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Abstract

In this paper we consider a stochastic differential inclusion with multiplicative noise. It is
shown that it generates a multivalued random dynamical system for which there also exists

a global random attractor.
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1 Introduction

In our previous paper Caraballo et al. [7], we introduced the concept of multivalued random
dynamical system (MRDS) by generalizing that of random dynamical systems (see Arnold [2])

in a suitable manner. We also developed a theory for the existence of global attractors for these
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multivalued semiflows which, in essence, seems the natural extension of the theory developed
by Crauel and Flandoli [9]. Finally, the theory was applied to a class of stochastic differential
inclusions with additive noise.

The main aim of this paper is to prove similar results to the ones in [7] but for another
important family of stochastic differential inclusions, in fact, the perturbed ones by means of a
multiplicative noise.

It is worth pointing out that the way in which we construct the MRDS in [7] is by making a
suitable change of variable which transforms the problem into a family of inclusions depending
on a parameter. In fact, when one deals with a general stochastic differential inclusion (see,
e.g., Ahmed [1], Da Prato and Frankowska [10]), it is not always possible to make a change that
conduces the problem to another equivalent one depending on a parameter. But there exists two
important situations which permit us to do that: when the noise is additive or multiplicative.
As the techniques to deal with these two problems are rather different, we aim to show in this
paper how we can construct a MRDS and prove the existence of the global random attractor in
the multiplicative case.

In Section 2, we collect the definitions and properties of the MRDS and also include the
sufficient condition ensuring the existence of the global random attractor. In Section 3, we con-
sider the multivalued semiflow generated by a differential inclusion perturbed by a multiplicative
noise and prove that there exists the global random attractor. Finally, some applications are

included in Section 4 to illustrate the theory.

2 Multivalued random dynamical systems and attractors

For the complete details and proofs of the results in this Section, the reader is referred to
Caraballo et al. [7]. Let (X,dx) be a complete and separable metric space with the Borel
o-algebra B (X). Let (Q,F,P) be a probability space and 6; : Q@ — € a measure preserving

group of transformations in € such that the map (¢,w) — 6w is measurable and satisfying
0t+5:6t005:9500t; 90:Id
The parameter ¢ takes values in R endowed with the Borel o-algebra B (R) .

Definition 1 A set valued map G : R x Q x X — C(X) (C(X) denotes the set of non-empty
closed subsets of X ) is called a multivalued random dynamical system (MRDS) if is measurable

(see Aubin and Frankowska [4], Definition 8.1.1) and satisfies
i) G(0,w) = Id on X;

il) G(t+s,w)z = G(t,0:w)G(s,w)x, forall t,s € R" € X,w € Q (perfect cocycle property).



Remark 2 When 4i) holds identically (that is, on a set of measure one which does not depend
either on t or s), we call G a perfect cocycle. We call G a crude cocycle if ii) holds for fized
s and all t € RT 2z € X, P—a.s. (where the exceptional set Ny can depend on s). We call G a
very crude cocycle if ii) holds for fized s,t € RY, for all z € X,P—a.s. (where the exceptional
set Ny, can depend on both s and t).

Remark 3 Throughout this paper all assertions about w are assumed to hold on a 0; invariant
set of full measure, where this set does not depend on the time variable t. In order to avoid any
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confusion we shall write “for all w € Q7 instead of "for P-a.a.” when the time variable appears.

Recall the definition of Hausdorff semi-distance between bounded sets of X.. For any A, B C
X bounded put dist (A, B) = supinfdyx (y, ).
ycATEB

Definition 4 The MRDS G is said to be upper semicontinuous if for all t € R* and w € Q it
follows that given x € X and a neighbourhood of G(t,w)x, O(G(t,w)x), there exists § > 0 such
that if dx (z,y) < d then G(t,w)y C O(G(t,w)z).

On the other hand, G is called lower semicontinuous if for all t € RT and w € Q, given z,, — x
(n = +00) and y € G(t,w)x, there exists y, € G(t,w)x, such that y, — y.

It is said to be continuous if it is upper and lower semicontinuous.

Definition 5 A closed random set D is a map D : Q — C(X), which is measurable. The
measurability must be understood in the sense of Castaing and Valadier [8] for measurable mul-
tifunctions, that is, {D(w)} cq is measurable if given x € X the map w € Q> dist(r, D(w)) is
measurable.
A closed random set D(w) is said to be negatively (resp. strictly) invariant for the MRDS
G if
D(0w) C G(t,w)D(w) (resp. D(0w) = G(t,w)D(w)), VteR" we .

Remark 6 This concept of measurability and the previous one are equivalent (see Aubin and

Frankowska [, Theorem 8.3.1]).
Let us assume the following conditions for the MRDS G-

(H1) There exists an absorbing random compact set B(w), that is, for P—almost all w € Q and
every bounded set D C X, there exists tp(w) such that for all ¢ > tp(w)

G(t,0_w)D C B(w) (1)

H2) G(t,w): X — C(X) is upper semicontinuous, for all t € Rt and w € .
(



Recall the definition of the limit set A(D,w) = Ap(w) of a bounded subset D C X as

Ap(w) = ﬂTZOUtZTG(t, 0_:w)D. (2)
The following Proposition gives some properties of the limit sets.

Proposition 7 Assume conditions (HI1) and (H2) hold. Then, for P—almost all w € Q and
every D C X bounded, it follows:

i) Ap (w) C B (w) is nonvoid and compact.

ii) Ap(w) is negatively invariant, that is, G(t,w)Ap(w) 2 Ap(Oww) for all t € RT. If G is lower

semicontinuous, then Ap(w) is strictly invariant.

iii) Ap(w) attracts D,
lim dist(G(t,0_w)D,Ap(w)) = 0.

t——+oo

Definition 8 The closed random set w — A(w) is called a global random attractor of the MRDS
G if P—a.s.

i) G(t,w)A(w) = A(Gw), for all t > 0, (that is, it is strictly invariant);

ii) for all bounded D C X, limy_, oo dist(G(t,0_;w)D, A(w)) = 0;

iii) A (w) is compact.

We now have the following theorem on the existence of random attractors for MRDS:

Theorem 9 Let (H1) — (H2) hold, the map (t,w) € RT x Q@+ G(t,w)D be measurable for all
deterministic bounded sets D C X, and the map (t,w,z) € X — G (t,w) z have compact values.
Then

A(w) = UDCXboundedAD (w)

is a global random attractor for G (measurable with respect to F). It is unique and the minimal

closed attracting set.

3 MRDS generated by a differential inclusion with multiplica-

tive noise

Now, let X be a real separable Hilbert space with the scalar product (-,-) and the norm |-||.
Counsider the following stochastic differential inclusion in Stratonovich’s sense

du dw (t)
p € Au(t) + F (u(t)) + ou(t) o —5 te (0,7), 3)

1 (0) = wy,



where 0 € R, A: D(A) C X — X is a linear operator and w (t) is a two-sided, i.e. t € R, real

Wiener processes with w (0) = 0. Although we could consider the more general case of a finite

sum of the form ", oju o d“:iit(t), we prefer to treat this case for the sake of clarity, bearing in

mind that no new difficulties appear in dealing with this more general case.

Let us introduce the next conditions:
(A) The operator A is m-dissipative, i.e. Yy € D(A) (Ay,y) <0,and Im(A—XI) = X, VA > 0.

(F1) F: X — Cy(X), where Cy(X) is the set of all non-empty, bounded, closed, convex subsets
of X.

(F2) The map F is Lipschitz on D(A), i.e. 3C > 0 such that Vyi, yo € D(A)
disty (F(y1), F(y2)) < Cllyy — w2l
where disty(-,-) denotes the Hausdorff metric of bounded sets, i.e.

distg (A, B) = max{dist(A, B),dist(B, A)}.

Let us consider the Wiener probability space (2, F,P) defined by
Q={weC(RR)|w(0) =0},

equipped with the Borel c—algebra F, the Wiener measure P, and the usual uniform convergence
on bounded sets of R. Recall that w(t)(w) := w(t).
We make the change of variable v (t) = e 7“(®y (t). If we denote! a(t) = a(t,w) = e 7«{)

then, the inclusion (3) turns into

We shall define the multivalued map F : 0, T] xQx X — C, (X),
F(t,w,z) = a(t)F (o~ (t)z).
It is easy to obtain from (F'2) the existence of constants Dy, Dy such that

IF (2)|I" < D1+ Do ],

where ||F (z)||T = sup ||y||. Hence,
yel'(z)

|7 (t,w,x)H+ < a(t) (Dy + Dy o (t)2]]) = a(t)Dy + Dyjz]| = n. (tw, ).

It follows that F' satisfies the next property:

1We will omit w when no confusion is possible.



(F3) For any z € X there exists n (-) € Ly (0,7") depending on z and w such that

Hﬁ(t,w,m)“+ <n(t), ae. in (0,7).

On the other hand, it is clear that F' satisfies conditions (F1) — (F2) for any fixed ¢ € [0,7]
and w € Q, where the constant C' does not depend on ¢ or w.

Consider also the equation

dv(t)
0~ 4o + 1), 5
v(0) = vy,

where f(-) € Li([0,T], X).
Definition 10 The function u : [0,T] — X is called a strong solution of problem (5) if:
1. u(-) is continuous on [0,T] and u(0) = uy;

2. u(-) is absolutely continuous on any compact subset of (0,T) and almost everywhere (a.e.)

differentiable on (0,T);

3. u(-) satisfies (5) a.e. on (0,T) (hence, u(t) € D (A), for a.a. t € (0,T)).

Definition 11 The continuous function v : [0,T] — X is called an integral solution of problem

(5) if:
1. v(0) = vo;

2. V¢ € D(A),
lw(t) = &1* < [lo(s) — €11 + 2/ (f(r) + A& v(r) = &) dr. t > s. (6)

It is well known (see Barbu [5, p.124]) that any strong solution of problem (5) is an integral

solution.

Definition 12 The function v : [0,T] x Q@ — X is said to be an integral solution of problem (4)
if for any w € Q:

1. v(-) =v(,w) : [0,T] = X is continuous.
2. v(0) = vp;

3. For some selection f € L1([0,T],X), f(t) € F(t,w,v(t)) a.e. on (0,T), the inequality (6)
holds.



In what follows, we will omit w if no confusion is possible.

If condition (A) holds and f € Ly([0,T], X), then Vuy € D(A) there exists a unique integral
solution v(-) of (5) for each T' > 0 (see Barbu [5, p.124]). We shall denote this solution by
v(-) = I(vg)f(-). Moreover, for any integral solutions v;(-) = I(vi0)fi(:), 7 = 1,2, the next

inequality holds:

t
[o1(2) = v2()]| < llva(s) —va(s)ll +/ 1f1(r) = fa(D)|l dr, T > 5. (7)

If (A), (F1) — (F3) hold, then Vuvy € D(A) there exists at least one integral solution of (4) for
each T > 0 (see Tolstonogov [13], Theorem 3.1). Moreover, for any z(-) = I(z)g(-), g(-) €
Li([0,T], X), and any vy € D(A) there exists an integral solution v(-) = I(vg)f(-) of (4) such
that

[o(t) — 2(t)|| < &(2), vt € [0,T], (8)
17(2) = gDl < p(t) +2C¢(t), ae. on (0,T), (9)

where
p(t) = 2dist (9(8), F(t,w,2(1)))
t
€(t) = llvo — z0llexp(201) + [ exp(20(t ~ 5))p(s)ds.
0
Since T > 0 is arbitrary, each solution can be extended on [0,00). Let us denote by D(vg,w)

the set of all integral solutions of (4) such that v(0) = vy. We define the maps G : Rt x Q x
D(A) — P(D(A)), 05 : & — Q as follows

G(t,w)vo = {a (H)u(t) | v(-) € D(vo,w)},
Osw=w(s+:) —w(s) €.
Proposition 13 Let (A), (F1),(F2) hold. Then G satisfies the cocycle property
G(t1+s,w)z =G (t1,0,w) G (s,w) z, Vi1, >0,z € X,w € Q.

Proof. Firstlet y € G (t; + s,w) z. Theny =y (t; + 5) = a~ (t1+8)v (t; + s), where v (-) €
D (z,w). It is clear that y (s) € G (s,w)z. We have to prove that y € G (¢1,05w) y (s). Define
z2(t) = a ' (s)a(t + s)y(t+s), ¥Vt >0, g(t) = a1 (s)f (t +5), a.e. t > 0, where a(t)y (t) =
v(t) =1 (z)f(t). For any r <t, £ € D(A) we obtain

lz (&) =&l = Jla~ (s (t+5) —€]” = a 2(s) v (t+5) — a(s)E]”
a (s ||lv (r+s5) — a(s)¢]?

+2a72(s) th (f(T+8) +a(s)A&,v (T + 5) — a(s)é) dr
Iz (r) — €I

+2 frt (9 (1) + A&,z (1) — &) dr.

IN

IN
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On the other hand,

g@t) € a'(s)a(t+s)F (a'( v (t+s))
= a l(s)a(t+s)F (y(t+ ))
= a Y(s)a(t+s)F (a(s)a 1t +5)z(1)),

and, as? o '(s)a(t + s) = e”(@WE)—wtt+s) = ¢=0(0:0)(V) then
g(t) € e 70O p(eo0s)W) 5 (1)) = F (1, 0,0, 2 (¢)) ..

Therefore, since z(0) = y(s), it follows that z(-) € D(y(s),fsw). Since y = y(t1 +s) =
a(s)a=t(ty + 8)z (t1) = 7))z (1)), we get y € G (t1,0,w)y (s). Hence,

G (t1 + s,w)z C G (t1,05w) G (s,w) x.

Conversely, let y € G (t1,0sw) G (s,w) z. Then there exist v1 () € D (z,w) and vy () € D (y1 (s), Osw),
y1 (s) = a~1(s)vy (s), such that y = e?@s«)M)ay (¢1). Let

z(t) =

v (t), if0<t<s,
a(s)ve (t—s), if s <t

a(s)fe (t—s), if s <t
where v1 (1) = I(x) f1(-), v2 () = I(y1(8)) f2(-) . We have to check that for a.a. t € (0,7,
f(t) € F(t,w,2(t)) = a(t)F (a~ (t)z (). If t < s it is obvious that f (t) € a(t)F (a~'(t)z (t)).
If ¢ > s we have

f(t):{ A, if0<t<s,

f) = als)f2(t—s)
c a(s)efo'(()sw)(tfs)F (6(7(031‘1)@73),02 (t N S))
= a(s)e "Wt -w() p(o (@B -w()yy (¢ — 5))
= at)F(a t(t)z (1)
= F(t,w,z(t)

)
It remains to prove that z (-) satisfies (6) for any r < ¢. If ¢ < s the inequality is evident. If

2Notice that a(t + s,w) = a(t, fsw)a(s,w).



r<s<tweget

Iz (8) =€ = lle(s)va (t—s) = &* = a?(s)||v2 (t — s) — o~ ' ()¢
< a¥(s) [|v2 (0) — @ (s)E]|”
+202(s) [ {fo (T — ) + @ 1(s) A&, vy (T — 5) — aL(s)€) dr
= lvi (s) = €17
+2a2 (s) f <f2 T—8)+a (s)Af,vg(T—s)—oFl(s)@dT
< loa(r) =€)

+2f f1( +Af,121( ) f)dT
+2 [} {a fz(T—s)+A£, a(s)vz (1 —s) =) dr
= |lz(r) = &P+ 2[5 (f (1) + A&, 2 (1) — &) dr.

Finally, the case s < r is similar. Therefore, z (-) € D (z,w) and
y=y(ti1+s)=a (t; +s)z(t; +5) € G (t1 + s,w) x

Hence,

G (t1,05w) G (s,w) C G (t; + s,w)

and the proof is complete. m
Let C([0,T],X), 0 < T < oo, be the Banach space of continuous functions from [0,7] into
X. By np: C([0,7"],X) — C([0,T], X), T' > T, we denote the projection operator

mr(y() = {y() € C([0,T], X) [ y(s) = y(s), Vt € [0,T]}.

Lemma 14 Let (A), (F1),(F2) hold. Then for any vg € D (A),w € Q the set wr (D (vo,w)) is
bounded in C ([0,T],X). Consequently, for each t > 0,v9 € D (A),w € Q the set G (t,w) vy is
bounded.

Proof. We have seen before (see F'3) that there exist constants D;, Dy > 0 such that
Ve € D(A), Vy € ﬁ(t,w,x),

lyll < e () D1+ Dy ||z - (10)

We take a fixed T' > 0. We shall denote by z(-) € C(][0,T],X) the unique integral solution

of the equation

dz

— = <t<
7 Az(t), 0 <t <T,
2(0) = vy.

Let ro = max{||z(¢)||, 0 <t < T} and let r(-) € C ([0, T]) be the solution to the equation

’I"I(t) =D+ DQ’I’(t), 0<t<T,
7(0) = ro.



Consider an arbitrary solution v(-) € D(vg,w), v(-) = I(vg)f(-). Then it follows from (7) and
(10) that

@I < 2Ol + fo 1/ ()] dr
ro + [y (et (r) Dy + Dy |Jo(7)||)dr, Yt < T.

AN

Let K (w) be such that sup {a(t)} < K (w).Then
t€[0,7]

t
(@I < 7o+ DK (w)t + D2/ [o(7)] dr.
0
Using the Gronwall Lemma we have that for any ¢ € [0, 7] the next inequalities are satisfied:

o) < o+ B exp(Dat) = B = r(t.w), it Dy 20, -
lo(t)|| < 7o+ Dyt, if Dy =0,

where Dy = D1 K (w) . Hence, D (vg, w) is bounded in C([0,T], X), VT > 0, Yoy € D(A),Vw €
Q. Tt is obvious from the definition of G that the set G(t,w)vp is bounded for each ¢ > 0, vy €

DA),weQ. =u

For T > 0 and bounded B C D(A), let us denote D(B,w) = U,epD(z,w) and
M(B,w,T) = {f(-) € Li([0,T], X) | v(-) = I(2)f(-),v(-) € 77D (B, w)}.

Lemma 15 Let (A),(F1),(F2) hold. Then for any T > 0,w € Q and any bounded set

B C D(A) the sets M(B,w,T) and m7D(B,w) are bounded in L ([0,T],X) and C ([0,T],X),

respectively.

Proof. Let € B, T > 0 be arbitrary. In view of Lemma 14, there exists K; (w) > 0 such
that for any v(-) € D(z,w),
lo(t)]| < Ki(w), Yt € [0, T].

We take an arbitrary u(-) € D(B,w), u(0) = y € B. Then in view of (8) there exists v(-) €
D(z,w) such that
[0() = u(®)|| < exp(2CT) ||z —yl[, on [0,T].
Hence
[u(@I < [[o()[| +exp(2CT) ||z — y|| < K1 (w) + exp(2CT) Ky, on [0,T],

where K (w), K depend on B. We have proved that 7pD(B,w) is bounded in C([0,T7], X).
Further, we must prove that M (B,w,T) is bounded in Ly ([0,T], X). Let f(-) € M(B,w,T)
be arbitrary. Then, there exist z € B, z(-) € D(z,w), such that z(-) = I(z)f(:), f(t) €

F (t,w,xz(t)), a.e. on (0,T). In view of property (F'3)
IF (DI < a(#) Dy + D2 [z (£)]], ae. on (0,T).

10



Since mpD(B,w) is bounded in C([0,7T], X), we obtain the required result. =

This semi-distance dist (+,-), defined on the Hilbert space X, has the following useful prop-

erties, which are easy to check:
1. VAZ,BZ C X,’I, =1,2,

dist (A1 + By, Ag + Bs) < dist (A1, As) + dist (By, Bs) .

2. VA, B,C C X,
dist (A, B) < dist(A,C) + dist (C, B) ..

3. VAC X,a,08 € R,
dist (@A, BA) < |a — B||A]* .

4. VA,B C X,a € R,
dist («A,aB) = |a|dist (a, B) .

Proposition 16 Let (A), (F1),(F2) hold. For any T > 0, w, — wy, ug — uo
dist (G (t,wp) ug, G (t,wy) ug) = 0, as n — oo,
uniformly with respect to t € [0,T].

Proof. Let z € G (t,wp)uo, t € [0,T], be arbitrary. Then z = o' (t) 2 (t), where 2 (-) =
I (ug) fo(-), ap (t) = e~ f, (1) €ag (1) F (aal (1) 2 (T)) = ﬁ(T, wo, 2(7)), a.e. on (0,7T).

Consider now the sequences wy, — wo, uj — ug. Denote

pu(r) = 2dist (fo(r), F(r,00,2(7)))
= 2dist (f() (1),an (1) F (a;l (1) 2 (T))) .

In view of (8) there exist solutions v, (-) = I (ug) fn (-), f(7) € F(7,wp, v (7)), such that
t
[on () = 2 ()] < [lug — uol| exp(2C) +/ exp(2C(t = 5))pn(s)ds on [0,77.
0

Taking into account that the functions ag (), a5’ (), an (-), a; ' (-) are uniformly bounded

on C ([0,T],R,), the convergence a, — ag,a; ' — ag’ in C ([0,T],Ry), F2 — F3, Lemma 14

11



and the properties of the semi-distance dist (-, ) cited above, we have

pu () < 2dist (F(r,w,2(7)), F (7,00, 2(7)))
= 2dist (ag (1) F (05 ' (1) 2 (7)) yan (1) F (e (1) 2 (1))
< 2dist (o (1) F (g )z (r ) s ( T)F(aal(T)Z(T)))
+2dist (o, (1) F (ag (1) 2 (1)) s an (7) F (0, ' (1) 2 (7))
< 2Jag (1) — an (1| ||F (05" (1) 2 (1) ||
+2Can, (1) |2 (7)| Jog " (7 51 ()]
< 2(D1+ Doy () Iz (

(
7)
+2Cay (1) ||z (1)]| |a0 (1
< Kilag (1) —an (1) + K2 |o

so that p,, (7) — 0, as n — oo, uniformly on [0, T]. We note that K, Ky depend only on ug, w,w,
and 7.

Therefore, for any € > 0 we can choose N > 0 (which does not depend on either ¢ or
z € G (t,w) up) such that Vn > N, V1 € [0,T]

€

E
< — no_ < —
pn (1) < 9T exp (2CT)’ lug = uoll < 2exp (2CT)

Hence, ||vy, (t) — 2 ()] < e, Vn > N,Vt € [0,T].
Further, v, = ;' () vy, (t) € G (¢, wy) uf and

lon —zll = |lagt (8)vn (1) —ag " () 2 (1)
< lag !t (#8) (on () = 2 (@) + || (e (8) =g " (1) wa (1)
< Rie+ Roe.

Since N does not depend on either ¢ or z € G (t,w) ug, we obtain the statement of the proposition.

Lemma 17 Let (A),(F1),(F2) hold and the semigroup S (t,-) generated by the operator A be
compact. Then for any T > 0, w € Q and uy € D (A) the set mpD (ug,w) is compact and the

semiflow G has compact values.

Proof. From Tolstonogov [13, Theorem 3.4], it follows that for each vy € D (A), T > 0 the
set mpD(ug,w) is compact in C ([0,T], X). Hence, the set

K={yeX:y=v(T),0()€nrDlupw)}

is compact, so that G (T,w)ug = « ' (T) K, as the continuous image of a compact set, is

compact as well. m
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Proposition 18 Let (A),(F1),(F2) hold and the semigroup S (t,-) generated by the operator

A be compact. Then for any t, — t, wp, = wo, ug — up one has
dist (G (t,wo) ug, G (tn,wn) ug) = 0, as n — 0.
Hence, the map (t,w,ug) — G (t,w) ug is lower semicontinuous.

Proof. Take T such that ¢, < T,t < T, Vn. In view of Lemma 17 the set mpD(ug,wq) is
equicontinuous. Then for any € > 0 there exist N > 0 such that Yn > N, Vv (-) € mpD(ug,wp),

v (tn) —v ()] <e.

The continuity of a~! (-) and the compactness of m7D(ug,wp) implies the existence of constants

Ry, Ry > 0 such that

ot (ta) v (ta) —a " v @) < [la @) (v (ta) —v (@)
< || (a_l (tn) —a~t (t)) v (tn)”
< Rie+ Rse.

Hence,
dist (G (t,wo) uo, G (tn,wo) up) = 0, as n — oo.
Further, the last inequality and Proposition 16 imply that for any ¢ > 0 there exist N > 0
such that Vn > N
dist (G (t,wo) wo, G (tn,wn) ul) < dist (G (t,wo) ug, G (tn,w) uo)
+dist (G (tp,w) v, G (tn, wy) ug)

< €+€
- 2 2
= g‘,

which completes the proof. m

Theorem 19 Let (A), (F1),(F2) hold and the semigroup S (t,-) generated by the operator A
be compact. Then G generates a MRDS.

Proof. Proposition 13 and Lemma 17 imply that the cocycle property is satisfied and that G

has compact values. It remains to prove that the multivalued map G : Rt xQxD(A4) — C(D(A))
is measurable with respect to the o-algebra B (RT )@ F QB (m) Since this o-algebra contains
all open sets of the complete separable metric space Rt x  x W and G has closed values, the
lower semicontinuity of G proved in Proposition 18 implies the measurability of the semiflow.

Indeed, the map G is measurable if and only if the inverse image of any open set O C D (A)
G1(0) = {(t,w,x) ER. x QxD(A): G (tw)znO # @}

is measurable (see Aubin and Frankowska, [4], Theorem 8.3.1.). Since the map G lower semi-
continuous, the inverse image of any open set is open and then measurable (see Aubin and

Frankowska [4, p.40]). =
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3.1 Existence of the global random attractor

In order to obtain the existence of a compact absorbing set we need more regularity of the
integral solutions. Namely, we shall suppose that each integral solution of (4) is, in fact, a

strong solution of (5).

Proposition 20 Let (A), (F1),(F2) hold. Suppose that each integral solution of (4), v(-) =
I (ug) f (+) is a strong solution of (5). Let there exist constants 6 > 0, M > 0 such that Yu €
D(A),y € F(u),

(y,u) < (=6 +e) Jull® + M, (12)

where € > 0 is the biggest constant such that
(Au,u) < —¢||lul|*,Yu € D (A). (13)

Then there exists a random radius r (w) > 0 such that for P— almost all w € Q and any bounded

set B C D (A) we can find T(B) = T (B,w) > 1 for which
||G (*1 + to,H_tOw) u0||+ <r (0_1(/.)) , Yig > T (B) ,Yug € B.
Remark 21 We observe that, since A is m-dissipative, (Au,u) < 0,Yu € D (A).

Proof. We note that for any y € G (r,0,w) ug, y = a~!(r, Osw)v (r), being v () = I (ug) f (+)
an integral solution of

% € Av (t) + a(t, O,w)F(a™t(t, O,w)v (),

v (0) = ug,

which is a strong solution of (5) with
f(t) € aft,0,w)F(a L(t, w)v (t)), ae. in (0,T).

After the change of variable z (t) = a(s,w)v (t), we obtain that y = o' (r + s,w)z (t), being
z () the integral solution (in fact, a strong one) of the problem

dz

T = A +9(). )

2 (0) = a(s,w)uq,

where g (t) = a(t + s,w)h(t), and h(t) € F (o ! (t + s,w)z (1)), a.e. in (0,T).
In our case s = —ty, r = —1 + ¢o. Multiplying (14) by z () we have

Sz = (Az(8),2(8) + (9 (1), 2 (¢)

= (Az(t),z(t) + (a(t —to,w)h(t), z (1))
(Az (t),z (1))

+a?(t — to,w) (h(t),a  (t — to,w)z (1))

14



Now by (12), (13) we get

d
il O < =2e 2 (O1* + 2 (e = 8) |2 ()” + 2M?(t — ty,w)
and thus,
d
7 = (O] < =26 (|2 ()|* + 2M (& — to, w). (15)

Multiplying (15) by exp (26t) and integrating over (0, —1 + o) we obtain

Iz (=1 +t0)lI> < exp (=28 (=1 +t0)) |1z (0)]|
+2M exp (=20 (—1 + tg)) fO_H'tO exp (26s) a?(s — tg,w)ds

and then, by the change s —tg = 7,

Iz (=1 +t)I* < exp (=25 (=1 +10)) [z (0]
+2M exp (20) f:olo exp (207) &? (7, w)dr.

Now, by standard arguments (see, e.g., Crauel and Flandoli [9]) it easily follows that the mapping
7+ exp (267) (1, w) is pathwise integrable over (—oo, —1], and similarly exp (267) o?(7,w) —
0 as 7 — —o0, P-a.s.
We take .
r?(0_jw) =1+ 2M/ exp (=6 (=1 — 7)) &*(r,w)dr,
—0
r(0_1w) = a (=1, w)r (f_1w).

The radius r (f_jw) is P-a.s. finite, because of the above considerations. For a bounded set B

and almost all w € Q, we choose T'(B) = T (B,w) > 1 such that
exp (=20 (=1 + to)) a*(—to, w) |luo||”> < 1, Vto > T (B) ,Yug € B.
Since y = a1 (—=1,w)z (=1 + ty) we have
lyll < fla™" (=1, w)z (=1 +to) | < 7 (6-1w)
for P-a.a. w € Q and any y € G (—1 + t9,0_,w) up, up € B. W

Theorem 22 Let the conditions of Proposition 20 hold, the semigroup S (t,-) generated by the
operator A be compact and the multivalued map G (1,w) be compact (that is, it maps bounded
sets into precompact ones). Then, G has the minimal global random attractor A(w). Moreover,

it 1s measurable with respect to F.

Proof. First, since z € X — G(t,w)z lower semicontinuous, the map (¢,w) — G(t,w)D is
measurable for all deterministic bounded sets D C X, t > 0 and P—a.s. (see Remark 7 in [7]).

On the other hand, it follows from Lemma 17 that G has compact values.
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Let us define the random ball
B(r(61w)) = {u € DA) | llu] <7 (01w)},

where 7 (0_jw) is taken from Proposition 20. Let

K (w) =G (1,0_1w) B(r (f-1w)).

The set K (w) is P-a.s. compact, since the operator G (1,6_jw) is compact. It follows from
Proposition 20 that for any bounded nonrandom set B and P-a.a w € 2 there exists T'(B) =
T (B,w) > 1 such that V¢, > T (B),

G (to,0_t,w) B C G (1,0_1w) G (=1 +ty,0_,w) B C K (w).

Therefore, G has the compact random absorbing set K (w) and we can apply Theorem 9 to

ensure the existence of the global random attractor for the multivalued random semiflow. m

4 Applications

4.1 The case of a subdifferential map

In order to check when the operator G (1,w) is compact we shall consider the case where the
operator —A = Oy is the subdifferential of a proper lower semicontinuous function ¢ : X —

(—o0, +00] (being J¢ in our case a linear operator). Inclusion (3) turns into

du dw (t)
7 € —0¢p(u) + F(u) + ou o o

, t€[0,T], (16)

u(0) = g,

where F : X — 2% is a multivalued map, satisfying (F1)—(F2), D(A) = D(dy). Tt is well known

(see Barbu [5, p.54 and 71]) that —dyp is an m-dissipative operator. Moreover, D(p) = D(dyp).

Then, dp generates a nonlinear semigroup of operators S(¢,-) : D(¢) — D(p) and the differential

inclusion (16) gives the multivalued map G (t,w) : D(p) — 2P). Tt is known (see Haraux [11,

p-1398]) that the semigroup S is compact if the following condition is satisfied:

(H) The level sets
Mp = {u € D(¢) | [lu]| <R, p(u) < R}

are compact in X for any R > 0.

If (H) holds, it follows from Lemma 17 that G has compact values. Hence, G(t,w) : D(¢) —

K(D(yp)), where K(D(yp)) is the set of all nonempty compact subsets of D(p). Theorem 19
implies that G generates a MRDS.
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Further we shall remind the next regularity result for solutions of the inclusion

W e _opw) + (1), te0.T],

dt (17)

v(0) = vo € D(gp).

Proposition 23 (Brezis [6, p.82] and Barbu [5, p.189]) For any f(-) € L2([0,T],X), vy €

D(p), there exists a unique strong solution of inclusion (17) such that
dv
v(-) € C([0,T], X), \/5% € Ly([0,T7, X),

p(v(-)) € C((0,T)), ¢(v(-) € L1 ([0, T)),
and p(v(t)) is absolutely continuous on [§,T], V§d > 0. Moreover,

2
+ o) = (1.5} ae.on 0.7) (18)

dv
dt

d
If ug € D (p) then d_if € Ly([0,T),X) and ¢ (u) is absolutely continuous on [0,T].

We note the next important consequence of the preceding proposition. Let us take an
arbitrary integral solution of inclusion (4), v(-) € D(vo,w), v(-) = I(vo)f(-). It follows from
Lemma 15 that f(-) € Ly([0,7], X). Then, since the solution of (17) is unique for any vy € D(y),
it follows that v(-) is a strong solution of (17).

Further, Proposition 23 and Lemma 15 allow us to prove an important property of the map

G.

Theorem 24 Let property (H) hold. Then for any bounded B C X, any T > 0 and w € Q,
there exists R (w) > 0 such that G(T,w)B C Mp)-

Proof. In view of Lemma 15, the set M(B,w,T) is bounded in Ly ([0,7],X) and then
it is bounded in Ly([0,7],X) for any bounded B C X, T > 0, w € Q. We take an arbitrary
v(-) € D(B,w), v(-) = I(vg) f(-), vo € B. Consider first that vyg € D (¢). It follows from
equality (18) that

2
" Ccll_z +t%<p(v) :t<f,ccll—:>, a.e. on (0,7T).
Hence, . ) T T
/0 t‘% dt + Tp(v(T)) :/0 t<f,(fl—:>dt+/0 p(v(t))dt,
and then,

2

T Jdv
Tp(v(T)) < %/0 t ‘(fl_t dt + Tp(v(T)) <

1

T T
2
<: /0 EIF ()2 dt + /0 o(v(t))dt. (19)
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On the other hand, there is no loss of generality in assuming that min{p(v) : v € X} =

w(rp) = 0. Indeed, let zy € D(Jp), vy € Ip(xg). If we introduce the new function @(v) =

w(v) — p(zo) — (yo,v — Tp), then the equation

W pl) 3 (1)
is equivalent to
W+ 0B) 3 1(1) —y0 = J 1)
and min{p(v) : v € X} = ¢(zg) = 0. It is clear that ¢ satisfies also property (H).
Hence, since f(t) — dz()i(tt) € dp(v(t)) a.e. on (0,T), we have

o0(0) < (1)~ 00 —a0).

Integrating over (0,7") we get

' dt < X 2_1 2 " dt <
| eto®ye < 5 1900) = aull = 5 Io(r) = ol + [ 1@ o(e) = aol dt <

1 T
< o) — w0l + / 17 (6)] o(8) — ol dt.
Since 0 € —0p(zg), it follows from inequality (7) that
T
() — zol] < [[0(0) — o] + /0 If () dr,0<t < T.

It follows from the last two inequalities and Lemma 15 that

2

T T
/ @(U(t))dt§<||v(0)—ﬂ?o||+ / ||f(t)||dt> <D (w) < oo,

(20)

Since the set M(B,w,T) is bounded in Lo ([0,7], X) for any bounded set B, D (w) does not

depend on v(-) € D(B,w). Using (20) in relation (19) we obtain that, for any T" > 0, there exists

K (w) > 0 such that p(v(T)) < K (w).

Now let vg € B be arbitrary. We can assume without loss of generality that B is open and

then there exists a sequence vj — v, where vj € D (¢), vy € B. In view of (8), for each v

there exists an integral solution of (4), v™ (-) such that
[0" (¢) = v @) < lvg — ol exp (2C1), Vi € [0,T] .
Since ¢ (v*(T)) < K (w), Vn, and ¢ is lower semicontinuous, we get
o (0 (7)) < liminfe (o7 (T)) < K (w).
n—od
On the other hand, by Lemma 15, D(B,w) is bounded in C([0,T], X). Hence,

lo(T)]] < L (w) < o0, Yo(+) € D(B,w).
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Therefore,
G(T,w)B C MR(M)’

where R (w) = max{K (w)a Y(T,w), L (w) a (T ,w)}. It follows from (H) that G(T,w)B is
precompact in X. m

Corollary 25 Let property (H) hold. Then, for any T > 0 and w € Q, G (T,w) is compact.

Proof. We must prove that for every bounded set B, any T' > 0 and w € €2, the set
G (T,w) B is precompact in X. But this fact follows immediately from (H) and the previous

Theorem. =

Theorem 26 Let (F1) — (F2), (H) and (12) be satisfied. Then, G has the minimal global

invariant random attractor A(w), which is measurable with respect to F.

Proof. It is a consequence of Theorem 22 and Corollary 25. m

4.2 Reaction-diffusion inclusions

Let f: R — Cy(R) be a multivalued map. Assume that f is Lipschitz, i.e. 3C > 0 such that
Ve,z € R

distp (f(x), f(2)) < Cllz - 2| (21)

Let O C R" be an open bounded subset with smooth boundary d0O. Consider the stochastic

inclusion

9 e Au+ f(u) +h+ouo d%t), on O x (0,7),
u =0, on 90 x (0,T), (22)
u(z,0) = ug(z) on O,

where h(-) € Lo(O). Define the operators A: D (A) = X, F: X = 2%, X = L, (0),

Au = Au,

Fu)={yeX:y(z) € f(u(z))+h(z)},
with D (A) = H? (O) N H} (0). The map —A is the subdifferential of a proper, convex, lower

semicontinuous function ¢ and the map F satisfies (F'1) — (F2). Moreover, condition (H) is

satisfied and D(¢) = X (see Melnik and Valero [12], Section 3.2.2.). Hence, (22) is a particular
case of (16).
We shall assume that there exist M; > 0, § > 0 such that Vs € R, Vz € f(s),

zs < (A —20) |s|* + My, (23)

where ) is the first eigenvalue of —A in H{(9).

We obtain the following theorem:
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Theorem 27 Let (21), (23) hold. Then, the MRDS generated by (22) has the minimal global

invariant random attractor A(w), which is measurable with respect to F.

Proof. We have to check that (12) holds. In our case ¢ = A;. In view of (23) for any
y € D (4) = H*(O) N Hy(0), £ € F(y),

(&) < (= 26) [lyll* + Mip(O) + (hyy)
< (M =9 llyll® + M,
for some M > 0, so that (12) holds. The statement follows from Theorem 26. m
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