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Abstract

Background: Biclustering algorithms for microarray data aim at discovering functionally related gene sets under
different subsets of experimental conditions. Due to the problem complexity and the characteristics of microarray
datasets, heuristic searches are usually used instead of exhaustive algorithms. Also, the comparison among different
techniques is still a challenge. The obtained results vary in relevant features such as the number of genes or
conditions, which makes it difficult to carry out a fair comparison. Moreover, existing approaches do not allow the user
to specify any preferences on these properties.

Results: Here, we present the first biclustering algorithm in which it is possible to particularize several biclusters
features in terms of different objectives. This can be done by tuning the specified features in the algorithm or also by
incorporating new objectives into the search. Furthermore, our approach bases the bicluster evaluation in the use of
expression patterns, being able to recognize both shifting and scaling patterns either simultaneously or not.
Evolutionary computation has been chosen as the search strategy, naming thus our proposal Evo-Bexpa
(Evolutionary Biclustering based in Expression Patterns).

Conclusions: We have conducted experiments on both synthetic and real datasets demonstrating Evo-Bexpa
abilities to obtain meaningful biclusters. Synthetic experiments have been designed in order to compare Evo-Bexpa
performance with other approaches when looking for perfect patterns. Experiments with four different real datasets
also confirm the proper performing of our algorithm, whose results have been biologically validated through Gene
Ontology.
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Background
DNA microarray technologies are used to analyse the
expression level of many genes in a single reaction quickly
and in an efficient manner. Different types of microar-
ray chips have been designed for different investigations,
being expression chips the most common application.
They are used to determine the expression patterns of
genes that correspond to different samples, where the
samples may vary according to experimental conditions
and/or physiological states. They may even be extracted
from different individuals, tissues or developmental stages
[1]. The applications of this kind of microarrays involve
to determine gene functions, find new genes, study gene
regulation and assess how they have evolved over time.
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The raw data of a microarray experiment is an image,
in which the colours and intensities reflect the expres-
sion level of each gene and each sample. This image is
processed in order to obtain a numerical gene expres-
sion matrix, in which rows correspond to the genes under
study and the columns refers the different samples. A spe-
cial characteristic of these expression matrices is that they
are very unbalanced, in the sense that the number of genes
is much larger (usually thousands of genes) than the num-
ber of samples (usually less than a hundred) [2]. Therefore,
analysing these kind of matrices implies understanding
the relationships of a space of lots of variables (genes) from
only a few measured points (experimental conditions).

In order to obtain relevant knowledge from microar-
ray data, similarities among genes and samples need
to be carried out in many different ways, depending
on the specific application. Due to the complexity of

© 2013 Pontes et al.; licensee BioMed Central Ltd. This is an Open Access article distributed under the terms of the Creative
Commons Attribution License (http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and
reproduction in any medium, provided the original work is properly cited.



Pontes et al. Algorithms for Molecular Biology 2013, 8:4 Page 2 of 22
http://www.almob.org/content/8/1/4

these tasks, together with the huge amount of data,
diverse data mining and machine learning approaches
have been studied to produce a great variety of soft-
ware for the analysis of gene expression data from
microarrays.

Gene expression microarray analysis
Focussing the expression matrices analysis on the genes,
one of the most studied goals is to extract information
on how gene expression patterns vary among the different
samples, finding groups of co-expressed genes. If two dif-
ferent genes show similar expression patterns across the
samples, this suggests a common pattern of regulation,
possibly reflecting some kind of interaction or relationship
between their functions [3].

Within data mining techniques it is possible to differ-
entiate two main sets of algorithms, depending on the
use (supervised learning) or not (non-supervised learn-
ing) of previous knowledge on the data. Classification has
been extensively studied within gene expression data as a
supervised technique [4-8], where labelled data is used to
create an algorithm able to assign any new input data to
its proper class.

On the other hand, non-supervised learning is used
when no previous assignations are available; the goal is
to divide the data into clusters of samples and to iden-
tify the differences between the genes that characterize
such groups. The application of clustering techniques
to gene expression data has also been broadly studied
in the literature [9-11]. Nevertheless, there exists two
main restrictions in the use of clustering algorithms: (1)
genes are grouped together according to their expres-
sion patters across the whole set of samples, and (2)
each gene must be clustered into exactly one group. This
last limitation is two-fold: firstly, it means that a cer-
tain gene cannot be present in different groups, thus
forbidding overlapping among clusters; secondly, it con-
fines each gene to be a member of any cluster, even if
it is not co-regulated with any of the other genes in the
cluster.

However, genes might be relevant only for a subset of
samples. This is essential for numerous biological prob-
lems, such as the analysis of genes contributing to certain
diseases, assigning biological functionalities to genes or
when the conditions of a microarray are diverse [12].
Thus, clustering should be performed on the two dimen-
sions (genes and conditions) simultaneously. Also, many
genes may be grouped into diverse clusters (or none
of them) depending on their participation in different
biological processes within the cell [13]. These charac-
teristics are covered by biclustering techniques, which
have also been largely applied to microarray data [14-16].
The groups of genes and samples found by biclustering
approaches are called biclusters.

Finding significant biclusters in a microarray is a much
more complex problem than clustering [17]. In fact, it
has been proven to be a NP-hard problem [18]. Conse-
quently, the majority of the proposed techniques are based
on optimization procedures as the search heuristics. The
development of both a suitable heuristic and a good cost
function for guiding the search is essential for discovering
interesting biclusters in an expression matrix. Further-
more, having a suitable evaluation measure for biclusters
is important as it can be used for comparing the perfor-
mances of different biclustering approaches, which is an
unsolved task nowadays.

In order to design an effective evaluation measure for
biclusters, we have focused our research on the study of
different types of expression patterns in the literature.

Gene expression patterns in biclusters
Several types of biclusters have been described and cate-
gorized in the literature, depending on the pattern exhib-
ited by the genes across the experimental conditions [19].
For some of them it is possible to represent the values in
the bicluster using a formal equation. In the following, let
B be a bicluster consisting in a set I of |I| genes and a set J
of |J| conditions, in which bij refers to the expression level
of gene i under sample j.

• Constant values: bij = π

• Constant values on rows or columns

– Additive: bij = π + βi, bij = π + βj
– Multiplicative: bij = π × αi, bij = π × αj

• Coherent values on both rows and columns

– Additive: bij = π + βi + βj
– Multiplicative: bij = π × αi × αj

where π represents any constant value for B, βi(1 ≤ i ≤
|I|) and βj(1 ≤ j ≤ |J|) refer to constant values used
in additive models for each gene i or condition j; and
αi, (1 ≤ i ≤ |I|) and αj, (1 ≤ j ≤ |J|) correspond to con-
stant values used in multiplicative models for each gene i
or experimental condition j.

Other kind of biclusters correspond to those in which
their values exhibit coherent evolutions, thus showing an
evidence that the subset of genes is up-regulated or down-
regulated across the subset of conditions without taking
into account their actual expression values. In this situa-
tion, data in the bicluster cannot be represented by any
mathematical model.

The most general situation that can be described using
a mathematical formula is when a bicluster has coherent
values on both rows an columns, for the additive and mul-
tiplicative model at the same time. When it is the case, it is
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said that the bicluster follow a perfect shifting and scaling
pattern, and its values can be represented by this equation:

bij = πi × αj + βj, (1)

where πi(1 ≤ i ≤ |I|) refer to constant values for
each gene/row i. Since 2000, several quality measures
for biclusters have been proposed together with differ-
ent heuristics. Nevertheless, to the best of our knowledge,
none of the former proposed quality measures is able to
recognize a perfect shifting and scaling pattern in a biclus-
ter. Nevertheless, this is the most general situation and
also the most probable when working with gene expres-
sion data. In this sense, we have recently developed a
standardization-based procedure for assessing biclusters
quality. This measure has been named VEt and has been
proven to be effective for recognizing both types of pat-
terns simultaneously in biclusters (see section Biclusters
Evaluation in Evo-Bexpa).

Biclustering approaches based on evaluation measures
Mean squared residue
Cheng and Church [20] were the first in applying biclus-
tering to gene expression data. They introduced one of
the most popular biclustering algorithms that combines
a greedy search heuristic for finding biclusters with a
measure for assessing the quality of such biclusters.

The original algorithm of Cheng and Church (hence-
forth CC) adopts a sequential covering algorithm in order
to return a list of n biclusters from an expression data
matrix. In order to assess the quality of biclusters the
algorithm uses the Mean Squared Residue (MSR). This
measure aims at evaluating the coherence of the genes
and conditions of a bicluster B consisting of I rows and J
columns. MSR is defined as:

MSR(B) = 1
|I| · |J|

|I|∑

i=1

|J|∑

j=1
(bij − biJ − bIj + bIJ )

2, (2)

where bij, biJ , bIj and bIJ represent the element in the
ith row and jth column, the row and column means,
and the mean of B, respectively. The lower the mean
squared residue, the stronger the coherence exhibited
by the bicluster, and the better its quality. If a biclus-
ter has a mean squared residue lower than a given
value δ, then it is called a δ-bicluster. If a bicluster
has MSR equal to zero, it means that its genes fluctu-
ate in exactly the same way under the subset of exper-
imental conditions, and thus it can be considered a
perfect bicluster.

Nevertheless, MSR has been proven to be inefficient
for finding certain types of biclusters in microarray data,

especially when they present strong scaling tendencies
[21]. In fact, MSR is only able to capture shifting tenden-
cies within the data [22]. Furthermore, CC also presents
some other disadvantages due to the search strategy and
the use of a threshold for rejecting solutions, since this
threshold is dependent on each database and has to be
computed before applying the algorithm [23].

In spite of the MSR constraints, it has been widely
used in many proposals. These proposals are based on
a diverse range of heuristics: greedy search [24], genetic
algorithms (both single and multi-objective) [17,25], sim-
ulated annealing [26], and fuzzy biclustering, among oth-
ers. More recently, MSR has also been incorporated as
cost function in multiobjective heuristics based on Parti-
cle Swarm Optimization [27], Artificial Immune Systems
[28], and in a variant of the GRASP approach [29].

Scaling mean squared residue
Mukhopadhyay et al. [30] have recently developed an
evaluation measure for biclusters which is able to rec-
ognize scaling patterns. In their work, they analyse the
reasons why MSR is able to recognise shifting patterns
in biclusters but no scaling patters. Using the mathemat-
ical formula for scaling patterns, they define a metric
which is then proved to identify scaling patterns. This new
measure is named SMSR, from Scaling MSR, and it is
shown in equation 3. Nevertheless, SMSR is not capable
of identifying shifting patterns.

SMSR(B) = 1
|I| · |J|

i=|I|∑

i=1

j=|J|∑

j=1

(biJ × bIj − bij × bIJ )2

b2
iJ × b2

Ij

(3)

SMSR has been incorporated into a greedy search strat-
egy similar to that of Cheng and Church. This method-
ology, therefore, shares the same disadvantages with CC,
and it is also necessary to stablish a limit value for SMSR
for each database. In order to also find biclusters with
shifting patterns, the authors propose an adapted algo-
rithm in which CC algorithm is applied twice, the first
time using MSR as evaluation measure and the second
time using SMSR. This allows to find biclusters with shift-
ing patterns and also biclusters with scaling patterns, but
it does not find biclustering with both kind of patterns
simultaneously.

HARP Algorithm
Yip et al. [31] presented a biclustering approach named
HARP (Hierarchical approach with Automatic Relevant
dimension selection for Projected clustering) based on
projected clustering. They also introduced an evaluation
metric slightly different from MSR, in which the quality of
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a bicluster is measured as the sum of the relevance indices
of the columns. Relevance index RIj for column j ∈ J is
defined as

RIj = 1 − σ 2
Ij

σ 2
.j

, (4)

where σ 2
Ij (local variance) and σ 2

.j (global variance) are the
variance of the values in column j for the bicluster and the
whole data set, respectively. Note that the relevance index
for a column is maximized if its local variance is zero,
provided that the global variance is not. Based on this rel-
evance index, the quality of a cluster is measured as the
sum of the index values of all the selected conditions.

At the beginning of the algorithm there are as many
biclusters as genes. The process consist in iteratively
merging biclusters until a certain criterion is met, choos-
ing those experimental conditions that satisfy a specific
threshold requirements, taking into account the relevance
indexes. Optionally, a re-assignation procedure is applied,
where biclusters with very few elements are removed and
elements are assigned to the closest bicluster, according to
a distance measure.

This algorithm presents several drawbacks, being the
most important one the kind of biclusters it is capable
to find. Due to the nature of their evaluation measures,
the only bicluster patterns that maximize the quality are
constant biclusters (either on rows or on columns). Fur-
thermore, the way in which the algorithm works does not
allow overlapped elements among biclusters, which is one
of the most important differences between clustering and
biclustering methodologies.

Virtual error
The basic idea behind the Virtual Error (VE) [32] is
to measure how genes in a bicluster follow the gen-
eral tendency within the group. In order to catch the
general tendency of the genes across the conditions con-
tained in the bicluster, a new gene (the so-called vir-
tual gene) is computed as the mean of all the genes
in the bicluster. This way, this virtual gene symbol-
izes the common tendency of the set of genes for the
given bicluster.

VE aims at measuring the extend to which all the genes
in the biclusters resemble the virtual gene. In order to
carry out a fair comparison in terms of shifting and scal-
ing patterns, a process of gene standardization is perform
on all genes, including the virtual one. This way, genes
values are scaled to a common range. After that, VE is
defined as the average value of all the differences between
the standardized expression values of the bicluster and the
standardized virtual gene. The more similar the genes are,
the lower the value for VE. In fact, VE has proven to be
0 for those biclusters presenting either shifting or scal-
ing patterns [32]. It has also been proven that when the

data in a bicluster resembles a perfect pattern but contain-
ing some other noise data, VE will have a greater value
depending on the amount of noise data in the bicluster
[33]. VE has been used in an evolutionary search strat-
egy producing satisfactory results and improving those
obtained with other evaluation measures [32], being able
to recognized both shifting and scaling patters, though no
simultaneously.

Non metric-based biclustering algorithms
Not all existing biclustering approaches base their search
for biclusters on evaluation measures. There exists a
diverse set of biclustering tools that follow different strate-
gies and algorithmic concepts which guide the search
towards meaningful results. Among others, most pop-
ular algorithms include Ben-Dor et al. [34] approach’s
Order Preserving Sub Matrix (OPSM) algorithm, which
tries to identify large submatrices in which the expres-
sion levels of all genes induce the same linear ordering
of the samples. Iterative Signature Algorithm (ISA) was
proposed by J. Ihmels et al. [35,36] and applies the sig-
nature algorithm in order to find transcription modules,
which are self-consistent regulatory unit consisting of a
set of co-regulated genes and the experimental conditions
that induce their co-regulation. Murali and Kasif [37] pro-
posed the use of xMOTIFs (conserved gene expression
Motifs) for the representation of gene expression data.
Their algorithm looks for large xMOTIFs in which genes
are expressed in the same state across all samples in it.
Finally, Bimax has been presented by Prelic et al. as a
fast divide-and-conquer algorithm capable of finding all
maximal bicliques in a corresponding graph-based matrix
representation [38].

Prelic et al. also developed a Biclustering Analysis
Toolbox (BicAT) [39] which includes implementations of
Bimax and also the other three algorithms (OPSM, ISA
and xMOTIFs), together with CC (see section Bicluster-
ing approaches based on Evaluation Measures). In this
work we have compared the results of our approach on
both synthetic and real data sets with these five different
approaches.

More recently, QUBIC has been presented as a qualita-
tive biclustering algorithm, in which the input data matrix
is first represented as a matrix of integer values. After-
wards the algorithm looks for genes with identical integer
values across a subset of conditions [40]. Hochreiter et al.
[41] have developed a generative multiplicative model for
the biclustering problem, assuming realistic non-Gaussian
signal distributions with heavy tails. They also assumed
gene expression data to be preprocessed and filtered. Hier-
archical clustering has also been used by Huang et al.
[42], incorporating a sub-dimensional search strategy in
an effort to reduce the search space dimension, while Sill
et al. [43] have incorporated stability selection to improve
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a sparse singular value decomposition (SSVD) approach.
Other works are based on a previous binarization of the
data, such as DeBi [44]. After binarizing the data, DeBi
consist of three stages for finding, extending and filtering
seed bicluters. Although no evaluation measure for biclus-
ters is defined, Fisher exact text is used in the extending
phase.

Methods
This section details our biclustering approach, consisting
in a sequential covering method [45], where the func-
tion that obtains each bicluster is an evolutionary algo-
rithm. Our algorithm has been named Evo-Bexpa, from
Evolutionary Biclustering based in Expression Patterns.
The evolutionary process inside Evo-Bexpa consists of a
genetic algorithm guided by a fitness functions in which
several objectives are taken into account. These objectives
are easily configurable, with the possibility of specifying
user preferences on some characteristics of the results,
specifically the number of genes, number of conditions,
overlapping amount and gene mean variances. This way, if
any previous information related to the microarray under
study is available, the search can be guided towards the
preferred types of biclusters. Furthermore, other objec-
tives can also be easily incorporated into the search, as
well as any objective may be ignored by setting its weight
to zero.

The problem of finding a single bicluster according to
several objectives corresponds to a multi-objective opti-
mization problem, in which two or more conflicting objec-
tives need to be optimized. The strategy of constructing
a single Aggregate Objective Function (AOF) has been
adopted in order to solve this multi-objective problem
([46]). This way, it is possible to specify the relative influ-
ence of each objective in the bicluster evaluation, allowing
thus our algorithm to be configurable.

In the following subsections we first explain the different
objectives taken into account in the bicluster evaluation.
Afterwards, the evolutionary algorithm behind Evo-Bexpa
is depicted, including the initialization of the population,
the generational change and also the way in which the dif-
ferent objectives have been combined to form the fitness
function.

Biclusters evaluation in Evo-Bexpa
This subsection details the biclusters characteristics taken
into account in their evaluation. In our approach we
have individualised four different objectives, attending to
the extent to which a bicluster follow a perfect correla-
tion pattern, its size, overlapping amount among different
solutions and mean gene variance. This objectives have
been chosen corresponding to the whole set of objectives
used in different biclustering approaches in the literature,
with independence of their applications.

VEt for correlated pattern recognition
Transposed Virtual Error (VEt) [33] has been used as
the quality measure for biclusters, being one of the most
important objectives in the fitness. It is based on the con-
cepts of expression patterns and quantifies the degree of
correlation among genes in a bicluster. VEt is computed
similarly to VE (see section Biclustering approaches based
on Evaluation Measures) but in the transposed way. The
first step is the creation of a Virtual Condition, which is a
vector containing the means of every row in the bicluster,
as represented in equation 5. This virtual condition ρ will
have, therefore, as many elements as genes are contained
in the bicluster.

ρi = 1
|J|

|J|∑

j=1
bij (5)

Afterwards, a process of standardization is carried out
on both the bicluster data and the virtual condition, as
depicted in equation 6, where σcj and μcj represent the
standard deviation and the arithmetic average of all the
expression values for condition j, respectively. μρ and σρ

also refer to the average and the deviation of the values of
the virtual condition, respectively.

b̂ij = bij − μcj

σcj
, ρ̂i = ρi − μρ

σρ

(6)

Finally, VEt measures the differences between the stan-
dardized values for every experimental condition and the
standardized virtual condition, as in equation 7. There-
fore, VEt is always positive, being its optimal value equals
to 0.

VEt(B) = 1
|I| · |J|

|I|∑

i=1

|J|∑

j=1
(b̂ij − ρ̂i) (7)

VEt has been proven to be efficient to recognize both
shifting and scaling patterns in biclusters either simulta-
neously or independently [33]. It has also been proven to
present a linear increasing behaviour when the amount of
error in a bicluster gets bigger, measured according to the
distance from its nearest perfect pattern. When working
with real data, it is very unlikely to find biclusters where
VEt is equal to zero, due to the fact that although genes in
a good bicluster share a common behaviour, it cannot be
represented in an exact mathematical equation [47].

Bicluster volume
Bicluster volume is defined as the product of the num-
ber of genes and the number of samples. At this point we
have two contrary objectives to be optimized. On the one
hand, VEt has to be minimized and normally the smaller
a bicluster is, the lower VEt will be. On the other hand,
the volume has to be maximized and the general tendency
is that bigger biclusters will have bigger values for VEt . In
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order to design the volume term for the fitness we took
into account the following issues:

• Use of a logarithmic scale. Little changes in the
number of rows or columns would not have a
significant effect, depending on the bicluster
size.

• Two separated terms for number of genes and
conditions. This is necessary for avoiding too
unbalanced biclusters, but also desirable in order to
allow to configure each dimension size
independently. Note that biclusters in which one
dimension is very small are more probable to be
nearer to a perfect pattern, and therefore, they have
low VEt values. For this reason, it is preferable to
optimize the size of both dimensions independently,
thus avoiding obtaining biclusters made up of a great
numbers of genes and only a few samples.

• Fixed range. The range of the values of the functions
controlling both dimensions should not be
dependant on any parameter value.

The final design of the term for the volume is the one
shown in equation 8, where |I| and |J| refer to the number
of genes and conditions, respectively, while wg and wc are
the configuring parameters for both dimensions.

Vol(B) = (
− ln(|I|)

ln(|I|) + wg
) + (

− ln(|J|)
ln(|J|) + wc

) (8)

Those terms whose constant value (wg or wc) is greater
decrease slower. Depending on the value of the con-
stant used, the term will have more or less influence
over the fitness function at the beginning of the algo-
rithm, since initial biclusters are small and they grow
along the evolutionary process. At a certain point, increas-
ing the number of rows or columns for a certain solution
would not compensate the lose of quality, according to
the rest of objectives. The moment in which the algo-
rithm stops increasing the size of the solutions and
focuses on improving the quality depends on the value
of the constants used. The smaller these constants are,
the sooner the algorithm will stop increasing the size.
Figure 1 represents the term for the number of genes in
equation 8, for different values of the constant wg . It can
be clearly seen that for the smaller value of wg repre-
sented (wg = 0.25), the function decreases slower from
a smaller value of the number of genes than for greater
values of wg .

Although we have found default values for the con-
stants for both dimensions (rows and columns) that
allow to obtain good solutions in every expression

matrix we have tested, it is very easy to modify the fit-
ness function in order to obtain solutions of different
sizes if it is desirable. Increasing the constant associ-
ated to rows (wg) will produce biclusters with greater
number of genes, while increasing the constant associ-
ated to columns (wc) will produce biclusters with more
experimental conditions.

Overlapping among biclusters
Overlapping among biclusters is usually permitted but
controlled in the literature [13]. Overlapping differs from
VEt and volume in the sense that it cannot be evaluated
on a bicluster by itself. Cheng and Church [20] try to avoid
overlapping by replacing in the microarray data those val-
ues contained in each found bicluster with random ones.
The main drawback of this strategy is that the replace-
ment does not really avoid including those values in future
biclusters. Therefore, if a bicluster is overlapped with a
former one, that means that this new bicluster has been
found using random values instead of the real ones.

In our work, we have adopted a strategy similar to the
one used in [23], where a matrix of weights W the size of
the microarray is initialized with zero values at the begin-
ning of the algorithm. Every time a bicluster is found, the
weight matrix is updated increasing by one those elements
contained in the bicluster. In order to limit the overlap
among biclusters, this matrix is used in the correspond-
ing term of the fitness function as in equation 9, where
I and J refers to the sets of rows and columns in the biclus-
ter B, respectively. W (bij) corresponds to the weight of
bij in W .

Overlap(B) =
∑

i∈I,j∈J W (bij)

|I| × |J| × (nb − 1)
(9)

This term computes how many times the elements of
B have appeared in any former biclusters, and divides it
by the size of B and the order of the solution (nb) minus
one. This way, we are being more permissive with the lat-
est solutions, and also enclosing the overlapping factor in
the interval [0,1].

Gene variance
Biclustering was first defined by Hartigan in 1972 [48],
although it wasn’t applied to microarray data. The aim
was to find a set of sub-matrices having zero variance,
that is with constant values. Therefore, Hartigan used the
variance of a bicluster to evaluate its quality. However,
when working with gene expression data, it is preferable
to obtain biclusters in which gene variances are high. This
way, gene variance is used in biclustering of microarray
data to avoid obtaining trivial biclusters, favouring those
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Figure 1 Genes size term in volume evaluation. This figure represent the term Volg(B) = − ln(|I|)
ln(|I|)+wg

in equation 8, for different values of wg . For

smaller values of wg , Volg decreases slower from a smaller value of the number of genes than for greater values of wg , implying that greater values of
wg should be selected in order to favour major number of genes.

solutions in which genes exhibit high fluctuating trends.
Gene variance of a bicluster is given by the mean of the
variances of all the genes in it, as in equation 10.

GeneVar(B) = 1
|I| · |J|

|I|∑

i=1

|J|∑

j=1
(bij − μgi)

2 (10)

Existing biclustering approaches deal with gene variance
in different ways. For instance, Cheng and Church [20]
used a threshold value δ as an upper limit for their eval-
uation measure. This way, they search for biclusters with
the maximum possible values for MSR below δ, reject-
ing thus trivial solutions in which there are no expression
changes across the samples. Nevertheless, using such a
limit presents a clear drawback, since δ has to be com-
puted for each database before applying the algorithm
(see section Biclustering approaches based on Evaluation
Measures).

In our proposal, using VEt as a single objective would
produce biclusters in which gene variance is considerable
low. However, if VEt is combined with volume constraints
favouring bigger solutions and overlapping control, the
obtained results may not have so low variance. Despite
this fact, we have also designed a term for controlling
gene mean variance within the fitness function. This new
term consists in the inverse of the gene mean variance in
equation 10, since biclusters with higher gene variances
are preferred and the fitness is going to be minimized in
the algorithm.

Evolutionary algorithm
Evo-Bexpa follows a sequential covering strategy, obtain-
ing a single bicluster each time the evolutionary algorithm

(Bexpa) is executed. Therefore, it has to be run n times
if n biclusters are desired, where n is an user-defined
parameter.

Genetic algorithms are classified as population-based
meta-heuristics for combinatorial optimization, itera-
tively trying to improve several candidate solutions (pop-
ulation) with regard to a given measure of quality (fit-
ness function) [49]. In contrast to other meta-heuristics
descendent methodologies, such as simulated annealing
[26], tabu search [50] or particle swarm optimization [51],
genetic algorithms start with a set of possible solutions
instead of a single one. This characteristic allows genetic
algorithms to explore a larger subset of the whole space
of solutions, at the same time as it helps them to avoid
becoming trapped at a local optimum. These reasons
make genetic algorithms very suited to the biclustering
problem.

The first task when choosing a genetic algorithm for
solving any problem is to decide an appropriate indi-
vidual or chromosome representation for the possible
solutions. We have adopted the same individual repre-
sentation in other evolutionary biclustering works [52],
where each bicluster is represented by a fixed sized binary
string in which a bit is set to one if the corresponding
gene or sample is present in the bicluster, and set to zero
otherwise.

Starting by an initial population, genetic algorithms
select some individuals and recombine them to generate
a new population of individuals. This process is repeated
for a number of generations until the algorithm converges
or certain criteria are met. Algorithms 1.a and 1.b in
Figure 2 show the pseudo-codes of both the sequential
(Evo-Bexpa) and genetic (Bexpa) strategies, respectively.
Evo-Bexpa (algorithm 1.a) consist in iteratively invoking
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Bexpa as many times as biclusters are desired. Bexpa starts
with the initialization of the population, followed by an
iterative process for the search of a bicluster. Both stages
will be detailed in the next subsections.

Initial population
Initial population procedure is essential in every evolu-
tionary algorithm. Depending on the adopted strategy,
the algorithm may converge to different solutions. Also, a
suitable initial population strategy can even speed up the
convergence [53].

Other evolutionary biclustering approaches have
adopted a totally random initial population generation
[54], where initial solutions are made up of a random
number of elements (genes and samples) randomly cho-
sen from the microarray, or also random strategies in
which the chromosomes are made up of only one element
(one gene and one condition) from the microarray [32].
In our experimental tests on synthetic data, we found that
these kind of initializations did not give the algorithm an
initial space solution good enough to come up to the best
solution. Nevertheless, our algorithm always converged to
the best solution when the initial population contained at
least one 3 × 3 sized bicluster representing a partial solu-
tion. That is, this 3 × 3 sized bicluster is a sub-matrix of
the solution. We used this kind of seeds since it represents
the minimal partial solution in which correlation patterns
are less probable to appear at random. Since 2 × 2 sized

matrices of random values always present shifting and
scaling behaviour, it would be impossible to differentiate
their qualities.

Therefore, the initial strategy we have adopted consists
in randomly generating individuals which represent 3 × 3
sub-matrices, henceforth seeds. The key is to generate
much more seeds than the size of the population and then
select the best ones. In fact, it is quite easy to compute
the number of seeds needed to increase the probabil-
ity that some of them are part of the solution, if it is
known beforehand. The probability of a randomly gener-
ated seed to be part of the solution can be computed as
the number of possible seeds in the solution divided by
the number of possible seeds in the whole data matrix, as
in equation 11, where M, N, |I| and |J| are the number of
rows and columns of the microarray data matrix and the
solution, respectively.

Favorable seeds
Total seeds

=
(|I|

3
) × (|J|

3
)

(M
3
) × (N

3
) (11)

Thus, our algorithm computes the number or seeds
needed in order to at least one of them is a part of the
solution. This procedure can only be performed with syn-
thetic data, but it also gives us an idea of the number of
seeds to generate in the case of real data.

Figure 2 Bexpa and Evo-Bexpa algorithms. Evo-Bexpa (algorithm 1.a) consist in iteratively invoking Bexpa as many times as biclusters are desired
(while loop in line 4). Starting with an empty list of biclusters (line 1), lines 6 to 8 represent the transition between two inner iterations, where the
recently found bicluster by Bexpa (invoked in line 5) is stored into the result list, and also the matrix of overlapping weights is updated. This weight
matrix was initialized with 0 values in line 3. The inner genetic algorithm (algorithm 1.b) searches for one bicluster at a time. The weight matrix W
and the order of the next bicluster are given to Bexpa for evaluation purposes. Specifically, they are involved in the overlapping control process
among different biclusters. Bexpa starts with the initialization of the population in line 1. Lines 2 to 17 correspond to the iterative process for the
search of each solution.
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Generational change
Generational change is the mechanism that allows the
population to improve its individuals, according to the fit-
ness function and trying to converge to the optimal solu-
tion (lines 3 to 17 in Algorithm 1.b). For each generation,
the new population is formed by incorporating individ-
uals from the previous one in several ways: replicating
themselves, being mutated, being crossed with other(s)
individual(s) or combining some of these operators.

The next population in Bexpa is created by firstly adding
the best individual of the current population to the next
one, as it can be seen in line 4 of Algorithm 1.b in Figure 2.
This process is called elitism and is usually applied in
order to ensure the convergence of the algorithm [55].
Also, a mutated copy of the best individual is incorporated
into the next population (line 5). The rest of individu-
als are generated by selecting one or two individuals and
applying crossover or/and mutation. Selection is based on
the use of the fitness function together with a random
component. In our approach, we have used tournament of
size 3 as selection mechanism [49]. 80% of the remaining
individuals are generated by the crossover of two pre-
viously selected chromosomes (lines 6 to 10), while the
other 20% individuals correspond to replications (lines 11
to 14). The resulting offspring is mutated with a certain
probability in both cases.

Three distinct crossover operators are used in our algo-
rithm with equal probability: one-point crossover, two-
points crossover, and uniform crossover. We have also
applied two different mutation operators: the simple and
the uniform ones. The probability of the uniform muta-
tor is much lower due to the fact that every position of
the bit string is a candidate to be mutated in the uniform
mutation.

The number of generations (iterations) has been set to
1500, although if there is no significant improvement after
150 consecutive generations, the execution is stopped.
Crossover and replications percentages, as well as muta-
tion probabilities and the number of generations have
been set experimentally, although all of them are input
parameters for the evolutionary algorithm and can be
modified by the user.

Fitness function
The fitness function used in our algorithm for the evalua-
tion of the potential solutions is presented here. Although
we have used the four different objectives described above
in our experiments, the fitness function is easily config-
urable by adding new objectives in the form of a mathe-
matical formula.

In the context of evolutionary algorithms, the fitness
function is a particular type of objective function used to
summarise, as a single figure of merit, how close a given
design solution is in order to achieve the set aims.

Equation 12 depicts the final fitness function used in our
algorithm. Note that the goal is to minimize the value of
every term, in order to find big-sized biclusters with a low
value of VEt , high gene variance and hardly overlapped.

�(B) = VEt(B)

VEt(M)
+ ws · Vol(B) + wov · Overlap(B)

+ wvar · 1
1 + GeneVar(B)

(12)

Every term is weighted, except VE which acts as the ref-
erence objective. Nevertheless, the value of VEt for the
bicluster has been divided by the VEt value of the whole
microarray. This is due to the fact that the range of val-
ues of VEt depends of the values in each microarray.
Although the algorithm pursuit to minimize it, the weight
of the other terms of the fitness function would have to be
recomputed when using a different microarray. In order
to avoid this situation, we divide it by the VEt value of
the whole microarray (M refers to the microarray data
matrix).

Modifying the weights associated to the different objec-
tives leads the algorithm towards different kind of biclus-
ters, according to their sizes, overlapping amount or gene
variance. All weights have been designed in the same way;
a lower value of a certain weight will result on biclusters
with lower values for the corresponding characteristic,
and vice versa. For example, a lower value of ws will lead
to small-sized biclusters, while bigger values of ws will
result on big-sized biclusters. In the results section we
provide default values for every weight, which have been
obtained experimentally and have produced meaningful
results for all the databases under study. Also, we provide
the user with a guidance on how the modification of the
weights affect the different characteristic of the obtained
biclusters.

Note that it is quite simple to add new objectives to the
fitness. A new mathematical formula should be designed
for each new bicluster feature to be taken into account.
This formula will be minimized when inserted into the fit-
ness function, and will also have a corresponding weight.
In order to better control the effect on the results, it is
preferable that the range of values were fixed, not depen-
dant on the specific values of the microarray or bicluster.

Results and discussion
This section presents a wide set of experiments performed
to test the validity of Evo-Bexpa, both on synthetic and
real data sets. The results have been compared with those
obtained using five different approaches: OPSM [34], ISA
[35,36], xMotifs [37], CC [20] and Bimax [38] (see section
Background for a short description of each approach). All
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these five algorithms have been executed using BicATa

(Biclustering Analysis Toolbox)[39].
Next subsection presents an in-depth analysis on the

performance of Evo-Bexpa when modifying the different
configuration parameters introduced in Bicluster Evalu-
ation in Evo-Bexpa section, as well as a study on the
different parameters for the algorithms in BicAT. Later,
subsections Synthetic Data Experiments and Experiments
on Real DataSets describe the experiments carried out on
artificial and real data sets, respectively.

Analysis of parameters
Each biclustering approach needs different parameters
to run. Although default parameters are provided which
should guide the algorithms towards reasonable results,
there is no detailed description on how their varia-
tions affect the obtained bicluster, for any of them.
In this subsection we first describe the input parame-
ters for each of the algorithms in BicAT (OPSM, ISA,
xMotifs, CC and Bimax), trying to clarify the charac-
teristic of the resulting biclusters affected by the mod-
ification of the different parameters. After that, we
present a study on the parameter sensitivity for Evo-
Bexpa.

Analysis of parameters for algorithms in BicAT
Bimax uses an underlying binary data model which
assumes two possible expression levels per gene. There-
fore, as a preprocessing phase, it is compulsory to dis-
cretize the expression values to binary values at a specific
threshold and with a specific scheme. All values above
the threshold will be set to one, all those below to zero.
The discretization scheme defines if only down or up-
regulated genes (or both) will be considered.

The algorithm also takes as input parameters the mini-
mum number of genes and samples for the output biclus-
ters. By specifying larger lower bounds, fewer biclusters
will be returned, reducing thus the computing time.
Default values for both the minimum number of genes and
conditions have been set to two.

CC algorithm takes as input parameter two different
thresholds, δ as the upper limit for MSR, which has
already been mentioned, and α > 1 as a threshold for the
multiple node deletion phase. δ presents two main draw-
backs: its value depends on the input microarray and has
to be computed beforehand (there is no common default
value), and also the use of δ blocks the algorithm from
obtaining meaningful solutions [21,23]. Default value for
α parameter has been set to 1.2, and the authors claim
that when it is properly selected, the multiple node dele-
tion phase is usually extremely fast. Nevertheless, there is
no explanation on how does this value affect the results.
There are no criteria for finding an efficient value for
α either.

CC also receives as an input parameter the number
of biclusters to obtain, since it is based on a sequential
covering strategy, as well as Evo-Bexpa.

OPSM approach is based on the formulation of a prob-
abilistic model of the expression data. As finding the best
model is infeasible for real data, Ben-Dor et al. use par-
tial models and grow them iteratively. The algorithm takes
as input paramater the number of partial models passed
for each iteration 	. According to the authors, increas-
ing 	 would improve results, although it will come at
a cost of a higher running time. Nevertheless, it is no
clear in which aspect does the modification of 	 affect the
obtained biclusters (size, quality or other) in real data. Fur-
thermore, they do not provide any instruction on how to
select an appropriate value for 	.

The Iterative Signature Algorithm (ISA) receives three
different input parameters. Tg and Tc are thresholds for
the resolution of the modular decomposition of both
genes and conditions, respectively. Tc is said to have
a minor effect on the results, and was set to 2 in all
the analyses. Tg was varied from 1.8 to 4.0 in steps of
0.1, in order to analyse the resulting stringency of co-
regulation between the genes. The default value for Tg
can be assumed as 2.0. Although the authors perform an
analysis on the influence of Tg on the results on a specific
dataset[36], it is not straightforward to see what will the
influence be for any other datasets.

The third input parameter for ISA is the number of
starting points that the algorithm uses for randomly
selecting a set of genes and iteratively refining this set until
the genes and conditions in it are mutually consistent and
match the definition of a transcription module. Authors
claim that using a sufficiently large number of initial sets it
is possible to determine all the modules corresponding to
a particular pair of thresholds. The default value for this
parameter is set to 100.

xMOTIFs looks for biclusters in which genes are
expressed in the same state across all samples. In order
to differentiate biologically interesting states, a maximum
p-value parameter is used, considering only those states
whose p-value is less than the parameter (1 × 10E − 9).
Another parameter α determines the minimum number
of samples for biclusters, given as a fraction of the total
number of conditions, being its default value 0.05. Murali
and Kasif also make use of inner parameters to the algo-
rithm such as the number of seeds (ns), the number of
determinants (nd) and the size of the discriminating set
(sd), as in [56]. The authors claim that the quality of the
results does not change much when those are slightly
varied.

Analysis of Evo-Bexpa parameter sensibility on real dataSets
Input parameters for Evo-Bexpa were detailed in section
Methods. The number of parameters will depend on the
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number of objectives or bicluster characteristics to opti-
mize. In this approach, we have used 5 different configu-
ration parameters, which control the volume (wg , wc and
ws), the amount of overlapping (wov) and the gene variance
(wvar).

Default values for Evo-Bexpa have been set experimen-
tally by using a benchmark database and trying to repro-
duce previous results for this database in the literature.
Also, solutions with low proportions of the number of
genes and high percentage of the total number of samples
has been favoured for the setting.

In order to deduce the parameter influence on each
characteristic, we have tested Evo-Bexpa modifying each
configuration parameter from −100% to +100% its value,
in intervals of ±25%. Table 1 shows all the used val-
ues, where the central row gives the default ones. So it
means running Evo-Bexpa 8 additional times per param-
eter, using each value of Table 1 for each weight, while
maintaining the other weights at their default values, this
represents 41 experiments for each dataset. Furthermore,
we have chosen four different microarrays to study the
parameters influence in diverse scenarios (see Table 1).
All in all, for the purpose of the parameter influence anal-
ysis, a total of 164 experiments over real datasets have
been carried out, being 100 the number of biclusters to be
obtained in each execution. All weights must have a posi-
tive value, being 0.0 the value for which the corresponding
objective exerts no influence on the results. However,
they can be set to any positive value, even above +100%
their default values, if more influence of any bicluster
characteristic is desired.

In the following, parameter analysis is only presented for
Embryonal tumours of the central nervous system dataset
[57], in view of results for the other datasets are similar
and do not contribute anything new to the study.

Figures 3, 4, 5, 6 and 7 represent the variations of the
means and deviations for all the different objectives (VEt ,

number of genes, number of conditions, overlap and gene
variance) when modifying each configuration parameter.
Each figure is made up of four different graphics which
depict the influence of a certain weight over the afore-
mentioned bicluster aspects. The main graphic of each
figure shows the variations of the means and deviations
for the main aspect affected by the weight modifications.
Abscissa axis refers to the specific weight values, accord-
ing to Table 1, while the ordinates axis depends on the
configuration parameter under study. For example, in the
first three Figures (3, 4 and 5), vertical axis corresponds
to the means of the number of elements in the biclusters
(genes or samples). At the right side of the main graphic,
the way in which the variations of the parameter affects
the other characteristics has also been represented.

Means of the 100 biclusters represent the general ten-
dency of the results. Nevertheless, deviations cannot be
disregarded. This is due to the fact that although it is pos-
sible to favour some properties in the solutions, results
provided by Evo-Bexpa are diverse, obtaining thus biclus-
ters in which their properties vary in a range around the
reported mean.

Although the modification of any configuration param-
eter not only affects its corresponding aspect, it can be
clearly seen that the greatest variations in any characteris-
tic are obtained by increasing or decreasing its associated
weight. Furthermore, some objectives are related in a
negative way. Mean gene variance, for instance, would
be decreased if bicluster size is increased or the over-
lap decreases. Therefore, it would be a good practice
to slightly correct gene variance parameter when size
or overlap parameters are adjusted, or vice-versa. Other
characteristics have different behaviours when adjusting
any other weights. The mean of the number of genes and
conditions is quite stable when modifying wov in Figure 6,
as well as overlap mean when wc is adjusted, in Figure 4.
In general, VEt increases whenever greater sizes or less

Table 1 Experimental values for configuration parameters

wg wc ws wov wvar

−100% 0.0 0.0 0.0 0.0 0.0

−75% 0.0625 0.125 1.25 1.25 0.025

−50% 0.125 0.25 2.5 2.5 0.05

−25% 0.1875 0.375 3.75 3.75 0.075

Default 0.25 0.5 5.0 5.0 0.1

+25% 0.3125 0.625 6.25 6.25 0.125

+50% 0.375 0.75 7.5 7.5 0.15

+75% 0.4375 0.875 8.75 8.75 0.175

+100% 0.5 1.0 10.0 10.0 0.2

This table shows the different configuration parameter values used in our experimentation. Each weight has been modified from −100% to +100% its default value, in
intervals of ±25%. Default values in the central row have been obtained with synthetic data experiments. Variations have been made individually, invoking Evo-Bexpa
for each different weight value, while maintaining the other weights at their default values.



Pontes et al. Algorithms for Molecular Biology 2013, 8:4 Page 12 of 22
http://www.almob.org/content/8/1/4

Figure 3 wg influence over the different bicluster features. Main graphic shows the variations of the means and deviations of both the number
of genes and conditions, depending on the values of wg in abscissa axis. At the right side of the main graphic, the way in which the variations of wg

affects VEt , overlap and mean gene variance has also been represented.

overlapping is preferred. It was the expected behaviour,
since bigger solutions would produce higher values of VEt ,
unless they were closer to a perfect combined pattern. On
the contrary, biclusters with higher mean gene variance
would have lower values of VEt , due to the reduction of
their sizes when higher variances are required.

Table 2 presents a summary of the configuration param-
eters influences over the different bicluster characteris-
tics. This table has been elaborated using the four real
datasets in Table 3 and the aforementioned variations of

the weights. This way, Table 2 represents the common
behaviour observed in all the datasets under study.

In short, Evo-Bexpa parametrization allows the user to
specify preferences on biclusters features, by adjusting the
corresponding weight(s). The recommended procedure
consist in first run the algorithm using the default con-
figuration, correcting afterwards those weights needed to
reach the desired results in terms of the objectives. In
order to select an appropriate correction, Figures 3, 4, 5,
6 and 7, together with the information in Table 2 should
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Figure 4 wc influence over the different bicluster features. Main graphic shows the variations of the means and deviations of both the number
of genes and conditions, depending on the values of wc in abscissa axis. At the right side of the main graphic, the way in which the variations of wc

affects VEt , overlap and mean gene variance has also been represented.
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Figure 5 ws influence over the different bicluster features. Main graphic shows the variations of the means and deviations of both the number
of genes and conditions, depending on the values of ws in abscissa axis. At the right side of the main graphic, the way in which the variations of ws

affects VEt , overlap and mean gene variance has also been represented.

be used, being aware of the implications that each weight
variation has on the other bicluster aspects.

Synthetic data experiments
In order to test the effectiveness of Evo-Bexpa to find
biclusters following shifting and scaling patterns, we have
carried out a set of experiments inspired on the works of
A. Mukhopadhyay et. al [30] and D. Bozdag et. al [22],
where perfect synthetic biclusters with shifting or scal-
ing tendencies were inserted into artificial data sets. In a
more general purpose, we have used combined patterns

(shifting and scaling simultaneously) for biclusters genera-
tion. These biclusters have been hidden in several artificial
data matrices, with uniform random distributions.

We have chosen the size of one of the most tested
benchmark microarrays in biclustering: yeast Saccha-
romyces cerevisiae cell cycle expression dataset [58], made
up of 2884 genes and 17 samples, for the generation
of artificial matrices. We have also defined several sizes
(genes × conditions) for the inclusion of perfect biclus-
ters: 20 × 10, 60 × 12, 100 × 13, 150 × 15 and 200 ×
16. For each of these sizes we have generated a perfect

Figure 6 wov influence over the different bicluster features. Main graphic shows the variations of the means and deviations of the overlap term
in equation 9, depending on the values of wov in abscissa axis. At the right side of the main graphic, the way in which the variations of wov affects
the number of genes and conditions, VEt and mean gene variance has also been represented.
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Figure 7 wvar influence over the different bicluster features. Main graphic shows the variations of the means and deviations of the mean gene
variance term in equation 10, depending on the values of wvar in abscissa axis. At the right side of the main graphic, the way in which the variations
of wvar affects the number of genes and conditions, VEt and the overlap term has also been represented.

bicluster according to a combined shifting and scaling pat-
tern. Each of these 5 different sized perfect biclusters has
been inserted into 5 different random in silico microar-
rays in random positions. Thus, a total of 25 different case
studies constitute the first set of experiments, in which no
noise has been introduced.

Furthermore, we have also generated the same number
of experiments adding noise to the data with random val-
ues generated from normal distribution, with mean equals
to 0 and deviation equals to 0.25. All in all, there are 50
different experiments, 25 in which the biclusters follow a
perfect pattern and 25 in which random noise has been
included into the data.

For each of the experiments, we have run the following
6 different biclustering algorithms: OPSM, ISA, xMotifs,
CC, Bimax and Evo-Bexpa presented in this work. We
have used default parameters to run all of them.

In order to check the extent to which the bicluster
obtained by each algorithm adjusts to the solution we have

used match scores indexes for both genes and conditions
[38] as performance measure. Let B1(I1, J1) and B2(I2, J2)
be two biclusters, then gene match score is defined as
SI(I1, I2) = |I1∩I2|

|I1∪I2| and condition match score is defined as
SJ (J1, J2) = |J1∩J2|

|J1∪J2| . Both indexes vary from 0, when both
set of genes (or conditions) are disjoint, to 1, when the sets
totally match. This way, match score indexes can be use to
compute the degree of similarity of the sets of genes and
conditions of two biclusters. We have, therefore, compare
each bicluster obtained with the corresponding solution
for all the executions using the six former algorithms.

Figure 8 displays the gene and condition match scores
of the executions of the six algorithms. X-axis repre-
sents gene match scores and Y-axis represents condition
match scores. Each dot in the graphic refers the com-
parison of a bicluster found by each algorithm and the
equivalent solution. According to the gene and condition
match scores definitions, the dots in the right top cor-
ner of the graphic correspond to those obtained biclusters

Table 2 Qualitative influence of the configuration parameters over the different objectives

Weight VEt #Genes #Conditions Overlap Mean gene variance

wg � � = ↘↗ �
wc ↑ ↘= � = �
ws � � � ↘↗ �
wov ↑ = = � �
wvar � � ↗↘ ↘↗ �
Each row represents the influence of each configuration parameter in the first column over the characteristics in the first row, where the behaviour of each row has
been observed when increasing the corresponding weight from 0.0 to its maximum experimented value (see Table 1). Symbol � represents large increments, ↑
medium increments and � large decrements. Symbol = stands for no significant variations, ↘↗ depicts a decreasing behaviour for low values of the weight, turning
to increasing for higher values of the parameter, while ↗↘ depicts the contrary situation.
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Table 3 Datasets used in the experimentation

Dataset Name #Genes #Conditions Ref.

Yeast Yeast Saccharomyces cerevisiae cell cycle 2884 17 [58]

Embryonal Embryonal tumors of the central nervous syst. 7129 60 [57]

Leukemia Leukemia 7129 72 [4]

Steminal Steminal Cells 26127 30 [59]

This table includes the name, sizes and references to the corresponding publications of the four datasets used in our experimentation. Yeast dataset represents one
the most used dataset for comparison of biclustering techniques, and is considered to be a benchmark dataset.

which have a better match with its equivalent solution.
OPSM, CC and Evo-Bexpa are the algorithms with bet-
ter results. In the case of Evo-Bexpa, there exists exactly
five biclusters which are not correctly found, and whose
scores indexes are below 0.6 and 0.3 for the conditions and
genes sets respectively. We have studied these results and
have found that they correspond to the five experiments
in which the hidden biclusters are smaller (20 × 10) and
noise has been introduced. Only OPSM finds better solu-
tions than Evo-Bexpa in these experiments, while for the
other cases Evo-Bexpa outperforms both OPSM and CC.
In fact, we have conducted a statistical test which confirms
that Evo-Bexpa outperforms the other five algorithms in
finding perfect shifting and scaling behaviours in synthetic
data.

Match Score can also be used for measuring the degree
of similarity of two biclusters using former genes and con-
ditions match scores indexes. This way, we have used the
bicluster match score index in order to rank the effective-
ness of the algorithms. Bicluster match score is defined
as

√
SI(I1, I2) × SJ (J1, J2), and varies from 0, when the

biclusters B1 and B2 are disjoints, to 1, when B1 and B2
completely match.

Since our results do not follow a normal distribution,
we have applied Friedman as a non-parametrical test to
carry out a comparison which involves six different meth-
ods. Friedman test ensures us that the results obtained
by the six algorithms are statistically different, with a p-
value of 1.16−10. Also, the raking provided by Friedman
suggests the following order: Evo-Bexpa, OPSM, CC, ISA,
Bimax, xMotifs, which seems to be in concordance with
the representation in Figure 8. Furthermore, we have also
performed a post-hoc procedure in order stablish a com-
parison two by two using our algorithm as the control
method. In this comparison, we obtained for each of the
other five algorithms a p-value less than the alpha val-
ues returned by five different post-hoc procedures (Holm,
Holland, Rom, Finner and Li), which certifies that our pro-
posal Evo-Bexpa outperforms the other five algorithms
in this empirical study with a significance less than 0.05.
STATService [60] has been used in order to perform these
statistical tests.

Figure 8 Gene and condition match scores for ISA, xMotifs, OPSM, BIMAX, CC and Evo-Bexpa in synthetic experiments. X-axis represents
gene match scores and Y-axis represents condition match scores. Each dot in the graphic refers to the comparison of a bicluster found by each
algorithm and its equivalent solution. Dots in the right top corner of the graphic correspond to those obtained biclusters which have a better match
with its equivalent solution.
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Experiments on real DataSets
Experiments on four different real microarrays have been
conducted using Evo-Bexpa and the five algorithms con-
tained in Bicat toolbox: OPSM, CC, ISA, Bimax and xMo-
tifs. Table 3 specifies the details of the datasets, including
theirs sizes as well as references to their corresponding
publications. Yeast dataset is the smallest, made up of
2884 genes and 17 samples, and represents one the most
used dataset for comparison of biclustering techniques.
In fact, it is considered as a benchmark dataset for many
researches. Leukemia dataset is the one containing the
higher number of samples, while Steminal acts as the most
unbalanced microarray, with the mayor number of genes
(26127) and only 30 samples.

Table 4 presents the results for each dataset and algo-
rithm using default parameters in all cases. Results are
represented by the number of biclusters obtained, means
and deviations of their volume (number of genes and
experimental conditions), and means and deviations of
their VEt values and gene variance (see section Meth-
ods). Results have also been grouped by dataset, being
the first five rows those corresponding to the execu-
tions of OPSM, ISA, CC, Bimax and Evo-Bexpa for Yeast
microarray, respectively. Unfortunately, Bicat implemen-
tations of xMotifs and Bimax approaches did not work
properly for every dataset in Table 3. Specifically, xMotifs
could not be performed for Yeast and Steminal datasets,

due to unexpected runtime errors. xMotifs could nei-
ther be executed for Leukemia dataset, since it does not
support more than 64 samples, according to Bicat tool-
box. In the case of Bimax, we did not obtain results for
either Embryonal, Leukemia or Steminal datasets in rea-
sonable time. This fact might be related to the datasets
sizes, since the mean of the biclusters sizes for the Yeast
dataset using Bimax is greater than 75% of the size of the
whole microarray, and the computational cost of generat-
ing quality biclusters of similar proportions for the other
datasets may be unfeasible. Nevertheless, Bimax has run
properly for the Yeast dataset and synthetic data matrices
of the same size.

Bimax generated 56 biclusters for Yeast dataset, all of
them of a very big size, containing almost the totality of
the elements, both genes and conditions. In fact, although
we did not measure overlap for the algorithms in Bicat, it
must be certainly high, since biclusters are made up of a
mean of almost 2300 genes (out of 2884) and 15,16 or 17
experimental conditions (out of 17). Studying correlations
in this kind of biclusters is almost as difficult as studying
the whole dataset. It would even be easier to analyse the
genes and/or samples not contained in the biclusters.

Murali and Kasif ’s xMotifs generates 1000 biclusters for
the Embryonal Tumours dataset, all of them have 5 sam-
ples and a decreasing number of genes with the biclusters
indexes. The first bicluster is made up of 4593 genes, more

Table 4 Summary of experimental results for the microarrays in Table 3

Dataset Algorithm NumBic Genes Conditions VEt Mean gene variance

OPSM 14 496.1 ± 791.1 8.6 ± 4.4 0.189 ± 0.051 1.39 × 105 ± 2.23 × 105

ISA 0 - - - -

Yeast 2884x17 CC 100 34.0 ± 64.2 7.6 ± 3.2 0.151 ± 0.048 3.20 × 103 ± 3.16 × 103

Bimax 56 2297.6 ± 26.1 15.3 ± 0.5 0.207 ± 0.004 1.42 × 105 ± 5.41 × 103

Evo-Bexpa 100 44.0 ± 33.7 11.8 ± 3.9 0.051 ± 0.027 9.81 × 102 ± 5.00 × 102

OPSM 12 1151.5 ± 1809.1 7.8 ± 4.1 0.155 ± 0.072 2.51 × 108 ± 4.22 × 108

ISA 20 377.0 ± 191.0 2.7 ± 0.8 0.145 ± 0.053 5.98 × 108 ± 3.85 × 108

ET 7129x60 xMotifs 1000 2134.6 ± 830.4 5.0 ± 0.0 0.135 ± 0.021 9.61 × 107 ± 3.74 × 107

CC 100 53.1 ± 100.4 11.9 ± 7.9 0.310 ± 0.082 6.14 × 104 ± 2.06 × 105

Evo-Bexpa 100 22.5 ± 6.8 50.8 ± 5.7 0.011 ± 0.003 1.78 × 107 ± 1.59 × 107

OPSM 12 924.3 ± 1633.3 7.8 ± 4.3 0.103 ± 0.047 1.75 × 108 ± 2.89 × 108

Leukemia 7129x72 ISA 34 253.1 ± 172.1 3.1 ± 1.1 0.147 ± 0.049 3.31 × 108 ± 2.17 × 108

CC 100 53.5 ± 232.4 13.9 ± 8.6 0.265 ± 0.067 4.32 × 104 ± 8.53 × 104

Evo-Bexpa 100 18.4 ± 2.9 63.3 ± 5.9 0.008 ± 0.002 4.46 × 106 ± 2.97 × 106

OPSM 27 1170.6 ± 3274.1 16.2 ± 8.8 0.399 ± 0.163 1.73 × 107 ± 5.55 × 107

Steminal 26127x30 ISA 0 - - - -

CC 100 179.1 ± 813.6 13.0 ± 3.1 0.219 ± 0.071 4.84 × 104 ± 1.19 × 105

Evo-Bexpa 100 33.8 ± 17.9 26.3 ± 2.4 0.009 ± 0.004 4.80 × 105 ± 2.69 × 105

Results are represented by the number of biclusters obtained, means and deviations of their volume (number of genes and experimental conditions), and means and
deviations of their VEt values and mean gene variance (see section Methods).
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than the half of the whole dataset, while bicluster num-
ber 999 consist of 576 genes. We consider the number of
biclusters to be cumbersome for any post analysis, even
more if it needs to be carried out manually. Also, the num-
ber of genes per bicluster may again result too high for any
specific study.

Iterative Signature Algorithm (ISA) only found biclus-
ters for Embryonal Tumours (20) and Leukemia (12)
microarrays. In both cases they are obtained with a
decreasing number of genes and conditions, being the
second one a very low value, which we consider almost
useless in biclustering analyses (2 or 3 samples per biclus-
ter). The number of genes varies from 661 to 81 for the
Embryonal database and from 707 to 83 for Leukemia.
For both datasets the biclusters obtained by ISA have the
greatest gene variance.

OPSM, together with CC and Evo-Bexpa produced
results for the four datasets. OPSM biclusters are charac-
terized for having the greatest deviation on the number of
genes. In fact, OPSM bicluster’s sizes vary from a bicluster
containing a few genes and a great number of samples to
the contrary: almost the whole set of genes and very few
samples (2×17 to 2422×2 for Yeast, 2×16 to 5491×2 for
ET, 2×17 to 5208×2 for Leukmia and 6×30 to 15332×2 in
the Steminal case). From the biological point of view, only
a small portion of the obtained biclusters are interesting:
those in the intermediate situations.

CC algorithm allows the user to choose the number of
biclusters to obtain, being 100 its default value. It is a
sequential process in which random data is inserted into
the matrix. For these reasons, first biclusters are in general
greater than the following ones, being the smallest ones
the last 10 biclusters. VEt values are quite high, specially
for Embryonal Tumours (VEt = 0.3098) and Leukemia
(VEt = 0.2652) datasets, where biclusters sizes are not as
big as to favour this range of values. Also, results produced
by CC are rather flat, since their gene variance is in the
majority of the cases the lowest of all the algorithms.

Default parameters for Evo-Bexpa (Table 1) have been
adjusted to produce biclusters with a very low propor-
tion of genes but a high proportion of samples, although
there exists considerable diversity in the results, as shown
by the deviation. Only for the Yeast dataset Evo-Bexpa
obtains the biclusters with the lowest values of gene vari-
ance, while VEt is always much lower, as preferred. In fact,
VEt values for the biclusters found by Evo-Bexpa is smaller
than 0.1, for all datasets, whereas no other algorithm finds
biclusters with such a low VEt level. This is a very good
achievement of our approach given the importance of VEt

as a quality measure for quantifying all kind of patterns
in gene expression data (see section Methods). Further-
more, although VEt values increase for bigger biclusters
or those with lower levels of overlapping, it can be seen
in Figures 1, 3, 4, 5 and 6 that they are never greater than

the biclusters VEt for the other approaches. The order in
which biclusters are found with Evo-Bexpa is not relevant,
although if the weights associated to the overlapping and
size are too high Evo-Bexpa will produce big submatrices
with no overlap, increasing thus VET considerably for the
latest solutions.

The great advantage of Evo-Bexpa with regard to the
other algorithms is its ability to adjust the result char-
acteristics to user defined parameters. Next subsection
presents biological validation for biclusters obtained by
Evo-Bexpa, using the same parameter configuration intro-
duced in section Analysis of Evo-Bexpa Parameter Sensi-
bility on Real DataSets, which confirms the validity of our
approach.

Biological assessment
The Gene Ontology project [61] (GO) is a initiative
to unify the representation of gene and gene product
attributes across all species. It is a directed acyclic graph
whose nodes represent terms dealing with molecular
functions, cell components or biological processes, and
edges connecting nodes depict dependency relationships.
Gene Ontology has been widely used in genome research
applications, and also for the validation of results obtained
after a microarray analysis process, such as clustering or
biclustering.

Term-for-Term analysis represents the standard method
of performing statistical analysis for over-representation
in GO. Starting from a subset of genes (study group) from
a larger population (whole set of genes in the microar-
ray), we are interested in knowing if the frequency of an
annotation to a Gene Ontology term is relevant for the
study group compared to the overall population. Fisher’s
exact test is the most commonly used test for this purpose,
together with the Bonferroni multiple test correction.
This correction is advisable to be performed since Fisher’s
test is applied to many terms per study group. After that,
a Bonferroni adjusted p-value is obtained for each GO
term for which genes in the study group are involved. In
our case, study groups correspond to the sets of genes
in each bicluster. Depending on the desired confidence
level, which determines the adjusted p-value, a bicluster is
said to be significantly enriched if there exists at least one
GO term for which genes in the bicluster are significantly
annotated.

Among all the existing tools for the analysis of gene
expression data using GO [62] we have chosen Ontolo-
gizer [63] for assessing Evo-Bexpa biclusters due to its
novelty (it has been recently updated) and its suitability for
performing the validation of a great number of biclusters
as a batch process.

Results of bicluster biological validation using GO vary
depending on the biclusters sizes. In fact, GO terms are
organized in levels of the graph according, among other
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Figure 9 Number of significant biclusters for different wg values. Ordinates axis represents the number of significant biclusters obtained for
each dataset and the wg values in abscissa axis, being the adjusted p-value 0.05.

issues, to their specificity [64]. Terms in higher levels
(nearer to the root of the graph) are considered to be more
generic and have a greater number of genes annotated,
while terms in lower levels of the graph are more specific
and might have only a few genes annotated. For this rea-
sons, when working with big sets of genes, it would be
more probable that they will be enriched for more generic
GO terms (higher in the graph structure).

In order to check the influence of Evo-Bexpa config-
uration parameters on the biological validation of the
obtained biclusters, we have represented in Figures 9,
10, 11, 12 and 13 the number of significant biclusters
(ordinates axis) for each of the experiments detailed in
section Analysis of Evo-Bexpa Parameter Sensibility on
Real DataSets (see Table 1) and for each dataset, where
abscissa axis refers to the specific weight value, and the
adjusted p-value has been set to 0.05.

The main conclusion we can come up to is that there
is no a common behaviour embraced by the four dif-
ferent data sets and for each configuration parameter.
For example, the number of significant biclusters for the
Yeast dataset increases significantly whenever the num-
ber of genes (wg) or conditions (wc) are increased, as well
as the overall size (ws). Nevertheless, when the overlap
gets more penalized (Figure 12), the number of signifi-
cant biclusters for the Yeast dataset decreases. This is due
to the fact that biclusters sizes are affected by the over-
lapping weight, in the reverse way (the more restrictive
the overlapping amount is, the less elements the biclusters
contains). Figure 13 shows that variance weight varia-
tions do not significantly affect the number of significant
biclusters in the Yeast dataset.

Steminal dataset is the second one presenting more
variations on the number of significant biclusters when
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Figure 11 Number of significant biclusters for different ws values. Ordinates axis represents the number of significant biclusters obtained for
each dataset and the ws values in abscissa axis, being the adjusted p-value 0.05.

modifying the parameters values. It is worth to note that
Steminal is the only dataset for which the number of sig-
nificant biclusters varies significantly from more to less
when increasing the mean gene variance. This is related to
the fact that when higher gene variances in biclusters are
required, the size of the obtained biclusters decrease, as
explained in Analysis of Evo-Bexpa Parameter Sensibility
on Real DataSets section.

For Embryonal and Leukemia data sets the number of
significant biclusters is quite lower than for the other two
data sets, in all the cases. In fact, it rarely exceeds 20%. For
both of them there no exist great variations when modify-
ing the different parameter values. It is interesting to mark
that no significant biclusters were found for the Embry-
onal datasets when wg , wc or ws are set to zero (Figures 9,
10 and 11).

One common issue in hierarchical ontologies is decid-
ing the level of specificity to use in the analysis [65]. On
the one hand, GO terms that are too general may over-
look significantly represented biological markers because
many genes in the background genome are also annotated
by the general GO terms. On the other hand, GO terms
that are too specific can result in the same problem, since
too few genes in the microarray are annotated by these
GO terms. In order to study the level of specificity of the
terms to which Evo-Bexpa biclusters have been annotated
we have carried out three different validations: taking the
whole hierarchical graph into account, and limiting the
validation with the levels 3 to 6 and 4 to 7, both inclusive.

Table 5 presents the validation results for Evo-Bexpa
biclusters using the default configuration. For each type
of validation the number of significant biclusters and the
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Figure 12 Number of significant biclusters for different wov values. Ordinates axis represents the number of significant biclusters obtained for
each dataset and the wov values in abscissa axis, being the adjusted p-value 0.05.



Pontes et al. Algorithms for Molecular Biology 2013, 8:4 Page 20 of 22
http://www.almob.org/content/8/1/4

0 

10 

20 

30 

40 

50 

60 

0 0,025 0,05 0,075 0,1 0,125 0,15 0,175 0,2 

N
um

be
r 

of
 s

ig
ni

fic
an

t b
ic

lu
st

er
s 

Wvar 

Yeast 

Embry 

Leuk 

Stem 

Figure 13 Number of significant biclusters for different wvar values. Ordinates axis represents the number of significant biclusters obtained for
each dataset and the wvar values in abscissa axis, being the adjusted p-value 0.05.

mean of their significant terms are given, for two different
adjusted p-value values: 0.01 and 0.05. As it can be seen
in Table 5, the number of significant biclusters slightly
varies from the validation with the whole graph to the lim-
ited validations, meaning that the majority of biclusters
obtained by Evo-Bexpa contain genes that are not fre-
quently annotated to too general or too specific terms. For
the Embryonal Tumours dataset the number of significant
biclusters does not even decrease with the limited valida-
tions. The mean of significant terms to which genes in the
biclusters of the previous column have been annotated is
also smaller for the hierarchically limited validations. This
was an expected result since those terms which are not in
the specified levels have not been taken into account in
the study. Nevertheless, we consider the reduction on the
number of significant biclusters and terms to be minimal,

locating Evo-Bexpa biclusters in the central part of the
GO graph.

In general, the validation carried out support Evo-
Bexpa effectiveness for biclustering microarray data. In
fact, significant biclusters have been obtained for each
dataset at 0.01 and 0.05 levels provided that configu-
ration parameters are not set to zero. This fact also
suggest the appropriateness of the different chosen objec-
tives in this work. Although the number of signifi-
cant biclusters may vary in a different way for differ-
ent datasets when modifying the different configura-
tion parameters, Evo-Bexpa significant biclusters corre-
spond to significant terms in the central part of the GO
graph. This means Evo-Bexpa succeeds at finding biclus-
ters whose significant terms have an intermediate level
of specificity.

Table 5 Validation results with GO hierarchy level limitations

All levels Levels 3 to 6 Levels 4 to 7

p-value #Bics #Terms #Bics #Terms #Bics #Terms

Yeast 0.01 32 5.969 32 5.125 31 4.387

0.05 41 6.878 40 5.625 40 5.225

ET 0.01 3 3.000 3 3.000 3 2.666

0.05 9 3.778 9 3.444 9 3.333

Leukemia 0.01 4 1.000 3 1.000 3 1.000

0.05 12 2.333 11 1.454 11 1.818

Steminal 0.01 18 4.056 16 2.750 13 2.231

0.05 27 7.111 26 5.269 25 4.200

Validation with Gene Ontology has been carried out for Evo-Bexpa biclusters of the four datasets in Table 3 using the default configuration. This table shows the
number of significant biclusters and significant terms in three different validations: taking the whole hierarchical graph into account, and limiting the validation with
the levels 3 to 6 and 4 to 7, both inclusive.
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Conclusion
In this paper we have presented a new evolutionary algo-
rithm for biclustering of gene expression data named
Evo-Bexpa. There exist two main advantages over other
existing approaches: the use of an evaluation measure
able to detect shifting and scaling patterns (VEt), and the
possibility of specifying user preferences on some charac-
teristics of the results (number of genes and conditions,
overlapping amount,...). This way, if any previous infor-
mation related to the microarray under study is available,
the search can be guided towards the preferred types of
biclusters. Furthermore, other objectives can also be easily
incorporated into the search, as well as any objective may
be ignored by setting its weight to zero. Default values for
the configuration parameters are given in order to provide
the user with quality results. Moreover, an experimental
study has been performed on four real datasets in order to
study the parameters sensibility and their influence over
the different features. This study concludes with an useful
guide on how to customize the algorithm depending on
the user preferences.

Experimental results on both synthetic and real datasets
confirm the validity of our approach, where the results
have been compared to those obtained by five well-known
biclustering algorithms. Evo-Bexpa has been proven to
outperform ISA, xMotifs, OPSM, BIMAX and CC in
synthetic experiments, where match scores indexes have
been used for comparing the obtained results with the
solution. Regarding the experiments on real datasets,
Evo-Bexpa results have been biologically validated using
different levels in Gene Ontology hierarchy. This valida-
tion shows that significant biclusters obtained by Evo-
Bexpa correspond to neither too general or specific
GO terms.

Endnote
aBiclustering Analysis Toolbox (BicAT) is a software plat-
form for clustering-based data analysis that integrates var-
ious biclustering and clustering techniques in terms of a
common graphical user interface [39]. It has been used in
this work for the comparison of Evo-Bexpa performance
with ISA, xMotifs, OPSM, BIMAX and CC algorithms
and is publicly available at http://www.tik.ee.ethz.ch/sop/
bicat/.
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