in view of (14), there exists R0 (ω) > 0 such that

‖vn (t)‖l2 ≤ R0 (ω) , ∀t ∈ [0, T ] ,∀n. (27)

Using inequality (21) and the continuity of t → z (θtω), one can find K2 (ǫ, ω) such
that

d

dt

∑

i∈Z

ρK,i |v
n
i |

2 ≤ ǫ, if K ≥ K2.

Integrating over (0, t) and using (26) we obtain

∑

|i|≥2K(ǫ)

|vn
i (t)|2 ≤

∑

i∈Z

ρK,i |v
n
i (t)|2 ≤ ǫ + Tǫ, (28)

if K ≥ max {K1,K2}, so that (24) holds.
Fix now t ∈ [0, T ]. In view of (27), passing to a subsequence, we can state that

vn (t) → w weakly in l2. Then, for any σ > 0, there exist N2 (σ) and K3 (σ) such
that

‖vn (t) − w‖2
l2 ≤

∑

|i|≤K3(σ)

|vn
i (t) − wi|

2 +
∑

|i|>K3(σ)

|vn
i (t) − wi|

2

≤
∑

|i|≤K3(σ)

|vn
i (t) − wi|

2 + 2
∑

|i|>K3(σ)

|vn
i (t)|2 + 2

∑

|i|>K3(σ)

|wi (t)|2

< σ,

if n ≥ N2. Hence, vn (t) → w strongly in l2. It follows that the sequence vn (t) is
pre-compact for any t. By (12) and (27),

‖Fω (t, vn (t))‖2
l2 ≤ C (ω) , ∀n ∈ N, ∀t ∈ [0, T ],

and from the equality
d

dt
vn
i = Fω

i (vn
i ) we obtain that

∥

∥

∥

∥

d

dt
vn (t)

∥

∥

∥

∥

l2
≤ C1 (ω) ,

proving that the sequence vn is equi-continuous. The Ascoli-Arzelà theorem implies
the existence of a subsequence vnk converging in C

(

[0, T ] , l2
)

to some function v (·).
It is then easy to show that v is a solution of (11). Also, it is clear that v (0) = v0.
�

Lemma 4.5 implies several consequences.

Corollary 4.6 . For any ω ∈ Ω and t ≥ 0 the graph of the map u0 → G
(

t, ω, u0
)

is closed. Hence, G has closed values.

Proof . For ξn ∈ G
(

t, ω, u0
n

)

there are vn (·) ∈ S
(

u0
n − z (ω) , ω

)

such that
ξn = vn (t) + z (θtω). Assume that ξn → ξ and u0

n → u0. Applying Lemma
4.5 we obtain, passing to a subsequence, that vn → v in C

(

[0, t] , l2
)

, where

v (·) ∈ S
(

u0 − z (ω) , ω
)

. Therefore, ξ = v (t) + z (θtω) ∈ G
(

t, ω, u0
)

. �
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Corollary 4.7 . G is a strict MNDS.

Proof . It follows from Lemma 4.1 and Corollary 4.6. �

Corollary 4.8 . For any ω ∈ Ω and t ≥ 0, the map G (t, ω, ·) has compact values.

Proof . Let ξn ∈ G
(

t, ω, u0
)

be an arbitrary sequence. Take vn (·) ∈

S
(

u0 − z (ω) , ω
)

such that ξn = vn (t) + z (θtω). By Lemma 4.5 there exists

v (·) ∈ S
(

u0 − z (ω) , ω
)

satisfying vnk
→ v in C

(

[0, t] , l2
)

for some subsequence.

Hence, ξnk = vnk
(t) + z (θtω) → v (t) + z (θtω) ∈ G

(

t, ω, u0
)

in l2. �

Proposition 4.9 . For any ω ∈ Ω and t ≥ 0, the map u0 → G
(

t, ω, u0
)

is upper
semi-continuous.

Proof . Suppose the opposite. Then there exist u0, t > 0, a neighborhood O of
G
(

t, ω, u0
)

and sequences u0
n → u0, ξn ∈ G

(

t, ω, u0
n

)

such that ξn 6∈ O. Let

ξn = vn (t) + z (θtω), where vn (·) ∈ S
(

u0
n − z (ω) , ω

)

. By Lemma 4.5 we obtain

that, up to a subsequence, vn → v in C
(

[0, t] , l2
)

, where v (·) ∈ S
(

u0 − z (ω) , ω
)

.

Thus, ξn → v (t) + z (θtω) ∈ G
(

t, ω, u0
)

in l2, which is a contradiction. �

Finally, we have the following result.

Theorem 4.10 . The MNDS G possesses a unique D-pullback global strictly in-
variant attractor A (ω), defined by (2), where K (ω) is the set given in (13).

Proof . This theorem follows from Theorem 2.5 using Corollary 4.7, Lemmas 4.2,
4.4 and Proposition 4.9. �

4.2 The random attractor

In order to obtain that A (ω) is a random pullback D-attractor we need to check
that it is a random set. And, to prove the measurability of the global attractor
A (ω) we need to obtain some properties concerning the map ω → G (t, ω,K (ω)),
where K (ω) ∈ D is the pullback D-absorbing set given in Lemma 4.2. Also, we
have to prove that G is an MRDS.

For N ∈ N, we consider the sets

ΩN := {ω ∈ Ω : ‖ω(t)‖l2 ≤ Neζ|t|, for t ∈ R}, (29)

where 0 < pζ < α. Then it is not difficult to check that Ω = ∪NΩN and ΩN ∈ F .
It is shown in [7] that ΩN is a polish space for any N .

We need the continuity of the map R× ΩN ∋ (t, ω) → z (θtω).

Lemma 4.11 . For any N ∈ N there exists M (N) such that

‖z (θtω)‖l2 ≤ Meζ|t|,

for all ω ∈ ΩN .
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Proof . We have

‖z (θtω)‖l2 ≤ α

∫ 0

−∞
eαs ‖θtω (s)‖ ds ≤ α

∫ 0

−∞
eαs ‖ω (t + s)‖ ds + ‖ω (t)‖

≤ αN

∫ 0

−∞
eαseζ|t+s|ds + Neζ|t| ≤ Neζ|t|

(

1 + α

∫ 0

−∞
e(α−ζ)s

)

≤ N

(

1 +
α

α − ζ

)

eζ|t|.

�

Lemma 4.12 . The map R× ΩN ∋ (t, ω) → z (θtω) is continuous.

Proof . Let tn → t0, ωn → ω0. Then

‖z (θtn
ωn) − z (θt0ω0)‖l2 =

∥

∥

∥

∥

α

∫ 0

−∞
eαsθtn

ωn (s) ds − α

∫ 0

−∞
eαsθt0ω0 (s) ds

∥

∥

∥

∥

l2

≤ α

∫ 0

−∞
eαs ‖θtn

ωn (s) − θt0ω0 (s)‖l2 ds

≤ α

∫ 0

−∞
eαs ‖ωn (s + tn) − ω0 (s + t0)‖l2 ds + ‖ωn (tn) − ω0 (t0)‖l2 .

Due to the definition of ΩN we have ‖ωn (τ) − ω0 (τ)‖l2 ≤ ‖ωn (τ)‖l2 +

‖ω0 (τ)‖l2 ≤ N
(

eζ|τ | + eζ|τ |
)

. Thus, for any ε > 0, there exists T (ε) > t0 (and
then, without loss of generality we can assume that T (ε) > tn also) such that

α

∫ −T

−∞
eαs ‖ωn (s + tn) − ω0 (s + t0)‖l2 ds ≤ 2αNeζ|t|

∫ −T

−∞
e(α−ζ)sds <

ε

3
,

where |t0| <
∣

∣t
∣

∣ (and thus, again, we can assume |tn| <
∣

∣t
∣

∣). Thus, if we take
n0 (ε, T (ε)) such that ‖ωn (s + tn) − ω0 (s + t0)‖l2 < ε/3, for any s ∈ [−T, 0] and
n ≥ n0, then we get

‖z (θtn
ωn) − z (θt0ω0)‖l2 < ε, if n ≥ n0.

�

Let FΩN
be the trace σ-algebra of F with respect to ΩN and let BΩN

(a, r), a ∈
ΩN , r > 0 be a ball in ΩN . These balls can be generated by BΩ(a, r) ∩ ΩN where
BΩ(a, r) is a ball in Ω. The same is true for all open sets in ΩN . Hence FΩN

is just
the Borel–σ–algebra of ΩN . Moreover, since ΩN ∈ F we have FΩN

⊂ F .
Let us define

PΩN
(A) := P(A), for A ∈ FΩN

,
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that is, PΩN
is just the restriction of P to FΩN

. Also, let F̄ΩN
be the completion of

FΩN
with respect to PΩN

.
The following facts are proved in [7]:

(1) PΩN
is a finite measure on (ΩN ,FΩN

).
(2) If A ∈ F̄ΩN

, then A ∈ F̄ .

Now we establish the continuity of the random radius R (ω) given in Lemma 4.2
over ΩN .

Lemma 4.13 . The map ω → R (ω) is continuous on ΩN .

Proof . Let ωn → ω0 in ΩN . By Lemma 4.12 we have

eατ
(

‖θτz (ωn)‖2
l2 + ‖θτz (ωn)‖p

l2 + 1
)

→ eατ
(

‖θτz (ω0)‖
2
l2 + ‖θτz (ω0)‖

p
l2 + 1

)

,

as n → ∞. On the other hand, by Lemma 4.11 we obtain the majorant

eατ
(

‖θτz (ωn)‖2
l2 + ‖θτz (ωn)‖p

l2 + 1
)

≤ eατ + M2e(α−2ζ)τ + Mpe(α−pζ)τ ,

which is integrable due to the restriction pζ < α.
The result follows from Lebesgue’s theorem. �

Concerning ΩN we can obtain stronger properties for the cocycle G.

Lemma 4.14 . The map R
+ × ΩN × l2 ∋

(

t, ω, u0
)

→ G
(

t, ω, u0
)

is upper semi-
continuous.

Proof . If this is not true, then there exist u0, t0 > 0, ω0 ∈ ΩN , a neighborhood
O of G

(

t0, ω0, u
0
)

and sequences tn → t0, ωn → ω0 in ΩN , u0
n → u0 in l2, ξn ∈

G
(

tn, ωn, u0
n

)

such that ξn 6∈ O. We will prove that, up to a subsequence, ξn →

ξ ∈ G
(

t0, ω0, u
0
)

, which is a contradiction.

Let vn (·) ∈ S
(

v0n, ωn

)

be such that ξn = vn (tn) + z (θtn
ωn), where v0n =

u0n − z (ωn). By Lemma 4.12 we have that z (θtn
ωn) → z (θt0ω0) and v0n → v0 =

u0 − z (ω0).
Due to these properties and Lemma 4.13, one can state that (26) and (27) hold

in the same way as in Lemma 4.5, where T > tn, T > t0, and R0 is a common
constant for any ωn.

Lemma 4.12 and the continuity of t → z (θtω0) imply that z (θtωn) → z (θtω0)
in C

(

[0, T ], l2
)

. Hence, arguing as in the proof of Lemma 4.5, one can prove that,

for any ǫ > 0, there exist K2 (ǫ) , N2 (ǫ) such that
∑

i∈Z
ρK,i |zi (θtωn)|2 < ǫ, if

K ≥ K2, n ≥ N2. Then, using inequalities (21) and (27), we can find K3 (ǫ) such
that

d

dt

∑

i∈Z

ρK,i |v
n
i |

2 ≤ ǫ, if K ≥ K3.

Similarly to the proof of Lemma 4.5 we obtain that the sequence vn (t) is
pre-compact for any t. By (12), (27) and the fact that z (θtωn) → z (θtω0) in
C
(

[0, T ], l2
)

, we obtain

‖Fωn (t, vn (t))‖2
l2 ≤ C, ∀n ∈ N, ∀t ∈ [0, T ],
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and the equality
d

dt
vn
i = Fωn

i (t, vn
i ) implies

∥

∥

∥

∥

d

dt
vn (t)

∥

∥

∥

∥

l2
≤ C1,

which proves that the sequence vn is equi-continuous. The Ascoli-Arzelà theorem
implies then the existence of a subsequence vnk converging to some function v (·)
in C

(

[0, T ] , l2
)

.
From the continuity of the maps h, f : l2 → l2 and (t, ω) → z (θtω) it follows

that the map (ω, t, v) → Fω (t, v) is continuous. Thus, it is easy to show that v is
a solution of (11). Also, it is clear that v (0) = v0.

It follows that ξnk → ξ = v (t0) + z (θt0ω0) ∈ G
(

t, ω0, u
0
)

. �

Now, the following result is a consequence of Lemma 2.2.

Corollary 4.15 . The map
(

t, ω, u0
)

→ G
(

t, ω, u0
)

is B (R+) ⊗ FΩN
⊗ B

(

l2
)

measurable.

Further, we need some properties of the map ΩN ∋ ω → G (t, ω,K (ω)).

Lemma 4.16 . Let v0n → v0 weakly in l2, ωn → ω0 in ΩN and fix T > 0. Then
there exist v (·) ∈ S

(

v0, ω0

)

and a subsequence vnk ∈ S
(

v0nk , ωnk

)

such that

vnk → v weakly in L2
(

0, T ; l2
)

,

vnk (t) → v (t) weakly in l2 for all t ∈ [0, T ].

Proof . At light of (14) and Lemma 4.13 there exists R0 > 0 such that

‖vn (t)‖l2 ≤ R0, ∀t ∈ [0, T ] ,∀n.

Thus, by (12) and the convergence z (θtωn) → z (θtω0) in C
(

[0, T ], l2
)

,

‖Fωn (t, vn (t))‖l2 ≤ C, ∀n ∈ N, ∀t ∈ [0, T ], (30)

and from the equality
d

dt
vn
i = Fωn

i (vn
i ) we obtain that

∥

∥

∥

∥

d

dt
vn (t)

∥

∥

∥

∥

l2
≤ C. (31)

Hence, there exist v, χ ∈ L2
(

0, T ; l2
)

such that, up to a subsequence,

vn → v,
d

dt
vn →

d

dt
v, Fωn (·, vn (·)) → χ weakly in v ∈ L2

(

0, T ; l2
)

.

Also, for any ξ ∈ l2 we have

(vn (t) , ξ) =
(

v0n, ξ
)

+

∫ t

0

(

dvn

dτ
, ξ

)

dτ →
(

v0, ξ
)

+

∫ t

0

(

dv

dτ
, ξ

)

dτ = (v (t) , ξ) ,
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where the last equality follows from v, dv
dt

∈ L2
(

0, T ; l2
)

. Hence,

vn (t) → v (t) weakly in l2 for all t ∈ [0, T ].

It follows from the weakly continuity of the maps h, f : l2 → l2 and the continuity
of (t, ω) → z (θtω) that

Fωn (t, vn (t)) → Fω0 (t, v (t)) weakly in l2 for all t ∈ [0, T ].

Also by (30) we get

|(Fωn (t, vn (t)) , ξ)| ≤ C ‖ξ‖l2 , ∀n ∈ N, ∀t ∈ [0, T ],

and then Lebesgue’s theorem gives

(Fωn (t, vn (t)) , ξ) → (Fω0 (t, v (t)) , ξ) in L1 (0, T ) for all ξ ∈ l2.

Thus,

Fω0 (·, v (·)) = χ,

and

v (t) = v0 +

∫ t

0

dv

dτ
dτ = v0 +

∫ t

0
Fω0 (τ, v (τ)) dτ , for all t ∈ [0, T ],

which implies that v (·) ∈ S
(

v0, ω0

)

. �

Lemma 4.17 . The map ΩN ∋ ω → G (t, ω,K (ω)) is FΩN
-measurable for any

t ≥ 0. Also, G (t, ω,K (ω)) is closed for all t ≥ 0, ω ∈ ΩN .

Proof . It is well known [12, Chapter III] that D (ω) is a random set with respect
to Pc if and only if the graph of D (ω) , given by

Gr(D) := {(ω, x) ∈ ΩN × l2 : x ∈ D(ω)},

belongs to FΩN
⊗ B(l2). Hence to prove the first statement it is sufficient to show

that the graph of the map ω → G (t, ω,K (ω)) belongs to FΩN
⊗ B

(

l2
)

, and this
is true if the graph is closed.

Let ω → ω0 in ΩN and ξn → ξ in l2, where ξn ∈ G
(

t, ωn, u0n
)

and u0n ∈ K (ωn).

We have to show that ξ ∈ G (t, ω0,K (ω0)) . Take vn (·) ∈ S
(

u0n − z (ωn) , ωn

)

such
that ξn = vn (t) + z (θtωn).

By the definition of K (ω) we have that vn0 = u0n − z (ωn) satisfies
∥

∥v0n
∥

∥

l2
≤

R (ωn). Then by Lemmas 4.12, 4.13 we obtain, passing to a subsequence, that
vn0 → v0 weakly in l2, where

∥

∥v0
∥

∥

l2
≤ R (ω0), and u0n → u0 = v0+z (ω0) ∈ K (ω0)

weakly in l2.
In view of Lemma 4.16 there exists v (·) ∈ S

(

v0, ω0

)

and a subsequence such
that

vn (t) → v (t) weakly in l2 for all t ∈ [0, T ].
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Thus, ξn = vn (t) + z (θtωn) → v (t) + z (θtω0) weakly in l2, so that ξ = v (t) +
z (θtω0) ∈ G (t, ω0, u0) ⊂ G (t, ω0,K (ω0)) .

Since the graph is closed, it is obvious that G (t, ω,K (ω)) is closed for all t ≥ 0,
ω ∈ ΩN . �

Theorem 4.18 . The MNDS G is an MRDS. Also, the pullback D-attractor A (ω)
given in Theorem 4.10 is a random set with respect to FΩ, and then it is the unique
random global pullback D-attractor for G.

Proof . Let us prove that G is an MRDS. As G is an MNDS, it remains to show
that the map (t, ω, x) → G(t, ω, x) is B(R+)⊗F ⊗B(X) measurable. Let O be an
open set of l2. Then, by Corollary 4.15, we have that the set

{(t, ω, x) ∈ R
+ × ΩN × l2 : G(t, ω, x) ∩ O 6= ∅} := AN,O

belongs to B(R+) ⊗FΩN
⊗ B(l2), so that AN,O ∈ B(R+) ⊗F ⊗ B(l2). Hence

{(t, ω, x) ∈ R
+ × Ω × l2 : G(t, ω, x) ∩O 6= ∅}

=

∞
⋃

N=1

{(t, ω, x) ∈ R
+ × ΩN × l2 : G(t, ω, x) ∩ O 6= ∅}

=

∞
⋃

N=1

AN,O ∈ B(R+) ⊗F ⊗ B(l2),

and then G is an MRDS.
Furthermore, in view of Lemma 4.17, the map ΩN ∋ ω → G (t, ω,K (ω)) is

FΩN
-measurable for any t ≥ 0. Hence, for a fixed t ≥ 0, the set

{ω ∈ ΩN : G(t, ω,K (ω)) ∩ O 6= ∅} := CN,O

belongs to FΩN
, so CN,O ∈ FΩ and then

{ω ∈ Ω : G(t, ω,K (ω)) ∩ O 6= ∅} =

∞
⋃

N=1

CN,O ∈ FΩ.

Due to Theorem 2.6 the pullback D-attractor A (ω) is a random set with respect
to FΩ, and then it is the unique random global pullback D-attractor for G. �
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