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Abstract

We investigate the asymptotic behaviour of a general set-valued skew prod-
uct flow (SVSPF), that is, a set-valued cocycle mapping (coming from a non-
autonomous differential equation or inclusion) driven by another, autonomous,
system. Absorptivity conditions which ensure the existence of several types of
attractors for such set-valued systems are established. The topological proper-
ties of and relations between these attractors, in forward and pullback senses
and their strong and weak versions are analyzed. Several illustrative examples
are also provided.
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1 Introduction

Set-valued analysis and attainability set functions are used to handle problems
arising from differential equations without uniqueness, differential inclusions, or
problems arising in control theory, viability theory, finances and economics among
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others, and have been widely studied by several authors in the last decades (cf.
[3, 20, 19, 24, 13, 14] among others). The investigation of the asymptotic behaviour
of these phenomena, global, strong or weak stability and attraction properties, needs
the concept of pullback attractors when non-autonomous equations are considered,
in particular stochastic and random ones which are intrinsically non-autonomous
(cf. [11, 10, 21, 15] and [16, 5] for the weak pullback case).

However, the non-autonomous case can also be viewed within the framework of
skew-product flows, which allows us to transform the problem into an autonomous
one (cf. [22, 6, 7, 9, 17, 8]) and to apply the classical theory for autonomous systems
in a different, extended, phase space. On the other hand, if such an attractor exists,
then we can recover the dynamics in the original phase space Rd and its asymptotic
properties by using suitable projections, which is important as this original phase
space is often the one that is of interest or meaningful in modelling.

The paper is organized as follows: In Section 2, we recall the concepts of skew-
product flows coming from a cocycle set-valued mapping with a related driving
system. Conditions for existence of strong and weak attractors for a autonomous
set-valued semidynamical system in an abstract metric space and its properties are
analyzed in Section 3. Then, in Section 4 we apply these results to the case of
a skew-product flow as introduced above, distinguishing between strong and weak
cases. Here, the sectorial components in the original phase space Rd of the attractor
in the extended phase space (under several suitable conditions) will be analyzed,
namely, for strong and weak asymptotic concepts as well as for their connections
with the underlying non-autonomous semi-flow. The formalism used here allows us
to obtain several different conclusions from precedent works ([4, 5]).

We also illustrate our theory with some examples and, for the sake of clarity,
give most of the proofs at the end of the paper.

2 Set-valued skew product flows

Hereafter, we will use the following notation: P(X) andK(X) for the set of nonempty
and nonempty compact subsets of a given space X, respectively; H∗ for the Haus-
dorff semi-distance, H∗(A,B) = supa∈A dist(a,B), and H for the Hausdorff distance,
H(A,B) = max(H∗(A,B),H∗(B, A)).

To establish an appropriate framework for our analysis, we consider given an
autonomous driving system, θ : R×P → P , where P is a metric space, i.e. a group
of homeomorphisms under composition on P with the properties

i) θ0p = p for all p ∈ P ,

ii) θt+sp = θtθsp for all s, t ∈ R.

iii) the mapping (t, p) 7→ θtp is continuous.

For instance, one can think of an ordinary differential system in P = Rl with an
autonomous globally Lipschitz and dissipative vectorfield g, i.e. p′ = g(p).
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A set-valued skew product flow (SVSPF for short) consists of an autonomous
driving system θ on a metric space P and a set-valued cocycle mapping (attainability
set mapping) Φ : R+ × P × Rd → K(Rd) satisfying the following properties:
1. Compactness Φ(t, p, x) is a nonempty compact subset of Rd for all t ≥ 0, p ∈ P ,
x ∈ Rd;
2. Initial condition

Φ(0, p, x) = {x}
for all p ∈ P and x ∈ Rd;
3. Cocycle property

Φ(t + s, p, x) = Φ (t, θsp,Φ(s, p, x))

for all t ≥ 0, p ∈ P , x ∈ Rd;
4. Continuity in time

lim
s→t

H (Φ(s, p, x), Φ(t, p, x)) = 0

for all s, t ≥ 0 and all p ∈ P and x ∈ Rd;
5. Upper semi continuity in parameter and initial conditions

lim
q→p,y→x

H∗ (Φ(t, q, y), Φ(t, p, x)) = 0

uniformly in t ∈ [T0, T1] for any 0 ≤ T0 < T1 < ∞ for all p ∈ P and x ∈ Rd.

Remark 1. Assumptions 4 and 5 imply that Φ is globally upper semi continuous
(u.s.c.), i.e. if (tn, pn, xn) → (t, p, x) as n →∞, then H∗(Φ(tn, pn, xn), Φ(t, p, x)) →
0. Indeed,

H∗(Φ(tn, pn, xn), Φ(t, p, x)) ≤ H∗(Φ(tn, pn, xn),Φ(tn, p, x))
+H∗(Φ(tn, p, x), Φ(t, p, x)) → 0 asn →∞,

since the first term in the right hand side goes to zero by the u.s.c. in the second
and third variables uniformly in time (property 5), and the second term goes to zero
by the continuity (hence u.s.c.) of Φ on its first variable (property 4).

A trajectory of a set-valued cocycle Φ is a single-valued mapping φp : [0, T ] →
Rd which, for the indicated p ∈ P , satisfies

φp(t) ∈ Φ(t− s, θsp, φp(s)) for all 0 ≤ s ≤ t ≤ T. (1)

A trajectory φ is called an entire trajectory if it is defined on all of R and satisfies (1)
for all s ≤ t. (If necessary a particular p ∈ P , we will use the notation p-trajectory
for the above definition).

Now let us denote

Tp,x([0, T ]) = {φp, trajectory φp(0) = x}.

Then, we can establish the following result in a similar way as in [3, 20, 13]:

Theorem 2. The following properties holds:
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1. Tp,x([0, T ]) 6= ∅ (there exist trajectories for all p, x,and T > 0)

2. Tp,x([0, T ]) ⊆ C([0, T ];Rd) (continuity)

3. Tp,x([0, T ]) is a compact subset of C([0, T ];Rd)

4. Tpn,xn([0, T ]) → Tp,x([0, T ]) (in H∗ on C([0, T ];Rd)) as pn → p, xn → x.

Remark 3. It is worth noticing that Theorem 2 also holds true if we consider a
Banach space X instead of Rd (see the proof in Section 7).

We now consider a general autonomous set-valued semidynamical system (SVSDS
for short) as in Szegö and Treccani [24], that is, a set-valued mapping Π : R+×Y →
Y where Y is a connected metric space satisfying suitable properties. To avoid un-
necessary repetitions, such properties are the stated below for the special case in
which the set Y is the extended phase space P × Rd.

A particular case of an autonomous set-valued semidynamical system is be that
generated by a set-valued skew product flow, namely with Π(t, p, x) = (θtp,Φ(t, p, x))
and satisfying the following properties:

1. Π(t, p, x) is nonempty and compact;

2. Π(0, p, x) = {(p, x)};
3. The semigroup property:

Π(t + s, p, x) = Π (t, Π(s, p, x)) ;

4. t 7→ Π(t, p, x) is continuous in the Hausdorff metric, for all p, x, i.e.

HP×Rd(Π(s, p, x), Π(t, p, x)) → 0, as s → t;

5. (p, x) 7→ Π(t, p, x) is upper semicontinuous in the H∗ sense, i.e.

H∗
P×Rd(Π(t, q, y), Π(t, p, x)) → 0, as q → p, y → x,

uniformly in compact intervals t ∈ [T1, T2].

A trajectory for an SVSDS is a single-valued mapping π : [0, T ] → Y with
π(t) ∈ Π(t − s, π(s)) for all 0 ≤ s ≤ t ≤ T . Analogously, a trajectory (or p-
trajectory) for a SVSPF is a single-valued mapping πp : [0, T ] → P × Rd with
πp(t) ∈ Π(t− s, πp(s)) for all 0 ≤ s ≤ t ≤ T and the first component of πp(0) equal
to p.

Proposition 4. πp is a trajectory for the SVSPF if and only if there exists a tra-
jectory φp of Φ such that

πp(t) = (θtp, φp(t)) ∀t ∈ [0, T ].

The result holds true for any trajectory defined in any interval of time, and also for
entire trajectories.
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Remark 5. An analogous result to Theorem 2 holds for an SVSDS Π (and therefore
for an SVSPF), replacing C([0, T ];Rd) by C([0, T ]; P × X) in all the statements,
actually, in any time interval not necessarily in the positive half line.

This is straightforward since the multi-valued mapping F : {(t, t0) : t ≥ t0} ×
P ×X → P(P ×X) defined by F (t, t0, p, x) := Π(t− t0, (p, x)) satisfies the required
conditions, since θ and Φ do (cf. [3, 20, 13, 5]).

3 Attractors of SVSDS

Now we consider a SVSDS Π : R+ × Y → P(Y ) and recall the basic concepts on
attractors, which we will be apply in the following section to our skew product
formulation, denoting then the extended phase space space P × Rd by Y .

For the sake of clarity, subscripts s and w on attractors will denote strong and
weak concepts.

Definition 6. A strong global attractor for an SVSDS Π is a nonempty compact
subset As ⊂ Y satisfying

1. strong invariance: Π(t,As) = As for all t ≥ 0

2. strong attraction: for every nonempty bounded subset D of Y ,

distY (Π(t,D),As) → 0, as t →∞

A weak global attractor for an SVSDS Π is a nonempty compact subset Aw ⊂ Y
satisfying

1. weak invariance: ∀y ∈ Aw there exists an entire trajectory π : R → Y with
π(0) = y and π(t) ∈ Aw for all t ∈ R

2. weak attraction: for every nonempty bounded subset D of Y and yn ∈ D, there
exist trajectories πn : R+ → Y and numbers τn →∞ with πn(0) = yn and

distY (πn(τn),Aw) → 0, as n →∞

For completeness, we recall some results ensuring the existence of such attractors.

3.1 Strong global attractor of SVSDS

The most simple case of an autonomous semi-flow with a compact absorbing set Bs

(i.e. for every bounded set D there exists tD ≥ 0 such that Π(t,D) ⊂ Bs for all
t ≥ tD) is well known. Assume that Bs is a nonempty compact absorbing set in
Y . Without loss of generality, we can assume that Bs is Π–positively invariant (i.e.
Π(t,Bs) ⊂ Bs, for all t ≥ 0). Define

As =
⋂

t≥0

Π(t,Bs).

Then, a ∈ As iff a ∈ Bs and there exist τn → ∞, an ∈ Π(τn,Bs) with an → a as
n →∞.
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Proposition 7. The set As has the following properties:

1. It is nonempty and compact and attracts bounded sets.

2. It is Π–invariant, therefore it is a global strong attractor. Actually it is the
maximal invariant compact set, and also the minimal closed set that attracts
bounded sets.

3. If Π(t, x) is connected for all (t, x) ∈ R+ × Y , then As is also connected.

Remark 8. The existence of an absorbing set for the construction of the attractor
and its properties can be relaxed to that of an attracting set (see [18, Th.1]), which
can be more appropriate in some other situations (e.g. hyperbolic systems).

3.2 Weak attractors of SVSDS

We consider now an SVSDS Π(t, x) and establish existence of weak attractors. To
this end, we introduce the concept of a weak absorbing set Bw which is a nonempty,
compact set which in addition is

• weakly positively invariant: for all b ∈ Bw there exists at least a trajectory π
with π(0) = b and π(t) ∈ Bw for all t ≥ 0.

• weakly absorbing: for all compact subset D there exists TD ≥ 0 such that for
any d ∈ D there exists a trajectory π with π(0) = d and π(t) ∈ Bw for all
t ≥ TD.

Theorem 9. Assume there exists a weak absorbing set Bw for an SVSDS Π. Then,
there exists the maximal weak attractor Aw w.r.t. Bw, which is defined as the set of
points a ∈ Bw such that there exist bn ∈ Bw, τn →∞ and trajectories πn : R+ → Bw

with πn(0) = bn and dist(πn(τn), a) → 0 as n →∞.

Remark 10. As in [5, lemma 13], we observe that an entire trajectory π : R → Y
satisfies that

π(t) ∈ Bw if and only if π(t) ∈ Aw.

Therefore, Aw becomes the set of points reached by entire trajectories contained in
Bw.

4 Attractors of SVSPF

Now specialize to Π = (θ, Φ) with our skew product structure, i.e. we consider now
that Y = P × Rd. We again split our analysis into two cases concerning the strong
and weak situations.

6



4.1 (Strong) Global Attractor of SVSPF

Suppose that there exists a compact positive invariant absorbing set Bs ⊂ P × Rd

for Π. Then, there exists a strong global attractor

As =
⋂

t≥0

Π(t,Bs).

Let P ∗ = PrP (As) be the projection of As onto the space P and consider the
decomposed notation

As =
⋃

p∈P ∗
{p} ×As(p).

Proposition 11. Under the previous assumptions the following properties hold:

1. P ∗ is nonempty, compact and θtP
∗ = P ∗. In fact, P ∗ is the global attractor

of the (single-valued) autonomous driving system θ on P .

2. As(p∗) is nonempty and compact for each p∗ ∈ P ∗. It also satisfies the invari-
ance property As(θtp

∗) = Φ(t, p∗, As(p∗)).

3. The mapping P ∗ 3 p 7→ As(p) is upper semi continuous.

Now consider the restriction Π∗ of Π to P ∗ ×Rd. Since θtP
∗ = P ∗ for all t ∈ R,

it follows that Π∗ is an SVSPF on P ∗ × Rd.
Consider B∗s = Bs∩ (P ∗×Rd). Then, B∗s absorbs sets in P ∗×Rd under Π∗(≡ Π).

Also B∗s is nonempty, compact and Π∗-positively invariant, so Π∗ has a maximal
global attractor

A∗s =
⋃

p∈P ∗
{p} ×A∗s(p),

in P ∗ × Rd. Then, we have the following result:

Proposition 12. The strong global attractors of Π and Π∗ coincide: A∗s ≡ As.

4.2 Weak Attractors of SVSPF

Suppose that an SVSPF Π has a weak attractor relative to the compact weak ab-
sorbing set Bw ⊂ P × Rd, which is also given by

Aw =
⋃

p∈P ∗
{p} ×Aw(p),

(again we denote P ∗ = PrP Aw) as described above for general set-valued semi
dynamical systems. Then, we have

Proposition 13. The following properties hold:

1. P ∗ is the strong global attractor for the driving system.

2. Aw(p) is a nonempty compact set for each p ∈ P ∗.
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3. The map P ∗ 3 p 7→ Aw(p) ∈ K(Rd) is u.s.c.

4. Aw is weakly invariant, i.e. if (p, a) ∈ Aw, there exists an entire trajectory
π = (θ, ϕp) such that ϕp(0) = a and π(t) = (θtp, ϕp(t)) ∈ Aw for all t ∈ R, i.e.
ϕp(t) ∈ Aw(θtp).

Moreover, Aw is the largest weak invariant set in the absorbing set Bw.

If we restrict Π to Π∗ on P ∗×Rd, we have that Π(t, (p, x)) = Π∗(t, (p, x)) for all
t ≥ 0 and (p, x) ∈ P ∗ × Rd since P ∗ is θ-invariant.

Define
B∗w =

⋃

p∈P ∗
{p} ×Bw(p) ⊂ Bw =

⋃

p∈P

{p} ×Bw(p).

Note that Aw(p) ⊂ Bw(p) for all p ∈ P ∗. So, Bw(p) is nonempty and compact.
We also have that B∗w is weakly positive invariant since P ∗ is θ-invariant and Bw is
weakly positive Π-invariant.

Then, we obtain a maximal weak attractor for Π∗, A∗w, with respect to B∗w and
we will use the notation

A∗ =
⋃

p∈P ∗
{p} ×A∗w(p).

Remark 14. Note that a ∈ A∗w(p) if and only if there exist sequences tn → ∞,
(pn, bn) ∈ B∗w, trajectories πn = (θ, ϕpn) with ϕpn(0) = bn and θtnpn → p and
ϕpn(tn) → a.

Observe that A∗w consists of entire Π∗-trajectories, and, since it is weak invariant,
A∗w(p) is nonempty and compact for all p ∈ P ∗.

Aw ⊂ B∗w ⊂ Bw but Aw is the maximal Π-weak invariant family contained in Bw

and A∗w is Π∗-weak invariant (and so Π-weak invariant), therefore one has that

A∗w ⊂ Aw.

Indeed, as Π and Π∗ coincide in B∗w, entire Π-trajectories inAw are Π∗-trajectories
and conversely, by the same argument of maximality, we conclude that

Aw = A∗w.

Thus, we can restrict ourselves to the dynamics on B∗w and we will study the
relations between weak and strong skew-product attractors and their sections with
respect to pullback weak and strong attractors in the following section.

5 Pullback structure of SVSPF attractors

Once again we split our analysis into two cases: strong and weak attractors.
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5.1 The strong case

As before, Bs denotes a Π-positive invariant compact absorbing set and B∗s =
Bs ∩ (P ∗ × Rd) is a Π∗-positive invariant compact absorbing set (we keep using
the notation Bs =

⋃
p∈P {p} × Bs(p), so Bs(p) 6= ∅ for p ∈ P ∗). This implies

Φ-positive invariance for the sections Bs(p) in P ∗:

Φ(t, p, Bs(p)) ⊂ Bs(θtp) ∀t ≥ 0, ∀p ∈ P ∗.

Indeed, Π∗(t,B∗s) ⊂ B∗s implies that

Π(t, (p,Bs(p))) = (θtp,Φ(t, p, Bs(p))) ⊂ B∗s =
⋃

q∈P ∗
(q, Bs(q))

what necessarily means our claim if p ∈ P ∗.

Lemma 15. Define

Âs(p) =
⋂

t≥0

Φ(t, θ−tp,Bs(θ−tp)) for p ∈ P ∗.

Then, Âs(p) is nonempty and compact for all p ∈ P ∗.

Remark 16. If Bs(p) and Φ(t, p, x) are connected for all t ≥ 0, p ∈ P ∗ and x ∈
Rd, then Âs(p) is also connected, since it is the intersection of a nested family of
nonempty, compact, connected sets.

Proposition 17. The following identities hold:

Âs(p) = A∗s(p) = As(p) ∀p ∈ P ∗. (2)

Moreover, we also have the following result.

Proposition 18. Âs(p) is the pullback attractor for Φ on P ∗ × Rd.

Remark 19.

(i) Notice that Propositions 17 and 18 implies that the p-components of the strong
global Π-attractor As, which attracts in the forward and pullback senses, are the
strong pullback attractor for Φ when the dynamics are restricteed to P ∗ × Rd.

(ii) Here we started with a global attractor for the skew-product flow Π and have
obtained a pullback attractor for Φ. The converse is not true in general, i.e.
if {As(p), p ∈ P ∗} is a strong pullback attractor for Φ, then A =

⋃
p∈P ∗{p} ×

As(p) may not be a global attractor for Π (see [8] for a counterexample in the
single-valued case).

(iii) In general, pullback attractors for set-valued flows are only negatively invari-
ant, and strict invariance needs additional assumptions (the easiest is a lower
semi continuous property for the flow). Here, the strict invariance holds here
since the driving system has a global attractor.
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Now, bearing (2) in mind, we deduce an improvement of the u.s.c. result in
Section 4.1 when the approximation in the parameter space comes from the driving
system.

Corollary 20. For every p ∈ P ∗, the map t 7→ As(θtp) is continuous.

Proof. It follows from the fact that A∗s ≡ As is strongly Π-invariant (and thus
Φ(t, p, As(p)) = As(θtp)), and the continuity of Φ on its first variable.

5.2 The weak case

Assume that Bw =
⋃

p∈P {p}×Bw(p) is a weak absorbing family for the skew-product
flow and denote B∗w = Bw ∩ (P ∗ × Rd).

Then, the family of sets {Bw(p)}p∈P “is” (see Remark 22 below) a weak pullback
absorbing family for Φ, similarly to the concept of [5], which leads us to consider
the following definition:

Âw(p) =

{
a ∈ Rd

∣∣∣∣∣
∃tn →∞, bn ∈ Bw(θ−tnp), p− trajectories
ϕn : [−tn, 0] → Rd with ϕn(−tn) = bn and ϕn(0) → a

}

We will now prove that Âw(p) ⊂ A∗w(p).
Let a ∈ Âw(p), then there exist sequences tn → ∞, bn ∈ Bw(θ−tnp), and p-

trajectories ϕ̂n : [−tn, 0] → Rd such that ϕ̂n(−tn) = bn and ϕ̂n(0) → a.
Denote pn = θ−tnp and ϕn : [0, tn] → Rd given by

t 7→ ϕn(t) = ϕ̂n(t− tn).

It is obvious that πn = (θ, ϕn) are Π∗-trajectories with πn(0) = (pn, bn) and

πn(tn) = (θtnpn, ϕn(tn)) = (p, ϕ̂n(0)) → (p, a).

Remark 14 implies that Âw(p) ⊂ A∗w(p).

As for the other inclusion, we have: A∗w is weakly invariant, which means that for
all (p, a) ∈ A∗w, there exists an entire trajectory π of Π∗ with π(t) ∈ A∗w for all t ∈ R,
i.e. π(t) = (θtp, ϕp(t)) with ϕp an entire trajectory of Φ such that ϕp(0) = a ∈ Aw(p)
and ϕp(t) ∈ Aw(θtp) for all t ∈ R.

Consider any sequence tn → ∞ and define pn = θ−tnp. Take bn = ϕp(−tn) ∈
Aw(θ−tnp) ⊂ Bw(θ−tnp). Then, trivially ϕn(t) ≡ ϕp(t) for all n and t, jointly with
the chosen values bn, tn and pn, gives that a ∈ Âw(p) and therefore A∗w(p) ⊂ Âw(p).

Therefore, we have proved the following result:

Proposition 21. Under the above assumptions, Âw(p) = A∗w(p) = Aw(p) for all
p ∈ P ∗, i.e. the maximal weak attractor of Π in Bw, resp. Π∗ in B∗w give the maximal
weak pullback attractor of Φ with respect to the absorbing family {Bw(p), p ∈ P ∗}.
Remark 22. By Proposition 13 and the continuity of θ, the set-valued mapping

t 7→ Âw(θtp) = Aw(θtp)

is (only) upper semi continuous (in comparison with [5, Prop. 11]).

Aε
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6 Examples

Our first example related to the strong structure of a skew product flow is given by
the differential inclusion

x′(t) ∈ G(t, x(t)) + βp(t, x(t)), (3)

where the multi-valued mapping G has good properties (for instance, it has closed
and convex values in P(Rd) and is Lipschitz continuous) and satisfies:
1. almost periodic dependence on its first variable,
2. a dissipativity condition: for all y ∈ G(t, x) it holds (x, y) ≤ −α0|x|2 + α1, with
αi > 0, i = 1, 2,
3. and p is single-valued, almost periodic on its first variable, and satisfies

|p(t, x)| ≤ γ1(t)|x|+ γ2(t),

|p(t, x)− p(t, y)| ≤ γ3(t)|x− y|
with γi (i=1,2,3) continuous, positive functions and

lim
t→∞

1
t

∫ t

0
γ1(s)ds = Cf < ∞. (4)

Under these assumptions, it is easy to deduce the existence of an attractor for the
skew-product flow generated by the above problem if β is positive and small enough.
The parameter space P is the product of the hulls of the mappings G and p in ap-
propriate function spaces.

The almost periodic time dependence is not essential. Consider the driving
system

p′(t) = g(p(t)), (5)

with g : R→ R given by

g(y) =




−y − 1 if y ≤ −1,
y2 − 1 if y ∈ (−1, 1),
1− y if y ≥ 1.

Then, it is easy to check that the non-autonomous problem

x′(t) ∈ [−1,−1/2]x(t) + p(t)

generates a set-valued cocycle mapping, and jointly with (5), a skew-product flow
with a non-trivial global attractor in the strong sense.

Other examples, arising from differential equations without uniqueness, partial
differential equations with periodic forcing terms, delay and functional differential
models among others can be founded in [9, 6, 7, 8].
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An simple example to illustrate the weak case can be provided by using an almost
periodic or even periodic function of time. Suppose we have the differential inclusion

x′(t) ∈ x(t)[− sin2 t, 0], (6)

which clearly generates a set-valued cocycle mapping. Since for every initial value
x0, the constant function φ(t) = x0 is a solution of the problem, there does not
exist a strong attractor for the skew product flow. However, the set {0} is a forward
attractor for the non-autonomous system (and [0, π] × {0} is a global attractor for
the skew-product flow, where P = R is equipped with the usual shift modulo π,
which is considered as the driving operator). Indeed,

x′

x
= − sin2 t = −1/2(1− cos(2t))

generates the solutions for the initial data x0

x(t) = x0e
−t/2+1/4 sin(2t).

Finally, in [12] we can find some interesting examples on practical problems
arising in controllability theory for linear differential systems written in the form:

x′(t) = A(t)x + Bu, u ∈ U,

where A is an almost periodic operator and B a linear operator acting on a control
set U . (Here P is the closure of the set {A(t) : t ∈ R}).

7 Proofs

7.1 Barbashin Theorem for set-valued cocycle maps. Proof of The-
orem 2

First, we prove a Barbashin Theorem which will be needed below. We follow the
ideas in [13] to construct a trajectory. We proceed in several steps.

Attainability functions
Because of the cocycle property, for general points x0, x1, times 0 ≤ t ≤ t1, and
p ∈ P , we have

Φ(t1, p, x0) = Φ(t, θt1−tp, Φ(t1 − t, p, x0)).

Then, x1 ∈ Φ(t1, p, x0) if and only if

∃x ∈ Φ(t1 − t, p, x0) such that x1 ∈ Φ(t, θt1−tp, x).

This suggests the following definition of a restricted backwards attainability function:

x ∈ G(x0, p;x1, t1; t) ⇐⇒ x1 ∈ Φ(t, θt1−tp, x). (7)

Then, one has the following result:
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Lemma 23. If x1 ∈ Φ(t1, p, x0), then G(x0, p; x1, t1; t) is nonempty and closed, and
G(x0, p;x1, t1; 0) = {x1}.

The mapping t ∈ [0, t1] → A(t) ∈ P(RN ) defined by

A(t) = Φ(t1 − t, p, x0) ∩G(x0, p; x1, t1; t) (8)

has nonempty compact images and is continuous in t with respect to the Hausdorff
metric.

Proof. Owing to the cocycle property, it is obvious that G(x0, p; x1, t1; t) is nonempty.

To prove that it is closed, we proceed as in [20]. Suppose yi ∈ G(x0, p; x1, t1; t)
with yi → y as i →∞, then x1 ∈ Φ(t, θt1−tp, y). Indeed,

d(x1, Φ(t, θt1−tp, y)) ≤ d(x1,Φ(t, θt1−tp, yi)) + H∗(Φ(t, θt1−tp, yi),Φ(t, θt1−tp, y)).

The first term on the right hand side is zero, and the second one converges to zero
due to the u.s.c. of Φ, so d(x1, Φ(t, θt1−tp, y)) = 0 and x1 ∈ Φ(t, θt1−tp, y).

The statement of G(x0, p; x1, t1; 0) = {x1} is trivial.

It is clear that A(t) is nonempty (see the construction of G and (7)), and also
compact since it is the intersection of a compact set and a closed one. We now need
to prove the continuity of t 7→ A(t), i.e. we have to check that H(A(s), A(s0)) → 0
as s → s0.

We start with the case H∗(A(s), A(s0)) → 0. Suppose it is not so, i.e. there
exist a constant ε > 0 and a sequence si → s0, such that H∗(A(si), A(s0)) ≥ ε. As
A(si) is compact, the maximum is achieved at some point, say zi:

H∗(A(si), A(s0)) = d(zi, A(s0)) ≥ ε.

Since zi ∈ A(si) ⊂ Φ(t1 − si, p, x0), they belong to a compact set (by the con-
tinuity of Φ and its compact values), so there exists a convergent subsequence
zi′ → z0 ∈ Φ(t1 − s0, p, x0). On the other hand, as zi ∈ G(x0, p; x1, t1; si), i.e.
x1 ∈ Φ(si, θt1−sip, zi), because of the u.s.c. of Φ on its three variables (see Remark
1) and as (si, θt1−sip, zi) → (s0, θt1−s0p, z0), we have that x1 ∈ Φ(s0, θt1−s0p, z0),
i.e. z0 ∈ G(x0, p; x1, t1; s0) and therefore z0 ∈ A(s0), which leads to a contradiction,
since then H∗(A(si), A(s0)) = d(zi, A(s0)) ≤ d(zi, z0) → 0.

We now prove that H∗(A(s0), A(s)) → 0 as s → s0. Arguing by contradiction,
assume there exist a constant ε > 0 and a sequence {si}i≥1 with si → s0 as i →∞,
such that H∗(A(s0), A(si)) ≥ ε. Consider z0

i ∈ A(s0) such that d(z0
i , A(si)) =

H∗(A(s0), A(si)). This is possible since A(s0) is compact, and indeed, w.l.o.g. we
can assume that z0

i → z0 ∈ A(s0). To finish, now it is enough to prove that there
exists zi ∈ A(si) such that zi → z0.

We split into two cases (the general case is a combination of these):
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si ≤ s0 Consider

z0 ∈ A(s0) = Φ(t1 − s0, p, x0) ∩G(x0, p; x1, t1; s0),

thus x1 ∈ Φ(s0, θt1−s0p, z0).
On the one hand, Φ(s0 − si, θt1−s0p, z0) ∩ G(z0, θt1−s0p;x1, s0; si) 6= ∅ by the

same reasons as A(t). On the other hand, one can easily see that

G(x0, p;x1, t1; si) = G(z0, θt1−s0p; x1, s0; si),

and
Φ(s0 − si, θt1−s0p, z0) ⊂ Φ(t1 − si, p, x0).

Therefore,

∅ 6= Φ(s0 − si, θt1−s0p, z0) ∩G(z0, θt1−s0p;x1, s0; si) ⊂ A(si).

Pick
zi ∈ Φ(s0 − si, θt1−s0p, z0) ∩G(z0, θt1−s0p; x1, s0; si).

By the continuity of Φ we have that zi → z0.

si ≥ s0 The same argument shows that

∅ 6= Φ(t1 − si, p, x0) ∩G(x0, p; z0, t1 − s0; si − s0),

and we also have the following inclusion

G(x0, p; z0, t1 − s0; si − s0) ⊂ G(x0, p; x1, t1; si)

by means of the cocycle property of Φ. Thus,

∅ 6= Φ(t1 − si, p, x0) ∩G(x0, p; z0, t1 − s0; si − s0)
⊂ Φ(t1 − si, p, x0) ∩G(x0, p;x1, t1; si) = A(si).

By choosing
zi ∈ Φ(t1 − si, p, x0) ∩G(x0, p; z0, t1 − s0; si − s0),

we have that zi ∈ Φ([0, t1 − s0], p, x0) for all i, which is compact. Therefore, there
exists a converging subsequence zi′ → ξ. On the other hand, as long as z0 ∈
Φ(si − s0, θt1−sip, zi), particularizing to the case of the subsequence zi′ commented
above, the u.s.c. of Φ implies z0 ∈ Φ(0, θt1−s0p, ξ) = {ξ}, so z0 = ξ (observe that
therefore the whole sequence converges), and the proof is complete.

Corollary 24. Every Φ-trajectory is continuous.

Proof. Let φp : [0, T ] → Rd be a p-trajectory, i.e. φp(t) ∈ Φ(t− s, θsp, φp(s)) for all
0 ≤ s ≤ t ≤ T . We consider ta fixed, and t → ta. Separate the proof in two cases:

t > ta Then,

φ(t) ∈ Φ(t− ta, θtap, φp(ta)) → Φ(0, θtap, φp(ta)) = {φp(ta)}.
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t < ta By easy computations, we see that

φ(t) ∈ Φ(t− t0, θt0p, φp(t0)) ∩G(φ(t0), θt0p, φ(ta), ta − t0, ta − t).

Observe that this set has the form described in the definition (8) for A(t̃), but with
x̃0 = φp(t0), p̃ = θt0p, x̃1 = φp(ta), t̃1 = ta − t0, t̃ = ta − t. Thus, now we have that
A(t̃) → A(0) as t̃ = ta − t → 0, but A(0) = {φp(ta)}, which gives us the desired
result.

Proof of Theorem 2

We prove Theorem 2 following the ideas in [20, 13].

In order to do that, firstly we show how to construct trajectories.

Consider a ≤ b and (θap, x) ∈ P × Rd. We will construct a trajectory φp with
φp(a) = x passing through any other (given) point at time b, say φp(b), which
necessarily belongs to Φ(b−a, θap, φp(a)). A first step is to choose the mid time point
(a + b)/2 of the interval (a, b) and an image for it. By the previous considerations,
this image must be in

Φ((b− a)/2, θap, φp(a)) ∩G(φa(a), θap, φp(b), b− a, (b− a)/2),

which is a nonempty compact set. We iterate this process in the intervals [a, (a+b)/2]
and [(a+ b)/2, b]. Repeating this process, we can obtain a dyadic sequence of points
which satisfies the relation for being a trajectory. The problem of completing from
this set to the whole interval is solved by density: let t be a non dyadic point of
[a, b], and t′ and t′′ any dyadic points such that t′ < t < t′′, then we choose

φp(t) ∈ K(t) =
⋂

t′<t<t′′
Φ(t− t′, θt′p, φp(t′)) ∩G(φp(t′), θt′p, φp(t′′), t′′ − t′, t′′ − t).

Now, we need to check that each of these sets is nonempty (which can be seen
again as in (8)), and that this construction is consistent, i.e. the finite intersection
property holds. The arguments are the same as in [13].

Indeed, for any s1 < s2 < t < s3 < s4, we have that the following sets are well
defined and the inclusions hold:

Φ(φp(s2), θs2p, t− s2) ⊂ Φ(φp(s1), θs1p, t− s1)

and

G(φp(s1), θs1p; φp(s3), s3 − s1; s3 − t) = G(φp(s2), θs2p;φp(s3), s3 − s2; s3 − t)
⊂ G(φp(s1), θs1p;φp(s4), s4 − s1; s4 − t)
= G(φp(s2), θs2p;φp(s4), s4 − s2; s4 − t).

Thus, we have proved the existence of at least one trajectory. We recall that
every trajectory has been proved to be continuous.
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Now we prove that Tp,x([0, T ]) is compact in C([0, T ];Rd). Let be {φn} ⊂
Tp,x([0, T ]). As Φ(T, p, x) is compact, there exists a subsequence {φn1(T )} ⊂ {φn(T )}
converging to a point denoted φ(T ). By the same reason, there exists another subse-
quence {φn2(T/2)} ⊂ {φn1(T/2)} converging to a point φ(T/2) and we iterate this
procedure. By a diagonal argument, we obtain a subsequence relabeled again with
index m, converging in all the dyadic numbers of [0, T ]: φm(pT/2q) → φ(pT/2q).

As {φn} are trajectories, then φn(t) ∈ Φ(t− s, θsp, φn(s)) for all 0 ≤ s ≤ t ≤ T ,
in particular for dyadic numbers, whence φ(t) ∈ Φ(t − s, θsp, φ(s)) by the u.s.c. of
Φ. To extend it to the whole interval to obtain a trajectory, we proceed as before.

Let us prove that φn → φ in C([0, T ];Rd). The pointwise convergence follows
easily. Indeed, for any t, let us write

φn(t)− φ(t) = φn(t)− φn(tD) + φn(tD)− φ(tD) + φ(tD)− φ(t),

with tD a dyadic number close enough to t such that |φ(t′) − φ(t)| ≤ ε/3, and
with H(Φ(t, p, x), Φ(t′, p, x)) ≤ ε/3. Then we can choose n(tD) such that for all
n ≥ n(tD), one has |φn(tD) − φ(tD)| ≤ ε/3. However, for the uniform convergence
one needs to be more careful. We follow the proof in [20, Th.6.2]. By a contradiction
argument, if it does not hold, there exist a constant ε > 0, sequences tn, with
tn → t ∈ [0, T ], and φn such that

|φn(tn)− φ(t)| > ε. (9)

Consider a dyadic number τ ∈
{

(t, T ] if t < T
{T} if t = T.

As {φn(tn)} ⊂ Φ([0, T ], p, x), which is compact, there exists a convergent sub-
sequence (we do not relabel it) φn(tn) → z. Then, there exists nτ ∈ N such that
for all n ≥ nτ , we have that tn < τ . Since φn(τ) ∈ Φ(τ − tn, θtnp, φn(tn)) and τ is
dyadic, we have φn(τ) → φ(τ) and so, the global u.s.c. of Φ implies that

φ(τ) ∈ Φ(τ − t, θtp, z).

Using now the continuity of φ and the density of dyadic numbers we have:

φ(t) = lim
τ→t

φ(τ) ∈ lim sup
τ→t

Φ(τ − t, θtp, z) = Φ(0, θtp, z) = {z},

which contradicts (9).

Finally, we prove the upper semicontinuity result claimed in (4):

H∗(Tpn,xn([0, T ]), Tp,x([0, T ]) → 0 if (pn, xn) → (p, x).

According to the last section, it is equivalent to prove ε-u.s.c. We proceed again by
a contradiction argument. Suppose there exist a positive constant ε > 0, a sequence
of pairs (pn, xn) converging to (p, x) in P × Rd, and trajectories φn ∈ Tpn,xn([0, T ])
such that φn 6∈ BC([0,T ];Rd)(Tp,x([0, T ]), ε). We will prove that for a subsequence φn′ ,
it is satisfied that φn′ → φ ∈ Tp,x([0, T ]), which will give us the contradiction.
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First, we have that φn(0) = xn → x. As φn(T ) ∈ Φ(T, pn, xn), by the compact
values and u.s.c. of Φ, there exists a subsequence (which we do not relabel) con-
verging to an element φ(T ) in Φ(T, p, x). The same argument can be applied to this
subsequence at time T/2, and, taking a diagonal subsequence, for a countable set of
numbers (the dyadic in [0, T ]), defining a set of points φ(kT/2m). Of course, they
satisfy the trajectory property, as far as φn are:

φn(t) ∈ Φ(t− s, θspn, φn(s)),

for dyadic 0 ≤ s ≤ t ≤ T . By the u.s.c. of Φ we have

φ(t) ∈ Φ(t− s, θsp, φ(s).

The extension to the whole interval is done as above, preserving the trajectory
property. To finish, the uniform convergence of φn to φ is deduced as in the previous
case.

7.2 Autonomous strong attractors of SVSDS. Proof of Proposi-
tion 7

Clearly, As is nonempty since it is the intersection of a nested family of compact
sets. Moreover, it is compact too.

Since any bounded set is absorbed by Bs, it is enough to see that Bs is attracted
by As. If not, there exist ε > 0 and a sequence xn ∈ Π(tn,Bs), with tn → ∞, such
that dist(xn,As) ≥ ε > 0. But xn ∈ Bs for all n ≥ n(Bs) by the absorbing property
of Bs, and as it is compact, there is a subsequence converging (we do not relabel) to
x ∈ As, which is a contradiction.

We check Π–invariance in two steps: First, we prove that Π(t,As) ⊂ As as in
the single-valued case. Indeed,

Π(t,As) = Π
(
t,

⋂

r≥0

Π(r,Bs)
)

⊂
⋂

r≥0

Π(t, Π(r,Bs))

=
⋂

r≥0

Π(t + r,Bs) =
⋂

r≥t

Π(r,Bs) =
⋂

r≥0

Π(r,Bs) = As

where we have used the semigroup property of Π and the positive invariance of Bs.
For the converse, As ⊂ Π(t,As), pick a ∈ As. Then, there exist sequences

τn →∞, and an ∈ Π(τn,Bs) with an → a. Consider t > 0 and n(t) such that for all
n ≥ n(t), τn − t ≥ 0. Then, for all n ≥ n(t):

an ∈ Π(τn,Bs) = Π(t, Π(τn − t,Bs)

and thus there exists a sequence a′n ∈ Π(τn − t,Bs) with an ∈ Π(t, a′n). Since Bs is
compact and positively invariant, we deduce from

a′n ∈ Π(τn − t,Bs) ⊂ Bs
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the existence of a convergent subsequence a′nj
→ a′ ∈ Bs if j → ∞. Of course,

τnj − t →∞ and therefore, a′ ∈ As. By the upper semicontinuity we have that

H∗(Π(t, a′nj
), Π(t, a′)) → 0 j →∞,

and from anj → a and anj ∈ Π(t, a′nj
) we obtain a ∈ Π(t, a′) ⊂ Π(t,As) as desired.

Since a compact set K that is Π-invariant satisfies by the attraction property,
dist(Π(t,K),As) → 0, and we have that dist(K,As) = dist(Π(t,K),As), then
dist(K,As) = 0 and so K ⊂ As.

On the other hand, for a closed set B attracting bounded sets, we have that
dist(As, B) = dist(Π(t,As), B) → 0 and therefore dist(As, B) = 0 and As ⊂ B.

Indeed, for the last statement, it is enough to prove that As attracts a connected
bounded set B̃ containing As, which is trivial here by taking B̃ = B(0, ‖Bs‖) ⊃
Bs ⊃ As. Suppose by contradiction that As is not connected, then there exists
two disjoint open sets Oi (i=1,2) with As ⊂ O1 ∪ O2 and As ∩ Oi 6= ∅. Denote
by ωi = As ∩ Oi, which are closed, and therefore compact sets. Take ε > 0 such
that B(ω1, ε) ∩ B(ω2, ε) = ∅. By the attraction property, there exists tB̃ with
Π(tB̃, B̃) ⊂ B(As, ε). But Π(tB̃, ·) is u.s.c. and B̃ is connected, and so it is Π(tB̃, B̃).
Therefore, it can only be contained in one of the sets B(ωi, ε), which contradicts the
inclusions

As ⊂ Π(tB̃,As) ⊂ Π(tB̃, B̃).

7.3 Autonomous weak attractors of SVSDS. Proof of Theorem 9

Nonempty and compact: consider any sequences τn → ∞ and bn ∈ Bw. By
the weak positive invariance of Bw, there exist trajectories πn with πn(0) = bn and
πn(t) ∈ Bw for all t ≥ 0. In particular, an = πn(τn) ∈ Bw, and by the compactness
of Bw we can extract a subsequence anj converging to an element a in Bw as j →∞.
Taking {τnj , bnj , anj}j as the original sequences, we have that a ∈ Aw which is
therefore nonempty.

To show that Aw is compact, we only need to see that it is closed since is
contained in the compact set Bw. Suppose ak ∈ Aw and ak → a as k → ∞. Then,
there exist sequences τk,n → ∞ as n → ∞ and trajectories πk,n with πk,n(t) ∈ Bw

for all t ≥ 0 and πk,n(τk,n) → ak as n →∞. Pick nk so that

|πk,nk
(τk,nk

)− ak| ≤ 1/k and tk+1,nk+1
≥ tk,nk

+ 1 ∀k ∈ Z+.

Then

|πk,nk
(τk,nk

)− a| ≤ |πk,nk
(τk,nk

)− ak|+ |ak − a| ≤ 1/k + |ak − a| → 0 as k →∞.

Taking {πk,nk
, τk,nk

}k as the original sequences, we have again that a ∈ Aw, which
is closed as desired, and hence compact.

Weak positive invariance: Take a ∈ Aw, then there exist a sequence τn →∞
and trajectories πn with π(t) ∈ Bw for all t ≥ 0, such that πn(τn) → a as n →∞. If
we denote vn(t) := πn(τn + t), it is obvious that vn is a trajectory and vn(t) ∈ Bw for
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all t ≥ 0 and vn(0) → a ∈ Aw. Applying Barbashin’s theorem [20, 13] on an interval,
say [0, T ], we obtain a convergent subsequence vnj (t) → v(t) uniformly for t ∈ [0, T ].
Naturally, v : [0, T ] → Bw is a trajectory and v(0) = a. Moreover, v(t) ∈ Aw since
πnj (τnj ) ∈ Bw, πnj (τnj + t) → v(t) and τnj + t → ∞. A Cantor diagonal argument
shows again that we can obtain a trajectory defined on all of R+.

Weak negative invariance: The same idea can be used backwards in time.
For any T > 0, consider nT such that τn − T ≥ 0 for all n ≥ nT , and write

vn : [−T, 0] → Bw : s 7→ vn(s) := πn(τn + s).

Barbashin’s theorem can be applied successively on intervals [−T, 0], [−2T,−T ], ...
and by a diagonal argument we obtain the existence of a trajectory v̄ : R− → Bw,
which indeed takes values in Aw as before, with v̄(0) = a. The concatenation of v
and v̄ gives us the invariance of Aw as desired.

Weak attraction: Let D be a bounded subset of Rd. Since Bw is weakly
absorbing, there exists a time TD > 0 such that for each dn ∈ D there exists a
trajectory πn with πn(0) = dn and πn(t) ∈ Bw for all t ≥ TD.

By the weak positive invariance of Bw, we can consider trajectories π̃n : R+ → Bw

with π̃n(0) = πn(TD). Since Bw is compact, for any sequence τn,k → ∞ as k → ∞,
there exist subsequences π̃n(τn,k′) → an as k′ → ∞ for some an ∈ Bw (for each n).
By definition of A, we have that an ∈ Aw. Define

π∗n(t) :=
{

πn(t) 0 ≤ t ≤ TD,
π̃n(t− TD) t ≥ TD.

Then, π∗n(0) = dn and π∗n(τn,k′ + TD) → an as k′ → ∞. Pick k′n such that τn,k′n <
τn+1,k′n+1

and dist(π∗n(τn,k′n + TD),Aw) ≤ 1/n. Therefore we have obtained for the
trajectories π∗n which start at dn that

dist(π∗n(τn,k′n + TD),Aw) → 0.

Thus, we have weak attraction.
The maximality statement w.r.t. Bw comes from its definition.

7.4 Attractors for SVSPF and their restrictions

7.4.1 Proof of proposition 11

The first assertion is obvious.

For the second one, as P ∗ is the projection onto P of the attractor As, for every
p∗ ∈ P ∗, As(p∗) is nonempty. Compactness follows from that of As and the continu-
ity of the projection of P ∗×Rd onto Rd. The Φ-invariance of As(p) follows trivially
from the Π-invariance of As.

We now prove the third claim. Since As(p) is compact, it is equivalent to prove
ε-u.s.c. (cf. [1]). Suppose not, then there exists a constant ε > 0 and pn →
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p (elements of P ∗) such that As(pn) 6⊂ B(As(p), ε), i.e. there exists a sequence
xn ∈ As(pn) with xn 6∈ B(As(p), ε). By the sectorial definition of As(p), for each
(pn, xn), there exist sequences tnm → ∞ as m → ∞ and yn

m ∈ Φ(tnm, pn
m, bn

m), with
(pn

m, bn
m) ⊂ Bs, such that (θtnmpn

m, yn
m) → (pn, xn) as m → ∞. Pick m(n) strictly

increasing such that tnm(n) is also strictly increasing. From (θtn
m(n)

pn
m(n), y

n
m(n)) we can

extract a subsequence converging to a pair (p, y) ∈ {p}×As(p), as they belong to Bs

asymptotically. But this means that a subsequence of xn approximates y ∈ As(p),
which is a contradiction.

7.4.2 Proof of Proposition 12

Obviously A∗s ⊂ As, since A∗s attracts a smaller class of sets, in fact, just those from
P ∗ × Rd rather than P × Rd.

Now Π∗(t,As) ≡ Π(t,As) ≡ As, ∀t ≥ 0 since As ⊂ P ∗ × Rd and Π∗ ≡ Π on
P ∗×Rd. Since A∗s attracts nonempty bounded subsets of P ∗×Rd including As, one
has that

H∗(As,A∗s) = H∗(Π∗(t,As),A∗s) → 0, as t →∞,

i.e. H∗(As,A∗s) ≡ 0, thus A ⊂ A∗ and therefore As ≡ A∗s.
Alternatively, one can also argue in the following way: As is a Π∗–invariant set

and the global attractor A∗s of Π∗ in P ∗ ×Rd is the maximal compact Π∗–invariant
subset of P ∗ × Rd, so As ⊂ A∗s.

7.4.3 Proof of proposition 13

The statement about P ∗ is clear even in this weak framework since θ is single-valued
and the weak Π-invariance easily implies θ-invariance for P ∗, and the weak attraction
property of Aw implies the strong attraction property for θ in P ∗.

That Aw(p) is nonempty is trivial, as mentioned before, since P ∗ is the projection
of Aw onto P . It is also compact, the proof is the same in Theorem 9, since for all
ak ∈ P × Rd we have that PrP (ak) = p and so the limit a.

Let us prove that P ∗ 3 p 7→ Aw(p) is u.s.c. We want to see that if p′ → p, then
H∗(Aw(p′), Aw(p)) → 0. If not, there exist a constant ε > 0 and a sequence pn → p
with ε ≤ H∗(Aw(pn), Aw(p)) = dist(an, Aw(p)), where we have used that Aw(pn) is
compact. Therefore,

ε ≤ dist(an, a) ∀a ∈ Aw(p). (10)

As Aw(pn) ⊂ PrRd Aw, which is compact, from {an} we extract a convergent subse-
quence (which we do not relabel), and so (pn, an) → (p, a). From the weak invariance
of Aw, there exists at least one entire trajectory πn passing through each (pn, an).
Barbashin’s theorem (Th. 2, see Remark 5) provides a converging subsequence
{πn1}n1 on the interval [−1, 1] to a trajectory. Applying it again to this subsequence
we obtain another one denoted by {πn2}n2 , which is uniformly converging on [−2, 2].
A diagonal argument gives an entire trajectory π such that π(0) = (p, a). By Remark
10, we have that (p, a) ∈ Aw, so a ∈ Aw(p), which contradicts (10).

The last statement is obvious.
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7.5 Pullback structure of SVSPF attractors

7.5.1 Proof of Lemma 15

Thanks to the Φ-positive invariance of Bs(p) for p ∈ P ∗, and the cocycle property,
we have that

Φ(t + r, θ−t−rp,Bs(θ−t−rp)) = Φ(t, θ−tp, Φ(r, θ−t−rp,Bs(θ−t−rp)))
⊂ Φ(t, θ−tp,Bs(θ−tp)).

Thus, these sets are nested, and by the u.s.c. of Φ on its third variable and the
compactness of Bs(p) for p ∈ P ∗, they are compact. Thus, Âs(p) is nonempty and
compact.

7.5.2 Proof of Proposition 17

We only need to check the first identity since the second one has already been proved.
First, let us prove that Âs(p) ⊂ A∗s(p):

{p} × Âs(p) = {p} ×
⋂

t≥0

Φ(t, θ−tp,Bs(θ−tp))

=
⋂

t≥0

{p} × Φ(t, θ−tp, Bs(θ−tp))

=
⋂

t≥0

{θt(θ−tp)} × Φ(t, θ−tp,Bs(θ−tp))

=
⋂

t≥0

Π(t, (θ−tp,Bs(θ−tp)))

⊂
⋂

t≥0

Π(t,B∗s) ≡ A∗s.

Here we have used that P ∗ is θ-invariant. Thus {p}× Âs(p) ⊂ A∗s what implies that
{p} × Âs(p) ⊂ {p} ×A∗s(p) and therefore Âs(p) ⊂ A∗s(p) as desired.

As for the converse, notice that Π∗(t,A∗s) = A∗s for all t ≥ 0. So, in particular,

Φ(t, p, A∗s(p)) = A∗s(θtp) for all t ≥ 0, p ∈ P ∗.

Moreover, we know that
Âs(p) ⊂ A∗s(p) ⊂ Bs(p).

Thus, setting θ−tp instead of p,

A∗s(p) = Φ(t, p, A∗s(θ−tp)) ⊂ Φ(t, θ−tp,Bs(θ−tp))

for all t ≥ 0 and p ∈ P ∗. Therefore, we finally obtain that

A∗s(p) ⊂
⋂

t≥0

Φ(t, θ−tp,Bs(θ−tp)) = Âs(p).
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7.5.3 Proof of Proposition 18

Suppose not, then there exist a positive constant ε, a bounded set D and sequences
tn →∞, yn ∈ Φ(tn, θ−tnp, dn) with p ∈ P ∗ and dn ∈ D such that

dist(yn, Âs(p)) > ε > 0.

There exists TD(p) such that Φ(t, θ−tp,D) ⊂ Bs(p) for all t ≥ TD(p). So, as Bs(p) is
compact, there exists a converging subsequence (denoted the same) yn → x ∈ Bs(p).
We will see that in fact x ∈ Âs(p), which will be a contradiction.

Consider any τ > 0 and take n(τ) big enough such that tn − τ > 0 and Φ(tn −
τ, θ−tnp, dn) ⊂ Bs(θ−τp) which is possible since tn → ∞ and the family Bs(p) is
Φ-pullback absorbing.

Then, we have that

yn ∈ Φ(tn, θ−tnp, dn) = Φ(τ, θ−τp, Φ(tn − τ, θ−tnp, dn)),

which shows that x ∈ Âs(p) as desired.

Now we show that this is the minimal pullback attractor, i.e. it coincides with
the closure of the union of the omega-limit sets on each p-fiber:

⋃

D bounded

⋂

τ≥0

⋃

t≥τ

Φ(t, θ−tp,D).

Indeed, this is a trivial consequence of the fact that for all p ∈ P ∗, Bs(p) is contained
in a compact set K, namely, K = PrRd Bs:

Φ(t, θ−tp,Bs(θ−tp)) ⊂ Φ(t, θ−tp,K)

and so

Âs(p) ⊂
⋃

D bounded

⋂

τ≥0

⋃

t≥τ

Φ(t, θ−tp,D).

The other inclusion is obvious, using the minimality of the omega-limit set for D at
fiber p.
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