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Abstract. The Fokker—Planck equation for a heavy particle in a granular fluid
is derived from the Liouville equation. The host fluid is assumed to be in
its homogeneous cooling state and all interactions are idealized as smooth,
inelastic hard spheres. The similarities and differences between the Fokker—
Planck equation for elastic and inelastic collisions are discussed in detail.
Although the fluctuation—dissipation relation is violated and the reference fluid is
time-dependent, it is shown that diffusion occurs at long times for a wide class
of initial conditions. The results presented here generalize previous results based
on the Boltzmann—Lorentz equation to higher densities.
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1. Introduction

In the 100 years since Einstein’s remarkable paper on Brownian motion [1], its impact has been
felt on a wide range of problems in physics, chemistry and mathematics. The subsequent work of
Smoluchowski [2] and Langevin [3] extended his physical model to more precise mathematical
structures in the theory of stochastic processes. Attempts to recover these as idealizations of
results from the actual Newtonian dynamics of the fluid came much later with the developments
of non-equilibrium statistical mechanics [4]. The detailed description of Brownian motion as a
function of particle size from first principles remains an open problem [5]. A simpler and more
controlled problem is that of a heavy atomic (small size) impurity in an equilibrium host fluid.
Since there is a small parameter, the ratio of the host fluid particle mass to that of the impurity
(and also small ratio of corresponding mass densities), a systematic analysis would appear to be
straightforward. However, even in this case, a simple perturbative analysis is found to be limited
in accuracy to its leading asymptotic term and secular terms must be avoided at higher orders
[6]. The asymptotic analysis for an impurity in a normal fluid at equilibrium leads to the familiar
Fokker—Planck equation [4, 7]. The objective here is to obtain the extension of that result for an
impurity in a corresponding granular fluid. These results generalize earlier studies at low density
(8, 9].

The idealized prototypical model for a granular fluid is a system of smooth, inelastic
hard spheres. This will be the model considered here. The inelasticity of collisions implies a
continual loss of energy on each collision. Consequently, the usual equilibrium state for an
isolated molecular system is replaced by a homogeneous ‘cooling’ state (HCS), which serves as
the environment in which the motion of a heavy impurity is considered. Although this reference
HCS is inherently time dependent, an equivalent stationary representation can be given using
appropriate velocity scaling. The time dependence of the probability density for the impurity
particle in its phase space of position and velocity, can then be analysed by methods similar
to those for normal fluids. For example, the general case of diffusion of an impurity particle
of arbitrary mass in a fluid undergoing HCS has been given recently in [10]. In this work,
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a Zwanzig—Mori projection operator method [11] is used (see appendix A) to obtain a formally
exact kinetic equation vaild for this general case. The Fokker—Planck equation then follows from
this kinetic equation to leading order in the ratio of a fluid particle mass to the impurity mass.
The analysis is complicated by the singular nature of the hard sphere interaction, but this mass
ratio expansion has been discussed in detail for hard, elastic collisions [12]. An interesting new
complication for inelastic collisions is a restriction on the cooling rate of the host fluid relative
to the collision frequency of the impurity. If this is too large, the expansion is no longer valid.
This point has already been noted and discussed elsewhere [8, 13].

The rest of the presentation focuses on the similarities and differences between impurity
motion in normal and granular fluids. Firstly, it is shown that there is an exact mapping of the
granular Fokker—Planck equation onto that for elastic collisions, in appropriate dimensionless
variables. Thus, the physical mechanisms of fast velocity relaxation to a Maxwellian for
homogeneous initial states, and fast relaxation to a diffusive equation for inhomogeneous states
occurs for granular gases as well. In particular, the transition to a hydrodynamic stage (diffusion)
takes place for all degrees of inelasticity for the collisions between the impurity and the fluid
particles. However, in terms of physical variables there are significant differences. One of these
is the violation of equipartition, since the kinetic temperature of the impurity is different from
that of the fluid in the stationary state. Also, the usual fluctuation—dissipation relation between
the drift and diffusion coefficients no longer holds, as expected for a non-equilibrium state
of the host fluid. One consequence is that the mobility coefficient, measuring the response to
an external force (for instance, electromagnetic or gravitational), is not simply related to the
diffusion coefficient by the usual Einstein formula.

The Liouville equation for a granular fluid [14, 15] is introduced in the next section. The
special HCS for an isolated system is described and its time dependence is removed through
the introduction of dimensionless variables. It is shown that the HCS is a stationary state for the
Liouville equation in this representation. This stationary representation is used to describe the
motion of an impurity in the fluid. A formally exact kinetic equation is derived for the impurity
particle in section 3, and the condition for its stationary solution is described. Next, in section 4
the form of this kinetic equation is simplified to that of the usual Fokker-Planck equation [16]
in the asymptotic limit of small ratio of fluid mass to impurity mass. The details of the reduction
are given in the appendices. Some of the most important similarities and differences between
impurity motion in normal and granular fluids are listed in section 5, and summary remarks are
given in the last section of the paper.

2. The HCS and its stationary representation

The basis for the analysis to be carried out in this paper is the Liouville equation for a fluid of
N smooth, inelastic hard spheres (d = 3) or disks (d = 2) of mass m and diameter o, and
one impurity of mass m and diameter oy. The formal structure of this equation has been
discussed in detail elsewhere in the general context of impurity diffusion [10], and only an
overview will be given here. The position and velocity coordinates of the N equal particles
will be denoted by {g;,v;; i=1,..., N}, while those of the impurity particle by g, v.
The expectation value for some observable A(I") defined over the N + 1 particle phase space
I'=1{q0.9,,---,9y, Vo, V1, ..., Vy}, 1s given by

(As 1) = /de(F, NA(), (M
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where p(T', 1) is the probability density for the state of the system at time # and the dynamics is
determined from the Liouville equation:

3, +L)p(, ) =0. ()

The generator for the inelastic hard particle dynamics is

N N 1 N N
Z:Z.f-FV()-VO—ZT_(O, l), Zf:ZVlVL_EZZT_(Z’ ]) (3)
i=1 i=1 j#i

i=1
Here, L is the generator for the dynamics of the fluid particles alone and the subscripts or
labels O refer to the impurity particle. The second term in the expression of L generates the

free streaming of the impurity. The operators T_(i, j) and T_(0, i) describe binary scattering
between fluid particles and between the impurity and fluid particles, respectively,

T G, j) =o' / dQO(g; - 0)|g; - olla8(q;) — G)b,-;l —48(q;; +0)], 4)

T_(0,i)y=0"" /dQ O (g0 - 0)1g0i - 01ty *8(qoi — )by, — 8(qoi + )], &)

where d€ is the solid angle element for the unit vector ¢, 0 = 00, ® is the Heaviside step
function, and g;; = v; — v;and q;; = q; — q; are therelative velocities and positions, respectively.
Moreover, ¢ = o 6 with o = (o + 0y) /2. The operators bl.;l and bal-l determine the pre-collision
velocities in a restituting collision. They are defined by

1 l+a . 1 l+a .
bij Vi =0 — 2 (gij : 0)0’ bij vV, =10+ W(glj . 0’)0’, (6)
and
1+ag)A 1+ 1—A
bito = w = SO (@5 gt = e O (g 9 )
0 0

We have introduced A = m/(m( + m), that is the small parameter of the system in the Brownian
limit to be discussed in the following. In addition, o and « are the coefficients of normal
restitution for fluid—fluid and impurity—fluid collisions, respectively. These coefficients measure
the degree of inelasticity of collisions and take values in the interval 0 < «, oy < 1. Although in
real granular systems the coefficients of normal restitution are known to depend on the relative
impact velocity [17], here they will be taken as material constants for the sake of simplicity. It is
expected that this approximation keeps the main qualitative features of the phenomenon being
investigated.

Average kinetic (granular) temperatures for the fluid 7(¢) and the impurity particle 7y () are
defined by

" -

T(t) = ~d ;lemwf; 1) = imv*(n), (8)
1 2 1 ~2

To(t) = 3m0<v0; t) = smov; (7). )
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The average velocities v(¢) and vy(¢) introduced above will be called thermal velocities of the
fluid and the impurity, respectively. Since all the collisions are inelastic and the effect of the
impurity on the fluid is negligible in the limit of large N, 7(f) decreases monotonically in time
for an isolated system with « < 1. More precisely,

9, 1(t) = =L(OT(1), (10)

where ¢(¢) is the ‘cooling’ rate of the fluid due to inelastic collisions,

o) = — /dF viT_(1,2)p(T, ) > 0. (11)

2(1)d

Similarly, the time evolution of 7 is given by

0, To (1) = — Lo (D) To (1) (12)
with
(1 = —2—N/dl“ T O, DHp, 1 (13)
So(0) = TJQO(t)d vyt (U, 1)p(l, 1),

but it cannot be concluded that the impurity temperature is monotonically decreasing, in general.
Its behaviour depends, in detail, on its initial value relative to that of the fluid particles.

Since, the fluid is cooling, there is no stationary solution to the Liouville equation for an
isolated system. Instead, it is postulated that there is a solution whose time dependence occurs
entirely through 7(7) and 7y (#), having the scaling property

Pres(Ty 1) = [€00 pes (D] [€0es D] oy (A 07 @y, 05D, (14)
with the dimensionless variables defined by

q,* == qz‘/Z, qé = QO/K, v;k = vi/vhcs(t)v US = vO/"JO,hcs(t) (15)

The coordinates have been scaled relative to £ = (no?~!)~!, where n is the number density

of particles, so that ¢ is proportional to the mean free path. The subscripts hcs on the
thermal velocities denote their values calculated for this particular solution. The dimensionless
distribution function pj . is invariant under space translations and, therefore, pj.(I', 7) represents
a spatially homogeneous state of the fluid plus the impurity. The scaling form in equation (14)
implies certain constraints on the cooling rates. Let us introduce reduced cooling rates by

x Zé‘hcs(l‘) % _ E;O,hcs(t)
é-hcs B 5hc.v(t) ’ §0,hcs[y(t)] N EO,hcx(t) ' (16)

From equations (11) and (14) it is easily seen that the reduced cooling rate of the fluid ¢; . is
time independent. Moreover, the cooling rate for the impurity in this state ¢ ., depends on time
only through the ratio of temperatures

:‘70 hcs (t) TO (t)m
= "7 = . 17
YO=Z0 \ Tom (17
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Similarly, it is found that the Liouville equation for p;, . in these dimensionless variables depends
explicitly on time only through y(f). Since pj, is time independent, solutions exist only if y(7)
is a constant. The cooling rate equations (10) and (12) then give immediately the requirement

é‘;zkcx = ygé,hcs(y)' (18)

In the particular state we are considering, the fluid particles and the impurity particle cool
at the same rate, i.e. &.(f) = {o.nes(f). This should be viewed as a condition for the existence
itself of this state as it fixes one of the two temperatures in terms of the other. However, this does
not imply of course that the two temperatures are the same. In fact, it is found that they must be
different except in the case of mechanically identical particles, as discussed below. With these
results, the equation for p; . becomes independent of time and has the form:

1 g e
580 2 o i) + L' ], =0, (19)

i=0

where L is the Liouville operator in dimensionless form (see below). The self-consistent solution
to the coupled set of equations formed by equation (19) and the cooling equations determines the
HCS. It is the analogue of the Gibbs state for molecular systems and reduces to it foro = oy = 1.

In dimensionless form, as defined by p; ., the HCS is time independent. This suggests
a transformation of the Liouville equation to dimensionless variables such that the HCS is a
stationary solution in that representation. This can be formally carried out in the following way.
We are going to scale the positions and velocities as given by equations (15), where now vj,.(t)
is defined by Vs (1) = (2Tes/m)"/? and T, (¢) is the solution of the equation

atThcs(t) = _é‘hcs(t) Thcs(t)a (20)

with the initial condition 7},.(#y) = T(ty), tp being some arbitrary time. Of course, since in the
general case the system is not in the HCS, it is 7(r) # Tj,s(f). Moreover, in the scaling vy j,¢s ()
is chosen as given by Uy jcs = YVnes(f), where y is the time-independent parameter identified
by equation (18). The appropriate dimensionless time scale s is proportional to the average
accumulated number of collisions for the fluid particles in the reference HCS,

t ~ cs t/
s(t, ) =/ dr' E( ). (21)
fo

For a general state whose distribution function is p(I', 7), the dimensionless distribution p*(I'*, )
is defined by

P, 1) = [€00 hes (D] [L0hes (D] p* (T, ), (22)
where I' ={qj,...,q%, v, ..., vy} Substitution of this into equation (2) gives the

dimensionless Liouville equation
(35 + L5 p"(T*, 5) =0, (23)
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with the operator £* defined by
Y 1, 9 1, 0
Lor) = [yvz Vo LT 00 g W L G 2 e v;“} ().

(24)

for arbitrary ® (I'*). The detailed form of the dimensionless binary collision operators T*(y; 0, i)
is given in appendix A. The first three terms on the right-hand side of equation (24) describe the
dynamics of the impurity particle. Since the derivative with respect to s in (23) is taken at constant
v; and v}, some effects of cooling become explicit in the terms proportional to the cooling rate.
The last two terms on the right-hand-side of (24) generate the dynamics of the fluid without the
impurity, again with explicit effects of cooling. As a consequence of these cooling terms, it is
seen that the consistency condition for a stationary solution is the same as equation (19) for the
HCS solution,

L}y = 0, (25)
since in equation (19) it is:
N
L) =L;+yv-Vo—y Y T (r:0,). (26)
i=1

Therefore, the dimensionless form of the Liouville equation (equation (24)), will be referred to
as the stationary representation since it supports a stationary state and that state is the HCS.

3. Kinetic equation for the impurity particle

Consider now the case of the fluid and the impurity in the HCS. At some instant (taken to be
t = tp = 0) the impurity is observed to be at position Ry with velocity V. This initial state can
be represented as

Phes(I8(Ry — qo)d(Vo — vg)

p(T,0) = . (27)
[ AT (T8 (Ry — q0)3(Vo — vp)
This is equivalent to
P Pres TSRG — q5)3(Viy — vp) v k. v
P, 0) = — O = pr (T X)), (28)

J AT 0 (T)8 (R — ) 8 (V5 — v§)

The second equality introduces a convenient notation for the state in which the impurity variables
X = {R, V} are sharply defined. In the remainder of this discussion, the stationary representation
in the dimensionless units will be used, although for simplicity of notation the asterisks will be
omitted. The probability F(R, V, s) for the impurity to have position and velocity R, V, at ‘time’
s 1s then

F(X,s) = /dF 8(X —xo)p(I', 1) = deS (X — x0) e “ppes(T; Xo) . (29)
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where, trivially, xo = {q,, vo}. A formally exact kinetic equation for this probability is obtained
in appendix A. It has the form
|: 0 0 ghcs 0

—+yV. —+yA+—
as VAR TR T T Gy

. V:| F(X,s) + / ds//dX’M(X, X, s—sHF(X',s)=0.

0

(30)
The linear operator A, defined in equation (A.16) in appendix A, describes the exact short time
effect of collisions, including the initial correlations among particles in the HCS. If velocity
correlations are neglected, A reduces to the Enskog—Lorentz collision operator. The form of the
operator M(X, X', s) is given by equation (A.27). It describes dynamically correlated collisions of
the impurity with two or more particles that develop in time. These contributions are vanishingly
small at short times and generally negligible at low densities. However, at very high densities,
they describe the dominant effects of ‘caging’ as the impurity particle becomes more localized
due to collisions.
The stationary HCS, Fj,.,(V), is determined from equation (30) by
é_hcs 0

A [V Fhes(V)] + YA Fyes(V) = 0. €1y

Use has been made of the property given by equation (A.18), i.e.
/dX/M(X, X', 8)Fpes(V') = 0. (32)

Thus, the HCS is a stationary point of M but not of A. Further comment on this is given in the
next section. Also, the particularization for the HCS of the expression for the cooling rate given
by equation (13) can be expressed in terms of Fj, as

oW )
go,hcs = T de UOAF},CS('U()), (33)

where W being the volume of the system. The results of this section are still exact and serve as
a suitable starting point for the small mass ratio expansions to be discussed in the next section.

4. Fokker—Planck limit

In this section, it will be shown that the kinetic equation (30) reduces to a Fokker—Planck equation
for asymptotically small m /m,. The analysis proceeds in the following way. Firstly, it is shown
in appendix B that the operator A becomes in the limit m/my — 0

G o

0
)/AF(X, S) = _FOW . <V+ 3@) F(X, S), (34)

where 'y and G are collision integrals, independent of time and velocity, given by equations
(B.17) and (B.20), respectively,

—\ d—1
ry = % (g) c.. (35)
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-2

G = MCZ, (36)
2

C, and C; being real, positive numbers, of the order of unity. Note that in the limit we are

considering, y~2A is a constant, independent of the mass ratio. For elastic collisions, G — 1

and A becomes the usual Fokker—Planck operator in dimensionless form. The fact that G # 1

here can be considered as a violation of a fluctuation—dissipation relation.

4.1. Impurity HCS

Let us analyse the consequences of this for the impurity HCS. Use of equation (34) into equation
(31) gives immediately

9 19
2 la-ov+-c2|F,. =0, 37
v [( OV+3 av} 4 7

where we have introduced the parameter

_ Ches
€ = .
2T

(38)

It is seen that the solution to this equation is a Gaussian. The normalization and the definition of
the impurity temperature require that

Foos(V) = m Y2, (39
Then equation (37) gives the relation
G=1-c (40)

This allows the determination of the impurity temperature in the HCS in terms of the fluid
temperature. The latter is determined from equation (10) using for ¢, the expression identified
below, and has a universal value, depending only on « and being independent of the initial
conditions at long times. The impurity temperature in the HCS is then determined from equation
(40) with G given by equation (36),

(1 +a9) G

To(r) = mT(f), (41)

following that 7y (¢) # T(1).
A further consequence of the above relationship is the condition € < 1, i.e.

;hcs
2T

<1 (42)

Thus the small mass ratio limit for granular fluids entails, in addition, a restriction on the
inelasticity of the fluid—fluid particle collisions. This follows because ¢, ¢ 1 — o and I'y o< A,
so the fluid inelasticity must decrease as the mass ratio goes to zero. Asymptotically, for small
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1 — « it is found that (see appendix C)

Ad=D/2

—- : 43
ﬁF(d/z)d( o) x(0) (43)

é-hcs ~

where (o) is the fluid—fluid pair correlation function for particles at contact and I'(y) is the
Euler’s I" function. Then the condition (42) becomes

4 @=D2y(0)(1 — @) <z>d—1 -1

44
V2T(d/2)Cid(1 + o) A D

o

In practice, for any choice of A <1 the value of « must satisfy 1 — o < 1, also being consistent
with equation (44). Otherwise, the derivation of the Fokker—Planck limit for A does not hold. It
must be realized that this implies that the time for the clustering instability [19] is suppressed.
The correct limit for € > 1 is described in [13]. Equation (44) can be made more explicit in the
low density limit of the fluid. Then, the correlation function g((f) appearing in the expression
of Cy, equation (B.18), can be set equal to unity, and giz) can be neglected. In this way, we
obtain

S (i)"“ -1 45)
V2(1 +ag)A \T

which agrees with the result derived from the Lorentz—Boltzmann equation reported in [8].
In summary, the stationary state condition fixes the form of A as a Fokker—Planck operator
with friction constant Iy and diffusion coefficient (1 — €),

3 1 )
AF = —y 'Ty— - —(1—-¢e)— |F 4
v Tozy [V+2( e)av], (46)

where € has been defined in equation (36). Moreover, the stationary state equation (37) simplifies
to

d 10
l—€)— | V+=-— | Fs(V) =0. 47
( E)av < +28V)h() 47)
4.2. Fokker—Planck equation

With the form for A given in equation (46), the kinetic equation (30) becomes

0 10
(0, +yV -VR) F(X,s) = (1 —¢) FOW . (V + §W> F(X,s)
+/ ds’ / dX'M(X, X', s — s F(X', s). (48)
0

The first term on the right side is now a Fokker—Planck operator of the usual form, but the “friction
constant’ Iy obtained from A, has been renormalized by (1 — €), due to the additional operator
representing cooling.

New Journal of Physics 7 (2005) 20 (http://www.njp.org/)
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The values of y, € and Iy are now known and it remains only to determine the asymptotic
form of the last term on the right-hand-side of equation (48). There are two steps in that process.
Firstly, since M(X, X', s’) involves two binary collision operators it turns out to be proportional
to (Ay~")%. By exploiting this, in appendix B it is found that

ad 10
dX'MX, X', s —shFX',s) ~ — - [ V+-=— | G.(s — s F(X, 5), 49
[ XM X s =X ~ o ( +28V>g<s $)F(X, 8) (49)
where G, (s) is the correlation function

2
Ge(s) = 2 {Fu(s) - F) . (50)

The brackets denote an equilibrium ensemble average for the fluid in the presence of an infinitely
heavy impurity at rest. The phase functions F. are the total rate of momentum transfer by the
fluid particles to the impurity,

N
Fi=y ' (1+af") A’ Z/dQ@(:Fvi - 6)8(qoi +0)(v; - 0)%5. (51)
i=1

For continuous potentials they would be simply the total force on the impurity, but are
determined here for hard spheres by the binary collision operators. The final step in the reduction
of the term involving M(X, X', s — s') is to recognize that the time scale for the impurity as
described through F(X, s) is slower by a factor y than the decay time for the fluid correlation
function G.(s). To leading order in the mass ratio this gives

f A5 Gu(s — SYF(X',s) ~ TLF(X'. 5), (52)
0

with

n:/ww@@y (53)
0

With all these results, the final form for the Fokker—Planck equation is obtained:

0 10
(05 +yV - VR)F(X,s) = (I' — €l'p) W (V + 55) F(X,s), (54)

where
=T+, (55)

is the total friction constant. In this dimensionless form, the inelasticity of the granular fluid is
suppressed and occurs only through the effective friction constant I' — €I'.
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5. Comparison of granular and normal fluids

The Fokker—Planck equation plays an important role in demonstrating explicitly some important
general beliefs of non-equilibrium statistical mechanics. Among these is a two-stage approach
to equilibrium. In the present case of a granular fluid, the role of the equilibrium state is played
by the HCS. The first stage is a fast relaxation of the velocity distribution on the time scale of
a few collisions, followed by a slower transition to spatial homogeneity and full equilibrium by
hydrodynamic processes. This follows directly from the Fokker—Planck equation, where the only
hydrodynamic process is diffusion.

The recovery of the usual Fokker—Planck equation in dimensionless variables, equation
(54), means that many of these qualitative concepts of Brownian motion for normal fluids can
be transferred to granular fluids as well. The general solution (Green’s function) for the Fokker—
Planck equation can be constructed to demonstrate the two stage relaxation. This has been
discussed in some detail for an analysis based on the low-density Boltzmann—Lorentz equation
[10] and the analysis there applies here as well. The main similarities between normal and
granular fluids are:

e Thereis auniversal stationary state, Gaussian in the velocity and spatially uniform, approached
at long times for all physically relevant initial conditions. For initial homogeneous states, the
approach to this stationary state is exponentially fast in the time scale s determined by the
collision number.

e The spectrum of the Fokker—Planck equation includes an isolated point representing diffusion.
This is the smallest point in the spectrum, corresponding to the slowest possible excitation.
The next slowest mode decays exponentially fast in s relative to the diffusion mode. Therefore,
for general initial conditions, the diffusion equation dominates for sufficiently long times. The
existence of diffusion and its dominance applies for all values of the restitution coefficient «.

This result is relevant because the validity of a hydrodynamic description for granular
fluids is not self-evident. Furthermore, if that validity is granted based on empirical or
phenomenological grounds, it is often assumed to be limited to weak inelasticity. The
Fokker—Planck limit considered here provides an unambiguous example of the existence of
hydrodynamics even for strong inelasticity and a description of the initial transient period leading
up to its dominance.

There are also significant differences between normal and granular fluids, which have been
suppressed by the use of dimensionless variables. Returning to the original variables, equation
(54) takes the form

a 1 0
(0, +V-VR)F(X, 1) = % {F [T(H]V + 27) [7(r)] G } F(X,1). (56)
The first term of the brackets is known as the ‘drift’ term and describes the deterministic dynamics
of the particle. The friction coefficient () is related with the dimensionless one I'* appearing in
equation (54) by I'(t) = v(¢)I"* /€. The second term represents diffusion in velocity space due to
the finite temperature of the host fluid and gives rise to all statistical properties of the dynamics.
The velocity diffusion coefficient is given by

292 T(¢)
m

D[T(H] = {T[T(O] — elo[T(O]} . (57)
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For Brownian motion in a normal fluid, the corresponding relationship is D = (27/m) I'.
This is known as a fluctuation—dissipation relation (velocity diffusion representing fluctuations,
the friction constant I" representing dissipation). This relation is violated for granular fluids in
two ways. Firstly, there is the additional term proportional to € due to the cooling of the host fluid.
Secondly, the impurity particle temperature 7;(¢) differs from that of the host fluid, as shown
in equation (41) for the impurity HCS. A related consequence of cooling and the two different
temperatures, is a violation of the Einstein relation between spatial diffusion and mobility. The
latter can be determined from the Fokker—Planck equation by adding an applied external force and
calculating the response of the average velocity of the impurity particle. The resulting mobility
coefficient has no simple relationship to the coefficient of diffusion determined from the mean
square displacement of the particle.

An obvious effect of the presence of a time dependent temperature in (56), is a nonlinear
change in the relevant time scale. This follows from the fact that the fluid—fluid collision frequency
sets the physical time scale and this is proportional to «/7(¢). Consequently, the dimensionless
collision frequency s depends logarithmically on #. This renormalization of the time is important
foridentifying the various excitations. For example, the mean square displacement of the impurity
becomes linear in the collision number time scale s, not in ¢.

6. Discussion

The Fokker—Planck equation derived here has several qualifications related to the small parameter
m/my. In fact, there are other parameters of the problem that can become large such that their
product with the small mass ratio compromises the validity of the expansion. If the size of the
impurity becomes large relative to the host fluid particle size, the mass densities of the impurity
and fluid particles can become comparable. In fact, this is a common experimental condition.
In this case, it has been suggested [5] that the Fokker—Planck equation must be modified to a
non-Markovian form, since the time scale separation in the analysis of the correlated collisions
operator M is no longer justified.

A second possibility is that the ratio of the impurity temperature to the fluid particle
temperature 7y/ 7T becomes large. This occurs when the cooling rate for the fluid is larger than
the effective impurity—fluid collision rate (violation of the condition (42) above). Since the latter
decreases with the mass ratio, this requires that the host fluid particle must be less inelastic. When
this is not the case, the derivation given here is not valid and the Fokker—Planck description does
not apply. Instead, the impurity particle executes ‘ballistic’ rather than diffusive motion [13].

The hard sphere interactions lead to some important differences from the results for
continuous potentials. The collision operator in equation (30) has both an instantaneous
contribution A and one representing finite time correlated collisions M. The first is analogous to
the Boltzmann—Enskog—Lorentz collision operator. Accordingly, there are separate contributions
from each of them to the friction coefficient I'y and I',, respectively. This is puzzling since for
continuous potentials the friction coefficient is given by a single Green—Kubo expression, in
terms of the time integral of the force autocorrelation function. However, it has been shown
recently that this autocorrelation function develops a singularity for steeply repulsive potentials,
leading precisely to the instantaneous contribution I'y for hard spheres [20]. The residual non-
singular part is given by the ‘force autocorrelation function’ (50). This is a general feature of the
hard sphere interaction and is not related to the inelasticity of the collision.
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It is interesting that the operator M describing correlated many-body collisions plays no
role in determining the HCS distribution for the impurity particle or its cooling rate in the
HCS. On the other hand, it does have an important effect for the dynamics of deviations from
the HCS, through the correlated part of the friction constant I'.. However, the final temperature
of the HCS is independent of this constant.

Within the context described above, the results are exact and apply for both dense and dilute
fluids. Explicit evaluation of the friction coefficient as a function of the density and restitution
coefficients is a difficult many-body problem. The contribution I'y is similar to that from the
Enskog kinetic theory and in fact reduces to the latter for elastic collisions. Here, it is necessary
to understand the pair velocity correlations in the HCS before further simplification is possible.
The contribution from correlated binary collisions I'. is more complicated. Even at low density
and elastic collisions, an infinite sequence of ‘ring’ and ‘repeated ring’ recollisions between fluid
and impurity particles must be calculated when the size of the impurity becomes comparable to
the mean free path [21].

Certainly, the motion of an impurity in a granular fluid provides conceptual, computational
and experimental challenges for the second century after Einstein’s initial insight. In this context,
we note the recent work by D’ Anna et al [18], where experimental results for the motion of a tor-
sion pendulum in a vibrated granular medium is studied. In contrast to the results obtained in this
paper, the authors conclude that the system verifies a fluctuation—dissipation relation, similarly
to the case of equilibrium molecular fluids. Although the theory developed here is not directly
applicable to this case, it can be in principle be analysed by using the same kind of techniques.
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Appendix A. Formal kinetic equation

The projection operator method for normal fluids provides a means to write formally exact
equations for observables of interest in terms of collision kernels. These kernels are then the
appropriate objects to study by means of chosen approximation schemes [11]. In this appendix,
this method is used to obtain the exact kinetic equation for the probability distribution of the
impurity particle, defined in equation (29). The method has been discussed in detail in many
places for normal fluids and extends directly to the granular fluid when working in the stationary
representation. Only a short summary is given here.
The projection operator over the ‘relevant’ part is defined by

PO = de,ohcs(F; X)/dr/(s(X—xg,)@(r’), (A.1)

for an arbitrary phase function & (I"). The distribution function p.; (I'; X) is defined in equation
(28). It is easily verified that P actually has the projection property P> = P. Moreover, it is

/d