BASES FOR PROJECTIVE MODULES IN $A_{n}(k)$

JESÚS GAGO-VARGAS

Abstract

Let $A_{n}(k)$ be the Weyl algebra, with k a field of characteristic zero. It is known that every projective finitely generated left module is free or isomorphic to a left ideal. Let M be a left submodule of a free module. In this paper we give an algorithm to compute the projective dimension of M. If M is projective and $\operatorname{rank}(M) \geq 2$ we give a procedure to find a basis.

Introduction.

The study of finitely generated projective modules over a ring is an interesting topic. We know that over polynomial rings they are free, as it was shown by Quillen and Suslin. There are several algorithmic versions of this theorem [Logar et al.(1992), Laubenbacher et al.(1997), Gago(2002)] that compute a basis from a system of generators. All of these procedures use Gröbner bases in polynomial rings. It is natural to extend these results to the Weyl Algebra $A_{n}(k)$, with k a field with characteristic zero. It is known that if a left finitely generated $A_{n}(k)$ module is projective and has rank greater or equal 2 then is free [$\operatorname{Stafford}(1978)]$. Our goal is to give an algorithm to find a basis of these modules.
Projective modules in $A_{n}(k)$ are stably free [Stafford(1977)], so the first step is to find an isomorphism $P \oplus A_{n}(k)^{s} \simeq A_{n}(k)^{t}$ for some s, t. We develop this procedure in Section 1, together with an algorithm to compute the projective dimension of a module, that is valid for a broad class of rings. We note by $\operatorname{pdim}(M)$ the projective dimension of a module M. We require the computation of Gröbner bases in the ring and that every module has a finite free resolution. If M is projective we find a matrix that defines an isomorphism $M \oplus R^{s} \simeq R^{t}$. The starting point is a left R-module M defined by a system of generators in some R^{m}.
In Section 2 we follow the proof of [Stafford(1978)] with algorithmic tools to find a basis of a projective module. We develop, for completeness, the reference to [Swan(1968)] used in [Stafford(1978), Thm. 3.6(a)], to clarify where these computations are needed. We follow describing the minor changes to [Hillebrand et al.(2002)] to obtain two special generators of a left ideal, according to [Stafford(1978), Theorem 3.1]. Finally, we give an example of this procedure to build a basis of a projective module in $A_{2}(\mathbb{Q})$.
For all the computations we need an effective field k in the sense of [Cohen(1999)] to apply the Gröbner bases algorithm in $A_{n}(k)$. We have used in the examples $k=\mathbb{Q}$.

[^0]
1. Computing projective Dimension.

Let R be a ring where it is possible to compute a finite free resolution of a left module, and we can determine if a right submodule of R^{k} is equal to R^{k}. Such a ring may be $k\left[x_{1}, \ldots, x_{n}\right], A_{n}(k)$ or more general rings like PBW algebras [Bueso et al.(1998)]. We make use of a characterization given in [Logar et al.(1992)], based on a finite free resolution of a module. The existence of a finite free resolution for a projective module M is equivalent for M to be stably free [McConnell et al.(1987)]. With the algorithm described in this section we test wether M is projective, and if the answer is yes we compute an isomorphism $M \oplus R^{s} \simeq R^{t}$ for some s, t. The procedure is by induction on the length of the resolution. We identify the homomorphisms with their matrices to simplify the notation.
Suppose

$$
0 \rightarrow F_{1} \xrightarrow{\alpha_{1}} F_{0} \xrightarrow{\alpha_{0}} M \rightarrow 0
$$

is a free resolution of M, with $\operatorname{rank}\left(F_{i}\right)=r_{i}$. If M is a projective module, this sequence splits, so there exists $\beta_{1}: F_{0} \rightarrow F_{1}$ such that $\beta_{1} \alpha_{1}=I_{r_{1}}$. We can compute this matrix from the rows of the matrix α_{1} : if we consider them as vectors of F_{1}, the right R-module generated must be equal to F_{1}. We express each vector of the canonical basis of F_{1} as a linear combination of the rows of α_{1}, and with these coefficients we construct the matrix β_{1}. So we can give the isomorphism $F_{1} \oplus \operatorname{ker}\left(\beta_{1}\right) \simeq F_{0} \simeq F_{1} \oplus M$ and a basis of $F_{1} \oplus \operatorname{ker}\left(\beta_{1}\right)$.
Let

$$
\mathcal{F}: 0 \rightarrow F_{t} \xrightarrow{\alpha_{t}} F_{t-1} \xrightarrow{\alpha_{t-1}} F_{t-2} \xrightarrow{\alpha_{t-2}} F_{t-3} \xrightarrow{\alpha_{t-3}} \ldots \xrightarrow{\alpha_{1}} F_{0} \xrightarrow{\alpha_{0}} M \rightarrow 0
$$

be a finite free resolution of M with $\operatorname{rank}\left(F_{i}\right)=r_{i}$ and $t \geq 2$ (we take α_{-1} the null homomorphism). Again, if M is a projective module, then the short exact sequence

$$
0 \rightarrow \operatorname{ker}\left(\alpha_{0}\right) \rightarrow F_{0} \rightarrow M \rightarrow 0
$$

splits, so $\operatorname{ker}\left(\alpha_{0}\right)=\operatorname{im}\left(\alpha_{1}\right)$ is projective. By induction, the modules $\operatorname{im}\left(\alpha_{i}\right), i=$ $1, \ldots, t$ are projective. In particular, $\operatorname{im}\left(\alpha_{t-1}\right)$ is projective and the exact sequence

$$
0 \rightarrow F_{t} \xrightarrow{\alpha_{t}} F_{t-1} \xrightarrow{\alpha_{t-1}} \operatorname{im}\left(\alpha_{t-1}\right) \rightarrow 0
$$

splits. Then there exists $\beta_{t}: F_{t-1} \rightarrow F_{t}$ such that $I_{r_{t}}=\beta_{t} \alpha_{t}$. The module $\operatorname{ker}\left(\beta_{t}\right)$ is projective, isomorphic to $\operatorname{im}\left(\alpha_{t-1}\right)$ and we can compute the isomorphism $\operatorname{ker}\left(\beta_{t}\right) \oplus F_{t} \simeq F_{t-1}$. We consider the following sequence:

$$
0 \rightarrow F_{t} \xrightarrow{\widetilde{\alpha}_{t}} F_{t-1} \oplus F_{t} \xrightarrow{\widetilde{\alpha}_{t-1}} F_{t-2} \oplus F_{t} \xrightarrow{\widetilde{\alpha}_{t-2}} F_{t-3} \xrightarrow{\alpha_{t-3}} \ldots \xrightarrow{\alpha_{1}} F_{0} \xrightarrow{\alpha_{0}} M \rightarrow 0
$$

where

$$
\begin{array}{ll}
\widetilde{\alpha}_{t}\left(\mathbf{v}_{t}\right)=\left(\alpha_{t}\left(\mathbf{v}_{t}\right), \mathbf{0}\right), & \widetilde{\alpha}_{t-1}\left(\mathbf{v}_{t-1}, \mathbf{v}_{t}\right)=\left(\alpha_{t-1}\left(\mathbf{v}_{t-1}\right), \mathbf{v}_{t}\right), \\
\widetilde{\alpha}_{t-2}\left(\mathbf{v}_{t-2}, \mathbf{v}_{t}\right)=\alpha_{t-2}\left(\mathbf{v}_{t-2}\right)
\end{array}
$$

Then it is an exact sequence and again the module $\operatorname{im}\left(\widetilde{\alpha}_{t-1}\right)$ is projective. As before, the sequence

$$
\begin{equation*}
0 \rightarrow F_{t} \xrightarrow{\widetilde{\alpha}_{t}} F_{t-1} \oplus F_{t} \xrightarrow{\widetilde{\alpha}_{t-1}} \operatorname{im}\left(\widetilde{\alpha}_{t-1}\right) \rightarrow 0 \tag{1}
\end{equation*}
$$

splits and there exists $\widetilde{\beta}_{t}: F_{t-1} \oplus F_{t} \rightarrow F_{t}$ such that $I_{r_{t}}=\widetilde{\beta}_{t} \widetilde{\alpha}_{t}$. In this case,

$$
\widetilde{\beta}_{t}=\left(\begin{array}{ll}
\beta_{t} & \theta
\end{array}\right)
$$

where θ is the null matrix with order $r_{t} \times r_{t}$. Then $\widetilde{\beta}\left(\mathbf{v}_{t-1}, \mathbf{v}_{t}\right)=\beta_{t}\left(\mathbf{v}_{t-1}\right)$, so $\operatorname{ker}\left(\widetilde{\beta}_{t}\right)=\operatorname{ker}\left(\beta_{t}\right) \oplus F_{t} \simeq F_{t-1}$. We can compute the isomorphism

$$
\widetilde{\nu}_{t-1}: F_{t-1} \rightarrow \operatorname{ker}\left(\widetilde{\beta}_{t}\right)
$$

Let

$$
\begin{equation*}
\widetilde{\gamma}_{t-1}=\widetilde{\alpha}_{t-1} \widetilde{\nu}_{t-1}: F_{t-1} \rightarrow F_{t-2} \oplus F_{t} \tag{2}
\end{equation*}
$$

Then the sequence

$$
0 \rightarrow F_{t-1} \xrightarrow{\widetilde{\gamma}_{t-1}} F_{t-2} \oplus F_{t} \xrightarrow{\widetilde{\alpha}_{t-2}} F_{t-3} \xrightarrow{\alpha_{t-3}} \ldots \xrightarrow{\alpha_{1}} F_{0} \xrightarrow{\alpha_{0}} M \rightarrow 0
$$

is exact. Because the sequence (1) splits, the homomorphism $\widetilde{\alpha}_{t-1}$ is an isomorphism between $\operatorname{ker}\left(\widetilde{\beta}_{t}\right)$ and $\operatorname{im}\left(\widetilde{\alpha}_{t-1}\right)$, so $\widetilde{\gamma}_{t-1}$ is an isomorphism between F_{t-1} and $\operatorname{im}\left(\widetilde{\alpha}_{t-1}\right)=\operatorname{ker}\left(\widetilde{\alpha}_{t-2}\right)$, and we have the exactness of the sequence (2). We apply again the process to $\widetilde{\gamma}_{t-1}$ to check the projectiveness of the module M.
We need the following result:
Theorem 1. Let R be a ring and

$$
\mathcal{F}: \ldots \rightarrow F_{d} \rightarrow F_{d-1} \rightarrow \ldots \rightarrow F_{1} \rightarrow F_{0} \rightarrow M \rightarrow 0
$$

a projective resolution. Let d be the smallest number such that $\left\{\operatorname{im} F_{d} \rightarrow F_{d-1}\right\}$ is projective. Then d does not depend on the resolution and $\operatorname{pdim}(M)=d$.

Proof. [Eisenbud(1995)], exercise A.3.13.
Theorem 2. The previous algorithm allows us to compute the projective dimension of a module.
Proof. Let

$$
0 \rightarrow F_{n} \xrightarrow{\alpha_{n}} F_{n-1} \xrightarrow{\alpha_{n-1}} \ldots \rightarrow F_{1} \xrightarrow{\alpha_{1}} F_{0} \xrightarrow{\alpha_{0}} M \rightarrow 0
$$

be a finite free resolution given by the procedure. Then $\operatorname{im}\left(\alpha_{n-1}\right)$ is not projective, because the matrix α_{n} has not left inverse. We can suppose that M is not projective, otherwise we have had shortened the resolution. Then the sequence

$$
0 \rightarrow \operatorname{ker}\left(\alpha_{0}\right) \rightarrow F_{0} \rightarrow M \rightarrow 0
$$

does not split, so $\operatorname{im}\left(\alpha_{1}\right)=\operatorname{ker}\left(\alpha_{0}\right)$ is not projective. In the same way, the short exact sequence

$$
0 \rightarrow \operatorname{ker}\left(\alpha_{1}\right) \rightarrow F_{1} \rightarrow \operatorname{im}\left(\alpha_{1}\right) \rightarrow 0
$$

does not split and $\operatorname{im}\left(\alpha_{2}\right)=\operatorname{ker}\left(\alpha_{1}\right)$ is not projective. Then the modules

$$
\operatorname{im}\left(\alpha_{1}\right), \operatorname{im}\left(\alpha_{2}\right), \ldots, \operatorname{im}\left(\alpha_{n-1}\right)
$$

are not projective and the module $\operatorname{im}\left(\alpha_{n}\right)$ is projective. Then the projective dimension of M is equal to n.
Algorithm 1.1. Projective dimension.
Input: a left R-module M defined by its generators in R^{r}.
Output: Projective dimension of M and a minimal length free resolution. If $\operatorname{pdim}(M)=$ 0 , i.e. M is projective, the algorithm returns an isomorphism $M \oplus R^{s} \simeq R^{t}$.

Let \mathcal{F} be a finite free resolution of M :

$$
0 \rightarrow F_{t} \xrightarrow{\alpha_{t}} F_{t-1} \xrightarrow{\alpha_{t-1}} F_{t-2} \xrightarrow{\alpha_{t-2}} F_{t-3} \xrightarrow{\alpha_{t-3}} \ldots \xrightarrow{\alpha_{1}} F_{0} \xrightarrow{\alpha_{0}} M \rightarrow 0
$$

START:
if α_{t} has no left inverse then
$\operatorname{pdim}(M)=t . S T O P$.
else
let β_{t} be a left inverse of α_{t}.
end if
if $t=1$ then
$\operatorname{pdim}(M)=0$ and $M \oplus F_{1} \simeq \operatorname{ker}\left(\beta_{1}\right) \oplus F_{1} \simeq F_{0} . S T O P$.
else
compute the exact sequence

$$
0 \rightarrow F_{t} \xrightarrow{\widetilde{\alpha}_{t}} F_{t-1} \oplus F_{t} \xrightarrow{\widetilde{\alpha}_{t-1}} F_{t-2} \oplus F_{t} \xrightarrow{\widetilde{\alpha}_{t-2}} F_{t-3} \xrightarrow{\alpha_{t-3}} \ldots \xrightarrow{\alpha_{1}} F_{0} \xrightarrow{\alpha_{0}} M \rightarrow 0
$$

and the matrix $\widetilde{\nu}_{t-1}$ that gives the isomorphism $\operatorname{ker}\left(\beta_{t}\right) \oplus F_{t} \simeq F_{t-1}$.
end if
Let $\widetilde{\gamma}_{t-1}=\widetilde{\alpha}_{t-1} \widetilde{\nu}_{t-1}$.
Let \mathcal{F} be the finite free resolution

$$
0 \rightarrow F_{t-1} \xrightarrow{\widetilde{\gamma}_{t-1}} F_{t-2} \oplus F_{t} \xrightarrow{\widetilde{\alpha}_{t-2}} F_{t-3} \xrightarrow{\alpha_{t-3}} \ldots \xrightarrow{\alpha_{1}} F_{0} \xrightarrow{\alpha_{0}} M \rightarrow 0 .
$$

go to $S T A R T$.

This algorithm has being programmed with Macaulay 2 [Grayson et al.(1999)], using the routines for D-modules developed by A. Leykin and H. Tsai [Leykin et al.(2002)].

Example 1. Let $W=A_{2}(\mathbb{Q})$ and $I=W\left\langle x \partial_{x}-1, x \partial_{y}, \partial_{x}^{2}, \partial_{y}^{2}\right\rangle$. We found a resolution of I of the form

$$
0 \leftarrow I \stackrel{\widetilde{\alpha}_{0}}{\leftarrow} W^{4} \stackrel{\tilde{\gamma}_{1}}{\leftarrow} W^{3} \leftarrow 0
$$

where

$$
\widetilde{\gamma}_{1}=\left(\begin{array}{ccc}
-\partial_{x}^{2} & -x \partial_{x}+1 & 0 \\
\partial_{y} & 0 & -x \\
0 & \partial_{y} & \partial_{x} \\
-\partial_{x} & -x & 0
\end{array}\right)
$$

The rows of the matrix $\widetilde{\gamma}_{1}$ do not generate W^{3}, because a Gröbner basis is given by the columns of the matrix

$$
\left(\begin{array}{cccc}
0 & 0 & \partial_{y} & \partial_{x} \\
1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0
\end{array}\right)
$$

Then the ideal I is not projective, and its projective dimension is 1 .

2. Computing a basis.

Let k be a field of characteristic zero. Given a projective module over $A_{n}(k)$ with rank greater than 1, we are going to describe a procedure to compute a basis. We will need the standard Gröbner basis theory on $A_{n}(k)$ to make the computations. See for example [Castro(1987)] for a description of this algorithm. In [Hillebrand et al.(2002)] we found

Theorem 3. Let $\mathcal{R}=k\left(x_{1}, \ldots, x_{n}\right)\left[\partial_{1}, \ldots, \partial_{n}\right]$ and $I=\mathcal{R}\langle a, b, c\rangle$. Then we can compute $\tilde{a}, \tilde{b} \in \mathcal{R}$ such that $I=\mathcal{R}\langle a+\tilde{a} c, b+\tilde{b} c\rangle$.

As pointed out in [Hillebrand et al.(2002), Remark 3.15], the algorithm can be extended to $W=A_{n}(k)=k\left[x_{1}, \ldots, x_{n}\right]\left[\partial_{1}, \ldots, \partial_{n}\right]$. We need the following stronger result [Stafford(1978), Thm. 3.1]:

Theorem 4. Let $I=W\langle a, b, c\rangle$ be a left W-ideal, and let $d_{1}, d_{2} \in W-\{0\}$ be arbitrary elements. Then we can find $f_{1}, f_{2} \in W$ such that

$$
I=W\left\langle a+d_{1} f_{1} c, b+d_{2} f_{2} c\right\rangle
$$

This can be accomplished with some minor changes to the proof of [Hillebrand et al.(2002), Lemma 3.10]. Following their notation, it is enough to take $g_{1}, g_{2} \in W$ such that $h_{1} d_{1} g_{1}+h_{2} d_{2} g_{2}=0$, and to apply [Hillebrand et al.(2002), Lemma 3.9] to $v=t d_{2} g_{2}$. These changes appear in the proof of [Stafford(1978), Theorem 3.1]. The procedure is analogous for right ideals.
Definition 1. Let M be a left W-module and $\mathbf{v} \in M$. We say that \mathbf{v} is unimodular in M if there exists $\varphi \in \operatorname{Hom}_{W}(M, W)$ such that $\varphi(\mathbf{v})=1$.
Remark 1. If \mathbf{v} is a column vector in some W^{m} then \mathbf{v} is unimodular if and only if the right ideal generated by its entries is equal to W. Through Gröbner bases, we can give the homomorphism that apply \mathbf{v} in 1 .

The following Lemma is a direct consequence of Theorem 4, and it will allow a 'cancellation' in some direct sums.
Lemma 1. [Stafford(1978), Lemma 3.5] Let $M \subset W^{m}$ be a left W-module with $\operatorname{rank}(M) \geq 2$ and $\mathbf{a} \oplus t \in M \oplus W$ unimodular. Then there is an algorithm to find $\Phi \in \operatorname{Hom}_{W}(W, M)$ such that $\mathbf{a}+\Phi(t)$ is unimodular in M.

Proof. Let $\mathbf{a}_{1} \in M \subset W^{m}$ be a non zero element and consider $\Phi_{1}: W^{m} \rightarrow W$ a projection such that $\Phi_{1}\left(\mathbf{a}_{1}\right) \neq 0$. Let $M_{1}=M \cap \operatorname{ker}\left(\Phi_{1}\right)$, that we can compute by Gröbner bases. Then $\operatorname{rank}\left(M_{1}\right)=\operatorname{rank}(M)-1 \geq 1$, so there exists $\mathbf{a}_{2} \in M_{1}-\mathbf{0}$. Let $\Phi_{2}: W^{m} \rightarrow W$ be a projection such that $\Phi_{2}\left(\mathbf{a}_{2}\right) \neq 0$. If $\Phi_{2}\left(\mathbf{a}_{1}\right) \neq 0$ we can compute syzygies to get $r_{1}, r_{2} \in W$ such that $\Phi_{1}\left(\mathbf{a}_{1}\right) r_{1}+\Phi_{2}\left(\mathbf{a}_{2}\right) r_{2}=0$ and replace Φ_{2} by the homomorphism $\Phi_{1} r_{1}+\Phi_{2} r_{2}$. Then $\Phi_{1}\left(\mathbf{a}_{2}\right)=\Phi_{2}\left(\mathbf{a}_{1}\right)=0$. Let $d_{1}=\Phi_{1}\left(\mathbf{a}_{1}\right), d_{2}=\Phi_{2}\left(\mathbf{a}_{2}\right)$ and consider the right ideal

$$
I=\left\langle\Phi_{1}(\mathbf{a}), \Phi_{2}(\mathbf{a}), t\right\rangle W .
$$

Then there exist $f_{1}, f_{2} \in W$ such that

$$
I=\left\langle\Phi_{1}(\mathbf{a})+t f_{1} d_{1}, \Phi_{2}(\mathbf{a})+t f_{2} d_{2}\right\rangle W .
$$

Let $\Phi: W \rightarrow M$ be the homomorphism defined by $\Phi(1)=f_{1} \mathbf{a}_{1}+f_{2} \mathbf{a}_{2}$. Then, as shown in [Stafford(1978), Lemma 3.5], $\mathbf{a}+\Phi(t)$ is unimodular, and we can compute $j \in \operatorname{Hom}_{W}(M, W)$ such that $j(\mathbf{a}+\Phi(t))=1$.

Remark 2. The case $\mathbf{a} \neq \mathbf{0}$ is of special interest. In this case we can take $\mathbf{a}_{1}=\mathbf{a}$ and obtain $\Phi_{2}(\mathbf{a})=0, d_{1}=\Phi_{1}(\mathbf{a})$. We have to find f_{1}, f_{2} such that

$$
I=\left\langle d_{1}, 0, t\right\rangle W=\left\langle d_{1}+t f_{1} d_{1}, t f_{2} d_{2}\right\rangle W
$$

Note that the problem is not to find two generators for the ideal I. We are looking for two special generators.

Proposition 1. [Swan(1968), Corollary 12.6] Let $M \subset W^{m}$ be a left W-module with $\operatorname{rank}(M) \geq 2$ and $h: W \oplus N \rightarrow W \oplus M$ be an isomorphism with N a left W-module. Then $M \simeq N$.

Proof. Let $h(1, \mathbf{0})=\left(t_{0}, \mathbf{a}_{0}\right) \in W \oplus M$. The vector $(1, \mathbf{0})$ is unimodular so $\left(t_{0}, \mathbf{a}_{0}\right)$ too. Then we compute $\Phi: W \rightarrow M$ such that $\mathbf{a}_{0}^{\prime}=\mathbf{a}_{0}+\Phi\left(t_{0}\right)$ is unimodular in M and we get the homomorphism $j: M \rightarrow W$ with $j\left(\mathbf{a}_{0}^{\prime}\right)=1$. We consider the following homomorphisms:

$$
\begin{array}{ll}
g: W \oplus M \rightarrow W \oplus M, & g(t, \mathbf{a})=(t, \mathbf{a}+\Phi(t)) \\
k: W \rightarrow W, & k(1)=t_{0} \\
l: W \oplus M \rightarrow W \oplus M, & l(t, \mathbf{a})=(t-(k \circ j)(\mathbf{a}), \mathbf{a}), \\
i: W \oplus N \rightarrow W \oplus M, & i=l \circ g \circ h
\end{array}
$$

Then i is isomorphism and $i(1, \mathbf{0})=\left(0, \mathbf{a}_{0}^{\prime}\right)$. We have $M=W \mathbf{a}_{0}^{\prime} \oplus \operatorname{ker}(j)$ and the following chain of isomorphisms

$$
\begin{aligned}
& N \simeq(W \oplus N) / W \mathbf{e}_{1} \xrightarrow{i}(W \oplus M) / W \mathbf{a}_{0}^{\prime}=\left(W \oplus \operatorname{ker}(j) \oplus W \mathbf{a}_{0}^{\prime}\right) / W \mathbf{a}_{0}^{\prime} \simeq \\
& W \oplus \operatorname{ker}(j) \simeq W \mathbf{a}_{0}^{\prime} \oplus \operatorname{ker}(j)=M
\end{aligned}
$$

The isomorphism is defined as follows. Take $\mathbf{v}_{1}, \ldots, \mathbf{v}_{r}$ a set of generators of N. Let $i\left(0, \mathbf{v}_{i}\right)=\left(\alpha_{i}, \mathbf{u}_{i}\right)$ where $\alpha_{i} \in W, \mathbf{u}_{i} \in M$. The map $(W \oplus M) / W \mathbf{a}_{0}^{\prime} \rightarrow W \oplus \operatorname{ker}(j)$ works taking an element of $W \oplus M$, decomposes the component in M as a sum $\mathbf{v}+\mathbf{w}$ with $\mathbf{v} \in W \mathbf{a}_{0}^{\prime}, \mathbf{w} \in \operatorname{ker}(j)$ and takes \mathbf{w}. For this step note that if $\mathbf{u} \in M$ and $\lambda=j(\mathbf{u})$ then $\mathbf{u}=\left(\lambda \mathbf{a}_{0}^{\prime}\right)+\left(\mathbf{u}-\lambda \mathbf{a}_{0}^{\prime}\right)$ is the desired decomposition.

Remark 3. When the module N is of the form W^{s}, then M is isomorphic to a free module, so it has a basis. Such a basis is the image of $\mathbf{e}_{i}, i=1, \ldots, s$.

Algorithm 2.1. Computing a basis.
Input: an isomorphism $W^{t} \stackrel{h}{\simeq} W^{s} \oplus M$, with $t-s \geq 2$.
Output: a basis of the module M.

START:

if $s=0$ then

$\left\{h\left(\mathbf{e}_{1},\right), \ldots, h\left(\mathbf{e}_{t}\right)\right\}$ is a basis.
STOP.
end if
Let $h(1, \mathbf{0})=\left(t_{0}, \mathbf{a}_{0}\right)$, with $t_{0} \in W, \mathbf{a}_{0} \in W^{s-1} \oplus M$.
Compute $\Phi: W \rightarrow W^{s-1} \oplus M$ such that $\mathbf{a}_{0}^{\prime}=\mathbf{a}_{0}+\Phi\left(t_{0}\right)$ is unimodular.
Compute $j: W^{s-1} \oplus M \rightarrow W$ such that $j\left(\mathbf{a}_{0}^{\prime}\right)=1$.
Let $i: W \oplus W^{t-1} \rightarrow W \oplus\left(W^{s-1} \oplus M\right)$ as defined in Prop. 1.
Let $h: W^{t-1} \rightarrow W^{s-1} \oplus M$ the isomorphism defined by

$$
h\left(\mathbf{e}_{i}\right)=\alpha_{i} \mathbf{a}_{0}^{\prime}+\mathbf{u}_{i}-\lambda_{i} \mathbf{a}_{0}^{\prime}
$$

where $i\left(0, \mathbf{e}_{i}\right)=\left(\alpha_{i}, \mathbf{u}_{i}\right), \alpha_{i} \in W, \mathbf{u}_{i} \in W^{s-1} \oplus M, \lambda_{i}=j\left(\mathbf{u}_{i}\right)$.
go to START
As in the previous section, this algorithm has been programmed with Macaulay2.
Example 2. Let $W=A_{2}(\mathbb{Q})$, and $\mathbf{f}=\left(\begin{array}{lll}x \partial_{y} & x y & \partial_{x}\end{array}\right)$. Then $P=\operatorname{ker} \mathbf{f}$ is a projective module, because \mathbf{f} is a unimodular row. Let

$$
\beta=\left(\begin{array}{c}
-y \partial_{x} \\
\partial_{x} \partial_{y} \\
-x
\end{array}\right)
$$

Then $\mathbf{f} \cdot \beta=1$, and $\operatorname{im} \beta \oplus P=W^{3}$. The isomorphism $h: W \oplus W^{2} \rightarrow W \oplus P$ is given by the matrix

$$
h=\left(\begin{array}{ccc}
x \partial_{y} & x y & \partial_{x} \\
x y \partial_{x} \partial_{y}+x \partial_{x}+1 & x y^{2} \partial_{x} & y \partial_{x}^{2} \\
-x \partial_{x} \partial_{y}^{2} & -x y \partial_{x} \partial_{y}+1 & -\partial_{x}^{2} \partial_{y} \\
x^{2} \partial_{y} & x^{2} y & x \partial_{x}+2
\end{array}\right) .
$$

Then

$$
t_{0}=x \partial_{y}, \mathbf{a}_{0}=\left(\begin{array}{c}
x y \partial_{x} \partial_{y}+x \partial_{x}+1 \\
-x \partial_{x} \partial_{y}^{2} \\
x^{2} \partial_{y}
\end{array}\right)
$$

We must find $\Phi: W \rightarrow P$ such that $\mathbf{a}_{0}^{\prime}=\mathbf{a}_{0}+\Phi\left(t_{0}\right)$ is unimodular. Let $\Phi_{1}: P \rightarrow W$ be the projection over the first component and $\mathbf{a}_{2} \in P \cap \operatorname{ker}\left(\Phi_{1}\right)$ not null. For example,

$$
\mathbf{a}_{2}=\left(\begin{array}{c}
0 \\
\partial_{x}^{2} \partial_{y} \\
-x y \partial_{x} \partial_{y}-x \partial_{x}-2 y \partial_{y}-2
\end{array}\right)
$$

and let $\Phi_{2}: W \rightarrow P$ be the projection over the second component. Because $\Phi_{2}\left(\mathbf{a}_{0}\right) \neq 0$, we have to compute $r_{1}, r_{2} \in W$ such that $\Phi_{1}\left(\mathbf{a}_{0}\right) r_{1}+\Phi_{2}\left(\mathbf{a}_{2}\right) r_{2}=0$. In this case, we get

$$
r_{1}=-\partial_{x}^{2} \partial_{y}, r_{2}=x y \partial_{x} \partial_{y}-2 y \partial_{y}+1,
$$

and following the notation of the proof of Lemma 1 ,

$$
d_{1}=x y \partial_{x} \partial_{y}+x \partial_{x}+1, d_{2}=x y \partial_{x}^{3} \partial_{y}^{2}+x \partial_{x}^{3} \partial_{y}+\partial_{x}^{2} d y
$$

We have to find $f_{1}, f_{2} \in W$ such that $\left\langle d_{1}, t_{0}\right\rangle W=\left\langle d_{1}+t_{0} f_{1} d_{1}, t_{0} f_{2} d_{2}\right\rangle W$. Applying the modified procedure of [Hillebrand et al.(2002)], we find

$$
f_{1}=0, f_{2}=x+y
$$

Let $\Phi: W \rightarrow P$ be the morphism defined by $\Phi(1)=(x+y) \mathbf{a}_{2}$. Then $\mathbf{a}_{0}^{\prime}=\mathbf{a}_{0}+\Phi\left(t_{0}\right)$ is unimodular and we can compute the morphism $j: P \rightarrow W$ such that $j\left(\mathbf{a}_{0}^{\prime}\right)=1$. The output is too large to be included here, but has the form

$$
\begin{aligned}
& j= \\
& \left(-\frac{2}{63} x^{2} y^{7} \partial_{x}^{4} \partial_{y}^{5}-\frac{2}{63} x y^{8} \partial_{x}^{4} \partial_{y}^{5}+\frac{5}{162} x^{3} y^{6} \partial_{x}^{3} \partial_{y}^{6}+\ldots-\frac{433}{9} x \partial_{x}+17 x \partial_{y}+1,\right. \\
& \left.\frac{2}{63} x y^{8} \partial_{x}^{3} \partial_{y}^{4}-\frac{5}{126} x^{2} y^{7} \partial_{x}^{2} \partial_{y}^{5}+\frac{10}{63} x y^{8} \partial_{x}^{2} \partial_{y}^{5}++\ldots+\frac{5}{3} x y-\frac{137}{6} y^{2}, 0\right)
\end{aligned}
$$

Also we can build the matrices associated to the other morphisms

$$
\begin{aligned}
& g=\left(\begin{array}{cc}
1 & \mathbf{0} \\
\Phi & I_{3}
\end{array}\right), k=\left(x \partial_{y}\right), l=\left(\begin{array}{cc}
1 & -k \cdot j \\
\mathbf{0} & I_{3}
\end{array}\right) \\
& i=l \cdot g \cdot h=\left(\begin{array}{ccc}
0 & \alpha_{2} & \alpha_{3} \\
\mathbf{a}_{0}^{\prime} & \mathbf{u}_{2} & \mathbf{u}_{3}
\end{array}\right)
\end{aligned}
$$

where

$$
\begin{aligned}
& \mathbf{u}_{2}=\left(x y^{2} \partial_{x}, x^{2} y \partial_{x}^{2} \partial_{y}+x y^{2} \partial_{x}^{2} \partial_{y}-x y \partial_{x} \partial_{y}+1,\right. \\
& \left.-x^{3} y^{2} \partial_{x} \partial_{y}-x^{2} y^{3} \partial_{x} \partial_{y}-x^{3} y \partial_{x}-x^{2} y^{2} \partial_{x}-2 x^{2} y^{2} \partial_{y}-2 x y^{3} \partial_{y}-x^{2} y-2 x y^{2}\right)^{t}, \\
& \mathbf{u}_{3}=\left(y \partial_{x}^{2}, x \partial_{x}^{3} \partial_{y}+y \partial_{x}^{3} \partial_{y},\right. \\
& \left.-x^{2} y \partial_{x}^{2} \partial_{y}-x y^{2} \partial_{x}^{2} \partial_{y}-x^{2} \partial_{x}^{2}-x y \partial_{x}^{2}-4 x y \partial_{x} \partial_{y}-3 y^{2} \partial_{x} \partial_{y}-3 x \partial_{x}-3 y \partial_{x}-2 y \partial_{y}\right)^{t}
\end{aligned}
$$

Then

$$
\mathbf{w}_{1}=\left(\alpha_{2}-\lambda_{2}\right) \mathbf{a}_{0}^{\prime}+\mathbf{u}_{2}, \mathbf{w}_{2}=\left(\alpha_{3}-\lambda_{3}\right) \mathbf{a}_{0}^{\prime}+\mathbf{u}_{3}
$$

is a basis of P, where $\lambda_{i}=j\left(\mathbf{u}_{i}\right), i=2,3$.

References

[Bueso et al.(1998)] J.L. Bueso, J. Gómez-Torrecillas, F.J. Lobillo, F.J. Castro, An introduction to effective calculus in quantum groups in Rings, Hopf algebras, and Brauer groups, Lecture Notes in Pure and Appl. Math., 197, Dekker, New York, 1998.
[Castro(1987)] F.J. Castro, Calculs effectives pour les idéaux d'opérateurs différentiels in Géometrie et Applications, III, Travaux en cours, 24, Hermann, Paris, 1987.
[Cohen(1999)] A.M. Cohen, Gröbner Bases, an Introduction in Some Tapas of Computer Algebra, Algorithms and Computation in Mathematics, vol. 4, Springer, Berlin, 1999.
[Eisenbud(1995)] D. Eisenbud, Commutative algebra. With a view toward algebraic geometry, Graduate Texts in Mathematics, 150, Springer-Verlag, New York, 1995.
[Gago(2002)] J. Gago-Vargas, Constructions in $R\left[x_{1}, \ldots, x_{n}\right]$. Applications to K-theory, J. Pure Appl. Algebra, vol. 171, 185-196, 2002.
[Grayson et al.(1999)] D.R. Grayson and M.E. Stillman, Macaulay 2, a software system for research in algebraic geometry, available at http://www.math.uiuc.edu/Macaulay2.
[Hillebrand et al.(2002)] A. Hillebrand and W. Schmale, Towards an Effective Version of a Theorem of Stafford, J. Symbolic Computation, vol. 32(6), 699-716, 2002.
[Laubenbacher et al.(1997)] R. Laubenbacher and C. Woodburn, An algorithm for the QuillenSuslin theorem for monoid rings, J. Pure Appl. Algebra, vol 117-118, 397-429, 1997.
[Leykin(2002)] A. Leykin, Algorithmic proofs ot two theorems of Stafford, at http://xxx.lanl.gov/abs/math.RA/0204303.
[Leykin et al.(2002)] A. Leykin and H. Tsai, D-modules for Macaulay 2, available at http://www.math.umn.edu/~1eykin/Dmodules.
[Logar et al.(1992)] A. Logar and B. Sturmfels, Algorithms for the Quillen-Suslin theorem, J. Algebra, vol. 145, 231-239, 1992.
[McConnell et al.(1987)] J.C. McConnell and J.C. Robson, Noncommutative Noetherian Rings, Wiley-Interscience Publication, 1987.
[Stafford(1978)] J.T. Stafford, Module Structure of Weyl Algebras, J. London Math. Soc., vol. 18, 429-442, 1978.
[Stafford(1977)] J.T. Stafford, Weyl Algebras are stably free, J. Algebra, vol. 48, 297-304, 1977.
[Swan(1968)] R.G. Swan, Algebraic K-Theory, Lecture Notes in Math., vol. 76, Springer, 1968.
Departamento de Álgebra, Universidad de Sevilla, Apdo. 1160, 41080 Sevilla, ESpaña
E-mail address: gago@us.es

[^0]: Key words and phrases. Projective modules, non commutative rings, Gröbner bases. Partially supported by project BFM2001-3164 and FQM-813.
 This is a preliminary version of this article.

