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A novel tunable transconductor is presented. Input 
transistors operate in the triode region to achieve 
programmable voltage-to-current conversion. These 
transistors are kept in the triode region by a novel 
negative feedback loop which features simplicity, low 
voltage requirements, and high output resistance. A 
linearity analysis is carried out which demonstrates how 
the proposed transconductance tuning scheme leads to 
high linearity in a wide transconductance range. 
Measurement results for a 0.5 μm CMOS implementation 
of the transconductor show a transconductance tuning 
range of more than a decade (15 μA/V to 165 μA/V) and a 
total harmonic distortion of −67 dB at 1 MHz for an input 
of 1 Vpp and a supply voltage of 1.8 V. 
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I. Introduction 

The design of transconductors is a challenging task in emerging 
applications which demand high linearity and high dynamic 
range. Both requirements are difficult to achieve since the 
designer must preserve or even increase the circuit performance at 
reduced supply voltages, facing increased nonidealities of small 
geometry devices and the low power dissipation which is 
mandatory in modern designs, especially in wireless transceivers. 
The transconductor is a basic building block of many analog 
circuits. Due to process tolerances, some degree of 
programmability is required to control the main parameters of 
filters, variable gain amplifiers, or voltage-controlled oscillators. 

Several studies have addressed the design of low-distortion 
transconductors, applying different techniques that linearize the 
voltage-to-current (V-I) conversion in the input stage. These 
methods mainly include source degeneration, signal 
attenuation, adaptive biasing, and cross-coupling [1]-[7]. The 
conventional source degeneration using passive resistors or 
MOS transistors is the preferred operational transconductance 
amplifier (OTA) linearization technique. The use of passive 
resistors precludes continuous tuning, while the use of MOS 
transistors precludes programmability of transconductance in a 
wide range. Besides these techniques, new OTA topologies and 
operation modes, such as weak and moderate inversion, have 
been exploited [8], [9]. Transconductors using active resistors 
based on transistors operating in the triode region is a 
straightforward way to achieve a programmable linear V-I 
conversion. However, these circuits are typically not well 
suited to operate in low-voltage environments. We propose a 
novel and simple scheme to adjust the transconductance. It 
increases the output resistance and ensures linearity in a wide 
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Fig. 1. (a) Conventional regulated-cascode triode structure and
(b) proposed implementation. 
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range of transconductance tuning, requiring a low supply 
voltage for this kind of transconductor. The principle of 
operation of the circuit and the proposed control scheme is 
described in section II. Section III presents simulated and 
measured performance for a 0.5 μm CMOS implementation. 
Some conclusions are given in section IV. Finally, an appendix 
describes in detail the programmability-dependent harmonic 
distortion degradation. 

II. Proposed Transconductor 

1. Principle of Operation 

Figure 1(a) illustrates the known regulated cascode technique 
to maintain constant the drain-source voltage of a triode 
transistor by using a feedback loop formed by a gain stage. This 
gain stage has been implemented in various ways [10], [11]. 
Figure 1(b) shows the proposed implementation of the scheme 
of Fig. 1(a) used in our transconductor. Linear V-I conversion is 
achieved by applying the input voltage to the gate of the triode-
operated transistor M1a, and the remaining transistors are in 
saturation. The input transistor is kept in the triode region by 
means of a regulated cascode topology whose feedback loop is 
made by a flipped voltage follower (FVF) [12] formed by 
transistors M6 and M7 and the right-hand side bias current IB. 

Transistors M6 and M7 implement a very low impedance 
node at the common source of M5 and M6 which sets the DC 
voltage at the drain of input transistor M1a to a value equal to 
the tuning voltage Vprog. Voltage at node X can be considered 
constant due to the very low resistance at node X provided by 
the FVF, which is given by rx=1/(gm6⋅gm7⋅r6), where gm6 and 
gm7 are the small-signal transconductance gains of M6 and M7, 
respectively; and r6 is the small-signal output resistance of M6. 
This circuit solution based on the FVF scheme leads to a 
compact implementation. 

The feedback loop formed by transistors M5 and M2a boosts 

the transconductor output impedance and maintains the output 
nodes isolated from the low impedance drain of the input 
transistor. The boosted output resistance at the drain of M2a is 
approximately 

( )( )out m2 2 v o1 o2

m2 m5 o1 o2 o5

1 1

,
or g r A r r

g g r r r

= ⋅ + + ⋅ +

≅ ⋅ ⋅ ⋅ ⋅
         (1) 

where Av=gm5ro5 is the small-signal voltage gain provided by 
the common-source transistor M5. Note that the tuning voltage 
Vprog of the circuit can be set to near 0 V. This allows a large 
tuning range to be achieved while a low level of distortion in 
the output current is maintained for a given input voltage range. 

The circuit of Fig. 1(a) contains two independent negative 
feedback loops. The first one is formed by the FVF (M6 and M7). 
It is a two-pole feedback loop, so proper design is required to 
enforce stability. The dominant pole corresponds to the high-
impedance internal node (the drain of M6), and the non-
dominant pole corresponds to node X. A stability analysis of the 
FVF is available in [12], which shows that if the capacitance at 
node X is not very large (as in this study) stability can be readily 
enforced by choosing proper dimensions for transistors M6 and 
M7. The situation is similar for the feedback loop formed by M5 
and M2a. It is a two-pole feedback loop, where the dominant pole 
is set by the high-impedance node at the drain of M5, and the 
non-dominant pole is set by the low-impedance node at the 
source of M2a. Again, choosing proper dimensions for M2a and 
M5 can enforce stability. 

The complete scheme for the proposed pseudo-differential 
transconductor is shown in Fig. 2. This figure includes the 
common-mode feedforward (CMFF) circuit required to set the 
common-mode current ICM and a conventional common-mode 
feedback (CMFB) circuit to fix the common-mode output 
voltage. The active load formed by transistors M3a and M4a is a 
voltage-controlled current source which ensures high output 
impedance. 

To enforce that M1 is kept in the triode region, the following 
condition must be satisfied for the entire input signal range: 

id
prog i,CM TN ,

2
V

V V V< − −               (2) 

where Vi,CM and Vid are the common-mode and differential 
input voltages, respectively, and VTN is the threshold voltage of 
the NMOS transistor. It is necessary that M5 remains in the 
saturation region for the complete input range and the 
maximum value of Vprog. To fulfill that VSD5>VSG5–VTP, the size 
of M2, M5 (M6), and the bias current IB must be carefully 
adjusted. A DC level shifter placed between the gate of M2 and 
the drain of M5 could be used to increase the dynamic range 
and relax the design requirements (mainly, avoiding too large 
an aspect ratio for M2). 
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Fig. 2. Differential version of the proposed transconductor. 
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The tunability of the transconductor requires a feedforward 

circuit to control the input common-mode current [13]. A 
current proportional to the common-mode input signal Vi,CM 
and the control signal Vprog denoted as ICM is generated and 
subtracted at the output nodes. This adaptive-bias circuit 
together with the CMFB circuit stabilizes the common-mode 
output voltage over the tuning range, which is mandatory for 
low voltage applications and high linearity levels. The 
combination of both CMFF and CMFB increases the CMRR 
of the proposed pseudo-differential topology. The practical 
cancellation of common-mode components requires good 
matching between transistors in the CMFF, CMFB, and the 
main transconductor, which can be achieved using 
conventional layout techniques. 

An approximate expression for the large-signal drain current 
of the MOSFET input transistors operating in strong inversion 
and the ohmic region is given by 

2
,1

D,1 1 GS,1 TN DS,1

2
prog

1 GS,1 TN prog

( )
2

( ) ,
2

DSV
I V V V

V
V V V

β

β

⎡ ⎤
= − ⋅ −⎢ ⎥

⎢ ⎥⎣ ⎦
⎡ ⎤

= − ⋅ −⎢ ⎥
⎢ ⎥⎣ ⎦

         

(3)

 

where β1=μnCox(W/L)M1 is the transconductance factor of 
transistor M1, Vprog is the control voltage, and VGS,1 is the input 
voltage Vi formed by the applied AC signal vin superimposed 
on the common-mode voltage Vi,CM. The common-mode 
voltage-controlled current ICM is expressed as 

2
prog

CM 1 i,CM TN prog( )
2

V
I V V Vβ

⎡ ⎤
= − ⋅ −⎢ ⎥

⎢ ⎥⎣ ⎦
.         (4) 

Then, the differential output current is 

out D,1a D,1b 1 i+ i- prog 1 id prog( ) ,I I I V V V V Vβ β= − = − ⋅ = ⋅ ⋅   (5) 

and the linear dependence of the transconductance on Vprog is 

Gm=Iout/Vid=β1⋅Vprog.              (6) 

This expression reveals an ideal dependence of the 
transconductance on Vprog. 

According to the previous equations, the pseudo-differential 
transconductor achieves the ideal of perfect linearity. For a fixed 
VDS1 = Vprog, (3) shows that the current in a transistor biased in the 
triode region is linearly proportional to the gate-source voltage. 
For modern small geometry transistors, this ideal linearity is not 
achieved, mainly due to short-channel effects, such as mobility 
reduction, and because the expression of drain current versus 
gate-source voltage has nonlinear terms. To reduce this effect, 
large-channel input transistors have been used. 

2. Distortion Analysis 

Harmonic distortion in the output current of the 
transconductor is mainly due to the variation of the M1 drain-
to-source voltage. Indeed, assuming that the input differential 
voltage (that is, the gate-to-source voltage) is a pure sinusoid, if 
the drain-to-source voltage remains constant and equal to Vprog, 
as in the ideal case, no distortion will arise at the output because 
M1 is a triode-operated transistor. Hence, an AC vds1a 
component superimposed on Vprog must be considered to 
evaluate harmonic distortion. Under this condition, the gate-to-
source and drain-to-source voltages of M1 are given by 
VCM+vi+ and Vprog+vds1a, respectively, thus leading to an AC 
component of the M1 drain current equal to 

d1a 1 CM TN prog i+ ds1a ds1a prog i+
1 .
2

i V V V v v v V vβ
⎡ ⎤⎛ ⎞= − − + − +⎢ ⎥⎜ ⎟
⎝ ⎠⎣ ⎦

 

(7) 
Voltage vds1a (which is due to the second order effects as 

explained in the Appendix) may be expressed by the sum of 
various tones at frequency multiples of the fundamental. In 
particular, considering the high linearity of the overall 
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transconductor, harmonics higher than the third harmonic can 
be ignored because their levels are significantly lower than the 
first two harmonics. Moreover, in adopting a power series 
approach in the frequency domain for the nonlinear elements, it 
is always possible to express vds1a as a polynomial of the input 
voltage, through proper coefficients ai [14], [15], such as 

2 2 3 3
ds1a 1 i+ 2 i+ 3 i+ ,j t j t j tv a V e a V e a V eω ω ω= + +        (8) 

where Vi+ is the amplitude of the input voltage. Substituting (8) 
into (7), disregarding all components at frequencies higher than 
3ω, and evaluating the terms at frequency ω, 2ω, and 3ω, 
harmonic distortion factors HD2 and HD3 are obtained as 
follows: 

( )

( )

2
CM TN prog 2 1 1

2 i+

CM TN prog 1 prog

1 1
2 21 ,

12
2

V V V a a a
HD V

V V V a V

⎡ ⎤− − + −⎢ ⎥⎣ ⎦≅
⎡ ⎤− − +⎢ ⎥⎣ ⎦

 (9a) 
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CM TN prog 3 2 1 2
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CM TN prog 1 prog

1
1 2 ,

14
2

V V V a a a a
HD V

V V V a V

⎡ ⎤− − + −⎢ ⎥⎣ ⎦≅
⎡ ⎤− − +⎢ ⎥⎣ ⎦

   (9b) 

where coefficients ai depend on biasing and transistors size. 
Their analytical expressions are derived in the appendix and 
shown in (A6)-(A8). The relationships given in (9) are useful 
since they allow evaluation of how biasing affects distortion, as 
is demonstrated in the next section, where simulated and 
experimental results are given. 

3. Noise Analysis 

Due to the relatively large transistor lengths employed and 
the high bandwidth of the transconductor, the contribution of 
thermal noise is dominant as compared to Flicker noise. The 
approximate expression for the thermal output current noise 
density can be written as 

2
N,out mB m5

B m4a m4b 2
1 m5 1

116 3 ,
3 2

i g g
k T g g

f r g r
⎡ ⎤+

≈ + + +⎢ ⎥Δ ⎣ ⎦
  (10) 

where kB is the Boltzmann's constant, T is the absolute 
temperature, gmi is the small-signal transconductance of 
transistor Mi, gmB is the transconductance of the current source 
IB at the drain of M5, and r1 is the resistance of the triode 
transistor M1. Note that, for large r1, the contribution of the 
current source M4 dominates the output noise current, but for 
low r1 output noise current is dominated by M1, M5 , and IB. 

III. Simulation and Experimental Results 

The transconductor shown in Fig. 2 was designed and 

Table 1. Transistor dimensions of OTA (bias condition: VDD=1.8 V, 
IB=10 µA, VCP=0.6 V, Vcn=1.1 V, Vi,CM=1.3V). 

Transistor W (µm) L (µm) 

M1a, M1b, M1c 20 3 

M2a, M2b, M2c 100 0.6 

M3a, M3b, M3c 50 1.2 

M3d 12.5 1.2 

M4a, M4d 30 1.2 

M4b 90 1.2 

M4c 120 1.2 

M5, M6, M8, M9 10 1.2 

M7 30 1.2 

M10a, M10b, M10c 10 1.2 

M11a, M11b, M11c 7.5 0.6 

M12a, M12b, M12c, M12d 5 0.6 

M13a, M13b 30 1.2 
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Fig. 3. Programmability range for the proposed OTA: (a) 
differential output current and (b) transconductance. 
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fabricated in a 0.5 μm CMOS technology. This non-silicided 
CMOS process has 3 metal layers, 2 poly layers, and a high 
resistance layer. The process is for 5 V applications, and the 
nominal threshold voltages for the PMOS and NMOS  
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transistors are VTP = −0.96 V and VTN = 0.67 V, respectively. 
The transconductor was tested with a single supply voltage of 
1.8 V and a biasing current IB of 10 μA. The transistor 
dimensions and component values employed are shown in 
Table 1. The common-mode input (output) voltage Vi,CM 
(Vo,CM) was set to 1.3 V. 

The linear performance of a transconductor is given by the 
input voltage range for which the transconductance is constant. 
The simulated DC transfer characteristics are shown in Fig. 3. 
The differential output current for the tuning interval from  
Vprog = 25 mV to 250 mV is shown in Fig. 3(a), and the 
corresponding transconductance (dIo/dVid) is shown in Fig. 3(b) 
for values between 15 μA/V and 165 μA/V. Note the excellent 
linearity obtained in a large tuning range. This interval allows 
Gm-C filters based on this transconductor to operate in a wide 
frequency range. 

For the nominal transconductance corresponding to Vprog = 
125 mV, the common-mode input current ICM = 43 µA; 
therefore, the power consumption of the core transconductor 
together with the CMFF circuit is 170 μA. The CMFB circuit 
adds an extra current of 30 µA. Thus, the total quiescent power 
dissipation is approximately 360 µW. 

Figure 4 shows a microphotograph of the fabricated chip with 
0.054 mm2 of silicon area. Figure 5 shows the measured total 
harmonic distortion (THD) results for a differential input signal 
of 1 MHz and variable voltage amplitude. The transconductor 
was loaded with a load resistance RL= 1/Gm to convert the 
output current into voltage. The bandwidth for the proposed 
transconductor is 22 MHz. Figure 6 shows the measured output 
spectrum for a 1 MHz input signal of peak-to-peak amplitude of 
1 V, featuring −67 dB of THD for the nominal transconductance 
at Vprog = 125 mV. Note that this result is in agreement with the 
theoretical analysis developed in subsection II.2.  

In particular, due to the balanced structure of the 
transconductor, THD is mainly affected by the HD3 expressed 

 

 

Fig. 4. OTA microphotograph.  

by (9b) which is plotted in Fig. 7. Note also that there is a wide 
range for Vprog where the transconductor operates with very 
high linearity. However, for values of Vprog higher than 150 mV, 
distortion significantly increases. 

The high-frequency performance of the transconductor was  
 

 

Fig. 5. Measured total harmonic distortion factors versus 
differential output voltage at 1 MHz. 
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Fig. 6. Measured THD at 1 MHz, 1 Vpp input (output) signal. 
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Fig. 7. Theoretical THD expressed by (9b) as function of Vprog.
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evaluated by applying a two-tone input signal at 9.95 MHz and 
10.05 MHz, respectively, with 1 V peak to peak for each input 
tone. The circuit maintains a moderate linearity with a measured 
IM3 of –55 dB as shown in Fig. 8. Table 2 summarizes the main 
performance parameters of the transconductor, and Table 3 
compares various OTA parameters of the proposed 
transconductor with those presented in recent works. Note that 
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 SWT 8 s 

Fig. 8. Measured IM3 at 10 MHz, 1 Vpp input signals. 
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Table 2. Nominal parameters for the proposed transconductor. 

Parameter Value 

Technology 0.5 μm CMOS 

Threshold voltage VTP = −0.96 V, VTN = 0.67 V 

Supply voltage 1.8 V 

Gm range 15 − 165 μA/V 

Bandwidth 22 MHz 

THD @ 1MHz, 1 Vpp −67 dB 

IM3 @ 10MHz, 1 Vpp −55 dB 

Power consumption 360 μW 

Silicon area 0.054 mm2 

 

the results of our proposed transconductor are comparable to 
recent high linearity transconductors featuring a high input 
level/power supply ratio. The proposed transconductor can be 
used in continuous-time filters with high linearity requirements 
without increasing the complexity. This is due to the control 
branch shown in Fig. 2 which gives the common-mode current, 
which can be generated only once and is mirrored to all the  
transconductors. Furthermore, when various transconductors in 
the filter have common output nodes, they can share a CMFB 
circuit, which leads to more compact filter topologies. 

IV. Conclusion 

A novel control scheme for a CMOS triode transconductor 
was presented. A theoretical distortion analysis demonstrated 
that linearity is preserved for a large transconductance range. 

The circuit achieves high linearity with a compact topology. 
Experimental results confirmed the favorable features of the 
circuit. The transconductor achieved a THD of −67 dB for a  
1 MHz, 1 Vpp input voltage at a 1.8 V supply voltage and only 
dissipated 360 μW. 

Appendix 

In this appendix, the expression of coefficients ai appearing 
in the polynomial (8) is analytically derived. Let us consider 
the feedback structure between M1a, M2a and M5 shown in Fig. 
2. The drain current of M5 in saturation is given by 

( ) ( )
2

D5 5 X prog g5 tp 5 X D5 d5
1 1 ,
2

i V V v V V V vβ λ⎡ ⎤= − − − + − −⎣ ⎦  

(A1) 
where the channel length modulation expressed by coefficient 
λ5 has been considered, and both the AC and DC voltage 
components have been included. 

Since iD5 is always equal to IB, which is a constant current, 
the AC components vd5 and vg5 appearing in (A1) (the source 
voltage at node X is kept constant by the FVF) must cancel 

 

Table 3. Transconductor comparison of recent works. 

Reference 
CMOS  

technology 
Power  
supply 

Power  
consumption

Gm range HD3 IM3 

[2] 0.35 μm 1.8 V 1.1 mW 630-1310 μA/V -58 dB (0.3 Vpp @ 10 MHz) − 

[5] 0.35 μm 3.3 V 6.6 mW 160-340 μA/V − -70 dB (1.4 Vpp @ 26 MHz)

[9] 0.5 μm  3.3 V 1.25 mW 50-200 μA/V -83 dB (1 Vpp @ 1 MHz) -71 dB (1 Vpp @ 1 MHz) 

This work 0.5 μm 1.8 V 0.36 mW 15-165 μA/V -67 dB (1 Vpp @ 1 MHz) -55 dB (1 Vpp @ 10 MHz)
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each other out. Thus, by performing the calculations in (A1), 
deriving the AC component for the drain current of M5, and 
setting it to zero, the relationship which vd5 and vg5 have to 
satisfy may be found. In particular, observing that vd5=vg2a and 
vg5=vds1a, this relationship is 

g2a ds1a ,v k v≅ ⋅               (A2) 

where X prog tp 5 X G2 5[ 2 /( )] [(1 ( ) / ]V V V V Vλ λ− − − ⋅ + − depends on 

the biasing, and the approximation holds for 
ds1a B 52 /v I β<< . The AC component of the drain current of 

M1a has been derived in the main text in (7), and its result is 
equal to 

d1a 1 CM TN prog i+ ds1a ds1a prog i+
1 .
2

i V V V v v v V vβ
⎡ ⎤⎛ ⎞= − − + − +⎢ ⎥⎜ ⎟
⎝ ⎠⎣ ⎦

 

(A3) 

However, it can be also obtained as the current of transistor 
M2a in saturation by 

( ) ( )( )2

d1a 2 g2a ds1a 2 G2a prog TN g2a ds1a
1 .
2

i v v V V V v vβ β= − + − − −  

(A4) 

Equating (A3) with (A4) and substituting (A2) for vg2a in the 
resulting expression, a relationship containing only vds1a and vi+ 
is found: 

( ) ( )
( ) ( )

2 2
1 2 ds1a 1 ds1a 1 CM TN prog

2 G2 prog TN ds1a 1 prog i+

1 1
2
    1 0.

ik v v v V V V

V V V k v V v

β β β β

β β

+
⎡ ⎤ ⎡+ − − − − −⎣⎣ ⎦

⎤− − − − ⋅ − =⎦

(A5) 

Finally, substituting (8) into (A5) and equating the terms with 
the same exponential, coefficients ai are found, and the result is 
equal to 

( ) ( )( )
prog

1
2

CM TN prog G2 prog TN
1

1

V
a

V V V V V V kβ
β

=−
− − − − − −

,  (A6) 

( )

( ) ( )( )

22
1 1

1
2

2
CM TN prog G2 prog TN

1

11 1 1
2

,
1

k a a
a

V V V V V V k

β
β
β
β

⎧ ⎫⎡ ⎤⎪ ⎪− + − ⋅ ⋅⎨ ⎬⎢ ⎥
⎪ ⎪⎣ ⎦⎩ ⎭=−

− − − − − −
 (A7) 

( )

( ) ( )( )

22
1 2

1
3

2
CM TN prog G2 prog TN

1

1 1 1

1

k a a
a

V V V V V V k

β
β

β
β

⎧ ⎫⎡ ⎤⎪ ⎪− + − ⋅ ⋅⎨ ⎬⎢ ⎥
⎪ ⎪⎣ ⎦⎩ ⎭= −

− − − − − −
. 

(A8) 
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