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Abstract

In this paper we study the existence of pullback global attractors for multivalued processes gen-
erated by differential inclusions. First, we define multivalued dynamical processes, prove abstract
results on the existence of w-limit sets and global attractors and study their topological properties
(compactness, conectedness). Further, we apply the abstract results to nonautonomous differential
inclusions of the reaction-diffusion type in which the forcing term can grow polynomially in time, and
to stochastic differential inclusions as well.
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1 Introduction

In this paper we study the existence of pullback global attractors for multivalued processes generated by
differential inclusions. The theory of pullback attractors has been developed for stochastic and nonau-
tonomous systems in which the trajectories can be unbounded when times rises to infinite. In such
systems the classical theory of global attractors is not applicable. Hence, a different approach has been
considered (see [8, 9] for the stochastic case and [9, 14, 18] for the nonautonomous case). The global
attractor is defined as a parameterized family of sets A (o), which attracts the solutions of the system
“from —o0”. This means that the initial moment of time goes to —oo and the final time remains fixed.

A new difficulty appears if the solution corresponding to each initial state can be non-unique. The
classical results on attractors in the autonomous and nonautonomous cases are generalized to the multi-
valued case in [16] and [17], respectively, with applications to evolution inclusions.

In [4, 5, 6] the study of multivalued dynamical systems is extended to the stochastic case, generalizing
in this way the results of [8, 9].

In this paper we are mainly concerned with nonautonomous multivalued dynamical systems in which
the trajectories can be unbounded in time and also with nonautonomous stochastic multivalued dynamical
systems.

In the second section we define multivalued dynamical processes, prove abstract results on the exis-
tence of w-limit sets and global attractors and study their topological properties (compactness, conect-
edness). In the third section we apply the abstract results to nonautonomous differential inclusions of
the reaction-diffusion type in which the forcing term can grow polynomially in time. It is worth pointing
out that the multivalued dynamical process is defined as a two-parameter family of multivalued maps.
The attraction of any bounded set of the phase space to the global attractor is uniform with respect to
the first one, whereas the rate of attraction and the attractor itself can depend on the second one. In the



applications the nonlinear and forcing terms are split in the sum of two functions. The first one satisfies
some good properties which allow to obtain a compact global attractor (in the classical sense) if the
second function vanishes (see [17]). However, the second one can growth unboundedly when time goes to
infinity. The uniform attraction with respect to the first parameter means that, if we take translations in
time of the first function, the rate of attraction and the global attractor itself do not change. However,
they can depend on the translations in time with respect to the second function. Finally, in Section 4, we
extend the previous theory to cover the cases in which some stochastic terms may appear in the model.

2 Attractors for multivalued processes

In this section we shall define multivalued dynamical processes in metric spaces. Maps of this kind
appear in differential equations for which, although we are able to prove the existence of at least one
global solution for each inital condition in some phase space, we do not know if it is unique or not. Hence,
multivalued processes generalize the concept of processes, for which the uniqueness property holds [7].

In this way we prove the existence of the so called “pullback” attractors [9, 14, 18], generalizing similar
results for processes.

2.1 Multivalued dynamical processes in infinite-dimensional spaces

Let X be a complete metric space with the metric p and let P (X) be the set of all non-empty subsets of
X. Denote

B(X) = {AeP(X):Aisbounded},
C(X) = {AeP(X):Aisclosed},
Cy(X) = {AeP(X):Aisbounded, closed and convex}
K(X) = {AeP(X):Aiscompact},
Re = {(t,s) eR*:t > s},
R(r) = {teR:t>r1},
dist(A,B) = sugymfp(m ,y), for A BC X
we
dist y(A,B) = max{dist(A,B),dist(B,A)}, for A,B C X.

Definition 1 The map U : Ry x X — P (X) is called a multivalued dynamical process (MDP) on X if:
1. U (t,t,-) = Id is the identity map;
2. U(t,s,x) CU(t,7,U(r,s,x)), forallx € X,s <7 <t.
The MDP U is called strict if:
Ult,s,z) =U(t,7,U (1,8,2)),for all x € X,s <1 < t.
Consider a parameter set 3. The following proposition is straightforward to prove.

Proposition 2 Let {U, : 0 € X} be an arbitrary family of MDP. Then the map Us : Rg x X — P (X)
defined by

(t,s,x) UU t,s,x)

oED

is a MDP.

Let ¥ = ¥4 x X9. For any 03 € X9 consider the MDP Uy, ,, : Ry x X — P (X), where

Us, o, (t,5,7) U Usy o (t,5,2).

01€3



Definition 3 Lett € R,09 € X5. The set D (t,02) C X attracts the set B € B (X) uniformly with respect
to X1 at time t if:

lim dist (Us, s, (t,8,B),D (t,02)) =0. (1)

§— —00

Definition 4 Let t € R, 05 € Xy. The set D (t,03) is said to be Xq-uniformly attracting at time tif (1)
is satisfied for any B € B (X).

For Be B(X),02 € 33 and t € R put

Vs, (t,02,B) = U Us, o, (t,7,B),
T7<s8

ws, (t,02,B) = ()73, (t.02,B).
s<t

The set wy, (¢, 02, B) is called the w—limit set of B for o2 at time ¢ (with respect to 7).
Lemma 5 The following properties are equivalent:

1. y € wy, (t,02,B);

2. There exists a sequence (Ty,&,,) such that &, € Us, o, (t,Tn,B), &, — vy in X and 7,, — —00.

Proof. In the space X consider the sequence of sets {'ygz"l (t, o9, B)} for s, — —oo. Then y belongs
to the lower topological limit of Kuratowski

Mﬂsn—»—oo’ysiﬁ (ta 02, B)

if for any € > 0 there exists s,, such that O, (y) N33 (¢, 02, B) # 0, for all s, < sp,, where O, (y) is an
e-neighborhood of y. On the other hand, y belongs to the upper topological limit of Kuratowski

Lims, . —ocvs (t, 02, B)

if for any £ > 0 there exists a subsequence {sp, } and s,, such that Oc (y) N3 (t,02, B) # 0, for all
Sny < Sng- Since 7y (t,02, B) C % (t,02, B) if s1 < s2, we have

Limg 3 (t,02,B) = Limg, .73 (t,02,B)
= Lims, .oV, (t,02,B) = ﬂ 75, (t,02, B) = wy, (t,02, B). (2)
s<t

Let now y € wy, (t,02,B). Then (2) implies that for £, — 0 we can find a sequence (s,,¢,,) such
that £, € Oc, (y) N5 (t,02,B), sn — —oo. It follows that {,, € Us, o, (t,7n, B), for some 7, < s,
and £,, — y, as n — 0o. We have proved in this way the implication 1 = 2.

Conversely, let the sequence {¢, } satisfy the second condition. Then &, € 73! (t,02, B) for some
$pn, — —00. The convergence £, — y implies that for any e—neighborhood O (y) of y there exists s,, for
which O (y) N7y, (t,02, B) # 0, for all s, < sp,,, so that in view of (2), y € wx, (t,02,B). =

Theorem 6 Suppose that for t € R, 0o € £y and B € B(X) there exists D (t,02,B) € K (X) such that

lim dist (Us, 4, (t,5,B),D(t,02,B)) =0. (3)

S§——00

Then wy, (t,02, B) is non-empty, compact and the minimal closed set 3q-uniformly attracting B at
time t.



Proof. First we shall show that wy, (t,09, B) is non-empty. If it is empty, then in view of Lemma 5,
the sequence &, € Uy, o, (t, sn, B), where s,, — —00, has not converging subsequences. But from (3) we
get

dist (&, D (t,02,B)) — 0, as s, — 0. (4)

Hence, there exist «,, — 0 and (,, € D (t,042, B) such that p (En’cn) < apy, for all n. It follows from the
compactness of the set D (t,02, B) that {¢,,} has a converging subsequence §,,, , which is a contradiction.

JFrom (4) it follows that if y = lim, o &,,, where £, € Us, o, (t,8n, B), then y € D (t,09, B).
Hence, using again Lemma 5 we obtain wys, (t,02, B) C D (t,02, B), so that wys, (¢, 02, B) is compact.

Suppose now that wy, (¢, 02, B) does not attract B at time ¢ uniformly with respect to ;. Then we can
find € > 0 and a sequence &,, € Us, o, (t,sn, B), where s, — —o0, such that dist (§,,,ws, (t,02,B)) > ¢,
for all n. But condition (3) implies, arguing as before, that {¢,,} has a converging subsequence {{nk} .
Finally, thanks to Lemma 5 we have §,,, — y € wyx, (t,02, B), which gives us a contradiction.

Further, let us consider a closed set Y satisfying

lim dist (Us, 0, (¢,5,B),Y) =0. (5)
We have to prove that wy, (t,02,B) C Y. By Lemma 5 for any y € wy, (t,02,B) we can obtain a
sequence &, € Us, 4, (t,s,, B) converging to y as s,, — —oo. Take an arbitrary ¢ > 0. In view of (5)
there exists ng such that dist (£,,,Y) < § and p(y,§,,) < §, for all n > ng. Therefore,
dist (y,Y) < p(y,&,) + dist (§,,Y) <e.
Since Y is closed, we finally obtain that y € Y. m

Definition 7 The family of MDP {U,} is called X1 -uniformly asymptotically upper semicompact if for
anyt €R, o9 € Xy and B € B(X) there exists tg = to (t,02, B) such that vtzol (t,09,B) € B(X) and any
sequence &, € Us, o, (t, Sn, B), where s, — —00, is precompact.

Lemma 8 The family of MDP {U,} is ¥1-uniformly asymptotically upper semicompact if and only if
for anyt € R, 09 € Xo and B € B(X) there exists D (t,092, B) € K (X) satisfying (3).

Proof. Let the family {U,} be Xj-uniformly asymptotically upper semicompact. Then, in view of
Lemma 5, the w-limit set wy, (¢, 02, B) is non-empty. We shall first prove that it is compact. Indeed,
for any sequence {§,,} C wx, (t,02, B) we have {§,} C 73, (t,02,B), for all s <t, and then there exist
Cp € Us, o, (t,80,B), s, — —o0, such that p(£,,¢,) < % Since U, is Xj-uniformly asymptotically
upper semicompact, it is possible to extract a subsequence {an} converging to some y € X. By Lemma
5, y € wy, (t,02, B), so that the compactness follows.

Further, we have to check that wy, (¢, 02, B) is ¥1-uniformly attracting. Suppose the opposite. Then
we can find e > 0 and a sequence {,, € Us, o, (t, Sn, B), where s,, — —o0, such that dist (§,,,ws, (t,02,B)) >
g, for all n. Since U, is Xj-uniformly asymptotically upper semicompact, {£,} has a converging subse-
quence {fnk} . Thanks to Lemma 5 we have §,, — y € wyx, (t,02, B), which gives us a contradiction.

Now we can see that the set D (t,02, B) = wy, (t,02,B) € K (X) satisfies (3).

Conversely, let for any ¢t € R, 02 € ¥y and B € B(X) there exist D (t,02,B) € K (X) satisfying
(3). We note that for € > 0 there exists so for which Uy, 4, (t,5,B) C O (D (t,02,B)), for all s < sq,
where O, (A) = {z € X : dist (z,A) < €} is an e-neighborhood. Since O; (D (t, 02, B)) is a bounded set,
we have 737 (t,02,B) € B(X).

Finally, let us take an arbitrary sequence &,, € Us, 4, (¢, Sn, B), where s,, — —oo. From (3) we get

dist (¢, D (t,09,B)) — 0, as s, — —o0.

Hence, there exist «,, — 0 and (,, € D (t,02, B) such that p (En’Cn) < @y, for all n. It follows from the
compacity of the set D (t,02, B) that {¢,,} has a converging subsequence &, , so that U, is ¥;-uniformly
asymptotically upper semicompact. m



2.2 Global attractors of multivalued dynamical processes

In this section we define the concept of global attractor of a family of MDP, prove its existence and study
its topological properties.

Definition 9 The family of sets {Ox, (t,02)},cp is called a Xi-uniform global attractor of the MDP
{Ua‘} fO?“ o9 € Yo Zf

1. Oy, (t,02) is X1-uniformly attracting at time t for all t € R;

2. It is semi-invariant, that is,

Oy, (t,02) C Us, o, (t,8,0x, (s,02)), for any (t,s) € Ry;

8. It is minimal, that is, for any closed Y1 -uniformly attracting set Y at time t, we have

621 (t,(fg) cY.

Definition 10 Let X,Y be metric spaces. The multivalued map F : X — P (Y) is said to be upper
semicontinuous if for all x € X and any neighbourhood of F (x), O(F (x)), there exists § > 0 such that
if p(x,z) <6, then

F(2) C O(F (z)).

On the other hand, F is called lower semicontinuous if for all x € X, x,, — x and y € F (x), there exists
a sequence {yn} such that y, € F (x,) and y, — y.
It is said to be continuous if it is upper and lower semicontinuous.

Theorem 11 Let X be a complete metric space in which every compact set is nowhere dense and let the
family of MDP {U,} be X1-uniformly asymptotically upper semicompact. Then the following statements
hold:

1. If for all (t,s) € Ry and o3 € g the graph of the map x — Us, 4, (t,7,2) € P(X) is closed, then
there exists the X1 -uniform global attractor {Osx, (t,02)}. Moreover,

O, (t,02) = | J w», (t,02,B) # X,
BEB(X)

and for each t € R, o9 € Yo, Ox, (t,02) is a Lindeldf, normal space. It is locally compact in some
topology Tg, which is stronger than the topology induced by X in Ox, (t,02).

2. If, in addition, 31 is a compact metric space, the map
Y1 x X 3 (01,2) — Upy 0, (t,7,2) € P(X)

is upper semicontinuous for any (t,7) € Ry, 09 € Yo, U, has connected values for any o € %,
(t,7) € Ry, x € X, X1 is a connected space and

621 (t,O‘g) C Bl (t,G‘z),

where By (t,02) is a connected set for any t € R 02 € X9 and Us<; By (s,02) € B(X), then the set
Ox, (t,02) is connected for any t € R, o9 € 3s.

Remark 12 We note that the condition of being X a space in which every compact set is nowhere dense
is only used to prove that Ox, (t,02) does not coincide with the whole space.

To prove this theorem we shall need the following result.



Proposition 13 Let ¥1 be a compact metric space with metric py,, and let the map
Y1 x X 3 (01,2) V> Upy 0, (t,7,2) € P(X)
be upper semicontinuous for any (t,7) € R?, 0o € Xo. Then the map
X32—Us, o, (t,7,2) € P(X)
s also upper semicontinuous.

Proof. Let x € X be fixed. Take an arbitrary neighborhood U of Us, ., (t,7,z). It is obviously
a neighborhood of each Uy, o, (t,7,2). For any o1 € Xi,e > 0 we can find §(¢,01) > 0 such that
if p(y,z) < 9§, py, (01,07) < 6, then Uyr o, (t,7,y) C U. From the open cover of X; defined by

{Os(c.00) (01)}01621 we can extract a finite subcover {051-(5,01) (oi)} - Hence, for § (¢) = mind; we
have that if p (y,2) < 6, then Uy, o, (t,7,2) C U, for all oy € . Therefore, Us, 4, (t,7,2) CU. m

Now we shall prove Theorem 11.

Proof of Theorem 11. By Theorem 6 and Lemma 8, for any B € B(X), 02 € ¥5,t € R we
obtain that the omega-limit set wy, (t, 02, B) is non-empty, compact and attracts B at time ¢ uniformly
with respect to ¥;. Hence, Oy, (t,02) is non-empty and a j-uniformly attracting set at time ¢. The
minimality property is an easy consequence of Theorem 6.

Let us show further that the omega-limit set wy, (¢, 02, B) and Oy, (¢, 02) are semi-invariant. Lemma
5 implies that for an arbitrary y € wy, (f,02, B) we can find a sequence &,, € Us, o, (¢, $Sn, B) converging
to y as s, — —oo. For any s, <7 <t we have

U21,02 (tﬂ STL7B) C U21,02 (t77—7 Uzl,o'z (T)S’IHB))v

sothat &, € Us, o, (t,7,(,,), where (,, € Us, 4, (T, 8, B). Since U, is ¥-uniformly asymptotically upper
semicompact, we can assume (taking a subsequence if necessary) that ¢, — ¢ € wx, (7,02, B). Since the
graph of x — Us, o, (t,7, ) is closed, we get y € Us, o, (¢,7,() C Us, 5, (£, T,wx, (7,02, B)). It follows

Wy, <t7027B) C Uzl,az (t77—7w21 (770273)) - Uzl,oz (taT,@Zl (T702)> 5

for any B € B(X), and then wy, (t,02, B) and Oy, (t,02) are semi-invariant.

We have proved that Oy, (¢,02) is a ¥j-uniform global attractor. Let us prove now that the global
does not coincide with the whole space and its topological properties, as well. Consider in the space X
the sequence of balls

Bi={ye X :p(y,a) <i},

with the fixed center a. It is clear that for any B € B (X) there exists B; such that B C B;. Since in
such case wy, (t,02,B) C wx, (t,02, B;), we have

Oy, (t,02) Uwzl (t,092,B;).
On the other hand, the sets B; are bounded, so that the converse inclusion follows. Hence,
621 t 0‘2 UUJZI t 0'2, )

Since Oy, (¢,02) is a countable union of compact sets, Baire’s theorem implies that Ox, (¢,02) # 0.
It follows also immediately that Oy, (¢,02) is a Lindeldf space. Hence, since a metric space is regular,
Os, (t,02) is normal.

Put S; =S4, (t,02) = wy, (t,09, B;) x {i}. It is clear that S;NS; = 0, for all i # j. It is evident that
for any ¢ there exists a homeomorphism h; between S; and wy, (¢, 02, B;). The set S; is a topological
space with the topology induced by the metric of X, which will be denoted by ;.



Accurate to the homeomorphism I; we can write that S; = wy, (¢,02, B;). In the set Ox, (t,02) (O
for short) we consider the family of subsets

e ={VCO:VNS; er; for some i}. (6)

This family define on © a subbase of the topology 7. In this topology each wy, (¢,09, B;) is open and
closed. On the set © we have also the topology 7 induced by the metric p if X, obtaining in this way two
topological spaces (0,7),(0,7g). The topology 7 is stronger than 7 (¢ < 7).

We hall check now that the each space (S;, ;) is compact. Using the homeomorphism h; we identify
the sets S; and wy, (¢, 02, B;) . Let {W,} be an arbitrary open cover of S;, where W, = S; N V,, and V,
is open in X. Since S; is a compact set in X, we can extract a finite subset {Vsj };L:l defining the finite
subcover W, = S N Vs, Tt follows that S; is compact in the topology T¢, since 7q is the strongest
topology in © for which the canonical embedding I; : S; — © is continuous.

Let now take an arbitrary x € ©. Then = € S; for some 7 and S; is a neighborhood of z. Since a
compact set is regular, there exists a neighborhood O (x) € 7; such that O (z) C S;, i.e. O (x) is compact
in (S;,7;) and also in the topology 7¢. Therefore, the space (0, 7g) is locally compact.

It is obvious that the space (0, 7¢q) is Lindelof. The proof of the first statement is now complete.

For the second statement, suppose that Oy, (t,02) is not connected. Then there exist two open sets
Ul,UQ satisfying @21 (t,O'z) n Ui 75 @, for ¢ = 1,2, @21 (t,O’g) C U1 U UQ and U1 n U2 = (Z) It is well
known (see [3], [10]) that an upper semicontinuous map with connected values maps any connected set
into a connected one. Since the set By (7,02) is connected, Proposition 13 implies then that the set
Us, 0, (t,7,B1 (7,02)) is connected. The semi-invariance property gives

@21 (t,O'Q) C Uzl,gz (t,T,@El (T,O’Q)) C Uzhgz (t,T,Bl (T,O'Q)) .

Hence, Us, o, (t,7,B1 (1,02)) NU; # 0, for i = 1,2, and by the connectedness of Uy, , (t,7, By (T,02))
we obtain that U; UU; does not contain Uy, 4, (¢, 7, B1 (7,02)) . Hence, Us, o, (t,7, B1 (02))NU; # 0 and
U1 U Uy does not contain Uy, 4, (,7, By (02)), where By (02) = U,<¢B1 (7,02). There exists a sequence
&, € Us, o, (t,7pn, By (02)), where 7, — —o0, and &,, ¢ Uy U Us. Then since By (02) € B(X) and the
family {U,} is ¥;-uniform upper asymptotically semicompact, we can extract a converging subsequence
&n — Y € wy, (t,02,B1(02)) C Ox, (t,02) C Uy UUs. But in such a case there exists mg for which
&, € Uy UUy, for all m > my, which is a contradiction. m

Remark 14 We note that under the conditions of point 1 the set Ox, (t,02) can not be locally compact
in the topology of the space X as shown in [21] with an example for an autonomous system.

Remark 15 We note that in [16, p.89] and [17, p.382] there is a mistake in the definition of the subsets
Bg (see (6)), where it is written “for any i” instead of “for some i”.

The following proposition is useful in applications.
Proposition 16 Let X1 be a compact metric space and let the map
Y1 x X 3 (01,2) — Uy 0, (8, 7,2) € P(X)
be closed for any (t,7) € R%, 09 € ¥y. Then the map
Xs2+—Us, 4, (t,7,2) € P(X)
1s also closed.

Proof. For fixed (t,7) € R? and oo € ¥y consider the sequences z,, — x,y, — y, where y, €
Us, o, (t,7,2,). Then there exist o1, € ¥y for which y,, € U,,,, 4, (t,7,2,), for each n, and, in view of
the compactness of ¥;, we can extract a converging subsequence o1, — 0g. Therefore, since the map
(01,2) — Uy, o, (t, 7, ) is closed, we have

ye U00,<T2 (t,T,l‘) C UZ1,02 (ta77x)-

]

In the previous theorem we have proved the existence of a global attractor for U,. However, although
it satisfies some good topological properties, it can be an unbounded set of the space X. In applications
it is desirable to obtain a more regular attractor. Namely, by adding a stronger dissipative condition we
are able to prove the existence of a compact global attractor.



Theorem 17 Let us suppose that for all (t,s) € Ry and o3 € Xq the graph of the map x — Us, o, (t,7,x) €
P (X) is closed. If, moreover, for any t € R, o3 € 3o there exists a set D (t,02) € K (X), which is ¥1-
uniformly attracting, then the set

O, (t,oz) = |J ws, (t,02,B)
BeB(X)

is the X -uniform global attractor of U,. Moreover, the sets ©x, (t,02) are compact and, if the conditions
of the second statement in Theorem 11 hold, then they are connected.

Proof. It is easy to see that wy, (t,02,B) C D (t,02), for all B € B(X). Indeed, since D (t,03)
attracts any B € B (X), the limit of any sequence §,, € Us, o, (t,7n, B), Tn, — —00, belongs to D (¢, 02).
Lemma 5 gives then the required inclusion. Hence, the set Oy, (t,02), as a closed subset of a compact
one, is compact.

The Y1-uniformly attracting and minimality properties follow from the first statement of Theorem 11.
It remains to show that Oy, (¢,02) is semi-invariant. Let y € Oy, (¢,03) be arbitrary. Then there exists
a sequence y, € wy, (t,02, By), Bn € B(X), converging to y. Since omega-limit sets are semi-invariant
(see the proof of Theorem 11), for any 7 < t we can obtain a sequence (,, € wy, (7,02, By,) such that
Yn € Us, 0, (t,7,C,). By the compactness of D (7,02) we can assume that ¢, — ( € Oy, (t,02). Finally,
using the fact that the map X > x —— Us, ,, (t,7,2) is closed (this follows from Proposition 16), we
have ye UZ1,02 (thv C) - UZh,az (t77—7 921 (t7J2))' Hence7 621 (t702) C UE1,02 (t,T, 921 (t7 02)) .

Finally, suppose that the conditions of the second statement in Theorem 6 hold. Since in view of
Theorem 6 the set Ugep(x)ws, (t,02, B) is connected, we obtain that Oy, (t,02) is connected. m

It is also interesting to consider the situation where the sets Oy, (¢,03) defined above are strictly
invariant.

Proposition 18 Let the MDP U, be strict, X1 be a compact metric space and let the map
Y1 x X3 (01,2) — Upy 0, (t,7,2) € P(X)

be lower semicontinuous. Then, the global attractors obtained in Theorems 11 and 17 are invariant, that
is, Ox, (t,02) =Us, o, (t,7,0x, (T,02)), for all T < t,09 € Xs.

Proof. We have to prove the inclusion Us;, o, (¢, 7, Ox, (7,02)) C Ox, (t,02) . Consider first the global
attractor defined in Theorem 11. Let y € Us, o, (t,7,ws, (7,02,B)), B € B(X) be arbitrary. Then
Lemma 5 implies the existence of a sequence &, € Us, 4, (T, sy, B) converging to { € ws, (7,02, B),
as s, — —oo, and y € Us, 4, (t,7,§). We claim that there exists a sequence {y,} such that y, €
Us, 0, (t,7,&,) and v, — y. Indeed, take a sequence o1, — 01 € 31, where y € Uy, 4, (t,7,€). Now the
lower semicontinuity of the map (o1,2z) — Uy, 4, (¢, 7,2) provides us a sequence y, € Uy, o, (£, 7,6,,)
such that y, — y. Since U, is strict, we get

Yn € Ualn,62 (t,T7§n) - U21,02 (t,’T,gn) - U2170'2 (taTv U21,02 (Tvs’mB))

- UELUQ (tvsnaB)a

so that we have y € wy, (t,02,B) C Oy, (t,02). Hence, Us, », (t,7,0x, (7,02)) C O, (t,02).

Further, let now Oy, (t,02) be the global attractor defined in Theorem 17. Denote by F (t,02) the
union Upep(x)ws, (t,02,B) . We have already proved that F(t,02) = Us, 4, (t,7,F (7,02)). For an
arbitrary

y 6 U0'170'2 (t77—7§) C UEl,O’Q (t77—7®21 (7—70-2))

we take sequences o1, € X1, §,, € F (1,02) converging to o1 and &, respectively. Using again the lower
semicontinuity of (o1, 2) — Uy, o, (¢, 7, ) we obtain the existence of a sequence

Yn € Usyp oo (6,7,6,) CUs o, (6,7, F (1,02)) C F (t,02)

converging to y. Hence, y € Oy, (t,02). ®



2.3 Shift on X

Suppose that we are given a one-parameter group 7'(h) : ¥ — X, where ¥ = ¥; x X3, h € R and
T (h) = (T1(h), T2 (h)),T; (h) : ¥; — %;, i = 1,2. This is called the shift operator.

The problem we are now going to study was considered in [17] in the case where the maps U,,T are
defined only for positive moments of time (in such case the family U, is called a semiprocess instead of
process). There are some subtle differences between the two approaches which will be pointed out. So,
we generalize in this way the results of [17] on X-uniform attractors. Further we study again ¥;-uniform
attractors (but now using the shift operator T» on 33) and prove that, when a Y-uniform attractor exists,
it coincides with the Y{-uniform attractor.

2.3.1 X-uniform attractors of the family {U, : 0 € ¥}
In the sequel we shall assume:
(T1) For any (t,s) € Ry, x € X, 0 € &, h € R the following inclusion holds:
Usy o (t,8,2) CUp (o, To(h)es (t = hys = hyx).
Lemma 19 Condition (T'1) implies
Usy,oo (t,5,2) = Ur, (hyor  To(h)os (t — Rys — hy ).
Proof. Denoting o; =T (h) 04, i = 1,2, and using (T'1) we have

Us, 5, (t =h,5s = h,x) CUp (—h)yTy (h)or To(=h),To(h)os (t =R+ h,8 —h 4 h,x)

=Up, .05 (t,8, ).
|
Lemma 20 T (h) X =X, for all h € R.

Proof. It is obvious that T'(h) X C X. Conversely, if 0 € ¥ then for ¢ = T (—h)o € X we have
T(h)ye=T(h)T(—h)o=0,s0othat EC T (h)X. m

Remark 21 These results are not true in the case considered in [17]. In particular, we have to write
T (h) X C X, where the inclusion can be strict.

For a fixed 7 € R we define the map G, : Ry x ¥ x X — P (X) by
G, (t,o,2)=U, (t+7,7,2).
Proposition 22 If (T1) holds, then the map G, : Ry x ¥ x X — P (X) satifies:
1. G- (0,0,2) =z, forallz € X,0 € %;
2. G; (t1 +ta,0,2) C G, (t1,T (t2) 0, G, (t2,0,)), for all t;,t2 E R4, 0 € X, 2 € X
3. G, (t,o,2) =Gy (t,T(1)0,2).

Proof. The first property is evident. Further, for any ¢;,to € Ry it follows from (7'1) and the
properties of the map U, that

Gr (t1 +t2,0,2) =Us (t1 +t2 +7,7,2) C Uppyyo (b + 7,7 — t2, 1)

C UT(tQ)U (tl + 7,7, UT(tz)o' (Tv T — o, LU)) = UT(tQ)O' (tl + 7,7, Us (T + 2,7, .fL'))



= GT (tla T (tQ) g, GT (tQa a, l’)) .
Finally, using Lemma 19 we have

Gr(t,o,2) =Us (t+7,7,2) = Up(r)o (£,0,2) = Go (t,T (1) 0, ) .

Let us define the map Us : Ry x X — P (X) by

Us (t,7,x) = U Uy (t,7,2), for all (t,7) € Ryg,z € X.
cEXD

Proposition 23 If (T1) holds, then the map Us, : Ry x X — P (X) is a MDP for which the following
formula holds:

Us (t+h, 7+ h,x)=Us (t,7,2), forall (t,7) € Rg,xz € X,h € R. (7)
Proof. It is an easy consequence of Lemma 19. Indeed,
Us (t+h,7+h,x)=Uppy, (t,7,0) CUs (t,7,2), forall o € ¥, € X, (t,7) € Ry.
The converse inequality follows changing h by —h. =

In a similar way as before for B € B(X) and t € R we set

v%(tB) = |JUs(t7,.B), t=>s,
7<s

ws (t,B) = ()% (B).
s<t

Definition 24 The family of MDP U, is called point dissipative if for any t € R there exists By (t) €
B(X) such that

dist (Us (t,7,2),Bo (t)) — 0, as 7 — —o0, for all z € X.
Proposition 25 If (T'1) holds, then the following statements are equivalent:

1. U, s point dissipative;
2. There exists By € B(X) such that

dist (Us (0,7,2),By) — 0, as 7 — —o0, for all z € X.

3. There exists By € B(X) such that

dist (Us, (t,7,2),Bg) — 0, as t — +o0, for allx € X, 7 € R.

Proof. The implication {1 = 2} is obvious. For {2 = 3} it is sufficient to apply Proposition 23 to
have

dist (Us, (t,7,x), By) = dist (Us (0,7 —t,z),Bg) — 0, as t — +o0.
Finally, {3 = 1} is proved as follows
dist (Us (t,7,z), By) = dist (Ug (t — 7,0,2), Bg) — 0,a8 7 — —o0.

Note that as a consequence the set By (t) in Definition 24 does not depend on t. m
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Definition 26 The family of MDP {U,} is called S-uniformly asymptotically upper semicompact if for
any t € R and B € B(X) there exists to = to (t, B) such that v (t,B) € B(X) and any sequence
¢, € Us (L, spn, B), where s,, — —00, is precompact.

Proposition 27 Let (T'1) hold. Then the following statements are equivalent:

1. The MDP U, is Y-uniformly asymptotically upper semicompact;
2. For anyt € R, B € B(X) there exists D (t,B) € K (X) such that

dist (Us (t,7,B),D(t,B)) — 0, as T — —o0.

3. For any B € B(X) there exists D (B) € K (X) such that

dist (Us (0,7,B),D (B)) — 0, as T — —o0.

4. For any B € B(X) there exists D (B) € K (X) such that

dist (Us (t,7,B),D (B)) — 0, as t — 400, for all T € R.

Proof. For {1 = 2} in the same way as in Lemma 8 for any ¢t € R, B € B(X) we can prove the
existence of D (¢, B) € K (X) such that

dist (Us (t,7,B),D(t,B)) — 0, as T — —o0.

The implication {2 = 3} is evident.
For {3 = 4} using (7) we have that

dist (Us (t,7,B),D(B)) = dist (Us (0,7 —t,B),D(B)) — 0, as t — +o0.

Finally, let us prove {4 = 1}. We note that for any e > 0, € R there exists sg for which Us; (s,1, B) C
O (D (B)), for all s > sg. Since O, (D (B)) is a bounded set and in view of (7),

Us (t,7,B) =Usx (t —7,0,B) C O, (D (B)), for all 7 <t — sg = to,

we have 7% (¢, B) € B(X).
Finally, let us take an arbitrary sequence &,, € Us, (¢, sp,, B), where s,, — —o0. Using (7) again we get

dist (¢,,, D (B)) < dist (Us, (t, sn, B), D (B)) = dist (Us, (t — $,,0,B),D (B)) — 0, as s, — —o0.
Hence, there exist a, — 0 and (,, € D (B) such that p (&, (,) < an, for all n. It follows from the
compacity of the set D (B) that {¢,} has a converging subsequence ,, , so that U, is ¥-uniformly
asymptotically upper semicompact. m
Definition 28 The set Oy is called a X-uniform global attractor of the MDP {U,} if

1. Oy is X-uniformly attracting at time 0, that is,

dist (Us, (0,s,B),0x%) — 0, as s - —oo, for all B € B(X).

2. It is semu-invariant, that is,

Oy C U, (t,5,0y%), for any (t,s) € Ry.

3. It is minimal, that is, for any closed X-uniformly attracting set Y at time 0, we have

Oy CY.

11



As a consequence of Proposition 23 we can prove, in the same way as in the previous propositions,
the following proposition.

Proposition 29 If (T1) holds, the following statements are equivalent:
1. Oy is X-uniformly attracting at time 0, that is,

dist (Us (0,8,B),05) — 0, as s — —o0, for all B € B(X).

2. Oy is X-uniformly attracting at time t, for any t € R, that is,

dist (Us, (t,s,B),0x) — 0, as s — —oo, for all B € B(X),Vt € R.

3. Ox is Y-uniformly attracting, that is,

dist (Us, (t,s,B),0x) — 0, ast — 400, for all B € B(X),Vs € R.

Definition 30 Let XY be metric spaces. The multivalued map F : X — P(Y) is called w-upper
semicontinuous if for any xg € X and € > 0 there exists § > 0 such that F (z) C O (F (o)), for all
x € Os (z0) -

Theorem 31 Let X be a complete metric space in which every compact set is nowhere dense and let the
family of MDP {U,} be X-uniformly asymptotically upper semicompact. Then the following statements
hold:

1. If for all s < 0 the graph of the map © +— Ux (0,s,2) € P(X) is closed, then there exists the
Y-uniform global attractor ©x. Moreover,

Os= |J ws(0,DB)= |J ws(0,B)= |J ws(t,B)#X, forallteR,
BeB(X) BeB(X) BeB(X)

where D (B) is the set defined in Proposition 27, and Oy, is a Lindeldf, normal space. It is locally
compact in some topology Tq,, which is stronger than the topology induced by X in Ox.

2. If for all s <0 the map x — Usx (0,s,2) € P(X) is closed and there exists a set D € K (X), which
is X-uniformly attracting, then the set Oy is compact.

3. If the family U, is point dissipative and for all s < 0 the map x — Usx (0,s,2) € P (X) has closed
graph and is w-upper semicontinuous, then Oy is compact.

4. If, in addition, ¥ is a compact metric space, the map
Y x X3 (0,2) — U, (0,s,2) € P(X)

is upper semicontinuous for any s < 0, U, has connected values for any o € &, (t,7) € Ry, z € X,
Y is a connected space and Oy, C By € B(X), where By is connected, then the set Oy, is connected.

Proof. It follows from Theorem 11 (replacing ¥; by X) that the set Oy = Ugep(xyws (0, B) is the
Y-uniform global attractor of U, and the topological properties, as well. Note that

wstB) =(\JUst.7.B)= (] |J Us(0,7—tB)=ws(0,B).

s<tT<s s—t<0T—t<s—t

Hence, Oy = Upepx)ws (t, B), for all t € R. Further, it follows from Proposition 27 that D (B) is
Y-attracting at time 0. The omega-limit set wy, (0, B) belongs to D (B) and is semi-invariant (these facts
are proved exactly in the same way as in Theorems 11, 17 replacing 3, by ¥ and taking into account the
equality wyx, (0, B) = wx, (¢, B)). Therefore,

ws (0,B) C Us (t,7,ws (0,B)) C Us (t,7,D (B)), for all (¢t,7) € Ry,

12



so that wx (0, B) C wx(0,D(B)) and then Oy C Upepx)ws (0,D (B)). Since D (B) € B(X) the
converse inclusion is obvious. The proof of the first statement is complete.

For the second statement note that we have proved wy, (0, B) C wx (0, D (B)). Since D (B) = D, we
have Oy = wyx, (0, D). Hence, Oy is compact.

Let us prove now the third statement. In view of Proposition 25 there exists By € B (X) such that

dist (Us, (t,7,z),Bg) — 0, as t — 400, for all x € X, 7 € R.

Set By = Og, (By) for some fixed e > 0. We shall show that Oy = wy (0,B;). Take an arbitrary
BeB(X). Fix T eR.

For any x € w (0, B) there exists T} (x) such that Us (T} (z),7,2) C B;. Note that since the map
z — Us (0,7 —T; (z),z) is w-upper semicontinuous and Us (0,7 — T} (x),x) = Us (T1 (z),7,z) (see
again Proposition 23), the map « — Usx (T} (z),7,x) is w-upper semicontinuous. Then we can find a
neighborhood Os(,y (z) for which Us (Tl (%), 7, O () (x)) C Bi.

The set {05(1) () : x € wy (0, B)} is an open cover of the compact set wy, (0, B) . Let {05(%.) (xl)}:;l
be a finite subcover. Then O (ws (0, B)) = U, Os(y,) (z;) is a neighborhood of ws (0, B). Fix 2 > 0.
Since wy (0, By) is Y-uniformly attracting By at time 0 (this fact can be proved exactly in the same way
as in Theorem 6 replacing ¥; by X), for any x; there exists 15 (z;) such that

Ug (t,Tl (IZ) , Bl) = UE (O,Tl (IZ) — t, Bl) C 052 ((.L)E (O, Bl)) , fOI‘ all t Z T2 (Iz) .
Then for Ty = Ty (e2,¢1, B) = max {T5 (x;)} we have
Us, (t,7,05(zy) (z:)) C Us (¢, Ty (x;) , Us (T1 (23) , 7, Os(a) (24)))

CUs (t,T1 (z;),B1) C O, (ws (0,By)), forallt > Ty, i =1,...,n.
Hence,

UE (t, T,Wy (O, B)) C UE (tﬂ', 0] (wg (0, B)))

C O, (wx (0,By)), for all t > Th.
Therefore, the semi-invariance of wy, (0, B) implies
wy (0,B) C Us (t,7,wx (0,B)) C O, (ws (0,B1)), for all t > T,

so that wy (0, B) C wx (0, By). It follows the desired equality wx (0, B1) = Ox.
The last statement is a consequence of Theorems 11, 17 replacing again ¥; by ¥. Note that in our
case By (t) = By € B(X), so that condition Us<;B1 (s) € B(X) holds. m

Remark 32 We note that the condition of being X a space in which every compact is nowhere dense is
only use to prove that Oy does not coincide with the whole space.

Proposition 33 If the family of MDP U, is strict, then the global attractor obtained in Theorem 31 is
wvariant, that is,

Oy, = Us, (t,7,0x), for all (t,7) € Ry.

Proof. We have to prove the inclusion Uy, (t,7,0x) C Oy, for all (¢,7) € Ry. Since wx (0,B) C
Us, (7, s,ws (0,B)) for any B € B(X),(7,s) € Ry (see the proof of Theorem 31), we have, using Propo-
sition 23, that

Us, (t,7,ws (0,B)) C Us (t,7,Us, (1, 8,ws. (0, B))) = Us. (t, s,wx. (0, B))

=Us (0,s —t,ws (0,B)), for all s < 7.
Hence,

Us (t,7,ws (0,B)) C | Uz (0,5 — t,ws (0, B)), for all < 7,

s<l

so that Us, (t,7,ws (0, B)) C ws (0,ws (0, B)). Since wy, (0, B) is bounded, Us, (t,7,ws (0, B)) C Ox. It
follows then that Uy, (t,7,0x) C Ox. m
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2.3.2 Y;-uniform attractors of the family {U, : 0 € ¥}

We shall consider again the existence of a global ¥;-uniform attractor, but having now the shift operator
T satisfying condition (7'1). The main difference with the previous results consists in the existence of
an equivalence between the parameter o, and the final moment of time ¢, so that it is only necessary to
keep one of them.

Proposition 34 Let (T'1) hold and let for any B € B(X), o2 € X4 there exist a compact set D (09, B) C
X such that

lim dist (Us, s, (0,s,B),D (02,B)) =0. (8)

§——00
Then the family of MDP U, is ¥1-uniformly asymptotically upper semicompact.

Proof. For B € B(X),02 € Y3 and ¢ € R consider a sequence &, € Uy, o, (t, 50, B), where
O1n € ¥1, S — —00. Then condition (7'1) implies

fn € UTl(t)Uln,TQ(t)JQ (Oa Sn — ta 07 B) C UEl,TQ(t)og (07 Sn — ta 07 B)

and then it follows from (8) (in a similar way as in the proof of Lemma 8) that the sequence {¢,,} is
precompact.
Further, note that

YR (t,02, B) = Ur<t,Us, oy (t,7, B) C Ur_t<ty—tUs, Tu(t)0, (0,7 — 1, B).
Then in view of (8) there exists ¢¢ for which Wtzol (t,092, B) is bounded. m
Let us now study in detail the relationship between the parameter oo and the final moment of time ¢.
Proposition 35 Let (T'1) hold. Then
wy, (t,092,B) = ws, (0,75 (t) 02, B), for allt € R.

Proof. Using Lemma 19 we have

ws, (t,o2,B) = [ |J Usi0o (.7, B) = () | Uz, 10100 (0,7 — £, B)

s<trT<s s<tT<s

= m U UEl,Tz(t)fm (O,T—t,B) =Wy, (07T2 (t) UZ,B)-

s—t<0T—t<s—t

Definition 36 Let (T'1) hold. Then the family of sets {Ox, (02)}
attractor of the MDP {U,} if:

socs, 1S called a Xi-uniform global

1. Oy, (02) is X1-uniformly attracting at time 0 for any o9 € 3a;

2. It is semi-invariant, that is,

Ox, (T (t) 02) C Usy 0, (t, 8,05, (T2 (s) 02)), for any (t,s) € Ry,02 € Eg;

3. 1t is minimal, that is, for any oo € Yo and any closed X1 -uniformly attracting set Y (o2) at time
0, we have

Oy, (02) cY.

This definition is justified by the following propositions.
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Proposition 37 Let (T'1) hold and let the family of sets {Ox, (t,02)}icp g, be @ Ti-uniform global

attractor of the MDP {U,} for each fized oo € Yo in the sense of Definition 9. Then Ox, (t,02) =
@21 (07T2 (t) (72), fOT‘ any t € R, 09 € 3.

Proof. Using Lemma 19 for any B € B(X) we have

dist (U21;0'2 (t7 T, B) ) 621 (0’ T (t) 02))

= dist (UghTQ(t)aQ (0,7 —t,B),0x, (0,75 (t) 02)) —0,as T — —00,

so that ©x, (0,75 (t) o2) is ¥1-uniformly attracting at time ¢ for 0. The minimality property of Ox, (¢, 02)
implies then that Oy, (t,02) C Og, (0,12 (t) 02).
In a similar way we get

dist (UE1,T2(t)<72 (0, T, B) 7621 (t, (72))

= dist (Us, o, (t,7+1,B),0x, (t,02)) — 0, as 7 — —o0,
so that ©x, (0,75 (t) 02) C Og, (t,02). ®
Proposition 38 Let (T'1) hold.

1. If the family of sets {Ox, (02)},,cx, 15 a ¥1-uniform global attractor of the MDP {U, } in the sense
of Definition 36, then the family of sets {Ox, (t,02)},cp defined by Ox, (t,02) = Ox, (T2 (t) 02) is
a X1 -uniform global attractor of the MDP {U,} for each fized oo € 3o in the sense of Definition 9.

2. Conversely, if the family of sets {Ox, (t,02)},cp is a E1-uniform global attractor of the MDP {Us}
for each fixred o2 € 3o (in the sense of Definition 9) such that Ox, (t,02) = Ox, (0,Ts (t) 02), for
allt € R, then the family of sets {Ox, (0,02)} is a Xq1-uniform global attractor of the MDP
{Us} in the sense of Definition 36.

02€3,

3. If the families {Os, (t,02)}icp gyes, » 195 (02)},,ex, are Ti-uniform global attractors in the sense
of Definitions 9 and 36, respectively, then

Oy, (t,02) = Ox, (T2 (t) 02), for any t € R, 09 € 3s.

Proof. Let the family of sets {Ox, (02)},,cx, be a ¥i-uniform global attractor of the MDP {U, }
in the sense of Definition 36. Define the family {Ox, (t,02)};cp spem, PY O, (t,02) = Oy, (T2 (t) 02).
Using Lemma 19 and the fact that the family {Ox, (02)},,cx, i X1-uniformly attracting at time 0, for
any B € B(X) we have

dist ((]21’(;2 (LL, T, B) 7@21 (f702)) = dist (Uvzl’a2 (t,T7 B) ,921 (TQ (t) 0’2))

= dist (UZl,TQ(t)az (Oa T—t, B) ) 621 (T2 (t) 02)) — 0, a8 7 — —o0, (9)

so that ©x, (Tx (t) 02) is X1-uniformly attracting at time t for .
For the semi-invariance property note that

Os, (t,02) = Ox, (T2 (t) 02) C Us, 0, (£, 5,05, (12 (s) 02)) = Us, 0, (, 5,05, (5,02)).
Finally, let Y be a closed ¥i-uniformly attracting set at time t for o. Since
dist (Us, &, (t,7,B),Y) = dist (Ugl’Tz(t)gz (0,7 —t,B) ,Y) — 0, as 7 — —o0, (10)

the minimality property of Oy, (T3 (t) o2) implies Oy, (t,02) C Y.
Conversely, let the family of sets {Ox, (t,02)},cp be a ¥i-uniform global attractor of the MDP {U, }

for each fixed o3 € X5 in the sense of Definition 9. It is obvious that the family of sets {Oy;, (02)}02622 =
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{O5, (0,02)},,cx, i Yi-uniformly attracting and satisfies the minimality property. For the semi-
invariance property we have

Ox, (Tz (t) 02) = Ox, (0,12 (t) 02) = Ox, (t,02) C Us, 0, (t,7,0Ox, (1,02))

= UE1702 (tv T, @El (07 T (T) 02)) = U21,02 (ta T, 621 (T2 (T) 02)) .

It remains to prove the equality Oy, (t,02) = Ox, (Tk (t) 02), for any t € R, 09 € 3. Since Oy, (t,02)
is minimal and, in view of (9), Ox, (T2 (t)o2) is Xi-uniformly attracting at time ¢ for o2, we get
Oy, (t,02) C Og, (T2 (t)o2). The converse inclusion Ox, (Tz (t)02) C Ox, (t,02) follows from (10)
and the minimality property of O, (T3 () 02). =

Remark 39 We note that if the sets Ox, (t,02) are closed in the second statement, then Proposition
37 implies that the condition Oy, (t,02) = Ox, (0,15 (t) 02) is satisfied. This is the case where the sets
O, (t,02) are compact.

Theorem 40 Let X be a complete metric space in which every compact set is nowhere dense, (T'1) hold
and let (8) be satisfied. Then the following statements hold:

1. If for all T < 0 and o9 € 3y the graph of the map x +— Us, 4, (0,7, x) € P(X) is closed, then there
exists the X1 -uniform global attractor {Ox, (02)}. Moreover,

@21 02 U wgl 0 O’Q,B)#X,
BeB(X)

and for each t € R, 09 € X9, Ox, (02) is a Lindeldf, normal space. It is locally compact in some
topology Tq,, which is stronger than the topology induced by X in Ox, (02).

2. If, in addition, 31 is a compact metric space, the map
Y1 x X 3 (01,2) — Upy 0, (0,7, 2) € P(X)

is upper semicontinuous for any T < 0, o9 € 3o, U, has connected values for anyo € X, (0,7) € Ry,
x € X, ¥ is a connected space and

Ox, (Ta (1) 02) C By (02), for all T <0,

where By (02) is a bounded connected set for any o9 € Yo, then the set Ox, (03) is connected for
any oo € Y.

Proof. In view of Proposition 34 Lemma 19 the conditions of the first statement are equivalent to
those of Theorem 11. Then the family

Ox, (t,02) U wy, (t,02,B)
BeB(X)

is a Xp-global attractor in the sense of Definition 9. It follows from Proposition 35 the equality

621 t 0'2 U wgl t , 09, )Z U Wy, (O,Tg (t)O'Q,B):ezl (O,TQ (t)O'Q). (11)
BeB(X BeB(X)

The first statement is then a consequence of the first statement in Proposition 38.
For the second statement we note that using

621 (t-i—T,O’g) :G)Zl (O,TQ <t+T)02> :@El (TQ (t+T)0'2)

= @El (T2 (T) Tg (t) 0'2) C Bl (T2 (t) 0'2), for all 7 § 0,

and Lemma 19 we obtain that the conditions of the second statement of Theorem 11 are also satisfied.
It follows that the sets Oy, (02) are connected. m

Similarly, we can obtain the following consequence of Theorem 17.
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Theorem 41 Let us suppose that for all (0, s) € Ry and o9 € 3y the graph of the map x — Us, », (0,s,2) €
P (X) is closed. If, moreover, for any o2 € g there exists a set D (02) € K (X), which is X1 -uniformly
attracting, then the set

Ox, (02) = |J ws, (0,02,B)
BEB(X)

is the X1-uniform global attractor of U,. Moreover, the sets Ox, (02) are compact and, if the conditions
of the second statement in Theorem 11 hold, then they are connected.

Finally, we have:
Proposition 42 Let the MDP U, be strict, 31 be a compact metric space and let the map
Y1 x X 3 (01,2) — Upy 0, (0,7, 2) € P (X)

be lower semicontinuous. Then the global attractors obtained in Theorems 40 and 41 are invariant, that
is, Ox, (T2 (t) 02) = Us,,0q (t,7,0x, (T2 (7)02)), for all T < t,09 € Xs.

Proof. By using the equality Oy, (¢,02) = Oy, (0,13 (t) 02) (proved in (11)) and Proposition 18 we
obtain

Os, (T2 (t) 02) = Ox, (0,12 (t) 02) = O, (t,02) = Us, 0, (t,7,Ox, (1,02))

=Us, 0, (t,7,05, (0,12 (1) 02)) = Us, 0, (t,7,Ox, (T2 (1) 02)) -

3 Applications to nonautonomous evolution inclusions

Let Q C R™ be a bounded open subset with smooth boundary 92. Consider the parabolic inclusion

ou " p—2 .
e =D ie 8%7; ( 3; 5;) € filt,u)+ f2(t,u) + g1 (t) + 92 (1), in @ x(7,7T),
U |t:7': U,

where 7 € R, p > 2, fi : RxR — C, (R), i = 1,2, g1 € Lo (R, L2 (Q)), g2 € LY (R, Ly (Q)) and the
following conditions hold:

(F1) There exists C' > 0 such that
dist g (f1 (t,u), f1(t,v)) < Clu—0v|, forallt € R,u,v € R.
(F2) For any t,s € R and u € R, it holds

dist i (f1 (,u), f1 (s,0)) < L(Jul) a (|t = sl),

where « is a continuous function such that o (t) — 0, as t — 0T, and [ is a continuous nondecreasing
function. Moreover, there exist K1, K5 > 0 such that

[I(u)| < K1+ Ks |u], for all u € R.
(F3) There exist D € Ry, vy € R for which
|f1(t,v0)l . < D, forallt € R,

where [f1 (t,v0)|, = sup [{].
CEf1(t,v0)
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(F4) There exist ay (t),az2 (t) >0, a1 (), a2 (-) € LY (—00,00), such that

sup |yl < ay (t) + a2 (¢) |ul, for all u,t € R.
yEfa(t,u)

(F5) For each t € R, the map f5 (¢,) is upper semicontinuous.
(F6) For each s € R, the map f (-, s) is measurable.

(F7) If p =2, there exist € > 0 and M > 0 such that
yu < (N —e)u + M, for all u € Rt € R,y € fi (t,u) + fo (t,u),
where \; is the first eigenvalue of —A in H{ (Q).

(F8) There exist Ry, Ra, R3 > 0 such that

lgz (B)ll 1,0y < By + Ra ||, for a.a. t € R.

(F9) If p > 2, there exist R4, R4, Rg > 0 such that

la; (t)] < Ry + Rs [t|™, for aa. t e R, i =1,2.
Our aim is to apply the abstract results of the previous section to inclusion (12).

3.1 Abstract setting: construction of the family of multivalued processes

First let us construct the sets X1, 5. The set 31 will be defined exactly in the same way as in [17]. We
shall briefly recall how ¥ is defined.

Let W be the space C, (R) endowed with the Hausdorff metric p (x,y) = dist g (z,y). The space
W C K (R) is complete.

For any ¢ € W let ||, = max ly| . Define also the space

M={peCR,W): ¢ ()], <Di+Dslvl},
where the constants Dy, Dy are such that
|y‘ §D1+D2 |U|, for alluER,téR,yé fl (tvu)v

(see [17, Lemma 12].)
If we take K; = [—R;, R;], where 0 < N; < Ny < ... < N,, — 00, we have " — 1 if and only if

‘Ir|1<a]>\<r disty (Y™ (v),¢ (v)) — 0, as m — oo, for all Nj.

The space M C C (R, K (R)) is complete. Let ® C M be the set
O ={ypeM:distyg (¢ (u),y (v)) <Clu—0v|, forall u,v € R},
where C' is defined in (F'1). This set is compact.
Recall that the hull of f € C' (R, M) is defined by

H(f) = ce@am {f (- +h):heR}.

Definition 43 The function f € C (R, M) is said to be translation-compact if its hull H (f) is compact
in C (R,M).

Lemma 44 The function fy is translation-compact.
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Proof. It follows the same lines as in [17, Lemma 15] but changing R, by R. m

Since g1 € Loo (R, Ly (€2)), in the same way as in [17] we obtain that the symbol o1¢ (¢t) = (f1 (¢,), g1 (¢¥))
is translation-compact in the space C' (R, M) x L¥% (R, Ly (Q)), where LS (R, Ly () is the space

LYe (R, Ly (Q)) endowed with the weak topology. The hull of this symbol will be denoted by ¥; =
H(f1) x H(g1), where H(g1) = clpioe @ ,)) 191 (- +h) : h € R}. On the other hand, for any g,, €

H (g91) we have that

190111 &, 2oy < Co = g1l (e, La)) - (13)

(See [17, Lemma 12].) It is straightforward to check that for any f,, € H (f1) conditions (F1) — (F'3)
hold. We note that all the constants and functions in (F1) — (£'3) do not depend on oy € ¥;.
The set 37 is then a compact metric space and in the same way as in [17, Lemma 11] we can prove
that Ty (h) 1 C X4, for all h € R, where T (h) is the shift operator, that is, T (h) o1 (t) = o1 (t + h).
For the set Y5 we put

Yy = U (fa(-+h),92(-+h)).

heR

It is clear that T (h)3a C Xg, for all h € R, and also that if o2 = (fs,,90,) € 3o, then f,, satisfies
(F4) — (F6) and (F9), whereas g,, € LY¢ (R, Ly (Q)) satisfies (F8). We note that in this case the
functions aq, as and the constants R; can depend on os.

Finally, we note that for any o € ¥ = ¥; x X5 condition (F'7) holds (with the same constants, which
do not depend on o).

Now let X = Ly (Q) with the norm ||| y and the scalar product (-,-). Consider the abstract evolution
inclusion

du (t)
{ " €A + B (tu(). t€ roe). 14

where 0 = (01,02) € S and A: D(A) C X — 2% F, : R x X — 2%, are multivalued maps defined as
follows:
P72 ou
81}1‘ ’

D(A) = {u EWIP(Q): A(u) € Ly (Q)},

ou
X

0

A(u)zzaii (

F, (tu)={ye X :y(z) € fo, (t,u(x)) + go, (t), a.e. on Q},
Fyy (b)) = {y € Xy (2) € fop (b1 (2)) + g (1), a6 0m O

Fa(t,u) =Fy, (t,u)JrF,,Q (t,u).

It is understood that the map F, is defined for a.a. t € R.
The operator A satisfies the following properties (see [16, Section 3.2]):

(A1) The operator A is m-dissipative, i.e. for any yi,y2 € D(A), & € A(y;), ¢ = 1,2, there exists
J(yi, &) € J (y1 — y2) such that

<& =69, ><0,

and Im(A — M) = X, for all A > 0, where J: X — 2X" is the duality map defined by

T(y) = {¢ € X* [<y,& >= Iyl = ll€]%-}, for any y € X.
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(42) D{A) = L, (9).
(A3) A generates a compact semigroup S.
For F,, it holds (see [17, p.395 and Lemma 18)):

(Gl) F,, : Rx X — C,(X), for all 01 € ¥; (recall that C, (X) is the set of all nonempty, closed,
bounded, convex subsets of X).

(G2) For any (T,7) € Ry, z € X, 01 € ¥ the map ¢t — F,, (¢, x) is measurable and
distg (Fo, (t,21),Fy, (t,22)) < C|lxr — 22|y, for all 21,20 € X, t € R, 01 € X;.
(G3) For any x € X there exist y;, 7, > 0 such that
[ Fo, (8 2)]l . <71+ 72 7]l x + Co, ae t €R, forall o € ¥y,
where || K|, = sup,cf [|yllx and Cp is taken from (13).
Define the map ﬁgz by

F,, (t,u)={y € X : y(z) € fo, (t,u(x)), a.e. on Q}.

We know from [12, Proposition 2.5] that, for any fixed ¢ € R, the map u — F,, (t,u) € C, (X) is
w-upper semicontinuous. On the other hand, in view of (F'4) we get

Il < [ on )+ (1) u)*do < 2 (o (1 (9) + 03 1) Jul,)

1 2 ~
<2 (oq () (1 ()2 4+ o (2) ||uHX) , for all y € F,, (t,u) and a.a. t € R,

so that there exist s (), a2 (t) >0, &y (+), a2 () € LY (—00,00), such that

Hence, for F,, we have:

F,,(t,u)

H <@y () + a2 () |ully, forall u € X and a.a. t € R. (15)
+

(G4) F,, :Rx X — C, (X), for all o5 € X.
(G5) For any fixed t € R and o5 the map u — Fy, (t,u) is w-upper semicontinuous.

(G6) For any o4 € X we have

1Fo, (8 u)|ly < (t) + e () [|ullx + 190, (B)]x, for all u € X and a.a. t € R,

Let us now study the properties of the map F,.
Lemma 45 The map F, satisfies:
(S1) F, :Rx X — Cy (X), for all 0 € X.
(S2) For any fixed t € R and o € ¥ the map u — F, (t,u) is w-upper semicontinuous.

(53) For any o € % there exist 3, By >0, 3,8, € LY¥° (—00,00) (depending on o3 but not on o1), such
that

1o (tu)ll . < By (t) + B (t) [|ullx , for all u € Xand a.a. t € R.

(S4) For any (T,7) € Ry, z € X, 0 € X, the map t — F, (t,x) has a measurable selection.
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Proof. For (S1) note that it follows immediately from (G1) and (G4) that F, has non-empty,
bounded, convex values. Finally, for the closedness take a sequence y, € F, (t,u) such that y, — v.
Note that y, = x,, + 2, where z,, € F,, (t,u),z, € F,, (t,u). Passing to a subsequence, if necessary, we
obtain that z, — x, z, — z weakly in Ly (). Since Fy, (t,u), Fy, (t,u) are closed and convex, they are
weakly closed, so that x € F,, (t,u),z € F,, (t,u). Hence, y =z + z € F, (t,u).

For (52) note that in view of (G2) and (G5) for any € > 0 and v € X we have

dist (Fy (t,u), Fy (t,v)) = dist (Fy, (t,u) + Fy, (t,u), Fy, (t,v) + Fs, (t,0))

< dist (Fy, (t,u), Fy, (t,0)) + dist (Fy, (t,u), Fy, (t,v)) < e,

provided that |Ju —v|| < 6 (e,v).
Further, by (G3) and (G6) we get

16 (6wl < 71+ 72 llullx + Co+an () + a2 (@) lullx + 190, @)l x

so that (S3) holds.

Consider now (S4). First let us prove that the map Fi, (-,u) has a measurable selection for all
o9 € Yo, u € X. Take first a constant function u (z) = u € R. The map t — f5 (¢,u) is measurable by
assumption (F6), so that it has a measurable selection ¢ (t) (see [1, Theorem 8.3.1]). Define the map
G:R — Ly(Q) by G(t,x) = g(t), for all z € Q. We claim that G (¢) is a measurable selection of
F,, (,u). Indeed, for any v € Ly (€2) we have

(G(t),v):/Qg(t)v(fc)dwzg(t)/ﬂv(x)dx:g(t)vo-

Since the last map is measurable and the space Lo (€2) is separable, G (t) is a measurable map (see [22]).
The inclusion G (t) € F,, (t,u) is obvious. Further, let u be a step function, that is,

uy, if z € Qy,

u(z) = :
U, If 2 € Q.

For each u; we can take a measurable selection g; () of the map fa (¢, u;). Define the map G : R — Ly (Q2)

by

g1 (1), if x € Oy,

G(t,x) =

gm (t), if x € Q.

We claim that G (t) is a measurable selection of F,, (-, u). Indeed, for any v € Ly () we have

€00 =3 [ a®v@d=>a .

so that G (t) is measurable and again the inclusion G (t) € F,, (t,u) is obvious.
Further, take a sequence of step functions u,, converging to u in Lo (). In view of (15) the sequence
of selections G, (t) € Fy, (t,uy) satisfies the inequality

1Gn Dl < ||Fos ()

o S ) +az ) funllx < ar () +a2(t)C.
Hence, choosing a subsequence if necessary we can assume that G,, — G weakly in Lo (7,7T; Lo (Q2)) .

We have to prove further that G (t) € F,, (t,u), a.e. on (7,T). In view of [19, Proposition 1.1] we
have

G (t) € N _1C0 Up>m Gy, (t), for a.a. t € (1,7).
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Fix ¢ € (7,T). Since the map u — F,, (,u) is w-upper semicontinuous (see (G5)), we have
dist (Gn (t), F,, (t,u)) — 0, as n — oo.
Hence, the convexity of the set f‘oz (t,u) implies that for any 0 > 0 there exists ng such that
dist (@ Un>ne Gn (1) E,, (t,u)) <6, if n > nyg.

Therefore, the closedness of F,, (t,u) gives G (t) € F,, (t,u), a.e. on (7,T), as required.
By (G2) the map t — F,, (t,u) is measurable, so that it has a measurable selection K (¢) (see [1,
Theorem 8.3.1]). Hence, the map

n(t) = K(t)+G(t) + go, (1)
is a measurable selection of F, (t,u). m

Now we can construct the multivalued process corresponding to (12).

Definition 46 The continuous function u, (-) € C ([r,T],X) is called an integral solution of (14) if
Ug (7) = ur and there exists 1 (-) € Ly ([7,T],X) such that I (t) € F, (t,us (1)), a.e. on (7,T), and for
any & € D(A), v e A(€) one has

e (8) = €1% < lluo(s) —&lI% +2/ (U(r) +v,uq(r) = &) dr, t > s. (16)

It follows from (A1) — (A2), (S1) — (S4) that for any u, € Lo () there exists at least one integral
solution u, to (14) for any T > 7 (such that u, (¢t) € D (A) for a.a. t € (7,T)) [20, Theorem 2.1]. We
shall denote any integral solution by u, (-) = I (u;)(-). For a fixed ¢ € ¥ let D, ; (x) be the set of all
integral solutions corresponding to the initial condition u (7) = .

For any integral solutions uy () = I (u;) 11 (+), vo () = I (v;) 2 (), the following inequality holds

[uo (t) = vo ()l x < lluo(s) —vo ()l x +/ 1 (r) = Lo (r) || dr, t > s. (17)

In the sequel we shall write u instead of u, for simplicity of notation if no confussion is possible. We
shall define the map U, : Ry x X — P (X) by

U, (t,7,2) = {2 : there exists u(-) € Dy (z) such that u(t) = z}.
Proposition 47 For eacho € X, he R, 7 < s <t, x € X we have

Uﬂ' (t757UO' (577_71’)) = UO' (t’TaI)7

UT(h)o (tv T, SU) = Ua (t + ha T+ ha SU) .
Hence, U, is a multivalued process for each o € ¥ and condition (T'1) holds.

Proof. It follows the same lines of [17, Proposition 4]. m

3.2 Existence of the global ¥;-uniform attractor

We shall check further that the conditions of Theorem 41 are satisfied.
First we shall prove that the graph of the map U is closed.

Proposition 48 For all (0,7) € Ry and o2 € Xy the graph of the map x +— Us, o, (0,7,2) € P(X) is
closed.
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Proof. In view of Proposition 16 it is sufficient to prove that the map
Y1 x X 3 (01,2) — Upy 0, (0,7, 2) € P (X)

is closed for any (0,7) € Ry, 02 € Xs.
Let yp, € Uy, .05 (0,7,u2) be such that

Yo — yin Lo (Q),
ul — u, in Lo (),

O1ln = (fUln7gl71n) — 01 = (f<717gcfl) inC (RvM) X LIQK:SU (R’ Ly (Q)) :

We have to prove that y € Uy, », (0,7, up).

There exist sequences u, (-) = I (ul) i, (+), I, (8) € Fu,, 0, (S,un (s)), ae. in (7,0), such that y, =
Uy, (0).

In view of (53) we get

lln ()l x < [Fo1, .00 (5 un ()]l < 51 (s) + B2 () [lun (s)llx , ae. on (7,0), (18)

where the functions 3;, 3, may depend on o9, but not on oy,
We shall show first the existence of a function m (-) € Ly (7,0), m (s) > 0, such that ||I,, (s)|| x < m(s),
a.e. in (7,0). Let us introduce the sequence v, (-) = I (u;) !, () and let z () be the unique solution to

dz (t)
{ L AG@), o (0,7,
z(0) = ug.

Let 7o = max {||z (s)||x : s € [0,T]} and ry = 71 + 70, Where [Ju, —u}||, < 7y, for all n. From (17) we
have

[un (s) = 2 (s)llx < lluo — ugllx +/ 1l ()] ., dr

and then by (18),

lun ()L, <Nz, +71 +/S (81 (r) 4 Bo (r) [lun ()] x ) dr

<re+ Ky (7,5;) +/ By (1) [|un (S)HLZ dr.

Hence, by Gronwall lemma we have

un (8) x < (re + K1 (7,61)) exp (/ By (1) dr) =r(s), for all s € [r,0]. (19)
Therefore using (18) again we obtain

1ln (8)llx < B (8) + B2 (s)r (s) = m(s), ae. in (7,0). (20)

The sequence {l,,} is then precompact in the space Lo (7,0; L (2)) endowed with the weak topology.
Hence, it is precompact in the space L (7,0; Lo (©2)) endowed with the weak topology and, since the semi-
group generated by A is compact, this implies that the sequence {v,} is precompact in C ([7,0], L2 (2))
(see [11, Theorem 2.3]). We obtain that there exist subsequences such that

v, — v in C([7,0], Ly (),
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l, — 1 weakly in Lo (7,0; Lo (92)) .
Since I, — [ weakly in L (7,0; Lo (©2)), Lemma 1.3 from [19] implies v (-) = I (u,) [ (-). Using again (17)
we have ||uy, (s) —vn ()] x < |lug (s) —uo (s)|x, for all s € [r,0], so that w,, — v in C([r,0], L2 (Q))
and y = v (t). To conclude the proof we have to check that I (s) € F, (s,v (s)), a.e. on (7,0).

Since 1, — 1, 95y, — oy, weakly in Lo (7,0; Lo (2)), we have Iy, — 9oy, — Gos = dn (*) = 1= 9oy — o =
dy (-), weakly in Ly (7,0; Ly (Q2)) . Then we need to obtain dy (s) € Fy (5,0 (s)) = Fy (5,0 (5)) — go, (s) —
Jo, (8), a.e. on (7,0).

Fix s € (7,0) and denote F,, (5,v(s)) = F,, (5,0 (5)) — go. (), i = 1,2, dy () = dip (5) + daon (5),
where d;;, (s) € Lo (), i = 1,2, are such that

din () € ﬁgi (s,un (8)).

Note that since u,, (s) — v (s) in Ly (), passing to a subsequence if necessary u,, (s,z) — v (s, z) for a.a.
x € Q. Hence by (F1) and (F5) we have

dist (fi, (5,0 (5,2)) , for, (5,0 (5,2))) < C u (5,2) = v (s,2)| = 0,

dist (fo, (s,un (5,2)), fo, (8,0 (s,2))) = 0, asn — +oo,

for a.a. € Q. On the other hand, since {u, (s,z)} is bounded, that is |u, (s, z)| < C (z), for all n, and
foq, converges to f,, in C (R, M), we get

dist (fry, (5,1 (5,2)) , for (3.1 (5,))) = 0, as n — +o00,
for a.a. = € 2. Then

dlSt (dln (5, I) 5 fa'1 (Sa v (57 I)))
§ dist (f(n (Svun (875(:)) >fo’1 (S7U (S"T))) + dist (faln (S7u7l (S,.’Iﬁ)) ? fUl (S’u” (S’ x») - 07

dist (dan (5,%) , for (5,0 (5,7))) < dist (fo, (5,un (5,2)), fo, (5,0 (s,2))) =0, (21)

for a.a. z € Q.
In view of [19, Proposition 1.1] for a.a. s € (7,0) we have

d(s) € ‘F%l@ k‘f;n dy (s) = A(s).

n=

Fix s. Denote A, (s) = co kfj dy, (s) . It is easy to see that z € A(s) if and only if there exist z, € A, (s)

such that z, — z, as n — oo, in Ly (€2). Taking a subsequence we have z, (z) — z (), a.e. in Q. Since
zn € Ay (8), we get

where \; € [0,1], Zf\il A; =1 and k; > n, for all 4.
Now (21) implies that for any € > 0 and a.a. x € § there exists n (z, ) such that

di (s,z) Cla(s,x) —e,b(s,x) +¢], for all k > n,

where [a(s,z),b(s,2)] = fo(s,v(s,2)) = fo, ($,0(8,2)) + fo, (s,v(s,2)) (note that the map f, has
convex closed values). Hence,

zn (8,2) Cla(s,x) —e,b(s,z) +¢],
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as well. Passing to the limit we obtain
z(s,x) €la(s,z),b(s,z)] = fr(s,v(s,2)), a.e. on .
Further, note that

N(n) N(n)

Z Aidig; ( Z Aidog, (8) = 21 (8) + 220 (5)

and in view of (G3), the inclusion di, (s) € Fy, (s, ug, (s)), (13) and (19) we get

N(n)

N(n
o (9)lx < 3 Ailldue, ()5 < (s.uk, (5))],
i=1

<71+ 72 lluks ()l x + Co + llgor () <71+ 727 (5) + 2C0.

Hence, passing to a subsequence if necessary we have 21, (s) — 21 (s), weakly in Ly (). Mazur’s theorem
implies that

z1 (s) € Aeo U Z1n (8) .

m=1 n>m

Denote now Z,, (s) = co Og zin (8) . As before, there exist z,, € Z,, (s) such that z,, — 2z (s), as
n>m

m — 00, in Lo (). Taking a subsequence we have x,, (x) — 21 (z, s), a.e. in Q. Since z,, € Z,, (), we
get

Nl(m

Z Ai ZlnL 5

where A; € [0, 1], Zf\gl A; =1 and n; > m, for all <.
Now (21) implies that for any € > 0 and a.a. z € Q there exists m (x, ) such that

dig (s,z) Clay (s,z) —€,b1 (s,x) + €], for all k& > m,

where [a1 (s,2),b1 (s,2)] = fo, (s,v(s,2)). Hence,

N(n;)
Z1n; ( Z Yidi; (8) C lar (z) —&,b1 (x) +¢],
where Z 'y] =1, k; > n;, > m, and then

T (8,2) C a1 (8,2) — e, b1 (s,2) + €],
as well. Passing to the limit we obtain that
21 (s,2) € [a1 (s,2) ,b1 (s,2)] = fo, (s,v(s,2)), a.e. on Q.
_ Therefore, we get z(s) = z1(s) + 22 (s), where 2; (s) € F,, (s,v(s)), i = 1,2. Hence, d (s) € A(s) C
F, (s,v(s)), a.e. on (7,0). It follows that I (s) € F, (s,v(s)), a.e. on (7,0), as required.
Therefore, y = v (0) € U, (0,7,2). m

Corollary 49 For all (0,7) € Ry and o4 € g the map x — Us, 4, (0,7,2) has closed values.

25



Further, we shall check the existence of a compact ¥;-uniformly attracting set at time 0. For this aim
we shall use that integral solutions are in fact strong ones.
Indeed, consider the equation

du (t)
=A t L(t
{ CU = A+, (22)
u |t:‘r: Ur,

where ! € Lo ([7,T],X). The operator —A is the subdifferential of the proper convex lower semicontinuous
function

P
Ju N de, if u e Wy (Q),

400, otherwise.

W{ T fa

It is well known that if [ (-) € Lo ([7,T],X), then the integral solution u (-) to the problem (22),
which is unique, is in fact a strong one, that is, u () is absolutely continuous on compact sets of (7,T),
a.e. differentiable on (7,T') and satisfies (22) a.e. in (7,T) (see [16, Section 3.2]).

Therefore, if we take an arbitrary integral solution to (14), say u () = I (u,)l(-), then (S3) implies
that [ € Ly ([7,T], X), so that u is a strong solution to (22).

Lemma 50 For any o3 € Yo there exists a set By (03), bounded in X, such that for any B € B(X)
there exists T =T (B) < —1 for which

Us, 0, (=1,7,B) C By, forallT <T. (23)

Proof. Fix 02 = (fsy,90,) € Xa. First let p = 2. Take an arbitrary solution u (-) = I (u,) ! (-) defined
on [r,—1], where [ (t) € Fy, (t,u(t)) + Fo, (t,u(t)), 01 € X1 and u, € B € B(X). Multiplying (22) by
u (s) and using (F7), (F8) and (13) we have

- <
3 a2 B+l < 5 el + IVal%
2
< O — ) Jull% + M (@) + el 90, (9] + el 90(3)]1 ¢

< O = ) Jully + Mp (@) + (Co+ Bu+ Rals|™ ) [lul

(co YR+ Ry |s|R3)2
2¢ ’

€
< (M= 5) Il + Mu (@) +
where () is the Lebesgue measure of  in R™. Therefore,

(Co + R+ Ry \S\RS)Q

€

d
7 lulls + e Jlull < 2Mp(2) +
By the Gronwall lemma
lu (D% < exp(e(l+7) [lurllk
+/ exp (e (14 9)) (2Mu(Q)+E<Oo+R1+R2|S| 3) )ds,

so that the ball

Bi(02) = {y € X : |yl < VK (02) +a},
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2
with a > 0, K (02) = f__olo exp (e (1+s)) <2Mu (Q)+1 (C’o + Ry + Ry \5\R3> > ds, satisfies (23). In-
deed, we can find T (B) < —1 such that exp (¢ (1 + 7)) |Ju||% < o, for all T < T (B), u, € B.
Now let p > 2. Note that the operator A satisfies Poincaré’s inequality (—A (u),u) > ~v Hu||1£p >
D ||ull},, where v, D > 0. Multiplying (22) by u (s) and using (G3), (15), (F8), (F9) and (13) we have
1d

2 2
lull + Dllully < 52 lullx +yllullz, < I1Fo (s u ()l ullx

ld
2ds

< V2 (a1 () (0 (@) + a2 (s) Jull ) lullx + (12 + 72l ) el
+llullx g ()l + ullx ll9ma ()11
< (V2 (01 (9) () + a2 () lull ) + 71 + 72 llullx + Co+ llgoa(5)l1x ) lulx

2
< 1. (8) 12 () [lull
where 7; (t) > 0 are locally integrable functions with polynomial growth at most.
Using Young inequality and (F8) — (F'9) we obtain
D
2

1d ) d .5 D
o lully = 5 < 5o lully + 5l < na (9),

DN =

2
l[ullx +
where 5, K >0 and n4 (t) > 0 is a locally integrable function such that
5 ()] < 61+ 82 [t for aa. t € R, i = 1,2,

for some 6; >0, j =1,2,3.
The final part of the proof repeats the same steps of the case p =2. m

Remark 51 We note that T (B) does not depend upon o3, so that the rate of attraction is in this case
uniform with respect to this paramenter.

For any bounded set B, 05 € 5 and 7,t € R, 7 < ¢, let us introduce the set

M (B,o9,T,t)
={leLi(r,t; L2 (Q)) 1 us () =1 (u:)1(-),us € Do (ur), ur € B, 0 =(01,02), 01 € }.

Lemma 52 For any Ry > 0, 03 € ¥ and (t,7) € Ry, there exists R > Ry such that
”UEl,Uz (S,’T,’LL)”JF < Ra
for all T < s <t andu € X such that ||ul|yx < Ro.

Proof. Fix 02 = (fsy,95,) € Xa. First let p = 2. Take an arbitrary solution u (-) = I (u,) ! (-) defined
on [1,t], where [ (1) € F,, (r,u(r)) + Fy, (r,u(r)), o1 € 1 and u, satisfies |Ju,||y < Ro. Arguing as in
Lemma 50 we have

lu ()i < exp(e(=s+7)) [ucl%

S 1 RS 2
+/ exp (e (—=s+7)) 2MM(Q)+E(CO+R1+R2 7] ) dr
2 [ 1 Rs)? 2
< R0+/ exp (e (=7 +71)) <2Mﬂ(ﬂ)+8<CO+R1+RQ|S| 3) )dsZR,

forall T <s <t
For p > 2 the proof is similar. m
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Lemma 53 For any bounded set B, o9 € Yo and 7,t € R, 7 < t, the set M (B, 02, 7,t) is bounded in the
space Lo (7,t; Lo (2)) .

Proof. Let Ry > 0 be such that |ul|y < Ry, for any u € B. As shown before in Lemma 45 for any
o = (01,02) € ¥ there exist 3, By > 0, 31,8, € LY (—00,00) (depending on o2 but not on o1) such
that

15 (s,u0)ll . < By (5) + B2 (8) [Juo|lx » for all u € X and a.a. s € R.
Hence, for any | € M (B, 09, 7,t) one has

11(s)llx < By (s) + B2 (8) [[uo (5)]|x » for a.a. s € (7,1),

where u, () = I (u,)1(-). But Lemma 52 implies the existence of R > Ry such that ||u, (s)||y < R, for
any 01 € X1, 7 < s <t, uy (s) € Us (8,7, B), so that the statement follows. ®

Proposition 54 For any oo € Xy there exists a compact set D (o3) such that for any B € B(X) there
exists T (B) <0 for which

Us, 0, (0,7,B) C D(02), if T<T.

Proof. We take D (02) = Us, », (0, —1, By (02)), where By (02) is the set defined in Lemma 50, and
claim that it is the desired set. First let us prove that it is compact. Let y € Us, o, (0, —1, By (02))
be arbitrary. Then there exists u, () = I (ug)l(-), with o9 € X, ug € Bj (03), such that y = u, (0),
Uy (—1) = ug. Multiplying the equation

duy

= Alug) =1 (25)

by u, and using the inequality (—A (u),u) > 7 ||u|j1.,, for all uw € D (A), where v > 0, we have
1d
2 dt

for any D > 0.
The continuous injections Wy * (Q) € L, () C Ly () allows us to choose D > 0 such that D [u, )7, <

¥ luo (s)|51.0- Hence, integrating over (—1,0) and using Lemma 53 and Young inequality we obtain

o ()17, + 7 e ()10 < 12 (5)1, Nluor (5) ()7, + %D o (3)I1Z, »

||L2 — 2D

0 0
o ()2, + 27 / e ()l ds < C 4 / e () ds + ol (26)

where C' is some positive constant.
p
Recall that ¢ (u) = %Z?:l ‘ a%iuHL ,if u € WP (Q). Consider first the case where ug € D () =
WP (Q). In this case since I (-) € Ly (—1,0; Ly (Q)) , it is known (see [2, p.189]) that o (u (£)) is absolutely
continuous in [—1,0] and e (u(s)) = (acp (u(s)), du(s)), a.e. on (—1,0). Further, multiplying (25) by

ds
(1+5) L we have

2

(1 9)| o )]+ 049 oo le) < A+ G, e 0]
1 , 1 d 2
<30+ RN + 5049 G )]

Integrating by parts over (—1,0) and using Lemma 53 we get

/;< )

2 0

dsw(u(f(o»s/ o (u(s)) ds + K,

-1

e

Lo
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=

where K > 0. Using the fact that the norms [jul|};1., and (Z?_l ’
and (26) we have

2 | ivalent in W, (2
el are equivalent in Wy" (Q)
p

@ (s (0) < o (C+ uolly, ) + K. (27)

for some a > 0.

Let now consider the general case ug € Lo (2). We take uff — up with ul € D (¢), ufy € By (02). From
[19, Theorem 3.1] we obtain the existence of a sequence uy, (-) = I (ug)ln (), ln (8) € Fo(s) (8, un (5)),
such that u, — u, in C([-1,0], Ly (2)). Hence by (27) and using the lower semicontinuity of ¢ we
obtain

g (0)) < liminf o (un (0)) < o (€ +Juoll, ) + K

This implies that the set Us;, », (0, —1, By (02)) is bounded in the space WP (Q2). Since the injection
WP (Q) C La (2) is compact, the set D (o2) is compact.

Further, let B € B(X) be arbitrary. Lemma 50 implies the existence of some T (7, B) < —1 for which
Us, .0, (—1,7,B) C By (02), if 7 <T. Then by Proposition 47 we have

Uzhgz (O,T,B) = UZl,ag (0, —1,U21702 (—1,7’,3)) cD (0’2) .

We have proved that the family of semiprocesses generated by (12) satisfies all conditions of Theorem
41. We can then state the main result of this paper.

Theorem 55 If (F1) — (F9) hold and g1 € Lo (R, Ly (Q)), then the family of semiprocesses U, has the
Y1 —uniform global compact attractor Ox, (02).

Let us consider now the connectivity of the global attractor.

Theorem 56 In the conditions of Theorem 55, let fo = 0 and let there exist a non-decreasing map C (t)
such that ||g2 (t)|| x < C(t), for a.a. t € R. Then the set Ox, (02) is connected in X for each oo € Xs.

Proof. We have to check the conditions of point 2 in Theorem 40.

We have already seen that the set ¥ is compact. Let us prove that for each T > 7, U, (T, 7,-) has
connected values. It follows from the condition fo = 0 that F, satisfies (G1) — (G2). These properties
and (S3) imply that the set

M (ur,o,7,T)
={leLi(r,T;L2(Q)) : up (-) = I (us)L(-),up € Dy r (us)}

is connected in the space Ly (7,T; Ly (2)) (see [20, p.169]). Thanks to inequality (17) we have

T
lur (T) —ue (T)| x < / i (t) — 12 (t)]| x dt, for all Iy,ly € M (ur,09,7,T),
where w; = I (u;)l;,i = 1,2. Hence, the map L : L (7,7 L2 (2)) — Lo (Q) defined by L (I) = u(T) is
continuous. Since L (M (ur,0,7,T)) =U, (T,7,u;), Us (T, 7,-) has connected values.

The space X is connected. Indeed, first note that in view of (F'2) the map h+— Ti (h) f1 € C (R, M)
is continuous. Consider further the continuity of the map h — T (h) g1 € LY, (R, X). If, for example,
this function is not continuous at A = 0, then there exists a neighborhood U of g; in le‘)fﬂ (R, X) and
hn, — 0 such that g, (t) = g1 (t + hn) ¢ U, for all n (for the general case h, — h the proof is similar).
Take an arbitrary interval I = [7,T] C Rand ¢ € Lo (7,T; L2 (2)). Since the scalar product (g (), ¢ (t))
(in X) is measurable on any interval of R, Luzin’s theorem implies

(9n (1), (1)) = (9 (1), ¢ (1)) in measure.
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Therefore, choosing a subsequence if necessary, we get

(9n (8), 9 (1)) = (9 (1), (1)) ae. on (7,T).

By the inequality fTT |(gn (t) , (1)) dt < C and [15, Chapter 1, Lemma 1.3] we have

[ @@~ [ 6o.pw) .

Note that the compactness of H (g1) allow us to assume without loss of generality that g, — [ weakly
in LY¢ (R, X). It follows that | = gy, which is a contradiction. Then the map h —— T (h)oy €
C (R, M) x LS (R, X) is continuous on R, so that the set Uperoy (- + k) is connected. Hence, Y1, as
the closure of a connected set, is connected.

Further, let us prove for any oy € ¥ the existence of a ball containing the sets Ox, (T3 (h) o2) , for
h < 0. It is clear that for any oy = (fs,,ds,) there exists a non-decreasing function C (¢) such that
9oy ()] x < C (t), for a.a. t € R, and also that 972 (myos B < C(t), for all h < 0 and a.a. t € R. For
p = 2, arguing as in Lemma 50, we obtain

Ix

~ 2
d ) ) (Co +C (O))
75 Mullx +elluly <2Mu (@) + ~—F—,
for any w (-) = I (u,)1(-) defined on [r,0], where [ (t) € F,, (t,u(t)) + F,, (t,u(t)), and any o1 € ¥,
oo =T (h)oa, h <0, and u, € B € B(X). It follows that the closed set

Bi={yeX:|ylx < VK +a},

) _
with o > 0, K = MU+ (C°+C( )’ , is attracting at 0 for any g9 = T5 (h) 02, h < 0. The minimality

property of the global attractor 1mphes then that Oy, (T2 (h) 02) C By, for h < 0. For p > 2 the proof is
similar.

Finally, let us prove that (o1,2) — Uy, o, (t,7, ) is upper semicontinuous. Suppose that for some
(01, x) the map is not upper semicontinuous. Then there exists a neighborhood O of Uy, 4, (t,7,2) and
sequences z, € Uy, o, (t,7,2n), 01, — 01 in C (R, M) x LYS (R4, Lz (), ,, — @ in Lo (), such that
zn ¢ O. Repeating the same lines of the proof of Proposition 48 we can prove that for some subsequence
Zny — 2 € Uy, .0, (8,7, ), which is a contradiction.

Hence, it follows from the second statement in Theorem 40 that the sets Oy, (02) are connected. m

4 Stochastic non-autonomous evolution inclusions

4.1 Additive white noise case

Consider the following non-autonomous differential inclusion perturbed by an additive white noise

0 w
aqz Auef(tU)+g1()+g2()+Zz 1¢dz ,Ol’lDX(T,T),
u|op=0, (28)
U|t = Ur,

where 7 € R, D C R” is an open bounded set with smooth boundary 0D, ¢, € D(A) (where A (u) =
Au, D(A) = H} (Q NH*(Q),i=1,...m, f:RxR — C,(R), i = 1,2, 1 € Lo (R,La(D)),
g2 € LY (R, Ly (D)) . We write ¢ (t) = 31", ¢,w; (t). Consider the Wiener probability space (Q,F,P)
defined by

Q={w=(wi(),wn())€CRR")|w(0)=0},

equipped with the Borel o—algebra F and the Wiener measure P. Each w €  generates a map ¢ () =
Yt gawi (1) € C (R, Ly (D)) such that ¢ (0) = 0.
Suppose that f satisfies (F'1) — (F3), (F7), whereas g5 satisfies (F'8).
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4.1.1 Construction of the family of multivalued processes

Firstly, let us construct the sets X1, ¥5. The set 31 will be defined in the same way as in the previous
section, that is, 31 = H (f) x H(g1), where H (g1) = clpioe @ p,(py) 191 (E+ 1) : h € R} and H(f) =

ClC(]R,M) {f ( + h) he R} .
Then Ty (h) 31 = ¥4, for all h € R, where T} (h) is the shift operator, that is, Ty (h) o1 (t) = 01 (t + h) .
For the set Yo we write

22 = 22 X Q,
with
Yo = 92 (-+h).
We define the map 0, : Q — Q as follows
Osw= (w1 (s+-) —wi (s),...;wm (s++) —wn (s)) €L

Then the function ¢ corresponding to 6w is defined by ¢ (7) = ¢ (s + 7)—C (s) = S b (wi (s+7) —w;i(s)).
The operator T is defined as before. We define the shift operator T : 39 — Yo as

Ty (h)oy = To(h)(Fa,w) = (Fa(- + h),Opw), for all 55 € Xy, w € Q.
Thus, Ty (h) B2 = Xy, for all h € R, and if 01 = (fo,, 9o,) € B1, gop € Xo, then f,, satisfies (F1) — (F3),
(F7) and g,, € L¢ (R, Ly (2)) satisfies (F'8).

To study (28), we make the change of variable v (t) = u (¢) — ¢ (t). Then inclusion (28) turns, for each
w € {2 fixed, into

{ € A0 () + £ (6 () +C(0) + g1 ()02 (1) + 572y Adyun (1), o)
vlop=0, v(T) =v, =u, — (7).

Now let X = Lo (©2). Consider the abstract evolution inclusion

dv (t)
{ S e A ) + Fo (o 1), telr00), (30)

where 0 = (01,00) € X and A: D(A) C X — X, F, : R x X — 2%, are maps defined as follows:
Afu) = Au, D(A) = HL(9) 0 H2(9),

F, (t,w,u) = go, (t) + Fy, (t,w,u),

with

FUl (t’wvu’) :FU'I (t7u+<(t))+A<(t)v

where Fy, is as in the previous section. It is understood that the map F, is defined for a.a. ¢t € R.
It follows from (G3) the existence of ; > 0 such that

|

It is easy to see that F,, satisfies (G1) — (G2). As before, the operator A satisfies (A1) — (A3). Note
that (S1) — (S4) from Lemma 45 hold for F,.

We now construct the multivalued process corresponding to (28). It follows from (A1) — (A3), (S1) —
(54) that for any v, € Lo (§2) there exists at least one integral solution to (30) for any 7' > 7 [20, Theorem

Foy (b, )|, <747 lullx 472 IC O + 1A Ol +Co, forallue Xt € R, weR (31)

31



2.1]. We shall denote this solution by v, () = I (v;)I(-). For a fixed 0 € X let D, - (z) be the set of
all integral solutions corresponding to the initial condition v (1) = x. We shall write v instead of v, for
simplicity of notation if no confussion is possible.

We define the map U, : R; x X — P (X) by

Uy (t,7,2) = {z+ ((t) : there exists v (-) € Dy (x — ( (7)) such that v (t) = z}.

Also note that, for a fixed 7 € R and arbitrary ¢t € Ry, z € X, 0 € ¥ we can define the cocycle
(Kloeden and Schmalfuss [13], Caraballo et. al. [5, 6]) G, : Ry x ¥ x X — P (X) by

G, (t,o,2)=U, (t+7,7,2).
Proposition 57 For eacho € X, he R, 71 <s<t, x € X, we have

UT(h)o (ta T, {ZZ) = Ua (t + ha T+ h’ﬂ ‘T) .

Uy (t,8,Uy (s,7,2)) =Uy (t,7,2),
Hence, U, is a multivalued dynamical process for each o € ¥ and condition (T'1) holds.

Proof. In view of Lemma 19 we have to prove only the inclusion U, (t 4 h, 7 + h,x) C Uppyo (£, 7, 7).
Given n € U, (t+h,7+ h,z), where h € R, there exists y(-) € Do rt+n (x—C(T h)) such that
n = (t+h)—|—((t+h). Let 2(s) = y(s+h) +C(h), l.(s) = l(s+h) — AC(h), where [(s) €

Fo, (s,y(s) +C () +AC(8) + 9o, (5), ae. on (T +h,t +h),y(-) =1 (z— (7 +h))L(), so that we have
) € Fyy (54 By (s B) + C (5 1)+ AC (3 + ) — AC (R) + gy (5 1) = Pry g (5.2 () +C (5)) +

(
AC (8) + 915(h)es (8) = Frnyo (5,2(s)), a.e. on (7,t), where Z corresponds to fpw, and z (1) = = —
C(r+h)+¢(h) =z —C(r). We can show that z(-) € Drhyo,r (:c - E(T)) as follows

Z

2(8) = €% = lly(t +h) + ¢ (h) = El% < lly(s +h) + ¢ (h) =€l

t+h ¢
42 [ 00) = ACH) + AE )+ C ) = € dr = ete) €l +2 [ (1) + At () -
for any £ € D (A). Therefore, n =y (t+h) +C(t+h) =2(t) +C(t+h) —((h) € Uppys (t,7,).

In a similar way as in [5, Proposition 4] we can prove Gy(t + s,0,2)) = Go (t,T (s) 0,Go (s,0,2))
(the only difference in the proof is that we have to take into account the translation on time of the
map F,). Using the first property we obtain U, (t,7,2) = Up(r)s (t = 7,0,2) = Go (t = 7,T (1) 0,2) =
Go(t—5,T(s),Go(s—7,T(7),2)) = Up(s)s (t —5,0,Up(r)o (s — 7,0, a:)) =U,(t,8,Us (8,7,2)). W

4.1.2 Existence of the global ¥;-uniform attractor

As in the previous section, the conditions of Theorem 41 providing the existence of a global 3;-uniform
compact attractor hold.

Theorem 58 In the preceedings conditions, the family of semiprocesses U, has the 31 —uniform global
compact attractor Ox, (032).

Proof. First we shall argue as in Lemma 50. Fix 02 = (fs,,90,) € X2. Take an arbitrary solution
0 (30), v () =1 (ur — ¢ (7)) L(-) defined on [r, —1], where I (s) € Fy, (s,v(s) + ((s)) + AC(5) + go, (5),
o1 €Y1 and u, € B € B(X). Denote I (s) = 1(s) — AC () — go, (5) — go, (s). Multiplying (22) by v (s)
and using (F'7), (F8), (G3) and (13) we have

1 d
ol + A flv ()1 s S— ||v||X + Vo (s)|%
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= (1), 0(9) + (AC(5) + 9o, () + 9oz () 0 (5))
= (1), 0 (5) + () = (1), € (5)) + (AC () + o (5) + G () 0 (5))
< (= [0 () + C (I + M (@) + (12 +72 0 ()]l +72 1€ (5) L +2C0) € (5)]1x

+(Cot Ry + Ba|s™ 4+ 1AC ()1 ) 10 (9)]1

€ 2
< (M=) Il + Ky + Ka € ()% + K (Co+ R+ Ralsl™ +1AC (5)l1x )

where p () is the Lebesgue measure of  in R™. Arguing as in Lemma 50 and taking into account that the
map ( (s) satisfies limsﬁm@ =0, for a.a. w € ), we obtain that for any o, € 35 there exists a radius
Ry (02) such that for any B € B(X) there is T =T (B, 02) < —1 for which |[v (—1)|y < Ro, as soon as
7 < T(B). Hence, [[v(-1) + ¢ (=1)[lx < Ro +[|C (=)l x = Ro(02), so that ||[Us, 4, (=1,7, B)||, < Ro.

Using the previous inequality and arguing as in Lemma 52 we prove that for any Ry > 0, 05 € ¥ and
(t,7) € Ry, there exists R > Ry such that ||v(s)||y < R, forall 7 <s <t veD,,(ur) and u, € X

such that [[u.||x < Ro. Hence, ||Us, o, (s, 7,u)||, < R+[IC(s)llx - < R(o3).
Note that if we define,

Vo (t,7,2) = {7 : there exists v (-) € Dy~ (z) such that v (t) = 2z},

then, for 7 < 0, U, (0,7,2) = V, (0,7, 2). Since F, satisfies (S3), we can prove exactly in the same way
as in Proposition 54 that there exists a compact set D (o3) which is ¥;-uniformly attracting..

Finally, we have to prove that the graph of (01,2) +— Uy, o, (0,7,2) is closed. As in the proof of
Proposition 48 we take sequences uy, () = I (u — C (7)) 1 (+), ln (8) € Fyy, (s,un (8) +C(s)) + AC(s) +
Jo, (8), a.e. on (7,0), such that y, = u, (0) — y, u — ur, 01, — 01. Repeating the same steps of the
proof of Proposition 48 we obtain v () = I (u, — ¢ (7)) (-) such that u,, — v in C([r,0],X) and I,, — !
weakly in Lo (7,0; Lo (D)).

If we prove l(s) € Fyp, (s,v(s) +¢(s)) + AC(S) + g0, (), a.e. on (7,0), then y € Uy, 4, (0,7, ur).
This is equivalent to prove [ (s) — go, (8) — go, (8) — AC(s) = d(s) € Fy, (5,v(s) +((3)) — g0, (8) =
Fo, (s,0(s) +C(s)).

Fix s. Passing to a subsequence and using (F'1) we have
dist (fo, ($,un (8,2) +C(8)), fo, (8,0 (8,2) +C(5))) < Cluy (s,2) —v(s,z)| — 0, for a.a. z € D.

On the other hand, since {u, (s,z)} is bounded, that is |uy, (s,2)| < C (z), for all n, and f,,, converges
to fy, in C (R, M), we get

dist (foy, (S,un (s,2) +C(8)), fo, (s,un (s,2) +((s))) — 0, as n — 400,
for a.a. € D. Then for d,, (s) =1, (8) = oy, ($) — go, (8) — AC () it holds
dist (dn (s,2) , fo, (5,0 (s,2) + ¢ (s))) < dist (fo, (8,un (5,2) +C(5)), fo, (5,0 (s,2) +((s)))

+dist (foq, ($,un (8,2) +C(8)), for (8,un (s,2) +((s))) — 0, for a.a. x € Q. (32)

As shown in Proposition 48, there exists a sequence z, such that z, (s) = Zfi(ln ) Xidg; (s), where
i € [0,1], Zf\il A; =1 and k; > n, for all ¢, and z, (s,z) — d(s,z), a.e. in D. Now (32) implies that
for any € > 0 and a.a. € D there exists n (z,¢) such that

di (s,z) C a(s,x) —e,b(s,x) +¢], for all k > n,
where [a (s,2),b(s,z)] = fo, (s,v(s,2) + ((8)) (note that the map f,, has convex closed values). Hence,
zn (8,2) Cla(s,x) —e,b(s,z) +¢],
as well. Passing to the limit we obtain
d(s,z) € la(s,z),b(s,z)] = fo, (5,0 (s,2) +C(s)), a.e. on Q.
Thus, we can apply Theorem 41. m

33



4.2 Multiplicative white noise case

Finally, consider the following non-autonomous differential inclusion perturbed by a linear multiplicative
white noise in the Stratonovich sense

0 w
S5~ AuE f(tu)+ g0 (0)+ g2 (1) +uo UL, on D x (r,1),
u lon=0, (33)
u|t = Ur,

where 7 € R, D C R” is and open bounded set with smooth boundar D, f: R xR — C, (R), i = 1,2,
g1 € Loo (R, Ly (D)), g2 € LY (R, Ly (D)) . Consider the Wiener probability space (£2, F,P) defined by

Q={w=w()eCERR)[w(0)=0},
equipped with the Borel o—algebra F and the Wiener measure P.
Suppose again that f satisfies (F'1) — (F'3), (F'7), whereas go satisfies (F'8).
4.2.1 Construction of the family of multivalued processes
We define ¥ = ¥ x g =31 X 22 x  and T7, T, exactly as in the previous section, with 6, : 2 — Q
Osw=(w(s+-)—w(s)) €.

Thusa if oy = (fcr1vgo1) € 217 9o € i:27 then fcn satisfies (Fl) - (F3)7 (F7) and 9o, € Ll2aC (RaLZ (Q))
satisfies (F'8).

To study (33), we make the change of variable v (t) = y(t)u (t) , with y(t) = v (w,t) = e=*® (we shall
omit w if no confusion is possible). Then inclusion (33) turns into

{ EeAv()—Fv(t)f(tﬁ_l(t) ())+7( )(g1 () + 92 (1)), (34)
v |3D: 07 U(T) ( )
Now let X = Lo (2). Consider
{ dzh(f) € A (D) + Fy (t,0(t), t € [7,00), (35)
v (T) = Ur,

where 0 = (01,02) € X, A: D(A) C X — X is defined as before, and F, : R x X — 2% is defined as
FCT (tawvu) :’Y(t)g(m(t)—’_ﬁdl (taw7u)a
with
ﬁm (t,w,u) = ’Y(t) Fy, (ta'}/il (t) u) >

where F,, is as in the previous section. It follows from (G3) the existence of a; > 0 such that

It is easy to see that F,, satisfies (G1) — (G2). As before, the operator A satisfies (A1) — (43). Note
that (S1) — (S4) from Lemma 45 hold for F,.

We now construct the multivalued process corresponding to (33). It follows from (A1) — (A43), (S1) —
(54) that for any v, € Lo (2) there exists at least one integral solution to (35) for any T > 7. We shall
denote this solution by v, () = I (v;) 1 (-). For afixed o € X let D, () be the set of all integral solutions
corresponding to the initial condition v (7) = =.

We define the map U, : R; x X — P (X) by

= {77 (t) z : there exists v (-) € Dy, (y(7) ) such that v (t) = z}.

P, (t,w,u)H < () (a1 + oy () lull x + Co) , forallu € X,t €R, w € Q. (36)
+

Moreover, for a fixed 7 € R and arbitrary t € Ry, z € X, 0 € ¥ we can define the cocycle G
Ry x¥xX — P(X) by

GT (t7a.7x) :U(T (t_'_T?T’x)'
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Proposition 59 For eacho € ¥, he R, 1 <s<t, x € X, we have

Urinyo (t,7,2) = Uy (t + h, 7+ h,x).

UU (t7 87 UU (8? T7 x)) = UO' (t7 T7 x) )
Hence, U, is a multivalued dynamical process for each o € ¥ and condition (T'1) holds.

Proof. In view of Lemma 19 for the first equality we have to prove only the inclusion U, (t + h, 7 + h,z) C
Urnye (t,7,x). Given n € Uy (t +h, 7+ h,x), where h € R, there exists y(-) € Do rypn (v (7 +h)x)
such that n = vy L (t+h)y(t+h). Let z(s) = v 1 (h)y(s+h), I.(s) = v 1 (h)l(s+h), where
1(5) € 7(3) Foy (5,7 (5)9()) +7(5) 9o (5), e on (74 hyt+h), y() = I(y(r+h)2)L(), 50
that we have I, (s) € v (h)y (s +h) Fy, (s +h, v (s +h)v(h) 2 (s)) +7 1 (h)v (s + h) go, (s + D) =
Frne (s,2(s)), a.e. on (7,t), (note that v~ (k) y (s + h) = v (Opw,s) =7 (s),and z (1) =y~ (h)y (1 + h) . =
7 (1) . We can show that 2z (-) € Drye,r (7 (7) 1) as follows

12(t) = €% = |y (W) y(t+ h) — €] % <72 () ly(s + h) — 7 (h) €]%

t+h t
12972 (h) / () +~ (h) AL, y(r) — 7 () €) dr = [|=(s) — €][% +2 / (.(r) + A, =(r) — €) dr,

s+h
for any £ € D (A). Therefore, n =~y (t+h)y(t+h) =" ({t+h)y(h)z(t) € Urgyo (¢, 7,2).
For the second equality we proceed as in Proposition 57, but taking into account [6, Proposition 13].
]

4.2.2 Existence of the global Y;-uniform attractor

Once more, the conditions of Theorem 41 providing the existence of a global X1 -uniform compact attractor
hold.

Theorem 60 In the preceedings conditions, the family of semiprocesses U, has the Y1 —uniform global
compact attractor Ox, (02).

Proof. First we argue as in Lemma 50. Fix 03 = (fs,,90,) € Z2. Take an arbitrary solution to (35),
v(:) =1 (y(r)ur)l(:) defined on [7, —1], where [ (s) € 7 (s) Fu, (5,77 (s)v () +7(5) goy (5), 01 € Ty
and u, € B € B(X). Denote I (s) =1 (s) =7 (5) goy (5) — 7 (5) gory (s). Multiplying (22) by v (s) and using
(F7), (F8) and (13) we have

S ol Al @I < (T6),0(5)) +7(3) (0o (5) + 00, (), 0.(5)

=7() (I(5) 77 (8) 0 (8)) +7(5) (9, (5) + g (5) v (5))

< Oa =9 o ()15 +2 () M (@) + 7 (5) (Co+ B + Ra 1s™ ) [ ()

()\1 - *> v (s )||§( +4? (s) <K1 + K> (CO + Ry + Ry |s|R3)2> .

Note that, for all e >0, T > 0, p,q > 0 and a.a. w € , we have

T
/ e**yP(s)|s|ds < oo, lim exp (es)¥” (s) =0,

— 00
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so that arguing as in Lemma 50 we obtain that for any oo € Xo there exists a radius Ry (02) such that
for any B € B( ) there is T'= T (B, 02) < —1 for which ||v (—1)||y < Ry, as soon as 7 < T (B). Hence,
||fy L H <~y (-1 Ry = Ry (02), so that ||Us, -, (1,7, B)||, < Ro.

Usmg the previous mequahty and arguing as in Lemma 52 we prove that for any Ry > 0, 02 € 3 and
(t,7) € Ry, there exists R > Ry such that |[v (s)||y < R, forall7 <s<t,v e D, . (y(r)u,) and u, € X
such that |lu.|ly < Ro. Hence, ||Us, o, (s,7,u)||, <77' (s) R < R(03).

As remarked in Theorem 58 we can follow the same steps of the proof in Proposition 54, so that there
exists a compact set D (02) which is ¥j-uniformly attracting.

To prove the statement of Proposition 48 we argue as in Theorem 58. We take sequences u, (-) =
Iy (1)) 10 (), ln(s) € 7(8) Foy, (8,771 (8)un (5)) +7(5) 9oy (5), ae. on (7,0), such that y, =
un (0) = y, u? — ur, o1, — 01, and obtain v (-) = I (y(7)u,)I(:) such that u, — v in C ([7,0],X)
and I, — [ weakly in Ly (7,0; Lo (D)). If we prove that [ (s) € v (s) Fu, (5,77 (s)v(s)) + 7 (8) gos (5),
a.e. on (7,0), then y € Uy, 4, (0,7,u,). This is equivalent to prove I (s) — gs, (S) — 9o, (5) = d(s) €
v (8) Foy (5,771 (5) v (5)) = 9oy (8) =7 (5) Fory (5,771 (s) 0 (5)) -

Fix s. Passing to a subsequence and using (F'1) we have

dist (7 (5) o (5,77 (5) tn (5,2)) 7 (5) For (5,77 ()0 (5,))) < C fug (s,) = v (5,2)| = 0,

for a.a. © € D. On the other hand, since {u, (s,x)} is bounded and f,,, converges to f,, in C (R, M),
we get

dist (1(5) for, (5,771 (5) tin (5,2)) 17 () forr (5772 ()t (5,2))) — 0, a5 1 — 00,
for a.a. € D. Then for d,, (s) =1, ($) — 9oy, (8) — 9oy, (8) it holds

dist (dy, (5,2) 7 (5) for (771 (8)v (s5,2))) < dist (y(5) for (577" () un (5,2)) 7 (5) for (5,77 (5)v (5,2)))

Hdist (7 (5) for (5,771 (8) un (5,2)) s 7 (8) fou (8,771 (8) un (5,2))) — 0, for a.a. z € D. (37)

We conclude the proof as in Theorem 58, but putting [a (s, ) ,b (s, x)] = 7 (s) fo, (5,77 (s) v (s,2)).
Thus we can apply Theorem 41. =

5 Conclusions

In this work we have given a general framework of nonautonomous attractors for PDE, which includes
the possibility of non-uniqueness of solutions and also the existence of unbounded (in time) trajectories.
Hence, random dynamical systems are in fact particular cases of the theory. The splitting of the parameter
set Y in the product ¥; x X5 allows us to consider together the classical nonautonomous attractor and
the attractor in the sense of the pull-back attraction.

We note that for the stochastic differential inclusions considered in this paper it is possible to study
the measurability of the global attractor Ox, (02) = Oy, (02,w) with respect to the parameter w (using
similar arguments as in [5, 6]) . However, this is out of the aim of this work.
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