
Annales Academiæ Scientiarum Fennicæ
Mathematica
Volumen 38, 2013, 547–564

ESTIMATES FOR APPROXIMATION NUMBERS
OF SOME CLASSES OF COMPOSITION
OPERATORS ON THE HARDY SPACE

Daniel Li, Hervé Queffélec and Luis Rodríguez-Piazza∗

Université Lille Nord de France, Université d’Artois, Faculté des Sciences Jean Perrin
Laboratoire de Mathématiques de Lens EA 2462 & Fédération CNRS Nord-Pas-de-Calais FR 2956

Rue Jean Souvraz, S.P. 18, F-62 300 Lens, France; daniel.li@euler.univ-artois.fr

Université Lille Nord de France, Université Lille 1, Sciences et Technologies
Laboratoire Paul Painlevé U.M.R. CNRS 8524 & Fédération CNRS Nord-Pas-de-Calais FR 2956

F-59 655 Villeneuve d’Ascq Cedex, France; Herve.Queffelec@univ-lille1.fr

Universidad de Sevilla, Facultad de Matemáticas, Departamento de Análisis Matemático & IMUS
Apartado de Correos 1160, 41 080 Sevilla, Spain, piazza@us.es

Abstract. We give estimates for the approximation numbers of composition operators on H2,
in terms of some modulus of continuity. For symbols whose image is contained in a polygon, we
get that these approximation numbers are dominated by e−c

√
n. When the symbol is continuous on

the closed unit disk and has a domain touching the boundary non-tangentially at a finite number
of points, with a good behavior at the boundary around those points, we can improve this upper
estimate. A lower estimate is given when this symbol has a good radial behavior at some point.
As an application we get that, for the cusp map, the approximation numbers are equivalent, up to
constants, to e−cn/ logn, very near to the minimal value e−cn. We also see the limitations of our
methods. To finish, we improve a result of El-Fallah, Kellay, Shabankhah and Youssfi, in showing
that for every compact set K of the unit circle T with Lebesgue measure 0, there exists a compact
composition operator Cφ : H

2 → H2, which is in all Schatten classes, and such that φ = 1 on K

and |φ| < 1 outside K.

1. Introduction and notation

If the approximation numbers of some classes of operators on Hilbert spaces are
well understood (for example, those of Hankel operators: see [17]), it is not the case
of those of composition operators. Though their behavior remains mysterious, some
recent results are obtained in [15] and [13] for approximation numbers of composition
operators on the Hardy space H2. In [15], it is proved that one always has an(Cφ) &
e−cn for some c > 0 [15, Theorem 3.1] and that this speed of decay can only be
attained when the symbol φ maps the unit disk D into a disk centered at 0 of radius
strictly less than 1, i.e. ∥φ∥∞ < 1 [15, Theorem 3.4].

In this paper, we give estimates which are somewhat general, in terms of some
modulus of continuity. In Section 2, we obtain an upper estimate when the symbol φ
is continuous on the closed unit disk and has an image touching non-tangentially the
unit circle at a finite number of points, with a good behavior on the boundary around
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this point. As an application, we show that for symbols φ whose image is contained
in a polygon an(Cφ) ≤ ae−b

√
n, for some constants a, b > 0; this has to be compared

with [13], Proposition 2.7, where it is shown that if φ is a univalent symbol such
that φ(D) contains an angular sector centered on the unit circle and with opening
θπ, 0 < θ < 1, then an(Cφ) ≥ ae−b

√
n, for some (other) positive constants a and b,

depending only on θ. In Section 3, we obtain a lower bound when φ has a good radial
behavior at the contact point. Both proofs use Blaschke products. This allows to
recover the estimation an(Cλθ) ≈ e−c

√
n obtained in [15], Proposition 6.3, and [13],

Theorem 2.1 for the lens map λθ. In Section 4.1, we give another example, the cusp
map, for which an(Cφ) ≈ e−cn/ logn, very near the minimum value e−cn. We end that
section by considering a one-parameter class of symbols, first studied by Shapiro and
Taylor [23] and seeing the limitations of our methods. In Section 5, we improve a
result of Gallardo-Gutiérrez and González (later on generalized by El-Fallah, Kellay,
Shabankhah and Youssfi [5, Theorem 3.1]). It is known that for every compact
composition operator Cφ : H2 → H2, the set Eφ = {eiθ ; |φ∗(eiθ)| = 1} has Lebesgue
measure 0. These authors showed ([6]), with a rather difficult construction, that
there exists a compact composition operator Cφ : H2 → H2 such that the Hausdorff
dimension of Eφ is equal to 1 (and in [5], it is shown that for any negligible compact
set K, there is a Hilbert–Schmidt operator Cφ such that Eφ = K). We improve this
result in showing that for every compact set K of the unit circle T with Lebesgue
measure 0, there exists a compact composition operator Cφ : H2 → H2, which is even
in all Schatten classes, and such that Eφ = K.

Notation. We denote by D the open unit disk and by T = ∂D the unit circle;
m is the normalized Lebesgue measure on T: dm(t) = dt/2π. The disk algebra A(D)
is the space of functions which are continuous on the closed unit disk D and analytic
in the open unit disk. If H2 is the usual Hardy space on D, every analytic self-
map φ : D → D (also called Schur function) defines, by Littlewood’s subordination
principle, a bounded operator Cφ : H2 → H2 by Cφ(f) = f ◦φ, called the composition
operator of symbol φ.

Recall that if T : E → F is a bounded operator between two Banach spaces, the
approximation numbers an(T ) of T are defined by:

an(T ) = inf{∥T −R∥ ; rank(R) < n}, n = 1, 2, . . . .

The sequence
(
an(T )

)
n

is non-increasing and, when F has the Approximation Prop-
erty, T is compact if and only if an(T ) tends to 0.

The Gelfand numbers cn(T ) are defined by cn(T ) = inf{∥T|G∥ ; codimG < n}.
For compact operators T on Hilbert spaces, one has cn(T ) = an(T ) (see [9]).

Definition 1.1. A modulus of continuity ω is a continuous function

ω : [0, A] → R+,

which is increasing, sub-additive, and vanishes at zero.

Some examples are:

ω(h) = hα, 0 < α ≤ 1; ω(h) = h log
1

h
; ω(h) =

1

log 1
h

.

For any modulus of continuity ω, there is a concave modulus of continuity ω′ such
that ω ≤ ω′ ≤ 2ω (see [18] for example); therefore we may and shall assume that ω
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is concave on [0, A]. In that case, ω−1 is convex, and

(1.1) rω(x) :=
ω−1(x)

x

is non-decreasing.
The notation u(t) . v(t) means that u(t) ≤ Av(t) for some constant A > 0 and

u(t) ≈ v(t) means that both u(t) . v(t) and v(t) . u(t).

2. Upper bound and boundary behavior

Definition 2.1. Let ω be a modulus of continuity and φ a symbol in the disk
algebra A(D). Let ξ0 ∈ ∂D ∩ φ(D). We say that the symbol φ has an ω-regular
behavior at ξ0 if, setting

(2.1) γ(t) = φ(eit),

and Eξ0 = {t ; γ(t) = ξ0}, there exists r0 > 0 such that
1) for some positive constant C > 0, one has, for every t0 ∈ Eξ0 and |t− t0| ≤ r0:

(2.2) |γ(t)− γ(t0)| ≤ C
(
1− |γ(t)|

)
.

2) for some positive constant c > 0, one has, for for every t0 ∈ Eξ0 and |t− t0| ≤
r0:

(2.3) c ω(|t− t0|) ≤ |γ(t)− γ(t0)|.
The first condition implies that the image of φ touches ∂D at the point ξ0, and

non-tangentially. The second one implies that φ does not stay long near ξ0 = γ(t0).
Note that, due to (2.3), the intervals [t− r0/2, t+ r0/2], for t ∈ Eξ0 are pairwise

disjoint and therefore the set Eξ0 must be finite.
We shall make the following assumption (to avoid the Lipschitz class):

(2.4) lim
h→0+

ω(h)

h
= ∞; equivalently lim

h→0+

ω−1(h)

h
= 0.

Indeed, assume that γ is K-Lipschitz at some point t0 ∈ [0, 2π], namely |φ(eit)−
φ(eit0)| ≤ K |t− t0|, with |φ(eit0)| = 1; then

m({t ∈ [0, 2π] ; |φ(eit)− φ(eit0)| ≤ h}) ≥ m({t ∈ [0, 2π] ; |t− t0| ≤ h/K})=h/2πK;

hence this measure in not o (h) and the composition operator Cφ is not compact ([16],
or [3, Theorem 3.12]).

In order to treat the case where the image of φ is a polygon, we need to generalize
the above definition. We ask not only that φ is ω-regular at the points ξ1, . . . , ξp of
contact of φ(D) with ∂D, but a little bit more.

Definition 2.2. Assume that φ(D) ∩ ∂D = {ξ1, . . . , ξp}. We say that φ is
globally-regular if there exists a modulus of continuity ω such that, writing Eξj =
{t ; γ(t) = ξj}, one has, for some r1, . . . , rp > 0

T =

p∪
j=1

(
Eξj + [−rj, rj]

)
and for some positive constants C, c > 0,
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1’) one has, for j = 1, . . . , p, every tj ∈ Eξj and |t− tj| ≤ rj:

(2.5) |γ(t)− γ(tj)| ≤ C
(
1− |γ(t)|

)
.

2’) one has, for j = 1, . . . , p, every tj ∈ Eξj and |t− tj| ≤ rj:

(2.6) c ω(|t− tj|) ≤ |γ(t)− γ(tj)|.
Let us note that condition 1’) is equivalent to say that φ(D) is contained in a

polygon inside D whose vertices contain ξ1, . . . , ξp, and these are the only vertices in
the boundary ∂D. Of course, we may assume that (2.5) and (2.6) hold only when
t is in a neighborhood of tj, since they will then hold for |t − tj| ≤ rj, provided we
change the constants C, c.

Before stating our theorem, let us introduce a notation. If φ is as in Definition 2.2
and σ, κ > 0 are some constants, we set

(2.7) dN =

[
σ log

κ 2−N

ω−1(κ 2−N)

]
+ 1,

where [ ] stands for the integer part. For every integer q ≥ 1, we denote by

(2.8) N = Nq the largest integer such that pNdN < q

(Nq = 1 if no such N exists).
We then have the following result.

Theorem 2.3. Let φ be a symbol in A(D) whose image touches ∂D at the
points ξ1, . . . , ξp, and nowhere else. Assume that φ is globally-regular. Then, there
are constants κ, K, L > 0, depending only on φ, such that, using the notation (2.7)
and (2.8), one has, for every q ≥ 1:

(2.9) aq(Cφ) ≤ K

√
ω−1(κ 2−Nq)

κ 2−Nq
.

Before proving this theorem, let us indicate two applications. In these examples,
we can give an upper estimate for all approximation numbers an(Cφ), n ≥ 1, because
we can interpolate between the integers NdN and (N +1) dN+1, which is not the case
in general.

1) ω(h) = hθ, 0 < θ < 1. This is the case for inscribed polygons (see the proof
of the foregoing Theorem 2.4; here θ = max{θ1, . . . , θp}, where θ1π, . . . , θpπ are the
values of the angles of the polygon). This is also the case, with p = 2, of lens maps
λθ (see [22], page 27, for the definition; see also [13]). We have here ω−1(h) = h1/θ.
Hence dN ≈ N , Nq ≈ √

q, and we then get from (2.9) that aq(Cφ) ≤ α 2−δN for
q & N2, with δ > 0. Equivalently, for suitable constants α, β > 0,

(2.10) an(Cφ) ≤ α e−β
√
n,

which is the result obtained in [13, Theorem 2.1].
2) ω(h) = 1

(log 1/h)α
, 0 < α ≤ 1, as this is the case, when α = 1, for the cusp

map, defined below in Section 4.1 (with p = 1). Then, we have ω−1(h) = e−h
−1/α

and dN ≈ 2N/α, so that Nq ≈ log q and 2Nq/α ≈ q/ log q. Now, a simple computation
gives

(2.11) an(Cφ) ≤ α e−βn/ logn.

Without assuming some regularity, one has the following general upper estimate.
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Theorem 2.4. Let φ : D → D be an analytic self-map whose image is contained
in a polygon P with vertices on the unit circle. Then, there exist constants α, β > 0,
β depending only on P, such that

(2.12) an(Cφ) ≤ α e−β
√
n.

In [13, Proposition 2.7], it is shown that if φ is a univalent symbol such that φ(D)
contains an angular sector centered on the unit circle and with opening θπ, 0 < θ < 1,
then an(Cφ) ≥ α e−β

√
n, for some (other) positive constants α and β, depending only

on θ. Note that the injectivity of the symbol is there necessary, since there exists
(see the proof of Corollary 5.4 in [15]), for every sequence (εn) of positive numbers
tending to 0, a symbol φ whose image is D\{0}, and hence contains polygons, which
is 2-valent, and for which an(Cφ) . e−εnn. This bound may be much smaller than
e−β

√
n.

Proof of Theorem 2.3. Recall ([13], Lemma 2.4) that for every Blaschke product
B with less than N zeros (each of them being counted with its multiplicity), one has

(2.13)
[
aN(Cφ)

]2 . sup
0<h<1,|ξ|=1

1

h

ˆ
S(ξ,h)

|B(z)|2 dmφ(z),

where S(ξ, h) = {z ∈ D ; |z − ξ| ≤ h} and mφ is the pull-back measure by φ of the
normalized Lebesgue measure m on T.

The proof will come from an adequate choice of a Blaschke product. Fix a positive
integer N . Set, for j = 1, . . . , p and k = 1, 2, . . .,

(2.14) pj,k = (1− 2−k)ξj

and consider the Blaschke product of length pNd (d being a positive integer, to be
specified later) given by

(2.15) B(z) =

p∏
j=1

N∏
k=1

[
z − pj,k
1− pj,k z

]d
.

Recall that we have set

(2.16) γ(t) = φ(eit).

To use (2.13), note that if |γ(t) − ξ| ≤ h, then, for some j = 1, . . . , p and some
tj ∈ Eξj , one has |t−tj| ≤ rj and, by (2.5), |γ(t)−ξj| ≤ C(1−|γ(t)|) ≤ C |γ(t)−ξ| ≤
Ch. Therefore, denoting by Lj the number of elements of Eξj (which is finite by the
remark following Definition 2.1),[

aN(Cφ)
]2 . sup

0<h<1

1

h

p∑
j=1

Lj

ˆ
{|γ(t)−ξj |≤Ch}∩{|t−tj |≤rj}

|B[γ(t)]|2 dt
2π
,

and we only need to majorize the integrals

Ij(h) =

ˆ
{|γ(t)−ξj |≤Ch}∩{|t−tj |≤rj}

|B
(
γ(t)

)
|2 dt
2π

·

Moreover, it suffices, by interpolation, to do that with h = hn, where hn = 2−n.
By (2.6), for |t−tj| ≤ rj and |γ(t)−ξj| ≤ Chn, one has c ω(|t−tj|) ≤ |γ(t)−ξj| ≤

Chn = C 2−n, which implies that

(2.17) |t− tj| ≤ ω−1(c−1C 2−n).
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Let

(2.18) sn = ω−1(c−1C 2−n).

One has
Ij(hn) ≤

ˆ
{|t−tj |≤sn}∩{|t−tj |≤rj}

|B
(
γ(t)

)
|2 dt
2π
.

For n ≥ N , we simply majorize |B
(
γ(t)

)
| by 1 and we get

1

hn
Ij(hn) ≤

1

hn

2sn
2π

=
c−1C

π

1

c−1C 2−n
ω−1(c−1C 2−n) ≤ c−1C

π

ω−1(c−1C 2−N)

c−1C 2−N
,

since the function ω−1(x)/x is non-decreasing.
When n ≤ N − 1, we write

Ij(hn) ≤
ˆ
{|t−tj |≤sN}∩{|t−tj |≤rj}

|B
(
γ(t)

)
|2 dt
2π

+

ˆ
{sN<|t−tj |≤sn}∩{|t−tj |≤rj}

|B
(
γ(t)

)
|2 dt
2π
.

The first integral is estimated as above. For the second one, we claim that

Claim 2.5. For some constant χ < 1, one has, for j = 1, . . . , p and every tj ∈ Eξj :

(2.19) |B
(
γ(t)

)
| ≤ χd when |t− tj| > sN and |t− tj| ≤ rj.

To see that, we shall use [13], Lemma 2.3. Let us recall that this lemma asserts
that for w,w0 ∈ D satisfying |w − w0| ≤ M min(1 − |w|, 1 − |w0|) for some positive
constant M , one has:

(2.20)
∣∣∣∣ w − w0

1− w0w

∣∣∣∣ ≤ M√
M2 + 1

.

Let t such that |t − tj| ≤ rj and |t − tj| > sN . We have, on the one hand,
ω(|t− tj|) ≥ ω(sN) = c−1C 2−N , and, on the other hand, since |γ(tj)| = |ξj| = 1

c ω(|t− tj|) ≤ |γ(t)− γ(tj)| ≤ C(1− |γ(t)|);
hence 1− |γ(t)| ≥ 2−N .

Let 1 ≤ k ≤ N such that 2−k ≤ 1 − |γ(t)| < 2−k+1. Since |pj,k| = 1 − 2−k, we
have

|γ(t)− pj,k| ≤ |γ(t)− ξj|+ |ξj − pj,k| ≤ C(1− |γ(t)|) + 2−k ≤ (2C + 1)2−k.

Hence
|γ(t)− pj,k| ≤M min

(
1− |γ(t)|, 1− |pj,k|

)
,

with M = 2C +1. By (2.20), we get
∣∣∣ γ(t)−pjk
1−pj,k γ(t)

∣∣∣ ≤ χ, where χ =M/
√
M2 + 1 is < 1,

and therefore |B[γ(t)]| ≤ χd. �
We can now end the proof of Theorem 2.3. We get
1

hn

ˆ
{sN<|t−tj |≤sn}∩{|t−tj |≤rj}

|B
(
γ(t)

)
|2 dt
2π

≤ 1

hn

2sn
2π

χ2d =
1

hn

ω−1(c−1C 2−n)

π
χ2d

=
c−1C

π

ω−1(c−1C 2−n)

c−1C 2−n
χ2d

≤ 1

π
ω−1(c−1C)χ2d,

since ω−1(x)/x is non-decreasing.
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We therefore get, setting κ = c−1C and L = L1 + · · ·+ Lp,

1

hn

p∑
j=1

Lj

ˆ
{|γ(t)−ξj |≤Chn}∩{|t−tj |≤rj}

|B[γ(t)]|2 dt
2π

≤ κL

π

ω−1(κ 2−N)

κ 2−N
+
Lω−1(κ)

π
χ2d.

Choose now d = dN , where dN is defined by (2.7), with σ = 1/ log(χ−2). Then
χ2d ≤ ω−1(κ 2−N)/(κ 2−N), and, since the Blaschke product B has now pNdN zeroes,
we get, for some positive constant K

apNdN+1(Cφ) ≤ K

√
ω−1(κ 2−N)

κ 2−N
,

and that ends the proof of Theorem 2.3. �
Proof of Theorem 2.4. It suffices to consider the case when φ is a conformal map

from D onto P. Indeed, let ψ be such a conformal map. In the general case, our
assumption allows to write φ = ψ ◦ u, where u = ψ−1 ◦ φ : D → D is analytic. It
follows that Cφ = Cu ◦ Cψ and that an(Cφ) ≤ ∥Cu∥ an(Cψ). Therefore, we may and
shall assume that φ itself is this conformal map.

Let us denote by ξ1, . . . , ξp the vertices of P. Let 0 < πµj < π be the exterior
angle of P at ξj, namely the complement to π of the interior angle; so that

p∑
j=1

µj = 2, and 0 < µj < 1.

If one sets θj = 1− µj, one has 0 < θj < 1.
We then use the explicit form of φ given by the Schwarz–Christoffel formula [19,

page 193]:

(2.21) φ(z) = A

ˆ z

0

dw

(a1 − w)µ1 · · · (ap − w)µp
+B,

for some constants A ̸= 0 and B ∈ C and where a1, . . . , ap ∈ ∂D are such that
ξj = φ(aj), j = 1, . . . , p. If, as before, we write γ(t) = φ(eit), we have ξj = γ(tj),
with aj = eitj (note that here Eξj = {tj}).

As we already said, condition (2.5) is trivially satisfied for a polygon.
To end the proof, we use Theorem 2.3 and its Example 1. For that it suffices to

show that, for |t− tj| small enough, we have

(2.22) |γ(t)− ξj| ≈ |t− tj|θj .

If z ∈ D is close to aj, it follows from (2.21) that we can write

φ(z) = A

ˆ z

0

fj(w)
dw

(aj − w)µj
+B,

where fj is holomorphic near aj and fj(aj) ̸= 0 since

|fj(aj)| =
∏

k ̸=j,1≤k≤p

|aj − ak|−µk .
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Write fj(w) = fj(aj) + (aj − w)gj(w) where gj is holomorphic near aj. We get

φ(z) = Afj(aj)

ˆ z

0

dw

(aj − w)µj
+B +

ˆ z

0

gj(w)(aj − w)θj dw

:= Afj(aj)

ˆ z

0

dw

(aj − w)µj
+B + ψj(z),

which can still be written (since θj > 0)

(2.23) φ(z) = λj(aj − z)θj + cj + ψj(z),

where λj ̸= 0, cj ∈ C, ψj is Lipschitz near aj and ξj = φ(aj) = cj + ψj(aj). Now,
we easily get (2.22). Indeed, for t near tj, it follows from (2.23) that (recall that
γ(t) = φ(eit) and γ(tj) = ξj)

|γ(t)− γ(tj)| = |λj| |eit − eitj |θj +O (|t− tj|),
which the claimed estimate (2.22) since λj ̸= 0 and |t− tj| is negligible compared to
|t− tj|θj ≈ |eit − eitj |θj . �

3. Lower bound and radial behavior

We shall consider symbols φ taking real values in the real axis (i.e. its Taylor
series has real coefficients) and such that limr→1− φ(r) = 1, with a given speed.

Definition 3.1. We say that an analytic map φ : D → D is real if it takes real
values on ]−1, 1[, and that φ is an ω-radial symbol if it is real and there is a modulus
of continuity ω : [0, 1] → [0, 2] such that

(3.1) 1− φ(r) ≤ ω(1− r), 0 ≤ r < 1.

With those definitions and notations, one has:

Theorem 3.2. Let φ be a real and ω-radial symbol. Then, for the approximation
numbers an(Cφ) of the composition operator Cφ of symbol φ, one has the following
lower bound:

(3.2) an(Cφ) ≥ c sup
0<σ<1

√
ω−1(a σn)

a σn
exp

[
− 20

1− σ

]
,

where a = 1− φ(0) > 0 and c is another constant depending only on φ.

Observe that, for the lens map λθ (see [13, Lemma 2.5]), we have ω−1(h) ≈ h1/θ,
so that adjusting σ = 1− 1/

√
n, we get

(3.3) an(Cλθ) ≥ c exp
(
− C

√
n
)
,

which is the result of [15, Proposition 6.3].
For the cusp map φ (see Section 4.1), we have ω−1(h) ≈ e−C

′/h, so that taking
σ = exp(− log n/2n), we get

(3.4) an(Cφ) ≥ c exp(−C n/ log n).
We shall use the same methods as for lens maps (see [15, Proposition 6.3]).
We need a lemma. Recall (see [8, pages 194–195] or [20, pages 302–303]) that

if (zj) is a Blaschke sequence, its Carleson constant δ is defined as δ = infj≥1(1 −
|zj|2) |B′(zj)|, where B is the Blaschke product whose zeros are the zj’s. Now (see
[7, Chapter VII, Theorem 1.1]), every H∞-interpolation sequence (zj) is a Blaschke
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sequence and its Carleson constant δ is connected to its interpolation constant C by
the inequalities

(3.5) 1/δ ≤ C ≤ κ/δ2

where κ is an absolute constant (actually C ≤ κ1(1/δ)(1 + log 1/δ)). Now, if (zj)
is a H∞-interpolation sequence with constant C, the sequence of the normalized
reproducing kernels fj = Kzj/∥Kzj∥ satisfies

(3.6) C−1
(∑

|λj|2
)1/2 ≤ ∥∥∑λjfj∥H2 ≤ C

(∑
|λj|2

)1/2
(see [15, Lemma 2.2]).

Lemma 3.3. Let φ : D → D be an analytic self-map. Let u = (u1, . . . , un) be a
finite sequence in D and set vj = φ(uj), v = (v1, . . . , vn). Denote by δv the Carleson
constant of the finite sequence v and set

µ2
n = inf

1≤j≤n

1− |uj|2

1− |φ(uj)|2
.

Then, for some constant c′ > 0, we have the lower bound

(3.7) an(Cφ) ≥ c′ δ4v µn.

Proof. Recall first that the Carleson constant δ of a Blaschke sequence (zj) is
also equal to

δ = inf
k≥1

∏
j ̸=k

ρ(zk, zj),

where ρ(z, ζ) =
∣∣ z−ζ
1−z ζ

∣∣ is the pseudo-hyperbolic distance between z and ζ. Now, the
Schwarz–Pick Lemma (see [1, Theorem 3.2]) asserts that every analytic self-map of
D contracts the pseudo-hyperbolic distance. Hence ρ

(
φ(uj), φ(uk)

)
≤ ρ(uj, uk) and

so, if δu and δv denote the Carleson constants of u and v:

δu ≥ δv.

Let now R be an operator of rank < n. There exists a function f =
∑n

j=1 λjKuj ∈
H2 ∩ kerR with ∥f∥ = 1. We thus have

∥C∗
φ −R∥2 ≥ ∥C∗

φ(f)−R(f)∥22 = ∥C∗
φ(f)∥22 =

∥∥∥∥ n∑
j=1

λjKvj

∥∥∥∥2

2

≥ C−2
v

n∑
j=1

|λj|2∥Kvj∥22 = C−2
v

n∑
j=1

|λj|2

1− |vj|2
≥ C−2

v µ2
n

n∑
j=1

|λj|2

1− |uj|2

≥ C−2
u C−2

v µ2
n∥f∥22 = C−2

u C−2
v µ2

n ≥ κ−4 δ4u δ
4
v µ

2
n ≥ κ−4 δ8v µ

2
n,

and hence an(Cφ) ≥ κ−2 δ4v µn. �
Remark. This lemma allows to give, in the Hardy case, a simpler proof of

Theorem 4.1 in [15], avoiding the use of Lemma 2.3 and Lemma 2.4 (concerning
the backward shift) in that paper. Recall that this theorem says that for every
non-increasing sequence (εn)n≥1 of positive real numbers tending to 0, there exists a
univalent symbol φ such that φ(0) = 0 and Cφ : H2 → H2 is compact, but an(Cφ) &
εn for every n ≥ 1. Let us sketch briefly the argument.
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First of all, we may assume that εn ≤ 1/2, for all n, and that the sequence
(εn)n is log-convex and decreasing to 0 (see [15, Lemma 2.6]). The symbol φ is
defined as φ(z) = σ−1(e−1σ(z)), where σ is the Riemann map σ : D → Ω, with
σ(0) = 0 and σ′(0) > 0 from D onto some domain Ω. This domain Ω is defined
as follows. Let A be the piecewise linear function on the intervals (en−1, en) with
A(en−1) = (1/C0) log(1/εn) (C0 is a suitable numerical positive constant). Define
ψ : R+ → R+ to be linear on [0, 1], with ψ(0) = (1/2C0) log(1/ε1), and ψ(t) = t/A(t)
for t ≥ 1. Then Ω = {w ∈ C ; |Imw| < ψ(|Rew|)}.

If Aj = (1/C0) log(1/εj+1), then the numbers rj = σ−1(ej) satisfy φ(rj+1) = rj
and (see [15, pages 444–447]):

1− rj+1

1− rj
≥ exp(−2C0Aj).

We apply the above Lemma 3.3 with uj = rj. Then vj = φ(uj) = rj−1. Hence

1− |uj|2

1− |vj|2
≥ 1

2

1− |uj|
1− |vj|

=
1

2

1− rj
1− rj−1

≥ 1

2
exp(−2C0Aj−1) =

1

2
ε2j ≥

1

2
ε2n.

It follows that µn ≥ εn/
√
2.

On the other hand, (rj)j≥1 is an interpolating sequence (see [15, Lemma 4.6]);
hence there is a constant δ > 0 (which does not depend on n ≥ 1) such that δv ≥ δ.
Therefore Lemma 3.3 gives

an(Cφ) ≥ c δ4εn,

which gives Theorem 4.1 of [15]. �
Proof of Theorem 3.2. Fix 0 < σ < 1 and define inductively uj ∈ [0, 1) by u0 = 0

and the relation

1− φ(uj+1) = σ[1− φ(uj)] with 1 > uj+1 > uj

(using the intermediate value theorem).
Setting vj = φ(uj), we have −1 < vj < 1,

(3.8)
1− vj+1

1− vj
= σ,

and

(3.9) 1− vn = a σn, with a = 1− φ(0).

Now observe that, for 1 ≤ j ≤ n, one has, due to the positivity of uj, to (3.1), and
the fact that rω(x) = ω−1(x)/x is increasing,

1− |uj|2

1− |vj|2
≥ 1− uj

2(1− vj)
≥ 1

2

ω−1(1− vj)

1− vj
=

1

2
rω(1− vj) ≥

1

2
rω(1− vn) =

1

2
rω(a σ

n),

which proves that µ2
n ≥ rω(a σ

n)/2. Furthermore, the sequence (vj) satisfies, by (3.8),
a condition very similar to Newman’s condition with parameter σ. In fact, for k > j,
we have

|vk − vj|
|1− vkvj|

=
(1− vj)− (1− vk)

(1− vj) + vj(1− vk)
≥ (1− vj)− (1− vk)

(1− vj) + (1− vk)
=

1− σk−j

1 + σk−j
.
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Analogously, for j > k, we have |vk−vj |
|1−vkvj |

≥ 1−σj−k

1+σj−k . Thus, as in the proof of [4,
Theorem 9.2], we have, for every k,∏

j ̸=k

ρ(vj, vk) =
∏
j ̸=k

|vk − vj|
|1− vkvj|

≥
∞∏
l=1

(1− σl

1 + σl

)2

.

Consequently, δv ≥
∏∞

l=1

(
1−σl

1+σl

)2 ≥ exp
(
− 5

1−σ

)
, by [15, Lemma 6.4]. Finally, use

(3.7) to get

an(Cφ) ≥ c′ δ4v µn ≥ c exp
(
− 20

1− σ

)√
rω(a σn).

Taking the supremum over σ, that ends the proof of Theorem 3.2. �
Remark. The proof shows that

(3.10) an(Cφ) ≥ sup
u1,...,un∈(0,1)

inf
f∈⟨Ku1 ,...,Kun ⟩

∥f∥=1

∥C∗
φf∥,

where ⟨Ku1 , . . . , Kun⟩ is the linear space generated by n distinct reproducing ker-
nels Ku1 , . . . , Kun . But if B is the Blaschke product with zeros u1, . . . , un, then
⟨Ku1 , . . . , Kun⟩ = (BH2)⊥, the model space associated to B. Hence

(3.11) an(Cφ) ≥ sup
B

inf
f∈(BH2)⊥

∥f∥=1

∥C∗
φf∥,

where the supremum is taken over all Blaschke products with n zeros on the real axis
(0, 1). This has to be compared with the upper bound (which gives (2.13), see [13,
proof of Lemma 2.4])

(3.12) an(Cφ) ≤ inf
B

∥∥Cφ|BH2

∥∥ = inf
B

sup
f∈BH2

∥f∥=1

∥Cφf∥,

where the infimum is over the Blaschke products with less than n zeros (in the Hilbert
space H2, the approximation number an(Cφ) is equal to the Gelfand number cn(Cφ),
which is, by definition, less or equal to

∥∥Cφ|BH2

∥∥, since BH2 is of codimension < n).

4. Examples

4.1. The cusp map.

Definition 4.1. The cusp map is the conformal mapping φ sending the unit
disk D onto the domain represented on Figure 1.

10

Figure 1. Cusp map domain.



558 Daniel Li, Hervé Queffélec and Luis Rodríguez-Piazza

This map was first introduced in [12] (see also [14]). Explicitly, φ is defined as
follows.

We first map D onto the half-disk D+ = {z ∈ D ; Re z > 0}. To do that, map D
onto itself by z 7→ iz; then map D onto the upper half-plane H = {z ∈ C ; Im z > 0}
by

T (u) = i
1 + u

1− u
.

Take the square root to map H in the first quadrant Q1 = {z ∈ H ; Re z > 0}, and
go back to the half-disk {z ∈ D ; Im z < 0} by T−1: T−1(s) = 1+is

is−1
; finally, make a

rotation by i to go onto D+. We get

(4.1) φ0(z) =

( z − i

iz − 1

)1/2

− i

−i
( z − i

iz − 1

)1/2

+ 1

.

One has φ0(1) = 0, φ0(−1) = 1, φ0(i) = −i and φ0(−i) = i. The half-circle
{z ∈ T ; Re z ≥ 0} is mapped onto the segment [−i, i] and the segment [−1, 1] onto
the segment [0, 1].

Set now, successively,

(4.2) φ1(z) = logφ0(z), φ2(z) = − 2

π
φ1(z) + 1, φ3(z) =

1

φ2(z)
,

and finally

(4.3) φ(z) = 1− φ3(z).

Hence

(4.4) 1− φ(z) =
1

1 + 2
π
log

(
1/|φ0(z)|

)
− i 2

π
argφ0(z)

.

φ2 maps D onto the semiband {z ∈ C ; Re z > 1 and |Im z| < 1}. One has φ(1) = 1,
φ(−1) = 0, φ(i) = (1 + i)/2 and φ(−i) = (1− i)/2.

The domain φ(D) is edged by three circular arcs of radii 1/2 and of respective
centers 1/2, 1 + i/2 and 1 − i/2. The real interval ] − 1, 1[ is mapped onto the real
interval ] 0, 1[ and the half-circle {eiθ ; |θ| ≤ π/2} is sent onto the two circular arcs
tangent at 1 to the real axis.

Lemma 4.2.
1) For 0 < r < 1, let γ = π

4
− arctan r = arctan[(1− r)/(1 + r)]; then

(4.5) φ0(r) = tan(γ/2).

Hence, when r tends to 1−, one has

(4.6) 1− φ(r) ∼ π

2

1

log(1/γ)
∼ π

2

1

log(1/(1− r))
.

2) For |θ| < π/2, one has

(4.7) φ0(e
iθ) = −i tan(θ/2)

1 +
√

1− tan2(θ/2)
.
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Hence, when θ tends to 0, one has

(4.8) 1− φ(eiθ) ∼ π

2

1

log(1/|θ|)
.

Proof. 1) One has

T (ir) =
r − i

ir − 1
= − 2r

1 + r2
+ i

1− r2

1 + r2
= − sinα + i cosα,

with r = tan(α/2); hence T (ir) = cos(α + π/2) + i sin(α + π/2) = ei(α+π/2). Set
β = α

2
+ π

4
; one gets

φ0(r) =
eiβ − i

−ieiβ + 1
=

cos β

1 + sin β
=

sin γ

1 + cos γ
= tan(γ/2)

with γ = (π/2)− β = (π/4)− (α/2) = (π/4)− tan−1 r. Then (4.6) follows.
2) Let τ = π

2
− θ; one has

T (ieiθ) =
eiθ − i

ieiθ − 1
=

− cos θ

1 + sin θ
=

− sin τ

1 + cos τ
= − tan(τ/2).

Note that 0 < τ/2 < π/2 since |θ| < π/2; hence tan(τ/2) > 0. Therefore

φ0(e
iθ) =

i
√
tan(τ/2)− i

−i.i
√
tan(τ/2) + 1

= i

√
tan(τ/2)− 1√
tan(τ/2) + 1

.

But
tan(τ/2) = tan

(π
4
− θ

2

)
=

1− tan(θ/2)

1 + tan(θ/2)
;

it follows that

φ0(e
iθ) = i

√
1− tan(θ/2)−

√
1 + tan(θ/2)√

1− tan(θ/2) +
√

1 + tan(θ/2)

= i

(
1− tan(θ/2)

)
−

(
1 + tan(θ/2)

)(√
1− tan(θ/2) +

√
1 + tan(θ/2)

)2 = −i tan(θ/2)

1 +
√

1− tan2(θ/2)
.

Now, since φ0(e
iθ) ∼ −iθ/4 as θ tends to 0, we get that

1 +
2

π
log

(
1/|φ0(e

iθ)|
)
− i

2

π
argφ0(e

iθ) ∼ 2

π
log(1/|θ|)

and hence (4.8). �
It follows from this lemma and from Theorem 2.3 and Theorem 3.2 that one has

the following estimate.

Theorem 4.3. For the approximation numbers an(Cφ) of the composition op-
erator Cφ : H2 → H2 of symbol the cusp map φ, we have

(4.9) e−c1 n/ logn . an(Cφ) . e−c2 n/ logn, n = 2, 3, . . . ,

for some constants c1 > c2 > 0.

Proof. 1) Upper estimate. Note first that, since the domain φ(D) is contained
in the right half-plane and in the symmetric angular sector of vertex 1 and opening
π/2, there is a constant C > 0 such that |1 − γ(t)| ≤ C (1 − |γ(t)|) and we have
(2.2). Then (4.8) in Lemma 4.2 gives (2.3). The upper estimate is hence given in
Theorem 2.3 and (2.11).
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2) Lower estimate. By Lemma 4.2, (4.6), one has (3.1). Since φ is a real symbol,
the upper estimate follows from Theorem 3.2, and (3.4). �

4.2. The Shapiro–Taylor map. This one-parameter map ςθ , θ > 0, was
introduced by Shapiro and Taylor in 1973 [23] and was further studied, with a slightly
different definition, in [10, Section 5]. Shapiro and Taylor proved that Cςθ : H2 → H2

is always compact, but is Hilbert–Schmidt if and only if θ > 2. It is proved in [10,
Theorem 5.1] that Cςθ is in the Schatten class Sp if and only if p > 4/θ.

Here, we shall use these maps ςθ to see the limitations of our previous methods.
We first recall their definition.

For ε > 0, we set Vε = {z ∈ C ; Re z > 0 and |z| < ε}. For ε = εθ > 0 small
enough, one can define

(4.10) fθ(z) = z(− log z)θ,

for z ∈ Vε, where log z will be the principal determination of the logarithm. Let now
gθ be the conformal mapping from D onto Vε, which maps T = ∂D onto ∂Vε, defined
by gθ(z) = ε φ0(z), where φ0 is given in (4.1).

Then, we define

(4.11) ςθ = exp(−fθ ◦ gθ).
One has ςθ(1) = 1 and gθ(eit) ∼ −it/4 as t tends to 0, by Lemma 4.2; hence, when t
is near 0,

|1− ςθ(e
it)| ≈ |fθ[gθ(eit)]| ≈ |t| [log(1/|t|)]θ.

If we were allowed to apply Theorem 2.3, we would get that an(Cςθ) . 1/nθ/4,
which would be in accordance with the fact that Cςθ is in the Schatten class Sp if and
only if p > 4/θ. However, condition (2.2) is not satisfied: by [10], equations (5.5)
and (5.6), one has 1−|ςθ(eit)| ≈ |t|(log 1/|t|)θ−1, whereas |1− ςθ(e

it)| ≈ |t|(log 1/|t|)θ.
On the other hand, by the Lemma 4.2 again, gθ(r) ∼ ε(1− r)/4 as r tends to 1;

hence, when r is near to 1,

1− ςθ(r) ≈ (1− r)
(
log 1/(1− r)

)θ
,

so ςθ is a real ω-radial symbol with ω(t) = t(log 1/t)θ. Hence, we get from Theorem 3.2

an(Cςθ) &
1

nθ/2
,

taking σ = 1/e in (3.2). However, this lower estimate is not the right one, since Cςθ
is in Sp if and only if p > 4/θ.

5. Contact points

It is well-known (and easy to prove) that for every compact composition operator
Cφ : H

2 → H2, the set of contact points

Eφ = {eiθ ; |φ∗(eiθ)| = 1}
has Lebesgue measure 0. A natural question is: to what extent is this negligible
set arbitrary? The following partial answer was given by Gallardo-Gutiérrez and
González in [6].

Theorem 5.1. (Gallardo-Gutiérrez and González) There is a compact compo-
sition operator Cφ on H2 such that the Hausdorff dimension of Eφ is one.
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This was generalized by El-Fallah, Kellay, Shabankhah, and Youssfi [5, Theo-
rem 3.1]:

Theorem 5.2. (El-Fallah, Kellay, Shabankhah, and Youssfi) For every compact
set K of measure 0 in T, there exists a Schur function φ ∈ A(D), the disk algebra,
such that the associated composition operator Cφ is Hilbert–Schmidt on H2 and
Eφ = K.

As an application of our previous results, we shall extend these results, with a
very simple proof. Our composition operator will not only be compact, or Hilbert–
Schmidt, but in all Schatten classes Sp, and moreover its approximation numbers will
be as small as possible.

Theorem 5.3. Let K be a Lebesgue-negligible compact set of the circle T.
Then, there exists a Schur function ψ ∈ A(D), the disk algebra, such that Eψ = K,
ψ(eiθ) = 1 for all eiθ ∈ K, and

(5.1) an(Cψ) ≤ a exp(−b n/ log n).
In particular, Cψ ∈

∩
p>0 Sp.

Proof. According to the Rudin–Carleson theorem [2], we can find χ ∈ A(D) such
that

χ = 1 on K and |χ| < 1 on D \K.
Consider now the cusp map φ, defined in Section 4.1. One has φ ∈ A(D), φ(1) = 1
and

an(Cφ) ≤ a′ exp(−bn/ log n).
We now spread the point 1 by composing with the function χ, which is equal to 1
on the whole of K. We check that the composed map ψ = φ ◦ χ has the required
properties.

That ψ ∈ A(D) is clear. For z ∈ K, one has ψ(z) = φ(1) = 1, and for z ∈ D\K,
one has |χ(z)| < 1; hence |ψ(z)| < 1.

To finish, since Cψ = Cχ ◦ Cφ, we have

an(Cψ) ≤ ∥Cχ∥ an(Cφ) ≤ a′ ∥Cχ∥ exp(−bn/ log n) := σn,

proving the result (with a = a′ ∥Cχ∥), since clearly
∑∞

n=1 σ
p
n <∞ for each p > 0. �

Actually, we can improve on the previous theorem by proving the following re-
sult. This result is optimal because if ∥ψ∥∞ = 1, we know (see [15, Theorem 3.4])
that lim infn→∞[an(Cψ)]

1/n = 1, so we cannot hope to get rid with the forthcoming
vanishing sequence (εn)n.

Theorem 5.4. Let K be a Lebesgue-negligible compact set of the circle T and
(εn)n a sequence of positive real numbers with limit zero. Then, there exists a Schur
function φ ∈ A(D) such that Eφ = K, φ(eiθ) = 1 for all eiθ ∈ K, and

(5.2) an(Cφ) ≤ C exp(−n εn),
where C is a positive constant.

This theorem is a straightforward consequence of the following lemma. Recall
that the Carleson function of the Schur function ψ : D → D is defined by

ρψ(h) = sup
|ξ|=1

m({t ∈ T ; |ψ(eit)| ≥ 1− h and | arg(ψ(eit) ξ̄)| ≤ πh}).
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Lemma 5.5. Let δ be a nondecreasing positive function on (0, 1] tending to 0 as
h→ 0. Then, there exists a Schur function ψ ∈ A(D) such that ψ(1) = 1, |ψ(ξ)| < 1
for ξ ∈ T \ {1}, and such that ρψ(h) ≤ δ(h), for h > 0 small enough.

Once we have the lemma, in view of the upper bound in [15, Theorem 5.1] for
approximation numbers

(5.3) an(Cψ) . inf
0<h<1

[
(1− h)n +

√
ρψ(h)/h

]
, n = 1, 2, . . . ,

we can adjust the function δ so as to have an(Cψ) ≤ Ke−nεn . Then, we compose ψ
with a peaking function χ as in the previous section and the map φ = ψ ◦ χ fulfills
the requirements of Theorem 5.4, with C = K∥Cχ∥. �

Proof of Lemma 5.5. Consider the domain Ω represented on the Figure 2. This
domain is limited by the two hyperbolas y = 1/x and y = (1/x) + 4π and to the
right-hand side by, say, a semicircle. This limiting semicircle is chosen in order that
Imw ≥ 1 for w ∈ Ω. The lower parts of the “saw-teeth” have an imaginary part
equal to 4πn. If a ∈ Ω is fixed, with Im a < 4π, and Ωn is the part of the domain
Ω such that Imw < 4πn, the horizontal sizes of the “saw-teeth” are chosen in order
that the harmonic measure ωΩ(a, ∂Ω \ ∂Ωn) is ≤ δn := δ(1/16π(n + 1)). Note that
∂Ω \ ∂Ωn ⊇ {w ∈ ∂Ω ; Imw > 4πn} (see [11, Lemma 4.2]).

Figure 2. Domain Ω.

By Carathéodory–Osgood’s Theorem (see [21], Theorem IX.4.9), there is a unique
homeomorphism g from D onto Ω∪{∞} which maps conformally D onto Ω and such
that g(0) = a and g(1) = ∞ (we may choose these two values because if h : D →
Ω ∪ {∞} is such a map, and u is the automorphism of D such that u(0) = h−1(a)
and u(1) = h−1(∞), then g = h ◦ u suits—alternatively, having choosen h(0) = a,
then, if h(eiθ0) = ∞, we take g(z) = h(eiθ0z)).

We define ψ = (g − i)/(g + i). Then ψ : D → D is a Schur function and ψ ∈
A(D). Moreover, since the domain Ω is bounded horizontally, we have ψ(1) = 1 and
|ψ(eit)| < 1 for 0 < t < 2π.

Now, ρψ(h) ≤ m
(
{z ∈ T ; |ψ(z)| > 1− h}

)
. Writing g = u+ iv, one has

|ψ|2 = u2 + (v − 1)2

u2 + (v + 1)2
= 1− 4v

u2 + (v + 1)2
.

Since (1− h)2 ≥ 1− 2h, the condition |ψ(z)| > 1− h implies that 2v
u2+(v+1)2

≤ h. But
0 < u ≤ 1 + 2π ≤ 8 and (v + 1)2 ≤ 4v2 (since v ≥ 1); we get hence v

32+2v2
≤ h, or

32
v
+ 2v ≥ 1

h
. Using again the fact that v ≥ 1, one obtains 2v ≥ 1

h
− 32, and hence

2v ≥ 1
2h

for 0 < h ≤ 1/64. Therefore, for 0 < h ≤ 1/64,

ρψ(h) ≤ m({z ∈ T ; Im g(z) ≥ 1/4h}).
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Now, for n ≥ 2 and 1/16π(n+ 1) ≤ h < 1/16πn, one gets hence

ρψ(h) ≤ m({z ∈ T ; Im g(z) > 4πn})
= ωΩ(a, {w ∈ ∂Ω ; Imw > 4πn}) ≤ ωΩ(a, ∂Ω \ ∂Ωn) ≤ δn ≤ δ(h),

proving Lemma 5.5. �
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