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Abstract. Using a general procedure for finding recurrence relations
for hypergeometric functions and polynomials introduced by Cardoso et
al. [J. Phys. A 36 (2003), 2055-2068] we obtain some new recurrence
relations for the radial wave functions of the N -th dimensional isotropic
harmonic oscillators as well as the hydrogenlike atoms. A numerical
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1. Introduction

There are many applications in modern physics that require the knowl-
edge of the wave functions of hydrogenlike atoms and isotropic harmonic
oscillators (see e.g. [13, 16] and references therein). Of particular inter-
est is the numerical implementation of such functions. The most natural,
efficient and fast way for generating such functions is to use recurrence rela-
tions. In fact, although the explicit expressions are known, their numerical
implementations are usually very unstable.

In this paper we will continue the research started in [8] for obtaining
recurrence relations and ladder-type operators for the N -th dimensional
isotropic harmonic oscillators and the hydrogenlike atoms. In fact, using
the technique of [8] we will obtain some new recurrences on one hand, and
on the other we will present a comparative numerical analysis of the obtained
recurrence relations for generating numerically the corresponding eigenfunc-
tions. The numerical analysis of the linear recurrences, i.e., the rounding
errors bounds, stability of the scheme, etc. is, in general, very complicate
(see the nice paper [5] and references therein). So we will restrict our-
selves to a discussion of the numerical examples. Finally, let us mention
that the present method for finding recurrence relations can be extended
to any quantum system whose (radial) wave function are proportional to
hypergeometric-type functions (see e.g. [4]).

The structure of the paper is as follows: In section 2 the needed pre-
liminary results and notations are introduced. In section 3 the isotropic

Key words and phrases. wave functions, linear recurrence relations, Laguerre polyno-
mials .
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2 On recurrence relations for radial wave functions

oscillator is introduced and several recurrence and ladder-type relations are
obtained. Similar results for the hydrogenlike atoms is presented in section
4.

2. The isotropic harmonic oscillator

The N -dimensional isotropic harmonic oscillator (I.H.O.) is described by
the Shrödinger equation

(

−∆ +
1

2
λ2r2

)

Ψ = EΨ, ∆ =

N
∑

k=1

∂2

∂x2
k

, r =

√

√

√

√

N
∑

k=1

x2
k .

Its solutions are of the form Ψ = R
(N)
nl (r)Ylm(ΩN ), where R

(N)
nl (r) is the

radial part, usually called the radial wave functions, defined by (see e.g.
[3, 6])

R
(N)
nl (r) = N (N)

nl rle−
1

2
λr2

L
l+N

2
−1

n (λr2), N (N)
nl =

√

√

√

√

2n!λl+N

2

Γ
(

n + l + N
2

) , (2.1)

being n = 0, 1, 2, . . . and l = 0, 1, 2, . . . , the quantum numbers, and N ≥ 3
the dimension of the space. The angular part Ylm(ΩN ) are the so-called
Nth-spherical or hyperspherical harmonics [3, 14]. In the following, we will
assume that the parameters n, l, N are nonnegative integers.

2.1. Recurrence relations for the I.H.O. radial functions. For the
functions (2.1) the following theorem hold [8]

Theorem 2.1. Let R
(N)
nl (r), R

(N)
n+n1,l+l1

(r) and R
(N)
n+n2,l+l2

(r) be three differ-

ent radial functions of the N -th dimensional isotropic harmonic oscillator,

were n1 , n2 and l1 , l2 are integers such that

min (n + n1, n + n2, l + l1, l + l2) ≥ 0.

Then, there exist three all non vanishing polynomials in r, A0, A1, and A2,

such that

A0(r)R
(N)
n,l (r) + A1(r)R

(N)
n+n1,l+l1

(r) + A2(r)R
(N)
n+n2,l+l2

(r) = 0. (2.2)

The proof of this theorem can be found in [8]. A key point on the proof
was the recurrence relation,

C0(s)L
l+N

2
−1

n (s) + C1(s)L
(l+l1)+ N

2
−1

n+n1
(s) + C2(s)L

(l+l2)+ N

2
−1

n+n2
(s) = 0, (2.3)
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where s = λr2, and Ci(s), i = 0, 1, 2, are not all three vanishing polynomials.
Moreover, in [8] it was shown that

A0(r) =
(

N (N)
n,l

)

−1
C0(λr2)rl1+l2 ,

A1(r) =
(

N (N)
n+n1,l+l1

)

−1
C1(λr2)rl2 ,

A2(r) =
(

N (N)
n+n2,l+l2

)

−1
C2(λr2)rl1 .

(2.4)

From the above theorem and the relation (2.3) it is very simple to obtain
à la carte relations between three different radial functions of the I.H.O..
Here we will present some of them. The first four can be found in [8] and
the other four are seem to be new. Let us point out that, in general, it
is not easy to obtain the coefficients Ci in (2.3), nevertheless, combining
in a certain way the known relations of the Laguerre polynomials (see the
appendix A) they can be found. This has been shown in [7, 8]. We will
show here how this works in one of the new examples, for the others the
computations are similar.

• n1 = −1, n2 = 1, l1 = l2 = 0 [8, page 2059]

√

n

(

n+l+
N

2
−1

)

R
(N)
n−1,l(r)+

[

λr2−
(

2n+l+
N

2

)]

R
(N)
n,l (r)

+

√

(n+1)

(

n+l+
N

2

)

R
(N)
n+1,l(r) = 0.

(2.5)

• n1 = n2 = 0, l1 = −1, l2 = 1 [8, page 2059]

r

√

λ

(

n + l +
N

2
− 1

)

R
(N)
n,l−1(r) −

(

l +
N

2
− 1 + λr2

)

R
(N)
n,l (r)

+ r

√

λ

(

n + l +
N

2

)

R
(N)
n,l+1(r) = 0.

(2.6)

• n1 = 0, n2 = 1, l1 = −1, l2 = 0 [8, page 2059]

√

λ

(

n + l +
N

2
− 1

)

R
(N)
n,l−1(r) +

(

n + 1 − λr2
)

R
(N)
n,l (r)

−
√

(n + 1)

(

n + l +
N

2

)

R
(N)
n+1,l(r) = 0.

(2.7)

• n1 = −1, n2 = 0, l1 = 0, l2 = 1 [8, page 2059]
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−
√

n

(

n + l +
N

2
− 1

)

R
(N)
n−1,l(r) +

(

n − λr2
)

R
(N)
n,l (r)

+ r

√

λ

(

n + l +
N

2

)

R
(N)
n,l+1(r) = 0.

(2.8)

• n1 = −1, n2 = 1, l1 = 1, l2 = −1, i.e., we are looking for a relation of type
(2.2)

A0(r)R
(N)
n,l (r) + A1(r)R

(N)
n+n1,l+l1

(r) + A2R
(N)
n+n2,l+l2

(r) = 0.

For finding the polynomials Ai, i = 0, 1, 2 we use (2.4) where Ci, i = 0, 1, 2
are the polynomials in (2.3). Putting α = l + N

2 − 1 we have

C0(s)L
α
n(s) + C1(s)L

α+1
n−1(s) + C2(s)L

α−1
n+1(s) = 0.

Now we substitute the functions Lα+1
n−1(s) and Lα−1

n+1(s) using the relations
(A.4)

Lα+1
n−1(s) =

n + α

s
Lα

n−1(s) −
n

s
Lα

n(s)

and (A.6)

Lα−1
n+1(s) = Lα

n+1(s) − Lα
n(s),

respectively. This leads to

C1(s)
n + α

s
Lα

n−1(s) + [C0(s) −
n

s
C1(s) − C2(s)]L

α
n(s) + C2(s)L

α
n+1(s) = 0.

Comparing the last formula with the TTRR (A.7) for the Laguerre polyno-
mials we find

C0(s) = s − α, C1(s) = s, C2(s) = n + 1,

and therefore for the wave functions we find

√
nλrR

(N)
n−1,l+1(r) −

(

l +
N

2
− 1 − λr2

)

R
(N)
n,l (r)

+ r
√

(n + 1)λR
(N)
n+1,l−1(r) = 0.

(2.9)

Analogously, we can find the following three recurrence relations

• n1 = −1, n2 = 1, l1 = −1, l2 = 1

A0(r)R
(N)
n,l (r) + A1(r)R

(N)
n−1,l−1(r) + A2(r)R

(N)
n+1,l+1(r) = 0, (2.10)
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where

A0(r) = −
[

(λr2 − (n + 1))(λr2 − n)

(

2n + l +
N

2
− λr2

)

+

(2n + 1)

(

n + l +
N

2

)

(λr2 − n) − n

(

l +
N

2
− 1 + λr2

)

]

,

A1(r) = r(λr2 − (n + 1))

√

λn

(

n + l +
N

2
− 2

)(

n + l +
N

2
− 1

)

,

A2(r) = r(λr2 − n)

√

λ(n + 1)

(

n + l +
N

2

)(

n + l +
N

2
+ 1

)

.

• n1 = 0, n2 = 2, l1 = 1, l2 = 0
√

n+l+
N

2

(

n+l+
N

2
+ 1−λr2

)

R
(N)
n,l (r)

−
√

λ r

(

2n+l+
N

2
+ 2 − λr2

)

R
(N)
n,l+1(r)

−
√

(n+1)(n+2)

(

n+l+
N

2
+ 1

)

R
(N)
n+2,l(r) = 0.

(2.11)

• n1 = 0, n2 = −2, l1 = 1, l2 = 1

r
√

λ

(

2n+l+
N

2
−1−λr2

)

R
(N)
n,l (r)

−
√

(

n+l+
N

2

) (

n+l+
N

2
−1 −λr2

)

R
(N)
n,l+1(r)

+

√

n(n−1)

(

n+l+
N

2
− 1

)

R
(N)
n−2,l+1(r) = 0.

(2.12)

• n1 = −1, n2 = 1, l1 = 0, l2 = 1
√

n

(

n+l+
N

2
−1

)

(

λr2−n−1
)

R
(N)
n−1,l(r)

+

[

n(n+1)−
(

3n+l+
N

2
+1−λr2

)

λr2

]

R
(N)
n,l (r)

+r

√

λ(n+1)

(

n+l+
N

2

)(

n+l+
N

2
+ 1

)

R
(N)
n+1,l+1(r) = 0.

2.2. Ladder-type relations for the I.H.O. radial functions. Another
important relations for the functions (2.1) are the so-called ladder operators.
The following result was proven in [8].
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Theorem 2.2. Let R
(N)
n,l (r) and R

(N)
n+n1,l+l1

(r) be two radial functions of the

N -th dimensional isotropic harmonic oscillator and let min (n + n1, l + l1) ≥
0 and (n1)

2 +(l1)
2 6= 0, where n1 and l1 are integers. Then, there exist three

not all vanishing polynomials in r, A0, A1, and A2, such that

A0R
(N)
n,l (r) + A1

d

d r
R

(N)
n,l (r) + A2R

(N)
n+n1,l+l1

(r) = 0. (2.13)

The proof of this theorem can be found in [8]. A key point on the proof
was the recurrence relation,

B0(s)L
l+N

2
−1

n (s) + B1(s)L
l+N

2

n−1 (s) + B2(s)L
(l+l1)+ N

2
−1

n+n1
(s) = 0, (2.14)

where B0, B1, and B2 are not all three vanishing polynomials. Moreover,
(2.13) can be rewritten as

[

B1(s)
d

dr
+ λr (B1(s) − 2B0(s)) − B1(s)

l

r

]

R
(N)
nl (r)

= 2λB2(s)
N (N)

n,l

N (N)
n+n1,l+l1

r1−l1R
(N)
n+n1,l+l1

(r).

(2.15)

To obtain the unknown polynomials B0, B1, and B2 in (2.14) we can
proceed as in the previous section, i.e., use the Eqs. (A.2)–(A.7) to trans-
form (2.14) into one of the formulas (A.2)–(A.7) or in a sum of linearly
independent Laguerre polynomials and solve the resulting equations for the
unknown coefficients. Let us consider some examples. The first four are
taken from [8] and the other two are new.

• n1 = −1 and l1 = 1 [8, page 2061]

[

d

dr
+ λr − l

r

]

R
(N)
n,l (r) = −2

√
λnR

(N)
n−1,l+1(r). (2.16)

• n1 = 1, l1 = 1 [8, page 2061]

[

(

λr2 − (n + 1)
)

(

d

dr
− l

r
− λr

)

+ 2λ

(

n + l +
N

2

)

r

]

R
(N)
n,l (r)

= 2

√

λ(n + 1)

(

n + l +
N

2

)(

n + l +
N

2
+ 1

)

R
(N)
n+1,l+1(r).

(2.17)

• n1 = 0, l1 = 1 [8, page 2061]

[

d

dr
− λr − l

r

]

R
(N)
n,l (r) = −2

√

λ

(

n + l +
N

2

)

R
(N)
n,l+1(r). (2.18)
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• n1 = 1, l1 = 0 [8, page 2061]

[

r

(

d

dr
−λr

)

+(2n+l+N)

]

R
(N)
n,l (r) = 2

√

(n+1)

(

n+l+
N

2

)

R
(N)
n+1,l(r).

(2.19)
• n1 = 2, l1 = 0. Introducing these values into (2.14) and putting α =
n + N

2 − 1 we get

B0(s)L
α
n(s) + B1(s)L

α+1
n−1(s) + B2(s)L

α
n+2(s) = 0 . (2.20)

Now, using relations (A.4) and the TTRR (A.7), (2.20) becomes into

B0(s)
n + α

s
Lα

n−1(s)+

(

B0(s) −
n

s
B1(s) −

n + 1 + α

n + 2
B2(s)

)

Lα+1
n (s)

+ B2(s)
2n + α + 3 − s

n + 2
Lα

n+1(s) = 0 .

Comparing with the TTRR (A.7) we find

B0(s) = (n + 1)

(

2n +
N

2

)

−
(

3n + 2 +
N

2
− s

)(

2n +
N

2
− s

)

,

B1(s) = s

(

3n + 2 +
N

2
− s

)

, B2(s) = (n + 1)(n + 2),

and therefore, for the wave functions we find (see (2.15))
[(

3n + 2 +
N

2
− λr2

)(

r
d

dr
+4n+N−l−λr2

)

−(n+1)(4n+N)

]

R
(N)
n,l (r)

= 2

√

(n+1)(n+2)

(

n+l+
N

2

)(

n+l+
N

2
+ 1

)

R
(N)
n+2,l(r).

• n1 = 0, l1 = 2 Following the same technique and using now twice, in the
resulting (2.14), formulas (A.5) and (A.4) we get

[(

n +
N

2
+ λr2

)(

r
d

dr
−l

)

+λr2

(

3n+
N

2
− λr2

)]

R
(N)
n,l (r)

= 2λr2

√

(

n+l+
N

2

)(

n+l+
N

2
+ 1

)

R
(N)
n,l+2(r).

2.3. Numerical analysis of the recurrences. In this section we will
present a numerical analysis of some of the recurrence relations and ladder-
type operators for the I.H.O. First of all, let us point out that if we choose

the values of n and l large enough the radial wave functions R
(N)
n,l (r), defined

by (2.1), diverges (see figure 1), and consequently, we can not evaluate these
functions for a given r. In this case it is necessary to apply the recurrence
relations (RR) in order to calculate them.

From the previous sections it follows that the recurrence relations of the
I.H.O. can be classify in three different types:
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20 25 30 35 40
n

0

20

40

60

l m
ax

Figure 1. We plot the maximum value of l versus n, for
which the radial wave functions can be calculated by using
(2.1).

• RRs which involve functions Rni,li with indices (n, l), (n ± 1, l) (see
(2.5)); (n, l), (n, l± 1) (see (2.6)); (n, l) and (n∓ 1, l± 1) (see (2.9));
and (n, l) and (n ± 1, l ∓ 1) (see (2.10)). We will represent them

schematically [· · · ], [
...], [. · ·] and

[ . . .
]

and will call them the regular

recurrences.
• The other RRs, e.g. the ones which involves the indices (n, l), (n, l−

1), (n + 1, l) [:.]; (n, l), (n, l + 1), (n − 1, l) [. :]; (n, l), (n, l + 1),
(n + 2, l) [: .]; (n, l), (n, l + 1), (n − 2, l) [. :]; etc. (see e.g. (2.7),
(2.8), (2.11), (2.12)).

• Relations which involve the derivatives, i.e., ladder-type relations.

In this section we evaluate the radial wave functions by using different re-
currence relations with the aim to discuss their effectiveness (based on the
time of the numerical simulations and convergence of the formulas). In all
the numerical computations of Rn,l(r) we use λ = 1 and N = 3. We have
used the commercial program Matlab [12].

First of all, we evaluate the function Rn,l(r) in 1000 points, corresponding
to the elements of the vector r = (4.01, 4.02, · · · , 14) (in the matlab notation
r = [4.01 : 0.01 : 14]), by using the formulas (2.5), (2.6) and (2.10). In figure
2 we compare the computational time to do these operations in each case
when n = l (notice that in this case we need to apply the corresponding RR
n − 1 times).

We observe that formula (2.5) allows us to compute these functions faster.
The difference in time among these methods is more appreciable when n is
bigger. We would like to remark that in order to apply the formula (2.5)
to obtain Rn,l(r), we fix l and change the first argument from 1 to n − 1.
In addition, we need to know the initial conditions of the RR, which in this
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n

0

1

2

3

4

tim
e 

(s
)

Figure 2. We represent with pluses, stars and circles the
computational time (in seconds) to obtain the radial function
versus n from the RRs (2.5), (2.6), and (2.10), respectively.
In this case l = n and each function have been evaluated at
1000 points.

0 50 100 150
n

0

10

20

30

tim
e 

(s
)

Figure 3. Computational time versus n for l = 40. The
plusses refer to the recurrence relation (2.5), whereas the
circles are results from (2.11)+(2.5).

case are R0,l(r) and R1,l(r). Both functions are related with the Laguerre

polynomials L
l+N/2−1
0 (x) = 1 and L

l+N/2−1
1 (x) = x, respectively, regardless

of the value of l. Furthermore, for usnig the relation (2.6) one should use
the initial conditions Rn,0(r) and Rn,1(r), but they can not be calculated
by formula (2.1) since the aforesaid divergences for large values of n (see
figure 1). So, the initial conditions should be calculated using the recurrence
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formula (2.5). Moreover, when we use the relation (2.6) we see that there
exists an interval close to r = 0 where Rn,l(r) diverges and this interval
becomes larger when n increases. This divergence, at the vicinity of zero,
also appears when we use (2.10). In the last case, one should also use (2.5)
to obtain the initial condition.

The recurrences (2.7), (2.8), (2.11) and (2.12) are even more complicated
to use than (2.6) and (2.10). They should be used together with (2.5), not
only because the initial conditions, but also because their own nature (they
mix both indices). Let us check if Rn,l(r) can be obtained faster when we
combine for example (2.11) with (2.5), instead of using (2.5) alone. In figure
3 we show the computer time to obtain Rn,l(r) versus n (and fixing l = 40)
for the relation (2.5) alone, and combining (2.11) and (2.5) together. Both
functions are computed in 1000 points corresponding to the elements of the
vector [0.01 : 0.01 : 10]. From this figure we conclude that the formula (2.5)
is the best one for computing Rn,l(r).

Concerning the ladder-type relations, let us mention that the relations
(2.18) and (2.19) behave numerically unstable for large values of l and n,
respectively. Therefore, they are not useful to compute numerically the
radial wave functions but instead of this we can use them, together with
(2.5) for finding the derivative of the radial wave functions (see figure 4).

3. Radial functions for the Hydrogen atom

In this section we will provide a similar study for the Hydrogen atom
described by the Schrödinger equation

(

−∆ − 1

r

)

Ψ = EΨ, ∆ =
N
∑

k=1

∂2

∂x2
k

, r =

√

√

√

√

N
∑

k=1

x2
k.

The solution is given by Ψ = R
(N)
nl (r)Ylm(ΩN ), where the radial part R

(N)
nl (r)

is defined by [2, 9]

R
(N)
nl (r) = N (N)

n,l

(

r

n + N−3
2

)l

exp

(

−r

2
(

n+ N−3
2

)

)

L2l+N−2
n−l−1

(

r

n+ N−3
2

)

. (3.1)

Here n = l+1, l+2, . . . and l = 0, 1, 2, . . . are the quantum numbers, N ≥ 3

is the dimension of the space, and the normalizing constant N (N)
n,l is

N (N)
n,l =

√

(n − l − 1)!

(n + l + N − 3)!

2
(

n + N−3
2

)2 .

As we already pointed out in [8], the Laguerre polynomials that appear in
the expression of the radial functions are not the classical ones Lα

n(x) in the
sense that the parameter α as well as the variable x depend on the degree of
the polynomials, n. When the parameters of the classical polynomials de-
pend on n, the polynomials are orthogonal with respect to a variant weights
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r
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0/
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 (

r)

Figure 4. In the top panel we show the R40,50(r) computed
by using the recurrence relation (2.5). In the botton panel
we represent the derivative of this function computed from
the ladder-type relation (2.18).

(for more details see e.g. [10, 11, 18]). Nevertheless, as we showed in [8],
using the algebraic properties of the classical Laguerre polynomials (A.2)–
(A.7) one can derive the algebraic relations of the radial wave functions.

3.1. Recurrence relations and ladder-type operators for the radial

functions. From Theorem 4.1 in [8] follows the following

Theorem 3.1. Let the functions R
(N)
nl

[(

n+ N−3
2

)

r
]

, R
(N)
n+n1,l+l1

[(

n+n1+
N−3
2

)

r
]

and R
(N)
n+n2,l+l2

[(

n + n2 + N−3
2

)

r
]

be three different radial functions of the

N -th Hydrogen atom and n1, n2 and l1, l2 integers such that

min (n + n1, n + n2, l + l1, l + l2) ≥ 0.
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Then, there exist not all three vanishing polynomials in r, A0, A1, and A2,

such that

A0(r)R
(N)
nl

[(

n +
N−3

2

)

r

]

+ A1(r)R
(N)
n+n1,l+l1

[(

n + n1 +
N−5

2

)

r

]

+ A2(r)R
(N)
n+n2,l+l2

[(

n + n2 +
N−1

2

)

r

]

= 0.

Moreover, the expressions for the polynomial coefficients in the above
formula are given by [8, Eq. (4.7) page 2063]

A0(r) = A∗

0(r)
(

N (N)
n,l

)

−1
rl1+l2 , A1(r) = A∗

1(r)
(

N (N)
n+n1,l+l1

)

−1
rl2 ,

A2(r) = A∗

2(r)
(

N (N)
n+n2,l+l2

)

−1
rl1 ,

where A∗

0, A∗

1, and A∗

2, are the non all three vanishing polynomials of the
linear relation

A∗

0(r)L
α
m(r) + A∗

1(r)L
α+2l1
m+n1−l1

(r) + A∗

2(r)L
α+2l2
m+n2−l2

(r) = 0,

and α = 2l + N − 2, m = n − l − 1.

Some examples of recurrences obtained by using the Theorem 3.1 are the
following

• n1 = 1, n2 = −1, l1 = l2 = 0 [8, page 2063]

√

(n − l − 1)(n + l + N − 3)

(

2n + N − 5

2n + N − 3

)2

R
(N)
n−1,l

[(

n +
N − 5

2

)

r

]

− (2n + N − 3 − r)R
(N)
n,l

[(

n +
N − 3

2

)

r

]

+
√

(n − l)(n + l + N − 2)

(

2n + N − 1

2n + N − 3

)2

R
(N)
n+1,l

[(

n +
N − 1

2

)

r

]

= 0.

(3.2)

• n1 = n2 = 0, l1 = −1, l2 = 1 [8, page 2064]

(2l+N−1)
√

(n−l)(n+l+ N−3) rR
(N)
n,l−1(r) + (2l + N − 2)×

[

(2n + N − 3)r − (2l + N − 3)(2l + N − 1)

(

n +
N − 3

2

)]

R
(N)
n,l (r)

+ (2l + N − 3)
√

(n−l−1)(n+l+N−2) rR
(N)
n,l+1(r) = 0.

(3.3)



R. Álvarez-Nodarse, J.L. Cardoso, N.R. Quintero 13

• n1 = 0, n2 = 1, l1 = −1, l2 = 0 [8, page 2064]

r
√

n + l + N − 3 R
(N)
n,l−1

[(

n +
N − 3

2

)

r

]

+
√

n − l [(2l + N − 3) + r]R
(N)
n,l

[(

n +
N − 3

2

)

r

]

− (2l+N−3)
√

n+l+N−2

(

2n+N−1

2n+N−3

)2

R
(N)
n+1,l

[(

n+
N−1

2

)

r

]

= 0,

• n1 = 1, n2 = 1, l1 = 0, l2 = 1

√
n − l(1 − r)r R

(N)
n+1,l

[(

n +
N − 1

2

)

r

]

+
√

n + l + N − 2 (2l + N − 1)

(

2n + N − 3

2n + N − 1

)2

r R
(N)
n,l

[(

n +
N − 3

2

)

r

]

−
[

(2l + N − 1)2 + (1 − r)(2l + N − 1 − r)
]
√

n + l + N − 1×

× R
(N)
n+1,l+1

[(

n +
N − 1

2

)

r

]

= 0,

• n1 = −1, n2 = 1, l1 = 1, l2 = −1

{(2l+N−1−r) [(2l+N−3)(2l+N−2)+r(r+2)]+2r(n−l−1−r)}×

× R
(N)
n,l

[(

n +
N − 3

2

)

r

]

−
√

(n−l−2)(n−l−1)

(

2n+N−5

2n+N−3

)2

(2l+N−3−r)r R
(N)
n−1,l+1

[(

n+
N−5

2

)

r

]

−
√

(n−l)(n−l+1)

(

2n+N−1

2n+N−3

)2

(2l+N−1−r)r R
(N)
n+1,l−1

[(

n +
N−1

2

)

r

]

=0,

• n1 = −1, n2 = 1, l1 = −1, l2 = 1

A0(r)R
(N)
n,l

[(

n +
N − 3

2

)

r

]

+ A1(r)R
(N)
n−1,l−1

[(

n +
N − 5

2

)

r

]

+ A2(r)R
(N)
n+1,l+1

[(

n +
N − 1

2

)

r

]

= 0,

(3.4)

where

A0(r) = (2l+N−1+r) [−(2l+N−3)(2l+N−2) +(2(n−l−1)−r) r]−
2(n−l−1−r)r,

A1(r) =
√

(n+l+N−4)(n+l+N−3)

(

2n+N−5

2n+N−3

)2

(2l + N − 1 + r)r,

A2(r) =
√

(n + l + N − 2)(n + l + N − 1)

(

2n+N−1

2n+N−3

)2

(2l+N−3+r)r.
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• n1 = 0, n2 = 2, l1 = 1, l2 = 0

A0(r)R
(N)
n,l

[(

n +
N − 3

2

)

r

]

+ A1(r)R
(N)
n,l+1

[(

n +
N − 3

2

)

r

]

+ A2(r)R
(N)
n+2,l

[(

n +
N + 1

2

)

r

]

= 0,

(3.5)

where

A0(r) =
√

n+l+N−2 [(2l+N−1)(n+l+N−1−r)+(2n+N−1−r)r] ,

A1(r) =
√

n − l − 1 (2n + N − 1 − r)r,

A2(r) = (2l + N − 1)
√

(n − l)(n − l + 1)(n + l + N − 1)

(

2n+N+1

2n+N−3

)2

.

• n1 = 2, n2 = 2, l1 = 0, l2 = 1

A0(r)R
(N)
n,l

[(

n +
N − 3

2

)

r

]

+ A1(r)R
(N)
n+2,l

[(

n +
N + 1

2

)

r

]

+ A2(r)R
(N)
n+2,l+1

[(

n +
N − 3

2

)

r

]

= 0,

(3.6)

where

A0(r) = −(2l+N−1)
√

(n−l)(n+l+N−2)(n+l+N−1)

(

2n+N−3

2n+N+1

)2

,

A1(x) =
√

n − l + 1 [(2l + N − 1)(n − l − r) + (2n + N − 1 − r)r],

A2(r) =
√

n + l + N (2n + N − 1 − r)r.

Other cases can be obtained in the same way.

3.2. Ladder-type relations for the radial functions of the Hydrogen

atom. Our starting point is the following

Theorem 3.2. Let R
(N)
nl

[(

n + N−3
2

)

r
]

, and R
(N)
n+n1,l+l1

[(

n + n1 + N−3
2

)

r
]

two different radial functions of the Hydrogen atom and d
drR

(N)
nl

[(

n + N−3
2

)

r
]

,

the first derivative with respect to r, where n1 and l1 are integers such that

min (n + n1, l + l1) ≥ 0, (n1)
2 + (l1)

2 6= 0. Then, there exist not all three

vanishing polynomials in r, A0, A1 e A2, such that

A0(r)R
(N)
nl

[(

n +
N − 3

2

)

r

]

+ A1(r)
d

dr
R

(N)
nl

[(

n +
N − 3

2

)

r

]

+ A2(r)R
(N)
n+n1,l+l1

[(

n+n1+
N−3

2

)

r

]

= 0.

(3.7)
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The proof is similar to the one of Theorem 2.2 and was given in [8]. In
fact in this case the relation (3.7) becomes into (see [8, (4.13) page 2064])

rl1

(

B1(r)
d

dr
− B1(r)

( l

r
− 1

2

)

− B0(r)

)

R
(N)
nl

[(

n +
N − 3

2

)

r

]

= B2(r)
N (N)

n,l

N (N)
n+n1,l+l1

R
(N)
n+n1,l+l1

[(

n + n1 +
N − 3

2

)

r

]

,

(3.8)

where the polynomials B0, B1, and B2 are such that

B0(z)Lα
m(z) + B1(z)Lα+1

m−1(z) + B2(z)Lα+2l1
m+n1−l1

(z) = 0, (3.9)

and z = r/n + N−3
2 , α = 2l + N − 2, m = n − l − 1.

Again, from the above theorem it is easy to obtain several relations for the
radial wave functions of the Hydrogen atom and, in particular, the ladder
operators in n and l, respectively. We will present here some of them. The
first four are taken from [8] and the other two are seem to be new.

• n1 = 0, l1 = 1 [8, page 2065]
[(

l +
N − 1

2

)(

d

dr
− l

r

)

+
1

2

]

R
(N)
nl (r) =

− 1

2

√

1 −
(

l + (N − 1)/2

n + (N − 3)/2

)2

R
(N)
n,l+1(r).

(3.10)

• n1 = 1, l1 = 1 [8, page 2065]
[

(2l+N−1+r)

(

d

dr
− l

r
− 1

2

)

+(n+l+N−2)

]

R
(N)
nl

[(

n +
N − 3

2

)

r

]

=

−
√

(n+l+N−1)(n+l+N−2)

(

n+(N − 1)/2

n + (N − 3)/2

)2

R
(N)
n+1,l+1

[(

n+ N−1
2

)

r
]

.

(3.11)
• n1 = −1, l1 = 1 [8, page 2066]
[

(r−(2l+N−1))

(

d

dr
− l

r
+

1

2

)

−(n−l−1)

]

R
(N)
nl

[(

n +
N − 3

2

)

r

]

=

√

(n−l−1)(n−l−2)

(

n+(N − 5)/2

n+(N − 3)/2

)2

R
(N)
n−1,l+1

[(

n+ N−5
2

)

r
]

.

• n1 = 1, l1 = 0 [8, page 2066]
[

r

(

d

dr
− 1

2(n + (N − 3)/2)

)

+(n+N−2)

]

R
(N)
nl (r) =

√

(n−l)(n+l+N−2)

(

n+(N − 1)/2

n+(N − 3)/2

)2

R
(N)
n+1,l

[(

n+(N − 1)/2

n + (N − 3)/2

)

r

]

.

(3.12)
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• n1 = 0, l1 = 2. Introducing these values into (3.9) and putting α =
2l + N − 2 , m = n − l − 1 and z = r

n+ N−3

2

, we get

B0(z)Lα
m(z) + B1(z)Lα+1

m−1(z) + B2(z)Lα+4
m−2(z) = 0 . (3.13)

Now, using three times relations (A.6) and (A.4), (3.13) becomes into
[

B0(z) − B1(z) + B2(z)
(m + α + 2)(m + α + 1)

z2

]

Lα+2
m−2(z)

+

[

−2B0(z) + B1z − 2B2(z)
(m + α + 2)(m − 1)

z2

]

Lα+2
m−1(z)

+

[

B0(z) + B2(z)
(m − 1)m

z2

]

Lα+2
m (z) = 0 .

Comparing with the TTRR (A.7) we find

B0(z) = m − m(m − 1)

(α + 2)(α + 3)
z , B2(z) =

z3

(α + 2)(α + 3)
,

B1(z) = −(α + 1)(α + 3) − (2m + α + 1)z

α + 3

and therefore (see (3.8)), for the wave functions we find
[

(2l + N) (2r − (2l + N − 1)(2l + N + 1))

(

d

dr
− l

r
+

1

2

)

−

(n−l− 1)

(

(2l+N)(2l+N+1) +
n−l−2

n + N−3
2

r

)]

R
(N)
n,l

[(

n+
N−3

2

)

r

]

=
r
√

(n−l−1)(n−l−2)(n+l+N−1)(n+l+N−2)
(

n+ N−3
2

)3 R
(N)
n,l+2

[(

n+
N−3

2

)

r

]

.

• n1 = 2, l1 = 0
{[

2

(

n+
N−3

2

)(

n+
N−1

2

)

− r

][

r
d

dr
−l− r

2
+

(

n+
N−3

2

)

(n+l+N−2)

]

−
(

n+
N − 3

2

)2

(n − l)(n + l + N − 2)

}

R
(N)
n,l [

(

n +
N − 3

2

)

r] =

(

n+
N +1

2

)2
√

(n−l)(n−l+1)(n+l+N−2)(n+l+N−3)R
(N)
n+2,l

[(

n+
N +1

2

)

r

]

.

3.3. Numerical analysis of the recurrences. As in the previous case,
the radial wave functions, calculated by using the functions (3.1) (by means
of the Laguerre polynomials), diverges when n and l are not small enough.
In figure 5 we show the critical values of nmax for a given l for which the
radial functions can be computed using the explicit expression (2.1). The
region where the explicit formula works is the one defined by the two curves
in figure 5, (it is defined the values l + 1 ≤ n ≤ nmax).



R. Álvarez-Nodarse, J.L. Cardoso, N.R. Quintero 17

0 10 20 30 40 50 60 70
l

0

20

40

60

80

100

n m
ax

Figure 5. We represent with solid line the function n = l+1
(this line represent the minimum value of n) and with the
stars joint by the dashed line the maximum value of n for a
given l for which the radial wave functions can be calculated
using (3.1). The r

Again we have studied numerically how to obtain the radial wave func-
tions applying the recurrence relations (RR) of two types: the first ones
are represented by the formulas (3.2), (3.3) and (3.4) and the second ones
correspond to the ladder-type RRs (3.10), (3.11) and (3.12). For the former
RRs we observe that

• the relation (3.2) is the most useful one because the initial conditions
Rl+1,l and Rl+2,l can be calculated by using the Laguerre polynomials
(notice that in this case we fix l and start with n = l + 2).

• in the relation (3.3) we fix n and increase the value of l in each
step up to its maximum value. From figure 5 we conclude that for
large value of n, we can not use the initial condition calculated by
using Laguerre polynomials (formula (3.1)) and instead of this we
should use the RR (3.2). For this reason, this relation can not be
used alone (the same is true for the RR (3.4)). In addition, notice
that the initial conditions are two radial functions, Rn,l−1 and Rn,l

evaluated at r, whereas (3.2) gives us the same functions but at nr
(this implies a rescaling of the argument).

• From figure 6 we observe that the computational time is less when
we use the formula (3.2). Moreover, the formulas (3.3) and (3.4) are
numerically unstable at the vicinity of zero and this region becomes
larger when n and l increases.

• As in the case of the I.H.O. the higer order relation (3.5) and (3.6)
are not useful for numerical evaluation of the Radial functions.
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Figure 6. We represent with plusses, stars and circles the
computational time versus l (n = 2 l − 1) to compute the
radial wave functions by using (3.2), (3.3) and (3.4), respec-
tively.

For the ladder-type relations we would like to point out the following
remarks

• Notice that the expression (3.12) involves two wave functions evalu-
ated at different points, so in each step to calculate Rn+1,l[(n+1)r/n]
we need to know Rn,l(r), but in the previous step we calculate Rn,l

at nr/(n − 1), not at r. For this reason this RRs it is not useful for
obtaining numerically the radial wave functions.

• As in the previous case, we can use the ladder-type relations (3.10),
(3.12) and (3.11) together to (3.2), to compute the derivative of the
radial wave function. As an example see the figure 7, where we plot
the radial wave function and its derivative by using (3.10) for n = 60
and l = 50.

In general we verify that the ladder-type RRs are not useful in order
to compute numerically the radial wave functions. Nevertheless they can
be used, together with (3.2) for finding the derivative of the radial wave
functions.

Programs: For the numerical simulations presented here we have used the
commercial program Matlab. The used source code can be obtained by
request via e-mail to niurka@euler.us.es or ran@us.es.
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from the ladder-type relation (3.10).
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Appendix A: The Laguerre polynomials

The Laguerre polynomials Lα
n defined by the hypergeometric series

Lα
n(x) =

(α + 1)n

n!
1F1

(

−n
α + 1

∣

∣

∣
x

)

=
(α + 1)n

n!

n
∑

k=0

(−n)k

(α + 1)k

xk

k!
,

(a)0 := 1, (a)k := a(a + 1) · · · (a + k − 1), k = 1, 2, 3, . . . .

(A.1)

These polynomials satisfy the following useful recurrence and differential-
recurrence relations (see e.g. [1, 15, 17])

d

dx
Lα

n(x) = −Lα+1
n−1(x), (A.2)
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x
d

dx
Lα

n(x) = nLα
n(x) − (n + α)Lα

n−1(x)

= (n + 1)Lα
n+1(x) − (n + α + 1 − x)Lα

n(x),
(A.3)

xLα+1
n (x) = (n + α + 1)Lα

n(x) − (n + 1)Lα
n+1(x), (A.4)

xLα+1
n (x) = (n + α)Lα

n−1(x) − (n − x)Lα
n(x), (A.5)

Lα−1
n (x) = Lα

n(x) − Lα
n−1(x), (A.6)

(n + 1)Lα
n+1(x) − (2n + α + 1 − x)Lα

n(x) + (n + α)Lα
n−1(x) = 0. (A.7)
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tuto Carlos I de F́ısica Teórica y Computacional, Universidad de Granada.
E-18071 Granada, Spain

E-mail address: ran@us.es
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