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Abstract

In this paper, we address the problem of scheduling a set of jobs in a flowshop

with makespan objective. In contrast to the usual assumption of machine availability

presented in most research, we consider that machines may not be available at the

beginning of the planning period, due to processing of previously scheduled jobs. We

first formulate the problem, analyse the structure of solutions depending on a number

of factors (such as machines, jobs, structure of the processing times, availability vectors,

etc.), and compare it with its classical counterpart. Results indicate that the problem

under consideration presents a different structure of solutions, and that it is easier than

the classical permutation flowshop problem. In view of these results, we propose and

test a number of fast heuristics for the problem.

1 Introduction

Scheduling literature usually assumes that machines are available during the whole planning

horizon [4]. However, there is a wide range of realistic situations where machines may not
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be completely available, such as breakdowns (stochastic unavailability) [5], or if preventive

maintenance activities are necessary (deterministic unavailability) [28]. In this paper, we

tackle a different type of machine unavailability, in which we assume that the machines may

not be immediately available for processing the set of jobs to be scheduled, but only from a

date ai that we denote as availability instant. This problem corresponds to a common real-

life scenario where jobs must be scheduled in a periodical, dynamic manner, i.e.: at time

T , the decision maker should schedule orders (jobs) that entered the system from T −H to

T , being H the decision period. This procedure is repeated every H periods. As a result,

jobs scheduled in the previous period may not be completed at this point. These jobs either

have started their processing, or wait until they can start according to the previous schedule.

In the first case, the jobs cause the machines not to be available from the beginning of the

planning period. We denote this type of jobs as ‘frozen’ jobs, since their schedule remains

the same. In the second case, these jobs can be merged with the new set and rescheduled.

Among the different shop floor layouts, we focus on the flowshop, which is the most

popular setting both in practice and research (some recent references are e.g. [12, 29]). The

flowshop layout implies a natural ordering of the machines in the shop, in such a way that the

jobs go through the same machines in the same order. In general, there are (n!)m schedules to

be considered, but we assume that the processing sequence of the jobs is the same for all the

machines (i.e. permutation flowshop) and hence only (n!) schedules have to be considered.

A representation of the problem studied in the scenario described previously by frozen jobs

is displayed in Figure 1.

******* Insert Figure 1 about here *********

Regarding the different scheduling objectives that can be sought, we consider the mini-

mization of the makespan or maximum completion time. Aside to the maximization of the

throughput of the shop, makespan minimisation is connected to the problem of setting a

common due date for the incoming jobs. If we consider that the set of jobs constitutes a

single order, or a batch to be processed together in a subsequent operation, then the optimal

makespan value serves to set the tightest due date for the order (batch). Note that, if each

job belongs to a different order, then a suitable criterion for setting tight due dates would

be the minimisation of the sum of the flow times.

Therefore, our problem consists on scheduling jobs in a flowshop where machines are not
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initially available with the objective of minimising makespan. This problem (denoted as PA

in the following) is related to two classes of scheduling problems:

• Scheduling with non availability of the machines, and

• ‘Classical’ flowshop scheduling without machine availability constraints and makespan

objective (denoted as PO in the following).

Machine scheduling problems with availability constraints have received increasing atten-

tion from researchers in the last decade [36], but most references do not deal with flowshops

(see e.g. [21,22,31,32,35] for some references on the problem for different settings). Most of

the works on flowshops are restricted to the 2-machine case (see [5,7,8,10,11,24,36,37]), and

only [2–4,28] consider the case for more than 3 machines. Aside, in these works, availability

constraints are represented by windows or holes, i.e. given time intervals for which each

machine may be unavailable for processing jobs. These intervals are situated in any place on

the planning horizon, which is not the case for the PA problem. Only Lee [20] considers the

2-machine flowshop problem taking into account the special case where the unavailability

happens due to unfinished jobs that were scheduled in the previous planning period. He

shows that the problem is solvable in polynomial time.

On the other hand, the well known permutation flowshop problem with the makespan

criterion (PO) can be considered as a special case of PA. PO has been intensively addressed

during the last 40 years [12] and it is known to be solvable to optimality in polynomial

time for m = 2 by Jonhson’s algorithm [18] and NP-complete in the strong sense when

m > 2 [15]. For this reason, there is a number of heuristic procedures providing good

approximate solutions to the problem [12,29].

Given the similarity among both problems and the abundance of solution procedures for

PO, it is worth to investigate under which circumstances they differ. This analysis would

give clues to devise solution procedures PA, based (or not) on solution procedures adapted

from problem PO.

The rest of the paper is organized as follows: In Section 2 we present the notation

employed, and analyze the structure of PA by studying the main factors that may have

influence on it, and by establishing its relation with PO. This section is the basis of Section

3, where we propose and evaluate several heuristics that take into account the obtained
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results of previous section. Finally, we present the conclusions of the work and the future

research lines.

2 Analysis of the problem

The following notation is adopted in the problem under consideration:

n : number of jobs

m : number of machines

j : job index (j = 1, . . . , n)

i : machine index (i = 1, . . . ,m)

pij : processing time of job j in machine i

ai : instant which define the time from machine i is available, ai ≥ 0, ∀i = 1, . . . ,m

Without loss of generality we can assume that ai ≤ ai+1, ∀i = 1, . . . ,m. If it exists some

i with ai ≥ ai+1, then ai+1 does not have influence in the problem (see Figure 2). In fact,

each ai+1 has influence if it is greater than ai +minj{pij} for i = 1, . . . ,m. In addition we

can suppose that a1 = 0. In other case, we can do a reference change a′i = ai − a1, for all

i = 1, . . . ,m. Let a = [a1, a2, . . . , am] the availability vector.

******* Insert Figure 2 about here *********

Scheduling problems are usually represented by the three-parameter notation α|β|γ intro-

duced by Graham et al. [16]. According to this notation, problem PO is denoted Fm|prmu|Cmax,

where Fm indicates that it is a flowshop problem with m machines, prmu implies that it is a

permutation case, and finally, Cmax is the objective to minimize, i.e the makespan criterion.

Following this notation, we denote problem PA as Fm|prmu, ai|Cmax.

Johnson’s rule is optimal for the PA problem when m = 2 [20]. However, it can be shown

that the Fm|prmu, ai|Cmax problem is NP-hard in the strong sense for m > 2. The proof

is based on the fact that F3||Cmax is strongly NP-hard [15, 26], since this complexity proof

can be applied to PO with m > 2.

As the differences between PO and PA are given by the availability instants ai, it is worth

investigating under which values of ai are both problems different and, if so, which form takes

the structure of solutions of PA. This information would be very useful in order to develop

approximate algorithms for the problem. In order to answer these questions we employ two
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approaches: first a design of experiments (which will allow us to determine the similarity

between characteristic factors of each problem), and secondly an analysis of the structure

of the space of solutions (which will allow us to analyse the complexity of PA in order to

develop efficient solution procedures for the problem). Both approaches are described in the

next subsections.

2.1 Design of Experiments

The aim of the design of experiments is to analyse the different factors influencing the

structure of the space of solutions in problem PA. To carry out this analysis, we first identify

a number of factors that can affect the structure of the space of solutions. Then, for each

combination of these factors, we build a high number of problem instances and obtain all

possible schedules and the corresponding solution values. These results are then summarised

in order to extract conclusions on the distribution of the space of solutions. This approach

is similar to the one employed by [33] and by [6] in their analysis of the Fm|prmu|Cmax and

Fm|prmu|ΣTj problems respectively (with ΣTj the sum of the flow times).

The factors considered in the design of experiments are the following: the number of jobs

(factor N), the number of machines (factor M), the processing times (factor P ), and the

values of ai (factor K).

Regarding the number of jobs and the number of machines, they should be restricted to

small values in order to obtain all possible schedules and makespan results in a reasonable

time. Therefore, levels of N and M are n ∈ {5, 10} and m ∈ {5, 10} respectively.

Furthermore we consider three different ways to generate processing times. Levels p of

the factor P can be:

• Random instances (p = R). In this level, processing times are generated according to

a uniform distribution. This is the most popular distribution to generate processing

times in the literature (see e.g. [13,25,29,34]), as it is known to provide most difficult

problem instances, although it is hardly found in practice [38]. In our experiments, we

consider a uniform distribution between 1 and 99, which is widely used in the literature.

• Structured instances (p = S). The so-called structured instances (i.e. with correlation

of processing times across jobs and/or machines) are considered to be better represen-
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tative of realistic flowshops [38]. Watson et al. [38] present three types of structured

problems: job-correlated (n distributions, one for each job); machine-correlated (m

distributions, one for each machine); and mixed-correlated (are similar to machine-

correlated problems, with the exception that the relative ranks of jobs processing times

are generally consistent across the machines, for example, if a job has the largest pro-

cessing time on machine 1, then it is likely to have the largest processing time on

machines 2 through m). To control the expected problem correlation the distribution

means are randomly sampling from a fraction α of the processing times interval (by

varying α from 0 to 1 we can gradually select from random to more structured prob-

lems). In our experiment, we have generated structured instances by the generator

provided at [1], selecting mixed-correlated problems with processing times in the in-

terval between 1 and 99 and α = 0.5, which corresponds to an intermediate level of

correlation across jobs and machines.

• Instances with missing operations (p = M). The existence of missing operations is

known to be another feature of real-life environments [27]. In this type of problem

instances, each job has a percentage of operations whose processing times are equal

to zero, while the rest of the processing times are drawn from a random distribution

[9, 17, 27]. In our experiments, we select a 10% of missing operations and the usual

random interval between 1 and 99.

Finally, we define a factor K to control the availability vector size. We calculate Ci(Sini)

the completion time of sequence Sini = [1, . . . , n], verifying that Ci(Sini) < Cj(Sini) for

all i < j = 1, . . . ,m, so the initial vector can be calculated from these values doing the

following reference change defined as aj = Cj(Sini) − C1(Sini) for all j = 1, . . . ,m, i.e

a = [a1, . . . , am] = [0, C2(Sini) − C1(Sini), . . . , Cm(Sini) − C1(Sini)]. For different values of

k ∈ K we consider the problem with the availability vector a = k ∗ (a). Selected values are

k = 0 (implying problem without availability constraint, i.e. PO) and k = 0.5, k = 1 and

k = 2 (implying some PA cases with different sizes of a).

Taking into account the aforementioned factors, we have developed a full factorial design

which is efficient for evaluating the effects and possible interactions of several factors (inde-

pendent variables). An equireplicate design is carried out with 100 runs for each treatment,
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i.e. 100 problem instances are generated for each combination. Thus we have 2×2×3×4 = 48

combinations of the levels of all factors with 100 runs, i.e. 4800 runs in total. Table 1 sum-

marizes the considered factors, levels and runs per treatment.

******* Insert Table 1 about here *********

The convention in most research is to use a significance level of 0.05, i.e. there is a

5 percent chance of rejecting the null hypothesis, even if it is true. So we employ that

significance level for all statistical tests developed.

In order to check the similarity of PO and PA depending on the considered factors, we

initially intended to perform an Analysis of Variance [23], with the following null hypotheses

HO: ‘There are not differences between the means of the samples’. The main assumptions

to carry out this test are: independency (the data points must be independent from each

other), normality (the distributions must be normal), and homoscedasticity (the variances

of the samples must not be different).

The first condition is verified since each data is the optimal makespan obtained from

the resolution of an independent generated problem. As we replicate each treatment with

100 runs, the Central Limit Theorem states that, as sample size increases, the sampling

distribution of sample means approaches to that of a normal distribution, so the second

condition is verified too. To check the last condition, it is necessary to carry out the Levene

test. The p-values obtained from Levene test are lower than 0.05 for all cases, so we reject

the null hypotheses about homogeneity of variance.

Therefore, applying Analysis of Variance is not suitable, and we must consider an alter-

native nonparametric test, i.e. the Kruskal-Wallis test [23], which determines the equality

between the levels of the factors. The results indicate that the mean ranks of makespan

per run are significantly different among the four factors (p-values are equal to 0.000 for all

cases). Mann-Whitney test [23] is another non-parametric test which allows us to study dif-

ferences between levels for factors P and K. In the case of factor P , there are three possible

pairs (R−S, R−M and S−M). In this study the significance must be divided by the num-

ber of possible pairs (Bonferroni’s correction), i.e. 0.05/3. The comparison between p = R

and p = S (i.e. random and structured generation of processing times of factor P ) gives a

p-value equal to 0.180, which indicates that there are not significative differences between

them. However the results indicate rejection of the hypothesis of similarity between the rest
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of the levels (p-values lower than 0.05/3). As results are dependent on factor P , the analysis

of factor K is developed for each level of P . The p-values obtained from each Kruskal-Wallis

tests are lower than 0.05, so Mann-Whitney tests are carried out to determine the differences

between levels of K for each case of P . Results for both factors are represented in Table 2,

showing the means for each case and grouping in the same set those without significative

differences.

******* Insert Table 2 about here *********

The similarity between the optimal makespan values of random and structured problems

is shown in Table 2, and the similarity of results in theses cases for k = 0 and k = 0.5. Figure

3 shows these conclusions, both figures, a) and b) present the same result in two ways. In

Figure 3 a) it can be observed that marginal means increase while factor K increases for all

problem types. Figure 3 b) reveals that random and structured problems are more similar

when k = 0 and k = 0.5.

******* Insert Figure 3 about here *********

By performing a sensitivity analysis for different values of factor K (0 ≤ k ≤ 1) in the

cases of structured and random problems, we can conclude that the problems are different

when k > 0.5 for both cases.

In summary, the analysis carried out indicates the difference between problems PO and

PA even for moderate values of k. If we recall that k = 1 would represent the ‘typical’

non availability of machines after processing a set of jobs identical to the one that is to be

scheduled, we can conclude that problem PO would be different from PA for most dynamic

environments, at least with respect to the makespan values. Now the issue is to establish

whether these differences in makespan values are approximately the same for all schedules due

to the non availability of machines (and therefore the wealth of solution procedures available

for PO could be applied in an straightforward manner to PA), or the non availability of

machines induces a different structure of the solution space with respect to that of PO. This

analysis is performed in the next subsection.
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2.2 Distribution of the space of solutions

In Figure 4 we show the empirical distribution for the three levels of factor P , representing

all possible makespan values obtained by complete enumeration of 100 problems with 10 jobs

and 10 machines for all levels of factor K. The distribution of the space of solution is given

relatively to the optimal solution, i.e. we calculate the relative makespan Cr
max(S) to obtain

the approximation percentage to the optimal solution of each makespan value.

Cr
max(S) =

Cmax(S)

Cmax∗
− 1

******* Insert Figure 4 about here *********

From Figure 4 it can be observed that while k is increasing, the frequency of solutions with

a small approximation percentage is larger, that is, the problem becomes easier (in statistical

terms) as k increases, being PO the most difficult problem for all problem types. This

pattern is consistent for all levels of factor P (random, structured, and missing-operations).

Structured problems are the easiest type of problems, because a high percentage of solutions

are found at less than 5% above the optimal. In particular, when k = 2 almost a hundred

of them (99.6%) have an approximation percentage to the optimal makespan less than 2%.

Finally, it can be noted that the distribution of solutions in random and missing operations

cases are very similar.

The complete results are presented in Table 3, which shows the mean of the approximation

percentage to the optimal solution for each problem, and the upper bound of approximation

percentage to the optimal for 95% of solutions. These results are classified by the generation

of processing times factor, P , for all values of K and for all combinations of number of

jobs and number of machines (NxM). For example, in random problems with 5 jobs and 5

machines in the case of k = 2 the mean of approximation percentage to the optimal solution

is 2.51, i.e. any solution is (on average) below 2.51% of the optimal makespan. Furthermore,

the 95% of solutions in this case are below 12% of the optimal makespan. However, the

mean for k = 0 is 16.57 and the upper bound for the 95% of solutions is 39%, showing in a

clear way that problems are easier while k increases. As we conclude previously from Figure

4, this table shows that results for missing operations problems are similar than random,

although the former are slightly more difficult than the latter. A remarkable issue are the
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results for structured problems. As shown in Figure 4 and confirmed in Table 3, this type

of problems is easier to solve, with an approximation percentage less than 6% for almost all

solutions (95%), decreasing while k increases until less than 1% for k = 2 when NxM are

equal to 5x10 and 10x10.

******* Insert Table 3 about here *********

The results of the analysis raise an important conclusion of practical application: since

for most real-life environments scheduling is performed on a periodical basis and this would

naturally lead to unavailability of machines at the starting of the scheduling period, this

scheduling decision problem becomes easier than its ‘classical’ (i.e. without machine un-

availability) counterpart. Besides, if the processing times of the jobs are correlated (which

is the situation in most real-life environments), the problem becomes even easier. Also note

that k is somehow related to the congestion of the shop floor, so this indicates that the

highest the workload of the shop, the easier is to find a good solution for the problem. By

no means these results indicate that scheduling is not relevant for PA, as there are notable

differences among the best and worst makespan values. In addition, we have no way to carry

out such analysis for problems of realistic size, as the computation time required to evaluate

all possible schedules is simply unacceptable. Another consequence of the results is that the

simplicity of problem PA suggests that fast heuristics could be very effective, as they may

provide very good solutions in nearly real-time. Recall that, since our interest is on due

date setting, the possibility of providing the customer with an accurate due date in real time

is a highly desirable feature. Therefore, our efforts would concentrate in building very fast

heuristics for the problem. We present this outcome in the next section.

3 Heuristics

In order to develop fast heuristics for the problem, we adopt the framework presented by

Framinan et al. [12]. This framework classifies heuristics depending on the applied phases

[12]: In the first phase (phase I) named index development, jobs are arranged according to

a certain indicator based on the data of the problem instance. In the second phase or phase

II (solution construction), the solution is constructed in a recursive manner trying one or

more unscheduled jobs to be inserted in one or more positions of a partial schedule until the
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schedule is completed. The last phase III (solution improvement) improves the solution from

phase II by means of a local search procedure, so the quality of the new solution is equal to

or better than that of phase II.

Next subsection presents a set of heuristics collectively denoted as Initial Sequence Heuris-

tics. These have been obtained by applying the first phase once or twice. In this first phase,

we sort the jobs according to a tuple (pj , C) with pj the sorting indicator and C the sorting

criterion. According to this notation, the tuple (Σm
i=1pij ,INCR) denotes a heuristic solution

given by sorting the jobs in ascending (increasing) order of the sum of their processing times.

We have considered 15 indicators, which are the following:

(1) SUM: total processing times of the jobs

pj =

m∑
i=1

pij (1)

(2) WSUM: weighted total processing times of the jobs

pj =
m∑
i=1

(m− i) ∗ pij (2)

(3) SQ: sum of the squared residuals

pj =
m−1∑
i=1

(rij)
2 (3)

(4) WSQ: weighted sum of the squared residuals

pj =
m−1∑
i=1

(m− i) ∗ (rij)2 (4)

(5) ABS: sum of the absolute residuals

pj =

m−1∑
i=1

|rij | (5)

(6) WABS: weighted sum of the absolute residuals

pj =

m−1∑
i=1

(m− i) ∗ |rij | (6)
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(7) FMACH ABS: First machine residual absolute value

pj = |r1j | (7)

(8) SQ RR: sum of the squared real residuals

pj =
m−1∑
i=2

(r∗ij)
2 (8)

(9) WSQ RR: weighted sum of the squared real residuals

pj =
m−1∑
i=2

(m− i) ∗ (r∗ij)2 (9)

(10) ABS RR: sum of the absolute real residuals

pj =
m−1∑
i=2

|r∗ij | (10)

(11) WABS RR: weighted sum of the absolute real residuals

pj =
m−1∑
i=2

(m− i) ∗ |r∗ij | (11)

(12) NEG RR: sum of the negative real residuals

pj =
m−1∑
i=2

|min(r∗ij , 0)| (12)

(13) WNEG RR: weighted sum of the negative real residuals

pj =
m−1∑
i=2

(m− i) ∗ |min(r∗ij , 0)| (13)

(14) POS2NEG: sum of the positive real residuals with the negative real residuals multiplied

by 2.

pj =
m−1∑
i=2

(max(r∗ij , 0) + 2 ∗ |min(r∗ij , 0)|) (14)
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(15) WPOS2NEG: weighted sum of the positive real residuals with the negative real residuals

multiplied by 2.

pj =

m−1∑
i=2

(m− i) ∗ (max(r∗ij , 0) + 2 ∗ |min(r∗ij , 0)|) (15)

The first two indicators have been extracted directly from [14]. The rest of indicators

have been adapted taking into account the features of the problem under consideration.

Considering the similarity between the availability instant of machine i, ai plus the processing

time of job j in this machine pij , and the availability instant of machine ai+1, we would like

ai + pij to be as closest as possible to ai+1 for machines i = 1, . . . ,m− 1, in order to avoid

machine idle times. More specifically, we search for the job whose processing times adapt

best to the steps determined by the availability vector, if scheduled in the first position. We

thus define the availability step as si = ai+1 − ai. In this line, indicators (3) to (6) depend

on pij − si. If pij − si > 0 then machine i+ 1 has an idle time equal to pij − si or allowing

that other job could be sequenced on the step si if pij − si < 0. Therefore, rij = pij − si is

the residual value used to create indicators (3) to (6). In addition, the first job in the first

machine has a high importance since it may imply idle times for the rest of machines. In

order to capture this circumstance, we design indicator (7). Finally, another concept is the

real residual, r∗ij = pij−si+max(pi−1j−si−1, 0) = rij+max(ri−1j , 0) with i = 2, . . . ,m−1.

This expression allow us to compare each availability step with the processing time plus the

machine idle time. Indicators (8) to (15) use this concept.

Regarding the sorting criteria C, we consider the following:

• INCR: sort the jobs according to increasing indicator values.

• DECR: sort the jobs according to decreasing indicator values.

Combining indicators with criteria (pj , C) we can construct 15×2 different approaches for

the phase I. We define this most basic class of algorithm as Simple Sorting. In addition, we

develop two classes of algorithms based on applying phase I twice. We label these algorithms

Simple-Job Fitting and Multi-Job Fitting respectively. The idea is based on the adaptation

of jobs to the profile defined by the unavailability constraint. Intuitively, the better the
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adaptation, the higher the reduction in machine idle time and, consequently, the reduction

in the makespan. So, the algorithms consist on the following steps:

Simple-Job Fitting algorithm sorts the first job according to a tuple (pj ,INCR), i.e. the

first job on the sequence has the minimum value of pj , in order to find the job which achieves

the best adaptation to the profile defined by the unavailability constraint. The others jobs

are arranged according to a different tuple (p′j , C
′), sorting them by simple sorting.

Multi-Job Fitting algorithm pretends to adapt the greatest number of jobs on all avail-

ability steps, according to a tuple (pj ,INCR). The rest of the jobs are arranged according to

a new selected pair (p′j , C
′).

The pseudocodes of these three types of algorithms are presented on Figure 5.

******* Insert Figure 5 about here *********

Note that all possibilities combining each algorithm type with indicators and criteria

have not been used. Simple-Job Fitting and Multi-Job Fitting depend on Simple Sorting

algorithm result (it is shown in the following subsection). Table 4 indicates for all cases the

algorithm type, indicators and criteria, heuristic name, phase and complexity. In total 60

heuristics have been developed. The evaluation of these heuristics is conducted in the next

subsection.

******* Insert Table 4 about here *********

3.1 Evaluation of Initial Sequence Heuristics

For testing the proposed Initial Sequence Heuristics, we adapt to our problem the well

known Taillard’s test bed [34]. This testbed consists of 120 instances of various sizes, n ∈

{20, 50, 100, 200, 500} and m ∈ {5, 10, 20}. There are 10 instances for each size: 20x5, 20x10,

20x20, 50x5, 50x10, 50x20, 100x5, 100x10, 100x20, 200x10, 200x20 and 500x20. These

instances are extremely difficult to solve for the makespan objective and therefore constitute

an excellent benchmark to test different solution procedures for the PO problem [29], being

widely used in this context (see e.g. [13, 19, 29, 30]). We have adapted the benchmark to

our problem by creating an availability vector a for each instance from the completion time

of a random sequence in each machine as described in section 2.1. Furthermore, we have

considered k = 1. Each problem has been solved by the Initial Sequence Heuristics to
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calculate the corresponding relative percentage deviation (RPD) from the objective function

value of the best approach or from the optimal solution, respectively (%). The following

expression has been employed for RPD:

RPD =
Cmax(HEUR)− Cmax(BEST )

Cmax(BEST )
· 100

where Cmax(HEUR) is the makespan obtained by heuristic HEUR and Cmax(BEST )

the best known makespan for each instance. Since there is no benchmark for our problem,

this solution is the best among all heuristics tested. These results are then analysed by using

statistical methods following three steps presented below (for all cases the significance level

is the usual 0.05):

1. Analysis of Simple Sorting algorithm: First, we have obtained the corresponding RPD

results for all possible heuristics created from the Simple Sorting class of algorithms.

The objective is to determine the pair indicator-criterion which provides the best result

by Simple Sorting in order to embed it into Simple-Job Fitting and Multi-Job Fitting

classes of algorithms.

To check the influence of indicators and criteria on the results, we have considered RPD

as dependent variable, and two factors: Indicator I (with 15 levels) and Criterion C

(with 2 levels). As the data do not verify the homoscedasticity condition (p-values are

lower than 0.05 in the Levene tests for both factors), non-parametric tests have to be

used to study the influence of the factors in the dependent variable. These tests reveal

that there are differences between levels of C and I. Therefore, it can be concluded

that RPD results are different depending on these factors. The best result of RPD is

obtained for the heuristic with indicator (2), WSUM, and criterion INCR. There are not

significative differences between it and other two heuristics ((WNEG RR,DECR) and

(WPOS2NEG RR, DECR)), but they are different of the rest 27 heuristics developed

by Simple Sorting algorithm.

2. Complete analysis: With the previous result, Simple-Job Fitting and Multi-Job Fitting

algorithms have been applied to solve all adapted Taillard instances. As it is shown

in Table 4, in both cases, the first pair (pj , C) is formed by the indicators from (1) to

(15) combined with the criteria INCR. The second tupla used in both cases is the best
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obtained from Simple Sorting, i.e. the tupla (WSUM, INCR). It can be observed that

we have the same algorithm three times when the first application of the tupla (pj , C) fit

with the second application on Simple-Job Fitting and Multi-Job Fitting, implying the

same result than the heuristic with (WSUM, INCR) for the Simple Sorting algorithm.

The ARPD (Average RPD) values obtained for each heuristic have been represented

in the Figure 6.

******* Insert Figure 6 about here *********

In Figure 6 it can be observed that, in general, the best results are obtained in the case

of SF. Result for the indicator WSUM is the same for SS, SF and MF (as mentioned

previously), being a good result too. For SF and MF there are not great differences

between indicators (it can be observed that lines belonging to them are almost hori-

zontal). However, results from Simple Sorting have a high variability.

We have developed a new analysis to study these results from a statistical viewpoint.

The design considers RPD values as dependent variable, factor Algorithm Type T

with 4 levels (SS, SS*, SF and MF), and factor Indicator I with 15 levels. Results have

been analyzed by the same non-parametric tests used before (since Levene test for two

factors gives a p-value lower than 0.05, implying that the homoscedasticity condition

is not verified).

For Algorithm Type factor, non-parametric test reveals that the p-value in the Kruskal-

Wallis test is lower than 0.05. So the results are different depending on the selected

algorithm type. Mann-Whitney tests reveals that there are not similarities between

results since all of p-values are lower than the Bonferroni’s corrected significance 0.008,

except the case SF-MF which p-value is equal to 0.013 greater than 0.008. ARPD

for groups in homogeneous subsets are displayed in Table 5, i.e. those pairs without

significative differences have been represented in the same column.

******* Insert Table 5 about here *********

With respect to Indicator factor, we have developed a Kruskal-Wallis test for each

Algorithm type. The p-values are lower than 0.05 in the cases SS and SS*, but is 1.000

and 0.930 for SF and MF respectively, so we can conclude that Simple Sorting implies
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different result depending on the indicator selected while indicators selected belong to

different groups (see Table 6 for SS and Table 7 for SS*) but Simple-Job Fitting and

Multi-Job Fitting provide similar results for all indicators.

******* Insert Table 6 about here *********

In Table 6 we study the similarity between results grouped by indicator in the case SS.

It can be observed that results are different for SUM and WSUM, but there are not

differences between the rest of indicators.

******* Insert Table 7 about here *********

In Table 7 presents the case SS*. There are four set to group results with overlapped

results.

This analysis allows us to conclude that SF and MF are the best algorithm types

(without significative differences between them), regardless the selected indicator since

there are not differences between them for these algorithm types. Simple Sorting

provides worse results, and it depends on the indicator selected.

3. Disaggregated analysis: A complete representation of the results for all heuristics is

shown in Table 8, in terms of ARPD and ranks.

******* Insert Table 8 about here *********

Furthermore, Table 8 presents the ARPD of Algorithm Types, as well as the ARPD

of Indicators.

The best results are obtained by heuristic MF combined with the indicator (1), i.e.

SUM. This heuristic uses the Multi-Job Fitting algorithm, with the pair indicator-

criterion (pj , C) =(WSUM,INCR) in the first application of phase I, (p′j , C
′) =(SUM,INCR)

in the second application of this phase. This algorithm searches for the jobs bet-

ter adapted to the availability profile according to the SUM indicator and schedules it

first. The rest of jobs are scheduled according to the best heuristic from Simple Sorting

algorithm, defined by WSUM indicator and INCR criterion.

Moreover, the best ten results are remarked. Almost all of them belong to SF. It can

be observed that there are very similar results. The four, five and six belong to the

17



same heuristic as it was mentioned previously. In statistical terms (considering RPD

as dependent variable and heuristics as factor with 60 levels), there are not significative

differences between the thirty four best heuristics, most of them belong to SF and MF

algorithm types (these thirty four best results can be observed in the Figure 6, the 30

results for SF and MF, and four points near to these results belonging to SS combined

with WSUM and SS* combined with NEG RR, WNEG RR and WPOS2NEG). The

high similarity between SF and MF, presented previously in Table 5, is corroborated

in this disaggregated analysis.

In conclusion, the developed analysis reveals that there are a high similarity between the

two best algorithm types, SF and MF, regardless the indicator, as there are not differences

between them. The disaggregated analysis considering all developed heuristics shows that,

as well as all heuristics belonging to SF and MF, there are another four without significative

differences. SS combined with WSUM is one of them, it is the best obtained from Simple

Sorting algorithm and the fourth best on the rank presented in Table 8. It uses an algorithm

type with less complexity than SF and MF (see Table 4). So we can conclude that a fast

method which orders jobs in ascending order of the indicator WSUM provides very good

solutions for our problem. These results support the conclusion from the previous analysis

presented in section 2, i.e.: As the problem is easier than PO, a simple algorithm (Simple

Sorting algorithm) can achieve a good makespan. In general, algorithms adapted to the

problem (Simple-Job Fitting and Multi-Job Fitting algorithms) provide better results, but

finally we have proved that an special case of the former, with (WSUM,INCR), gives a result

as good as the latter.

4 Conclusions

This paper aims at a special case of machine availability constraint in permutation flowshops,

which is motivated by the need of setting a common due date for a set of jobs while the

machines are still busy processing another set of jobs previously scheduled. We label this

problem as PA. The problem is NP-hard in the strong sense for more than two machines. We

analyze the problem to determine its differences and degree of difficulty as compared to the
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widely studied original permutation flowshop problem, denoted as PO. To do so, a design of

experiments was carried out to check the influence of a number of factors (machines, jobs,

distribution of processing times, unavailability of machines, etc.) on the structure of solutions

of PA. The results show that PA and PO are different problems with respect to the values of

the objective function and also with respect to the structure of the space of solutions. The

results indicate that PA is easier than PO, particularly for structured problems, which are the

most usual type found in real-world. This means that the ‘classical’ assumption of machine

availability (which is not commonplace in real-life environments) generates a problem much

more difficult than the initial availability constraint problem.

Given these results we develop fast methods to solve our problem in order to provide a

nearly real-time response to due-date quotation request by customers. To do so, we build a

number of fast heuristics based on the profile defined by the availability constraint, i.e.: Sim-

ple Sorting, Simple-Job Fitting and Multi-Job Fitting classes of algorithms. All of them have

been combined with different criteria and indicators to sort the jobs. The developed analysis

shows that there are not statistical differences between results obtained from Simple-Job

Fitting and Multi-Job Fitting algorithms, and these results are independent of the indicator

selected.

Future research could include the case where jobs already scheduled are not frozen, but

can be rescheduled whenever their committed due dates are not violated. If it is a common

due date with some slack, we can try to determine a sequence with old and new jobs, in

such a way that already scheduled jobs fulfil their due date while new jobs minimize the

makespan, thus guaranteing the best possible common due date for this new set of jobs.
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Figure 1: Feature of the initial availability constraint problem

Figure 2: Representation of the initial availability constraint problem
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Figure 3: Estimated marginal means of Optimal Makespan
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Figure 4: Distribution of solutions for small problems

Simple Sorting

Stage 1: ∀j ∈ J are sorted according to pj by using criterion C.

Simple-Job Fitting

Stage 1: j1 = minj∈J pj.

Stage 2: ∀j ∈ J\{j1} are sorted according to p′j by the criterion C

Multi-Job Fitting

Stage 1: j1 = minj∈J pj.

Stage 2: If ∃i/ si − pij1 < 0 ⇒ Stage 3. Else if ∀i si − pij1 ≥ 0 ⇒ ai =

ai + pij1, then calculate new steps si and return to Stage 1 with J =

J\{j1}.

Stage 3: ∀j ∈ J\{j1} are sorted according to p′j by the criterion C′.

Figure 5: Algorithms
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Figure 6: ARPD of heuristics

Description Factor Level Runs

Number of

jobs
N

5 2400

10 2400

Number of

machines
M

5 2400

10 2400

Generation of

processing

times

P

R 1600

S 1600

M 1600

Availability

factor
K

0 1200

0.5 1200

1 1200

2 1200

Table 1: Design of Experiments Data
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Factor P Factor K: Case p = M

Subset 1 2 Subset 1 2 3 4

p = M 950.06 k = 0 713.48

p = S 995.14 k =

0.5

764.45

p = R 1008.15 k = 1 918.85

k = 2 1403.46

Factor K: Case p = R Factor K: Case p = S

Subset 1 2 3 Subset 1 2 3

k = 0 777.64 k = 0 807.27

k =

0.5

785.57 k =

0.5

845.39

k = 1 978.09 k = 1 965.58

k = 2 1491.3 k = 2 1362.33

Table 2: Homogeneous subsets for factors P and K based on Mann-Whitney Tests
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P K
5x5 5x10 10x5 10x10 Total

Mean 95% Mean 95% Mean 95% Mean 95% Mean 95%

p = R

k = 0 16.57 39 13.50 29 22.90 39 20.58 34 18.39 35.25

k = 0.5 12.84 31 11.18 24 16.45 32 17.44 29 14.48 29.00

k = 1 7.38 22 6.40 16 7.80 21 9.13 20 7.68 19.75

k = 2 2.51 12 1.06 6 2.32 11 1.46 7 1.84 9.00

p = S

k = 0 1.03 4 1.56 6 0.78 3 1.62 5 1.25 4.50

k = 0.5 0.83 4 1.35 6 0.49 3 1.15 4 0.95 4.25

k = 1 0.35 3 0.65 4 0.19 2 0.47 3 0.41 3.00

k = 2 0.08 2 0.06 1 0.08 2 0.07 1 0.07 1.50

p =

M

k = 0 19.14 44 15.63 33 28.26 49 24.78 41 21.95 41.75

k = 0.5 14.96 34 13.12 31 20.01 39 20.12 34 17.05 34.50

k = 1 9.02 25 7.98 20 10.21 29 10.01 22 9.30 24.00

k = 2 2.48 12 1.62 8 3.35 15 2.12 9 2.39 11.00

Table 3: Mean and 95% of approximation to the optimal makespan

Algorithm (pj , C) (p′j , C
′) Name Phase Complexity Heuris-

tics

Simple

Sorting

(pj ,INCR) X SS I O(nlog(n)) 15

(pj ,DECR) X SS* I O(nlog(n)) 15

Simple-Job

Fitting

(pj ,INCR) (WSUM,INCR) SF I+I O(nlog(n)) 15

Multi-Job

Fitting

(pj ,INCR) (WSUM,INCR) MF I+I max(O(nlogn), O(nm)) 15

pj = (1) to

(15)

Total heuristics 60

Table 4: Heuristics
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Algorithm

Type
Obs.

Subset

1 2 3

SF 1800 6.2219

MF 1800 6.6783

SS* 1800 8.3442

SS 1800 10.964

Table 5: Homogeneous subsets for factor T based on Mann-Whitney Tests

Indicator Obs.
Subset

1 2 3

WSUM 120 6.1218

SUM 120 7.9147

WABS 120 10.5885

WSQ 120 11.0562

ABS 120 11.2921

SQ 120 11.3587

NEG RR 120 11.4218

WABS RR 120 11.4542

WNEG RR 120 11.5392

POS2NEG 120 11.6827

WPOS2NEG 120 11.7234

ABS RR 120 11.7771

SQ RR 120 12.0468

WSQ RR 120 12.2079

FMACH 120 12.2751

Table 6: Homogeneous subsets for factor I based on Mann-Whitney Tests. Case: Algorithm

Type SS
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Indicator Obs.
Subset

1 2 3 4

WNEG RR 120 6.5965

WPOS2NEG 120 7.1064 7.1064

NEG RR 120 7.5850 7.5850 7.5850

WABS RR 120 7.8996 7.8996 7.8996

SUM 120 7.9242 7.9242 7.9242

WABS 120 8.0408 8.0408 8.0408

POS2NEG 120 8.1153 8.1153 8.1153

WSQ 120 8.2012 8.2012 8.2012

WSQ RR 120 8.3946 8.3946 8.3946

FMACH 120 8.5271 8.5271

ABS RR 120 8.8998 8.8998 8.8998

SQ 120 9.0806 9.0806

SQ RR 120 9.1037 9.1037

ABS 120 9.1700 9.1700

WSUM 120 10.5179

Table 7: Homogeneous subsets for factor I based on Mann-Whitney Tests. Case: Algorithm

Type SS*
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