
i

VLSI Implementation of a Fully Parallel
Stochastic Neural Network

J.M.Quero, J.G.Ortega, C.L.Janer and L.G.Franquelo IEEE h EMBER

Dpto. de Ingenieria de Sistemas y Automiitica
Univ. de Sevilla, Spain

Abstract- In this paper we present a purely digital stochastic implementation of multilayer
neural networks. We have developped this implementation using an architecture that permits
the addition of a very large number of synaptic connections, provided that the neuron’s transfer
function is the hard limiting function. The expression that relates the design parameter, that is,
the maximun pulse density, with the accuracy of the operations has been used as design criterium.
The resulting circuit is easily configurable and expandable.

I. INTR.ODUCTION

Stochastic neural networks architectmiires have recently received much attention [1],[2]. The use of
these architectures decreases the amount of hardware needed to rea?ize the operations involved in
neurons. If we look at the transfer function of a neuron (3; = a(Cj;uijyj t I i)) we realize that
we have to evaluate a set of arithmetic operation, more precisely, a set of products and additions.
In order to make efficient electronic implementations of neural networks containing a high number
of neurons, it woiild be desira.ble tha,t these operations could be performed by simple circuitry.

Stochastic logic systems realize pseudoanalog operations using stochastically coded pulse
sequences. These pulse sequences ca,n be generated using a group of digital comparators. A digital
codifications of variables are compared with uncorrelated random numbers producing uncorrelated
stochastic signals whose values randomly take values 0 or 1. The average of these values can be

< 1, with Rmax viewed as an analog value in the range [-a,a] or [O,o], where a = randomma= -
the maximum value that ca,n be stored in R; and ~ u n d o m ~ , , is the maximum random number
generated.

Rmax

Multiplication of two stochxtic pulse sequences should produce another stochastic stream of
pulses whose firing probabilitv is the product of the input firing probabilities. This can be easily
achieved if the input sequences are stochastically independent. The circuit that implements this
operation is a simple AND gate.

0-7803-1901-x194 $4.00 01994 IEEE 2040

Stochastic summation is a much more difficult operation to perform, specially if the terms
to be added are signed. Two types of circuits have been described in the bibliography. One is the
OR gate and the other is the up-down counter.

The up-down counters technique, although is widely used when implementing ’Hopfield’s
neural network, has a very important drawback. Pulses coming from other neurons have to be
multiplexed in time (i.e. serzdized) leading to high computation, t i ” if the network has many
neurons and many connections per neuron. It should be also pointed out that the serialization that
takes place is only efficient in neurd networks whose neurons are fully connected .

If two pulse sequences amre fed to an OR gate the output firing probability would be equd
to the sum of both firing probabilities if the pulse sequences to be added did not overlap. This
OR-based add function is thus distorted by pulse overlap. If only positive terms are to be added
pulse overlap is not a drawback because it produces the non linear transfer function of a neuron.
If signed inputs are to be added linear behavior is an essential feature. However this approach is
extremely intereshing due to the simplicity of the required hardware which would permit the digital
implementation of arbitrary neura.1 networks containing a very high number of neurons.

11. PROPOSED STOCHASTIC: ARCHITECTURE

It has been proved that the OR. gate based summation is extremely efficient if we restrict
ourselves to neural networks in which neurons take only two discrete values. Due to the fact that
the exponential Iiinc,tion is iiioiiotoiiicltlly increasing, acid takin into account its properties, it can
be deduced that sign(Cizy xi) = sign(niz;”- e-”: - l-Iizyt e-“i), where superscripts + and - are
extended to positive and negative terms respectively.

5

. The last expression can be rega.rded as the compa.rison of two pulse streams generated by two
stochastic multipliers, therefore no adder is needed. The only problem is to evaluate the exponential
transformation in a. efficient way.

If the neural network has been adimentionalized in such a way that all terms to be aggregated
take values ranging from zero to a small number a close enough to zero, e-”% can be approximated
by 1 - 2;.

The resulting structure is shown in Fig.1. Input pulses are inverted by not gates and then
fed to the corresponding AND gates by the first set of logic blocks. It should be pointed out that
these logic blocks should maintain its output signal at high level while not being driven by the
input pulses. The output logic Mock evaluates the neuron output. If only the “positive” pulse is
at high level the counter is incremeiited by one and if the pulse is “negative” the counter is then
deuemented by one. The sign bit is chmged if a zero crossing takes place. If a second order
approxima.tion of the exponentid t,ra.nsforma.t,ion was made, we could largely increase the value of
U at the expenses of circuit’s complexity (see Fig. 2).

Due to the fact tha,t the exponential transformation is not evaluated exactly, it follows that
the addition opemtion has a. limited accuracy. If the t o t d neuron’s excitatory input and the total

2041

i

‘ I

neuron’s inhibitory input are very closed numbers, the neuron’s output may be uncorrect. It has
been proved that the accuracy of the addition is bounded by the following expression:

where 2 is the rate error of the addition operation. If the most accurate comparison that has
to be evaluated is a known quantity, it follows that a has to be chosen so that t < w, where
DIFF is the difference between the total positive neuron’s input and the total negative neuron’s
input .

If the net inputs can take any values, the limited accuracy of the addition determines a region
where the neuron’s output will be uncertain.

111. IMPLEMENTATION

In this section several design issues, such us random number generation, network configuration,
network expansion a.nd hardware implementation, are described.

a) R.a.ndom number genera.tion

Linear Feedback Shift R.egister (LFSR) is one of the most studied digital techniques to gen-
erate pseudo-random numbers [4]. However, all the results given in previous sections are valid if
pulse secuences are purely random -specially those involved in the’same neuron. In our design we
have used a 9-bit LFSR. with do = XOR(q0, qd). We can obtain the cross-correlation (Crr) between
shifted sequences n(k) and n(k -t p) , where n,(k) stands for the original normalized sequence and
n(k + p) is its p-steep ahead shift sequence. Fig 3 represents the cross-correlation between shifted
rmdom number sequences. It is clear that we need a, 8-step shift at least to generate pulse se-
quences as uncorrelated as possible. These shifts have been macle using 8-XOR gates. The number
of uncorrelated pseudo-random sequences that can be simultaneously generated is 2’/8 N 64. This
number can be increased using a larger LFSR.

b) Network configura.tion

We have iised pipeliiicd parallel registers to allow neural network programmability with a
minimun number of inputs. The size of these registers is related to the size of the LFSR and
the maximum tolerated error in the exponential approximation. In this case we have choosen a
7-bit register for weight storage. If we consider input sequences to the network with a maximun
probability of 0.5, the resulting niultipliratioii has a mean of $0.5 = 0.125. According to Fig.
4, it leads to an exponential approxima,tion error of 6% (linear ampproximation of the exponential
transformation).

c) Network expansion

One of the most rema,rkable features of the proposed aachitecture is that the number of

2042

connections can be easily increased. Additions are caIcula,ted like products, so that sets of weights
can be added using !P+ and q- signals without additiona.1 hardware (see Fig. 1). The number of
hidden layers ca,n also he increased with additional circuits in cascade.

(1) Hwdware implementation

The proposed stochastic architecture has been implemented using EDGE with ES2 1 . 5 ~
Standar Cell libraries. The resulting circuit contains two layers with five input unsigned pulse
signals, five hidden neurons and one output neuron. Output neuron Q+ and Q- signals are
accessible, so tha.t the number of hidden neurons ma,y be increased.

IV. RESULTS

In order to test the behaviour of the I.C., we have developped the controlled presented in [5] .
This application consists on a perceptron that approximates a classification surface described by a
196-point array. .4 two layer perceptron with 10 hidden neurons have been configured using Back
propagation. Two 1.C.s have been used to implement this applica,tion.

All training input patterns are correctly classified by the network. The transient response of
the output neuron for the input vector (0.0867,0.42,0.39) is shown in Fig. 5 , where the clock rate
is 7.5MHz.

Fig. 6 shows t,he behavior of the network as the input vector crosses the decision surface. In
this figure the desired network’s response and the actual network’s response have been represented.
Several reasons explain the slight, differences between the two gra,phics: the discretization of the
synaptic weights, the limited ac,cura.c.y of the stochastic a,dditions and the use of pseudorandom
sequences instead of real random numbers.

V. CONCLUSIONS

In this pa.per we have presented a ha.rwa,re implementation of a. multilayer neural network
using the stochastic a.rchitecture that was proposed in [3]. This architecture can be easily expanded,
and the circuit has been designed so tha,t any niultila,yer network can be implemented by adding an
appropriate number of 1.C.s. As a.n example we have implemented the controller with perceptron-
like structure which was presented in [5] . The response of the network matches with a high degree
of accuracy the theoretical controller’s response.

References

[l] Y. Kontlo and Y. Sawa.tla. Functional Ahilities of a Stochastic Logic Neural Networks IEEE
Trans. on Nein~nl Networks, vo1.3, pp.434-443, 1992.

2043

[2] D.E. Van den Bout and T.K. Miller 111. A Digital Architecture Employing Stochasticism for
the Simulation of Hopfield Neural Nets. IEEE Trans. on Circuit and Systems, vo1.36, pp.
732-738. 1989.

[3] C.L. Janer, J.M. Quero and L.G. Franquelo. Fully Parallel Summation in a New Stochastic
Neural Network Architecture. IEEE Int. Conf. on Neural Networks, San Francisco, pp. 1498-
1503. 1993.

[4] W. Peterson. Error Correcting Codes. MIT Press. 1992.

[5] .J.M. Quero, J.M. Ca.rra.sco and L.C. Fra.nqnelo. Ada.ptative Energy Feed-Back Control for
Resonant Converters Using Neural Networks. 23rd Annual Power Electronics Specialists Con-
ference, Toledo, Spain, pp. 800-806. 1992.

Mpxiniun puke mity: a (a<cl\

Figure 1: Neuron's structure

Figure 2: Evalua.tion c.ircuit for the second order approximation of the exponential transformation.

2044

0.045

0.0.

0.035

0 . 0 3

Y . U I 5

0 . 0)

0.015

0.01

0 . 0 0 5

0

-0 005
1 1-

Figure 3: Cross-correlation between p-step
ahead shift pseudo-random number sequences
generated by a 9-bit LFSR)

0 1

0.05

I

-O."!

Figure 4: Normalized exponential tra.nsforma.-
tioii error, for the first, second and third ordcr
approximation.

DO

Figure 5: Transient response of the output neu-
ron for the input vector (0.0867,0.42,0.39)

Figure 6: Network's desired and actual response
as the input vector crosses the decision surface.

2045

