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Abstract

A dilute suspension of impurities in a low density gas is described by the Boltzmann and

Boltzman-Lorentz kinetic theory. Scaling forms for the species distribution functions allow an

exact determination of the hydrodynamic fields, without restriction to small thermal gradients or

Navier-Stokes hydrodynamics. The thermal diffusion factor characterizing sedimentation is identi-

fied in terms of collision integrals as functions of the mechanical properties of the particles and the

temperature gradient. An evaluation of the collision integrals using Sonine polynomial approxima-

tions is discussed. Conditions for segregation both along and opposite the temperature gradient

are found, in contrast to the Navier-Stokes description for which no segregation occurs.

PACS numbers: 45.70.Mg, 05.20.Dd
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I. INTRODUCTION

Consider a granular mixture of two mechanically different species in a steady state with

number densities n0(r) and n(r), respectively. One component is dilute with respect to

the other, n0(r)/n(r) << 1, such that this component has negligible effect on the host gas.

Moreover, the latter is at sufficiently low density that the granular Boltzmann kinetic theory

applies for its intra-species collisions. The dilute component has negligible intra-species

collisions and its collisions with the host gas are described by the granular Boltzmann-

Lorentz kinetic theory [1]. The objective here is to provide an exact description of segregation

induced by a temperature gradient in this context. The motivation is the description some

years ago of an exact solution to the Boltzmann equation for a steady state with constant

temperature gradient [2, 3]. That analysis is extended here to include the presence of the

dilute component with a complementary description of the exact solution to the Boltzmann-

Lorentz equation. Since there is no limitation on the size of the temperature gradient, the

results given here extend previous results on thermal segregation obtained from the Navier-

Stokes equation restricted to small gradients [4]. For the dilute conditions considered here,

and the absence of gravity, no segregation occurs at Navier-Stokes order in contrast to the

results obtained here.

The particles of the dilute component will be referred to as the “impurities”. The hydro-

dynamic fields obtained for the host gas are zero flow velocity, constant temperature gradient

in the x direction, dT (x)/dx = θ , and a constant uniform pressure p = n(x)T (x). The impu-

rities have a temperature profile T0(x) proportional to the host temperature T0(x) = γT (x),

and a non-trivial density n0(x) expressed in terms of the host temperature field. In the

dilute limit, the concentrations are ρ0(x) ≃ n0(x)/n(x) and ρ(x) = 1−ρ0(x). They have the

relationship dρ0/dx = −dρ/dx so any spatial variation of ρ0(x) implies the opposite vari-

ation of ρ(x) and segregation occurs. Here the segregation is induced by the temperature

gradient, and it is common to introduce a thermal diffusion factor Λ defined by

Λ
d lnT (x)

dx
= −

d ln ρ0(x)

dx
. (1)

This dimensionless factor depends on the properties of the two components, Λ =

Λ(α, α0, σ/σ0, m/m0, θ
∗), where α, α0 are the restitution coefficients for the host-host and

impurity-host collisions, σ, σ0 and m,m0 are the species diameters and masses, and θ∗ =

θ/pσd−1 is the dimensionless temperature gradient, d being the geometrical dimension of the

2



system. In principle, Λ can be positive or negative within this parameter space. The case

Λ = 0 implies no segregation, while Λ positive (negative) implies the impurities increase

concentration against (along) the temperature gradient. This is the thermal analogue of the

Brazil nut and reverse Brazil nut effects for gravitational segregation [5–8].

The distribution functions for the two species are of a “normal” form, meaning that their

dependence on space and time occurs entirely through the hydrodynamic fields, n(x), T (x),

and n0(x) [9, 10]. Thus, boundary conditions do not occur explicitly but only through the

determination of these fields. For example, no external driving source is required in the

kinetic equation for a stationary state, since this is implicit in the time independence of

the fields. Instead, the stationary form of the fields is determined self-consistently from

moments of the kinetic equations. This self-consistency also determines the temperature of

the impurities as being proportioal to the host temperature, T0(x) = γT (x), with γ 6= 1

in general. No reference to hydrodynamics is made, although these moment equations are

equivalent to the balance equations forming the basis for a hydrodynamical description.

The steady state obtained occurs by establishing a gradient of the heat flux to compensate

for local energy loss due to collisional cooling. Thus it is special to granular fluids and links

the temperature gradient to the degree of inelasticity rather than to boundary conditions.

This is similar to steady uniform shear flow where the steady state is possible due to a

balance of viscous heating and collisional cooling, such that the velocity gradient (shear

rate) is linked to the degree of inelasticity. In both cases, the control needed to assure

Navier-Stokes hydrodynamics is lost. In the present case, smaller gradients entails smaller

pressure at constant restitution coefficient, or smaller inelasticity at constant pressure. Such

non-Newtonian steady states are a characteristic of granular flows and segregation for such

states can be qualitatively different from that from Navier-Stokes hydrodynamics. This has

been illustrated recently for thermal segregation under uniform shear flow [11].

The next section defines the system and its kinetic theory description. In section III

scaling forms for the distribution functions are introduced and the implications for the

hydrodynamic fields are obtained. Three constants must be determined self-consistently.

One of these, the temperature gradient θ has been obtained in [2, 3]. Collision integrals for

the other two are obtained here. The form of the thermal diffusion factor Λ is given in terms

of these constants, and the sign of Λ is discussed based on approximate evaluations of the

collision integrals given in the Appendices.
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II. KINETIC THEORY

Consider a one component gas of N smooth, inelastic hard spheres (d = 3) or disks

(d = 2) with diameter σ and mass m at low density. Their distribution for position r and

velocity v at time t, f(r, v, t), is determined from the Boltzmann equation (without external

forces) [12] (
∂t + v ·

∂

∂r

)
f = J [v|f, f ] , (2)

where the collision operator J [v|f, f ] is

J [v|f, f ] ≡ σd−1
∫

dv1

∫
dσ̂Θ(σ̂ · g)(σ̂ · g)

[
α−2f(r, v′, t)f(r, v′

1, t)− f(r, v, t)f(r, v1, t)
]
.

(3)

Here g ≡ v−v1 is the relative velocity of the colliding pair, Θ is the Heaviside step function,

dσ̂ is the solid angle element about the direction of the unit vector σ̂, and α is the restitution

coefficient characterizing the degree of inelasticity (0 < α ≤ 1). The velocities v′, v′

1 denote

the restituting velocities for the pair v, v1,

v′ = v −
1 + α−1

2
(σ̂ · g)σ̂, v′

1 = v1 +
1 + α−1

2
(σ̂ · g)σ̂. (4)

Now consider M additional impurity particles in this gas, all the same but mechanically

different from the fluid particles. For M ≪ N , the primary collisions for the impurity

particles are with the host gas particles, and impurity-impurity collisions and effects of the

impurities on the gas distribution function f can be neglected. The distribution function for

the impurities, F (r, v0, t), is governed by the corresponding Boltzmann-Lorentz equation,

(
∂t + v0 ·

∂

∂r

)
F = I [v0|F, f ] , (5)

where the operator I [v0|F, f ] describes changes in F due to binary collisions between the

impurity and gas particles,

I [v0|F, f ] ≡ σd−1
∫
dv1

∫
dσ̂Θ(σ̂·g01)(σ̂·g01)

[
α−2
0 F (r, v′

0, t)f(r, v
′

1, t)− F (r, v0, t)f(r, v1, t)
]
,

(6)

g01 ≡ v0 − v1. The restituting velocities v′

0, v
′

1 in this case are

v′

0 = v0 −
m
(
1 + α−1

0

)

m+m0
(σ̂ · g01)σ̂, v′

1 = v1 +
m0

(
1 + α−1

0

)

m+m0
(σ̂ · g01)σ̂. (7)
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In the above expressions, σ ≡ (σ+ σ0)/2, and σ0, m0, and α0 are the hard sphere diameter,

mass, and restitution coefficient for the impurity particles, respectively.

The macroscopic state of this system is described by the fluid number density n(r, t),

temperature T (r, t), and flow velocity u(r, t), defined in terms of the distribution function

by 


n(r, t)

d
2
n(r, t)T (r, t)

n(r, t)u(r, t)




≡
∫

dv




1

1
2
mV 2

v



f(r, v, t), (8)

with V (r, t) ≡ v − u(r, t). It is convenient to introduce corresponding fields for a macro-

scopic description of the impurity particles,




n0(r, t)

d
2
n0(r, t)T0(r, t)

j0(r, t)




≡
∫

dv0




1

1
2
mV 2

0

v0



F (r, v0), (9)

with V0(r, t) = v0 − u0(r0, t). Instead of an impurity velocity, the more usual number flux

notation j0 = n0u0 has been used.

III. SCALING SOLUTIONS

In reference [2], a solution to the Boltzmann equation was described for the special case

of a scaling form in terms of the hydrodynamic variables,

f(x, v) = n(x)

[
m

2T (x)

]d/2
φ (c) , c ≡

[
m

2T (x)

]1/2
v. (10)

Such a solution, where the space and time dependence of the distribution function occurs

only through the hydrodynamic fields, is called “normal”. The definitions of the fields in

(8), and the choice of u = 0 give the self-consistency conditions on φ (c, )




1

d
2

0




=
∫
dc




1

c2

c



φ (c) . (11)

Here, a similar scaling solution for the impurities is sought,

F (x, v0) = n0(x)

[
m0

2T0(x)

]d/2
Φ (c0) , c0 =

[
m0

2T0(x)

]1/2
v0. (12)
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The definitions (9) then give the conditions on Φ,




1

d
2
+

m0j20
2T0n2

0

1
n0

(m0

2T0

)1/2j0




≡
∫
dc0




1

c20

c0



Φ (c0) . (13)

In order for (12) to be “normal”, it should depend only on the hydrodynamic fields for the

gas and impurities, i.e., on n0(x), n(x), and T (x). Dimensional analysis then requires that

T0(x) must be proportional to T (x),

T0(x) = γT (x). (14)

The constant γ must be determined in course of solving the kinetic equation (as discussed

below). Further comments on the implications of normal solutions is provided in the last

section.

In terms of these scaling solutions and dimensionless velocity variables, the Boltzmann

and Boltzmann-Lorentz equations become

cx

{
1

nσd−1

d lnn

dx
φ (c)−

1

2nσd−1

d lnT

dx

∂

∂c
· [cφ (c)]

}
= J [c|φ, φ] , (15)

c0x

{
1

nσd−1

d lnn0

dx
Φ (c0)−

1

2nσd−1

d lnT

dx

∂

∂c0
· [c0Φ (c0)]

}
= I [c0|Φ, φ] , (16)

with the dimensionless collision operators

J [c|φ, φ] ≡
∫

dc1

∫
dσ̂Θ(σ̂ ·w)(σ̂ ·w)

[
α−2φ (c′)φ (c′1)− φ (c)φ (c1)

]
, (17)

I [c0|Φ, φ] =
∫

dc1

∫
dσ̂Θ(σ̂ ·w0)(σ̂ ·w0)×

[
α−2
0 Φ (c′0)φ (c′1)− Φ (c0)φ (c1)

]
. (18)

The relative velocities w and w0 are now

w ≡ c− c1, w0 ≡ c0 −

(
m0

mγ

)1/2

c. (19)

The expressions of the dimensionless restituting velocities in Eq. (18) are given in Eq. (A3).

Since the right sides of Eqs. (15) and (16) are independent of x, the left sides must be as

well. This will be true if the hydrodynamic fields n(x), n0(x), and T (x) satisfy the equations

1

nσd−1

d lnn

dx
= A,

1

nσd−1

d lnT

dx
= B,

1

nσd−1

d lnn0(x)

dx
= C, (20)
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where A, B, and C are constants. The constants A and B are determined by taking moments

of the Boltzmann equation (15). Namely, multiplication of the equation by 1, cx, and c2,

and integration over c yields

(
A +

B

2

)∫
dc cxφ (c) = 0, (A+B)

∫
dc c2xφ (c) = 0, (21)

(
A +

3B

2

) ∫
dc c2cxφ (c) =

∫
dc c2J [c|φ, φ] . (22)

The zeroes on the right sides of (21) result from conservation of particle number and momen-

tum by the collision operator. The first equation of (21) is satisfied because of conditions

(11) required on φ(c), while the second equation gives A = −B. Finally, Eq. (22) determines

B,

B =
2
∫
dc c2J [c|φ, φ]
∫
dc c2cxφ (c)

. (23)

The exact hydrodynamic fields for the gas are now given exactly by u = 0 and

dp

dx
= 0,

dT

dx
= θ, (24)

where p = n(x)T (x) is the uniform pressure, and θ ≡ Bpσd−1 is the constant temperature

gradient.

A similar analysis applies for the impurity constants C and γ. Taking moments of the

Boltzmann-Lorentz equation (16) with respect to 1, c0x, and c20 gives

(
C +

σd−1

2σd−1
B

)
j0x = 0, (25)

C +
σd−1

σd−1
B =

∫
dc0 c0xI [c0|Φ, φ]∫
dc 0c20xΦ (c0)

, (26)

C +
3σd−1

2σd−1
B =

∫
dc0 c

2
0I [c0|Φ, φ]∫

dc0c20c0xΦ(c0)
. (27)

The right hand sides of Eqs. (26) and (27) depend on γ explicitly through w0 (see (19))

and implicitly on both γ and C through Φ. Since B is known independently from Eq. (23),

the two unknowns γ and C are determined by Eqs. (26) and (27). Equation (25) has two

solutions, j0x = 0 and C = −σd−1B/2σd−1. The latter gives an additional equation for

γ and C and the problem is overdetermined. Probably, this choice is not consistent with

the assumption (12). Here, it is assumed that the boundary conditions enforce the choice

j0x = 0.

7



In summary, the description of the gas and impurities is completely specified by the

kinetic equations for φ (c) and Φ (c0),

−Bcx

{
φ (c) +

1

2

∂

∂c
· [cφ (c)]

}
= J [c|φ, φ] , (28)

c0x

{
CΦ (c0)−

σd−1B

2σd−1

∂

∂c0
· [c0Φ (c0)]

}
= I [c0|Φ, φ] , (29)

and the constants B, C, and γ are determined self-consistently from Eqs. (23), (26), and

(27). The corresponding collision integrals are further simplified in Appendix A. The

hydrodynamic fields have the simple spatial forms

T (x) = T (0) + θx, n(x) =
p

T (0) + θx
, (30)

T0(x) = T0(0) + γθx, n0(x) = n0(0)

[
1 +

θx

T (0)

]σd−1C/σd−1B

. (31)

IV. SEGREGATION

The segregation of impurity particles relative to the host gas is described by the inhomo-

geneity of the composition ρ0(x) ≃ n0(x)/n(x), which follows from (30) and (31)

ρ0 (x) =
n0(0)

n(0)

[
1 +

θ

T (0)
x

]1+σd−1C/σd−1B

. (32)

The thermal diffusion factor of (1) is therefore

Λ = −

(
1 +

σd−1C

σd−1B

)
= −

σd−1

2σd−1

∫
dc0 c0xI [c0|Φ, φ]∫
dc0 c20xΦ (c0)

∫
dc c2cxφ (c)

∫
dc c2J [c|φ, φ]

. (33)

If the impurities are mechanically equivalent to the host particles, then I [c0|Φ, φ] =

J [c|φ, φ] , Φ = φ, and Λ = 0, since the first integral in the numerator of (33) vanishes

by conservation of momentum.

The corresponding result for the thermal diffusion factor obtained from the Navier-Stokes

order Chapman-Enskog solutions to the Boltzmann and Boltzmann-Lorentz equations gives

Λ = 0 for all values of the parameters α, α0, σ/σ0, m/m0, θ/pσ
d−1. If the Navier-Stokes

calculation is extended to include effects of gravity the condition becomes [4]
(
Λ
∂T

∂x

)

NS

= mg
(
T0

T
−

m0

m

)
. (34)

Thus thermal segregation can occur, facilitated by gravity, and depends on the sign of

(T0/T −m0/m) and the direction of ∂T/∂x relative to the gravitational force. This is in

sharp contrast to the results obtained in the next section.

8



V. APPROXIMATE DETERMINATION OF T0/T AND Λ

To determine the coefficients B,C, and γ = T0/T , the distribution functions φ and Φ are

represented as truncated Sonine polynomial expansions

φ (c) ≃ π−d/2e−c2
[
1− a01

(
c2 − dc2x

)
+

(
d− 1

2
b01 +

3

2
b10

)
cx

−b01c
2cx − (b10 − b01) c

3
x

]
, (35)

Φ (c0) ≃ π−d/2e−c2
0

[
1− A01

(
c20 − dc20x

)
+

(
d− 1

d
B01 +

3

2
B10

)
c0x

−B01c
2
0c0x − (B10 −B01) c

3
0x

]
. (36)

The method for determining the coefficients in these expansions is described in [2] and

summarized for the case here in Appendix B. The numerical solutions for the case of a

two-dimensional system (d = 2) with m = m0 and σ = σ0 = σ are shown in Figs. 7-9 as a

function of α for several values of α0. An important general feature is that all coefficients

in (35) and (36) vanish as α → 1. Thus the non-uniform steady state described here exists

only as a consequence of the inelasticity of the host gas. Further comment on this is given

in the last section below.

In the following, attention is restricted to σ = σ0 = σ and d = 2 for several values of

m0/m, α, and α0. It is well-established that different species of granular mixtures have

different partial temperatures, even in their homogeneous cooling state (i.e., equipartition of

energy does not occur) [5, 13, 14]. Figures 1 and 2 show the behavior of T0/T for m0/m = 1

and 2, respectively, as a function of α for several values of α0. The common feature is

increasing T0/T with decreasing α, increasing α0, and decreasing m0/m. Figure 3 shows a

broader range of m0/m. Even for the relatively weak dissipation values of this figure, it is

clear that the largest values of T0/T occur for small mass ratio, maximum host dissipation,

and weakest impurity dissipation.

The existence of segregation for the same weak dissipation values of Fig. 3 is demonstrated

in figure 4. The thermal diffusion factor Λ is positive for m0/m > 1. This means that the

impurity concentration is higher at the colder part of the host fluid. This is similar to

the host fluid density which behaves as n = p/T with constant p. For smaller mass ratio,

segregation goes in the opposite direction with the impurity concentration highest in the

hotter part of the host fluid. This effect is enhanced at stronger host fluid dissipation

9
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FIG. 1: Temperature of the impurity T0 divided by the temperature of the hot gas T as a function

of the coefficient of normal restitution of the gas particles α, for several values of the restitution

coefficient for collisions between the gas particles and the impurities, α0, as indicated in the insert.

In all cases, d = 2, m0 = m, and σ = σ0 = σ.

 0.4
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 0.2  0.4  0.6  0.8

T
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α0=0.4
α0=0.3

FIG. 2: The same as in Fig. 1, but now m0/m = 2.

and weaker impurity dissipation, as illustrated in figures 5 and 6 for m0/m = 1 and 2,

respectively. It is interesting to note that for m0/m = 1 the border between the two types

of segregation, Λ = 0, occurs for α = α0. Referring to figure 4, these values also correspond

to T0/T = 1. Similarly, for m0/m = 2 comparing Figs. 2 and 6, it is seen that Λ = 0 for
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FIG. 3: Temperature of the impurity T0 divided by the temperature of the hot gas T as a function

of the mass ratio m0/m for several values of the coefficients of normal restitution α and α0, as

indicated in the insert. In all cases, it is d = 2 and σ = σ0.

T0/T = 2. This limited data suggest the possibility that the segregation criterion Λ = 0

occurs for m0/m = T0/T . Surprisingly, this is the same as the Navier-Stokes criterion in

the presence of gravity, (34). Further analysis of this potential relationship across a larger

data set is required. For larger m0/m it is found that T0/T ≤ 1, and only the segregation

for Λ > 0 occurs.

VI. DISCUSSION

The description of a low density granular gas with a dilute concentration of impurities

has been given in terms of solutions to the coupled Boltzmann and Boltzmann-Lorentz ki-

netic equations. These are normal solutions whose space and time dependence are entirely

specified in terms of the hydrodynamic fields n, n0,and T . The special case of a steady state

in which the host gas has a constant temperature gradient and constant pressure, described

earlier in refs. [2] and [3], has been generalized to include a corresponding steady state

of the impurities. In this way the thermal segregation factor is identified in terms of the

constants of the hydrodynamic fields, without the limiting approximations of small spatial

gradients. The self-consistent kinetic equations (28) and (29) determining these constants

was solved using a low order Sonine polynomial approximation for the velocity dependence
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FIG. 4: Dimensionless thermal diffusion factor Λ as a function of the mass ratio m0/m for the

same system as in Fig. 3.
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FIG. 5: Dimensionless thermal diffusion factor Λ as a function of the coefficient of normal restitution

of the gas particles α, for several values of the restitution coefficient for collisions between the gas

particles and the impurities, α0, as indicated in the insert. In all cases, d = 2, m0 = m, and

σ = σ0 = σ.

of the host and impurity distributions. The resulting thermal diffusion factor was found to

identify conditions for both segregation along and against the temperature gradient. Such

normal solutions are typically constructed by the Chapman-Enskog method whose practical
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FIG. 6: The same as in Fig. 5, but now m0/m = 2.

application typically entails limitations to small spatial gradients, e.g. Navier-Stokes order.

Application of Navier-Stokes hydrodynamics obtained in this way, and specialized to the

steady state with constant temperature gradient and constant pressure, leads to the predic-

tion of no segregation. The effects described here therefore are due to contributions from

the Chapman-Enskog method beyond the small gradient approximation. In fact, there are

no limitations on the temperature gradient in the present analysis.

There are two important clarifications to note. First, the validity of a normal solution

both for granular and molecular gases is limited to domains away from the initial preparation

time and confining boundaries. For the steady state considered here, this means that there

is typically a boundary layer across which the normal solution does not apply. Additional

information is then required to connect the physically specified values of the fields or their

gradients at the boundary with those values associated with the normal solution. These are

the familiar ”slip” boundary conditions. The existence of the normal solution described here

for a system with finite confinement and associated boundary layer has been demonstrated

by molecular dynamics simulation in refs.[2] and [3]. Typically, the size of the bulk interior

relative to the boundary layer decreases as the temperature gradient is increased. Investi-

gation of this problem for a molecular gas has demonstrated that the bulk normal solution

domain still exists beyond the Navier-Stokes limit [15].

A second clarification is the special nature of the steady state described here as being

unique to a granular gas. The analysis of [2] shows that it results from the balance of the

heat flux gradient and the cooling rate due to inelastic collisions. In the absence of the
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latter there is no steady state solution of the type considered here. In contrast to normal

fluids, the gradients of such steady states are controlled by internal processes rather than

boundary sources. External control of the gradients is therefore lost. In the present case

the magnitude of the dimensionless temperature gradient θ/pσd−1 = B (α) monotonically

decreases to zero as α → 1, vanishing in the elastic limit. Consequently, for example, it is

not possible for the Navier-Stokes to apply here for strong dissipation.
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Appendix A: Reduction of collision integrals

The Boltzmann collision integral appearing on the right side of Eq. (23) is simplified

further in [2], with the result

B = −
(1− α2)π(d−1)/2

2Γ
(
d+3
2

)
∫
dc
∫
dc1 |c− c1|

3 φ (c)φ (c1)∫
dc c2cxφ (c)

. (A1)

The Boltzmann-Lorentz collision integrals can be simplified in a similar way. Consider first

the collision integral appearing in Eq. (26),

∫
dc0 c0xI [c0|Φ, φ] =

∫
dc1

∫
dc0 c0x

∫
dσ̂Θ(σ̂·w0)(σ̂·w0)

[
α−2
0 Φ (c′0)φ (c′1)− Φ (c0)φ (c1)

]
,

(A2)

where w0 is defined in Eq. (19) and the dimensionless restituting velocities following from

Eq. (7) are

c′0 = c0 −
m

m+m0

(
1 + α−1

0

)
(σ̂ ·w0)σ̂, c′ = c +

m0

m+m0

(
1 + α−1

0

)
(
mγ

m0
)1/2(σ̂ ·w0)σ̂.

(A3)

It is easily verified that

dc′1c
′

0 = α−1
0 dc1dc0, σ̂ · g0 = −α0σ̂ · g′

0. (A4)

Also, Eqs. (A3) can be inverted to get the collision rule in dimensionless units,

c∗0 = c0 −
m (1 + α0)

m+m0
(σ̂ ·w0)σ̂, (A5)
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c∗1 = c1 +
m0 (1 + α0)

m+m0

(
mγ

m0

)1/2

(σ̂ ·w0)σ̂. (A6)

Returning to Eq. (A2), change variables in the first term of the brackets on the right hand

side to integrate over the restituting velocities. Using the above relations, the equation

becomes

∫
dc0 c0xI [c0|Φ, φ] =

∫
dc1

∫
dc0Φ (c0)φ (c1)

∫
dσ̂Θ(σ̂ ·w0)(σ̂ ·w0) (c

∗

0x − c0x)

= −
m (1 + α0)

m+m0

∫
dc1

∫
dc0Φ (c0)φ (c1)w0w0x

∫
dσ̂Θ(σ̂ ·w0)(σ̂ · ŵ0)

3

= −
m (1 + α0)

m+m0

π(d−1)/2

Γ
(
d+3
2

)
∫
dc1

∫
dc0Φ (c0)φ (c1)w0w0x. (A7)

Finally (26) becomes

C +
σd−1

σd−1
B = −

m (1 + α0)

m+m0

π(d−1)/2

Γ
(
d+3
2

)
∫
dc1

∫
dc0Φ (c0)φ (c1)w0w0x∫
dc0 c20xΦ (c0)

. (A8)

The analysis of Eq. (27) is similar with the result

C+
3σd−1

2σd−1
B =

m (1 + α0)

m+m0

π(d−1)/2

Γ
(
d+3
2

)
∫
dc1

∫
dc0Φ (c0)φ (c1)

[
m(1+α0)
m+m0

w3
0 − 2w0w0 · c0

]

∫
dc0 c

2
0c0xΦ(c0)

. (A9)

Appendix B: Solutions to kinetic equations

The solution to the kinetic equation for φ (c) and the self-consistent determination of B

is a problem that is independent of the impurities and can be carried out first. The method

is described in [2]. First, B is given its representation as a collision integral using Eq. (23),

so the kinetic equation (28) becomes

− 2cx

{
φ (c) +

1

2

∂

∂c
· [cφ (c)]

} ∫
dc c2J [c|φ, φ]
∫
dc c2cxφ (c)

= J [c|φ, φ] . (B1)

Next φ (c) is approximated by a truncated Sonine polynomial expansion

φ (c) ≃ π−d/2e−c2
[
1− a01

(
c2 − dc2x

)
+

(
d− 1

2
b01 +

3

2
b10

)
cx

−b01c
2cx − (b10 − b01) c

3
x

]
. (B2)

This form assures the conditions given in Eq. (11). The coefficients a01, b01, and b10 are

then obtained from three equations following by taking velocity moments in (B1). Namely,
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the equation is multiplied by c2x, c
3
x, and cxc

2, respectively, and afterwards integrated over c.

With these coefficients determined, B is calculated from Eq. (23).

To determine Φ (c0), C, and γ, a similar procedure is followed. First, express C as a

collision integral from Eqs. (26) and (27),

C = 2

[
3

2

∫
dc0 c0xI [c0|Φ, φ]∫
dc0 c20xΦ (c0)

−

∫
dc0 c

2
0I [c0|Φ, φ]∫

dc 0c20c0xΦ(c0)

]
, (B3)

and use this in the kinetic equation (29). Next, express Φ (c0) as a truncated Sonine poly-

nomial expansion

Φ (c0) ≃ π−d/2e−c2
0

[
1− A01

(
c20 − dc20x

)
+

(
d− 1

d
B01 +

3

2
B10

)
c0x

−B01c
2
0c0x − (B10 −B01) c

3
0x

]
, (B4)

which satisfies the conditions (13) with j0 = 0. The coefficients, A01, B01, and B10 are deter-

mined from three equations obtained by taking moments of (29) with respect to c20x, c
3
0x, and

c0xc
2
0. However, these equations also depend on γ, so they are supplemented by an additional

equation relating the above coefficients to γ. It is obtained from a new combination of Eqs.

(26) and (27)

B =
2σd−1

σd−1

[∫
dc 0c

2
0I [c0|Φ, φ]∫

dc0 c20c0xΦ(c0)
−

∫
dc 0c0xI [c0|Φ, φ]∫
dc0 c20xΦ (c0)

]
. (B5)

Since φ and B are known at this point, this gives four independent equations for the coeffi-

cients A01, B01, B10, and γ. With these determined, C is calculated from Eq. (B3).

In practice, the above procedure leads to highly nonlinear equations for the coefficients.

In the numerical results to be presented in the following, only terms up to second degree in

the coefficients have been kept [3]. As an example, in Figs. 7-9, the parameters obtained

for a two-dimensional system (d = 2) with m = m0 and σ = σ0 = σ are plotted as a

function of α for several values of α0. For small values of α, the numerical solutions for the

B parameters constructed as described above seem to disappear.

[1] P. Résibois and M. de Leener, Classical Kinetic theory of Fluids (Wiley-Interscience, New

York, 1977).

[2] J. J. Brey, D. Cubero, F. Moreno, and M. J. Ruiz-Montero, Europhys. Lett. 53 432 (2001).

[3] J. J. Brey, N. Khalil, and M. J. Ruiz-Montero, J. Stat. Mech. P08019 (2009).

16



 0

 0.1

 0.2

 0.3

 0.4

 0.2  0.4  0.6  0.8  1

A
01

α

a01
α0=1

α0=0.9
α0=0.8
α0=0.7
α0=0.6
α0=0.5

FIG. 7: The dimensionless parameters a01 and A01 as a function of the coefficient of normal

restitution of the host gas particles α, for several values of the coefficient of restitution for the

collisions between the gas particles and the impurities, α0. The coefficient a01 does not depend on

the latter. The other (fixed) parameters are d = 2, m0 = m, and σ0 = σ.

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1.4

 0.2  0.4  0.6  0.8  1

B
10

α

b10
α0=1

α0=0.9
α0=0.8
α0=0.7
α0=0.6
α0=0.5

FIG. 8: The same as in Fig. 1 but for the coefficients b10 and B10.
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