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Abstract. This paper presents a comparison between two abstract frameworks
in which one can treat multi-valued semiflows and their asymptotic behaviour. We
compare the theory developed by Ball [5] to treat equations whose solutions may
not be unique, and that due to Melnik & Valero [25] tailored more for differential
inclusions. Although they deal with different problems, the main ideas seem quite
similar. We study their relationship in detail and point out some essential technical
problems in trying to apply Ball’s theory to differential inclusions.
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1. Introduction

The concept of the attractor has proved an extremely useful tool for
studying the asymptotic behaviour of solutions of a wide variety of
dynamical systems: deterministic systems in both the autonomous (e.g.
Babin & Vishik [4], Hale [13], Ladyzhenskaya [22], Temam [31]) and
non-autonomous cases (e.g. Chepyzhov & Vishik [9], Kloeden & Schmal-
fuss [20], Kloeden & Stonier [21]), and the stochastic flows generated
by stochastic differential equations (e.g. Arnold [1], Crauel & Flandoli
[11], Crauel et al. [10]). An important step in all these theories is the
development of a general abstract framework in which to express the
underlying dynamics of the problem (semiflows S(t), processes S(t, s),
and cocycles ϕ(t, ω), respectively).

When one is interested in studying the asymptotic behaviour of
solutions to multi-valued problems such as those arising in control
theory and viability theory, or from equations without uniqueness or
differential inclusions, we can still expect the attractor to be useful. The
development of a theory of “multi-valued semiflows” is a necessary first
step in the study of attractors for such problems.

c© 2003 Kluwer Academic Publishers. Printed in the Netherlands.

svan516revised.tex; 26/02/2003; 8:23; p.1



2 Caraballo, Maŕın-Rubio & Robinson

In the 1960s and 1970s a number of papers appeared that treated this
problem for differential inclusions on locally compact spaces (Bridgland
[7], Bushaw [8], Kloeden [18], Roxin [27] & [26], Sell [28], Szegö &
Treccani [30]; see Kloeden [19] for a review), while more recently multi-
valued semiflows on general Banach spaces have been considered by
various authors, often in the context of partial differential equations or
inclusions (Ball [5], Barbu [6], Elmounir & Simondon [12], Kapustyan
[17], Kapustian & Valero [16], Melnik & Valero [25]; for the use of
multi-valued systems in numerical analysis see Lamba [23] and Lamba
& Stuart [24]).

We will be mainly concerned with the recent works of Melnik &
Valero [25] and Ball [5] as canonical examples of such theories that also
discuss the way one might define an ‘attractor’ for such systems. We
take the approach of Kloeden [18] as our prime ‘historical’ example.

In order to consider the attractors of partial differential inclusions,
in [25] Melnik & Valero define a multi-valued semiflow as a multi-valued
mapping GMV : R+ ×X → 2X , where X is the phase space.

Differential equations without uniqueness are the main topic of [5],
which presents a theory more in line with previous treatments. Here
Ball defines the concept of a generalized semiflow GB on the phase
space X, essentially consisting of all possible solutions of the equation.
Although he mainly works with this collection GB (to some extent an
advantage over the approach of [25] since the idea of an individual
solution is a building block of the definition) he also considers the
multi-valued map T (t)u0 formed from the set of points reached in time
t by elements of GB (solutions) which began (at time zero) at u0. The
map T (t)u0 has very similar properties to the multi-valued semiflow
GMV (t, u0) defined by Melnik & Valero.

Although Ball’s paper deals primarily with equations without unique-
ness, while that of Melnik & Valero concentrates on differential in-
clusions, in fact they deal with very similar problems in which the
dynamics is governed by a collection of possible solutions through each
initial condition.

We will see below in Proposition 2 that a generalized semiflow can be
seen as a particular case of a multi-valued semiflow. A natural question
is whether, given a multi-valued map T : [0, +∞) × X → P (X) (as
in Melnik & Valero [25]), we can define a generalized semiflow GB

consisting of all “solutions” (with some appropriate properties). More
generally speaking it is natural to ask whether the two theories are in
fact distinct, and if so in what way.

The content of the paper is as follows. In Section 2 we recall Ball’s
definition of a generalized semiflow, and prove several properties of
the multi-valued map T (t) which arises naturally from his definition.
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Multi-valued semiflows and their asymptotic behaviour 3

We compare his definition with the axiomatic approach adopted in
the 1960s and 1970s. Then we give Melnik & Valero’s definition of a
multi-valued semiflow, and discuss the conditions required in order to
construct a generalized semiflow from such a multi-valued semiflow.
In Section 3 we give some canonical examples (an ODE and PDE
without uniqueness, and an ordinary and a partial differential inclusion)
and discuss when these give rise to generalized semiflows. We end by
discussing how the existence of global attractors can be proved within
the two theories, which was the starting point for our interest in the
problem.

2. “Generalized” vs “multi-valued” semiflows

Let (X, ρ) be a complete metric space, and denote by 2X , P (X), B(X),
C(X), K(X), and Cv(X) the collections of all, nonempty, nonempty
bounded, nonempty closed, nonempty compact, and nonempty closed
convex subsets of X respectively. To measure the distance between sets
we will use the Hausdorff metric dH , defined as

dH(B, C) = max{dist(B, C),dist(C, B)} (1)

where dist(B,C) is the Hausdorff semi-distance,

dist(B,C) = sup
b∈B

inf
c∈C

ρ(b, c).

2.1. Generalized semiflows: definition

We now give Ball’s definition of a generalized semiflow, including in
addition the possibility of discrete time generalized semiflows. Note that
the definition says nothing a priori about the continuity of the solutions
ϕ ∈ GB in the case Γ = R. However, we will restrict ourselves later
to two classes of continuous solutions. In finite-dimensional problems
(or more generally when X is locally compact) we will want to take ϕ
continuous from [0,∞) into X, while in infinite-dimensional problems
it is more useful to take ϕ continuous from (0,∞) into X (for more
details see Section 2.5 below).

DEFINITION 1. Let Γ be R or Z. A generalized semiflow GB on
X is a family of maps ϕ : Γ+ → X (called solutions) satisfying the
following hypotheses:

(H1) Existence: for each z ∈ X there is at least one ϕ ∈ GB with ϕ(0) =
z.
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(H2) Translates of solutions are solutions: if ϕ ∈ GB and τ ∈ Γ+ then
ϕτ ∈ GB where ϕτ (t) := ϕ(t + τ) for all t ∈ Γ+.

(H3) Concatenation: if ϕ,ψ ∈ GB and ψ(0) = ϕ(t) for some t ∈ Γ+ then
θ ∈ GB, where for each τ ∈ Γ+ we define

θ(τ) :=
{

ϕ(τ) for 0 ≤ τ ≤ t,
ψ(τ − t) for t < τ.

(H4) Upper semicontinuity with respect to initial data: if {ϕn} ⊂ GB

with ϕn(0) → z, then there exists a subsequence {ϕµ} of {ϕn} and
ϕ ∈ GB with ϕ(0) = z such that ϕµ(t) → ϕ(t) for each t ∈ Γ+.

If for each z ∈ GB there is exactly one ϕ ∈ GB with ϕ(0) = z, then
GB is called a semiflow.

This definition (including the initially perhaps unintuitive (H4))
arises naturally when one considers solutions of differential equations
whose solutions are not unique (see also Sell [28]; it is easy to see (H1–
4) when solutions are unique). Let us consider what is perhaps the
simplest such problem (with Γ = R):

dy

dt
= f(y), y(0) = y0, (2)

where f is a bounded continuous function from Rn into Rn. It is well
known that there exists at least one solution of this problem for each
initial condition, but there may exist more than one for a general con-
tinuous function f . However, the boundedness assumption does ensure
that all solutions exist for all t ∈ R.

Let us denote by D(y0) the set of all classical solutions of (2) re-
stricted to R+:

D(y0) = {ϕ ∈ C1([0,∞);Rn) such that ϕ satisfies (2)},

and set
G =

⋃

y0∈Rn

D(y0).

Since the equation is autonomous, it is not difficult to check that
G forms a generalized semiflow: (H1), (H2) and (H3) are obvious, and
(H4) is also relatively straightforward to check. Indeed, the set of all
solutions is equicontinuous since for any ϕ ∈ G

|ϕ(t)− ϕ(s)| ≤ ‖f‖∞|t− s|.
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So, if we consider a fixed bounded interval I = [0, T ] and a sequence of
solutions ϕn with ϕn(0) convergent, we obtain

|ϕn(t)| ≤ |ϕn(0)|+ T‖f‖∞, for all t ∈ [0, T ],

and, consequently, uniformly bounded (on [0, T ]) and equicontinuous.
Thus we can apply the Arzelà-Ascoli Theorem to extract a subsequence
that converges to a continuous function ϕ which is itself a solution of
(2).

There are results due to Barbashin that are closely related to (H4);
we will comment on these below in Section 2.6.

2.2. Generalized semiflows: properties

Let GB be a generalized semiflow and let E ⊂ X. Define for t ∈ Γ+:

T (t)E = {ϕ(t) : ϕ ∈ GB with ϕ(0) ∈ E} (3)

We now state and prove various properties of the map T (t) (cf. com-
ments at start of Section 3 in Ball [5]).

PROPOSITION 2. The map T (t) : 2X → 2X satisfies the following
properties:

(a) {T (t)}t∈Γ+ is a semigroup on 2X , i.e. T (0) = Id2X and
T (t + s) = T (t)T (s) for all t, s ∈ Γ+,

(b) T (t) is monotone with respect to the partial order of set inclu-
sion, i.e., E ⊂ F implies T (t)E ⊂ T (t)F for all t ∈ Γ+,

(c) T (t)x is compact for each x ∈ X, and

(d) if {Kn}n≥1 is a sequence of compact subsets of X such that
dist(Kn,K) → 0 as n → ∞ then dist(T (t)Kn, T (t)K) → 0 for
each t ∈ Γ+.

Note that since dist(a, b) = ρ(a, b) for two points a and b, when GB

is a semiflow the result given in (d) reduces to

ρ(T (t)xn, T (t)x) → 0 if ρ(xn, x) → 0

as we would expect.

Proof. (a) The first part of this is trivial: T (0)E = E for any E ⊂ X
because of (H1) and the definition of T (t)E. Now let us check that
T (t + s) = T (t)T (s). Fixing E ⊂ X, if x ∈ T (t + s)E then there exist
x0 ∈ E and a solution ϕ ∈ GB with ϕ(0) = x0 and ϕ(t + s) = x. Using
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(H2) we know that ϕs ∈ GB, and since ϕs(0) = ϕ(s) ∈ T (s)E and
ϕs(t) = x, it follows that T (t + s)E ⊂ T (t)T (s)E. For the opposite
inclusion we use (H3): if x ∈ T (t)T (s)E, then x = ψ(t) with ψ(0) ∈
T (s)E and this means that there exists another solution ϕ ∈ GB such
that ϕ(s) = ψ(0) with ϕ(0) ∈ E. If we define for each τ ∈ Γ+

θ(τ) =
{

ϕ(τ) for 0 ≤ τ ≤ s,
ψ(τ − s) for s < τ,

we have θ ∈ GB with θ(0) ∈ E and θ(t + s) = ψ(t) = x, and so
T (t)T (s)E ⊂ T (t + s)E.

(b) It is clear that T (t) is monotone by definition.
(c) If yn ∈ T (t)x then there exist solutions ϕn ∈ GB with ϕn(0) = x

and ϕn(t) = yn. Since ϕn(0) → x, by (H4) there is a subsequence ϕn′

and a ϕ ∈ GB such that (in particular) ϕn′(t) → ϕ(t), i.e. there exists
a ϕ ∈ GB with ϕ(0) = x and ϕ(t) = y. So yn′ → y ∈ T (t)x. It follows
that T (t)x is compact.

(d) We consider a fixed value t ∈ Γ+ and prove the result by contra-
diction. Assuming that dist(T (t)Kn, T (t)K) 6→ 0, there exists an ε > 0,
a subsequence {Kn′} and elements an′ ∈ T (t)Kn′ such that

dist(an′ , T (t)K) > ε for all n′. (4)

But an′ = ϕn′(t) with ϕn′(0) ∈ Kn′ , and so, since dist(Kn,K) → 0
with K compact, there exists a subsequence {ϕn′′} such that ϕn′′(0) →
z ∈ K. It follows from (H4) that there exist a solution ψ ∈ GB and
a subsequence {ϕn′′′} with ϕn′′′(t) → ψ(t) and ψ(0) = z ∈ K. Thus
ψ(t) ∈ T (t)K which contradicts (4), proving the result.

Property (d) is just the ε definition of upper semicontinuity, which is
equivalent here to topological upper semicontinuity (u.s.c.) since T (t)
has compact values (see Aubin & Cellina [2] (pp. 41 & 45) for details).

2.3. Multi-valued semiflows

Melnik & Valero [25] define a multi-valued (semi)flow, or m-(semi)flow,
as follows.

DEFINITION 3. Let Γ be a nontrivial subgroup of (R,+). The set-
valued map GMV : Γ×X → P (X) is said to be a multi-valued flow (or
m-flow) if the following conditions are satisfied:

(1) GMV (0, ·) is the identity map and

(2) defining for any subset B of X

GMV (t, B) =
⋃

x∈B

GMV (t, x)
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Multi-valued semiflows and their asymptotic behaviour 7

we have GMV (t + s, x) ⊂ GMV (t, GMV (s, x)) for all t, s ∈ Γ and
for each x ∈ X.

GMV is called an m-semiflow if we replace Γ by Γ+ = Γ ∩ R+ in the
definition.

A strict inclusion in an m-semiflow means (cf. Proposition 2) that
it does not come from a set of solutions with the translation and
concatenation properties. Since the translation of a solution is usually
a solution, it is most likely that this strict inclusion will arise from
a failure of the concatenation property, for example joining two C1

functions in such a way that the resulting function is only C0.
A more convincing (but non-autonomous) example arises in the

‘general control systems’ considered by Roxin [27]. Since one would
expect the controls available to increase over time due to technological
advances, we take {Uj}j≥1 to be an increasing sequence of control sets,
and denote the states attainable at time n + 1 from a collection E of
states at time n are

Fn(E) =
⋃

x∈E,u∈Un

f(x; u).

If we define G(n, m)E for n ≥ m by

G(n,m)E := (Fm ◦ Fm ◦ . . . ◦ Fm)︸ ︷︷ ︸
n−m times

E

then it is clear that in general

G(n + m, 0)E ⊂ G(n + m,m)G(m, 0)E,

since
U0 ⊂ U1 ⇒ (F0 ◦ F0)(E) ⊂ F1(F0(E)).

Nevertheless, for all the applications considered in [25] the m-semiflow
is constructed from selected solutions of various differential inclusions;
since these satisfy both (H2) and (H3) equality holds in part (2) of
Definition 3. However, the abstract definition of an m-semiflow contains
no reference to solutions per se, so they have to be introduced as an
(albeit natural) auxiliary concept. We reproduce here the definition of
a trajectory from [25].

DEFINITION 4. The map x(·) : Γ+ → X is said to be a trajectory
of the m-semiflow GMV corresponding to the initial condition x0 if
x(0) = x0 and x(t + τ) ∈ GMV (t, x(τ)) for every t, τ ∈ Γ+.
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For example, it is easy to check that (H2) implies that the solutions
making up Ball’s generalized semiflow are trajectories of the m-semiflow
T (t) defined in (3): ϕ(t + τ) = ϕτ (t) ∈ T (t)ϕ(τ).

If we require that GMV (t, B) in fact consists of a union of continuous
trajectories of the m-semiflow GMV then Melnik & Valero called GMV

a “time-continuous m-semiflow”.
This notion of a trajectory, although used only by Melnik & Valero

in their discussion of the connectedness of attractors, is extremely use-
ful for us in comparing the two general frameworks and results from
the previous literature. However, there are some distinctions between
“trajectories” and “solutions”, as we will now explain.

2.4. Solutions and trajectories.

As we previously mentioned, given a generalized semiflow GB, it easily
follows from Proposition 2 that we can construct an m-semiflow GMV

by setting
GMV (t, x) = T (t)x t ∈ R+, x ∈ X. (5)

Furthermore, we have a slightly stronger version of property (2) in the
definition of an m-semiflow, since we automatically have the equality

GMV (t + s, x) = GMV (t, GMV (s, x))

rather than an inclusion (what we will call a “strong m-semiflow”). We
also know that GMV (t, x) is upper semicontinuous.

However, it is not immediately clear that this m-semiflow cannot
have trajectories (in the sense of Definition 4) that are not solutions of
the generalized semiflow GB (cf. Szegö & Treccani [30, Obs. 5.2]).

We can rule out such spurious solutions using (H3) and (H4) when
GB consists of continuous functions (analogous result have been proved
by Szegö & Treccani [30, Th. 5.1] and Barbashin, see [27]).

LEMMA 5. Let GB be a generalized semiflow consisting of functions
that are continuous from J into X, where J = (0,∞) or [0,∞). Now
let GMV be the m-semiflow constructed from GB by (5). If x(t) is a
continuous trajectory (on J) of this m-semiflow, i.e.

x(t + s) ∈ GMV (t, x(s))

for all t, s ∈ R+ then x ∈ GB.

Proof. Consider a sequence ϕn ∈ GB such that

ϕn(j2−n) = x(j2−n) for all j = 0, 1, 2, . . . , n2n.
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The argument for the existence of such functions follows from that
for ϕ1: by the definition of GMV (1, ·) there exists a ϕ ∈ GB with
ϕ(0) = x(0) and ϕ(1) = x(1). Similarly there exists a ψ ∈ GB with
ψ(0) = x(1) and ψ(1) = x(2). So by concatenation there exists a ϕ1 ∈
GB with ϕ1(0) = x(0), ϕ1(1) = x(1), ϕ1(2) = x(2). We can continue
concatenating in this way to find a ϕn ∈ GB with ϕn(j2−n) = x(j2−n).

Now we consider the sequence {ϕn} ⊂ GB. Since ϕn(0) = x(0), by
(H4) there is a ϕ ∈ GB and subsequence ϕµ such that ϕµ(t) → ϕ(t)
for each t > 0. Since for any t of the form t = j2−n for some j and n
the value of ϕµ(t) is always x(t) for µ large enough, it follows from the
continuity of ϕ and x that in fact ϕ = x. So x ∈ GB.

However, suppose rather that we construct an m-semiflow directly
using a certain class of solutions of some model. In this case there
is a priori no reason why there should not be limits of solutions of
this m-semiflow that are not solutions themselves. This remark will be
important in the applications of Section 3, where in each case we will
have to check that the limit of solutions is still a solution: i.e. that
convergence of a sequence of solutions ϕn to ϕ implies that ϕ is also a
solution.

We would like to emphasise this point here, i.e. that in general one
cannot expect that every set of solutions of a differential problem forms
a generalized semiflow: we end this section with a simple example of
an ordinary differential inclusion in which the set of all solutions does
not satisfy (H4).

We take X = [0,∞), and define F by

F (x) =
{

0 if x ∈ [0, 1],
1 if x > 1.

Consider the ordinary differential inclusion (in fact an ordinary differ-
ential equation)

dx

dt
(t) ∈ F (x(t)), (6)

and let G be the set of strong solutions of (12); writing fa(t) = a and
gb(t) = b + t we have

G =
⋃

a∈[0,1]

fa(·) ∪
⋃

b∈(1,∞)

gb(·).

It is obvious that G is an equicontinuous family and satisfies (H1), (H2)
and (H3), but the more problematic (H4) does not hold: if we take a
sequence bn ↓ 1 the solutions gbn(t) = bn + t converge to g(t) = 1 + t,
but this is not a solution of (12). [This anomaly can be corrected by
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redefining F (1) to be {0, 1}, or the whole interval [0, 1], see Smirnov
[29]. In this case the collection of all solutions, G ∪ {g}, does give rise
to a generalized semiflow.]

In the above example the initial m-semiflow did not have compact
values, invalidating (H4) [recall Proposition 2]; this can happen for
the solutions of a general differential inclusion ẋ ∈ f(x) if f is not
convex-valued: an example is given by Smirnov [29, p. 107].

2.5. Generalized semiflows from m-semiflows

Although it is easy to define an m-semiflow given a generalized semi-
flow, it is much harder (and not possible in general) to obtain a general-
ized semiflow G from a given m-semiflow GMV . (Results of this section
are related to those of Roxin [26], Bridgland [7] and Szegö & Treccani
[30, Th. 5.1 & Obs. 5.2]; for similar ideas for differential equations
without uniqueness see Sell [28].)

We start our discussion from an abstract point of view: if we are
given an m-semiflow, what set of functions should we take? What
properties should they satisfy? Looking at the definition of the set
T (t)E associated to a generalized semiflow GB (it is the set of all points
reached at time t by solutions which began in E), the first idea that
comes to mind is to define

G =
⋃

x∈X

{ϕ : [0,∞) → X | ϕ(t) ∈ GMV (t, x) for all t ∈ R+}.

Since GMV (t, x) is non-empty, we can use the Axiom of Choice to find
solutions which immediately satisfy (H1). However, in principle one
is not able to ensure that these solutions should satisfy (H2). Indeed,
suppose that ϕ(τ) ∈ GMV (τ, x) ∀τ ∈ Γ+: then ϕ(t+si) ∈ GMV (t+si, x)
with i = 1, 2. But ϕt(si) ∈ GMV (si, GMV (t, x)) implies that there exist
elements xi ∈ GMV (t, x) with ϕt(si) ∈ GMV (si, xi) and the problem is
that x1 does not have to be the same as x2.

Although this problem can be overcome by considering the union
over all subsets rather than all points in the above, i.e.

G =
⋃

E∈P (X)

{ϕ : [0,∞) → X | ϕ(t) ∈ GMV (t, E) for all t ∈ R+}

[for the given ϕ(t) ∈ GMV (t, E) it follows immediately that ϕt(si) ⊂
GMV (si, GMV (t, E))], now G cannot be expected to satisfy (H4) since
this definition is far too free. In fact, (H3) is false too. Taking E = X,
it is clear that GMV (t,X) ⊆ GMV (s, X) if t > s because

GMV (s + (t− s), X) ⊂ GMV (s,GMV (t− s,X)).
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Multi-valued semiflows and their asymptotic behaviour 11

Thus in general, with an inclusion (remember Proposition 2) we cannot
find every element of GMV (τ − t, X) in GMV (τ,X) and therefore the
concatenated function θ defined in (H3) does not belong to G.

In order to proceed further, from the above discussions and at light
of [5, Ths. 2.2, 2.3] we have to impose some assumptions on the set of
trajectories (in the sense of Definition 4) of the m-semiflow GMV .

(A1) For each x0 ∈ X, there exists at least one trajectory that is contin-
uous from [0,∞) → X.

(A2) For any sequence of continuous trajectories ϕn with ϕn(0) → z the
sequence {ϕn} is equicontinuous from I into X for any compact
subinterval I of [0, +∞).

We note here the following useful result that allows us to use (A2) in
finite-dimensional spaces in order to apply the Arzelà-Ascoli Theorem:

LEMMA 6. Suppose that F (t, ·) : X → B(X) is an upper semi-
continuous map for each t ∈ R+, and let {ϕn}n≥0 be a sequence of
trajectories with ϕn(0) → z. Then ϕn is uniformly bounded on each
bounded subinterval I of R+.

Proof. Suppose not: then for each constant M ≥ 0 there exist tM ∈ I
and a trajectory ϕµM with |ϕµM (tM )| > M . So there exists a t∗ ∈ Ī
with |ϕµM (t∗)| increasing to ∞ when M → ∞. On the other hand
F (t∗, z) is bounded, and as F (t∗, ·) is u.s.c. the points ϕµM (t∗) must be
in a neighbourhood of F (t∗, z). But this is a bounded set, and we have
obtained a contradiction.

In infinite-dimensional spaces we will need to make slightly different
assumptions: even in the single-valued case solutions need not be con-
tinuous on [0,+∞) if we are not in the appropriate space (e.g. solutions
of the heat equation can significantly be more regular for t > 0 than the
initial condition – see Ball [5, Ex. 2.2 & Th. 2.1] for further comments).
By (A1′) and (A2′) we denote (A1) and (A2) with [0,+∞) replaced by
(0, +∞), and with (A2′) including the additional assumption that for
each fixed t the closure of

∞⋃

n=1

ϕn(t)

is a compact subset of X.
We are now in a position to prove our main result. Note that we

saw above that the T (t) arising from a generalized semiflow must have
compact values, so we impose this on GMV from the beginning.
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12 Caraballo, Maŕın-Rubio & Robinson

THEOREM 7. Let GMV : R+ ×X → K(X) be a strong m-semiflow
such that GMV (t, ·) is upper semicontinuous and has compact values. If
X is locally compact (resp. not locally compact) and (A1–2) (resp. (A1′–
2′)) hold, then the collection of all trajectories of GMV that are continu-
ous from J = [0,∞) (resp. (0,∞)) into X forms a generalized semiflow
on X.

Note that under the conditions of the theorem we obtain from GMV a
generalized semiflow G which generates as in (3) a map TG(t) satisfying

TG(t)E ⊆ GMV (t, E). (7)

However, as discussed in Section 2.4, it may be the case that the
construction of the theorem gives rise to elements of G that are not
in fact “solutions” of the original problem.

Proof. We deal with properties (H1–4) in turn.

(H1) This follows immediately from (A1).

(H2) Let x(t) be a trajectory, i.e. x(t + τ) ∈ GMV (t, x(τ)) for all t, τ ∈
R+; then, given s ∈ R+, xs is a trajectory since

xs(t + τ) = x(t + τ + s) ∈ GMV (t, x(τ + s)) = GMV (t, xs(τ)).

(H3) Given two trajectories ϕ, ψ with ϕ(t) = ψ(0) for some t > 0, we
want to show that

θ(τ) =
{

ϕ(τ) for 0 ≤ τ ≤ t
ψ(τ − t) for t < τ

is a trajectory, i.e. that

θ(t1 + t2) ∈ GMV (t1, θ(t2)) for all t1, t2 ∈ R+. (8)

If t1 + t2 ≤ t then θ coincides with ϕ and if t2 ≥ t then θ coincides
with ψ: in both cases (8) is trivial because ϕ and ψ are trajectories.
Therefore, let us suppose that t1 + t2 > t and t̄ = t− t2 > 0, then

θ(t1 + t2) = ψ(t1 + t2 − t)
∈ GMV (t1 + t2 − t, ψ(0))
= GMV (t1 + t2 − t, ϕ(t))
⊂ GMV (t1 + t2 − t, GMV (t̄, ϕ(t− t̄)))
= GMV (t1 + t2 − t + t̄, ϕ(t− t̄)).

If the trajectories ϕ and ψ are continuous then clearly θ is.
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Multi-valued semiflows and their asymptotic behaviour 13

(H4) Finally, we prove condition (H4). Suppose that there exists a se-
quence of trajectories {ϕn} with ϕn(0) → z ∈ X as n →∞. Then,
using (A2) we can apply the Arzelà-Ascoli Theorem to extract a
subsequence ϕ1,n that converges uniformly on [0, 1] (in the finite
case) or [1, 1] (in the infinite case) to a continuous function ϕ(t).
Another application of the Arzelà-Ascoli Theorem provides a fur-
ther subsequence ϕ2,n which converges uniformly to ϕ on [0, 2] (or
[1/2, 2]). We continue in this way to find nested subsequences ϕj,n

converging to ϕ uniformly on [0, n] (or [1/n, n]) and additionally
defined as z in time zero. Finally ϕµ = ϕµ,µ converges uniformly to
ϕ on any compact subinterval of J .

Now, we check that ϕ is a trajectory: i.e. that

ϕ(t + s) ∈ GMV (t, ϕ(s)) for all t, s ∈ R+. (9)

Indeed, we have that ϕµ(s) → ϕ(s) and ϕµ(t + s) → ϕ(t + s) and
that ϕµ(t + s) ∈ GMV (t, ϕµ(s)) because ϕµ are trajectories. Since
GMV (t, ·) is u.s.c., given any neighbourhood N of GMV (t, ϕ(s))
there exists µN ≥ 1 such that for all µ ≥ µN , GMV (t, ϕµ(s)) ⊂ N .
On the other hand GMV (t, ϕ(s)) is closed and we can pass to the
limit to obtain (9).

Without the equicontinuity property from condition (A2) or (A2′)
in the above theorem we cannot obtain a subsequence satisfying (H4).
However, we have already seen (in the discussion following the defi-
nition of a generalized semiflow) that this can arise naturally in ap-
plications, and we give two examples in Section 3 showing that this
can also arise in the solutions of differential inclusions. It is possible
to do something without (A2) in the case of discrete time, and this is
discussed below.

One might hope to circumvent (A2) since property (H4) does not re-
quire uniform convergence of ϕµ to ϕ but only pointwise convergence1.
However, the following result from Ball [5] shows that the structure of
solutions (elements of GB) means that pointwise convergence implies
uniform convergence:

THEOREM 8. (cf. [5]) Suppose that GB is a generalized semiflow
with each ϕ ∈ GB continuous from (0,∞) into X. Suppose that {ϕn} ⊂

1 It seems an interesting problem to characterize those sequences of continuous
functions fn (say from [0, 1] → R) that have a subsequence that converges only
pointwise to another continuous function f : we have not been able to find any result
along these lines in the literature.
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14 Caraballo, Maŕın-Rubio & Robinson

GB and ϕ ∈ GB with ϕn(t) → ϕ(t) for each t > 0. Then ϕn → ϕ
uniformly on compact intervals of (0,∞).

Since the Arzelà-Ascoli Theorem is a characterization of uniformly
convergent sequences of continuous functions, (A2) is thus necessary.
In the finite-dimensional case the following result from Ball is stronger:

THEOREM 9. (cf. [5]) Suppose that X is locally compact and that
GB is a generalized semiflow with each ϕ ∈ GB continuous from [0,∞)
into X. Suppose that {ϕn} ⊂ GB and ϕ ∈ GB with ϕn(t) → ϕ(t)
for each t > 0. Then in fact ϕn → ϕ uniformly for every compact
subinterval of [0,∞).

Taking into account the above comments and the facts that (H4)
implies upper semicontinuity (this is easy to check by contradiction,
as we saw in Proposition 2) and that G(t, ·) has compact values, when
dealing with continuous trajectories the assumptions of Theorem 7 are
the minimal (optimal) set that will guarantee the construction of the
desired generalized semiflow.

We can remove condition (A2) in Theorem 7 if we consider the case
of discrete time.

PROPOSITION 10. Let GMV : Z+ × X → K(X) be a strong m-
semiflow such that GMV (t, ·) is upper semicontinuous and compact-
valued. Under assumption (A1) the collection G of all trajectories of
GMV (in the sense of Definition 4) forms a generalized semiflow on X.

Proof. Properties (H1-3) follow as before. It only remains to check
(H4). By assumption ϕj(0) converges to z. Given an ε > 0 the upper
semicontinuity of GMV (1, ·) ensures that GMV (1, ϕj(0)) is contained in
the ε-neighbourhood of the compact set GMV (1, z) for all j ≥ j(ε, 1). It
follows that there exists a subsequence ϕj1

n
such that ϕj1

n
(0) and ϕj1

n
(1)

both converge (as n →∞).
Now we apply the same argument inductively to GMV (k+1, ϕjk

n
(0))

to obtain a subsequence ϕjk+1
n

of ϕjk
n

such that ϕjk
n
(t) converges for all

t = 0, . . . , k. Setting ϕµ = ϕjµ
µ

we obtain a subsequence such that ϕµ(t)
converges for all t ∈ Z+. That the resulting limit is still a member of
G follows as before.

Of course, in this case clearly TG(n)E = GMV (n,E).
(We could try something similar in the case Γ = R+, but without

(A2) the best that we could hope for would be to obtain a subsequence
that converged for a countable subset of R+, e.g. Q+.)
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Multi-valued semiflows and their asymptotic behaviour 15

2.6. Relation with ‘general control systems’

We have already mentioned briefly the ‘general control systems’ de-
veloped by Roxin [27, 26]. His axioms, themselves a weakening of the
requirements of Barbashin for ‘general dynamical systems’ (see [27]),
were in turn weakened by Kloeden [18] to those for a ‘general semidy-
namical system’. Recasting Kloeden’s definition into a language similar
to that used here, and restricting to the autonomous case, a general
semidynamical system on a complete locally compact space E is a map
Φ(t)x defined for all t ≥ 0 and all x ∈ E such that

(K1) Φ(t)x is a non-empty closed subset of E for each x ∈ E and for
all t ≥ 0;

(K2) Φ(0)x = x for all x ∈ E;

(K3) Φ(t + s)x = Φ(t)Φ(s)x (where Φ(t)X = ∪x∈XΦ(t)x);

(K4) Φ(t)x is continuous in t with respect to the Hausdorff metric for
each fixed x ∈ X,

lim
s→t

dH(Φ(t)x,Φ(s)x) → 0 as s → t;

(K5) Φ(t)x is upper semicontinuous in (x, t), that is

lim
s→t, y→x

dist(Φ(s)y, Φ(t)x) = 0.

Note that the assumptions here are stronger than (H1–4) and stronger
than the requirements for an m-semiflow (we note in particular that
(H4) is a consequence of axioms (K1–5), as shown by Barbashin (see [27,
Th. 6.2])). The strongest restriction for the application of this theory
is the requirement that the phase space is locally compact; given this
the extra strength of the assumptions in (K1–5) pose few additional
restrictions. Indeed, it is relatively easy to show that when the phase
space is locally compact a weaker assumption on the continuity of
trajectories allows us to recover (K4) and (K5) from (H1–4).

More precisely, we have the following result.

PROPOSITION 11. Let X be locally compact and suppose that GB

is a generalized semiflow whose elements are continuous functions from
[0,∞) into X. Then (K4) and (K5) hold.

(If X is not locally compact then (K4) can only be obtained for all
t ∈ (0,∞): compare Theorem 8 with Theorem 9.)
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16 Caraballo, Maŕın-Rubio & Robinson

Proof. The continuity in (K4) consists of two parts,

dist(T (t)x, T (s)x) → 0 as s → t, t ∈ [0,∞), (10)

and
dist(T (s)x, T (t)x) → 0 as s → t, t ∈ [0,∞). (11)

Both can be proved by contradiction.
If (10) does not hold then there exist a constant ε > 0 and a sequence

sn → t with
dist(T (t)x, T (sn)x) ≥ ε. (12)

Since T (t)x is compact we can find a zn ∈ T (t)x such that

dist(zn, T (sn)x) = dist(T (t)x, T (sn)x),

and w.l.o.g. we suppose that zn → z ∈ T (t)x. Then

dist(z, T (sn)x) ≥ ε.

To obtain a contradiction we now find elements yn ∈ T (sn)x with
yn → z. Observe that since z ∈ T (t)x there is a solution ϕ ∈ GB

such that z = ϕ(t). Since solutions are continuous functions of time,
yn = ϕ(sn) ∈ T (sn)x and yn → z. So (10) holds.

If (11) does not hold then there exist an ε > 0 and a sequence sn → t
such that

dist(T (sn)x, T (t)x) ≥ ε.

Since each T (sn)x is compact we can find zn ∈ T (sn)x such that

dist(zn, T (t)x) ≥ ε.

Then there are elements ϕn ∈ GB such that ϕn(0) = x and zn =
ϕn(sn). W.l.o.g. we can assume using (H4) that there is some ϕ ∈ GB

with ϕ(0) = x such that ϕn(t) → ϕ(t) for each t ≥ 0.
If X is locally compact then Theorem 2.3 in [5] (Theorem 9 above)

shows that this convergence is in fact uniform on compact subintervals
of [0,∞). Thus for all t ∈ [0,∞) we can deduce that

zn − ϕ(t) = [ϕn(sn)− ϕ(sn)] + [ϕ(sn)− ϕ(t)] → 0,

and so zn → ϕ(t) ∈ T (t)x and we obtain (11).
The upper semicontinuity follows similarly via a contradiction argu-

ment.

Since (10) and (11) combine to show that

dH(T (t)x, T (s)x) → 0 as s → t,
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Multi-valued semiflows and their asymptotic behaviour 17

in locally compact spaces the continuity of solutions on [0,∞) plus
(H1–4) imply (K4) and (K5). Conversely Barbashin showed (see [27])
that under axioms (K1–5) all trajectories are continuous and forms a
compact set provided initial time convergence holds (cf. our Lemma
5), so one can switch between Ball’s theory and that of Kloeden in
a consistent way. However, in infinite-dimensional Banach spaces the
weaker assumptions of the newer versions of the theory are necessary.

We saw in Section 2.5 that a result like Barbashin’s (a generalized
semiflow from an m-flow) does not hold in general, assuming only the
properties that Melnik & Valero’s require for the ‘attainability sets’
GMV (t, x). In the next section we see what can be done with the set of
solutions of particular example problems.

3. Applications

In this section we study some examples. In particular we want to check
whether or not we can construct generalized semiflows that consist en-
tirely of solutions rather than form the trajectories of the attainability
map. In the light of Lemma 5, it is enough to check that the solutions
are continuous and form a generalized semiflow by themselves. In this
way we avoid the existence of spurious ‘solutions’ in the generalized
semiflow.

We will see that this problem is significantly more involved for par-
tial differential inclusions that for equations without uniqueness, since
for inclusions each solution is associated with a different ‘right-hand
side’ and selection theorems are necessary.

3.1. An ODE without uniqueness

We have already considered in Section 2.1 the simple example

dx

dt
= f(x), x(0) = x0,

with f : Rn → Rn a bounded continuous function, and shown that it
gives rise to a generalized semiflow. Of course, we could also consider
the equation from the point of view of m-semiflows, defining G(t, x)
precisely as in (5). In this case it is interesting to note that Kneser’s
Theorem on structure of G(t, x) (see Theorem 4.1 in Hartman [14] for
example) guarantees that it is closed. Since it is bounded it must also
be compact (of course, this also follows from part (c) of Proposition 2).
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18 Caraballo, Maŕın-Rubio & Robinson

3.2. A PDE without uniqueness

The main example that appears in Ball’s paper is the 3D Navier-Stokes
equations:

ut + (u · ∇)u = ν∆u−∇p + f,

divu = 0,
(13)

with boundary condition
u|∂Ω = 0.

Consider the following spaces:

V = {u ∈ C∞
0 (Ω)3; divu = 0},

H = closure of V in L2(Ω)3,

V = {u ∈ H1
0 (Ω)3; divu = 0}.

Let us denote by Hw the space H endowed with its weak topology. It is
well known that given u0 ∈ H, there exists at least one weak solution
u to the problem (13) such that

u ∈ C([0, T ]; Hw) ∩ L2(0, T ;V ),
du

dt
∈ L1(0, T ;V ′) ∀T > 0.

However it is not known whether this solution is unique, so the gener-
alized semiflow framework is brought in to play. The collection GNS of
all such weak solutions clearly satisfies (H1) and (H3). What Ball shows
in this paper (see Proposition 7.4 in [5]) is that GNS is a generalized
semiflow if and only if each weak solution is a continuous function from
(0,∞) into H: this is currently an unproved hypothesis. Additional
conditions needed to construct the global attractor are shown to be
consequences of this same assumption (see Theorem 19 in Section 4 of
this paper for details).

3.3. Two examples involving differential inclusions

3.3.1. An ordinary differential inclusion
As an illustrative example we recall briefly the case of a simple ordinary
differential inclusion (see e.g. Roxin [26] or Aubin & Frankowska [3]).

Let us consider an F : Rn → Cv(Rn) such that F (0) is bounded and
F is globally Lipschitz,

dH(F (u), F (v)) ≤ L|u− v|.
Consequently, F has bounded convex values (this convexity is im-
portant to guarantee that the attainability map has closed values,
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Multi-valued semiflows and their asymptotic behaviour 19

cf. comments towards the end of section 2.4). We are going to show
that it is possible to construct a generalized semiflow for the ordinary
differential inclusion

du

dt
∈ F (u) u(0) = u0. (14)

Let us denote by G the set of strong or Carathéodory solutions to
(14), that is all maps u : [0, T ] → Rn such that

(i) u(0) = u0,

(ii) u(·) is continuous on [0, T ],

(iii) u(·) is absolutely continuous on any compact subinterval of (0, T ),
and satisfies (14) a.e. on (0, T ).

In particular we require a measurable selection h(x) with h(x) ∈ F (x),
so that

du

dt
= h(u(t)).

The existence of a continuous (and not merely measurable) selection
is guaranteed by the Chebyshev Selection Theorem (see Aubin & Cel-
lina [2], p. 74), and then standard methods can be used to obtain the
existence of a solution defined locally in time.

If we fix an interval [0, T ] then we can show that each solution and
its corresponding selection are bounded, thereby obtaining solutions
that are global in time. (The proof is standard and will be omitted.)

PROPOSITION 12. Under the above assumptions, if u is a strong
solution to (14) and h(u) the corresponding selection then the following
bounds hold:

|u(t)|2 ≤ e(2L+1)t|u(0)|2 +
C

2L + 1
(e(2L+1)t − 1)

and

|h(u(t))| ≤ C + L

(
e(2L+1)t|u(0)|2 +

C

2L + 1
(e(2L+1)t − 1)

)1/2

,

where C = diamF (0).

Since (H1–3) are straightforward for this example, we concentrate
on (H4). Suppose we have a sequence of strong solutions un with con-
verging initial data. The bound on |h(u(t))| from the above proposition
implies that the set of strong solutions of (14) are equicontinuous, which
along with the bound on |u(t)| enables the use of the Arzelà-Ascoli
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20 Caraballo, Maŕın-Rubio & Robinson

Theorem to find a convergent subsequence. But, this is not enough on
its own, since we also need to check that the limit is still a solution of
the problem. This follows from an application of a selection convergence
theorem from Aubin & Cellina [2], p. 60: any convergent subsequence
un′ → u with selectors fn′(t) ∈ F (un′(t)) has a subsequence fn′′ ⇀ f
with f(t) ∈ F (u(t)).

Of course, the same conclusion arises for the non-autonomous case
if we include an artificial time s = t as an additional direction in the
phase space.

3.4. A partial differential inclusion

We now turn to the more involved case of partial differential inclusions,
which we describe within an abstract framework.

Let H be a Hilbert space with norm | · | and inner product (·, ·). We
consider the following evolution inclusion problem:

dy

dt
∈ −Ay + F (y), t ∈ [0, T ], (15)

y(0) = y0 ∈ H, (16)

where A : D(A) ⊂ H → H is a linear (unbounded) operator with
Im(Id + A) = H and compact inverse such that

(−Ax, x) ≤ 0 for all x ∈ D(A),

(so D(A) = H) and with e−At an analytic semigroup. (This is a par-
ticular case of the theory developed by Melnik & Valero [25] which
also covers multi-valued subdifferential operators A : D(A) ⊂ X → 2X

with X a Banach space.) We assume further that F is convex-valued,
F : H → Cv(H), F (0) is bounded, and F satisfies the global Lipschitz
condition

dH(F (u), F (v)) ≤ C1|u− v|
(this is a strong assumption; in particular it implies that F has bounded
values).

As with ordinary differential inclusions, a strong solution y(·) of (15)-
(16) is a continuous function on [0, T ] with y(0) = y0, y(·) absolutely
continuous on any compact subinterval of (0, T ), such that (15) holds
a.e. on (0, T ). However, it is also useful to define a weaker notion
of solution which we term (following the single-valued case) a mild
solution.

DEFINITION 13. The map y : [0, T ] → H is called a mild solution
of (15)-(16) if it is continuous, y(0) = y0, and there exists a selection
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f ∈ L1([0, T ]; H) of F (that is f(t) ∈ F (y(t)) a.e. on [0, T ]), such that
y satisfies

y(t) = e−Aty0 +
∫ t

0
e−A(t−s)f(s) ds (17)

for a.e. t ∈ [0, T ] (i.e. y(t) is a mild solution of dy/dt = −Ay + f(t)).

Before showing how we can define a generalized semiflow using this
definition, we will discuss its relationship to that given in Melnik &
Valero’s paper. There they make use of the much more general theory
of partial differential inclusions in which the linear operator A can also
be multi-valued (full details of this can be found in Chapter III of Barbu
[6]). In order to deal with the fact that A is multi-valued one needs to
introduce a generalisation of the notion of a mild solution, which they
term an “integral solution”. In our setting, an integral solution of (17)
is a continuous function y : [0, T ] → H with y(0) = y0 such that for all
u ∈ D(A)

|y(t)− u|2 ≤ |y(s)− u|2 + 2
∫ t

s
(f(τ) + Au, y(τ)− u) dτ, t ≥ s. (18)

An integral solution of (15)-(16) is a function y(t) for which there exists
a selection f ∈ L1([0, T ]; H) of F such that y is an integral solution of
(17).

The two notions of solutions can be shown to be equivalent for our
example: first, note that any strong solution is an integral solution (this
is straightforward). Now we show that any integral solution is also a
mild solution (the argument is due to Valero, personal communication):
take a sequence of strong solutions un = I(un

0 )fn with fn → f and un
0 →

u0 in L1(0, T ;H) and H respectively (the existence of such sequence is
guaranteed by Corollary 2.2 in Barbu [6], Chapter III). Then un → u
in C([0, T ];H). The contraction property of e−At leads to

|e−Atun
0 − e−Atu0| ≤ |un

0 − u0| → 0,
∫ t

0
|e−A(t−s)fn(s)− e−A(t−s)f(s)|ds ≤

∫ t

0
|fn(s)− f(s)| ds → 0.

Now, since the strong solutions un are mild solutions, we can take limits
in order to show that integral solutions of the problem (15) are mild
solutions as well:

un(t) = e−Atun
0+

∫ t
0 e−A(t−s)fn(s) ds

↓ ↓ ↓
u(t) = e−Atu0+

∫ t
0 e−A(t−s)f(s) ds.

Since there is always a unique integral solution and a unique mild
solution of (17) it follows that the definitions are equivalent.
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Under our assumptions, and using Definition 13, there exists at least
one mild solution of (15)-(16), cf. [25], and we take G to be the set of
all such mild solutions. For this collection (A1) is easily seen to be true,
and we now show that both parts of assumption (A2′) hold. Although
we will not apply Theorem 7, rather checking (H4) directly, we will still
need (A1) and (A2′) in order to do this.

We first check the equicontinuity property (recall that we only re-
quire equicontinuity on compact subintervals of (0,∞)).

PROPOSITION 14. For each 0 < θ < 1 all solutions of (15) satisfy

|u(t)−u(s)| ≤ K[ε,T ](θ, |u0|)
[|t−s|θ +|t−s|] for all t, s ∈ [ε, T ].

To prove this proposition, we need the following lemma from Henry
[15]:

LEMMA 15. We have the following two estimates: there exists λ > 0
such that for any 0 ≤ α < 1

‖Aαe−At‖op ≤ Cαt−αe−λt (19)

and, for any 0 < α < 1

|(e−At − I)x| ≤ C ′
αtα|Aαx|. (20)

The first observation is that the strong condition on F gives a
uniform bound on all solutions.

LEMMA 16. If u(t) is a solution of (15) and f(t) ∈ F (u(t)) then

|f(t)| ≤ M(T, |u0|) for all t ∈ [0, T ].

Proof. Note that the Lipschitz assumption on F implies that

|F (u)| ≤ C1|u|+ diam[F (0)] ≡ C0 + C1|u|.
In particular, since every solution of (15) satisfies

du

dt
+ Au = f(t)

with f(t) ∈ F (u(t)), we have

1
2

d
dt
|u|2 + |A1/2u|2 ≤ C0|u|+ C1|u|2

and so
d
dt
|u|2 ≤ C2

0 + (1 + 2C1)|u|2,
from which the result follows.
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We can now prove the equicontinuity result.

Proof. Essentially we follow the work in Henry [15]. We consider
u(t+h)−u(t) with t ≥ ε; using the integral expression for the solution,
we have

u(t + h)− u(t) = (e−Ah − I)e−Atx0 +
∫ t

0
(e−Ah − I)e−A(t−s)f(s) ds

+
∫ t+h

t
e−A(t+h−s)f(s) ds,

and so
|u(t + h)− u(t)| ≤

C ′
θh

θ|Aθe−Atx0|+
∫ t

0
C ′

θh
θ|Aθe−A(t−s)f(s)| ds +

∫ t+h

t
|f(s)| ds

≤ C ′
θh

θCθe−λtt−θ|x0|+ C ′
θh

θCθ

∫ t

0
(t− s)−θ|f(s)| ds + hM(T, |u0|)

≤ K(θ, |x0|, ε, T )hθ + hM(T, |u0|)
which provides the equicontinuity property needed for (A2).

As for the second part of (A2) (compactness) we show that the
solutions are bounded in D(Aα), which is compactly embedded in H.
The proof is almost straightforward, since

|Aαu(t)| ≤ ‖Aαe−At‖op|u0|+
∫ t

0
‖Aαe−A(t−s)‖opM(|u0|, s) ds

≤ Cαt−αe−λt|u0|+ CαM(|u0|, t)
∫ t

0
(t− s)−αe−λ(t−s) ds

≤ K(t, |u0|).
We now need to check that sequences of solutions have a subsequence
that converges to a limit that is itself a solution. First use the Arzelà-
Ascoli to find a (diagonal) subsequence such that un converges uni-
formly to u on any compact subinterval (0,∞) while (relabeling the
same) fn ⇀ f weakly in L1((0, T );H). Then u is a mild solution of

du

dt
= −Au + f(t).

However, while (A2′) only requires convergence on compact subinter-
vals of the open interval (0,∞) (which we have just shown), we require
that u(t) is a mild solution of (15), and by Definition 13 this requires
in addition that u(t) should be continuous on the interval [0,∞) and
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satisfies (17). But these properties follow since, passing to the limit in
the expressions for un, u(t) satisfies

u(t) = e−Atz +
∫ t

0
e−A(t−s)f(s) ds,

from whence u(t) → z as t → 0 and the function is indeed continuous
on [0,∞). It remains to check that f(t) ∈ F (u(t)), but this follows
once more using the same selection convergence theorem from Aubin
& Cellina [2], p. 60, that we used in the ordinary differential inclusion
case.

Then u is a mild solution of

du

dt
= −Au + f(t).

Therefore we have shown (H4), and the set of all mild solutions of (15)
forms a generalized semiflow.

4. Relations between the two theories of attractors

Our interest in these two theories arose from their application to the
investigation of the long-time behaviour of solutions. Indeed, both the
papers in which the two abstract frameworks discussed here were de-
veloped generalise the notion of global attractor from single-valued
dynamical systems to multi-valued evolutions (whether they come from
systems without uniqueness or from differential inclusions). We now
discuss the analogies and differences between the attractor results pro-
vided by both theories.

An initial remark is that both frameworks approach the theory of
attractors in a similar way, Melnik & Valero giving all their definitions
using the m-semiflow GMV , and Ball using the equivalent T (t) derived
from the collection GB of solutions (see (3)). In what follows we use
G(t, ·) for either GMV (t, ·) or T (t)· when no confusion can arise.

The important concepts are as follows:

DEFINITION 17.

(a) It is said that A attracts B if limt→∞ dist(G(t, B), A) = 0.

(b) The semiflow G is called eventually bounded if for any bounded
set B, there exists a sufficiently large constant τ = τ(B) such that
γ+

τ (B) is bounded, where, as usual in dynamical systems, γ+
τ (B)

denotes the set of all points reached at any time greater than τ by
solutions beginning in B: ∪t≥τG(t, B).
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(c) The ω-limit set of M is defined as the set of limits of all converging
sequences {ξn} where ξn ∈ G(tn,M). As in the single-valued case
this is the same as the intersection of all γ+

t (M) with t ∈ Γ+.

(d) The semiflow is called point dissipative if there is a bounded set
B0 such that all solutions are attracted by B0. (The solutions will
be “absorbed” by any neighbourhood of B0.)

(e) The semiflow is asymptotically upper semicompact if for any bounded
set B such that for some T (B) ∈ Γ+, γ+

T (B)(B) ∈ B(X), any
sequence ξn ∈ G(tn, B) with tn →∞ is precompact in X.

(f) The semiflow is asymptotically compact if for any sequence of
solutions ϕn with {ϕn(0)} bounded, and any sequence tn → ∞,
the set {ϕn(tn)} is precompact.

Obviously asymptotically compact is equivalent to asymptotically
upper semicompact plus eventually bounded.

The definition of “an attractor” in both papers is similar, and is
essentially a compact, invariant set that attracts all bounded sets.
However, in the light of certain applications (see Remark 4 in [25])
Melnik & Valero initially require the attractor only to be negatively
semi-invariant, i.e. A ⊂ G(t,A) for all t ∈ Γ+:

THEOREM 18. (cf. [25], Theorem 3 and Remark 8) Let GMV be a
pointwise dissipative and asymptotically upper semicompact m-semiflow,
and suppose that GMV (t, ·) : X → P (X) has closed graph. If for any
bounded B there exists a T (B) such that γ+

T (B)(B) is bounded, then
GMV has a compact global attractor A which is minimal among all the
closed sets attracting each B ∈ B(X).

We note here that the condition that GMV has closed graph is au-
tomatically satisfied if GMV (t, ·) : X → C(X) is upper semicontinuous
for any t ∈ Γ+ (see Aubin & Cellina [2], for example).

The negatively semi-invariant attractor of Theorem 18 becomes fully
invariant whenever we have

GMV (t1 + t2, x) = GMV (t1, GMV (t2, x)) for all x ∈ X

(what we called a strong m-semiflow).
The result from [5] is, of course, similar.

THEOREM 19. (cf. [5], Theorem 3.3) A generalized semiflow GB

has a global attractor if and only if GB is point dissipative and asymp-
totically compact. The global attractor A is unique and is given by

A =
⋃

B∈B(X)

ω(B).
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Furthermore, A is the maximal compact invariant subset of X.

Observe that although Theorem 18 seems to be stated under suf-
ficient conditions (while those in Theorem 19 are also necessary), in
fact it is easy to show that the three assumptions of eventual bounded-
ness, pointwise dissipativity, and asymptotic upper-semicompactness
are equivalent to the existence of a compact global attractor A. We
saw in Section 2 that when dealing with generalized semiflows of con-
tinuous solutions, (H2) and (H3) enable the construction of a strong
m-semiflow, and it is clear that the two notions of attractor agree in
this case.

The only apparently significant difference between the two results
is that Melnik & Valero ask for the m-application GMV (t, ·) to have
closed values and be upper semicontinuous or satisfy the closed graph
condition. Both the requirement of closed values and of having a closed
graph are consequences of the strong property (H4). Moreover, the m-
semiflow arising from a generalized semiflow is ε upper semicontinuous
and the m-application has compact values (Proposition 2), so the m-
semiflow is upper semicontinuous.

Indeed, given a problem (P ) whose solutions form a generalized
semiflow, to check that

T (t)x = {ϕ(t, x) | ϕ solution of (P ), ϕ(0) = x}

is closed consider a sequence of points xn = ϕn(t) with ϕn(0) = x
converging to a point x̄ ∈ X. Trivially (H4) gives a solution ϕ such
that ϕ(0) = x and ϕµ(s) → ϕ(s) for all s ∈ Γ+ and so x̄ ∈ G(t, x).

To check that T (t)(·) has closed graph, let {(xn, yn)} be a sequence
converging to (x, y) with (xn, yn) ∈ GraphT (t)(·). Then there exists a
sequence of solutions {ϕn} with ϕn(0) = xn and ϕn(t) = yn, but then
by (H4) it is possible to extract a subsequence and a solution ϕ of (P )
with ϕ(0) = x and limµ→∞ ϕµ(s) = ϕ(s) for all s ∈ Γ+. So ϕ(t) = y
and (x, y) ∈ GraphT (t)(·).

Conclusion

We have considered the relationship between Ball’s generalized semi-
flows, Melnik & Valero’s m-semiflows, and the more historical ap-
proach to general control systems developed in the 70s by Barbashin,
Bushaw, Roxin and Kloeden among others. Although (under a con-
tinuity assumption on individual solutions) Ball’s theory and that of
Kloeden coincide when the phase space is locally compact, the gen-
erality of the more recent theories is necessary in order to treat the
infinite-dimensional case.
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Although the abstract theories of Ball and Melnik & Valero have
many points of similarity, they have essential differences. The main
obstacle to a smooth passage from one to the other is the upper semi-
continuity property (H4), which might be related to the subtle distinc-
tion between ‘trajectories’ and ‘solutions’. When (H4) can be shown to
hold we believe that the extra structure available in Ball’s formulation
(which includes the notion of a solution into the definition) makes this
more attractive, while Melnik & Valero’s approach has the undoubted
advantage of greater generality.
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(1999), 1006–1009.

18. Kloeden, P. E.: ‘General control systems without backwards extension’. In:
P. L. E. Roxin and R. Sternberg (eds.): Differential Games and Control Theory.
Marcel-Dekker, pp. 49–58, 1974.

19. Kloeden, P. E.: ‘General control systems’. In: W. A. Coppel (ed.): Mathematical
Control Theory, Vol. 680 of Lecture Notes in Mathematics. Springer-Verlag,
pp. 119–138, 1978.

20. Kloeden, P. E. and Schmalfuß, B.: ‘Nonautonomous systems, cocycle attractors
and variable time–step discretization’. Numer. Algorithms (1-3) 14 (1997),
141–152. Dynamical numerical analysis (Atlanta, GA, 1995).

21. Kloeden, P. E. and Stonier, D. J.: ‘Cocycle attractors in nonautonomously
perturbed differential equations’. Dynam. Contin. Discrete Impuls. Systems
(2) 4 (1998), 211–226.

22. Ladyzhenskaya, O.: Attractors for Semigroups and Evolution Equations, Vol. 25
of Lincei Lectures. Cambridge: Cambridge University Press, 1991.

23. Lamba, H.: ‘Dynamical systems and adaptive timestepping in ODE solvers’.
BIT (2) 40 (2000), 314–335.

24. Lamba, H. and Stuart, A. M.: ‘Convergence results for the MATLAB ODE23
routine’. BIT (4) 38 (1998), 751–780.

25. Melnik, V. S. and Valero, J.: ‘On attractors of multi-valued semi-flows and
differential inclusions’. Set-Valued Anal. (1) 6 (1998), 83–111.

26. Roxin, E. O.: ‘On generalized dynamical systems defined by contingent
equations’. J. Diff. Eqns. 1 (1965), 188–205.

27. Roxin, E. O.: ‘Stability in general control systems’. J. Diff. Eqns. 1 (1965),
115–150.

28. Sell, G.: ‘On the fundamental theory of ordinary differential equations’. J. Diff.
Eqns. 1 (1965), 370–392.

29. Smirnov, G. V.: Introduction to the Theory of Differential Inclusions. Provi-
dence: Amer. Math. Soc., 2002.

30. Szegö, G. P. and Treccani, G.: Semigruppi di Trasformazioni Multivoche, Vol.
101 of Springer Lecture Notes in Mathematics. Springer-Verlag, 1969.

svan516revised.tex; 26/02/2003; 8:23; p.28



Multi-valued semiflows and their asymptotic behaviour 29

31. Temam, R.: Infinite-Dimensional Dynamical Systems in Mechanics and
Physics, Vol. 68 of Applied Mathematical Sciences. New York: Springer-Verlag,
second edition, 1997.

svan516revised.tex; 26/02/2003; 8:23; p.29


