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The aim of this work is to propose a method for testing the integrability of a model partial differential~PDE!
and/or differential difference equation~DDE!, by examining it in afinite but largedomain. For monoparamet-
ric families of PDE/DDE’s, that are known to possess isolated integrable points, we find that very special
features occur in the finite domain remnant of the continuous~‘‘phonon’’ ! spectrum at these ‘‘singular’’ points.
We identify these features in the case example of a PDE and a DDE~that sustain front and pulselike solutions,
respectively! for different types of boundary conditions. The key finding of the work is that such spectral
features are generic near the singular, integrable points and hence we propose to explore a given PDE/DDE in
a finite but large domain for such traits, as a means of assessing its potential integrability.
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I. INTRODUCTION

Integrable models of partial differential~PDE! and differ-
ential difference~DDE! equations have been a topic of in
tense investigation over the past few decades@1–3#. The
main reason for this, except for the wide variety of physi
applications that can be described by integrable or n
integrable systems, is that the special case of integrable m
els can be analyzed completely by means of the inverse s
tering transform@1,4#. This can then serve as a starting po
for perturbative treatment of near-integrable systems.

In the process of these developments, a number of te
niques have been developed for assessing integrabilit
continuous@5# or discrete@6# settings~or applicable to both
@7#!. An interesting feature of these ‘‘tests’’ is that they a
necessary~but not sufficient! conditions for integrability.
Hence, if a model equation fails such a criterion, it is non
tegrable, but if it passes, it may ormay notbe integrable. In
a sense, this suggests that we still do not understand
essential ingredientsthat render a system completely int
grable. Of course, should a Lax pair be identified and
inverse scattering mechanism be applied, we know that
system is integrable, but it would certainly be desirable~as is
clear from all the above effort to create ‘‘integrability tests!
to have a mechanistic~‘‘black box’’ ! type of criterion to
assess that.

We, of course, do not claim to be providing a full answ
to this question in the present work. However, we will try
give a number of useful hints that may lead to partial a
swers to the above questions and may provide some intu
in the effort to construct such mechanistic criteria.

Our tool of choice will be the use of different sets
boundary conditions~BC! to examine the spectrum of th
linearization around the nonlinear coherent structure that
PDE/DDE of interest supports. Notice that the effect
boundary conditions in related contexts has been studied
number of references; see, e.g., Ref.@8#, and references
therein. However, in all of these works the effects of the B
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to the point spectrum were assessed and moreover, this
not done in direct connection with issues of integrabili
Here we will, instead, focus on the continuous spectrum
fact, since we will be dealing withfinite but large domains,
we will center our attention around thediscrete spectrum
remnantthat ‘‘becomes’’ the continuous spectrum in the i
finite domain limit. In the finite domain case, the~formerly
continuous! spectrum becomes discrete due to the quant
tion of the wave numbers, imposed by the boundary con
tions ~see, e.g., Sec. II below!. It is exactly this discrete rem
nant of the continuous spectrum, that we aim at examin
here, to elucidate its interesting properties in integrable v
sus nonintegrable settings.

In the present work, we focus on two model problems,
establish our findings and demonstrate their generality.
models are selected as one-parameter families of equa
such that one member of the family is an integrable syst
Moreover, in illustrating the generality of the conclusion
they are selected in a form such that one model correspo
to a PDE, while the other to a DDE, so that one is ki
bearing, while the other is pulse bearing. The models of
terest will be the parametrically modified sine-Gordon eq
tion @often also called the Peyrard-Remoissenet~PR! model#
@9,10# and a modified version of the discrete nonline
Schrödinger~DNLS! model~occasionally called the Salern
model! @11#. The former PDE reads

f tt2fxx52
dU

df
, U~f,r !5

~12r !2@12cos~f!#

11r 212r cos~f!
~1!

in the infinite domainuxu,` and with ur u,1; while the
latter DDE is of the form

i u̇n52D2un2uunu2@2eun1~12e!~un111un21!#. ~2!

The most well known among these monoparametric fami
of models are the sine-Gordon equation@Eq. ~1!, for r 50]
which is relevant to superconductivity and charge dens
©2003 The American Physical Society12-1
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waves among other applications@2# and the experimentally
realizable discrete nonlinear Schro¨dinger equation@12# of e
51, as well as its integrable, so-called Ablowitz-Ladik@13#
counterpart fore50 in the case of Eq.~2!.

Notice that for the PDE, the subscripts denote partial
rivatives of the field, while for the DDE, the overdot denot
temporal derivative,D2un[C(un1122un1un21), where
C51/(Dx)2 is a constant determined by the lattice spac
Dx; the subscriptn denotes the lattice site index. In th
former case, there exist kinklike solutions which have be
detailed in Refs.@9,10#, while in the latter, the field is com
plex and there exist pulselike solutions of the formun
5exp(iLt)vn , whereL is the frequency of the solutions an
vn its ~real! exponentially localized spatial profile@11,12#.

In the PDE, linearization around a statef0(x), using the
ansatz f5f0(x)1d exp(ivt)f(x) into Eq. ~1!, yields to
O(d) the linearization equation

f xx1@v22U9~f0 ,r !# f 50. ~3!

Notice that whenr 50 ~in the infinite domain limit!, f0(x)
54 arctan@exp(x)# is the static kink solution of the sG equa
tion and for this function, the Sturm-Liouville problem~3!
can be exactly solved@14# yielding one discrete mode~Gold-
stone mode! at v50 and the continuous spectrum repr
sented by the phonons,

vk5A11k2, f k~x!5
exp~ ikx!

A2pvk

@k1 i tanh~x!#, ~4!

for all values ofk. For rÞ0, neither the static solution no
the linearization spectrum are explicitly available in the in
nite domain limit.

Analogously to the PDE, for the linear stability analys
of DDE ~2! we insert exp(iLt)@vn1d(Une

2ivt1Wne
iv!t)# into

Eq. ~2!. We thus obtain toO(d) the following eigenvalue
problem for$v,$Un ,Wn

!%%:

vS Un

Wn
!D 5LS Un

Wn
!D , L5S A B

2B 2AD ,

Amn5@L12C2$4evn
21~12e!vn@vn111vn21#%#dm,n

1@~12e!vn
22C#~dm,n111dm,n21!,

Bmn52vn@2evn1~12e!~vn111vn21!#dm,n , ~5!

where the stars denote complex conjugation.
The paper is organized as follow. In the following secti

we obtain an approximate solution for the Sturm-Liouvi
problem~3! by imposing different types of boundary cond
tions in the finite domain of lengthL. The obtained results
are compared with the numerical computations in Sec.
where we also computed the solution of Eq.~5!. Finally, we
summarize our findings and present our conclusions in S
IV.
03661
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II. ANALYTICAL APPROXIMATION

In this section we solve approximately Eq.~3! when uxu
,L/2, whereL is the finite~but large enough! length of the
system. Notice that our results will be generically true, ifL is
chosen large enough. By large enough here, we mean a
main size which is many times~at least 10! larger than the
characteristic length of the solitary wave~kink or pulse! that
we will examine inside this domain. We will take into ac
count different kinds of BC, in particular, free

f x~2L/2!50, f x~L/2!50, ~6!

fixed

f ~2L/2!50, f ~L/2!50, ~7!

and antiperiodic boundary condition~aPBC!

f x~2L/2!52 f x~L/2!, f ~2L/2!52 f ~L/2!. ~8!

First we consider the integrable case,r 50, and we show that
for the first phonon modes, the eigenfrequenciesṽn

f ree

5ṽn21
f ixed andṽn

ap have a double multiplicity~we will denote
with tilde the analytical, approximated eigenfrequencies!. To
proceed, we use the exact solution of problem~3! for r 50 in
the infinite domain. We would like to stress that if we chan
the infinite domain by a finite one, with a given BC, we w
still have an infinite number of eigenfrequencies,1 but for the
allowed wave numbersk @15#. In order to calculate approxi
mately these allowed wave numbers, we proceed as in
@16#. Notice thatf k(x)5Fk(x)1 iGk(x), where

Fk~x!5
k cos~kx!2sin~kx!tanh~x!

A2pvk

, ~9!

Gk~x!5
cos~kx!tanh~x!1k sin~kx!

A2pvk

. ~10!

Then the solution of Eq.~3!, with r 50, related to the pho-
non contribution is represented by the linear superposition
all the odd@Gk(x)# and even@Fk(x)# phonon modes

c~x,t !5(
k

@ak~ t !Fk~x!1bk~ t !Gk~x!#. ~11!

Imposing free BC for each phonon mode of Eq.~11! we
obtain that the first wave numbers satisfy

ak~ t !@sin~kL/2!@k21cosh22~L/2!#1k cos~kL/2!tanh~L/2!#

50, ~12!

bk~ t !@cos~kL/2!@k21cosh22~L/2!#2k sin~kL/2!tanh~L/2!#

50. ~13!

1Note that this is true for the continuum problem of Eq.~3!, but
would no longer be true for the discrete one of Eq.~5!.
2-2
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The solutions of these transcendental equations yield the
lowed values ofk. We can solve these approximately if w
considerL@1. Then, we find that

kn,0
f ree5

n21

L
p, n51,2,3, . . . , n!L, ~14!

where the zero subscript denotes that we are dealing with
unperturbed caser 50, and its corresponding eigenfunction
are related with the odd functionsGn(x) for the odd numbers
n and with the even functionsFn(x) for the even numbersn.
Hence, the first eigenfrequencies are represented by

ṽn,0
f ree5A11S n21

L
p D 2

, n51,2, . . . , n!L.

~15!

Analogously, for fixed BC the following relations hold;

ak~ t !@k cos~kL/2!2sin~kL/2!tanh~L/2!#50, ~16!

bk~ t !@cos~kL/2!tanh~L/2!1k sin~kL/2!#50. ~17!

Then, for large enoughL, we find that

kn,0
f ixed5

n

L
p, n51,2,3, . . . , n!L, ~18!

and so,

ṽn,0
f ixed5A11S n

L
p D 2

, n51,2, . . . , n!L, ~19!

where the odd~even! numbersn are related with the odd
Gn(x) @evenFn(x)] eigenfunctions.

Remark 1.By comparing expressions~15! and ~19! we
observe that in the integrable case (r 50) ṽn

f ree5ṽn21
f ixed for

the first few eigenfrequencies.
Now by imposing aPBC in each phonon mode of Eq.~11!

and taking into account the symmetry properties ofFk(x),
Gk(x) and their derivatives, the equations that the wa
number satisfies can be reduced to

akFk~L/2!50, ~20!

bk

]Gk

]x
~L/2!50. ~21!

Notice that Eqs.~20! and ~21! coincide with Eqs.~16! ~i.e.,
the first equation for fixed BC! and ~13! ~i.e., the second
equation for free BC!, respectively. The solutions of Eqs
~20! and ~21! are given by

kn,0
ap5

2~n21!p

L
, n52,3, . . . , n!L, ~22!

kn,0
ap5

2~n21!p

L
, n51,2,3, . . . , n!L, ~23!
03661
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respectively, and their eigenfunctions correspond to the e
Fn(x) and oddGn(x). Then, the first eigenfrequencies a
represented by

ṽn,0
ap5A11S 2~n21!p

L D 2

, n52,3 . . . , n!L, ~24!

ṽn,0
ap5A11S 2~n21!p

L D 2

, n51,2, . . . , n!L.

~25!

This means that the even~odd! modes for aPBC

$ṽn
ap ,an(t)Fn(x)%@$ṽn

ap ,bn(t)Gn(x)%# coincide with the
even modes for fixed BC~odd modes for free BC!.

Remark 2.From relations~24! and~25! we conclude that
for the integrable case and aPBC the eigenfrequencies
multiplicity 2.

The analysis of the Sturm-Liouville problem~3! for the
nonintegrable case,rÞ0, becomes more complicated sinc
f0(x) is the exact kink solution of Eq.~1! and this function
is only known in the implicit form@9# ~even for the infinite
domain problem!. So, instead of solving this equation w
calculate approximately the solution of

F d2

dx2
2V~x!2rW~x!1EG f 50, ~26!

where V(x)522/cosh2(x), W(x)58 tanh(x)@x
25 tanh(x)#/cosh2(x), and E5v22vph

2 with vph5(1
2r )/(11r ) @10,17#. This eigenvalue problem is obtained
two steps: first we find a solution for smallr of Eq. ~1!,
through the perturbative expansionf(x,t)5fsG(x)
1rf1(x)1O(r 2), wherefsG(x) is the static sG kink and
second we linearize Eq.~1! around the obtained solution u
to order of r, so we insert f(x,t)5fsG(x)1rf1(x)
1d@ f (x)exp(ivt)1f!(x)exp(2ivt)# into Eq.~1! and consider
the equation that arises toO(d) and obtain Eq.~26!. Argu-
ably, this approach fails to capture the corrections to the
of the wave due to domain finiteness. However, as argue
Ref. @8#, the latter are exponentially small in the length of t
domain. Hence, as will also be justifieda posteriori, here we
capture the leading order dependence inL, as well as the
leading order effect ofr @see, e.g., Eqs.~31!–~33! below#.
Then, following the procedure of the perturbation metho
for linear eigenvalue problem suggested in Ref.@18#, we as-
sume the solution of Eq.~26! as

En5En,01rEn,11O~r 2!, ~27!

f n~x!5 f n,0~x!1r f n,1~x!1O~r 2!, ~28!

where the first subscript in the functions,n, denotes the orde
of the phonon modes~for r ,0 this subscript can also deno
the internal mode!, the second one corresponds to the ord
of perturbation. By inserting these expansions in Eq.~26!
and equating and collecting the terms of the same orderr,
we obtain forO(r 0),
2-3
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tained in the preceding section with the numerical solution of
Eq. ~3!. In both cases, the distributions of these eigenfre-
quencies are determined by the parameterr and by the
different boundary conditions in the finite domain.

9
8
1
9
2
1
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F d2

dx2
2V~x!1En,0G f n,050, ~29!

and for the next order correctionO(r 1),

F d2

dx2
2V~x!1En,0G f n,15@W~x!2En,1# f n,0 . ~30!

Notice that Eq.~29! corresponds to the integrable caser
50 already solved for free@Eq. ~15!#, fixed @Eq. ~19!#, and
antiperiodic BC@see Eqs.~24! and ~25!#. Notice also that
En,05ṽn,0

2 215kn,0
2 and that its corresponding eigenfunctio

f n,0(x) is related either with the oddGn(x) or evenFn(x).
Then, for different boundary conditions, the eigenfrequenc
of Eq. ~26! are determined by

ṽn
f ree5Avph

2 1~kn,0
f ree!21rEn,1

f ree, ~31!

ṽn
f ixed5Avph

2 1~kn,0
f ixed!21rEn,1

f ixed, ~32!

ṽn
ap5Avph

2 1~kn,0
ap !21rEn,1

ap, ~33!

wherekn,0
f ree , kn,0

f ixed , and kn,0
ap are given by Eqs.~14!, ~18!,

and ~22! and ~23!, respectively.
The solution of the eigenvalueEn,1 for the first-order cor-

rection is given by

TABLE I. For positive and small value ofr 50.02, we compare

the first eigenfrequencies, obtained perturbatively,ṽn , with the
ones computed by solving the original Eqs.~1! and ~3!, vn .

n vn
f ree

ṽn
f ree vn

f ixed
ṽn

f ixed vn
ap

ṽn
ap

1 0.96117 0.96192 0.96234 0.96352 0.96117 0.961
2 0.96132 0.96129 0.96293 0.96284 0.96293 0.962
3 0.96436 0.96514 0.96729 0.96760 0.96436 0.965
4 0.96560 0.96541 0.96933 0.96899 0.96933 0.968
5 0.97118 0.97126 0.97604 0.97573 0.97118 0.971
6 0.97411 0.97358 0.97989 0.97915 0.97991 0.979
03661
s

En,15

E
2L/2

L/2

dx fn,0~x!W~x! f n,0~x!

E
2L/2

L/2

dx fn,0
2 ~x!

. ~34!

The integrals involved in Eq.~34! can be computed numeri
cally for different BC and different values ofr (ur u!1), then
we can calculate the approximated eigenfrequencies in e
case. We can now compare these results with the nume
solutions of Eq.~3! @for details on the numerical method
results, we refer the reader to Sec. III#.

From the data of the Tables I and II we observe an os
latory behavior ofṽn

f ree2ṽn21
f ixed for the first phonon’s modes

for rÞ0. We also notice that the eigenvalues for aPBC lo
their double multiplicity that existed in the case of the int
grable equation.

It is also worth noting that these features are typica
observable in the third decimal digit of the correspondi
eigenfrequencies. On the other hand, the difference~well jus-
tified within the approximations mentioned above! between
the theoretical and numerical predictions for the individu
eigenfrequencies is typically in the fourth or fifth decim
digit. Hence, the observations of the previous paragraph
systematic and in agreement with the theoretical predictio

III. NUMERICAL RESULTS AND DISCUSSIONS

To find the numerical solution of Eqs.~1! and ~3!, we
discretize the equations in a numerical mesh for a finite
main. The mesh consists of theN11 points xj5$2L/2
1 j Dx, j 50,1,2, . . . ,N% defined in the finite lengthL of the
system (Dx5L/N). Notice that since, in this case, we wis
to emulate the behavior of the PDE,Dx is very fine ~typi-
cally 0.05), and the robustness of the findings upon varia
of the ~small! Dx has been verified. When we compute t
solution either of the PDE or of the linearization equatio
we consider three different types of BC~6!–~8!. We would
like to remark that this kind of discretization of the Sturm
Liouville problem~3! only affects the last phonon modes, s
we can compare the behavior of the first phonon modes

2
4
4
9
6
5

f

ted by
TABLE II. We provide the same comparison as in the previous table for a negative value or 5

20.02. Here,Ṽ i andV i represent the internal mode calculated by the perturbation method and compu
numerical solution of Eq.~3!, respectively.

n vn
f ree

ṽn
f ree vn

f ixed
ṽn

f ixed vn
ap

ṽn
ap

V i51.03560 Ṽ i51.03977 V i51.03560 Ṽ i51.03924 V i51.03560 Ṽ i51.03977
1 1.04131 1.04129 1.04278 1.04271 1.04156 1.04058
2 1.04156 1.04058 1.04367 1.04303 1.04278 1.04271
3 1.04524 1.04506 1.04866 1.04835 1.04694 1.04625
4 1.04694 1.04625 1.05125 1.05057 1.04867 1.04835
5 1.05306 1.05257 1.05838 1.05770 1.05657 1.05564
2-4
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We also compute the solutions of DDE~2! and Eq.~5!
using 200 points andDx50.75. The BC are defined analo
gously throughU05U1 , UN5UN21 , W05W1, and WN

5WN21 for free BC. For fixed BC:U050, UN50, W0

50, andWN50, while for periodic BC:U05UN21 , UN

5U1 , W05WN21, andWN5W1.
Our results when the parameter of the PR potential ore in

the DDE are varied can be summarized in Figs. 1–6.
From the above results, the following conclusions can

drawn.

FIG. 1. Comparison of the eigenfrequencies of the~discrete
remnant of the! continuous spectrum for fixed and free BC: W
have plotted the difference between the eigenfrequencies comp
from Eq. ~3! and vph5(12r )/(11r ) vs r. The circles joined by
solid line ~free BC! represent how far the frequencies are from t
lower phonon mode. The triangles joined by dotted lines corresp
to fixed BC.

FIG. 2. The difference between the first frequencies for free
fixed BC,vn

f ree2vn21
f ixed (2<n<20), is plotted as a function of the

wave number forr 50 ~circles joined by solid line!, r 520.02 ~tri-
angles joined by dashed line!, andr 50.02~squares joined by dotted
line!. The open triangles (r 520.02) and squares (r 50.02) repre-
sent the differences between the frequencies obtained by the pe

bation theory,ṽn
f ree2ṽn21

f ixed , in the preceding section.
03661
e

~1! For fixed BC, the band edge frequency is prohibite
Hence, we comparevn

f ree with vn21
f ixed . We find thatfor small

wave numbers, fixed and free BC eigenfrequencies prac
cally coincideonly in the integrable case, whereas for th
nonintegrable case we observe an oscillatory behavior of
function @see Figs. 1 and 2#. In Fig. 2 we also show the
oscillatory behavior ofṽn

f ree2ṽn21
f ixed , obtained from the per-

turbation theory, forr 520.02 ~open triangles! and r 50.02
~open squares!.

~2! For antiperiodic BC, the spectrum comprises of mod
coming alternately from the free and fixed BC. This see
natural as the free boundary conditions select eigenmo

ted

d

d

ur-

FIG. 3. Antiperiodic BC: the difference between the numeric
eigenfrequencies computed from Eq.~3! and the band edge of th
~formerly continuous! spectrumvph5(12r )/(11r ) is shown. Ad-
jacent eigenmodes are given by circles joined by solid line a
triangles joined by dotted line. The relevant internal mode is sho
by circles joined by solid line~the first curve from below!.

FIG. 4. Antiperiodic BC: We show the difference betwee
vn

period2vn11
period vs n (n52,4, . . . ,20). Thestars practically at

zero for all n represent the integrable system (r 50), whereas the
long-dashed (r 520.02) and dotted (r 50.02) lines correspond to
nonintegrable cases~numerical results!. With triangles (r 5
20.02) and circles (r 50.02) we plot the eigenfrequencies obtain
from the perturbation theory~analytical results!.
2-5
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P. G. KEVREKIDIS AND N. R. QUINTERO PHYSICAL REVIEW E68, 036612 ~2003!
symmetric at the boundary, the fixed ones select modes
tisymmetric at the boundary, while the antiperiodic BC allo
for both ~cf. Figs. 3 and 4!.

~3! An additional feature, equally important as~1! ~espe-
cially in view of its potential predictive power! is the fact
that for the integrable case ofr 50, antiperiodic BC essen
tially imply the presence ofdoubleeigenvalues. The differ-
ence between the two eigenvalues isO(1029) for all pairs
~except for the cutoff, discretization induced phenomena
the upper end of the spectrum which are irrelevant!. This is
in sharp contrast~in particular, for small wave numbers!, to
even mild breakings of integrability, as can be inferred fro
Fig. 4.

~4! Statements~1! and~3! above can be used in predictiv
form and constitute the criterion~algorithm! set forth in this
work: for a given PDE/DDE model, we find the steady sta
coherent structure~i.e., solitary wave! in a finite but large
domain. This can be done, e.g., by finding the exact solu
of an ODE or numerically performing a Newton-type alg
rithm. Linearize around the exact, finite domain solution a
study, in particular, the small wave numbers, close to
lower edge of the spectrum~we assume that the problem
monoparametric in what follows, but it is clear that the a
plication of the criterion does not require that!. If for a
critical/singular value of the parameter the fixed BC and f
BC ~small k) eigenvalue spectra~of the remnant of what for
the infinite domain was the continuous spectrum! essentially
coincide and the multiplicity of antiperiodic BC eigenvalu
becomes double, then the model for this unique value of
parameter can be ‘‘strongly suspected’’ to be integrable.
use the above expression, as we provide no rigorous pr
but only supporting~but rather universal in distinct mode
with distinct features/solutions! numerical evidence for this
statement.

~5! We have also tested the validity of these results in
~2!, in the vicinity of the integrable limite50, with similar
conclusions@see Figs. 5 and 6#. Indeed, in Fig. 5 we observ
the oscillatory behavior ofvn

f ree2vn21
f ixed in the nonintegrable

FIG. 5. The oscillatory behavior ofvn
f ree2vn21

f ixed in the nonin-
tegrable case (e50.1) is shown for the first wave numbers~see the
squares joined by dashed line!. The circles joined by solid line are
the results for the integrable system (e50).
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case, in Fig. 6, we show the case of periodic BC, wher
can be clearly seen that it is only for the integrable case
the double eigenvalue multiplicity is obtained.

IV. CONCLUSIONS

In conclusion, we have proposed and used a test for
vealing the potential integrable nature of a given model pr
lem. By varying the boundary conditions of a finite doma
computation and examining the effects of such variations
the ~continuous-turned-discrete! spectrum, we have reveale
that the small wave numbers have singular ways of respo
ing to the unique parameter values for which the mode
integrable. These singular features@such as an approximat
identification of fixed with free BC for smallk eigenvalues
and the double multiplicity of eigenvalues for periodic~or
antiperiodic! BC# can be used to identify and single out th
integrable behavior. We have provided two model examp
respectively, for kinks and pulses and for a PDE and a DD
Independently of the detailed structure of the model th
properties have been identified as universal and have b
supported also by analytical considerations. It would na
rally be of interest to explore the potential usefulness of s
a criterion in various more complex settings.
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FIG. 6. Periodic BC for AL-DNLS~Ablowitz-Ladik DNLS! of
Eq. ~2!: The solid line at zero represents the difference between
consecutive frequencies (n52,4, . . . ) for theintegrable AL lattice
(e50). The double multiplicity of the frequencies is destroyed ae
is increased~dotted, dashed, and dot-dashed lines represent the
integrable cases ofe50.1,0.5,1, respectively!.
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