
Creep of (La0.55Sr0.45)0.99Mn1�yGayO3y

Jules Routbort,*a James Ralph,a R. E. Cook,a C. Claussb and A. R. de Arellano-Lópezb
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Steady-state compressive creep was measured in (La0.55Sr0.45)0.99Mn1�yGayO3 at temperatures from 1200 to
1270 �C in air at stresses (s) from 13 to 40 MPa. The Ga concentration was y ¼ 0, 0.05, and 0.10. Strains to
0.14 were obtained. In the creep equation for strain rate, _ee ¼ An exp(�Q/RT ), stress exponents (n) were between
1.3 and 1.7, indicating that diffusional flow is the dominant creep mechanism, and the activation energy (Q)
was found to vary from 355 kJ mol�1 for y ¼ 0 to 485 kJ mol�1 for y ¼ 0.10.

I. Introduction

The solid-oxide fuel cell is under development for residential
and auxiliary power units, as well as larger industrial power
applications. The cathode for solid–oxide fuel cells must exhi-
bit good electrical conductivity, catalytic properties for oxygen
dissociation, and acceptable ionic conductivity.1

La1�xSrxMnO3 (LSM) has very good electrical conductivity
and catalytic properties for oxygen dissociation, but its ionic
conductivity is low. In addition, LSM is compatible with the
yttria-stabilized zirconia electrolyte. Doping with Sr increases
the electronic conductivity because of Mn oxidation.2,3

Recently, it has been postulated that doping with Ga on the B
site alters the internal equilibrium and increases the oxygen
vacancy concentration. Vaughey, et al. suggested that a conco-
mitant increase in the ionic conductivity was responsible for the
observed lower cathodic overpotentials.1 The increase in ionic
conductivity is attributed to the tendency for Ga to have four-
fold coordination that allows the Mn cations an alternative to
oxidation, e.g., reduction of coordination number.1 It is the ten-
dency of Ga to have four-fold coordination that lies at the core
of the high ionic conductivity of (La, Sr)(Mg, Ga)O3 .

4,5

The mechanical properties of LSM are not well known, but
are important for the long-term operation of fuel cells. Steady-
state creep could be responsible for degradation of contacts
between cells. The effect of Ga additions to LSM on the creep
process is important.
If the mechanism of steady-state creep is known to be the

result of a diffusion-controlled process, measurements can be
used to extract information on the minority defects that also
control other important kinetic processes, such as sintering
and grain growth. The connection between steady-state creep
and the diffusion of the rate-controlling species can be obtained
from a generalized creep equation for steady-state strain rate _ee:

_ee ¼ A
b

d

� �h mb
RT

s
m

� �n

Deff ; ð1Þ

whereA is a model-dependent constant, b is the Burger’s vector,
d is the grain size, m is the shear modulus, s is the stress,Deff is the

effective diffusion constant, and RT has its usual meaning. The
parameter h depends on the diffusion path, e.g., h ¼ 2 for
volume diffusion or 3 for grain–boundary diffusion. The effective
diffusion coefficient can be complex; it depends on both cation
and anion diffusion and whether the overall composition or
the composition along each path is constant.6 In general, if the
diffusion coefficient of one species is much lower than that
of the other species, the effective diffusion coefficient will be
equal to the lowest. If, in addition, one diffusion path dominates
(either volume or grain boundary),Deff in eqn. (1) can be greatly
simplified.
Successful creep and diffusion studies of minority defects in

transition-metal binary oxides were conducted and documen-
ted in the period of approximately 1970–90 (see, for example,
ref. 7). However, such studies in more complex oxides, such as
high-temperature superconductors and other perovskite-struc-
tured oxides that have electronic applications, have only met
with limited success. Reasons such as lack of reliable creep
and diffusion data and the complex nature of the defects and
their diffusion paths can be cited. Nevertheless, there have been
some notable successes. A recent creep investigation of LSM in
which [Sr] ¼ 0.1, 0.2, and 0.3 and oxygen partial pressure
(PO2

), was varied, successfully described the results on the basis
of a defect-chemistry model. The model indicated that cation
vacancies controlled the creep when there was no A-deficiency,
and that oxygen vacancies were rate controlling for A-site defi-
cient LSM at high PO2

for [Sr] ¼ 0.1 and 0.2. The creep activa-
tion energy was 530� 40 kJ mol�1 for [Sr] ¼ 0.2 in air in the
temperature range 1165–1265 �C. In addition, examining the
shift in the crossover in the Brouwer diagram with composi-
tion, the investigators suggested that La vacancy controls
creep in the cation region.2 Earlier creep measurements on
the LSM system measured Q values �460–490 kJ mol�1 which
were suggested to be the result of cation–vacancy diffusion.8,9

The creep of Ga-doped LSM has not been investigated.
However, two creep studies of the Mg-doped (La,Sr)GaO3

(LSGM) system have been published. One was for [Sr] ¼ 0.2
and [Mg] ¼ 0.15, and the other was for [Sr] ¼ 0.1 and
[Mg] ¼ 0.2;10,11 the activation energies were 521 and
426 kJ mol�1, respectively. Oxygen tracer diffusion has been
measured in LSM and found to have an activation energy in
the range of 253–350 kJ mol�1 in the temperature range of
700–1100 �C.12,13 These activation energies are considerably
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lower than the Q values measured for creep. Cook et al.2 ratio-
nalized the discrepancy between the activation energies deter-
mined from creep (in the anion-vacancy-controlled creep
region) and anion self diffusion by attributing it to the fact that
the former measured volume diffusion whereas the latter might
have measured grain-boundary diffusion. Recently, Schulz and
Martin have reported tracer diffusion data for Y, Fe, and Cr in
(La0.8Sr0.2)(Ga0.8Mg0.2)O2.8 .

14,15 The reported activation ener-
gies for cation impurity diffusion were between 180 and 250 kJ
mol�1. Subsequently, Martin16 presented results that showed
that all three of the cation impurities fall on the same Arrhe-
nius plot. The value of Q for cation tracer diffusion, albeit
for impurity diffusion, is much lower than the activation ener-
gies measured in creep. This obviously presents a problem for
the interpretation of creep studies.
These systems have many compositional variables: La/Sr

ratio, B site occupied by Mg or Mn, Ga concentration, and
cation and anion nonstoichiometry. Experimental variables
include microstructure, particularly grain size because it affects
creep, PO2

, and temperature. Investigating all of these vari-
ables would be a prodigious task. Hence, we have narrowly
focused the goals of this investigation to determine if Q for
creep is dependent on [Ga] and/or [Sr]. We have chosen the
intermediate composition (La0.55Sr0.45)0.99Mn1�yGayO3 so
our results would fill in gaps at higher concentrations of Sr.
Mn was chosen as the B site cation because most creep studies
have been performed on this system, and it is of technological
interest as a cathode for a solid-oxide fuel cell.

II. Experimental details

a. Sample preparation

Powders produced by glycine nitrate combustion synthesis
were calcined in air at 1250 �C for 1 h. X-ray diffraction indi-
cated that the powders were phase pure. The calcined powders
were ground and ball-milled in ethanol for 1 week. The final
particle size was between 1 and 2 mm. Powders were sieved
and pressed into bars under a 4100 kg load. The bars were sin-
tered at 1500 �C in air for 6 h. Samples were �98% of theore-
tical density, final grain sizes were �5–10 mm. Scanning
electron photomicrographs of the three microstructures repre-
senting the three compositions are shown in Fig. 1. The grain
sizes remained constant during creep testing.

b. Creep testing

Compressive creep experiments were performed under a con-
stant load in air with a previously described apparatus.17 Both
the load and the temperature could be changed. Axial sample
dimension changes were measured with an extensometer. The
decrease in sample length is converted into a strain (e) whose
derivative with time is used to calculate _ee. Samples 6.3�
2.7� 2.7 mm were deformed into steady state (defined as when
the slope of _ee vs. e becomes constant). Furthermore, steady
state was independent of intermediate changes in temperature
or load. That is, after a change in load or temperature that
would lead to the establishment of a new steady state, followed
by a return to the original load or temperature, the load and/
or temperature returned to its original value, i.e., the slope will
be the same as the original one. Applied stresses were between
13 and 40 MPa, and strains were restricted to <0.15. The
values of stress quoted are the load divided by the initial area.
The correction to account for a changing area is <15%.

III. Results

A typical creep curve measured for an undoped LSM sample,
(La0.55Sr0.45)0.99MnO3 , is shown in Fig. 2. The results are

plotted as _ee vs. e. In this experiment, the temperature was chan-
ged five times at a constant stress to measure five values of Q,
which ranged between 333 and 355 kJ mol�1, and the stress
was changed from 26 MPa to 20 MPa at 1250 �C to measure
n� 1.5. As can be seen from the figure, the slopes of the _ee vs.
e curves are unchanged when the initial temperature is used.
This is clear evidence of the establishment of a steady state that
implies that the structure remains constant, in agreement with
the observation that grain size does not change. A transient
precedes each steady-state strain rate. Creep data for the 5%-
Ga-doped sample, (La0.55Sr0.45)0.99Mn0.95Ga0.05O3 , are shown
in Fig. 3. Again, the slopes of the _ee vs. e curves are constant
indicating that steady-state creep has been achieved. Activa-
tion energies obtained from five temperature changes at 20
MPa were between 392 and 424 kJ mol�1, and changing stress
from 20 to 40 MPa led to n� 1.7.
Because steady-state conditions were achieved, the values of

_ee can be extrapolated to e ¼ 0. Arrhenius plots can be con-
structed from temperature jumps at constant stress. Such plots

Fig. 1 Scanning electron photomicrographs of (A) fractured surface
of LSM, (B) thermally etched surface of LSM for y ¼ 0.05, and (C)
thermally etched surface of LSM for y ¼ 0.10.
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are shown in Fig. 4. The resultant activation energies are
plotted in Fig. 5 and presented in Table 1. The plots for each
composition were made at stresses that varied from 13 to 26
MPa. Although there is only a factor of two difference in
stress, the possibility that the creep mechanism is a function
of stress cannot be ruled out until experiments over a wider
range of stresses can be performed.
Finally, the measured Q values for (La0.55Sr0.45)0.99MnO3

can be compared with values for all of the compositions of
undoped LSM from the literature cited in Table 1. This inves-
tigation has contributed the Q at [Sr] ¼ 0.45; the plot is shown
in Fig. 6. It is worth mentioning that the value of Q measured
for the creep of [Sr] ¼ 0.20 reflects anion-controlled diffusion
and cannot be compared with other results which, according
to the defect model,2 represent cation diffusion. This is prob-
ably best illustrated with a schematic Brouwer diagram for
LSM as shown in Fig. 7. The crossover point between anion
vacancy and cation vacancy control shifts to higher PO2

as
[V 000

La] decreases.
2

IV. Discussion

The stress exponents measured in this investigation ranged
between 1.3 and 1.7 and were somewhat higher than values
reported for the other LSM materials listed in Table 1. How-
ever, the values reported here were obtained from only one
stress jump per composition because the emphasis of this
investigation was the determination of the activation energy.

Therefore, the scatter in the n values could be large. Neverthe-
less, values of n between 1 and 2 are indicative of diffusional
flow.18 Therefore, the rate-controlling step will be the diffusion
of the slowest-moving species. It should be noted that the pre-
vious creep studies identified the deformation mechanism as
grain-boundary sliding, in which the strain is accommodated
by volume diffusion. Self diffusion for these systems has not
been extensively measured although anion self diffusion in
LSM has been measured for [Sr] ¼ 0.05–0.50.12,13 Final judg-
ment must await cation and anion self-diffusion measurements
and creep measurements over a range of PO2

on the same com-
positions, carefully controlling both cation and anion nonstoi-
chiometry.
Creep studies have a practical aspect, namely dimensional

stability of the electrode. If an extrapolation of these results
were made to approximate operating conditions of a solid-
oxide fuel cell (e.g., 800 �C and 2 MPa), it would take �32
years to accumulate 0.1% strain. An extrapolation of over
400 �C and a factor of 10 in stress is to be viewed cautiously.
Attention now focuses on the variation of the activation

energy for creep with [Sr], as shown in Fig. 6. Recall that the
datum for [Sr] ¼ 0.2 was obtained on an A-site deficient
LSM in which anion vacancy diffusion controls creep. It can-
not be considered with the open circles measured for LSM in
which cation diffusion controls creep. The data represented

Fig. 3 Creep data plotted as _ee vs. e for (La0.55Sr0.45)0.99Mn0.95Ga0.05
O3 . The values of s, T, and n are shown.

Fig. 4 Arrhenius plots for undoped LSM and 5 and 10% Ga-doped
LSM. Values of stresses for which plots were made are shown in the
legend. Uncertainties shown are calculated from the least-square fits
to the Arrhenius plots; they do not include uncertainties in tempera-
tures and strain rates.

Fig. 5 Variation of activation energy for creep as a function of
[Ga]. Error bars reflect estimated uncertainties in strain rate, and
temperature.

Fig. 2 Creep data plotted as _ee vs. e for undoped LSM,
(La0.55Sr0.45)0.99MnO3 . Values of s, T, and n, are shown.

2234 Phys. Chem. Chem. Phys., 2003, 5, 2232–2236
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by the open circles is fitted with the model for cation-vacancy-
controlled creep in the following manner. Eqn. (1) can be
rewritten as

_ee ¼ BD0expð�Q=RTÞ ¼ B 0½V 000
La�expð�Q=RTÞ ð2Þ

where [V000
La] is the concentration of the rate-controlling defect.

This leads immediately to the following expression for Q as a
function of [V000

La] with B00 and A0 as constants:

Q ¼ B 00 ln½V 000
La� þ A0: ð3Þ

The cation vacancy relation from ref. 2 at PO2
¼ 2.13� 104

Pa (air) is

½V 000
La� ¼

0:4þ 0:03½Sr0La� � ½Sr0La�
2

6½Sr0La�
ð4Þ

Eqn. (4) was then fitted to the weighted data shown in Fig. 6.
A very simple physical interpretation for the decrease in Q as
[Sr] increases might be based on the fact that Sr is larger than
La and would, therefore, expand the lattice when substituted
for La in LSM. If creep is controlled by the diffusion of cation
vacancies and the lattice is expanded, Q would decrease as a
result of less binding between the ring atoms that surround
the jumping cation. The actual details would depend on
exactly which cation vacancies are involved, cation nonstoi-
chiometry, and the path of the atomic jump. For example,
would an A-site vacancy diffuse by moving to a B site? This
idea would imply that there should be a gradual decrease in
Q with increasing [Sr]. Clearly, creep experiments for various
Sr concentrations should be performed.
Fig. 5 indicates that the activation energy for creep increases

with increasing [Ga]. As mentioned in the introduction, doping

with Ga, which has a preference for a coordination number
lower than six, allows LSM to alter the internal equilibrium,
offering an alternative to Mn oxidation, namely, reduced coor-
dination.1 A significant number of oxygen vacancies can then
be formed to compensate charge.19,20 When the oxygen-ion
vacancy concentration becomes large, the vacancies might
cluster, and attract cation vacancies. The additional attractive
force would increase the self-diffusion activation energy and
increase the Q for creep.
This investigation has not resolved the apparent discrepancy

between the high activation energies measured for creep and
the lower activation energies measured for impurity diffusion
in the (La,Sr)(Mg,Ga)O system. It might be that the diffusion
path for the impurity cation is different from the native cation,
resulting in different activation energies for impurity and self
diffusion. However, it should be noted that diffusion and creep
measurements were not performed on the same material.
Impurity diffusion14,15 was performed for (La0.8Sr0.2)-
(Ga0.8Mg0.2)O2.8 , whereas the creep was measured in
(La0.8Sr0.2)(Ga0.85Mg0.15)O3 .

10 Therefore, not only was the
Ga/Mg ratio different in the two cases, but so was the oxygen
stoichiometry. The A-and/or B-site deficiencies could well
have been different. This work has shown that the activation
energy for creep depends on [Ga] and on [Sr] in the undoped
system that contains Mn in the cation-vacancy diffusion-
controlled regime.
It is clear that additional creep, and cation and anion self-

diffusion experiments will be required to obtain a complete pic-
ture and to relate the results to defect chemistry. The work
described above should be viewed as an initial investigation.
A complete investigation would involve careful A- and B-site
doping, varying cation and anion nonstoichiometry, and mea-
surements over a wider temperature range and, for creep, over
a wider stress region.

V. Conclusions

Although much work remains to be done, this investigation
clearly shows that the activation energy for creep depends on
the concentration of Ga. All of the previous creep studies indi-
cate that creep is controlled by grain-boundary sliding and the
strain is accommodated by diffusion. Therefore, we would pre-
dict that the activation energy for self diffusion of the rate-con-
trolling cation would also be a function of [Ga]. The functional
dependence of Q on [Sr] in the undoped system is consistent
with cation-vacancy-controlled creep.2

Table 1 Tabulated creep data for undoped and Ga-doped LSM, and

LSGM

Material T/�C n Q/kJ mol�1 Ref.

(La0.8Sr0.2)(Ga 0.85Mg0.15)O3 1200–1300 �1 521� 23 10

La0.9Sr0.1MnO3 1150–1300 1.1 490� 30 8

La0.85Sr0.15MnO3 1150–1300 1.1 475� 25 9

La0.75Sr0.25MnO3 1150–1300 0.9 460� 15 9

La0.8Sr0.2MnO3 1150–1300 1.3 530� 40 2

(La0.9Sr0.1)(Ga0.8Mg0.2)O3 950–1350 1.5 426� 9 11

(La0.55Sr0.45)0.99MnO3 1200–1270 �1.5 355� 10 This study

(La0.55Sr0.45)0.99Mn0.95Ga0.05O3 1200–1270 �1.7 405� 10 This study

(La0.55Sr0.45)0.99Mn0.9Ga0.1O3 1200–1270 �1.3 485� 10 This study

Fig. 6 Variation of activation energy for creep as a function of [Sr]
for undoped LSM. The filled point represent creep in the anion-
vacancy-controlled region, whereas the open points represent cation-
diffusion-controlled creep.2 References for data for [Sr]< 0.45 are
given in Table 1. The solid line is the weighted fit of the cation model2

to the open points.

Fig. 7 Schematic Brouwer diagram for cation and anion vacancies in
LSM system (after ref. 2).
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