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ABSTRACT:

Sufficient conditions for pathwise asymptotic exponential stability of the solution of the stochastic
PDE with delay dz; = Az dt + B(xz,)) dw; are given. The assumptions on the operators A and
B are essentially the same that in the case without delay. In addition, our deduction also shows
an alternative proof for some of the results in this case. In fact, the crucial difference is that we

do not use the operator P from Haussmann [8] and Ichikawa [11].

KEY WQORDS: Stochastic partial differential equation with delay, semigroups, Wiener process,

pathwise asymptotic stability.

1. INTRODUCTION

The main aim of this paper is to prove some results on asymptotic stability for the linear 1t
equation with delay in infinite dimension. First, sufficient conditions for exponential decay of the
second moment are obtained. Next, asymptotic stability of sample paths wpl (with probability 1)
is deduced.

We consider a Stochastic Partial Differential Equation with delay which includes the case
treated by Haussmann [8]. We develop a similar theory for strong solutions. However, we use a
different technique to prove the results: we do not use the operator P from [8] and [11].

In order to illustrate and justify our work, let us show the following example:

Consider a one-dimensional rod of length 7 whose ends are maintained at 0° and whose sides
are isolated. Assume that there is an exothermic reaction taking place inside the rod and that

the heat produced at time ¢ is proportional to the temperature at time ¢ — h, (h > 0). It is well



known that the temperature in the rod may be modeled to satisfy
du(t O?u(t
u(t,2) = u(t, 2) +ru{t—h,z), O0<z<m, t>0
(P) ot Qz?
u(t,0) =u(t,7) =0, t >0,
u(t,z) =y, z), t €[-h,0], z€[0,7n],

where r depends on the rate of reaction and ¢ : [—h,0] x [0, 7] — R is a given function. If we
assume 7 = 19, a constant, it is not difficult to obtain asymptotic stability if r3 < 1. In fact, we
obtain exponential stability (see [2]).

However, it happens that, in many situations, r is random. Indeed, if we suppose that r is
modeled as r = row, where w is a one-dimensional Wiener process, then the PDE appearing in

problem (P) can be written as an It6 equation:
dut = A'LL{; dt + But_h dwt s

where A(=d?/dz?) € L(V,V'), B(=rol) € L(H,H), with V = H}([0,7]), H = L?([0,7]) (see
[1]). (Observe that with this election of Hilbert spaces the condition w(¢,0) = u(t,x) =0, t >0,
is automatically fulfilled if u; € V', Vi > 0).

Haussmann proves in [8] that, in the case without delay (i.e. h = 0), pathwise asymptotic
stability occurs if 73 < 2. We shall obtain the same result not only for constant delays but for

variable ones (see Sections 2, 3, 4). Tn fact, we study a more general equation:
dug = Aug dt + Buyyy dwg , >0,

where A, B are linear operators on suitable Hilbert spaces, w; is a Hilbert-valued Wiener process
and p is a function of delay. We present an alternative method for obtaining the stability results
from [8] and [11] with similar, and in some cases identical, hypothesis.

Tn Section 2 we state the conditions under which strong solutions exists and coincides with
the mild solution. Tn Sections 3, 4 the asymptotic exponential stability of second moment and
the pathwise asymptotic stability wpl are deduced. Last, some examples are given in Section 5 in

order to illustrate our theory.

2. STATEMENT OF THE PROBLEM

Let V and H be two separable Hilbert spaces with norms||-|| and |-| respectively. Assume

that V is densely and continuously imbedded in H. We identify H with its dual H':
Ve H<sV,

and we denote by (-,-) the inner product in H and by {-,-) the duality between V' and V
({zeV'i,yeV)).



Let w; be a Wiener process defined over the complete probability space (2, F,P) and taking
values into the separable Hilbert space K , with incremental covariance operator W. Let (F),-,
be the o-field generated by {ws,0 < s < t}, then w; is a martingale relative to (F;),~, and we

have the following representation of w; :
oc
W = Z Bzeiv
i=1

where (e;) is an orthonormal set of eigenvalues of W, 3¢ are mutually independent real Wiener
processes with incremental covariance \; > 0, We; = Me; and trW = 3002, A; (tr denotes the
trace of an operator, see [10], [13,14]).

We assume that A :V — V' is a linear continuous operator (i.e. A € L(V,V')), B is an

element of L(V, L(K, H)) and
(cl): JveR,e>0: =24z z) +v|z]> >elzl|* + (A(Dz,z) Vz eV,

where A(I) (I is the identity operator) is an operator in L{V,V'): for P € L{H), A(P) € L(V,V")

is defined by the relation
(A(P)z,y) = tr (B(z)*PB(y)W), Y,y € V.
If Be L(H,L(K,H)) then A(P) € L(H) and
(A(P)z,y) = tr (B(z)"PB(y)W), Y,y € H.
Let p: [0,+00) — TR be a continuously differentiable function (of delay) such that
3h>0: —h<pt)y <t Vt>0, p{H)>1, Vt>0, (2.1)
which obviously implies that there exists a positive constant k& with
o )y <t+k, V> —h, (2.2)

and let ¥ be a function such that

{z/) € L*(Q x [~h,0], Fo ® B([—h,0]),dP ® dt; V),

¥(0) = zo € L2(Q, Fo, P; H). (2.3)

Under the preceeding hypotheses (see Real [15,16]) there exists an unique process, ¢, adapted to
Fi, Yt€[-h,T], YT > 0 (where F; = Fy, Vt € [—h,0]), solution of
zy € L2(Q x (0,T); V)N L2(Q;C(0,T; H)), VT > 0,
(PC) S ¢y =z + fg Az, ds + fot B(z,(5)) dws, P —a.s., Vt€[0,T], (equality in V'),
ze =Y(t), Vte[—h,0] (equality in H).
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In the sequel, we shall write (PC) in the following abreviate form:

dzy = Azydt + B(z,)) dwy, Yt €[0,T],

{xt € L*(Q x (0,T); V)N L*>(Q;C(0,T; H)), VT >0,
(rcy
z =9(t), Vte[-h,0],

where

LA x (0, T); V) = L*(Q x (0,T), F® B([0,T)),dP ® dt; V),

L*(Q;C(0,T; H)) = L*(Q,F,P;C(0,T; H)).

Such a process is called the strong solution of (PC). Note that when B € L(H, L(K, H)), we can

assume the following hypotheses (¢2) and (2.4) instead of (c1) and (2.3), respectively:

(c2): JveR,e>0: —2(Ax,z) +v|z]? >¢eljz||*> Vz eV,

¥ € L*(Q x [=h,0], Fo @ B([—h,0]),dP ® di; H), (2.4)

’(/1(0) =20 € Lz(Q,f(),P;H). ’
Moreover, if condition (c2) is satisfied (observe that (cl1) implies (¢2)), A generates a strongly
continuous semigroup Uy (see Dautray-Lions [6]), and the strong solution of (PC') is also the mild

solution. Tn other words, the strong solution z; satisfies

(PCG) { 2o = Upp(0) + [ Us—sB(x,p(s)) dws, P —a.s.,Vt € [0,T] (equality in H)
Ty = ¢(t) , L€ [_h7 O]

(see [2,3]).

In order to obtain asymptotic stability of paths wpl, we shall divide our study into two cases:

a) The first case: when B € L(H, L(K, H));

b) The second case: when B € L(V, L(K, H)).
Tn the first case, we impose essentially the same hypotheses than those in [8]. Tn the second,
our conditions are rather restrictive when A and B do not conmute. Tn both cases, we first get
exponential stability of the second moment of z;. Next, we use this result to deduce the pathwise

asymptotic stability wp1.

3. ASYMPTOTIC STABILITY: THE FIRST CASE

We begin with the exponential stability for the second moment. We shall also denote by |- |
the norm in L(H, H).
THEOREM 3.1. Let A€ L(V,V'), B € L(H,L(K,H)). Assume (2.1),(2.2),(2.4), (c2) and

(Hy) : FJy>0,c>0: |Us] <ee ", Vt>0,

(Hz) :

/ A(Ut*Ut)dt‘ <1
0
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Then, there exist positive constants A\, K such that the strong solution z; of (PC) salisfies
Elz;|* < K[glfe™, vt>0, (3.1)

where |[]|? = max{E[y(0)[?, [°, Elp()|* ds}.

Proof: We shall split the proof in two steps. In the first one, we deduce that there exist
positive constants A, K7, such that
o
| eBla? de < Kl (32)
0
Tn the second, using (3.2) and It6’s formula we obtain (3.1).
First step: Since z; satisfies (PCG), it follows
{xt = Uszo + [y Us—sB(2,(5)) dws, P —a.s. Yt >0
ze =¥(t), te€[-h,0].

Hence,

t 2
lz|* = |Uszo|® + ‘/ Us s B(,(5)) dws
0

t
+2 (Utxo,/ Ut_sB(xp(s))dws> , P—a.s., Yi>0.
0

iFrom here, we obtain

2

E|z:|? = E|Uszo|* + E , V>0,

t
/ UtfsB(l‘p(s)) dws
0

since U;zg is Fp-measurable, and consequently

¢
E (Utl‘o,/ Ut_sB(xp(s))dws> = 0.
0

By [10, Proposition 1.4]

2

E / UsosB(ay)) dwy| = / E [tr (Ur—s B(2,05)))" (Us—s B(2p(0)))W)ght] ds
0 ]

t

_ /0 E [tr ((B(2,0)) Ul UresB(z ) W)] ds
t

:/0 E (AU Ui—s)o(s)s p(s)) ds.

Then it follows
¢
E|z;:|* = E|zo|? +/ E(AU;_JUi—s)p(s)s Tp(s)) dS-
0

We take A > 0 (still undetermined). From the last equation,
o o
/ eME|z|? dt = / eME|Upxo|? dt
0

0
oo t
+ [ e / E (A(U;_Us—s)@,(5), Tp(s)) ds dt. (3.3)
0 0
5



Evaluating the first term on the right-hand side of (3.3), we obtain:
By (Hl):
17, (3.4)

o0 2
At 2 c
eV E|Uirg|? dt <
/0 el T 2y-A

if A issuch that 0< A < 2.

Also, Fubini’s Theorem and the change of variables u = p(s) yield

e} 4
/ ekt‘/ E(A(Ut*isUt_s)$p(s),$p(s)) dsdt
0 0
:/0 6)‘5/0 eME (A(Ut*Ut)xp(s),xp(s)) dt ds

<

/ e)‘tA(Ut*Ut)dt‘/ eME|z,,)|* ds
0 0

Sf(/\)e’\k/ eME|z,|* ds

—h
< FM I+ S0 [ RS NCPN (3.5)
[0}
where
FO) = / MAUIT) dt‘ .
4]

Using (3.3)—(3.5),

e} 4
/ ekt‘/ E (A(Ut*isUt_s)$p(s),$p(s)) dsdt
0 0
2

< Fe (1 T A) 2

o) t
+ f(A)eAk/ ekt/ E (A(Ut’isUt_s)xp(s),xp(s)) ds dt. (36)
0 0

The continuity of functions defined by integrals depending on parameters and (Hs) yield

lim f(\)e < 1.

A—0TF

Then, we can take A verifying 0 < X < 2y, f(\)e** < 1. Consequently, there exists a constant C;

(which only depends on A) such that

[e%e} t
| e [ B e dsdt < CillvlE (3.7)
0 0

iFrom (3.4) and (3.7) it follows that for each A > 0, small enough, there exists a positive constant
K3 = K;1()) such that
o0
| Bl ae < iyl (3.8)
0

)\t|xt|2

Second step: Applying 1t6’s formula for the process e , we obtain

¢ ¢
Mz, |2 = |zol® + /\/ ez |> ds + 2/ e (Azg, x,) ds
0 0
¢ ¢
+/ eAS(A(I)xp(s),wp(s))ds + 2/ e“(ws,B(xp(s))dws). (3.9)
0 0
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iFrom (¢2),
t t
eME|z:|? = E|zo|® + )\/ eME|x,|?ds + 2/ eME(Az,, ) ds
0 0
t
+ / ME (AN (0 Zp(s)) ds
0
t t
<2 + O+ u)/ ME|e, [ ds + |A(I)|/ P Ela,q s, V¢ > 0. (3.10)
0 0
By (3.8) and the change of variables used before, we get
eMElz* < K|lylf, Vt>0, (3.11)
and (3.1) follows. 1
The following Lemma shows that, in fact, the strong solution z; lies in L2(Q; C(0, +oo; H)).

LEMMA 3.1. Assume (c2). If z; satisfies (3.1), then there ezists a constant Ky € R such
that

E[ sup w] < KollplE. (3.12)

0<t<o0

Proof: We shall use a technique which is similar the one used by Haussmann in [8]. The
Energy equality (see [14, Theorem 3.1]) and (c2) yield:

¢ ¢ ¢
|z = |zo|? + 2/ (Azs, ) ds +/ (A1) p(5)5 Tp(s)) ds + 2/ (25, B(m,(s)) dws)
0 0 0

¢ t t
§|x0|2+v/ |:vs|2ds+|A(I)|/ |mp(s)|2ds+2/ (25, B(2,05)) duws) (3.13)
0] 0 0

Now, we fix T' > 0. From (3.13),

T T
E[sup |xt|2]sn¢n%+u | Blaads + 1A [ Blaygyfds
0<t<T 0 0

¢
+2E [ sup / (z5, B(wy(s)) dws) ] . (3.14)
o<t<T |Jo
Again, the change u = p(s) yields
T T
/ Elz,o) ds < 4] +/ Elz,|? ds. (3.15)
0 0

Then,
T
F[ sup thlz] < (1+|A(I)I)H¢II§+(V+|A(I)|)/ E|z,|* ds
0<t<T 0

+E [2 sup
0<¢<T

| (oo B dm)
0

] . (3.16)
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Equation (3.1) implies

T K 2 K 2
/ Elz,[?ds < [1 — e *T] 1HA¢“1 < 1”;””1, VT > 0. (3.17)
0

Also, Burkholder-Davis—Gundy’s inequality, the preceeding change and (3.15) conduce to the

following chain of inequalities (for any ! > 0):

¢
QE[ sup / (25, B(zp(s)) dws) ]
o<t<T |Jo
T
< 6E / EAR ( (D ps), T s)) dsght]l/2

1/2

T
<6E | sup |z / Nz ds ight
- loqET' d ( 0 pls) ()) ) ght]

3 T
< 3ZE[ sup |:ct|2] + —/ A1)z y(5)s Tp(s)) ds
0<¢<T l

< SZE[ sup |z ] +§ E[a:p(s)lz ds. (3.18)
0<t<T l

If we take [ = £ and substitute into (3.16) after using (3.15), (3.17), (3.18),
E [ sup |:vt|2] < Ks|[¥||2, VT >o0. (3.19)
0<t<T
Since K is independent of T, Lebesgue’s Theorem yields (3.12). 1

Now we state the pathwise asymptotic stability for the solution of (PC) using a technique

close to Haussmann’s.

THEOREM 3.2. Assume (3.1) holds for the strong solution of (PC) (for example, the con-
ditions of Theorem 3.1 are fulfilled), and — A is coercive (in other words, (c2) is satisfied). Then,

there exist positive constants o, and there exists A C Q with P(A) =0, such that

Vwe Q\A 3Tw)eR: |z (w)|? < ally))Pe P, V> T(w). (3.20)

Proof: Let Ny be the first natural number such that p(Ng) > 0. Since p'(¢) > 1 > 0 then

p(N) >0, VN > Ny. Let N be a natural number with N > Ny. ;From It6’s formula,

t

t
|$t|2 = |$N|2 +2/ <A!L’s,$s>d$ +/ (A(I).’Ep(s),:l?p(s)) ds
N N

¢
+2/ (25, Bz sy dws), YE> N (3.21)
N

and by (¢2)
¢ ¢
lze|> < |zn|? +V/ |$s|2ds —|—/ (A(I)xp(s),xp(s)) ds
N N

t
+2/ (25, Bz y(s) dws), Vt> N. (3.22)
N



Let Iy denote the interval [N, N + 1]. For each £ > 0 we have

P [sup |24 ]* > 62]

teln

2
<P [[z‘N|2 > Z] +P (v

N+1 62
+P / (A(I)$p(s),$p(s)) ds > —]
N 4
t 2
+P |2 sup / (CUS,BJ:p(S) dws) > . (3.23)
tely |J N 4
Kolmogorov’s inequality and (3.1) give
2] _ 4 AK|[9I1F _
P []xN|2 > Z] < 6—2E| |2 < — —— TRl mAN, (3.24)
N+1 2 4 N+1 4 K
P 1// lz,2ds > S| < =2 E|z,|?ds < L'f’”l AN (3.25)
N 4 €2 Jn Ae
Tn view of the change u = p(s) and (3.1),
N+1 52 4 N+1
P [V (A([)$p(s),$p(s)) ds > 1 < —2/ ),:cp(s)) ds
4lan)| ey
< — 2 / E|z,|* du
p(N)
AT KM YlIE -
S | |)\E2 1 }\N (326)

Finally, using successively the inequalities of Kolmogorov, Burkhélder—Davis—Gundy and Hoélder,

Lemma 3.1 and the usual change of variables,

P [2 sup
teln

t
/ (25, B(2p(s) dws)

N

e
/ t (s, B p(s) dws) ]

< 82E [sup
€ N
Nl 1/2
/ E (A(D)zy(5)5 To(s)) dS]

teln

INA

24 1/2
—E [sup |xt|2]
€ teln N

1/2 1
24 ADIEY 11 l [ B |ds]
N

1/2

INA

2

AUAD|K K2Ry
AL/2¢2 ’

< (3.27)

For every natural number N > Ny, we set £ = ex = ||1|[1e~ /8. Then, it follows

P [sup |lze|> > sf\,] < Me AN/4, (3.28)

teln

where M is independent of N.



Borel-Cantelli’s Lemma and (3.28) imply (3.20). 1

Remark 3.1. However, there exists a condition stronger than (H1) — (Hz). This condition is

(Hyps) : Ju>0: —2dAzx,z) > plz)>+(AI)z,2), YreV.

Now we shall prove that (Hys) and (¢2) yield (3.1).
THEOREM 3.3. If (Hy3) and (c2) hold, then. the solution of (PC) verifies (3.1).

Proof: Since A —p+|AD)|(eM —1)] = —u < 0, we can take \ > 0 such that

lim
A0t
A=+ |AD]|(M -1) <.
Hence, (Hiz) and Itd's formula for e*|z;|? give
¢ ¢
eME|z:|? — Elzo|* = /\/ M E|z,|? ds + 2/ M E(Az, ) ds
0 0
¢
+ / ME (AN (0 Zp(s)) ds
0
¢ ¢
<(A- ,u)/ eME|x,|? ds +/ eME (A(ITy(s), Tp(s)) ds
0 0
¢
- / eME (A(Dzg, ) ds. (3.29)

0

Then
ME|z|? < (1+ M AMDD[YIT + [X =+ [AW)|(eX - 1)] /0 eV Elx,|? ds. (3-30)

Clearly, (3.1) follows from (3.30). 1

Remark 3.2. Consequently, we can obtain (3.20) under the hypothesis (H12) and (3.1), using

a proof analogous to that of Theorem 3.2 above.

4. ASYMPTOTIC STABILITY: THE SECOND CASE

We denote by || - || the norm in £(V,V'), by ¢ the norm of the injection V < H (then,
o <@lz]l Ve e V), and by |[$]|} = max{E[(0)2, [°, Ell(s)[ ds}.

The following result is similar to Theorem 3.3.

THEOREM 4.1. If z; is the solution of (PC) and (c1) holds with ve®> —e < 0, then (3.1) also
holds. 1

Remark 4.1. Observe that v¢? — ¢ < 0 if, for example, v < 0. Tn this case, (c1) implies (H12).
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Next, we shall consider the case v > 0 and ve® — e > 0. We carry out our analysis of stability
in two steps:

i) If B and U; conmute,

ii) If B and U; do not conmute.
Tn the case i), our hypotheses are exactly the same as in [8], while in ii) we shall consider a case

somehow less general than in [8].

Remark 4.2. Observe that under (c1) (or (¢2)), Uy maps H into V and there is a constant cg
satisfying
/00 e 2 Usz||® dt < colz|?, Vz eV
0

(see [12, Cap. IV, Theorem 1.1]). Then, the operators BU; and U; B, defined by

(BU)(z)(y) = B(Usz)(y), Ve eV VyeKkK;

(UeB)(z)(y) = Uy(B(z)(y)), VzeV Vyek,
belong to L(V, L(K, H)).
We say that B and U; conmute if

(BUy)(z) = (UB)(z) , VzeV.

THEOREM 4.2. Assume A € L(V,V'), B € L(V,L(K, H)), (2.1) — (2.3), (c1), (H,), (H}),

where
(H}) - / UA(DU; dt‘ < 1.

Assume also that B conmute with Us. Then (3.1) holds for the solution z; of (PC).

Proof: Our proof is similar to that of Theorem 3.1. According to our hypotheses, we can take

A > 0 such that

€
0<A<2y, ef—1——— <0, Mg\ < 1,
1A
where
g\ = / e“Ut*A(I)Utdt‘.
0

Then, as in Theorem 3.1,
2

E|z;|*> = E|Uszo)> + E /Ot Ui—sB(3,(5)) dws (4.1)
Since B and U; conmute, we have
B|[ v Bl J dios| = [ B lor [0-oBla))* O Ble W] s
:/tE B(Uisp(5))) (B(Us—s2 p()))W]] ds
:/OtE (U ADUi—s2 p(5)5 Tp(s)) ds- (4.2)
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Now, (4.1) yields

/e’\tElxtlzdt:/ eME|Uszo|? dt
0 0

o0 t
+ / et / E (U7, A(DUi—sz (), Tp(s)) ds dt. (4.3)
0 0

The first term on the right-hand side of (4.3) is bounded as in Theorem 3.1. To obtain a bound

for the second one, it is sufficient to observe that

oo t
/(; eAt/(; E(Ut*_sA(I)Ut_sxp(s),xp(s)) dsdt
= /0 e /0 ME (U AUz (s, Tp(s)) dit ds
<g) [ Bl ds
0

The proof can be completed as in Theorem 3.1, using the estimates obtained for A at the beginning.

Let us now turn our attention to the nonconmutative case. At first, we shall prove a technical

Lemma, to be used in the sequel:

LEMMA 4.1. Assume (c1). Then, for every X > 0 such that (e* — 1)||A(I)|| — £ < 0, the

strong solution of (PC) satisfies

M Ela,[* " NBlaP e < _(LHIADIEM)
£ — (6’\k — I)HA(I)H +/0 EH s” d S £ — (e/\k _ 1)HA(I)H delll
A+v b )
* T aT [, B w20 G

Proof: According to It6’s formula, the usual change of variables and (cl), we obtain
t
Bl < (LHIAQDIM)GIE + (0 +v) [ Ble, P ds
0

+((eM —1)|IA(1)|I—€)/0 MEl|z,]* ds. W

THEOREM 4.3. If (2.1) — (2.3), (c1), (H1), (HY) hold, where

(HY) : ‘/ A(U;Ut)dtH < £,
0 v

then (3.1) holds for the strong solution x: of (PC).

Proof- As in Theorem 4.2 we can take A such that 0 < X\ < 27, (e** — 1)[JA(J)|| — € < 0, and

e+ ) f(N)
e— (eM —D)[|AD]
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where

f = ‘ /Ooo e’\tA(Ut*Ut)dtH .

(Note that from (HY), it follows

lim A+ (V)
r—ot € — (eM — DA

<1).
Now, we obtain
oo o0
/ eME|z|* dt = / eME|Uyzo|? dt
0 0

o0 t
+ / €At/ E(A(Ut*_sUt,s).’L‘p(s),xp(s)>dS dt. (4.5)
0 0

Again, we have

2
/ eME|Upo|? dt < ||¢|| (4.6)
Moreover, Lemma 4.1 and (4.6) yield
] t
| [ B U ey, z) dsdi
0 4]
:/ e’\s/ e/\tE(A(Ut*Ut)xp(s),xp(s))dtds
<FO) [ Bl ds
t
S&WWWM+WﬂMA@TWWﬁ
1JrIIA(I)Ile”f ] 2
Ak )\ 1
/\kf /\ 4 l/ N
e—@M—IHAUH R
Ry 1+|l (1)[|eM (A +v)c? 2
ﬂ)[ DA T @ N - @ —oraan) Y
/\k /\ v
+ oo (e{k — I)TA(I) I / At/ Ut—sUt—s)$p(s)’xp(s))det' (4.7)

Hence from (4.5)—(4.7) there exists a constant K, (which only depends on ), such that
o0
| Bladt < KallplE. (45)
0
Applying Lemma 4.1 again, we conclude that
eMElzy|* < Ksllyllf,  Ve>0. W (4.9)

LEMMA 4.2. Under assumptions of Theorem 4.1 (or Theorem 4.2 or Theorem 4.3), there

exist positive constants K1 and Ko such that
t JR—
/ E(A(Dz,,z,)ds < Ki||y|Ze™, Vt > a, Ya>0, (4.10)
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E[ sup |xt|2] < Tl (4.11)

0<t<Co0

where X is the stability parameter appearing in (3.1).

Proof: According to (c1) and Itd’s formula, we obtain
MElz? < 1+ MAMDIDNIYIT + (A +v) /Ot e Elz,|” ds
+ (M — 1) /Ot e EB(A(xy, x,) ds — 6/: M E| |z, ds. (4.12)
Let us now assume that the hypotheses of Theorem 4.1 hold. Then, (4.12) implies

eMElze|? < (1+ M A DI IF

t
[+ ) e+ (@ — DIAD]] / Bz, |2 ds (4.13)
0
and hence,
! 1+ e B|?)
ME|z 2 ds < ( = Cy||¢])?. 4.14
[ Bl ds = e i = Gl (4.14)
Then
t
/ e E(A(D)zs, 25) ds < |AD||C1vllF = K9]} ve>o. (4.15)
0
Consequently, for 0 < a < t, we have
t
/ BNy, 35) ds < KallGl2, ¥¢>a, Va0, (4.16)
or
¢
e*)‘a/ ME(ADz,, x,) ds < Ki||y|2e™*, Vt>a, Ya>0. (4.17)
Since €5~ > 1. Va < s, then
t
/ E(A(D)x,,zs) ds < Kq||o|[7e . (4.18)

;From the other hand, under conditions of Theorems 4.2 and 4.3, the proof is similar. In fact, the

crucial point is that, in any case, always exists a constant K such that

| Bl a < K,

0

where ) also satisfies

(e = DIAMD - <0.

The proof of (4.11) is deduced as in Lemma 3.1, using (4.10). 1

THEOREM 4.4. Assume (4.10), (4.11). Then, there exist positive constants o, and there
exists A C Q with P(A) = 0, such that for every w € Q\ A exists T(w) > 0 verifying

lz¢(w)]* < allp|fe P, VE>T(w).
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Proof: Apply Lemma 4.2 in the proof of Theorem 3.2. 1§

5. EXAMPLES

The most interesting applications for our theory arise when A and B are differential operators.
In particular, when A is an elliptic operator and B is a first order differential operator. Let us see
some examples.

In this Section we suppose that p, satisfies (2.1) (and so (2.2)), and the initial function <
verifies (2.4) (if B € L(H,L(K,H))), or (2.3) (if B e L(V,L(K,H))).

EXAMPLE 5.1. Let V' be the Sobolev space HX([0,7];R) and let H denote L2([0,7];IR).

It is well known (see, for example, Brezis [1]) that
Vo H=H V.

Moreover, the seminorm in H{ ([0, 7];R) given by

Jull = [/ [?] d:c] "

is in fact a norm equivalent to the usual one in this space, |- || g1 (j0,x);r) - For the sake of simplicity
we shall use the norm defined above as the norm in V. In this case, the norm of the canonical
injection in H is ¢ =1 (see [1]).

Let |-| and (-,-) be the norm and the associated inner product in L2([0,7];R), and let ||| and

((-,+)) the norm in H}([0,7];R) defined before, and its associated scalar product, respectively.
2

dz?
with the one in Section 1 when p(t) =t — h:

Let A be the operator and consider the following heat equation with delay which coincides

Oz
u(t,0) = u(t,7) =0,Vt >0, ul(t,z)=¢(z) Vte[-h0],

0%u
(P1) du(t,z) = (2) (t,z) + ru(p(t), z) dws ,

where w; is a real and standard Wiener process (i.e. K =) and r; is a constant .
Let B=mI. Obviously A € L(V,V') and B € L(H,L(R,H)) = L(H).

We observe that

™ du dv
{(Au,v) = —/0 T dn de, Yu,v eV, (5.1)
(A(Du,u) = |Bul* = r%/ u?dz = r?ul?, Vu€ H, (5.2)
0
In particular,
x 2
—2(Au,u) = 2/ (d“> dz = 2lul?, VueV. (5.3)
o \dz
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Hence we can write (¢2) in the form
2ul]? + vlul* > e||ul|®>, Yu eV, (5.4)
and this condition holds if v =0, £ < 2. Since
|Bul® + plul® = (rf + p)|uf® < 2||ul® = —2(Au,u), YweV,

then, if we take r; and p such that 72 < 1,0 < u <1 —7r2, (Hyy) follows. Thus we can apply
Theorem 3.3 and Remark 3.2. Consequently (3.1) and (3.20) hold.

Now, we shall prove that there exists 7 with 71 > 1 such that (3.1) (and so, (3.20)) still
holds. We use Theorem 3.1 to obtain this result. Tt is enough to verify the hypotheses (Hy), (Ha).
Let us consider at first that A generates a strongly continuous semigroup U; satisfying (H;) with
v =c=1. Indeed, Weinberger [17] proves that:

“If ug € H, then u(t,2) = Uyug(x) is the solution of the following problem
ou  9%u
E—w—o, O<"E<7T, t>0,
u(t,0) =u(t,7) =0, t>0,
u(0,2) = wo(z), O0<z<m,

I

and moreover |u(t,.)| < e t|ug(.)]

Next, we observe that A(P) = B*PR and

0

oo oc o] T‘2
/ B*Ut*Utht‘ < |B|2/ U2 dt < r%/ e 2 dt = 51
0 0 0

If 72 < 2, then (H:) holds and according to Theorems 3.1-3.2, the conditions (3.1) and (3.20)
are satisfied.

In conclusion, if r; € (—\/i, \/§) we obtain pathwise asymptotic stability wpl for the solution
of (P1).

Remark5.1. Let rq be afunctionin L*°([0, 7]; R) instead of a constant. The same conclusions

as in Example 5.1 are obtained if

||7'1 ||%°°(0,7r;R) <2.

d2
B = ri— ; now we

EXAMPLE 5.2. Let V and H asin the precedent Example, A = ok o

have A € L(V,V') and Be L(V,L(K,H)) = L(V,H), ¥r1 € R, and
|Bu|* = r2/7r du 2dm =r2|ul]?, VYu€eV
1 0 dr 1 s .
Then (cl) takes the form

2ull® + v[u® = ellul® + ri[[ul®, VueV,
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and if v =0, 77 <2, e = 2 —r? | this condition is verified.
According to this, the hypothesis of Theorem 4.1 hold, since v&* — & < 0. Then Theorem 4.4
follows. As in Example 5.1 we can suppose that r € L*([0,7]; R) with ||Tl||2L°°((o,n];R) < 2 and
the precedent conclusions are also true.

This case is the analogous to Example 5.1 when we observe heat diffusion in a rod relative to

an origin moving with velocity r1w (see [8]).

EXAMPLE 5.3. Finally we are going to study an example with spatial dimension greater

than 1. Let O be a bounded open subset in RY. Let V = H}(O;R), H = L2(O;R), A =

o2 0 o
92 B—Zri(m)a—:pi where 7;(-) € L*(O;R) .

=1 ? i=1

N 2
0
We also know that the seminorm ||u|?> = / E Ll is, in fact, a norm in V', equiv-
o i L0z

alent to the usual one.

Now,
du 3u
—(Au, u) / Z oz, 6% = |lull?, YueV,
N 2
A(I Bul? i
(AT, ) = |Bu /[g axl]
= Z 72 / ul’ dz < Nr?|lull?
= P L (O:R) o axl = s
where r* = max{||ri[|7eox) : 1 <7< N} Hypothesis (cl) will be true if we can find ¢ and
v such that

Nr?lful® +ellul® < viul® + 2]Jul|*.

If we take r; such that r? < 2/N and € = 2— Nr2, v = 0, then (cl1) holds. Since, moreover,

ve* — e < 0 then Theorems 4.1 and 4.4 follow.
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