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bUniversité Gaston Berger de Saint-Louis, UFR SAT, Département de Mathématiques, 234, Saint-Louis, Sénégal.
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Abstract
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1. Introduction

In the paper [5] we proved the existence and uniqueness of mild solution for the following abstract
stochastic neutral partial functional integro-differential equations

d [u(t) +G(t, u(t− r(t)))] = A [u(t) +G(t, u(t− r(t)))] dt

+
[∫ t

0 B(t− s)[u(s) +G(s, u(s− r(s)))]ds+ F (t, u(t− δ(t)))
]
dt

+σ(t)dBH(t) for t ∈ [0, T ],

u0 = ϕ, i.e., u(t) = ϕ(t), −r ≤ t ≤ 0,

(1.1)

where A is the infinitesimal generator of a strongly continuous semigroup (T (t))t≥0 on a Hilbert space X with
domain D(A), B(t) is a closed linear operator on X with domain D(B) ⊃ D(A) which is independent of t,
BH is a fractional Brownian motion on a real and separable Hilbert space Y . The functions r, δ : [0,+∞)→
[0, τ ](τ > 0) are continuous, and G,F : [0,+∞)×X → X,σ : [0,+∞)→ L0

2(Y,X) are appropriate functions.
Here L0

2(Y,X) denotes the space of all Q-Hilbert-Schmidt operators from Y into X (see Section 2).
Now we are interested in analyzing the long-term behavior of the mild solutions to our problem (1.1). In
particular, the exponential decay of solutions to zero in mean square. However, before carrying out such
study, we will also improve result about existence and uniqueness of mild solution in [5] in the sense that the
nonlinear term F (·, ·), which contained a continuous variable delay, will be allowed here to be of functional
form f(t, xt), i.e., depending of the segment solution xt : [−τ, 0]→ X given by xt(s) = x(t+s) for s ∈ [−τ, 0].
With this general formulation we can also relax the continuity assumption on the delay function δ to simply
measurability. But other types of delay, such a distributed bounded delay can be also included in this set-up
(see, for instance [7, Remark 2.1] for more details). Consequently, our model to be analyzed is

d [u(t) +G(t, u(t− r(t)))] = A [u(t) +G(t, u(t− r(t)))] dt

+
[∫ t

0 B(t− s)[u(s) +G(s, u(s− r(s)))]ds+ f(t, ut)
]
dt

+σ(t)dBH(t) for t ∈ [0, T ],

u0 = ϕ, i.e., u(t) = ϕ(t), −r ≤ t ≤ 0,

(1.2)

These equations provide useful and important mathematical models for engineering problems and for this
reason have received much attention in recent years (see, e.g. [2],[11],[16],[18], [4],[13] and references therein).
The literature related to neutral differential equations of the type (1.2) is not vast, and this is why we aim to
continue the research initiated in [5]. Thus, in Section 2, we introduce some notations, concepts concerning
resolvent operators, basic results about fractional Brownian motion and the Wiener integral over Hilbert
space. In Section 3, we establish the existence and uniqueness of mild solutions for the system (1.2) by using
a fixed point theorem as a main tool. Section 4 is devoted to prove our stability results with the help of a
Gronwall-like lemma proved in [9] and which has revealed as a helpful tool in proving stability results for
stochastic differential equations with delays. Finally, in Section 5 we will exhibit an example to illustrate
our previous abstract results.

2. Wiener Process and deterministic integro-differential equations

2.1. Wiener process

In this section we introduce the fractional Brownian motion as well as the Wiener integral with respect
to it. We also establish some important results which will be needed throughout the paper.
Let (Ω,F ,P) be a complete probability space.
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Definition 2.1. Given H ∈ (0, 1), a continuous centered Gaussian process βH(t), t ∈ R, with covariance
function

RH(s, t) = E
[
βH(t)βH(s)

]
=

1

2
(t2H + s2H − |t− s|2H), t, s ∈ R

is called a two-sided one-dimensional fractional Brownian motion (fBm), and H is the Hurst parameter.

Now we aim at introducing the Wiener integral with respect to the one-dimensional fBm βH .
Let T > 0 and denote by Λ the linear space of R-valued step function on [0, T ], that is φ ∈ Λ if

φ(t) =
n−1∑
i=1

xi1[ti,ti+1)(t),

where t ∈ [0, T ], xi ∈ R and 0 = t1 < t2 < · · · < tn = T. For φ ∈ Λ we define its Wiener integral with
respect to βH as ∫ T

0
φ(s)dβH(s) =

n−1∑
i=1

xi(β
H(ti+1)− βH(ti)).

Let H be the Hilbert space defined as the closure of Λ with respect to the scalar product 〈1[0;t], 1[0;s]〉H =
RH(t, s).
Then the mapping

φ =

n−1∑
i=1

xi1[ti,ti+1) →
∫ T

0
φ(s)dβH(s)

is an isometry between Λ and the linear space span{βH , t ∈ [0, T ]}, which can be extended to an isometry
between H and the first Wiener chaos of the fBm spanL

2(Ω){βH , t ∈ [0, T ]} (see [17]). The image of an
element ϕ ∈ H by this isometry is called the Wiener integral of ϕ with respect to βH . Our next goal is to
give an explicit expression of this integral. To this end, consider the Kernel

KH(t, s) = cHs
1
2
−H
∫ t

s
(u− s)H−

3
2uH−

1
2du

where cH =

√
H(2H−1)

B(2−2H,H− 1
2

)
, with B denoting the Beta function and t ≤ s. It is not difficult to see that

∂KH

∂t
(t, s) = cH(

t

s
)
1
2
−H(t− s)H−

3
2 .

Consider the linear operator K∗H : Λ −→ L2([0, T ]) given by

(K∗Hϕ)(s) =

∫ t

s
ϕ(t)

∂K

∂t
(t, s)dt.

Then
K∗H1[0;t] (s) = KH(t, s)1[0;t] (s)

and K∗H is an isometry between Λ and L2([0, T ]) that can be extended to Λ (see [1]).
Considering W = {W (t), t ∈ [0, T ]} defined by

W (t) = βH((K∗H)−11[0;t]),

it turns out that W is a Wiener process and βH has the following Wiener integral representation:

βH(t) =

∫ t

0
KH(t, s)dW (s).
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In addition, for any ϕ ∈ Λ, ∫ T

0
ϕ(s)dβH(s) =

∫ T

0
(K∗Hϕ)(t)dW (t)

if and only if K∗Hϕ ∈ L2([0, T ]).
Also denoting L2

H([0, T ]) = {ϕ ∈ Λ, K∗Hϕ ∈ L2([0, T ])}, since H > 1
2 , we have

L
1
H ([0, T ]) ⊂ L2

H([0, T ]), (2.1)

see [14]. Moreover, the following useful result holds:

Lemma 2.2. (Nualart [15]) For ϕ ∈ L
1
H ([0, T ]),

H(2H − 1)

∫ T

0

∫ T

0
|ϕ(r)||ϕ(u))||r − u|2H−2drdu ≤ cH‖ϕ‖2

L
1
H ([0,T ])

.

Next we are interested in considering a fBm with values in a Hilbert space and giving the Definition of
the corresponding stochastic integral.

Let (X, ‖.‖X , (., .)X) and (Y, ‖.‖Y , (., .)Y ) be separable Hilbert spaces. Let L(Y,X) denote the space of
all bounded linear operator from Y to X. Let Q ∈ L(Y,X) be a non-negative self-adjoint operator . Denote

by L0
Q(Y,X) the space of ϑ ∈ L(Y,X) such that ϑQ

1
2 is a Hilbert-Schmidt operator. The norm is given by

|ϑ|2L0
Q(Y,X) =

∣∣ϑQ 1
2

∣∣
HS

= tr(ϑQϑ∗).

Then ϑ is called a Q-Hilbert-Schmidt operator from Y to X.
Let {βHn (t)}n∈N be a sequence of two-sided one-dimensional standard fractional Brownian motions mutually
independent on (Ω,F ,P). When one considers the following series

∞∑
n=1

βHn (t)en, t ≥ 0,

where {en}n∈N is a complete orthonormal bais in X, this series does not necessarily converge in the space
Y . Thus we consider a Y -valued stochastic process

BH
Q (t) =

∞∑
n=1

βHn (t)Q
1
2 en, t ≥ 0.

If Q is a non-negative self-adjoint trace class operator, this series converges in the space Y , that is, it holds
that BH

Q (t) ∈ L2(Ω, Y ). Then, we say that the above BH
Q (t) is a Y -valued Q-cylindrical fractional Brownian

motion with covariance operator Q. For example, if {σn}n∈N is a bounded sequence of non-negative real
numbers such that Qen = σnen, assuming that Q is a nuclear operator in Y (that is,

∑∞
n=1 σn <∞), then

the stochastic process

BH
Q (t) =

∞∑
n=1

βHn (t)Q
1
2 en =

∞∑
n=1

√
σnβ

H
n (t)en, t ≥ 0,

is well-defined as a Y -valued Q-cylindrical fractional Brownian motion.
Let ϕ : [0, T ] → L0

Q(Y,X) such that

∞∑
n=1

∥∥∥K∗H(ϕQ
1
2 en)

∥∥∥
L2([0,T ];X)

<∞. (2.2)
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Definition 2.3. Let ϕ : [0, T ] → L0
H(Y,X) satisfy (2.2). Then, its stochastic integral with respect to the

fBm BH
Q is defined, for t ≥ 0, as follows∫ t

0
ϕ(s)dBH

Q (s) :=
∞∑
n=1

∫ t

0
ϕ(s)Q

1
2 enβ

H
n (s) =

∞∑
n=1

∫ t

0
(K∗H(ϕQ

1
2 en))(s)dW (s). (2.3)

Notice that if
∞∑
n=1

‖ϕQ
1
2 en‖

L
1
H ([0,T ];X)

<∞,

then in particular (2.2) holds, which follows immediately from (2.1).

Now we end this subsection by stating the following result which is fundamental to prove our result. It
can proved by similar arguments as those used to prove Lemma 2 in Caraballo et al., [6].

Lemma 2.4. If ψ : [0, T ]→ L0
2(Y,X) satisfies

∫ T
0 ‖ψ‖

2
L02
ds <∞ then the above sum in (2.3) is well defined

as a X-valued random variable and we have

E

∥∥∥∥∫ t

0
ψ(s)dBH(s)

∥∥∥∥2

≤ 2Ht2H−1

∫ t

0
‖ψ(s)‖2L02 ds.

Proof. See [3].

2.2. Partial integro-differential equations in Banach spaces

In this section, we recall some fundamental results needed to establish our results. Regarding the theory
of resolvent operators we refer the reader to [12]. Throughout the paper, X is a Banach space, A and
B(t) are closed linear operators on X. Y represents the Banach space D(A) equipped with the graph norm
defined by

‖y‖Y := ‖Ay‖X + ‖y‖X for y ∈ Y.

The notations C([0,+∞);Y ),B(Y,X) stand for the space of all continuous functions from [0,+∞) into Y ,
the set of all bounded linear operators from Y into X, respectively. We consider the following Cauchy
problem  v′(t) = Av(t) +

∫ t

0
B(t− s)v(s)ds, for t ≥ 0,

v(0) = v0 ∈ X.
(2.4)

Definition 2.5. ([12]). A resolvent operator for Eq. (2.4) is a bounded linear operator valued function
R(t) ∈ L(X) for t ≥ 0, satisfying the following properties:

(i) R(0) = I and ‖R(t)‖ ≤ Neβt for some constants N and β.

(ii) For each x ∈ X, R(t)x is strongly continuous for t ≥ 0.

(iii) R(t) ∈ L(Y ) for t ≥ 0. For x ∈ Y, R(·)x ∈ C1([0,+∞);X) ∩ C([0,+∞);Y ) and

R′(t)x = AR(t)x+

∫ t

0
B(t− s)R(s)xds

= R(t)Ax+

∫ t

0
R(t− s)B(s)xds for t ≥ 0.
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The resolvent operators play an important role to study the existence of solutions and to give a variation
of constants formula for nonlinear systems. We need to know when the linear system (2.4) has a resolvent
operator. For more details on resolvent operators, we refer the reader to [12]. The following Theorem gives
a satisfactory answer to this problem and it will be used in this work to develop our main results.

In what follows we suppose the following assumptions :

(H1) A is the infinitesimal generator of a strongly continuous semigroup {T (t)}t≥0 on X.

(H2) For all t ≥ 0, B(t) is a closed linear operator from D(A) to X, and B(t) ∈ B(Y,X). For any y ∈ Y ,
the map t→ B(t)y is bounded, differentiable and the derivative t→ B′(t)y is bounded and uniformly
continuous on R+.

Theorem 2.6. ([12, Theorem 3.7]) Assume that (H1)-(H2) hold. Then there exists a unique resolvent
operator for the Cauchy problem (2.4).

In what follows, we establish some results for the existence of solutions of the following integro-differential
equation  v′(t) = Av(t) +

∫ t

0
B(t− s)v(s)ds+ q(t), for t ≥ 0,

v(0) = v0 ∈ X,
(2.5)

where q : [0,+∞[→ X is a continuous function.

Definition 2.7. ([12]). A continuous function v : [0,+∞)→ X is said to be a strict solution of Eq. (2.5) if
(i)v ∈ C1([0,+∞);X) ∩ C([0,+∞);Y ),
(ii) v satisfies Eq. (2.5) for t ≥ 0.

Remark 2.8. From this Definition, we deduce that v(t) ∈ D(A), and the function B(t− s)v(s) is
integrable, for all t ≥ 0 and s ∈ [0, t].

Theorem 2.9. ([12, Theorem 2.5]). Assume that (H1)-(H2) hold . If v is a strict solution of Eq. (2.5),
then

v(t) = R(t)v0 +

∫ t

0
R(t− s)q(s)ds for t ≥ 0. (2.6)

Accordingly, we have the following Definition.

Definition 2.10. ([12]). A function v : [0,+∞)→ X is called a mild solution of (2.5) if v satisfies the
variation of constants formula (2.6), for v0 ∈ X.

The next Theorem provides sufficient conditions for the regularity of solutions of Eq. (2.5). Namely we
establish a sufficient condition ensuring when a mild solution is a strict one.

Theorem 2.11. ([12, Corollary 3.8]) Let q ∈ C1([0,+∞);X) and v be defined by (2.6). If v0 ∈ D(A),
then v is a strict solution of Eq. (2.5).

3. Existence of mild solutions for Eq (1.1)

In this section, we establish the existence and uniqueness of mild solutions of Eq. (1.2) under Lipschitz
conditions. We use the following hypotheses to prove our results.

(H3) f : [0, T ]× C([−τ, 0];X)→ X is a family of non-linear operators defined for almost every t (a.e. t)
which satisfies
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(f.1) The mapping t ∈ (0, T )→ f(t, ξ) ∈ X is Lebesgue measurable, for a.e. t and for all ξ ∈ C([−τ, 0];X).

(f.2) There exists a constant cL > 0 such that for all φ, ψ ∈ C([−τ, 0];X)

‖f(t, φ)− f(t, ψ)‖2X ≤ cL ‖φ− ψ‖
2
C([−τ,0];X) ,

(f.3) There exists a constant cf > 0 such that for any x, y ∈ C([−τ, T ];X) and t ∈ [0, T ],∫ t

0
‖f(s, xs)− f(s, ys)‖2X ds ≤ cf

∫ t

−τ
‖x(s)− y(s)‖2X ds.

(f.4) ∫ T

0
‖f(s, 0)‖2Xds <∞.

(H4) The function G : [0,+∞[×X → X satisfies the following conditions: there exist positive constant
c3, c4, 0 < c3 < 1 such that, for all t ∈ [0, T ] and x, y ∈ X

‖G(t, x)−G(t, y)‖X ≤ c3 ‖x− y‖X ,

‖G(t, x)‖2X ≤ c4(1 + ‖x‖2X).

(H5) The function G is continuous in the quadratic mean sense:
For all x ∈ C([0, T ], L2(Ω, X)), limt→s E ‖G(t, x(t))−G(s, x(s))‖2X = 0.
(H6) The function σ : [0,+∞[→ L0

2(Y,X) satisfies∫ T

0
‖σ(s)‖2L02 ds <∞, ∀T > 0.

Remark 3.1. Observe that if f is defined for each φ ∈ C([−τ, 0];X) as f(t, φ) := F (t, φ(−δ(t))), where
F : [0,+∞)×X → X satisfies (H3)’ below, and δ(·) : R→ [0, τ ] is continuously differentiable with
δ′(t) ≤ δ∗ < 1 for all t ∈ R, then it holds (H3).
(H3)’ The function F : [0,+∞[×X → X satisfies the following conditions: there exist positive constant
c1, c2 such that, for all t ∈ [0, T ] and x, y ∈ X,

‖F (t, x)− F (t, y)‖X ≤ c1 ‖x− y‖X ,

‖F (t, x)‖2X ≤ c2(1 + ‖x‖2X).

Moreover, we assume that ϕ ∈ C([−τ, 0], L2(Ω, X)).
We now introduce the concept of mild solution of the Eq.(1.2).

Definition 3.2. An X-valued process {u(t), t ∈ [−τ, T ]}, is called a mild solution of Eq.(1.2) if
u ∈ C([−τ, 0], L2(Ω, X)), u(t) = ϕ(t) for t ∈ [−τ, 0], and, for t ∈ [0, T ], satisfies

u(t) +G(t, u(t− r(t))) = R(t) [ϕ(0)−G(0, ϕ(−r(0)))] +
∫ t

0 R(t− s)f(s, us)ds

+
∫ t

0 R(t− s)σ(s)dBH(s) P− a.s.

(3.1)

To show our main results we first recall the following Lemma.

Lemma 3.3. (Caraballo et al. [8, Lemma 1]). For z, z
′ ∈ X and 0 < c < 1,

‖z‖2X ≤
1

1− c
∥∥z − z′∥∥2

X
+

1

c

∥∥z′∥∥2

X
.
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Theorem 3.4. ([5, theorem 3.3]) Under the assumptions (H1)-(H6), for every ϕ ∈ C([−τ, T ], L2(Ω, X))
there exists a unique mild solution u to Eq.(1.1).

Proof. As the proof parallels the steps in [5] we only emphasize the computations concerning the term f ,
and the reader is referred to the paper [5] for more details on the other terms.
For the given T > 0 and the initial function ϕ, we consider CT := C([−τ, T ], L2(Ω, X)), the Banach space
of all continuous functions from [−τ, T ] into L2(Ω, X) equipped with the supremum norm
‖ζ‖CT

= supz∈[−τ,T ](E ‖ζ(z)‖2)1/2, and define the set

ST (ϕ) := {u ∈ C([−τ, 0], L2(Ω, X)) : u(s) = ϕ(s), for s ∈ [−τ, 0]}.

ST (ϕ) is a closed subset of CT , it is a complete metric space for the distance induced by the norm ‖.‖CT
.

Then we define the operator Γ on ST (ϕ) by Γ(u)(t) = ϕ(t) for t ∈ [−τ, 0], and for t ∈ [0, T ]

Γ(u)(t) = R(t) [ϕ(0)−G(0, ϕ(−r(0)))]−G(t, u(t− r(t)))

+
∫ t

0 R(t− s)f(s, us)ds+
∫ t

0 R(t− s)σ(s)dBH(s).

(3.2)

Then, in order to prove the existence and uniqueness of mild solutions to Eq. (1.2) one has to find a fixed
point for the operator Γ.
To this end we split the proof into two steps.

Step 1: For arbitrary u ∈ ST (ϕ), we first prove that t→ Γ(u)(t) is continuous on the interval [0, T ] in the
L2(Ω, X)-sense. Let 0 < t < T and |h| be sufficiently small. Then, for any fixed u ∈ ST (ϕ), we have

‖(Γ(u)(t+ h)− (Γ(u)(t)‖X
≤ ‖(R(t+ h)−R(t)) [ϕ(0)−G(0, ϕ(−r(0)))]‖X

+ ‖G(t+ h, u(t+ h− r(t+ h)))−G(t, u(t− r(t)))‖X

+

∥∥∥∥∫ t+h

0
R(t+ h− s)f(s, us)ds−

∫ t

0
R(t− s)f(s, us)ds

∥∥∥∥
X

+

∥∥∥∥∫ t+h

0
R(t+ h− s)σ(s)dBH(s)−

∫ t

0
R(t− s)σ(s)dBH(s)

∥∥∥∥
X

=
∑

1≤i≤4

Ii(h).

Then terms I1(h), I2(h) and I4(h) are analyzed as in [5]. As for I3(h), we will argue by assuming that
h > 0 (similar estimates hold when h < 0). Then

I3(h) ≤
∥∥∥∥∫ t

0
(R(t+ h− s)−R(t− s))f(s, us)ds

∥∥∥∥
X

+

∥∥∥∥∫ t+h

t
R(t+ h− s)f(s, us)ds

∥∥∥∥
X

≤ I31(h) + I32(h).

Thanks to Hölder’s inequality,

E|I31(h)|2 ≤ tE
∫ t

0
‖(R(t+ h− s)−R(t− s))f(s, us)‖2X ds.

Again exploiting properties (i) and (ii) of Definition 2.5, and (f.3)-(f.4), we have for each s ∈ [0, t],

lim
h→0

(R(t+ h− s)−R(t− s))f(s, us) = 0,

and
‖(R(t+ h− s)−R(t− s))f(s, us)‖2X ≤ Ñ ‖f(s, us)‖2X ∈ L2([0, t]× Ω),
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where Ñ = [2N2e2β(t+h) + 2N2e2βt]. Then, by the Lebesgue Majorant Theorem, we conclude that

lim
h→0

E|I31(h)|2 = 0.

Next, using property (ii) of Definition 2.5, condition (f.3) and Hölder’s inequality, it follows

E|I32(h)|2 ≤ E
(∫ t+h

t
‖R(t+ h− s)‖‖f(s, us)‖Xds

)2

≤ N2e2βTE
∫ t+h

t
‖f(s, us)‖2Xds

≤ hN2e2βTE
(∫ t+h

t
‖f(s, us)‖2ds

)2

≤ hN2e2βTE
∫ T

0
‖f(s, us)− f(s, 0) + f(s, 0)‖2Xds

≤ 2hN2e2βTE
∫ T

0
(‖f(s, us)− f(s, 0)‖2X + ‖f(s, 0)‖2X)ds

≤ 2hN2e2βT

(∫ T

−τ
cfE‖u(s)‖2Xds+

∫ T

0
‖f(s, 0)‖2Xds

)
,

and then
lim
h→0

E|I32(h)|2 = 0.

Hence, we can conclude that the function t → Γ(u)(t) is continuous on [0, T ] in the L2-sense.

Step 2: Now we show that Γ is a contracting mapping in ST1(ϕ) for some small enough T1 < T .
For every u, v ∈ ST (ϕ) and t ∈ [0, T ], by using Lemma 3.3 we obtain

‖Γ(u)(t)− Γ(v)(t)‖2X ≤ 1

c3
‖G(t, u(t− r(t)))−G(t, v(t− r(t)))‖2X

+
1

1− c3

∥∥∥∥∫ t

0
R(t− s)(f(s, us)− f(s, vs))ds

∥∥∥∥2

X

.

Owing to the Lipschitz properties of F and G, combined with Hölder’s inequality and (f.3), we obtain

E ‖Γ(u)(t)− Γ(v)(t)‖2X ≤ c3E ‖u(t− r(t))− v(t− r(t))‖2X

+
1

1− c3
N2c2

fe
2βtβ−1t

∫ t

0
E ‖u(s)− v(s)‖2X ds.

Hence
sup

s∈[−τ,t]
E ‖Γ(u)(t)− Γ(v)(t)‖2X ≤ α(t) sup

s∈[−τ,t]
E ‖u(s)− v(s)‖2X

where α(t) = c3 + 1
1−c3N

2c2
1e

2βtβ−1t.
By condition (iii) in (H4) we have α(0) = c3 < 1.Then there exists 0 < T1 ≤ T such that 0 < α(T1) < 1
and Γ is a contraction mapping on ST1(ϕ) and therefore has a unique fixed point, which is a mild solution
of Eq. (1.2) on [−τ, T1]. This procedure can be repeated a finite number of times in order to extend the
solution to the entire interval [−τ, T ]. This completes the proof.
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4. Stability

Now, in this section we will analyze the asymptotic behavior of mild solutions to (1.1). We would like to
mention that, although it could be carried out a program to study the more general and functional case
(1.2), we have preferred to consider this simpler one which, in fact, is the case considered in [5] for the
existence of solutions, and will investigate the more general case of (1.2) in a subsequent paper.

Thus, for this purpose we need to assume further assumptions.

(H7) The corresponding resolvent operator R(t) of E.q (2.4) verifies the following : there exists
λ > 0, M ≥ 0 such that ||R(t)|| ≤Me−λt, ∀t ≥ 0.
(H8) There exist nonnegative real numbers Qi ≥ 0 and continuous functions ξi : [0,+∞) −→ R+ with
ξi(t) ≤ Pie−λt(i = 1, 2), Pi > 0, such that for all t ≥ 0 and x, y ∈ X,

‖F (t, x)‖2X ≤ Q1‖x‖2X + ξ1(t), (4.1)

‖G(t, y)‖2X ≤ Q2‖y‖2X + ξ2(t). (4.2)

(H9)The function σ : [0,+∞) −→ L0
2(Y,X) satisfies∫ +∞

0
eλs‖σ(s)‖2L02ds <∞.

Let us recall the following lemma, which is Lemma 3.1 in [9].

Lemma 4.1. Let y : [−τ,+∞) −→ [0,+∞) be a function and suppose that there exist some positive
constants γ > 0, λ1 > 0, (i = 1, 2, 3) such that :

Y (t) ≤

 λ1e
−γt + λ2 sup

θ∈[−r,0]
y(t+ θ) + λ3

∫ t

0
e−γ(t−s) sup

θ∈[−r,0]
y(s+ θ)ds, t ≥ 0

λ1e
−γt, t ∈ [−τ, 0].

If λ1 +
λ3

γ
< 1, then y(t) ≤Me−µt, (t ≥ −r), where µ is a positive root of the algebraic equation

λ2 +
λ3

γ − µ
eµr = 1 and M = max

{
λ1(γ − µ)

λ3eµr
, λ1

}
.

The main result of this section is given in the next theorem.

Theorem 4.2. Suppose that the conditions (H1), (H2), (H3)’, (H4) - (H8) hold and that

k +
4Q1M

2

λ2(1− k)
< 1

where k :=
√
Q2. Then the mild solution of Eq.(1.2) exponentially decays to zero in mean square. In other

words, there exist positive constants θ > 0 and K(θ, ϕ) > 0 such that

E‖u(t)‖2X ≤ K(θ, ϕ)e−θt ; ∀t ≥ −r.

Proof. Since

k +
4Q1M

2

λ2(1− k)
< 1

then, it is possible to choose a suitable ε > 0 small enough such that

k +
4Q1M

2

λ(λ− ε)(1− k)
< 1.
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Let δ = λ− ε and let u(t) be the mild solution of Eq.(1.2) . For t ≥ 0, we have

E‖u(t)‖2X ≤ 1

k
E‖G(t, u(t− r(t)))‖2X +

4

1− k
E
{
‖R(t)(ϕ(0) +G(0, ϕ(−r(0))))‖2X

+

∥∥∥∥∫ t

0
R(t− s)F (s, u(s− δ(s)))ds

∥∥∥∥2

X

+

∥∥∥∥∫ t

0
R(t− s)σ(s)dB(s)

∥∥∥∥2

X

}
≤

4∑
i=1

Ii(t).

By condition (H8) one easily has

I1(t) =
1

k
E‖G(t, u(t− r(t)))‖2X

≤ 1

k

{
Q2E‖u(t− r(t))‖2X + ξ2

}
≤ k E‖u(t− r(t))‖2X +K1e

δt, (4.3)

where K1 =
P2

k
.

By conditions (H7) and (H8), we deduce

I2(t) ≤ 8

1− k
E‖R(t)(ϕ(0))‖2X +

8

1− k
E‖R(t)(G(0, ϕ(−r(0))))‖2X

≤ 8M2

1− k
e−2λtE‖ϕ(0)‖2X +

8M2

1− k
e−2λt

{
Q2E‖ϕ(−r(0))‖2X + P2

}
≤ K2e

−δt, (4.4)

where K2 =
8M2

1−K

[
E‖ϕ(0)‖2X +

{
Q2E‖ϕ(−r(0))‖2X + P2

}]
.

Again by conditions (H7), (H8) and Hölder’s inequality, we obtain

I3(t) =
4

1− k
E
(∫ t

0
Me−λ(t−s)‖F (s, u(s− δ(s)))‖Xds

)2

≤ 4M2

1− k

∫ t

0
e−λ(t−s)ds

∫ t

0
e−λ(t−s)

{
Q1E‖u(s− δ(s))‖2X + ξ1(s)

}
ds

≤ 4Q1M
2

λ(1− k)

∫ t

0
e−λ(t−s)E‖u(s− ρ(s))‖2Xds+K4e

−δt (4.5)

where K4 =
4M2

λ(1− k)

P1

λ− δ
.

By virtue of condition (H6) and by Lemma 2.2, we derive that

I4(t) ≤ 4M2

1−K
2Ht2H−1

∫ t

0
e−2λ(t−s)‖σ(s)‖2Lo2 ds

≤ 4M2

1− k
2Ht2H−1

∫ t

0
e−λ(t−s)‖σ(s)‖2L02ds

≤ e−δt �
4M2

1− k
2Ht2H−1e−εt

∫ t

0
eλs‖σ(s)‖2L02 .ds (4.6)
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Therefore, condition (H9) ensures the existence of a positive constant K4 such that

4M2

1− k
2Ht2H−1e−εt

∫ t

0
eλs‖σ(s)‖2L02ds ≤ K4 for all t ≥ 0.

Then
I4(t) ≤ K4 e

−δt,

Inequalities (4.3) - (4.5) and (4.6) together imply that :

E‖u(t)‖2X ≤

 γe−δt + k sup
−r≤τ≤0

E‖u(t+ τ)‖2X + k′
∫ t

0
e−δ(t−s) sup

−r≤τ≤0
E‖u(s+ τ)‖2Xds, t ≥ 0

γe−δt t ∈ [−τ, 0]

where

γ = max

( 4∑
i=1

Ki, sup
−r≤τ≤0

E‖ϕ(τ)‖2X
)

and

k′ =
4Q1M

2

λ(1− k)
.

Since k +
k′

δ
< 1, then it follows from Lemma 4.1 that there exist positive constant θ > 0 and K̃ > 0

such that
E‖u(t)‖2X ≤ K̃e−θt , ∀t ≥ −τ

which is our desired inequality. The proof is thus complete.

5. Application

Neutral stochastic differential equations arise in many real world problems such as physics, population
dynamics, ecology, biological systems, biotechnology, optimal control, theory of elasticity, electrical
networks, and so forth. We consider the following stochastic partial neutral functional integro-differential
equation with finite delays r1, r2(∞ > r > ri ≥ 0, i = 1, 2) :

∂

∂t
[x(t, ξ) + g(t, x(t− r1, ξ))] =

∂2

∂ξ2
[x(t, ξ) + g(t, x(t− r1, ξ))]

+

∫ t

0
b(t− s) ∂

2

∂ξ2
[x(s, ξ) + g(s, x(s− r1, ξ))] ds

+f̃(t, x(t− r2, ξ)) + σ(t)
dBH

dt
(t)

x(t, 0) + g(t, x(t− r1, 0)) = 0 for t ≥ 0

x(t, π) + g(t, x(t− r1, π)) = 0 for t ≥ 0

x(θ, ξ) = x0(θ, ξ), ϕ(s, .) ∈ L2[0, T ], −r ≤ θ ≤ 0, 0 ≤ ξ ≤ π;

(5.1)

where BH denotes a fractional Brownian motion, g, f̃ : R+ × R→ R, and b : R+ → R are continuous

functions. Let Y = L2([0, π]) and en :=
√

2
π sin(nx), (n = 1, 2, 3, · · · ).



T. Caraballo, M. A. Diop, A. A. Ndiaye, J. Nonlinear Sci. Appl. 7 (2014), 407–421 419

Then (en)n∈N is a complete orthonormal basis in Y . Let X = L2([0, π]) and A = ∂2

∂z2
, with domain

D(A) = H2([0, π]) ∩H1
0 ([0, π]). Then, it is well known that Az = −

∑∞
n=1 n

2〈z, en〉en for any z ∈ X, and
A is the infinitesimal generator of a strongly continuous semigroup of bounded linear operators {T (t)}t≥0

on X, which is given by T (t)φ =
∑∞

n=1 e
−n2t〈φ, en〉en, φ ∈ D(A). In order to define the operator

Q : Y → Y , we choose a sequence {σn}n≥1 ⊂ R+ and set Qen = σnen, and assume that
tr(Q) =

∑∞
n=1

√
σn <∞. Define the process BH(s) by

BH =
∞∑
n=1

√
λnγn(t)en,

where H ∈ (1
2 , 1) and {γHn }n∈N is a sequence of two-sided one-dimensional fractional Brownian motions

mutually independent. We suppose that

(1) For t ≥ 0, f̃(t, 0) = g(t, 0) = 0.

(2) There exists a positive constant l1, such that

|f̃(t, ζ1)− f̃(t, ζ2)| ≤ l1|ζ1 − ζ2|

for t ≥ 0 and ζ1, ζ2 ∈ R;

(3) There exists a positive constant l2, such that

|f̃(t, ζ)| ≤ l2(1 + |ζ|2)

for t ≥ 0 and ζ ∈ R;

(iv) There exists a positive constant l3, 0 < πl23 < 1, such that

|g(t, ζ1)− g(t, ζ2)| ≤ l3|ζ1 − ζ2|

for t ≥ 0 and ζ1, ζ2 ∈ R;

(4) There exists a positive constant l4, such that

|g(t, ζ)| ≤ l4(1 + |ζ|2)

for t ≥ 0 and ζ ∈ R;

(5) The function σ : [0,+∞[→ L0
2(L2([0, π]), L2([0, π])) satisfies∫ T

0
‖σ(s)‖2L02 ds <∞, ∀T > 0.

(6) There exist nonnegative real numbers Q3, Q4 > 0 and continuous functions
ξ3(.), ξ4(.) : [0,+∞) −→ R+ with ξi ≤ Pie−λt(i = 3, 4), Pi > 0, such that ∀t ≥ 0 and y ∈ R

|f̃(t, y)|2 ≤ Q3|y|2 + ξ3(t), (5.2)

|g(t, y)|2 ≤ Q4|y|2 + ξ4(t). (5.3)

For t ≥ 0 and φ ∈ X, define the operators F,G : R+ ×X → X for ξ ∈ [0, π] by

G(t, φ)(ξ) = g(t, φ(ξ)), for ξ ∈ [0, π] and φ ∈ X,

F (t, φ)(ξ) = f̃(t, φ(ξ)), for ξ ∈ [0, π] and φ ∈ X.

If we put {
u(t)(ξ) = u(t, ξ) for t ≥ 0 and ξ ∈ [0, π]
ϕ(θ)(ξ) = u0(θ, ξ) for θ ∈ [−r, 0] and ξ ∈ [0, π],
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then Eq. (5.1) takes the following abstract form

d [u(t) +G(t, u(t− r1))] = A [u(t) +G(t, u(t− r1))] dt

+

[∫ t

0
B(t− s)[u(s) +G(s, u(s− r1))]ds+ F (t, u(t− r2))

]
dt

+σ(t)dBH(t) for t ≥ 0,

u(t) = ϕ, t ∈ [−r, 0]

Moreover, if b is a bounded and C1 function such that b′ is bounded and uniformly continuous, then (H1)
and (H2) are satisfied and hence, by Theorem 2.2, Eq. (5.1) has a resolvent operator (R(t))t≥0 on X. As
a consequence of the continuity of f and g and assumption (1) it follows that F and G are continuous on
R+ ×X with values in X. By assumption (2), one can see that

‖F (t, φ1)− F (t, φ2)‖X ≤ πL1 ‖φ1 − φ2‖X ,

demonstrating that F (t, u) satisfies a Lipschitz condition. Similarly, it can also be verified the same
property for G(t, u).
Furthermore, by assumption (iii) it follows that ‖F (t, φ1)‖X ≤ l2π(1 + ‖φ1‖2X), t ≥ 0.
The remaining conditions can be verified similarly. Thus, all the assumptions of Theorem 3.3 in [5] and
Theorem 4.2 are fulfilled. Therefore, the existence and stability of a unique mild solution of Eq. (5.1)
follows.
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