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Abstract

In this work we use the notion of vectorial critical point and Karush-Kuhn-Tucker
critical point for some class of vectorial optimization problems between Banach
spaces. By using these notions, we obtain a characterization for weakly efficient
solutions for such optimization problems.
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1 Introduction and formulation of the problem

In scalar optimization, the Kuhn-Tucker (or Karush-Kuhn-Tucker) conditions
are sufficient for optimality when all the functions are convex. In recent years,
considerable progress has been made to weaken the convexity hypothesis and
so to increase the class of functions with this property.

There is an important contribution in this direction given by Hanson in [1]. He
considered invex functions. For these functions the classical Kuhn-Tucker con-
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ditions are sufficient to obtain the global optimality. Later, Martin [2] observe
that in problems without constraints the invexity is a condition necessary and
sufficient to obtain the global optimality. Thus, the following questions were
raised: what is the bigger class of functions where the Kuhn-Tucker optimal-
ity conditions are necessary and sufficient to guarantee the global optimality?
The answer to this question was given by Martin in [2] for scalar problems.

We consider the following scalar problem without contraints

Minimize θ(x)

subject to

x ∈ S ⊂ Rn





(P )

where θ(x) is a scalar function, and S ⊆ Rn.

We recall that x is a stationary point if ∇θ(x) = 0. and the optimization
problem with constraints

Minimize θ(x)

subject to

−gj(x) ≤ 0 j = 1, ..., m

x ∈ S ⊂ Rn





(CP )

where θ(x) is a scalar function,g = (g1, ..., gm) : Rn−→ Rm is a vectorial
function, both differentiable in an open set S ⊆ Rn.

We recall that (x, u) ∈ S × Rm is a Kuhn-Tucker stationary point [3], if

∇θ(x) + uT∇g(x) = 0,

uT g(x) = 0,

u ≥ 0

Also, we recall that θ : S ⊆ Rn−→ R be a differentiable function at invex in
x if there exists a vectorial function η : S × S −→ Rn such that

θ(x)− θ(x) ≥ η(x, x)T∇θ(x), ∀x ∈ S

and we say invex over S0 ⊆ S, if it is invex at each point x ∈ S0.

Definition 1.1 (Hanson and Mond, [1]) The function θ : S ⊆ Rn−→ R is
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called pseudoinvex at u ∈ S if there exists a function η : S × S → Rn such
that

< ∇θ(u), η(x, u) > ≥ 0 =⇒ θ(x) ≥ θ(u)

∀ x ∈ S. The function θ is called pseudoinvex on S if θ is pseudoinvex in each
point of S.

We observe that, for the scalar case, the concepts of invexity and pseudoinvex-
ity coincide. In [2], Martin proved the following result for problems without
constraints:

Theorem 1.2 The function θ is invex over S if and only if each stationary
point is a global minimum of θ over S.

However, for problems with constraints, the invexity only guarantee the suffi-
ciency of optimality. Martin [2] define a class of problems where each Kuhn-
Tucker critical point is in fact a global optimum, in this way, he obtain the
full characterization of the solutions for the problem with constraints.

We recall that problem (CP) is KT- invex on S if there exists a vectorial
function η : S × S −→ Rn such that, ∀ x1, x2 ∈ S with g(x1) ≤ 0 and
g(x2) ≤ 0, then

θ(x1)− θ(x2) ≥ η(x1, x2)
T∇θ(x2)

−η(x1, x2)
T∇gj(x2) ≥ 0,∀j ∈ I(x2)

where I(x2) := {j ∈ {1, ...,m} : gj(x2) = 0} is the index set of active restric-
tions in x2. The result given by Martin [2] is:

Theorem 1.3 Every Kuhn-Tucker stationary point for (CP) is a global min-
imizer if only if problem (CP) is KT-invex.

In this work, we will show that Theorems 1.2 and 1.3 even are true for vectorial
problems between Banach spaces. In what follows we will use the following
notations. Let F be a Banach space, C ⊂ F a pointed closed, convex cone, (i.
e., C∩(−C) = {0}), not equal to F and with nonempty interior. Let x, y ∈ F ,
we use the following notations in the rest of the paper

x 5C y ⇔ y − x ∈ C

x ≤C y ⇔ y − x ∈ C \ {0}
x <C y ⇔ y − x ∈ int C.
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We recall that h : E −→ F is Fréchet differentiable at point x ([4]) (to
short, differentiable at point x) if there exists a continuous linear mapping
Dh(x) : E −→ F such that

lim
z→0

‖h(x + z)− h(x)−Dh(x)h‖F

‖z‖E

= 0.

The function h is say differentiable on S ⊂ E if h is differentiable in each point
of S. Let E and F be two Banach spaces and f : E −→ F and g : E −→ G
two differentiable functions over the nonempty, open subset of E, S ⊂ E, and
we assume that F is ordered partially by the closed, convex, pointed cone,
with nonempty interior, C ⊂ F (with C 6= E), and K ⊂ G is a closed, convex
cone not equal to G. The problems are going to are:

(1) Without constraints

Minimize f(x)

subject to

x ∈ S ⊂ E





(V OP )

(2) With constraints

Minimize f(x)

subject to

−g(x) ∈ K

x ∈ S ⊂ E





(CV OP )

We observe that for (VOP) the feasible set is S and for (CVOP) is

F := {x ∈ S : −g(x) ∈ K}.

The following concepts are well known

Definition 1.4 The feasible point x ∈ S is called efficient solution if does
not exist x feasible such that f(x)−f(x) ∈ C \{0} (or, equivalently, x feasible
is efficient if does not exist x feasible such f(x) ≤C f(x)).

Definition 1.5 The feasible point x ∈ S is called weakly efficient solution
if does not exist x feasible such that f(x)− f(x) ∈ int C (or equivalently, x is
a weakly efficient solution if does not exist x feasible such that f(x) <C f(x)).

We denote by F ∗ the topological dual of F , and 〈·, ·〉 the duality pairing
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between F ∗ and F . Given C ⊂ F a convex cone, we define the dual cone of
C,

C∗ := {ξ ∈ F ∗ : 〈ξ, x〉 ≥ 0,∀x ∈ C}.

The paper is organized as follows, in Section 2, we study the problem without
constraints, we give a definition of pseudoinvex function for our problem and
we will prove that, when f is pseudoinvex, the vectorial critical point is a
necessary and sufficient condition for weakly efficiency. In the Section 3, we
study the problem with constraints, we define the problems KT-invex, and we
show that this class of problems, the Kuhn-Tucker critical point is a necessary
and sufficiency condition for weakly efficiency.

2 Necessary and Sufficiency conditions for weakly efficient for the
problem without constraints

Let E and F be two Banach spaces, C ⊂ F a closed, convex cone with
nonempty interior and assume that it is not the whole space F . S an open
subset, nonempty, of E and f : E −→ F a differentiable function on S.

Definition 2.1 x ∈ S is a vectorial critical point of (VOP) if there exists
λ∗ ∈ C∗ \ {0} such that λ∗ ◦Df(x) = 0.

The following result was given in [5].

Theorem 2.2 If x ∈ S is a weakly efficient solution (VOP), then x is a
vectorial critical point.

Definition 2.3 Let f : S ⊂ E −→ F be a differentiable function in the open
set S. We say that f is pseudoinvex in S with respect to η if there exist a
vectorial function η : S × S −→ E such that

x1, x2 ∈ S, f(x1)− f(x2) <C 0 ⇒ Df(x2)η(x1, x2) <C 0

(where Df(x2)η(x1, x2) denote the value of the function Df(x2) ∈ L(E, F )
applied in the vector η(x1, x2) ∈ E and L(E, F ) is the space of continuous,
linear operators from E into F ). To prove that the vectorial critical points are
coincident with the weakly efficient solutions, when the function f is pseu-
doinvex we recall the following result, see [6].

Lemma 2.4 Let F be a Banach space, C ⊂ E a closed, convex cone and
ξ ∈ C∗ \ {0}. Then, 〈ξ, x〉 > 0 when x ∈ int C.
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Lemma 2.5 If in the problem (VOP), f is pseudoinvex and x ∈ S is a vec-
torial critical point, then x is a weakly efficient solution.

PROOF. In fact, if we assume that x ∈ S is vectorial critical point and not
a weakly efficient solution, we prove a contradiction. In this case, there exists
λ∗ ∈ C∗ \ {0} such that

λ∗ ◦Df(x) = 0 (1)

and exists x ∈ S such that

f(x)− f(x) ∈ − int C. (2)

On the other hand, since f is pseudoinvex, we obtain from (2) that

Df(x)η(x, x) ∈ − int C,

and (by Lemma 2.4)

λ∗(Df(x)η(x, x)) = [λ∗ ◦Df(x)]η(x, x) < 0,

this last inequality is contradictory with (1). Therefore, x is a weakly efficient
solution of (VOP).

The following result is a generalization of the Farkas Theorem, see [6], pp.
59-60.

Lemma 2.6 Let X, Y and V be normed vector spaces, A ∈ L(X,V ) and
M ∈ L(X,Y ) given, T ⊆ V and Q ⊆ Y convex cones with int Q 6= ∅ and
b ∈ −T , s ∈ −Q. Let the cone [A, b]T (T ∗) be a weak-*closed. Then, the system





Ax + b ∈ −T

Mx + s ∈ − int Q

has not solution if, and only if, there exists τ ∈ Q∗ \ {0}, λ ∈ T ∗ such that





τM + λA = 0

〈λ, b〉 = 0

〈τ , s〉 = 0
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Theorem 2.7 The function f in (VOP) is pseudoinvex in S if, and only if,
each vectorial critical point is a weakly efficient solution of (VOP).

PROOF: From Lemma 2.5, if f is pseudoinvex, then each vectorial critical
point is a weakly efficient solution of (VOP). Now, we assume that each vec-
torial critical point is a weakly efficient solution of (VOP). We fix x ∈ S and
consider the following systems:

f(x)− f(x) ∈ − int C, x ∈ S (3)

Df(x)u ∈ − int C, u ∈ E. (4)

We will prove that, the system (3) has a solution, then the system (3) has also
a solution. In fact, if (3) has solution, then x is not efficient and, by hypothesis,
is not a vectorial critical point, i.e., does not exist λ∗ ∈ C∗ \ {0} such that
λ∗ ◦Df(x) = 0. Taking: A = 0 ∈ L(E, F ), M = Df(x) ∈ L(E, F ), b = 0 ∈ E
and s = 0 ∈ F, we deduce that does not exist τ ∈ Q∗ \ {0} and λ ∈ Q∗ such
that





τM + λA = 0

〈λ, b〉 = 0

〈τ , s〉 = 0.

On the other hand, by Lemma 2.6, there exists u ∈ E such that





Au + b = 0 ∈ −Q

Mu + s = Df(x)u ∈ − int Q.

In particular, the system (3) has solution u ∈ E. Setting: η(x, x) = u, we
obtain that f is pseudoinvex.
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3 Necessary and sufficiency conditions for the weakly efficiency for
the problem with constraints

In this Section, we consider the following optimization problem:

Minimize f(x)

subject to

−g(x) ∈ −K

x ∈ S ⊂ E





(CV OP )

where E,F and G are Banach spaces, C ⊂ F and K ⊂ G are closed, convex
pointed cones, not equal to F and G, respectively, int C 6= ∅ , S ⊂ E is
an open set nonempty and the functions f : E −→ F and g : E −→ G are
differentiable on S.

Definition 3.1 We say that (CVOP) is KT-invex in x2 ∈ F if there exists
a vectorial function η : S × S −→ E such that for each x1 ∈ F , is satisfied:





f(x1)− f(x2) ∈ − int C ⇒ Df(x2)η(x1, x2) ∈ − int C

−Dg(x2)η(x1, x2) ∈ K.

and if the problem is KT-invex for each x ∈ F , we say that (CVOP) is KT-
invex.

In the finite-dimensional case, Osuna-Gómez, Rufián-Lizana and Rúız-Canales
[7] proved that to be a vector Kuhn- Tucker point is a necessary and suficient
condition to weakly efficiency:

Theorem 3.2 When E = Rn, F = Rp, G = Rm, C = Rp
+ and K = Rm

+ ,
every vector Kuhn-Tucker point is a weakly efficient solution if and only if
problem (CVOP) is KT-invex.

Now, we will establish the analogous infinite-dimensional results.

Theorem 3.3 (sufficiency) If (CVOP) is a KT-invex problem, then each
Kuhn-Tucker Critical point is a weakly efficient solution of (CVOP).
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PROOF. We assume that (CVOP) is KT-invex and let x be a Kuhn-Tucker
critical point. In this case, there exist λ∗ ∈ C∗ \ {0} and µ∗ ∈ K∗ such that

λ∗ ◦Df(x) + µ∗ ◦Dg(x) = 0

〈µ∗, g(x)〉 = 0

and, in particular,

λ∗ ◦Df(x)η(x, x) + µ∗ ◦Dg(x)η(x, x) = 0, ∀x ∈ F
〈µ∗, g(x)〉 = 0.

(3)

We assume the contrary, i.e., that x is not a weakly efficient solution of
(CVOP). Then there exists x ∈ S, g(x) ∈ −K such that f(x)−f(x) ∈ − int C
and, since λ∗ ∈ C∗ \ {0}, then by Lemma 2.4 we have

λ∗(Df(x)η(x, x)) < 0. (4)

From (3) and (4), we obtain

µ∗(Dg(x)η(x, x)) > 0. (5)

Since (CVOP) is KT-invex, −Dg(x)η(x, x) ∈ K and µ∗ ∈ K∗, we have

µ∗(Dg(x)η(x, x)) ≤ 0,

this is contradictory with (5) and, therefore, x is a weakly efficient solution of
(CVOP).

Theorem 3.4 (Necessity) Asuume that each x is a Kuhn-Tucker critical point
of (CVOP) the set [Dg(x), g(x)]T (K∗) is weak-* closed. Then, if each Kuhn-
Tucker critical point of (CVOP) is weakly efficient, then, (CVOP) is KT-invex.

PROOF. Let x ∈ S be fixed, we consider the systems:





Df(x)u ∈ − int C

Dg(x)u ∈ −K
(6)
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and




f(x)− f(x) ∈ − int C

g(x) ∈ −K.
(7)

Then, to prove that (CVOP) is KT-invex in x is equivalently to prove that
the system (6) has solution u ∈ E when the system (7) has solution x ∈ S
(in such case, it is sufficient to take η(x, x) = u ∈ E). We assume that the
system (7) has solution. Then, x is not weakly efficient and, by hypothesis,
x is not a Kuhn-Tucker vectorial critical point, and, therefore, does not exist
τ ∈ C∗ \ {0} and λ ∈ K∗ such that

τM + λA = 0,

〈λ, b〉 = 0,

〈τ , s〉 = 0

(where A = Dg(x) ∈ L(E, G), M = Df(x) ∈ L(E, F ), b = g(x) ∈ −K and
s = 0 ∈ −C). From Lemma 2.6, the system





Au + b ∈ −K

Mx + s ∈ − int C

has solution, or, equivalently, there exists u ∈ E such that





Dg(x)u + g(x) ∈ −K

Df(x)u ∈ − int C.

But

Dg(x)u = [Dg(x)u + g(x)]− g(x) ∈ −K −K ⊆ −K

and, therefore, the system (7) has solution.

4 Conclusion

This work is an extension of the results obtained in [7] for the Banach space
context with dominance structure given by cones. Moreover, the results given
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in [7] are a generalization for the vectorial case of the results obtained by
Martin [2] in the scalar case. These results characterized the invex functions
(that are coincident with the pseudoinevex functions in the case scalar), as
those for which their stationary points are global minimum.
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