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Abstract

In this contribution, we provide answers to the following two questions:
1) Which semilinear parabolic equations are approximately control-

lable (in the L2 sense) ?
2) Which are null controllable ?
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1 Introduction

Assume a bounded and connected open set Ω ⊂ NN with regular boundary ∂Ω,
a nonempty open subset O ⊂ Ω and a positive number T are given. We will
put Q = Ω × (0, T ), Σ = ∂Ω × (0, T ), H = L2(Ω); |.| and (., .) will stand for
the usual norm and scalar product in H , respectively; C will denote a generic
constant.
We will be concerned with systems of the form


∂ty −∆y + f(y) = 1Ov in Q,

y = 0 on Σ,

y(0) = y0,

(1)

where y0 ∈ H and v ∈ L2(O × (0, T )) (the control) are given. Here, 1O is the
characteristic function of the set O and it is assumed that f : N 7→ N is locally
Lipschitz-continuous.
For each y0 ∈ H and each v ∈ L2(O × (0, T )), let S(y0; v) be the set of all

solutions y ∈ C0(0, T ;H) to (1); of course, S(y0; v) can be the empty set. Let
us also put

R(y0;T ) = { y(T ) ; y ∈ S(y0; v), v ∈ L
2(O × (0, T )) },

the set of reachable states at time T . It will be said that (1) is approximately
controllable (in H at time T ) if, for every y0 ∈ H , the set R(y0;T ) is dense in
H . It will be said that null controllability holds for (1) if R(y0;T ) 3 0 for all
y0 ∈ H .
In this contribution, our main goal is to provide answers to the following

two questions:

1. Which are those functions f such that the corresponding system (1) is
approximately controllable ?

2. Which are those f such that (1) is null controllable ?

In general, when f is superlinear at infinity, (1) is neither approximate nor
null controllable. Indeed, recall that when f(s) = −s · (log |s|)r (r > 1) blow-up
phenomena may occur. Even when f has “the good sign”, approximate and
null controllability may fail (see [2],[3],[9]). For instance, whenever

C|s|r+1 − C ≤ f(s) · s ≤ C|s|r+1 + C (r > 1)

and y0 6= 0, we can find a time T0 > 0 such that 0 /∈ R(y0;T ) for all T < T0.
On the other hand, when f is sublinear at infinity, i.e.

|f(s)| ≤ C|s|+ C, (2)

the situation is completely different and (1) is both approximately and null con-
trollable, with no restriction on T or O. This has been proved in [4] (resp. [3])
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in the case of approximate (resp. null) controllability. In both cases, the ar-
gument uses a fixed-point reformulation and the controllability properties of
related linear problems. The key points are the unique continuation property in
the case of approximate controllability and an observability inequality for null
controllability. The assumption (2) leads to suitable estimates and allows to
apply Schauder’s theorem.
Hence, the natural question is: What happens if |f(s)| grows faster than |s|

but slower than all |s|r (r > 1) as |s| → ∞ ?

We are also interested in questions of this kind for systems controlled on a
portion of the boundary. More precisely, let γ be a nonempty open subset of
∂Ω and let us put

Γ = ∂Ω \ γ.

For each h ∈ L2(Σ), we consider the parabolic problem

∂ty −∆y + f(y) = 0 in Q,

y = 1γh on Σ,

y(0) = y0,

(3)

where f is as before and 1γ is the characteristic function of γ.
As before, we can introduce the notions of approximate and null controlla-

bility for (3). Thus, let S(y0;h) be the set of all solutions to (3) which belong to
C0(0, T ;H). Again, S(y0;h) can be the empty set. Notice in particular that, for
general data y0 ∈ H and h ∈ L2(Σ), a “solution” y to (3) does not necessarily
satisfy y(T ) ∈ H (however, this is the case if h ∈ L∞(Σ), see [4]; an example of
this situation is given in [10], remark 9.3 in p. 217).
Let us put

R(y0;T ) = { y(T ) ; y ∈ S(y0;h), h ∈ L
2(Σ) }.

We will say that (3) is approximately controllable (resp. null controllable) at
time T if R(y0;T ) is dense in H (resp. R(y0;T ) 3 0) for every y0 ∈ H . Then,
under condition (2), system (3) is approximately and null controllable (cf. [3];
see also [1] for the case of Neumann boundary null controllability). It is also
true that, for superlinear nonlinearities, (3) is neither approximately nor null
controllable in general. Consequently, it is also natural to study the case in
which |f(s)| grows superlinearly but slower than all |s|r.

2 The null controllability result

Concerning null controllability, let us recall the following result from [5]:

Theorem 2.1 Assume f : N 7→ N is locally Lipschitz-continuous, f(0) = 0 and

lim
|s|→∞

f(s)

s · log |s|
= 0. (4)
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Then (1) and (3) are null controllable.

Notice we are dealing with quasi-optimal assumptions: recall again that, for
f(s) = |s|r−1s (r > 1), systems (1) and (3) are not null controllable in general;
also, recall that blow-up may occur for f(s) = −s · (log |s|)r. The assumption
f(0) = 0 is completely reasonable. Otherwise, we would be trying to drive the
system exactly to zero and, at the same time, a nonvanishing (nearly constant)
forcing term would be acting on Ω.

Sketch of the proof: We will only indicate the main ideas in the proof of this
theorem in the case of the distributed control system (1). For simplicity, we will
assume that f is C1 in a neighborhood of 0 and, also, that y0 ∈ C1(Ω). Once
theorem 2.1 is established under these assumptions, it is not difficult to deduce
the same result in the general case; see [5] for the details.

Let us introduce the function g, with

g(s) =



f(s)

s
for s 6= 0,

f ′(0) at s = 0.

In view of assumption (4), one has:

∀δ > 0 ∃Cδ such that |g(s)| ≤ Cδ + δ |log |s|| ∀s ∈ N. (5)

Let us set Z = L∞(Q) and let us denote by ‖ · ‖∞ the usual norm in this
space. We will need the following result:

Lemma 2.1 There exist a mapping Λ0 : Z 7→ Z and a positive constant C0 =
C0(Ω,O, T ) such that:

1. For a ∈ Z, y = Λ0(a) means that y solves, together with some v ∈ L2(O×
(0, T )), the following null controllability problem (where the state equation
is linear): 


∂ty −∆y + ay = v1O in Q,

y = 0 on Σ,

y(0) = y0, y(T ) = 0.

(6)

2. The mapping Λ0 : Z 7→ Z is continuous and compact and satisfies

‖Λ0(a)‖∞ ≤ e
C0(1+‖a‖∞) ∀a ∈ Z. (7)

A proof of this lemma can be found in [5]. There, for the construction of
Λ0(a), some previous results from [7] and [8] were used. The continuity and
compactness of Λ0 were deduced from the regularity properties of the solutions
to (6), which use the fact that y0 ∈ C1(Ω). Specifically, it was shown that Λ0
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maps the bounded sets in Z into bounded sets of C0,α,α/2(Q). By definition,
this is the Banach space formed by all functions v ∈ C0(Q) such that

[v]α,α/2 := sup
Q

|v(x, t)− v(x′, t)|

|x− x′|α
sup
Q

|v(x, t) − v(x, t′)|

|t− t′|α/2
< +∞.

For the obtention of (7), we need specific (global) Carleman inequalities for the
solutions to the adjoint systems{

−∂tϕ−∆ϕ+ aϕ = 0 in Q,

ϕ = 0 on Σ

(with explicit estimates of the constants involved). Also, parabolic regularity
results have to be used in the context of (6).

Let us put
Λ(u) = Λ0(g(u)) ∀u ∈ Z.

Obviously, y = Λ(u) solves, together with some v, the null controllability prob-
lem 


∂ty −∆y + g(u)y = v1O in Q,

y = 0 on Σ,

y(0) = y0, y(T ) = 0.

Consequently, in order to prove theorem 2.1 in this case, it suffices to check that
Schauder’s theorem can be applied to the fixed-point equation

u = Λ(u), u ∈ Z.

But this is not difficult to see. Indeed, Λ : Z 7→ Z is again continuous and
compact. Furthermore,

‖Λ(u)‖∞ ≤ e
C0(1+‖g(u)‖∞) ∀u ∈ Z

whence, using (5), it is easy to deduce that Λ maps a ball of Z into itself.

3 The approximate controllability result

In view of theorem 2.1, it is reasonable to expect approximate controllability for
(1) and (3) under assumption (4). Again, this would provide a sharp criterion.
The following result has been established in a joint work with E. Zuazua [6]:

Corollary 3.1 Assume f : N 7→ N is locally Lipschitz-continuous and (4) holds.
Then (1) and (3) are approximately controllable.

Proof: Again, we only refer to the distributed control case; for further details,
see [6]. Let us fix y0 and y1 in H and ε > 0. We have to find a couple {v, y}
satisfying (1) and the constrain |y(T ) − y1| ≤ ε. For convenience, we take y1
regular enough.
At this point, it is convenient to pay attention to the following remarks:
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1. Theorem 2.1 remains true, essentially with the same proof, when the
nonlinear term is of the form f(x, t, y), with f : Q × N 7→ N being a
Carathéodory function satisfying (for instance):

f(x, t, 0) ≡ 0, s 7→ f(x, t, s) is locally Lipschitz

and

lim
|s|→∞

f(x, t, s)

s · log |s|
= 0 uniformly in (x, t) ∈ Q. (8)

Consequently, under assumption (4), one also has exact controllability to
L∞ trajectories. In other words, if w ∈ C0(0, T ;H) ∩ L∞(Q) satisfies

{
∂tw −∆w + f(w) = 0 in Q,

w = 0 on Σ,

then there exists a couple {v, y} satisfying (1) and y(T ) = w(T ).

2. For each regular y1, there exists δ > 0 such that the (unique) solution Y
to 


∂tY −∆Y + f(Y ) = 0 in Ω× (0, δ),

Y = 0 on ∂Ω× (0, δ),

Y (0) = y1

satisfies Y ∈ C0(0, δ;H)∩L∞(Ω×(0, δ)) and |Y (δ)−y1| ≤ ε. By definition,
we set Yδ = Y (δ).

Now, we do the following:

• During the time interval (0, T −δ), we do nothing, i.e. we take v = 0. This
gives rise to a trajectory which starts from y0 and describes a curve in H .
The end-point of this curve is yδ = y(T − δ).

• By virtue of our first remark, there exists a couple {v̂, ŷ} satisfying



∂tŷ −∆ŷ + f(ŷ) = v̂1O in Ω× (T − δ, T ),

ŷ = 0 on ∂Ω× (T − δ, T ),

ŷ(T − δ) = yδ, ŷ(T ) = Yδ.

We take v = v̂ for t ∈ (T − δ, T ).

It is immediate that v drives the system to a final state at a distance ≤ ε
from y1.

ESAIM: Proc., Vol. 4, 1998, 73-81 79



4 Some remarks

In this final section, we present some comments and remarks on the previous
controllability results.
First, let us indicate that several generalizations can be made. For example,

there exists a positive constant ε0 = ε0(Ω,O, T ) such that theorem 2.1 still
holds with (4) or (8) replaced by the weaker assumption

|f(x, t, s)| ≤ ε0|s| · log |s| for all (x, t) ∈ Q and large |s|.

One can also replace −∆ by a general linear elliptic operator A, with

Ay = −∂i(aij(x)∂jy) + ∂i(bi(x)y) + c(x)y,

provided the coefficients are regular enough, etc.
As in the proof of corollary 3.1, let us fix y0, y1 and ε > 0. Since approximate

controllability holds whenever (4) is satisfied, it is meaningful

To minimize 1

2

∫∫
O×(0,T )

|v|2 dx dt

subject to: {v, y} solves (1) and |y(T )− y1| ≤ ε.

Problems of this kind are analyzed in [6].
Finally, observe that the arguments used in the proof of theorem 2.1 (and

corollary 3.1) also serve, with appropriate changes, to investigate the controlla-
bility properties of some quasilinear parabolic systems. This will be reported in
a forthcoming paper, written in collaboration with A. Dubova and M. González-
Burgos.
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