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Abstract

The cycle structure of a Latin square autotopism Θ = (α, β, γ) is the
triple (lα, lβ, lγ), where lδ is the cycle structure of δ, for all δ ∈ {α, β, γ}.
In this paper we study some properties of these cycle structures and, as a
consequence, we give a classification of all autotopisms of the Latin squares
of order up to 11.

MSC 2000: 05B15, 20N05.
Keywords: Latin Square, Autotopism Group.

1 Introduction

A quasigroup [1] is a nonempty set G endowed with a product ·, such that
if any two of the three symbols a, b, c in the equation a · b = c are given
as elements of G, the third is uniquely determined as an element of G. It
is equivalent to say that G is endowed with left and right division. Two
quasigroups (G, ·) and (H, ◦) are isotopic [2] if there are three bijections
α, β, γ from H to G, such that γ(a ◦ b) = α(a) · β(b), for all a, b ∈ H.

The triple Θ = (α, β, γ) is called an isotopism from (H, ◦) to (G, ·). The
multiplication table of a quasigroup is a Latin square. A Latin square L of
order n is a n × n array with elements chosen from a set N = {x1, ..., xn},
such that each symbol occurs precisely once in each row and each column.
The set of Latin squares of order n is denoted by LS(n). The calculus of
the number of Latin squares of order n is an open problem. However, this
number is known up to order 11 [7]. A general overview of Latin squares
and their applications can be seen in [3] or [5].

Throughout this paper, we will consider N = {0, 1, ..., n−1} and Sn will
denote the symmetric group on N . The cycle structure of a permutation
δ ∈ Sn is the sequence (l1, l2, ..., ln), where li is the number of cycles of
length i in δ. For a given δ ∈ Sn, define the set of its fixed points by
Fix(δ) = {i ∈ N : δ(i) = i}. If L = (li,j) ∈ LS(n), the orthogonal array
representation of L is the set of n2 triples {(i, j, li,j) : i, j ∈ N}. The
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previous set is identified with L and so, it is written (i, j, li,j) ∈ L, for all
i, j ∈ N . Moreover, since L is the multiplication table of a quasigroup,
then distinct triples of L never agree in more than one element.

An isotopism of a Latin square L ∈ LS(n) is a triple Θ = (α, β, γ) ∈
In = Sn × Sn × Sn. So, α, β and γ are permutations of rows, columns and
symbols of L, respectively. The resulting square LΘ is also a Latin square
and it is said to be isotopic to L. In particular, if L = (li,j), then LΘ =
{(i, j, γ−1

(

lα(i),β(j)

)

: i, j ∈ N}. If L1 and L2 are two distinct Latin squares
of order n, then LΘ

1 6= LΘ
2 . If α = β = γ, the isotopism is an isomorphism.

If γ = ǫ, the identity map on N , Θ is called a principal isotopism. An
isotopism which maps L to itself is an autotopism. Moreover, if it is an
isomorphism, then it is called an automorphism. If its permutations are
n cycles, then L is said to be diagonally cyclic. Indeed, diagonally cyclic
Latin squares of even order do not exist [8]. (ǫ, ǫ, ǫ) is called the trivial
autotopism. The stabilizer subgroup of L in In is its autotopism group,
U(L) = {Θ ∈ In : LΘ = L}. For a given L ∈ LS(n), Θ = (α, β, γ) ∈ U(L)
and σ ∈ S3, it is verified that (πσ(0)(Θ), πσ(1)(Θ), πσ(2)(Θ)) ∈ U(Lσ), where

πi gives the (i + 1)th component of Θ, for all i ∈ {0, 1, 2}. For a given
Θ ∈ In, the set of all Latin squares L such that Θ ∈ U(L) is denoted by
LS(Θ). The cardinality of LS(Θ) is denoted by ∆(Θ). Specifically, the
computation of ∆(Θ) for any isotopism Θ ∈ In is at the moment an open
problem having relevance in secret sharing schemes related to Latin squares
[4].
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0 1 2 3

1 0 3 2

2 3 0 1

3 2 1 0

1

A

Θ = ((0 1)(2 3), (1 2), ǫ)

⇒ LΘ
1 =

 

1 3 0 2
0 2 1 3
3 1 2 0
2 0 3 1

!

Figure 1: Isotopism permuting 1st with 2nd and 3rd with 4th rows and 2nd

with 3rd columns.

The following result gives some necessary conditions of the possible
non-trivial Latin square autotopisms:

Theorem 1 (McKay, Meynert and Myrvold [6]). Let L ∈ LS(n). Every
non-trivial Θ = (α, β, γ) ∈ U(L) verifies one of the following assertions:

a) α, β, γ have the same cycle structure with at least one and at most
⌊n

2 ⌋ fixed points.

b) One of α, β, γ has at least one fixed point and the other two have the
same cycle structure without fixed points.
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c) None of α, β, γ has fixed points. �

The classification given in the previous theorem depends on the cycle
structures of the permutations of each Latin square autotopism and on their
fixed points. In this paper, we are interested in giving a complete catalogue
with all the possible cycles structures of any autotopism of a Latin square
of order up to 11. This catalogue seems to be useful to study the open
problem of the calculus of the number ∆(Θ). Specifically, we prove in
Section 3 that the number of Latin squares having a given isotopism Θ ∈ In

in its autotopism group only depends on the cycle structure of Θ.

The structure of the paper is the following: in Section 2, some general
results about Latin square autotopisms are reviewed. In Section 3, we define
the cycle structure of a Latin square autotopism and we study several of
its properties. All these properties have been implemented in a computer
program to give in Section 4 the classification of all autotopisms of the
Latin squares of order up to 11.

2 Some general results

Every permutation of Sn can be written as the composition of pairwise
disjoint cycles. So, from now on, for a given Θ = (α, β, γ) ∈ In, we will
consider that, for all δ ∈ {α, β, γ}:

δ = Cδ
0 ◦ Cδ

1 ◦ ... ◦ Cδ
kδ−1, (1)

where:

i) For all i ∈ {0, 1, ..., kδ − 1}, one has Cδ
i =

(

cδ
i,0 cδ

i,1 ... cδ
i, λδ

i −1

)

, with

λδ
i ≤ n and cδ

i,0 = minj{c
δ
i,j}.

ii)
∑

i λδ
i = n.

iii) For all i, j ∈ {0, 1, ..., kδ − 1}, one has λδ
i ≥ λδ

j , whenever i ≤ j.

iv) Given i, j ∈ {0, 1, ..., kδ − 1}, with i < j and λδ
i = λδ

j , one has

cδ
i,0 < cδ

j,0.

Specifically, the following result is verified:

Proposition 1. Let Θ = (α, β, γ) ∈ In be a non-trivial isotopism. If one
of the permutations α, β or γ is equal to ǫ, then ∆(Θ) > 0 only if the other
two permutations have the same cycle structure with all their cycles of the
same length and without fixed points.
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Proof. Let Θ = (α, β, γ) ∈ In be such that ∆(Θ) > 0 and let us con-
sider L = (li,j) ∈ LS(Θ). If one of the permutations α, β or γ is equal to
ǫ, then we are in case (b) of Theorem 1 and, therefore, the other two per-
mutations must have the same cycle structure without fixed points. Now,
we must prove that all the cycles of these two permutations have the same
length. To do it, since rows, columns and symbols have an interchangeable
role in the study of Latin squares, it is enough to study the case α = ǫ,
being equivalent the proof when β = ǫ or γ = ǫ. Thus, β and γ have the
same cycle structure without fixed points. Specifically, kβ = kγ . Let us
suppose that there exist r, s ∈ {0, 1, ..., kβ − 1} such that λβ

r 6= λγ
s . Now,

let a ∈ N be such that l
a, c

β
r,0

= c
γ
s,0. If λβ

r > λγ
s , then:

l
a, c

β
r,0

= c
γ
s,0 = c

γ

s,λ
γ
s (mod λ

γ
s )

= l
a, c

β

r,λ
γ
s

,

which is a contradiction with being L a Latin square. Otherwise, if λβ
r < λγ

s ,
then:

c
γ
s,0 = l

a, c
β
r,0

= l
a, c

β

s,λ
β
r (mod λ

β
r )

= c
γ

s,λ
β
r

,

which is a contradiction with the conditions (1) imposed at the beginning of
this section. Therefore, it must be that λβ

r = λγ
s , for all r, s ∈ {0, 1, ..., kβ −

1}. �

From now on, for a given δ ∈ {α, β, γ} and i ∈ {0, 1, ..., kδ − 1}, we will
write a ∈ Cδ

i if there exists j ∈ {0, 1, ..., λδ
i − 1} such that a = cδ

i,j . The
following result is verified:

Theorem 2. Let L = (li,j) ∈ LS(n) and Θ = (α, β, γ) ∈ U(L) and let us
consider r ∈ {0, 1, ..., kα − 1} and s ∈ {0, 1, ..., kβ − 1}. Let us denote m =
l.c.m.(λα

r , λβ
s ). Now, for a given a ∈ Cα

r and b ∈ Cβ
s , let t ∈ {0, 1, ..., kγ−1}

be such that la,b ∈ C
γ
t . Then, it is verified that:

i) λ
γ
t divides m.

ii) λ
γ
t does not divide any multiple of λα

r smaller than m.

iii) λ
γ
t does not divide any multiple of λβ

s smaller than m.

iv) If g.c.d.(λα
r , λβ

s ) = 1, then λ
γ
t = m.

Proof. Let u ∈ {0, 1, ..., λα
r − 1}, v ∈ {0, 1, ..., λβ

s − 1} and w ∈
{0, 1, ..., λ

γ
t − 1} be such that a = cα

r,u, b = cβ
s,v and la,b = c

γ
t,w, respec-

tively. Since Θ ∈ U(L), we obtain that λ
γ
t divides m, because it must be

that:

c
γ
t,w = la,b = l

cα
r,u, c

β
s,v

= l
cα

r,u+m (mod λα
r )

, c
β

s,v+m (mod λ
β
s )

= c
γ

t,w+m (mod λ
γ
t )

.
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Now, let us suppose that λα
r 6= λβ

s . Then, we see that λ
γ
t does not divide

any multiple h of λα
r smaller than m:

c
γ
t,w = l

cα
r,u, c

β
s,v

= l
cα

r,u+h (mod λα
r )

, c
β
s,v

6= l
cα

r,u+h (mod λα
r )

, c
β

s,v+h (mod λ
β
s )

=

= c
γ

t,w+h (mod λ
γ
t )

.

In a similar way, it can be obtained that λ
γ
t does not divide any multiple

of λβ
s smaller than m.
Finally, if g.c.d.(λα

r , λβ
s ) = 1, then m = λα

r · λβ
s . Let us suppose that

λ
γ
t < m. By keeping in mind assertions (ii) and (iii), since g.c.d.(λα

r , λβ
s ) =

1, there must exist two distinct primes p, q ∈ [m] such that p divides λα
r ,

q divides λβ
s and λ

γ
t divides m

p·q . Specifically, λ
γ
t divides m

p
, which is a

multiple of λβ
s . It is a contradiction with assertion (iii) and, therefore, it

must be that λ
γ
t = m. �

3 Cycle structures of Latin square autotopisms

From now on, for a given n ∈ N, we will denote the set {1, 2, ..., n} by [n].
So, let Θ = (α, β, γ) ∈ In and let us define, for all δ ∈ {α, β, γ} and r ∈ [n]:

lδr = ♯{i ∈ {0, 1, ..., kδ − 1} : λδ
i = r},

where ♯ denotes the cardinality of the corresponding set. Then, let us
consider, for all δ ∈ {α, β, γ}:

lδ = (lδ1, l
δ
2, ..., l

δ
n).

The triple (lα, lβ, lγ) will be called the cycle structure of Θ. The set of
all autotopisms of the Latin squares of order n having the cycle structure
(lα, lβ, lγ) will be denoted by In(lα, lβ, lγ).

Some immediate properties of the cycle structure of an isotopism are
given in the following:

Lemma 1. Let Θ ∈ In(lα, lβ , lγ). Then, for all δ ∈ {α, β, γ}, it must be
that:

a)
∑

r∈[n] l
δ
r = kδ.

b)
∑

r∈[n] r · l
δ
r = n.

c) lδr ≤ min{kδ −
∑

i<r lδi ,
1
r
· (n −

∑

i<r i · lδi )}, for all r ∈ [n].

5



d) If kδ = 1, then lδn = 1 and lδr = 0, for all r ∈ [n − 1].

e) If kδ = n, then lδ1 = n and lδr = 0, for all r ∈ [n] \ {1}. Specifically,
δ = ǫ.

Proof. Assertions (a) and (b) are immediate from definitions. Then,
assertions (c), (d) and (e) are consequences of the previous ones. �

Now, let us see that the number of Latin squares having a given iso-
topism Θ ∈ In in its autotopism group only depends on the cycle structure
of Θ:

Theorem 3. Let (lα, lβ, lγ) be the cycle structure of a Latin square iso-
topism and let us consider Θ1 = (α1, β1, γ1), Θ2 = (α2, β2, γ2) ∈ In(lα, lβ ,

lγ). Then, ∆(Θ1) = ∆(Θ2).

Proof. Since Θ1 and Θ2 have the same cycle structure, we can consider
the isotopism Θ = (σ1, σ2, σ3) ∈ In, where:

i) σ1(c
α1

i,j) = cα2

i,j , for all i ∈ {0, 1, ..., kα1} and j ∈ {0, 1, ..., λα1

i },

ii) σ2(c
β1

i,j) = c
β2

i,j , for all i ∈ {0, 1, ..., kβ1} and j ∈ {0, 1, ..., λ
β1

i },

iii) σ3(c
γ1

i,j) = c
γ2

i,j , for all i ∈ {0, 1, ..., kγ1} and j ∈ {0, 1, ..., λ
γ1

i }.

Now, let us see that ∆(Θ1) ≤ ∆(Θ2). If ∆(Θ1) = 0, the result is imme-
diate. Otherwise, let L1 = (li,j) ∈ LS(Θ1) and let us see that LΘ

1 = (l′i,j) ∈

LS(Θ2). Specifically, we must prove that (α2(i), β2(j), γ2(l
′
i,j)) ∈ LΘ

1 , for

all (i, j, l′i,j) ∈ LΘ
1 . So, let us consider (i0, j0, l

′
i0,j0

) ∈ LΘ
1 and let r0 ∈

{0, 1, ..., kα2}, u0 ∈ {0, 1, ..., λα2
r0
}, s0 ∈ {0, 1, ..., kβ2}, v0 ∈ {0, 1, ..., λβ2

s0
},

t0 ∈ {0, 1, ..., kγ2} and w0 ∈ {0, 1, ..., λ
γ2

t0
} be such that cα2

r0,u0
= i0, c

β2
s0,v0

=
j0 and c

γ2

t0,w0
= l′i0,j0

. Thus:

(cα1
r0,u0

, cβ1
s0,v0

, c
γ1

t0,w0
) = (σ−1

1 (i0), σ
−1
2 (j0), σ

−1
3 (l′i0,j0

)) ∈ L1.

Next, since L1 ∈ LS(Θ), we have that:

(cα1

r0,u0+1 (mod λ
α1
r0

)
, c

β1

s0,v0+1 (mod λ
β1
s0

)
, c

γ1

t0,w0+1 (mod λ
γ1
t0

)
) =

= (α1(c
α1
r0,u0

), β1(c
β1
s0,v0

), γ1(c
γ1

t0,w0
)) ∈ L1.

Therefore, (α2(i0), β2(j0), γ2(l
′
i0,j0

)) ∈ LΘ
1 , because:

(cα2

r0,u0+1 (mod λ
α2
r0

)
, c

β2

s0,v0+1 (mod λ
β2
s0

)
, c

γ2

t0,w0+1 (mod λ
γ2
t0

)
) =

6



= (σ1(c
α1

r0,u0+1 (mod λ
α1
r0

)
), σ2(c

β1

s0,v0+1 (mod λ
β1
s0

)
), σ3(c

γ1

t0,w0+1 (mod λ
γ1
t0

)
)).

Analogously, it is verified that L
(σ−1

1 ,σ
−1
2 ,σ

−1
3 )

2 ∈ LS(Θ1), for all L2 ∈
LS(Θ2), and hence, the result follows. �

From Theorem 3, a catalogue of the cycle structures of all possible
autotopisms of a Latin square, which is the goal of the present paper,
seems to be useful, because it would simplify the general calculus of the
number ∆(Θ), which is at the moment an open problem. Now, in order to
obtain the mentioned catalogue, let us see some previous results.

Proposition 2. Let Θ = (α, β, γ) ∈ In be such that ∆(Θ) > 0. If lαn =
lβn = lγn = 1, then n must be odd.

Proof. From Lemma 1, α, β and γ consist of a single n cycle. Let
Θ′ = (α, α, α) ∈ In. The cycle structure of Θ′ is the same as that of Θ
and, therefore, from Theorem 3, ∆(Θ′) = ∆(Θ) > 0. Let L ∈ LS(Θ′). By
definition, L is a diagonally cyclic Latin square, which is possible only if n

is odd (Theorem 6, [8]). �

The following results are consequences of Theorems 1 and 2:

Proposition 3. Let Θ ∈ In(lα, lβ , lγ) be such that ∆(Θ) > 0. If there
exist δ ∈ {α, β, γ} such that lδ1 > 0, then it must be that lδ1

r = lδ2
r , for

all r ∈ [n], where δ1 and δ2 are the two permutations in {α, β, γ} \ {δ}.
Specifically, if lδ1 > ⌊n

2 ⌋, then lδ1
1 = lδ2

1 = 0.

Proof. For a given δ, δ1 and δ2 in the hypothesis, we will be in case (a)
of Theorem 1, if lδ1

1 > 0, or in case (b) of such a result, if lδ1
1 = 0. In both

cases, the two permutations δ1 and δ2 must have the same cycle structure
and, therefore, it must be that lδ1

r = lδ2
r , for all r ∈ [n]. Specifically,

if lδ1 > ⌊n
2 ⌋, we are in case (b) of Theorem 1 and so, it must be that

lδ1
1 = lδ2

1 = 0. �

Proposition 4. Let n ≥ 2 and let Θ ∈ In(lα, lβ , lγ) be such that ∆(Θ) >

0. If there exist δ1 ∈ {α, β, γ} and δ2 ∈ {α, β, γ}\{δ1} such that lδ1
1 ·lδ2

1 > 0,
then the three permutations α, β and γ have the same cycle structure with
at least one and at most ⌊n

2 ⌋ fixed points. Specifically, it must be that

1 ≤ lα1 = lβ1 = lγ1 ≤ ⌊n
2 ⌋ and 2 ≤ kα = kβ = kγ ≤ ⌊n

2 ⌋ + ⌊
⌈n

2 ⌉

2 ⌋.

Proof. The first part of the lemma is immediate from Theorem 1,
because we would be in case (a) of that result. Specifically, that theorem

assures that 1 ≤ lα1 = lβ1 = lγ1 ≤ ⌊n
2 ⌋ and that kα = kβ = kγ . Now, since
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α, β and γ all have at least one fixed point, then they must have at least
two cycles, because n ≥ 2. The upper bound of this number of cycles is
obtained when lα1 = lβ1 = lγ1 = ⌊n

2 ⌋ and the rest of the cycles have all of
them length 2. �

Proposition 5. Let Θ ∈ In(lα, lβ , lγ) be such that ∆(Θ) > 0. If there
exists t ∈ [n] such that lγt > 0, then there must exist r, s ∈ [n] such that
lαr · lβs > 0 and t divides l.c.m.(r, s).

Proof. Let L = (li,j) ∈ LS(Θ) and let us consider t0 ∈ {1, 2, ..., kγ −1}
such that λ

γ
t0

= t. Then, let r0 ∈ {0, 1, ..., kα−1}, s0 ∈ {0, 1, ..., kβ−1}, u0 ∈
{0, 1..., λα

r0
− 1} and v0 ∈ {0, 1..., λβ

s0
− 1} be such that l

cα
r0,u0

,c
β
s0,v0

= c
γ
t0,0.

Thus, from Theorem 2, t = λ
γ
t0

must divide l.c.m.(λα
r0

, λβ
s0

). Moreover, it is

verified that lαλα
r0

≥ 1 ≤ lβ
λ

β
s0

and, therefore, lαλα
r0

· lβ
λ

β
s0

> 0. So, it is enough

to take r = λα
r0

and s = λβ
s0

. �

Proposition 6. Let Θ ∈ In(lα, lβ, lγ) be such that ∆(Θ) > 0. Let
r, s ∈ [n] be such that lαr · lβs > 0 and let m = l.c.m.(r, s). Then, there must
exist t ∈ [m] such that:

i) lγt > 0,

ii) t divides m,

iii) t does not divide any multiple of r smaller than m,

iv) t does not divide any multiple of s smaller than m.

Indeed, if g.c.d.(r, s) = 1, then it must be that m ≤ n and lγm > 0.

Proof. The result is an immediate consequence from Theorem 2. �

Let r, s ∈ [n] such that lαr · lβs > 0 and let us denote by Sγ
r,s the set of

t’s satisfying the four assertions of Proposition 6. Finally, let us define the
following sets:

S
β
r,t = {u ∈ [n] : lβu > 0 and Sγ

r,u = {t}},

Sα
s,t = {u ∈ [n] : lαu > 0 and Sγ

u,s = {t}}.

Then, the following result is verified:
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Theorem 4. Let Θ ∈ In(lα, lβ , lγ) be such that ∆(Θ) > 0. Let t ∈ [n] be
such that lγt > 0. Then, if r, s ∈ [t] are such that lαr > 0 and lβs > 0, then
it is verified that:

∑

u∈S
β
r,t

u · lβu ≤ t · lγt and
∑

u∈Sα
s,t

u · lαu ≤ t · lγt .

Proof. Let L = (li,j) ∈ LS(Θ) and let us consider t0 ∈ {0, 1, ..., kγ −1}

such that λ
γ
t0

= t. We will prove the result with the set S
β
r,t, being analogous

the proof with the set Sα
s,t. If S

β
r,t = ∅, then the result is immediate. So,

we can suppose that S
β
r,t 6= ∅. Let u ∈ S

β
r,t and let us consider r0 ∈

{0, 1, ..., kα − 1} and u0 ∈ {0, 1, ..., kβ − 1} such that λα
r0

= r and λβ
u0

= u.
Since Sγ

r,u = {t}, we have that, for all v ∈ {0, 1, ..., u− 1}, there must exist
tv ∈ {0, 1, ..., kγ − 1} such that λ

γ
tv

= t and l
cα

r0,0,c
β
u0,v

∈ C
γ
tv

. Therefore,

as L is a Latin square, it must be that u · lβu ≤ t · lγt . Since u has been

arbitrarily taken in S
β
r,t, then, by working in the same (cα

r0,0 + 1)th row of

L, it must be that
∑

u∈S
β
r,t

u · lβu ≤ t · lγt , because L is a Latin square and

so, L cannot have any repeated element in the mentioned row. �

Let us see an example:

Example 1. Let Θ ∈ I6((0, 1, 0, 1, 0, 0), (6, 0, 0, 0, 0, 0), (0, 1, 0, 1, 0, 0)) and

let us consider r = t = 4. In this case, S
β
4,4 = {1} and

∑

u∈S
β
4,4

u · lβu =

1 · 6 = 6 > 4 = 4 · lγ4 . Therefore, from Theorem 4, it must be ∆(Θ) = 0.

Let us observe that Theorem 4 can be stated in a conjugacy invariant
way, by interchanging the role of rows, columns and symbols. So, from
Example 1, it can be deduced that any isotopism with cycle structure
((0, 1, 0, 1, 0, 0), (0, 1, 0, 1, 0, 0), (6, 0, 0, 0, 0, 0)) or ((6, 0, 0, 0, 0, 0), (0, 1, 0, 1,

0, 0), (0, 1, 0, 1, 0, 0)) cannot be a Latin square autotopism.

Let us finish this section with a result corresponding to autotopisms
having cycles of prime lengths:

Theorem 5. Let Θ ∈ In(lα, lβ, lγ) be such that lαp ·l
β
p > 0, for some prime

p ∈ [n]. If lγ1 < p · max{lαp , lβp} and lγp = 0, then ∆(Θ) = 0. Moreover, if

lγ1 = 0 and lγp < max{lαp , lβp}, then ∆(Θ) = 0. Finally, if p = 2, lγ1 = 0 and
lγ2 = 1, then ∆(Θ) = 0.

Proof. Let us suppose that ∆(Θ) > 0 and let us consider L = (li,j) ∈
LS(Θ). We can suppose that lαp ≤ lβp (the reasoning is similar in the other
case). Let p0 ∈ {0, 1, ..., kα − 1} be such that λα

p0
= p. Now, let us study

each part of the hypothesis:

9



a) Let us suppose that lγ1 < p · max{lαp , lβp} = p · lβp and lγp = 0. From
Theorem 2, since lγp = 0, we have that, for all p1 ∈ {0, 1, ..., kβ − 1}

such that λβ
p1

= p and for all v ∈ {0, 1, ..., p − 1}, it must be that

l
cα

p0,0,c
β
p1,v

∈ Fix(γ). So, γ must have at least p · lβp fixed points,

because L is a Latin square. But then, we obtain a contradiction
with being lγ1 < p · max{lαp , lβp}. So, it must be that ∆(Θ) = 0.

b) Let us suppose that lγ1 = 0 and lγp < max{lαp , lβp} = lβp . From Theorem
2, since lγ1 = 0, we have that, for all p1 ∈ {0, 1, ..., kβ − 1} such that
λβ

p1
= p and for all v ∈ {0, 1, ..., p − 1}, there must exist tp1,v ∈

{0, 1, ..., kγ − 1} such that λ
γ
tp1,v

= p and l
cα

p0,0,c
β
p1,v

∈ C
γ
tp1,v

. So,

γ must have at least p · lβp different elements in cycles of length p,

because L is a Latin square. Specifically, γ must have at least lβp
cycles of length p. But then, we obtain a contradiction with being
lγp < max{lαp , lβp}. So, it must be that ∆(Θ) = 0.

c) Let us suppose that p = 2 and let us consider lγ1 = 0 and lγ2 =
1. Let p1 ∈ {0, 1, ..., kβ − 1} be such that λβ

p1
= 2 and let t ∈

{0, 1, ..., kγ − 1} be such that l
cα

p0,0,c
β
p1,0

∈ C
γ
t . From Theorem 2,

t must divide l.c.m.(λα
p0

, λβ
p1

) = 2. Then, it must be that t =
2, because lγ1 = 0. Indeed, let us observe that the four elements
l
cα

p0,0,c
β
p1,0

, l
cα

p0,0,c
β
p1,1

, l
cα

p0,1,c
β
p1,0

and l
cα

p0,1,c
β
p1,1

, must be in C
γ
t , because

lγ2 = 1. Now, let w ∈ {0, 1} be such that l
cα

p0,0,c
β
p1,0

= c
γ
t,w. Then,

it must be that l
cα

p0,1,c
β
p1,1

= c
γ

t,w+1 (mod 2). Therefore, let us observe

that l
cα

p0,0,c
β
p1,1

cannot be in C
γ
t , because L is a Latin square. So, we

have a contradiction and thus, it must be that ∆(Θ) = 0. �

4 Cycle structures of autotopisms of the Latin

squares of order up to 11.

All the results of the previous section have been implemented in a computer
program to generate all the possible cycle structures of the set of non-trivial
autotopisms of the Latin squares of order up to 11. We can see all these
cycle structures in the below tables. Let us observe that it is enough to
show those autotopisms Θ = (α, β, γ) in which kα ≤ kβ ≤ kγ , because of
the conjugacy of rows, columns and symbols in Latin squares. Otherwise,
(lα, lβ , lγ) is a cycle structure of a Latin square autotopism if and only
if it can be found a permutation σ ∈ S3 such that kπσ(0)(Θ) ≤ kπσ(1)(Θ) ≤

10



kπσ(2)(Θ) and (lπσ(0)(Θ), lπσ(1)(Θ), lπσ(2)(Θ)) is a cycle structure of a Latin

square autotopism, where πi gives the (i + 1)th component of Θ, for all
i ∈ {0, 1, 2}.

n lα lβ lγ

2 (0,1) (0,1) (2,0)

3 (0,0,1) (0,0,1) (0,0,1)
(3,0,0)

(1,1,0) (1,1,0) (1,1,0)

4 (0,0,0,1) (0,0,0,1) (0,2,0,0)
(2,1,0,0)
(4,0,0,0)

(0,2,0,0) (0,2,0,0) (0,2,0,0)
(2,1,0,0)
(4,0,0,0)

(1,0,1,0) (1,0,1,0) (1,0,1,0)
(2,1,0,0) (2,1,0,0) (2,1,0,0)

5 (0,0,0,0,1) (0,0,0,0,1) (0,0,0,0,1)
(5,0,0,0,0)

(1,0,0,1,0) (1,0,0,1,0) (1,0,0,1,0))
(1,2,0,0,0) (1,2,0,0,0) (1,2,0,0,0)
(2,0,1,0,0) (2,0,1,0,0) (2,0,1,0,0)

6 (0,0,2,0,0,0)
(1,1,1,0,0,0)

(0,0,0,0,0,1) (2,2,0,0,0,0)
(0,0,0,0,0,1) (3,0,1,0,0,0)

(4,1,0,0,0,0)
(6,0,0,0,0,0)

(0,0,2,0,0,0) (0,3,0,0,0,0)
(0,0,2,0,0,0)

(0,0,2,0,0,0) (0,0,2,0,0,0) (3,0,1,0,0,0)
(6,0,0,0,0,0)

(1,0,0,0,1,0) (1,0,0,0,1,0) (1,0,0,0,1,0)
(2,2,0,0,0,0)

(0,3,0,0,0,0) (0,3,0,0,0,0) (4,1,0,0,0,0)
(6,0,0,0,0,0)

(2,0,0,1,0,0) (2,0,0,1,0,0) (2,0,0,1,0,0)
(2,2,0,0,0,0) (2,2,0,0,0,0) (2,2,0,0,0,0)
(3,0,1,0,0,0) (3,0,1,0,0,0) (3,0,1,0,0,0)

Table 1: Cycle structures of non-trivial autotopisms of LS(n), for 2 ≤ n ≤ 6.
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n lα lβ lγ

7 (0,0,0,0,0,0,1) (0,0,0,0,0,0,1) (0,0,0,0,0,0,1)
(7,0,0,0,0,0,0)

(1,0,0,0,0,1,0) (1,0,0,0,0,1,0) (1,0,0,0,0,1,0)
(1,0,2,0,0,0,0) (1,0,2,0,0,0,0) (1,0,2,0,0,0,0)
(1,1,0,1,0,0,0) (1,1,0,1,0,0,0) (1,1,0,1,0,0,0)
(2,0,0,0,1,0,0) (2,0,0,0,1,0,0) (2,0,0,0,1,0,0)
(1,3,0,0,0,0,0) (1,3,0,0,0,0,0) (1,3,0,0,0,0,0)
(3,0,0,1,0,0,0) (3,0,0,1,0,0,0) (3,0,0,1,0,0,0)
(3,2,0,0,0,0,0) (3,2,0,0,0,0,0) (3,2,0,0,0,0,0)

Table 2: Cycle structures of non-trivial autotopisms of LS(7).

Example 2. Let us consider Θ = ((012345), (012)(345), (01)(23)(45)) ∈
I6((0, 0, 0, 0, 0, 1), (0, 0, 2, 0, 0, 0), (0, 3, 0, 0, 0, 0)). The following one is a
Latin square of LS(Θ):

0

B

B

B

B

B

B

@

0 2 4 1 3 5
5 1 3 4 0 2
2 4 0 3 5 1
1 3 5 0 2 4
4 0 2 5 1 3
3 5 1 2 4 0

1

C

C

C

C

C

C

A

Example 3. Let us consider Θ = ((01)(23)(45), (01)(23)(45), (01)(23)(45))
∈ I7((1, 3, 0, 0, 0, 0, 0), (1, 3, 0, 0, 0, 0, 0), (1, 3, 0, 0, 0, 0, 0)). The following
one is a Latin square of LS(Θ):

0

B

B

B

B

B

B

B

B

@

6 1 3 4 5 2 0
0 6 5 2 3 4 1
3 5 6 1 4 0 2
4 2 0 6 1 5 3
5 3 2 0 6 1 4
2 4 1 3 0 6 5
1 0 4 5 2 3 6

1

C

C

C

C

C

C

C

C

A
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n lα lβ lγ

8 (0,0,0,2,0,0,0,0)
(0,2,0,1,0,0,0,0)
(0,4,0,0,0,0,0,0)
(2,1,0,1,0,0,0,0)

(0,0,0,0,0,0,0,1) (0,0,0,0,0,0,0,1) (2,3,0,0,0,0,0,0)
(4,0,0,1,0,0,0,0)
(4,2,0,0,0,0,0,0)
(6,1,0,0,0,0,0,0)
(8,0,0,0,0,0,0,0)
(0,0,0,2,0,0,0,0)
(0,2,0,1,0,0,0,0)
(0,4,0,0,0,0,0,0)
(2,1,0,1,0,0,0,0)

(0,0,0,2,0,0,0,0) (0,0,0,2,0,0,0,0) (2,3,0,0,0,0,0,0)
(4,0,0,1,0,0,0,0)
(4,2,0,0,0,0,0,0)
(6,1,0,0,0,0,0,0)
(8,0,0,0,0,0,0,0)

(0,1,0,0,0,1,0,0) (0,1,0,0,0,1,0,0) (2,0,0,0,0,1,0,0)
(2,0,2,0,0,0,0,0)

(1,0,0,0,0,0,1,0) (1,0,0,0,0,0,1,0) (1,0,0,0,0,0,1,0)
(0,2,0,1,0,0,0,0)

(0,2,0,1,0,0,0,0) (0,2,0,1,0,0,0,0) (2,1,0,1,0,0,0,0)
(4,0,0,1,0,0,0,0)

(2,0,0,0,0,1,0,0) (2,0,0,0,0,1,0,0) (2,0,0,0,0,1,0,0)
(0,4,0,0,0,0,0,0)
(2,3,0,0,0,0,0,0)

(0,4,0,0,0,0,0,0) (0,4,0,0,0,0,0,0) (4,2,0,0,0,0,0,0)
(6,1,0,0,0,0,0,0)
(8,0,0,0,0,0,0,0)

(2,0,2,0,0,0,0,0) (2,0,2,0,0,0,0,0) (2,0,2,0,0,0,0,0)
(2,1,0,1,0,0,0,0) (2,1,0,1,0,0,0,0) (2,1,0,1,0,0,0,0))
(3,0,0,0,1,0,0,0) (3,0,0,0,1,0,0,0) (3,0,0,0,1,0,0,0)
(2,3,0,0,0,0,0,0) (2,3,0,0,0,0,0,0) (2,3,0,0,0,0,0,0)
(4,0,0,1,0,0,0,0) (4,0,0,1,0,0,0,0) (4,0,0,1,0,0,0,0)
(4,2,0,0,0,0,0,0) (4,2,0,0,0,0,0,0) (4,2,0,0,0,0,0,0)

Table 3: Cycle structures of non-trivial autotopisms of LS(8).

Example 4. Let us consider Θ = ((01)(23)(45)(67), (01)(23)(45)(67), (01)
(23)(45)) ∈ I8((0, 4, 0, 0, 0, 0, 0, 0), (0, 4, 0, 0, 0, 0, 0, 0), (2, 3, 0, 0, 0, 0, 0, 0)).
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The following one is a Latin square of LS(Θ):

0

B

B

B

B

B

B

B

B

B

B

@

0 2 1 3 4 6 5 7
3 1 2 0 6 5 7 4
1 3 4 6 5 7 0 2
2 0 6 5 7 4 3 1
4 6 5 7 0 2 1 3
6 5 7 4 3 1 2 0
5 7 0 2 1 3 4 6
7 4 3 1 2 0 6 5

1

C

C

C

C

C

C

C

C

C

C

A

n lα lβ lγ

9 (0,0,0,0,0,0,0,0,1)
(0,0,3,0,0,0,0,0,0)

(0,0,0,0,0,0,0,0,1) (0,0,0,0,0,0,0,0,1) (3,0,2,0,0,0,0,0,0)
(6,0,1,0,0,0,0,0,0)
(9,0,0,0,0,0,0,0,0)
(0,0,1,0,0,1,0,0,0)

(0,0,1,0,0,1,0,0,0) (0,0,1,0,0,1,0,0,0) (0,3,1,0,0,0,0,0,0)
(3,0,0,0,0,1,0,0,0)
(3,3,0,0,0,0,0,0,0)

(1,0,0,0,0,0,0,1,0) (1,0,0,0,0,0,0,1,0) (1,0,0,0,0,0,0,1,0)
(0,0,3,0,0,0,0,0,0)

(0,0,3,0,0,0,0,0,0) (0,0,3,0,0,0,0,0,0) (3,0,2,0,0,0,0,0,0)
(6,0,1,0,0,0,0,0,0)
(9,0,0,0,0,0,0,0,0)

(1,0,0,2,0,0,0,0,0) (1,0,0,2,0,0,0,0,0) (1,0,0,2,0,0,0,0,0)
(1,1,0,0,0,1,0,0,0) (1,1,0,0,0,1,0,0,0) (1,1,0,0,0,1,0,0,0)
(2,0,0,0,0,0,1,0,0) (2,0,0,0,0,0,1,0,0) (2,0,0,0,0,0,1,0,0)
(3,0,0,0,0,1,0,0,0) (3,0,0,0,0,1,0,0,0) (3,0,0,0,0,1,0,0,0)
(1,4,0,0,0,0,0,0,0) (1,4,0,0,0,0,0,0,0) (1,4,0,0,0,0,0,0,0)
(3,0,2,0,0,0,0,0,0) (3,0,2,0,0,0,0,0,0) (3,0,2,0,0,0,0,0,0)
(4,0,0,0,1,0,0,0,0) (4,0,0,0,1,0,0,0,0) (4,0,0,0,1,0,0,0,0)
(3,3,0,0,0,0,0,0,0) (3,3,0,0,0,0,0,0,0) (3,3,0,0,0,0,0,0,0)

Table 4: Cycle structures of non-trivial autotopisms of LS(9).
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n lα lβ lγ

10 (0,0,0,0,2,0,0,0,0,0)
(1,2,0,0,1,0,0,0,0,0)
(3,1,0,0,1,0,0,0,0,0)
(2,4,0,0,0,0,0,0,0,0)

(0,0,0,0,0,0,0,0,0,1) (0,0,0,0,0,0,0,0,0,1) (5,0,0,0,1,0,0,0,0,0)
(4,3,0,0,0,0,0,0,0,0)
(6,2,0,0,0,0,0,0,0,0)
(8,1,0,0,0,0,0,0,0,0)
(10,0,0,0,0,0,0,0,0,0)

(0,0,0,0,2,0,0,0,0,0) (0,5,0,0,0,0,0,0,0,0)
(0,0,0,0,2,0,0,0,0,0)

(0,0,0,0,2,0,0,0,0,0) (0,0,0,0,2,0,0,0,0,0) (5,0,0,0,1,0,0,0,0,0)
(10,0,0,0,0,0,0,0,0,0)

(0,1,0,0,0,0,0,1,0,0) (0,1,0,0,0,0,0,1,0,0) (2,0,0,0,0,0,0,1,0,0)
(1,0,0,0,0,0,0,0,1,0) (1,0,0,0,0,0,0,0,1,0) (1,0,0,0,0,0,0,0,1,0)
(0,1,0,2,0,0,0,0,0,0) (0,1,0,2,0,0,0,0,0,0) (2,0,0,2,0,0,0,0,0,0)

(0,2,2,0,0,0,0,0,0,0)
(2,1,0,0,0,1,0,0,0,0)

(0,2,0,0,0,1,0,0,0,0) (0,2,0,0,0,1,0,0,0,0) (2,1,2,0,0,0,0,0,0,0)
(4,0,0,0,0,1,0,0,0,0)
(4,0,2,0,0,0,0,0,0,0)

(1,0,1,0,0,1,0,0,0,0) (1,0,1,0,0,1,0,0,0,0) (1,0,1,0,0,1,0,0,0,0)
(2,0,0,0,0,0,0,1,0,0) (2,0,0,0,0,0,0,1,0,0) (2,0,0,0,0,0,0,1,0,0)
(1,0,3,0,0,0,0,0,0,0) (1,0,3,0,0,0,0,0,0,0) (1,0,3,0,0,0,0,0,0,0)
(2,0,0,2,0,0,0,0,0,0) (2,0,0,2,0,0,0,0,0,0) (2,0,0,2,0,0,0,0,0,0)
(2,1,0,0,0,1,0,0,0,0) (2,1,0,0,0,1,0,0,0,0) (2,1,0,0,0,1,0,0,0,0)
(3,0,0,0,0,0,1,0,0,0) (3,0,0,0,0,0,1,0,0,0) (3,0,0,0,0,0,1,0,0,0)

(2,4,0,0,0,0,0,0,0,0)
(4,3,0,0,0,0,0,0,0,0)

(0,5,0,0,0,0,0,0,0,0) (0,5,0,0,0,0,0,0,0,0) (6,2,0,0,0,0,0,0,0,0)
(8,1,0,0,0,0,0,0,0,0)
(10,0,0,0,0,0,0,0,0,0)

(4,0,0,0,0,1,0,0,0,0) (4,0,0,0,0,1,0,0,0,0) (4,0,0,0,0,1,0,0,0,0)
(2,4,0,0,0,0,0,0,0,0) (2,4,0,0,0,0,0,0,0,0) (2,4,0,0,0,0,0,0,0,0)
(4,0,2,0,0,0,0,0,0,0) (4,0,2,0,0,0,0,0,0,0) (4,0,2,0,0,0,0,0,0,0)
(5,0,0,0,1,0,0,0,0,0) (5,0,0,0,1,0,0,0,0,0) (5,0,0,0,1,0,0,0,0,0)
(4,3,0,0,0,0,0,0,0,0) (4,3,0,0,0,0,0,0,0,0) (4,3,0,0,0,0,0,0,0,0)

Table 5: Cycle structures of non-trivial autotopisms of LS(10).
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n lα lβ lγ

11 (0,0,0,0,0,0,0,0,0,0,1) (0,0,0,0,0,0,0,0,0,0,1) (0,0,0,0,0,0,0,0,0,0,1)
(11,0,0,0,0,0,0,0,0,0,0)

(1,0,0,0,0,0,0,0,0,1,0) (1,0,0,0,0,0,0,0,0,1,0) (1,0,0,0,0,0,0,0,0,1,0)
(1,0,0,0,2,0,0,0,0,0,0) (1,0,0,0,2,0,0,0,0,0,0) (1,0,0,0,2,0,0,0,0,0,0)
(1,1,0,0,0,0,0,1,0,0,0) (1,1,0,0,0,0,0,1,0,0,0) (1,1,0,0,0,0,0,1,0,0,0)
(2,0,0,0,0,0,0,0,1,0,0) (2,0,0,0,0,0,0,0,1,0,0) (2,0,0,0,0,0,0,0,1,0,0)
(1,1,0,2,0,0,0,0,0,0,0) (1,1,0,2,0,0,0,0,0,0,0) (1,1,0,2,0,0,0,0,0,0,0)
(1,2,0,0,0,1,0,0,0,0,0) (1,2,0,0,0,1,0,0,0,0,0) (1,2,0,0,0,1,0,0,0,0,0)
(2,0,1,0,0,1,0,0,0,0,0) (2,0,1,0,0,1,0,0,0,0,0) (2,0,1,0,0,1,0,0,0,0,0)
(3,0,0,0,0,0,0,1,0,0,0) (3,0,0,0,0,0,0,1,0,0,0) (3,0,0,0,0,0,0,1,0,0,0)
(2,0,3,0,0,0,0,0,0,0,0) (2,0,3,0,0,0,0,0,0,0,0) (2,0,3,0,0,0,0,0,0,0,0)
(3,0,0,2,0,0,0,0,0,0,0) (3,0,0,2,0,0,0,0,0,0,0) (3,0,0,2,0,0,0,0,0,0,0)
(4,0,0,0,0,0,1,0,0,0,0) (4,0,0,0,0,0,1,0,0,0,0) (4,0,0,0,0,0,1,0,0,0,0)
(1,5,0,0,0,0,0,0,0,0,0) (1,5,0,0,0,0,0,0,0,0,0) (1,5,0,0,0,0,0,0,0,0,0)
(5,0,0,0,0,1,0,0,0,0,0) (5,0,0,0,0,1,0,0,0,0,0) (5,0,0,0,0,1,0,0,0,0,0)
(3,4,0,0,0,0,0,0,0,0,0) (3,4,0,0,0,0,0,0,0,0,0) (3,4,0,0,0,0,0,0,0,0,0)
(5,0,2,0,0,0,0,0,0,0,0) (5,0,2,0,0,0,0,0,0,0,0) (5,0,2,0,0,0,0,0,0,0,0)
(5,3,0,0,0,0,0,0,0,0,0) (5,3,0,0,0,0,0,0,0,0,0) (5,3,0,0,0,0,0,0,0,0,0)

Table 6: Cycle structures of non-trivial autotopisms of LS(11).

Example 5. Let us consider Θ = ((012345)(678), (012345)(678), (012)(34)
(56)(78)) ∈ I9((0, 0, 1, 0, 0, 1, 0, 0, 0), (0, 0, 1, 0, 0, 1, 0, 0, 0), (0, 3, 1, 0, 0, 0, 0,

0, 0)). The following one is a Latin square of LS(Θ):

0

B

B

B

B

B

B

B

B

B

B

B

B

@

0 2 1 4 6 8 3 5 7
7 1 0 2 3 5 8 4 6
6 8 2 1 0 4 5 7 3
3 5 7 0 2 1 4 6 8
2 4 6 8 1 0 7 3 5
1 0 3 5 7 2 6 8 4
4 7 5 3 8 6 0 2 1
5 3 8 6 4 7 2 1 0
8 6 4 7 5 3 1 0 2

1

C

C

C

C

C

C

C

C

C

C

C

C

A

Example 6. Let us consider Θ = ((012345)(678), (012345)(678), (012345)
(678)) ∈ I10((1, 0, 1, 0, 0, 1, 0, 0, 0, 0), (1, 0, 1, 0, 0, 1, 0, 0, 0, 0), (1, 0, 1, 0, 0, 1,

0, 0, 0, 0)). The following one is a Latin square of LS(Θ):
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0

B

B

B

B

B

B

B

B

B

B

B

B

B

B

@

4 6 5 7 9 8 1 3 2 0
6 5 7 0 8 9 3 2 4 1
9 7 0 8 1 6 5 4 3 2
7 9 8 1 6 2 4 0 5 3
3 8 9 6 2 7 0 5 1 4
8 4 6 9 7 3 2 1 0 5
0 2 4 3 5 1 9 8 7 6
2 1 3 5 4 0 8 9 6 7
1 3 2 4 0 5 7 6 9 8
5 0 1 2 3 4 6 7 8 9

1

C

C

C

C

C

C

C

C

C

C

C

C

C

C

A

Example 7. Let us consider Θ = ((01)(23)(45)(67), (01)(23)(45)(67), (01)
(23)(45)(67)) ∈ I11((3, 4, 0, 0, 0, 0, 0, 0, 0, 0, 0), (3, 4, 0, 0, 0, 0, 0, 0, 0, 0, 0), (3,

4, 0, 0, 0, 0, 0, 0, 0, 0, 0)). The following one is a Latin square of LS(Θ):

0

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

@

10 0 4 6 8 2 9 3 7 5 1
1 10 7 5 3 8 2 9 6 4 0
9 5 10 2 0 6 8 4 3 1 7
4 9 3 10 7 1 5 8 2 0 6
8 7 9 1 10 4 0 2 5 6 3
6 8 0 9 5 10 3 1 4 7 2
5 1 8 3 9 7 10 6 0 2 4
0 4 2 8 6 9 7 10 1 3 5
2 3 1 0 4 5 6 7 10 9 8
7 6 5 4 2 3 1 0 8 10 9
3 2 6 7 1 0 4 5 9 8 10

1

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

A

5 Final remarks

Apart from the previous cycles structures, the following ones verify all the
results of Section 3, although an exhaustive computation proves that they
do not correspond to any Latin square autotopism:

n lα lβ lγ

6 (0, 0, 0, 0, 0, 1) (0, 0, 0, 0, 0, 1) (0, 3, 0, 0, 0, 0)
(0, 1, 0, 1, 0, 0) (0, 1, 0, 1, 0, 0) (2, 0, 0, 1, 0, 0)
(0, 3, 0, 0, 0, 0) (0, 3, 0, 0, 0, 0) (0, 3, 0, 0, 0, 0)

10 (0, 0, 0, 0, 0, 0, 0, 0, 0, 1) (0, 0, 0, 0, 0, 0, 0, 0, 0, 1) (0, 5, 0, 0, 0, 0, 0, 0, 0, 0)
(0, 2, 0, 0, 0, 1, 0, 0, 0, 0) (0, 2, 0, 0, 0, 1, 0, 0, 0, 0) (0, 2, 0, 0, 0, 1, 0, 0, 0, 0)
(0, 5, 0, 0, 0, 0, 0, 0, 0, 0) (0, 5, 0, 0, 0, 0, 0, 0, 0, 0) (0, 5, 0, 0, 0, 0, 0, 0, 0, 0)

Although in Section 4 we give all the cycle structures of autotopisms
of the Latin squares of order up to 11, let us remark that the properties

17



of Section 3 can be implemented in an algorithm to obtain all the cycle
structures of autotopisms of the Latin squares of greater orders.
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