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Abstract

The research proposed in this Thesis approaches the multifield materials by two main
branches: the study of the fracture mechanics problem (direct problem), and the devel-
opment of a damage identification methodology (inverse problem). Numerical meth-
ods have been studied for the direct problem and techniques have been proposed so
new problems can be treated, notably a new formulation for enrichment function in
extended finite element method, and a far field fundamental solution to be used con-
jointly with the boundary element method. With respect to the inverse problem, ar-
tificial intelligence techniques have been combined in a hybrid damage identification
scheme, using supervised (neural networks) and unsupervised (self-organizing algo-
rithms) learning techniques, providing excellent identification results despite the pres-
ence of high levels of external interference in the measured response. Experimental
damage assessment was also investigated in this Thesis, and a methodology using data
fusion and a Gaussian mapping has proved to provide good identification results.

Keywords: Damage identification, multifield materials, neural networks, self-organizing
algorithms, boundary element method, extended finite element method, far field Green’s
function, experimental damage assessment
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1 Introduction

In the last few years it has become more critical to supervise correctly the behavior of
complex systems. Civil, aerospace, automobile industries are particularly concerned
about the safety requirements, making crucial the correct prediction of faillure for a
given structure/system. Intense research has been seen to analyze the durability, in-
tegrity and security of structural components. Nondestructive evaluation techniques
(NDE) have been effectively used to detect and quantify structural damage at early
stages, assuring that corrective measures can be taken in time. The procedure of dam-
age assessment is often called damage identification or damage diagnosis.

Modern NDE techniques include radioscopy, ultrasonic scanning, dye penetrant test-
ing, magnetic resonance imagery, laser interferometry, infrared thermography, among
many others [122]. Most NDE approaches depend on the acquisition of structural re-
sponse signals by means of a series of sensors under a known excitation, then compare
the actual response to some benchmark solution. Materials presenting coupling behav-
ior, such as the piezoelectric material, which presents coupling in the elastic and electric
fields, are commonly used in the damage evaluation framework. The coupling behav-
ior permits the material to act as sensor or as an actuator, which is desirable in damage
evaluation schemes. Nevertheless, NDE techniques have been scarcely used in damage
identification of multifield materials.

A new material has been created from the combination of a piezoelectric and a piezo-
magnetic phase [130]. This new material was called magnetoelectroelastic (MEE), pre-
senting coupling in the elastic, the electric and the magnetic fields. Multifield materials
have been widely studied [34, 35, 74, 94, 110] to cite some of the most recent works. The
main problem of this class of material is due to their crystal arrangement, which im-
plies in materials with brittle behavior. The crystal arrangement contained in this class
of materials provide an undesirable effect: brittle behavior, which almost ensures the
presence of defects due to operation and even in fabrication process [46, 47]. Hence, it
is expected that the presence of damage changes the response of these materials. How-
ever, if the damage can be properly depicted, it is possible to interpret the response
of the damaged multifield material. In other words, it would be as the material had
no damage, since the measures obtained from it will be perfectly decoded. If the mul-
tifield material is used as a sensor, for instance, it would be possible to obtain some
useful structural data via the faulty sensor. Thus, it is clear the importance of having a
damage identification scheme for multifield materials.
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Very few works can be found about damage identification in multifield materials.
Furthermore, they are devoted to piezoelectric materials only: a genetic algorithm and
the finite element method were applied to identify hole-type damage in piezoelectric
ceramics for static [100] and time-harmonic [101] loadings. A probabilistic theory was
applied for damage identification in piezoelectrics in [81]. Analytical inverse problem
formulation concerning piezoelectric materials is given in [116].

1.1 Objectives

The main objective of this Thesis is to develop the damage identification tools for mul-
tifield materials, in particular when MEE materials are considered. The detection and
quantification of damage may be crucial depending on the current application, spe-
cially if the material can not be replaced (for example, in off-shore structural health
monitoring sensors). Instead of developing an analytical formulation which could be
only used with this class of materials, and may not properly describe the material be-
havior under real operation circumstances, an artificial intelligence hybrid approach is
proposed to solve this inverse problem.

Artificial intelligence tools such as the neural networks (NN) have been widely em-
ployed with high performance in all kinds of inverse problems. The NN architecture
allows the interpolation of any system that can be described by an input-output rela-
tion. The existence of a model that characterizes the direct problem makes easier the
approach using artificial intelligence tools. Analytical [15, 25, 42, 43, 55, 135] and nu-
merical [22, 47, 95, 115, 146] models were developed in the last 30 years, analyzing how
different types of damage affect the response in multifield materials. The effect of cracks
in piezoelectric materials was also verified experimentally in [54,62,64,86,113,114,127].

Classical numerical methods such as the finite element method (FEM) and the bound-
ary element method (BEM) have been used to model defects in multifield materials.
New numerical methods have also been introduced, such as the meshless methods and
the extended finite element method (X-FEM). In this Thesis two numerical methods are
employed, the BEM and the X-FEM.

The BEM is vastly known due to its accuracy and stability in linear fracture mechan-
ics problems. Most of the issues of modeling cracks in MEE materials and BEM have
been studied and solved by previous researchers [46–48, 92, 93], including the deduc-
tion of Green’s fundamental solution (FS) for anisotropic [132, 133], piezoelectric [28]
and MEE materials [20, 94]. The fundamental solution is the kernel of the BEM, allow-
ing the proper discretization of the domain. In this work, the BEM was used to solve
the direct problem, i.e., the influence of a damage in the response of a MEE material.

The X-FEM has been shown to be a breakthrough in fracture mechanics due to the
modeling of a crack in terms of enrichment functions instead of considering it as a phys-
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ical geometrical boundary [14,71,123] in a FE context. Enrichment functions have been
deduced for isotropic [71], orthotropic [8], piezoelectric [13] and MEE [95] materials,
but no general anisotropic enrichment function was available. A new enrichment func-
tion based on Stroh’s formalism is proposed in this Thesis, defined in a compact form
and depending only on the material properties.

Experimental methods are also of great interest in damage identification, since it is
possible to study the methods in real applications. A number of authors have studied
damage identification experimentally [6,63,73,109,129]. Once again, little attention has
been given to the damage identification in smart materials [59, 83]. Part of the work
developed in this Thesis consists in an experimental dynamic damage identification
scheme using commercial piezoelectric sensors. Real operation conditions can be em-
ulated, and the performance of damaged sensors are compared to a reference solution
from pristine sensors.

It was verified that the actual Green’s functions for piezoelectric and MEE materials
are not effective when the distance between the position where the load is applied and
the position where the response is measured, or if the frequency increases. The main
reason of this problem is the oscillation of the integrand, making necessary to discretize
the integration domain in smaller parts, which can be computationally time consuming.
This issue severely penalizes damage identification in high frequencies, where lies most
of sensor applications. To avoid this problem, a new Green’s function for piezoelectric
and MEE materials valid for the far field was deduced.
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2 Inverse problems

2.1 Definition

Initially, we have to define what is the difference between direct and inverse problem.
Let f be a general function that describes some physical model, and x the parameters
that characterize the model. The solution of the direct problem y is defined as

y = f (x) + ξ (2.1)

where ξ is a noise present in the solution. Two types of inverse problems can be defined
in this case:

1. Considering that a series of values y and the originating parameters x are known,
find the model f .

2. Considering that a series of values y and the model f is known, find the parame-
ters x.

In this Thesis, the focus is directed to the second inverse problem option. Consider a
simple example, a mass-spring-damper system. The parameters of the problem are the
mass m, the damping c and the stiffness k. The problem model is given by the known
equation mü + cu̇ + ku = F(t) for dynamic loading, where solution is the displacement
u(t) for a given excitation F(t). In the inverse problem, the displacement u(t) and the
excitation F(t) are known, and the parameters m, c and k are the unknowns.

In summary, structural analysis for responses under a given load represent a direct
problem. The identification of structural parameters that cause the measured response
is the definition of an inverse problem. Figure 2.1 illustrates the direct and inverse
problem schemes. Most inverse problems numerical approaches consist of the use of a
black-box model, where some measured (or test) data with known parameters is used
to update the model until an acceptable error is attained.

Inverse problems are difficult to treat because they are very likely to violate at least
one of the Hadamard conditions [49]:

• Existence. Sometimes there is no model that can fit properly the measured data
with the parameters. The presence of noise in the data is the most common reason
to the absence of a reliable inverse model.
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Figure 2.1: Scheme of direct and inverse problems.

• Uniqueness. There could be more than a set of parameters that describe exactly
the same solution, being impossible to distinguish which parameter has caused
the current response.

• Continuity. Small errors in the initial conditions or in the source terms should
lead to small deviations in the solution. However, this condition is often not sat-
isfied, since small changes in the solution may cause large changes in the orig-
inating parameters. The effect of this latter can be reduced by regularizing the
problem, so the inversion process is stabilized with the use of some additional
constraints. Some classical regularization methods can be cited as the truncated
Singular Value Decomposition (SVD) [50], the Tikhonov regularization [126], and
nonlinear total variation [99].

In practice, analytical formulations are hardly used in inverse problems, since there
is often some interference (e.g. noise) in the measured data. The possible uncertaini-
ties have to be considered in the inverse model. Artificial intelligence and evolution-
ary algorithms as the neural networks and genetic algorithms, respectively, have been
used widely and successfully in the inverse problem context. These methods require
the direct problem formulation to model the inverse problem. Moreover, their non-
deterministic feature allow to easily model the uncertainities present in the inverse
problem. Nevertheless, other issues may appear, being the most typical convergence
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problems and local optimum solutions.
Several types of inverse problems can be defined as

1. Boundary value inverse problems: direct measurements at the boundary are in-
feasible.

2. Cauchy inverse problem: the response is unknown at some part of the system/-
body, and it is known everywhere else.

3. Material properties inverse problems: the response of the system is known, with
unknown material properties.

4. Identification inverse problem: part of the geometry is unknown, such as defects
or inclusions. This is the main focus treated in this Thesis.

etc.

2.2 Damage identification

Damage identification is a branch of inverse problems. It is assumed that a structure/-
component presents some type of damage, with size and location unknowns, and it is
desirable to know these parameters from some measured structural response. Damage
is a structural state different from the pristine state [122], so a benchmark solution (un-
damaged state) is required to define the implications of the damage in the structure. A
system of damage classification has been introduced by [102]

1. Determine if damage is present in the structure;

2. Determine/estimate the damage location;

3. Determine/estimate the extension of the damage;

4. Estimate the structure remaining life;

The key aspect of this Thesis is to completely and accurately characterize the dam-
age, without taking in consideration how the damage affects the service life. Damage
detection can be very straightforward to determine, since a simple shift in the solution
(assuming a benchmark solution is available) characterizes the damage. However, loca-
tion and quantification of damage can be complicate, and some techniques are detailled
as follows:

• Model updating techniques: These techniques [41, 72] have the objective of ap-
proximating the solution from the numerical model of the direct problem to the
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real measurements through modification of the initial discretization model, by in-
corporating more features of the analyzed problem. The parameters of the numer-
ical modeling providing the best fit with the real measurements are the wanted
damage parameters.

• Mode shape analysis: Modal parameters such as frequencies and mode shapes
depend directly of some properties of the physical model. The idea is to detect
the change in the modal parameters to quantify the change of the physical prop-
erties. Mode shapes contain local information, which makes them more sensitive
to local damages and enables them to be used directly in multiple damage detec-
tion [37]. Also, it is possible to use the mode shape information alone to calculate
the structural state, without the need of a benchmark solution. These methods
take mode shape change or mode shape data as a spatial-domain signal and use
signal processing technique to locate the damage by detecting the local discon-
tinuity of mode shape curve caused by the damage. Their basic assumption is
that the mode shape data from a healthy structure contains only low-frequency
signal in spatial domain compared to the damage-induced high-frequency sig-
nal change [37]. However, mode shape analysis rely on sensors for measuring,
making them more susceptible to external disturbances, and distortions due to
improper sensor functioning.

• Natural frequency analysis: These range of methods are attractive because the
natural frequencies can be obtained from a few accessible points on the structure,
also being less willing to noise influences. Nevertheless, in [104] it has been seen
that natural frequencies alone may not represent a unique identification of the
damage location, since cracks of similar lengths at different locations may cause
the same amount of frequency change.

• Frequency Response Function (FRF) analysis: the FRF analysis uses directly the
data obtained from a frequency measurement. It is simple and depending on the
analyzed problem, it can have more significant results than methods based on
natural frequencies or mode shapes. It is less sensitive to noise than mode shape
analysis, due to the use of the measured frequency response directly, and it is
possible to use reduced frequency ranges [66,105]. Frequency shifts can be useful
to detect damage, but the need of an accurate measure to ensure that the shift is
related to the damage than a measurement disturbance is a major drawback.

• Wavelets analysis: the wavelets allow to perform a direct time-frequency analy-
sis, being useful for processing dynamic signals and images. The wavelets are
waveforms with limited duration, designed to resonate with signals which con-
tain information of similar frequency. This numerical tool has been introduced in
the analysis of vibration signals by [23, 75, 76] and can recognize singularities in
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the analyzed signal, characterizing them in space and time. These reasons makes
very attractive the use of wavelets in damage identification schemes.

• Time reversal: the origin of this approach comes from the wave reciprocity, which
states that if there is a solution of the Navier’s equation, then the time reversal
of that solution is also a solution of the Navier’s equation [52]. In brief, the solu-
tion due to a given excitation at point A and measured at point B of a structure is
equivalent to the reflected solution applied at point B and measured at point A,
assuming both A and B arbitrary positions in the structure. This latter is called the
reversed wave, and should generate the exact excitation which originated the first
wave. Clearly, this paradox can be applied only where the wave reciprocity holds,
being valid for ultrasonic waves in composites structures for example. Time re-
versal can infer the presence of damage in view that the time reversibility of the
wave solution is affected by the presence of damage in the wave propagation
path. This particular method has the advantage of not requiring a benchmark so-
lution in order to properly determine the location and size of the damage, which
is assessed through calibration of the deviation of the reconstructed wave solution
with respect to the original wave [84, 106].

• Damage Index (DI) and data fusion: the definition of a DI can greatly simplify
the damage identification process, by the statement of a benchmark solution and
a known solution with damage. DI has the objective of extracting the damage
features of the measured solution, as can be seen in [29, 67, 90, 140], to cite a few
references. The combination of multiples features extracted from multiples dis-
tributed sensors to obtain the damage state is called data fusion. Data fusion
are used to obtain a graphic solution of the region where it is more probable to
present damages [56,122]. DI and data fusion were used in this Thesis to evaluate
the structural state of a piezoelectric plate experimentally.

• Artificial intelligence (AI) analysis: The primary objective of this Thesis is to de-
velop an AI methodology to detect and quantify damage in multifield materials.
The usual approach in damage identification problems with AI tools is to create
a black-box model through the adjustment of a set of known parameters and the
associated measured output. The AI techniques used in this Thesis are detailled
in the following section.

2.3 Review of artificial intelligence techniques

Artificial neural networks (NN) have been conceived to mimic the human nervous sys-
tem, by the inference that if the biological structure is intelligent, another similar ar-
tificial structure will also be intelligent [51]. The human nervous system is composed
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by billions of small structures called neurons, which propagate the information in the
neural net in the form of electrochemical waves through the axons. The junction where
the information from a neuron is transmitted to another is called synapses. The infor-
mation is modified and propagated by the neurons.

A computational model may be developed to simulate this particular processing in-
formation structure. The result is a much simpler model compared to the original one,
but with strong capabilities of interpolation and parallelism, being able to learn the
functionallity of complex systems described by a series of input/output pairs, and ex-
trapolate the results, predicting the correct output from an input which has not been
used to establish the model.

NN are composed by neurons, which are organized in a layered structure as illus-
trated in Figure 2.2 and can be defined as follows:

Figure 2.2: Scheme of a back-propagation NN. From Paper A.

• Input layer: receives the data to be interpolated/identified, for example, the mea-
sured response of a structure.

• Hidden layers: allows the information from the input layer to be transmitted
through the network. The connectivity between the neurons are indispensable
to the effectivity of the interpolation provided by the NN.

• Output layer: provides the parameter estimation given the measured response.
The NN error can be quantified only at this point and it is used to update the
weights.

Each connection between neurons from different layers represents a weight. A NN
learns a pattern by the update of the weights, thus being the main responsible of mod-
ifying the information from the input layer to the output layer.
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The information contained in a layer is gathered together, modified by an activation
function and then propagated to the next layer. This process is repeated until the in-
formation reaches the output layer, where it becomes the NN response to the received
data.

NN have become popular in inverse problems schemes due to its simplicity of use
and possibility of modelling practically any type of inverse model. However, there are
some issues which have to be carefully considered to take full advantage of the NN:

• The selection of an appropriate architecture: this is the most complicated param-
eter to be adjusted, where the user knowledge on the analyzed problem may be
critical. The number of layers and the number of neurons per layer can determine
whether the NN can create a meaningful model from the training set or not.

• Prevent overfitting: excessive training may cause the NN to recognize only its
training set, being unable to identify other patterns which are inside the training
space but have not been used in training, one of the main advantages of mod-
elling inverse problems with NN. The control of the error of patterns not used in
the NN training can provide insight of overfitting. The verification set is com-
posed by inputs other than those in the training set. If the error of this verification
set increases while the error of the training set decreases is a strong indicator of
overfitting.

• Regularization: in problems where external interference is present, the NN train-
ing may be seriously compromised. Since inverse problems have the tendency to
be ill-conditioned, a small change in the NN input may represent a high change
in the NN output. Thus, it may be necessary to use regularization techniques to
reduce the interference influence in the NN training. An example of regulariza-
tion method in NN is the work of [39], where a combination of the Levenberg-
Marquardt training algorithm with a Gaussian formulation is performed.

A large list of works that used NN in inverse problems could be cited. Lately, special
focus is given to composite materials. In [121] a combined approach of wavelets and
NN is used to detect delamination in quasi-isotropic composite, where the structural
information is captured by means of Lamb waves. A hybrid strategy of NN and genetic
algorithm for identifying the nonlinear model of a composite laminate shell is found
in [12]. In [139], an adaptive NN technique is proposed for the detection of cracks
in anisotropic laminated plates, by using the displacement response on the surface of
the plate given a time-harmonic excitation. The strip element method and NN were
applied for the identification of interfacial delaminations in carbon/epoxy laminated
composite beams in [53]. Undamped eigenfrequencies were used in [7] to estimate the
elastic and piezoelectric parameters in active plates with both gradient optimization
and NN.
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NN are an example of supervised learning models, since an error has to be controlled
and reduced to a minimum. Other artificial intelligence techniques are said to be un-
supervised, due to the absence of a reference error. Clustering techniques, such as the
K-means and Gaussian mixtures (GM), have the purpose of reorganizing data such that
components with similar features remain in the same cluster.

A review of the clustering methods can be found in [96]. Some clustering methods
use distance measures (e.g. the Euclidean distance) to determine the similitude between
two given components. Other clustering methods rely on the fact that the components
belonging to a cluster are drawn from some probability distribution. In both cases, the
number of clusters to be created has to be defined beforehand, which can be intricate
since no information is available concerning the number of clusters in most cases. To
overcome this issue, some indices have been created to find the optimum number of
clusters depending on the used algorithm (see [24, 32], for example).

Clustering methods have also been used in inverse problems. In [65], the first twelve
mode shapes of a bridge have been recognized by a hierarchical clustering algorithm.
A combination of the acoustic emission and K-means has been used for identification
of the failure mechanims by [82]. Damage types in composite materials were separated
into two groups by [142] using clustering techniques.

The NN training set has been created through solving the direct problem succes-
sively. The boundary element has been used in this work due to their superior accu-
racy compared to standard finite elements. Nevertheless, the extended finite elements
have shown to be a great advance in order to suppress the weakness of standard finite
elements in fracture mechanics problems. Both numerical methods are described in the
following section.

2.4 Review of numerical methods

2.4.1 Boundary element method (BEM)

The boundary element method (BEM) was first introduced in the work of Brebbia and
Domı́nguez [17] and represented a series of advances in comparison to the existent
domain discretization methods as the finite element method (FEM) and the finite dif-
ferences method (FDM):

• More accurate mathematical definitions are employed, resulting in a more accu-
rate and stable discretization method. The formulation can consider infinite and
half spaces, specially advantegeous in the dynamic domain.

• The problem is defined only at the boundaries, which implies in a reduced mesh
(linear for 2D problems and surface for 3D problems), therefore resulting in a
reduced set of linear equations to be solved.
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• Any internal point in the domain can be calculated once the boundary problem
has been solved.

• Great advantage in acoustic, fracture mechanics, re-entry corners and stress in-
tensity problems, where domain discretization methods have poor performance
and accuracy.

However, there are some drawback which may have kept away FEM users to migrate
to the BEM:

• The system of equations is not symmetric and it is fully populated, which may
lead to longer computing times (compared to FEM for example), specially in 3D
problems. In this case, techniques such as the fast multipole method [97] has been
introduced to speed up the solution in large-scale problems.

• A Fundamental Solution (FS) or Green’s function, describing the behavior of a
point load in a infinite medium of the material properties is part of the kernel of
the method. The calculation of FS is another field of research, which can make
unfeasible the use of BEM in problems where a FS is not available beforehand.

• FS must be computationally efficient, which makes explicit FS formulations very
desirable in this sense. Dynamic problems usually have implicit formulations,
see [28,94,133] for instance, where the FS is expressed in a integral form by means
of the Radon transform.

• The BEM formulation may present singularities/hypersingularities which must
be analytically regularized before any numerical integration can be performed, as
can be seen in [46, 47].

• Non-linear problems (e.g., material nonlinearities) may be difficult to model.

A high number of researchers have embraced BEM and its possible uses were mul-
tiplied: elastic [18, 118], elastodynamics [30, 68], ultrasonic [16], thermic [134], fluids
[10, 89], acoustics [33, 136], just to cite a few references.

The constitutive equations relating the mechanical stresses σij, the electric displace-
ments Di and the magnetic inductions Bi with the elastic strains εij, the electric field Ei

and the magnetic field Hi are given as [119]

σij = Cijklεkl − elijEl − hlijHl (2.2)

Di = eiklεkl + κilEl + βil Hl (2.3)

Bi = hiklεkl + βilEl + γil Hl (2.4)
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with cijkl , κil and γil denoting the elastic stiffness, the dielectric permittivities and the
magnetic permeabilities tensors, and elij, hlij and βil being the piezoelectric, the piezo-
magnetic and the electromagnetic coupling coefficients, respectively, and

εij =
1
2
(
ui,j + uj,i

)
; Ei = ϕ,i; Hi = −φ,i (2.5)

The Einstein summation notation applies in Eqs. (2.2)-(2.4). The displacements re-
sponse in multifield materials can be written in a compact form, where the elastic
displacements ui, the electric potential ϕ and the magnetic potential φ are assembled
together in a generalized displacement vector uI defined as [11]

uI =





ui, I=1,2
ϕ, I=4
φ, I=5

(2.6)

where the lowercase subscripts vary from 1 to 3 in 3D problems, whereas the index
i = 3 is omitted in 2D problems. The uppercase subscripts define the type of material:

• if I = {1, 2}, an elastic material is considered.

• if I = {1, 2, 4}, a piezoelectric material is considered.

• if I = {1, 2, 4, 5}, a MEE material is considered.

Again, the index I = 3 is reserved only for 3D materials. Analogously, a generalized
stress tensor σi J is defined as

σi J =





σij, J=1,2
Di, J=4
Bi, J=5

(2.7)

and the generalized traction vector pJ is given by

pI =





pi = σijnj, I=1,2
Dn = Djnj, I=4
Bn = Bjnj, I=5,

(2.8)

with n = (n1, n2) being the outward unit normal to the boundary, pi the elastic trac-
tions, and Dn and Bn the normal electric displacement and normal magnetic induction,
respectively. A generalized elasticity tensor can also be specified as

Ci JKl =




cijkl elij hlij

eikl −εil −βil

hikl −βil −γil


 (2.9)
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so that the constitutive equations may be written in an elastic-like fashion as

σi J = Ci JKluK,l (2.10)

The time-harmonic equilibrium equations for a MEE material in the absence of body
forces can be written as

σij,j(x, ω) + ρω2ui(x, ω) = 0 (2.11)

Di,i(x, ω) = 0 (2.12)

Bi,i(x, ω) = 0 (2.13)

where ω is the frequency of excitation and ρ is the mass density of the material. The
Maxwell equations are written assuming the quasi-static approximation [87] on the
electric and magnetic fields. Similarly, Eqs. (2.11)-(2.13) can also be written in the gen-
eralized form as

Ci JKluK,il(x, ω) + ρω2δJKuK(x, ω) = 0 (2.14)

where δJK stands for the generalized Kronecker delta, which acts as the standard Kro-
necker delta for I, J = 1, 2, being zero otherwise.

From Figure 2.3, let Ω be a 2D MEE cracked domain with boundary Γ, which can be
decomposed in two boundaries, an external boundary Γc and an internal crack Γcrack =

Γ+ ∪ Γ− represented by two geometrically coincident crack surfaces.

Figure 2.3: Scheme of the direct problem. From Paper B.
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The Dual BEM formulation relies on two boundary integral equations (BIE), one with
respect to the displacements at a point ξ of the domain Ω and frequency ω defined as

cI J(ξ)uJ(ξ, ω) +
∫

Γ
p∗I J(x, ξ, ω)uJ(x, ω)dΓ(x) =

∫

Γ
u∗I J(x, ξ, ω)pJ(x, ω)dΓ(x) (2.15)

and a BIE with respect to the generalized tractions, defined as

cI J(ξ)pj(ξ, ω) + Nr

∫

Γ
s∗rI J(x, ξ, ω)uJ(x, ω)dΓ(x) = Nr

∫

Γ
d∗rI J(x, ξ, ω)pJ(x, ω)dΓ(x)

(2.16)
which follows from the differentiation of the displacement BIE and further substitution
into the constitutive laws equation (for details see [46]). Nr stands for the outward
unit normal to the boundary at the collocation point ξ, cij is the free term that comes
from the Cauchy Principal Value integration of the strongly singular kernels p∗I J , u∗I J
and p∗ij are the displacement and traction FS and d∗rI J and s∗rI J follow from derivation
and substitution into the Hooke’s law of u∗I J and p∗I J , respectively.

When modeling MEE materials in BEM, it is usual to adopt the impermeable bound-
ary condition in the crack [25, 80], thus considering that the crack is shielded against
the electric and magnetic fields. In addition, the cracks are considered to be free of
mechanical tractions. These boundaries conditions can be summarized as

∆pJ = p+J + p−J = 0 (2.17)

where the ’+’ and ’-’ superscripts represents the upper and lower crack surfaces, respec-
tively. The use of the impermeable boundary condition allows to redefine Eqs. (2.15)
and (2.16) in terms of the crack-tip opening displacement (∆uJ = u+

J − u−J ) in function
of the crack-free boundary Γ and one of the crack surfaces, say Γ+

cI J(ξ)uJ(ξ, ω) +
∫

Γc

p∗I J(x, ξ, ω)uJ(x, ω)dΓ(x) +
∫

Γ+

p∗I J(x, ξ, ω)∆uJ(x, ω)dΓ(x) =
∫

Γc

u∗I J(x, ξ, ω)pJ(x, ω)dΓ

(2.18)

pJ(ξ, ω) + Nr

∫

Γc

s∗rI J(x, ξ, ω)uJ(x, ω)dΓ(x) + Nr

∫

Γ+

s∗rI J(x, ξ, ω)∆uJ(x, ω)dΓ(x) =

Nr

∫

Γc

d∗rI J(x, ξ, ω)pJ(x, ω)dΓ(x)

(2.19)

In this latter equation, the free term has been set to 1 due to the additional singularity
arising from the coincidence of the two crack surfaces. The use of an hypersingular
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formulation do not limit at all the crack shape, being valid for curved and branched
cracks, for example. The inconvenient of this approach is that the BEM formulation will
now present both strong singularities and hypersingularities, which have to be regular-
ized before any numerical integration is possible. Successful hypersingular approaches
have been developed by [47] for piezoelectric materials and [46] for MEE materials un-
der static loadings. These works have been extended to the dynamic domain in [48]
and [92, 93] for piezoelectric and MEE materials, respectively.

A remark is necessary when static loading is applied. In this case (ω = 0), the terms
from Eqs. (2.18) and (2.19) do not present frequency dependence. Moreover, the equi-
librium equation given in Eq. (2.14) is simplified, since the inertial term is zero.

2.4.2 eXtended finite element method (X-FEM)

The motivation of X-FEM was to eliminate some of the deficiencies of standard FEM
when concerning crack modelling. The excessive meshing aroung the crack-tips and
the mandatory remeshing for crack growth problems are the most common problems.
The partition of unity [9] allows to model discontinuities from the mesh through the
enrichment of the classical finite elements. The enrichment consists in adding degrees
of freedom (dofs) at the nodes representing the discontinuous surfaces position. In this
framework, the mesh is independent from the discontinuities, remaining the same in
crack growth problems.

Two types of enrichment functions are applied in the X-FEM: the Heaviside enrich-
ment function, responsible for characterizing the discontinuity induced by the crack
surfaces, which assumes the value −1 or +1 only; the crack-tip enrichment function
(CTEF), responsible for spanning the displacements around the crack-tip. This latter
presents complex behavior, varying for different constitutive laws (see [8, 38, 77], for
some different CTEF). In this sense, it is similar to the FS, necessary in BEM formula-
tions.

The displacement approximation uh(x) with the partition of unity can be stated as [71]

uh(x) = ∑
i∈N

Ni(x)ui + ∑
j∈NH

Nj(x)H(x)aj + ∑
k∈N CT

Nk(x)∑
α

Fα(x)bα
k (2.20)

where Ni is the standard finite element shape function associated with node i, ui is the
vector of nodal dofs for classical finite elements, and aj and bα

k are the added set of
degrees of freedom that are associated with enriched basis functions, associated with
the Heaviside function H(x) and the CTEF Fα(x), respectively.

Since the CTEF describe the displacements at the crack-tip zone through the addition
of several dofs, the stress concentration around the crack-tip is more accurate with a
significantly coarse mesh compared to the mesh used with standard FEM in a similar
problem.
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The presence of blending elements, which do not contain the crack but contain en-
riched nodes is also important to be considered . These elements were analyzed by [21],
and some studies have improved the convergence of blending elements (see [40], for
instance). The X-FEM convergence rate can also be increased through the use of geo-
metrical enrichment [58], where a number of elements around the crack-tip receive the
CTEF instead of a single element (this latter named topological enrichment).
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3 Overall results of this Thesis

3.1 Damage identification in magnetoelectroelastic materials

using artificial intelligence tools

In Paper A, the problem of damage identification in MEE materials is addressed for
the first time to the author’s best knowledge. Since a BEM formulation describing the
behavior of a MEE material due to the presence of a crack-type defect was developed
by [46], the use of a NN is suitable to model the inverse problem. In this case, the
influence of a given crack damage in the displacements in part of the external boundary
of a 2D MEE plate consists in the NN input, and the position of the crack-tips are taken
as NN output. A sufficiently large input/output data set is created and is given to
the NN to be able to recognize how different crack patterns affect the displacement
response on the boundaries. The first approach with standard NN can be found in
Figure 3.1 and it has shown that crack patterns over a certain size can be identified by
the NN, while the remaining smaller cracks were not. Moreover, the NN calculated
crack position were always in the center of the plate, showing the tendency of the NN
to concentrate unidentifiable cracks in this region.

)b()a(

Figure 3.1: Damage identification with SNNs. From Paper A.

The proposed solution of the NN identification limitation is to perform a training set
division (TSD) based on the center position of the crack patterns in the plate. The plate
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is divided into five regions, a center one, which apparently is the most problematic re-
gion to identify, and four adjacent equally divided areas. The crack patterns contained
in each of these regions are independent training sets, and have to be assigned to NN
for training. The identification results seen in Figure 3.2 shows that the smaller crack
patterns can be recognized by the new proposed NN identification framework.

)b()a(

Figure 3.2: Damage identification for partitioned training set. From Paper A.

In order to analyze the sensitivity of the NN identification scheme, noise has been
added to the training set. However, a different implementation of the noise was used.
Given that the MEE damage identification framework is an ill-conditioned problem,
small changes in the input (the displacement response) may cause a huge change in
the output (crack parameters). Furthermore, the simple addition of the noise may put
the input outside the training space, defined as the domain where the NN has been
trained to recognize crack patterns. For these reasons, the noise was incorporated into
the training set instead of being used the validation set to avoid this problem, expand-
ing marginally the training domain to comport the noise. In this work, the validation
set is used without noise in all cases to verify how NN trained with noisy inputs can
recognize pristine inputs.

From Paper A, the approach used is effective but restricted to the analyzed case, since
the TSD is realized using the fact that the NN had the tendency to classify the crack pat-
terns in the center region. This kind of knowledge is not usually available when mod-
eling the inverse problem. Hence, an automated classifier is desirable. In Paper B, the
crack identification problem is approached by introducing another artificial intelligence
tool, which will be responsible for dividing the training set. The self-organizing algo-
rithms are designed to separate a number of elements considering only their intrinsic
properties. In this Thesis, two of the most usual self-organizing algorithms were com-
pared, the K-means algorithm [108] and the Gaussian mixtures (GM) [26] algorithm. To
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make the separation easier, the Principal Component Analysis (PCA) [1] is employed
to reduce the multidimensional NN input to a bidimensional vector, but conserving the
information of the original input.

The K-means algorithm functionality is based on the minimization of the distance
between a given element and the center of the formed groups (centroids). Since an
element belongs to the closest centroid, an iterative method is calculated to find the
optimum position of the centroids, therefore forming the desirable groups. The GM
algorithm uses probabilistic theory to form the groups, by determining the probabil-
ity of a given component to belong to a given group. The distribution probability is
calculated by means of the Expectation Maximization (EM). In this work five training
sets provide the optimum damage identification. The formation of more groups do not
contribute to increase the accuracy of the damage identification, on the contrary, the
identification performance is reduced due to the overfitting of the NN caused by the
arise of groups with few elements. From Figure 3.3 it is easy to verify that the GM
algorithm largely improves the identification results obtained with the NN.

Figure 3.3: Crack identification. From Paper B.
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3.2 A new enrichment function for 2D anisotropic materials for

the X-FEM

The Stroh’s formalism has been used previously to obtain Green’s function for piezo-
electric [13] and MEE materials [95]. The main advantage of this formulation is the
possibility to calculate an explicit expression which depends on the material proper-
ties, regardless the orientation of the material and the geometry of the problem. The
Stroh’s formalism has been used to obtain the asymptotic displacements in the crack-tip
by [124], and after some mathematical manipulation, the crack-tip enrichment function
(CTEF) can be obtained.

Two types of enrichment strategy were used: the topological enrichment, where the
CTEF is applied exclusively to the finite element which contains the crack-tip; and the
geometrical enrichment, where all the nodes inside a given circumference centered at
the crack-tip receive the CTEF. The isotropic CTEF was also used for comparison pur-
poses. The convergence analysis has shown that the relative energy is the same with
isotropic or anisotropic CTEF for topological enrichment. The anisotropic CTEF has a
reduction of about 10 % in the relative energy compared to the isotropic CTEF with the
geometrical enrichment.

In Paper C the interaction integral has been adopted to the calculation of the stress
intensity factors (SIFs). This formulation is particularly suitable in FEM discretizations,
because only the elements inside an arbitrary closed contour containing the crack-tip
are used to obtain the SIFs.

For all presented numerical examples in Paper C, it was verified that the geomet-
ric enrichment is robust and accurate, presenting excelent agreement with numerical
results obtained using the BEM, historically more accurate than FEM in fracture me-
chanics problems. The proposed anisotropic CTEF is general and can be used for any
2D anisotropic material.

3.3 Far field Green’s functions for MEE materials under

time-harmonic loading

The Green’s functions valid in the far field were deduced using the works of Buch-
wald [19], Lighthill [61] and Sáez and Domı́nguez [103], where a combination of residue
theory and the method of the stationary phase is used. In this method, the field vari-
ables are defined in terms of the Fourier transform, resulting in a triple integration
formula. The residue theory can suppress one of this integrals, while the two remain-
ing are approximated with the method of the stationary phase. From the method of
stationary phase, the main contribution of a highly oscillatory integrand is due to the
region where the oscillation is almost stationary. These regions are called critical points.
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Using this methodology, the slowness surfaces of the MEE material have great rele-
vance. The stationary points are defined where the normal on the slowness surface is
parallel to the position vector, defined by the position where the load is applied and
the position where the response is measured. The asymptotic displacements are then
calculated solving Eq. (12) of Paper D, for all NH and NG critical points. From Pay-
ton [88], the number of stationary points is directly correlated to the material’s crystal
class. Duff [31] has shown that the quasi-longitudinal sheet is always convex, having
only one stationary point, while Payton [88] has proved that the slowness sheet of the
purely transversal motions is always convex. Therefore, it is necessary to find the num-
ber of stationary points of the quasi-shear motion slowness surface, which will contain
at least one and up to three stationary points.

Due to the application of the quasi-static approximation, the electric and the magnetic
coupling do not generate new slowness surface sheets. Instead, their presence affect the
shape of some sheets, which depend also of the class of the material (cubic, hexagonal,
tetragonal, etc).

This new FS can allow the study of damage identification in multifield materials with
artificial intelligence tools in high frequencies, since the creation of the dataset of direct
problems will not be penalized by the excessive computing time required to solve a
single direct problem using the implicit FS. Moreover, most of the typical applications
of multifield materials are performed in high frequencies, such as health monitoring,
for instance.

3.4 An experimental approach for crack

identification/assessment in piezoelectric materials

It was stated previously that damage identification in smart materials was given little
attention. Experimental damage identification in such materials was even more ne-
glected. One of the objectives of this Thesis is to provide insight of experimental dam-
age identification in multifield materials. Piezoelectric (PZT) sensors were employed
since they can be easily found commercially.

To quantify damage experimentally, a damage index (DI) is defined in Paper E, cor-
relating the response of the pristine state of the piezoelectric material with the response
measured after a defect is imposed. Several measures were taken on the surface of a
damaged piezoelectric plate, placed on an aluminium plate. The excitation was pro-
vided by another PZT located in the middle of the opposite side of the aluminium
plate. Then, a data fusion scheme is applied to obtain a graphic solution of the damage
location and size.

Usually, data fusion schemes are based on sensing paths, defined as the path between
a sensor from a given actuator. This scheme is very useful to quantify the damage influ-
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ence over the structure. If the damage is close to a sensing path, the DI in this sensing
path will have more importance than the measurement obtained from a sensing path
that is far away from the damage. The response obtained from several sensing paths
can be used to characterize the structural state. However, data fusion schemes effi-
ciency is restricted in the actual experimental set-up since there is only one actuator. In
addition, the difference of the measured responses from the undamaged and damaged
state are very similar, further complicating the identification. Preliminary identification
results led to no useful information about structural damage.

To overcome the limitation of a single sensing path available, a Gaussian mapping
technique was applied to the DI. In this way the same information can be represented
and the data fusion can be used to quantify the damage state of the PZT. This simple
approach has been shown to enhance the structural damage information for several
types of defects, including cracks and holes.

The degree of correlation in signals captured before and after the introduction of
damage will clearly decrease if the sensing path is close to the damage due to the inclu-
sion of damage-scattered wave components.
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4 Conclusions and future work

In this thesis a new damage identification scheme was developed, using a combination
of neural networks, self-organizing algorithms and the boundary element method. The
considered damage was a crack-type defect. In the proposed approach, only part of the
displacement solution calculated on the boundaries using the BEM was necessary to
perform the damage identification. It was verified that standard NN were not able to
properly recognize all possible crack patterns, then some modifications were necessary
to overcome this limitation. In Paper A, a division of the training set was sufficient
to greatly improve the crack identification results. However, the TSD was executed
based on some a priori knowledge of the damage identification problem, which prevents
the framework to be general. For this reason, the introduction of the self-organinzing
algorithms in Paper B had the objective to obtain a TSD with an automated method,
depending exclusively on the properties of the training set.

A new enrichment function for generally anisotropic bidimensional materials based
on the Stroh’s formalism was developed for the use with X-FEM in Paper C. The main
advantage of the obtained enrichment function is that it is defined only by the materi-
als properties, being independent of the adopted orientation. It was verified through
examples in fracture mechanics that a regular X-FEM mesh can attain approximately
the same accucacy obtained with BEM.

A new Green’s function for MEE and piezoelectric materials was deduced for the far
field in Paper D. An asymptotic approximation was obtained in a similar way as Buch-
wald [19] and Sáez and Domı́nguez [103] have calculated for transversely isotropic ma-
terials. The present symmetry of this kind of material allows a series of simplifications
to be applied in the formulation, resulting in a more concise mathematical expression.
Nevertheless, the methodology can be applied for generally anisotropic tridimensional
piezoelectric and MEE materials.

Finally, an experimental scheme for damaged identification in piezoelectric mate-
rial was studied in Paper E. Experimental measurements of the electric potential were
taken on the surface of a commercial piezoelectric. A usual technique in experimental
damage assessment is the data fusion, which consists in the calculation of a DI from
data available of piezoelectric sensors which act as actuator or sensor. However, in this
work only one sensor were available. The solution of this issue was to add a Gaus-
sian mapping to the obtained DI, rescaling the data fusion so meaningful results can be
obtained.
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4.1 Future works

Several lines of work can be followed from the actual state of this Thesis. In terms of
damage identification, the use of wavelets may be an important advance in the field, as
it has been used by [4, 36, 70, 79, 98, 120, 141].

A unified theory of Stroh for an enrichment function may allow the calculation of a
powerful general formulation, that can be applied from isotropic to generally anisotropic
materials, including materials with coupling behavior as the piezoelectric and MEE ma-
terials. The challenge of the unified enrichment function is to obtain a reasonable num-
ber of enrichment functions to be calculated: for isotropic and anisotropic materials,
4 enrichment functions per node are required, while 6 and 8 are necessary for piezo-
electric [13] and MEE [95] materials, respectively. However, the number of enrichment
function for piezoelectric and MEE materials with the unifed theory would be 12 and
16, respectively, the double of the current enrichment functions for these materials. Fur-
ther studies on enrichment functions and the Stroh’s formalism are required.

Another theme of interest in fracture mechanics with BEM is to enhance the smart
materials coupling by appending the thermal component into the MEE material. The
thermal field has the particularity of affecting every other field (elastic, electric, mag-
netic), but in contrast no other field has influence over the thermal one, assuming a
conservative system. The thermic coupling also adds a new issue to the formulation,
due to a new domain integral arising. Reciprocity methods have been used to trans-
form the domain integral into a boundary integral [57, 69]. In the static domain, the
thermal problem can be decoupled from the MEE problem, so the thermic variables
can be calculated at first, then the remaining MEE problem can be solved. In the dy-
namic domain, the problem is fully coupled, then no simplifications can be applied
beforehand. Furthermore, a new Green’s function for time-harmonic loading has to
be used. Several authors have dedicated to thermoanisotropy [2, 5, 111, 112, 131] and
thermopiezoelectricity [44, 45, 78, 125, 143, 144], to cite a few references.

It is known that the coupling properties of piezoelectric and MEE materials change
when surpassing the Curie temperature. Some studies suggest that even for lower tem-
peratures (for instance, half the material’s Curie temperature), the coupling properties
decline abruptely, due to a change of the crystal structure, from a piezoelectric to a
non-piezoelectric form [107]. Some applications, as microelectronics, use widely smart
materials under high temperatures. A nonlinear analysis would allow to quantify the
change in the measured response due to the influence of high temperatures

Some issues concerning the boundary conditions (BC) on the crack faces in smart
materials are still under discussion. Three types of boundary conditions have been as-
sumed so far: the permeable BC, where the electric and magnetic field are unaffected
by the presence of the crack, the impermeable BC, where the crack is totally isolated
from the electric and magnetic field, and the semi-permeable BC, which is a more real-
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istic BC. In this formulation, the electric and magnetic field are not completely isolated
on the crack faces, allowing the passage of the electromagnetic field. Since the correct
value of the electric and the magnetic potentials on the crack faces is not known previ-
ously, this nonlinear problem is solved by an iterative procedure. This issue has been
addressed by [27,91] for the static domain and [60,117,137] for the time domain, but no
works have been developed for the frequency domain, for example, the scattering of a
P-wave due to the presence of a crack in MEE materials.

Other types of experimental damage identification are also of interest, among them
one can cite the measurement of electrical changes for damage evaluation. The method
consists in taking several measures of the electrical potential in a structure, and compare
the response with a reference solution. If the measurements are different, it means
that the material resistivity has changed, due to some damage or imperfection in the
material. This method is purely experimental, so it would be a great breakthrough to
obtain a numerical method for evaluating the resistivity of piezoelectric devices. This
method has been successfully applied in composite structures, as can be seen in [3, 85,
128, 138, 145] to cite a few references.
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ABSTRACT

Smart materials structures with multifield coupling properties have been widely used
in the latter years. Some methodologies have been developed to study fracture prob-
lems in piezoelectric and magnetoelectroelastic (MEE) materials using the boundary
element method (BEM). However, relatively limited attention has been paid to inverse
problems. Identification problems are usually ill-conditioned, which implies that gra-
dient search methods might not have a good performance, whilst Newton based search
methods are computationally expensive. Additionally, the presence of noise in the mea-
sured data affects the convergence of these methods. In this paper we study the appli-
cation of neural networks to damage identification of multifield materials, in particular
to MEE materials. A particular training set division (TSD) has been applied to improve
the identification results, even for high noise levels. A hypersingular BEM is used to ob-
tain the solution of the direct problem (elastic displacements and magnetic and electric
potentials) and create the training set.

Keywords: Inverse problems; Multifield materials; Fracture mechanics; Neural net-
works; Boundary element method

A.1 Introduction

Smart or multifield materials have gained special attention in latter years due to their
ample range of applications, from sensors in structural health monitoring to transduc-
ers in medical devices. Such applications take advantage of their coupling properties
among different fields: mechanical and electric in piezoelectric materials; mechanical,
electric and magnetic in magnetoelectroelastic (MEE) materials. Many of these ma-
terials exhibit brittle behavior, which means damage is susceptible to appear, due to
operating conditions or even during the manufacture process. This issue has encour-
aged several authors to analyze the behavior of these materials analytically [7, 8, 13, 28]
or numerically [5, 18, 21, 31], to cite a few works. However, little attention has been
given to damage identification in smart materials.

Damage identification is a ramification of inverse problems [26]. Several numeri-
cal or analytical formulations have been proposed in the literature (see for example
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[12, 14, 25]). Nowadays, ordinary methods are gradually being replaced by artificial
intelligent techniques to model damage identification, since they do not require a sp-
eficic inverse formulation of the problem. Instead, these methods use the solution of
the direct problem, i.e, the effect of the damage in the response, to model the inverse
problem. With this objective, Comino et al. [6] introduced genetic algorithms and topo-
logic derivatives to solve inverse problems in anisotropic plates. Lu et al. [16] applied
neural networks to identify cracks in aluminium plates. A large list of authors could
be cited for structural damage identification. Nevertheless, the references are limited
when it comes to damage identification in smart materials: in reference [22] genetic
algorithms and the finite element method were used to identify holes in piezoelectric
ceramics, while in [17] probabilistic theory was applied for damage identification. To
the authors’ best knowledge, no work for damage identification in MEE materials has
been presented so far.

The objective of the present study is to analyze the application of the neural networks
in damage identification of MEE materials. For this purpose, the formulation by Garcı́a-
Sánchez et al. [9] for 2D static fracture analysis of MEE materials is employed to solve
the direct problem for different sizes, position and crack orientations. These data are
used as input to a back-propagation neural network [11]. A trained neural network
will identify the crack location of the input data, and should be able to identify cracks
of non-trained inputs. The noise sensitivity of the neural network was also verified.

This paper is organized as follows. The governing equations of MEE materials are
stated in Section 2. The direct problem is described in Section 3 and the inverse prob-
lem is depicted in Section 4. The obtained numerical results are shown in Section 5.
Concluding remarks are presented in Section 6.

A.2 Magnetoelectroelastic governing equations

The linear MEE 2D problem can be represented in an elastic like way by generalizing
Barnett and Lothe’s approach [3] for piezoelectric materials. An extended displacement
vector uI is defined that includes the elastic components ui, the electric potential φ and
the magnetic potential ϕ, as

uI =

⎧
⎪⎨
⎪⎩

ui, I=1,2
ϕ, I=4
φ, I=5

(A.1)

where the lowercase subscripts vary from 1 to 2, whereas the uppercase ones take the
values 1,2 (elastic), 4 (electric) and 5 (magnetic). A generalized stress tensor σiJ can also
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be defined as

σiJ =

⎧
⎪⎨
⎪⎩

σij, J=1,2
Di, J=4
Bi, J=5

(A.2)

with an associated generalized traction vector

pI =

⎧
⎪⎨
⎪⎩

pi = σijnj, I=1,2
D = Djnj, I=4
B = Bjnj, I=5

(A.3)

where σij represents the mechanical stress tensor, Di are the components of the electric
displacement, Bi stands for the components of the magnetic induction vector, and n =

(n1, n2) are the components of the normal vector to the boundary.
The MEE constitutive equations may them be written as [24]

σiJ = CiJKluK,l (A.4)

where the material properties have been grouped together into a generalized elasticity
tensor CiJKl defined as

CiJKl =

⎧
⎪⎨
⎪⎩

cijkl J, K = 1, 2 elij J = 1, 2; K = 4 hlij J = 1, 2; K = 5
eikl J = 4; K = 1, 2 −εil J, K = 4 −βil J = 4; K = 5
hikl J = 5; K = 1, 2 −βil J = 5; K = 4 −γil J, K = 5

(A.5)
with cijkl, εil , γil, elij, hlij and βil being the elastic stiffness, the dielectric permittivities
and the magnetic permeabilities tensors, and the piezoelectric, the piezomagnetic and
the electromagnetic coupling coefficients, respectively.

A.3 Direct BEM formulation for crack problems in MEE

materials

Linear elastic fracture mechanics is one of the areas where the BEM has clearly demon-
strated being a powerful and effective numerical method when compared to other
computational techniques. Among its advantages one may cite that: (i) discretization
of only the boundary is required; thus simplifying preprocessing and remeshing in
crack growth analysis, (ii) it shows improved accuracy in stress concentration prob-
lems, since there are no approximations imposed on the stress solution at the interior
domain points, or (iii) fracture parameters (stress intensity factors, energy release rates,
etc.) may be accurately determined from the computed nodal data in a straightforward
manner [1, 15].
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The training data set for the neural network (NN) will be generated from numerical
simulations performed using the dual BEM formulation proposed by Garcı́a-Sánchez
et al. [9] for 2D static fracture problems of MEE materials. This approach will be im-
plemented to solve the corresponding direct problem for different cracks with varying
sizes, locations and orientations.

Let Ω be a 2D MEE cracked domain with boundary Γ, so that Γ = Γcrack ∪ Γc, where
Γcrack = Γ+ ∪ Γ− are two geometrically coincident crack surfaces and Γc denotes the
rest of the (crack-free) boundary. The dual formulation of the BEM makes use of both
the generalized displacement boundary integral equation (BIE)

cI JuJ +
∫

Γ
p∗I JuJdΓ =

∫

Γ
u∗

I J pJdΓ (A.6)

and the generalized traction BIE

cI J pJ +
∫

Γ
s∗I JuJdΓ =

∫

Γ
d∗I J pJdΓ (A.7)

to overcome the difficulty imposed by having two coincident crack boundaries that
would lead to a degeneracy in case of considering only the standard displacement BIE.
In Eqs. (A.6) and (A.7), u∗

I J and p∗I J stand for the fundamental solution displacements
and tractions, respectively; d∗

I J and s∗I J follow from differentiation of u∗
I J and p∗I J and

further substitution into the constitutive equations (A.4); c I J are the free terms arising
from the Cauchy principal value integration of the fundamental solution kernels. Eqs.
(A.6) and (A.7) hold in the absence of generalized body forces, eletric charge density
and electric current density.

Further details about the BEM formulation and its validation are given in [9], where
aspects like meshing strategy, implemented fundamental solutions, evaluation of frac-
ture parameters and integrations schemes are explained thoroughly. In particular, the
BEM formulation in [9] is detailed for cracks that are self-equilibrated from a mechani-
cal point of view and are electrically and magnetically impermeable, i.e.,

ΔpI = p+I + p−I = 0 (A.8)

where the superscripts + and − stand for the upper and lower crack surfaces. In such
cases, it suffices to apply the displacement BIE for collocation nodes on Γ c and the
traction BIE for collocation nodes on either face of the crack, say Γ+

cI JuJ +
∫

Γc

p∗I JuJdΓ +
∫

Γ+

p∗I JΔuJdΓ =
∫

Γc

u∗
I J pJdΓ (A.9)

pJ +
∫

Γc

s∗I JuJdΓ +
∫

Γ+

s∗I JΔuJdΓ =
∫

Γc

d∗I J pJdΓ (A.10)
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to yield a complete set of equations to compute the generalized displacements and
tractions on Γc and the generalized crack opening displacements ΔuI = u+

I − u−
I on

Γcrack. In Eq. (A.10) the free term is set to 1 because of the additional singularity arising
from the coincidence ot the two crack surfaces.

A.4 Inverse problem

Several techniques have been developed in order to solve different types of inverse
problems [20]. Analytical techniques are very effective but can only be applied for
simple configurations. Moreover, due to ill-conditioning, there is no guarantee of a
(unique) solution to the problem.

When the behavior of the physical system is too complex or not entirely known, a
black box model may be chosen to represent the inverse problem. For this purpose, the
neural networks were widely used in structural inverse problems [27], damage identi-
fication [16, 29], or parameters estimation [2], among many applications.

An artificial NN is a system made by numerous simple structural units called neu-
rons, that are arranged in layered structures. The particular properties of the NN in-
clude a parallel way to process information and the learning by experience feature,
which allows the NN to reutilize the acquired experience. The NN can be trained to
have a specific function through the adjustment between the neurons connections [11].

We consider a back-propagation NN scheme, as Figure A.1 sketches. The output of
the NN is given by

ykn = f (∑ wkjyjn) (A.11)

where wkj represent the weights linkage between the nth neuron of the kth layer and
the jth input, f (·) is the transfer function, defined as

f (v) =

{
exp(v)−exp(−v)
exp(v)+exp(−v) for hidden and input layers

v for output layer
(A.12)

with exp as the exponential function. Let us remark that Eq. (A.12) can be repeated
recursively for yjn until the input layer, where yjn is replaced by the network input qin.
The NN output error ekn is defined as ekn = ykn − tkn, where tkn is the target parameter.

The mean square error (MSE) is defined as the sum of all quadratic errors for all n
neurons of the output layer, for every M input of the training set, and it is expressed by

ε =
1

2M

M

∑
i=1

n

∑
j=1

(ykn − tkn)
2 (A.13)

The training rule is based on the minimization of the MSE, reducing the error until
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some acceptable tolerance. In this work the Levenberg-Marquardt algorithm is applied
as training rule (see [10] for details).

Next both a standard NN and an improved NN with training set division will be im-
plemented and their performance analyzed on a practical crack identification example.
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∑
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tk1

tk2

tkn

ek1
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ekn

Figure A.1: Scheme of the a back-propagation neural network.

A.5 Numerical results and discussion

A.5.1 Analyzed problem

A square 2D plate with dimensions Lx = Ly = 8 cm of a MEE BaTiO3 − CoFe2O4 com-
posite with a volumetric fraction of Vf = 0.5 is considered in this work. The material
properties are given in Table A.1. The crack parameters range is summarized in Table
A.2, where xc and yc indicate the crack center, L denotes the crack length and θ repre-
sents the crack orientation with respect to the x direction, as shown in Figure A.2. In
what follows the crack center coordinates (xc, yc) are normalized dividing their respec-
tives values by the plate length Lx, obtaining a 0 to 1 scale in function of the plate side
dimension. The crack length is normalized in %, to the plate dimension Lx.

For the analyzed problems, it was assumed that only the extended displacement so-
lution on the right side (x = Lx) was known. Twelve measurements points have been
considered. The applied load considered is a unitary uniformly distributed mechanic
load, as depicted in Figure A.2.

As stated previously, a dual BEM has been implemented to numerically solve the di-
rect problem. The external boundary of the plate has been discretized with six quadratic
elements per side. The crack boundary was discretized using ten discontinuous quadratic
elements, where the crack tip elements are discontinuous quarter-point (see [23, 9]).

50



Table A.1: Material properties for MEE BaTiO3 − CoFe2O4 composite with Vf = 0.5.

Properties BaTiO3 CoFe2O4 Vf = 0.5
C11(GPa) 166 286 226
C12(GPa) 78 170 125
C22(GPa) 162 269.5 216
C66(GPa) 43 45.3 44
e16(C/m2) 11.6 0 5.8
e21(C/m2) -4.4 0 −2.2
e22(C/m2) 18.6 0 9.3

ε11(×10−10C2/Nm2) 112 0.8 56.4
ε12(×10−10C2/Nm2) 126 0.93 63.5

h16(N/Am) 0 550 275
h21(N/Am) 0 580.3 290.2
h22(N/Am) 0 699.7 350

γ11(×10−6Ns2/C2) 5 590 297
γ12(×10−6Ns2/C2) 10 157 350
β11(×10−12Ns/VC) − − 5.367
β12(×10−12Ns/VC) − − 2737.5

Table A.2: Crack parameters range.

xc yc L(%Lx) θ

min 0.1875 0.1875 3.125 0
max 0.8125 0.8125 25.00 180

A.5.2 Neural network parameters

The following neural network parameters were selected through trial-and-error:

• Architecture: Ni neurons in the input layer, 25 neurons in the first hidden layer,
20 neurons in the second hidden layer and 4 neurons in the output layer.

• Training set: 1500 input/output entries

• Validation set: 1500 input/output entries;

• Training algorithm: Levenberg-Marquardt [10];

• Goal MSE: 1 × 10−5.

• Maximum number of iterations: 100.

The training set was selected among random possibilities to obtain a uniform distri-
bution of the damage parameters. Early stopping [19] was applied in every NN. The
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Figure A.2: Scheme of the direct problem.

training set is composed of 1500 inputs, where 600 are used in training and 600 in the
validation. The validation set has the purpose of inspectioning the evolution of the NN
error for non trained inputs. If the error of the validation set starts increasing, the NN
training is interrumpted to prevent overfitting. The remaining 300 inputs are used to
evaluate the performance of the NN.

The NN were trained with three different types of inputs. For one case, only the elec-
tric potential φ was given as training information to the NN. Then, only the magnetic
potential ϕ was given as input. Finally, a combination of electric and magnetic potential
has been used as NN input. If simple entries are used, Ni = 12, otherwise Ni = 24.

A validation error (VE) is defined as the distance between real and identified param-
eters like [22]

Validation Error = VE =

√
∑ (y − t)2

∑ t
(A.14)

where y and t are the identified and real parameters, respectively. The NN output are
the crack tips positions, defined by the parameters xc, yc, L and θ. These parameters
were taken in their normalized form as shown in Table A.2, and the orientation param-
eter θ was normalized dividing its value in degrees by 180.
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Additionally, a variable dist was introduced to verify the quality of the identification
provided by the NN, defined as

dist =
1
2

(√
(xg1 − x1)2 + (yg1 − y1)2 +

√
(xg2 − x2)2 + (yg2 − y2)2

)
(A.15)

where (x1, y1) and (x2, y2) are the coordinates of the crack tips predicted by the NN and
(xg1 , yg1 ) y (xg2 , yg2) are the actual coordinates of the crack tips.

The influence of noise was also considered. At the present work, pseudo-experimental
inputs were created by adding noise to the numerical results [22] as stated in Eq. (A.16)

uexp
I = u∗

I + 	ξ

√√√√ 1
Ni

Ni

∑
i=1

u∗2
I (A.16)

where 	 is the amount of noise, varying from 0 to 0.2. ξ is a random variable with mean
0 and standard deviation 1. The root mean square (RMS) is used as an estimation of
the differences that are noted from the predicted values uexp

I to the real observation u∗
I .

The NN input is the distortion caused by the presence of the damage in the plate and
is defined as

u∗
I = uI − u0

I (A.17)

where uI and u0
I are the extended displacement solution, i.e., the electric potential, the

magnetic potential, or a combination of both, for a damaged and undamaged plate,
respectively.

Two crack configurations were employed to check the accuracy of the different dam-
age identification approaches, as depicted in Figures A.3(a) and A.3(b).
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Figure A.3: Reference cracks
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A.5.3 Damage identification with standard neural networks (SNN)

As an initial approach, the use of a standard neural network will be considered for the
identification of different types of cracks. Table A.3 contains the identification results
for different inputs and noise levels for the reference cracks.

Table A.3: Crack identification of the reference cracks for standard neural networks.

Large crack - Fig. A.3(a)
Noise Input xc yc L(%Lx) θ

Real crack 0.6645 0.6775 17.40 36.525

0%

ϕ 0.65887 0.69319 17.9649 47.3811
φ 0.60064 0.65961 19.5449 45.6093

ϕ; φ 0.72415 0.67208 18.7203 49.5334

5%

ϕ 0.66779 0.6684 18.4642 43.9075
φ 0.60869 0.67894 20.3594 51.1768

ϕ; φ 0.69575 0.68753 17.5319 42.7067

20%

ϕ 0.65921 0.63103 17.0954 40.523
φ 0.63244 0.694 18.0284 47.5609

ϕ; φ 0.64676 0.62902 21.576 51.6481
Small crack - Fig. A.3(b)

Real crack 0.3034 0.2545 5.77 130.63

0%

ϕ 0.41499 0.46291 5.6909 110.2559
φ 0.48112 0.47546 5.0827 116.3737

ϕ; φ 0.50256 0.44989 5.623 141.1442

5%

ϕ 0.38293 0.42109 6.3789 118.1424
φ 0.45828 0.49505 4.8963 101.9654

ϕ; φ 0.50059 0.42833 5.0722 133.2922

20%

ϕ 0.44047 0.51858 5.9013 106.443
φ 0.49 0.49836 7.0933 93.9798

ϕ; φ 0.50823 0.45806 6.5904 129.6393

To illustrate these results, Figures A.4(a) and A.4(b) show the identification calculated
by the NN for different levels of noise and applying the electric and magnetic potentials
as inputs of the standard NN. The large crack is identified with reasonable precision for
all applied noise levels (Figure A.4(a)). However, the NN provides a bad identification
for the small crack (Figure A.4(b)).

A.5.4 Training set division (TSD)

The SNN is not able to perform an accurate identification for small crack patterns. In
this work, the position of the identified small crack given by the SNN is always close to
the central area of the plate. One possible explanation of this fact is that the SNN can
not reduce the error for this pattern without sacrificing the generalization capability of
the NN (early stopping), since a small crack represents just a small distortion of the
response at the boundaries.
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Figure A.4: Damage identification with standard neural networks. Input: eletric and
magnetic potentials ϕ; φ.

The solution considered to overcome this limitation was to divide the training set.
This approach was successfully implemented by Benders et al. [4] and Zhao [30] for
modular NN, which consist in a divide-and-conquer procedure. In this formulation, a
complex task is separated in several sub-tasks, and a central integration machine is re-
sponsible for assembling the final solution. In our case the training set has been divided
into five regions: a central region defined by a circle of radius 1.75/8 plus four equally
distributed regions as depicted in Figure A.5. The central regionis defined to better
check the performance of the resulting TSD approach, once observed the tendency of
the SNN to sistematically predict the position of the small cracks around the center of
the plate. Subsequently, the patterns of each region were trained by individual NN.
The parameter selected to uniquely define whether a particular crack belongs to one of
these five regions is the crack center position.

The approach used in the present work is similar to the ones found in modular NN.
However, in the present work each NN has been trained with patterns for a specific
region, therefore it is only able to identify the cracks in its corresponding area. Each
individual NN can provide a crack identification result, so there is no need of a central
integration machine to give the final crack identification.

Figure A.6 presents the NN mean square error, the mean validation error (MVE) over
the trained NN, number of training iterations and the number of valid identification
patterns according to the parameter dist and the MVE. The MVE shows a slow increase
with the noise, which indicates the generalization capabilities of the NN are little af-
fected by noise increments. However, one can observe the decay of precision with
increase of noise levels. In all NN inputs the number of reasonable identified patterns
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Figure A.5: Training set division.

is located between 70% (for high noise levels) and 90% (no noise). Through evaluation
of the identification of randomly chosen cracks, it was verified that reasonable identifi-
cation results exhibit values up to 0.2 of the dist parameter and MVE up to 0.5.
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Figure A.6: NN training parameters.

Figures A.7(a) and A.7(b) illustrate the identification results of the reference cracks
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for the combined electric and magnetic potentials input.
Table A.4 shows the identification results of the reference cracks for every division

and the noiseless case only. Non reliable crack identification is obtained when evaluat-
ing an input that does not belong to the correct TSD. For the large crack identification,
crack configurations outside the plate are found. For the small crack identification, only
NN2 (the region where the real crack is placed in our example), predicts a crack center
located inside its training space. Meanwhile, NN1, NN3, NN4 and NN5 predict a crack
center position that, although inside the limits of the plate, is outside their respective
training spaces, thus disproving the validity of the identification results. As expected,
in all the numerical tests performed with TSD, there is only one NN that predicts the
crack center position within the limits of its own training space.

Table A.5 contains the relevant information for the other NN input types. After
adopting the training set division, the NN perform a good damage identification for
all crack patterns and noise levels.
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Figure A.7: Damage identification for partitioned training set. Input: eletric and mag-
netic potentials ϕ; φ.

Figure A.8 details the patterns distribution for each NN in function of the dist param-
eter and considering the MVE lower than 0.5. The quality of the identification results is
similar for NN 2 to NN 5, for all types of inputs. The larger presence of NN 1 is due to
the difference in the number of elements, since this NN includes more training patterns
that the others NN. Most of the analysed inputs have 0.05 ≤ dist ≤ 0.1, which does
not denote a perfect identification but still represent a good approximation of the real
crack, particularly when noise is present. Hence, it confirms that the applied training
set division is a good method to improve the accuracy of the NN.

Figures A.9 and A.10 compare the SNN and TSD in terms of the dist parameter, con-
sidering the combination of electric and magnetic potentials as inputs of the NN. From
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Table A.4: Detail of the crack identification of the reference cracks. Input: eletric and
magnetic potentials ϕ; φ. Noiseless case.

Large crack - Fig. A.3(a)
Division xc yc L(%Lx) θ

Real crack 0.6645 0.6775 17.40 36.525
NN1 −0.0751 −0.4222 11.7723 107.2144
NN2 1.8310 1.0303 22.1265 82.3948
NN3 0.3564 −0.0291 14.2854 46.1595
NN4 0.65921 0.69524 17.6001 28.6191
NN5 0.2472 −0.0274 3.4812 104.4277

Small crack - Fig. A.3(b)
Real crack 0.3034 0.2545 5.77 130.63

NN1 0.3281 0.2477 14.2822 17.6224
NN2 0.30552 0.29391 8.6892 106.6033
NN3 0.3731 0.0368 17.9431 140.8951
NN4 0.1364 0.9880 21.4755 77.0152
NN5 0.2539 0.4145 17.3986 117.3591

Table A.5: NN crack identification of the reference cracks. Training set division.

Large crack - Fig. A.3(a)
Noise Input xc yc L(%Lx) θ

Real crack 0.6645 0.6775 17.40 36.525

0%

ϕ 0.63108 0.71814 19.666 35.3246
φ 0.69849 0.67507 19.1954 37.0037

ϕ; φ 0.65921 0.69524 17.6001 28.6191

5%

ϕ 0.67208 0.68629 16.7503 33.8668
φ 0.66473 0.688 17.2202 28.074

ϕ; φ 0.63343 0.71694 19.7807 42.7372

20%

ϕ 0.68213 0.69602 17.3683 26.0387
φ 0.71882 0.67688 15.5476 36.2791

ϕ; φ 0.6374 0.69253 18.777 38.2878
Small crack - Fig. A.3(b)

Real crack 0.3034 0.2545 5.77 130.63

0%

ϕ 0.30761 0.29776 4.5854 112.5911
φ 0.32413 0.28823 9.0529 99.0733

ϕ; φ 0.30552 0.29391 8.6892 106.6033

5%

ϕ 0.3304 0.28197 4.6299 102.8331
φ 0.31884 0.29312 7.8783 103.9154

ϕ; φ 0.30974 0.29582 8.3484 102.0944

20%

ϕ 0.31 0.30484 8.3622 106.1683
φ 0.30557 0.30174 7.0414 106.8252

ϕ; φ 0.30889 0.29928 8.5941 103.2668

Figure A.9, the SNN provides the best identification results when using the electric
as only input of the NN. The correct identification rate is up to 80% for the noiseless
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Figure A.8: dist parameter histograms with VE lower than 0.5. Training set division.
Input: eletric and magnetic potentials ϕ; φ.

cases, and decreases to 60% for high noise levels. However, considering the same input
type, the identification results obtained with the TSD approach are noise insensitive,
with minimal correct identification results of 75% for high noise levels, up to 90% when
noise is disconsidered. From Figure A.10, the distribution of the dist parameter is sim-
ilar for both methods when noise is zero. Nevertheless, the number of inputs where
dist = 0 is considerable higher with the TSD approach, specially for high noise level
cases.
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Figure A.9: dist parameter for several noise levels. Input: eletric and magnetic poten-
tials ϕ; φ.
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Figure A.10: dist parameter histograms for several noise levels. Input: eletric and mag-
netic potentials ϕ; φ.

A.6 Summary and conclusions

This work presents a new damage identification framework for MEE materials using an
artificial intelligence tool. It is shown that SNN are not capable to identify all types of
crack patterns correctly. To overcome this limitation, a division of the training set (TSD)
was adopted, with each part being assigned to independent NN. This division was
based in regions of the plate, using the fact that the SNN has the tendency to identify
cracks in the central area of the plate. The identifications results after the TSD have
largely improved. In general, the neural networks present good results in identifying a
crack using only some partial information of the BEM solution. The input type affects
the identification behavior of the networks. Better results are achieved when using
the combination of electric and magnetic potentials rather than any of these potentials
alone, as it could be expected. The NN simulation may be used as a good estimation of
the crack location in MEE materials.
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ABSTRACT

In this paper, a hybrid approach that combines both supervised (neural networks) and
unsupervised (self-organizing algorithms) techniques is developed for damage iden-
tification in magnetoelectroelastic (MEE) materials containing cracks. A hypersingu-
lar boundary element (BEM) formulation is used to obtain the solution to the direct
problem (elastic displacements, electric and magnetic potentials) and create the corre-
sponding training sets. Furthermore, the noise sensitivity of the resulting approach is
analyzed. Results show that the proposed tool can be successfully applied to identify
the location, orientation and length of different crack configurations.

Keywords: Damage identification; Inverse problems; Smart materials; Neural net-
works; Self-organizing algorithms

B.1 Introduction

Smart materials have attracted special attention in the last few years due to their ample
range of applications, as sensors and/or actuators to monitor and control the structural
response. In particular, this is the case of magnetoelectroelastic (MEE) composites that
exhibit coupling properties among different fields: mechanical, electric and magnetic.
Due to their brittleness, damage is susceptible to appear in MEE components when
in service or even during the manufacture process. This fact has motivated many au-
thors to analyze the fracture behavior of MEE materials since the beginning of their
engineering applications, by means of both analytical [3, 7, 11, 12, 20, 47] or numerical
approaches [5, 14, 32, 36, 49], to cite a few references. However, little attention has been
paid to the inverse damage identification problems in such smart materials.

Damage identification is one of the branches of inverse problems [44], and it is an ex-
tensively covered topic (see for example [19, 21, 41]) for materials with no electric/mag-
netic coupling properties. Artificial intelligent (AI) techniques are popular to model
damage identification problems due to their generality and ample range of applica-
tion. AI techniques have the advantage of considering the solution of the direct prob-
lem, i.e., the effect of the damage in the response, to later solve the inverse damage

67



identification problem. Although many authors have applied AI techniques to dam-
age identification, the references are quite limited when it comes to smart materials: in
[33], genetic algorithms and the finite element method were used to identify holes in
piezoelectric ceramics, while in [28] probabilistic theory was applied for damage iden-
tification in piezoelectrics. An analytical approach, also for piezoelectric materials, may
be found in [37]. The authors [17] have analyzed the use of neural networks (NN) for
the crack identification of MEE materials. This preliminary work revealed that stan-
dard NN were not sufficiently robust to identify every crack pattern. Hence, a training
set division (TSD) was further introduced, which assumed that some information of
the problem was needed beforehand in order to define an adequate TSD. Nevertheless,
such information may not be accessible in most of the damage identification problems,
so that some non-user based division is clearly desirable.

The objective of the present study is to analyze the application of NN to damage iden-
tification of MEE materials combined with self-organizing algorithms. For this purpose,
the dual boundary element (BEM) formulation previously developed in reference [13]
for 2D static fracture analysis of MEE materials is used to solve the direct problem,
thus obtaining the training sets. Training sets consist of the MEE field variables at the
boundaries for different sizes, positions and crack orientations. The crack patterns that
define the global training set are then further separated into several training groups
by means of self-organizing techniques. Following such TSD, a back-propagation NN
[18] is responsible to perform the identification for each of the resulting groups. Two
different self-organizing algorithms are proposed in this work, namely, K-means [35]
and Gaussian Mixtures [8]. The performance of the trained NN is validated by several
examples involving the identification of cracked configurations of non-trained inputs.
The noise sensitivity of the NN is also verified, leading to an adequate tool for damage
identification in MEE composites.

This paper is organized as follows. The analyzed problem and the solving strategy
are outlined in Section 2. Section 3 is dedicated to summarize the MEE constitutive
equations as well as the BEM formulation used to solve the direct problem and ob-
tain the training and validation data sets. The artificial intelligence tools, NN and self-
organizing algorithms, are explained in Section 4. The damage identification numerical
results are presented and analyzed in Section 5. Finally, some concluding remarks are
presented in Section 6.

B.2 Inverse problems and solving strategy

The inverse analysis may be defined as the identification of a parameter set x∗ ∈ X
from measured or reference data y∗ ∈ Y with a known direct mapping ψ : X → Y. In
practice, deterministic models do not apply since they describe reality only in an ideal-
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ized sense. This occurs because it is rare to have an inverse problem that respects all of
the Hadamard conditions: a solution exists, this solution is unique and it is associated
to only one set of parameters. Thus, input-output relations are usually expressed as

y = ψ(x) + Λ (B.1)

where Λ is the error associated to the measurement of y.
Inverse problems may be classified in terms of the parameter set to be identified:

domain, governing equations, boundary conditions, applied load, material properties,
etc. Presently, the main trend when tackling inverse problems is based on optimization
approaches oriented towards finding the minimum of a given objective function. Such
function must be defined in terms of some selected parameters that characterize the
structural response. In this paper we address the case of crack identification in MEE
materials, so that parameters directly related to the crack location and geometry shall
be selected to identify the damaged state, as detailed in next section.

In situations where the behavior of the physical system is too complex or not en-
tirely known, a black box model may be chosen to represent the inverse problem. For
this purpose, the neural networks (NN) have been widely used in damage identifica-
tion [25, 41, 42], delamination [40], structural health monitoring [22, 23, 29], and many
other applications. Fig. B.1 illustrates a black box model, where the solution (say, the
measured structural response of the damaged structure to a given load) is known a pri-
ori and the parameter set (that characterizes the damage) is unknown. The black box
model is obtained by successive adjusts, comparing the output parameter with some
known reference data until an acceptable error is attained.

-solution parameters
Black Box

adjust model

known parameters

acceptable error

Figure B.1: Black box model scheme.

B.2.1 Crack identification in MEE materials

Fig. B.2 illustrates a bidimensional MEE material with a crack-type damage. Let Ω be
the domain, with boundary Γ, so that Γ = Γcrack ∪ Γc with Γcrack = Γ+

crack ∪ Γ−
crack defining
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the two crack faces, and Γc being the exterior non-cracked boundary. A straight crack
Γcrack is defined by four parameters: the crack center (xc, yc), the crack length L and
the crack orientation θ, with respect to the x-axis. Let Γ p denote the partial boundary
(accessible) where the disturbances in the field variables caused by the damage will be
measured to become the input data set for the inverse problem analysis.

Ω

Γ+
crack ≡ Γ−

crack

Γc

Γp

x

y (xc, yc)

(x1, y1)

(x2, y2)

θ

L

Figure B.2: Scheme of the direct problem.

The objective of this work is to provide a method to detect and quantify the damage
in such MEE component using a combination of NN and self-organizing algorithms.
For this purpose, the NN training and validation sets will be generated from data ob-
tained by numerically solving a sufficiently large number of direct problems, involving
an ample range of crack configurations defined by the parameters xc, yc, L and θ. The
numerical data will be obtained by using the BEM formulation proposed in ref. [13],
since the BEM has demonstrated its reliability and accuracy for fracture applications
[24]. Subsequently, the organizing algorithms are responsible for improving the NN
training through the division of the training set into several groups, resulting in the
correct identification of all types of crack patterns by the NN. The overall solving strat-
egy will be summarized next, whilst a schematic description of the BEM formulation
will be given in Section 3 and details on the NN and the self-organizing techniques will
be provided in Section 4.
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Figure B.3: Scheme of the hybrid AI method.

B.2.2 Solving strategy

The proposed approach is a hybrid method combining both unsupervised (self-organizing
algorithms) and supervised (neural networks) learning methods. The K-means and
Gaussian mixtures (GM) methods are analyzed as automated classifiers, in order to
overcome the limitations of the TSD approach previously proposed by the authors [17].
To the best of the authors’ knowledge, this scheme has not been used before in damage
identification.

It shall be remarked that the identification of crack patterns in MEE materials is an
ill-conditioned problem, since very small changes in the field variables may correspond
to quite different crack configurations. For this reason, noise is added to the training
set to improve the NN crack identification, the addition of noise directly to the training
set acts as a small extension of the training space boundaries. Thus, a training set input
with noise is defined as [33]

uexp
I = u∗

I + �ζ

√√√√ 1
Ni

Ni

∑
i=1

u∗2
I (B.2)

where � is the amount of noise, ranging from 0 to 0.2; ζ is a random variable with mean
0 and standard deviation 1; and u∗

I is defined as

u∗
I = uI − u0

I (B.3)
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where uexp
I define the set of field variables adopted as input reference data, i.e., mea-

sured at boundary Γp. In this work, such field variables will be selected from the elastic
displacements and the electric and magnetic potentials (or any combination of them),
as explained in next section. In Eq. (B.3), uI and u0

I are the field variables solution for a
damaged and undamaged cases, respectively.

The NN output is the positions of the crack tips, uniquely defined by the parameters
xc, yc, L and θ (Fig. B.2). To evaluate the identification results a distance parameter is
introduced as

dist =
1
2

(√
(xg1 − x1)2 + (yg1 − y1)2 +

√
(xg2 − x2)2 + (yg2 − y2)2

)
(B.4)

where (xg1 , yg1) and (xg2 , yg2 ) are the real coordinates of the crack tips and (x1, y1) and
(x2, y2) are the coordinates of the crack tips predicted by the NN. The NN identifica-
tion performance is measured by comparing the obtained values of the dist parameter.
Large values of this parameter mean that the identified crack is far from the actual crack
tips positions, while small values indicate the identified crack is close to the actual one.

Therefore, the proposed solving strategy for the analyzed problem may be summa-
rized as follows (see Fig. B.3)

1. Solve the direct problem to create the training set (response of the MEE material
due to an applied load)

2. Add noise to the training set

3. Divide the training set using self-organizing algorithms

4. Assign each new training set to a NN

5. Train each NN

6. Check the performance of NN by comparing the NN output with the real crack,
calculating the parameters dist.

B.3 Direct problem (BEM)

B.3.1 Governing equations

The linear MEE 2D problem can be formulated by direct extension of the purely elastic
problem, in a similar way as [2] stated for piezoelectric materials. An extended dis-
placement vector uI is defined that includes the elastic displacement components ui,
the electric potential φ and the magnetic potential ϕ as

uI =

⎧
⎪⎨
⎪⎩

ui, I=1,2
ϕ, I=4
φ, I=5

(B.5)
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where the lowercase subscripts vary from 1 to 2 (elastic), whereas the uppercase sub-
scripts are extended with I = 1, 2 (elastic), I = 4 (electric) and I = 5 (magnetic). A
generalized stress tensor σiJ may also be defined as

σiJ =

⎧
⎪⎨
⎪⎩

σij, J=1,2
Di, J=4
Bi, J=5

(B.6)

where σij denotes the elastic stress tensor, Di are the electric displacements and Bi are
the magnetic inductions. These generalized stresses have an associated generalized
traction vector pJ given by

pI =

⎧
⎪⎨
⎪⎩

pi = σijnj, I=1,2
Dn = Djnj, I=4
Bn = Bjnj, I=5,

(B.7)

with n = (n1, n2) being the outward unit normal to the boundary, pi the elastic trac-
tions, and Dn and Bn the normal electric displacement and normal magnetic induction,
respectively.

The linear MEE constitutive equations may then be written as [38]

σiJ = CiJKluK,l (B.8)

where an extended elasticity tensor is specified as

CiJKl =

⎛
⎜⎝

cijkl eikl hikl

elij −εil −βil

hlij −βil −γil

⎞
⎟⎠ (B.9)

with cijkl, εil and γil being the elastic stiffness, the dielectric permittivities and the mag-
netic permeabilities tensors; and elij, hlij and βil denoting the piezoelectric, the piezo-
magnetic and the electromagnetic coupling coefficients, respectively.

B.3.2 BEM formulation for fracture

The dual boundary element method (DBEM) proposed in reference [13] has been used
to solve the MEE fracture problem. The main features of this DBEM are next summa-
rized in order to keep the paper as self-contained as possible. This approach imple-
ments both the extended displacement boundary integral equation (EDBIE) that relates
the extended displacements at a point ξ of the domain Ω, in the absence of body forces,
to the extended displacements and tractions at the boundary Γ

cI J(ξ)uJ(ξ) +
∫

Γ
p∗I J(x, ξ)uJ(x)dΓ(x) =

∫

Γ
u∗

I J(x, ξ)pJ(x)dΓ(x) (B.10)
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and the extended traction boundary integral equation (ETBIE) that follows from differ-
entiation of the EDBIE and substitution into the constitutive law (Eqs. B.7 and B.8)

cI J(ξ)pJ(ξ) + Nr

∫

Γ
s∗rI J(x, ξ)uJ(x)dΓ(x) =

= Nr

∫

Γ
d∗rI J(x, ξ)pJ(x)dΓ(x) (B.11)

where Nr is the outward unit normal to the boundary at the collocation point ξ; c I J

is the so-called free term that results from the Cauchy Principal Value integration of
the strongly singular kernels p∗

I J and thus depends on the geometry variation at the
point ξ; u∗

I J and p∗I J are the extended displacement and traction fundamental solutions
or Green’s functions and d∗rI J and s∗rI J follow from derivation and substitution into the
generalized Hooke’s law of u∗

I J and p∗I J , respectively. The fundamental solutions are
given in B.6 for completeness.

In order to model fracture problems, the EDBIE (B.10) may be applied onto the crack-
free boundary Γc and one of the crack surfaces, say Γ−, whilst the ETBIE (B.11) is ap-
plied onto the other crack surface Γ+ to yield a system of equations to obtain the ex-
tended displacements and tractions on the boundary Γ. Alternatively, if the cracks faces
are free of mechanical tractions and electric and magnetic impermeable boundary con-
ditions are considered on the crack faces (ΔpJ = p+J + p−J = 0), it will suffice to apply
the EDBIE on Γc

cI JuJ +
∫

Γc

p∗I JuJdΓ +
∫

Γ+

p∗I JΔuJdΓ =
∫

Γc

u∗
I J pJdΓ (B.12)

and the ETBIE on one of the crack surfaces, say Γ+, to obtain a complete set of equa-
tions with the unknowns being the extended displacements and tractions on Γ c and the
extended crack opening displacements (ECOD: Δu J = u+

J − u−
J ) on Γcrack

pJ + Nr

∫

Γc

s∗rI JuJdΓ + Nr

∫

Γ+

s∗rI JΔuJdΓ = Nr

∫

Γc

d∗rI J pJdΓ (B.13)

where the free term has been set to 1 because of the additional singularity arising from
the coincidence of the two crack surfaces. This is the approach considered in this paper
since the ECOD are the relevant magnitudes to obtain the fracture parameters.

When dealing with the DBEM for fracture applications some key issues need to be
addressed, like properly modeling the singular behavior of the field variables around
the crack tip, defining the meshing strategy together with an accurate scheme for the
evaluation of the fracture parameters and, of course, developing adequate integration
schemes for the singular integrations arising in both the EDBIE and the ETBIE. A thor-
ough discussion of all these issues may be found in ref. [13] with further details on the
implementation and validation of this DBEM approach, that will be next used to obtain
the solution to the direct fracture problem in order to define the training and validation
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sets for the NN. The basic idea is to discretize the external boundary Γ c and the crack
surface Γ+ into E elements Γe:

Γ =
E

∑
e=1

Γe (B.14)

and approximate within each element the boundary variables and the ECOD by in-
terpolation polynomial functions in terms of their modal values. For instance, the ex-
tended displacements are approximated as

uI(x) =
E

∑
e=1

R

∑
α=1

Ψe
α(x)u

eα
I (B.15)

where Ψe
α(x) are the spatial shape functions, R is the number of nodes of each element

and ueα
I denote the values of the extended displacement at node α of the element e. As

in reference [13], quadratic shape functions are adopted for the spatial discretization
away from the crack tips, whilst quarter-point elements are placed adjacent to the crack
tips in order to capture the local behavior of the ECOD properly.

This discretization leads to a linear system of algebraic equations to compute the field
variables at the boundary nodes, once the boundary conditions are taken into account.
Once this boundary value problem is solved, Eqs. (B.10) and (B.11) permit to compute
the extended displacements and tractions at any internal point.

B.4 Neural networks and self-organizing algorithms

The inverse crack identification problem will be addressed by developing an AI tool
that combines both back-propagation NN (supervised learning technique) and self-
organizing algorithms (unsupervised learning techniques). To better illustrate the key
features of this approach, let consider a specific example that will be later used for vali-
dation purposes in Section 5. Namely, a plane square plate with side-length Ls of MEE
material containing a straight crack inside, as depicted in Fig. B.4. The plate is subjected
to known loading conditions and the crack geometry (defined by the parameters x c, yc,
L and θ) is to be determined by the AI tool based on the information (extended displace-
ments) that is available for measure only on a part of the boundary Γp (for instance the
right side of the plate in Fig. B.4).

Next the basics of back-propagation NN and self-organizing algorithms will be pre-
sented and the advantages of combining both approaches analyzed.

B.4.1 Back-propagation neural network

The back-propagation NN is one of the most widely used algorithms in inverse prob-
lems. This artificial NN is structured into several layers, where each layer is composed
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Figure B.4: Scheme of the analyzed inverse problem.

by simple structures called neurons, responsible for receiving and transmitting the in-
formation across the network. The connections formed between neurons of different
layers are called weight or synapses, that take the main responsibility for the informa-
tion processing inside the NN. Furthermore, the neurons have an activation function,
which modifies the received input. In general, three types of layers may be identified
in a NN, as shown in Fig. B.5: the input layer receives the data set, which is next pro-
cessed forward by one or several hidden layers, and the output layer provide the NN
response to the data set. Initially, the NN has to be trained, i.e., the NN weights are
updated to learn the pattern of the training set. Then, given a specific input not used in
the training process, the NN should be able to provide a reasonable output compatible
to the equivalent model which originated the input/output pair. Due to this character-
istic, the NN are used to easily obtain an inverse problem model when it is too complex
to obtain a mathematical formulation of the inverse problem, for example. A detailled
description of the back-propagation NN can be found in [18].

The usual notation to the positions of neurons (or layers) of the NN considers the
neuron i is in the left of neuron j, which is in the left of neuron k. Fig. B.5 sketches a
back-propagation NN scheme, where:
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Figure B.5: Scheme of the a back-propagation NN.

• qin: neuron input. It can be the network input or the neuron output of the previous
layer, yin;

• wji: neurons synaptic matrix (weight matrix). Each arrow represent one compo-
nent of the wji matrix of the corresponding layer. The notation wji associates the
output of neuron i with the input of neuron j;

• vjn: sum of all weights multiplied by the input;

• f (vjn): activation function;

• ykp: neuron output;

• tkp: real output associated to the NN input (from the training set);

• ekp: error associated to the neuron k, defined as ekp = ykp − tkp.

The training set can be defined as a Ni × M matrix, where Ni defines the number
of neurons in the input layer and M is the number of inputs composing the training
set. The number of neurons in the output layer is defined by the number of parameter
desired to be recognized by the NN, say p. In this work, the NN input is the formed by
Ni measures of the extended displacement u I taken on the boundary Γp. The NN output
is defined by the crack parameters (xc, yc, L and θ), which imposes that 4 neurons have
to be used in the output layer.

The NN learning is based on the minimization of the error of the output layer. The
mean square error (MSE) is defined as the sum of all the quadratic errors ekl for all the
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p neurons of the output layer, for every input of the training set, and is expressed by

ε =
1

2M

M

∑
k=1

p

∑
l=1

e2
kl (B.16)

The error can be calculated only for the most external layer, therefore a rule that up-
dates all the weights for all layers has to be implemented. One of the available learning
rules is the Levenberg-Marquardt algorithm [15] which has been adopted in this work.
It consists in using the Jacobian to update the NN weights based on the error of the
output layer. The weight update is given by

ΔW = −(JTJ + δI)JTek (B.17)

where J is the NN Jacobian, δ is a parameter to prevent the matrix JTJ from being sin-
gular and ek = [ek1 ek2 · · · ekp]

T. The (h, l) element of the Jacobian is defined as

Jhl =
∂eh

∂wl
=

∂ekp

∂wkj
(B.18)

where eh is the h-th element of the vector e = [e1
k e2

k · · · eM
k ] containing the NN output

error for all the M inputs, and wl is the l-th element of w = [wji wkj] composed by all
the NN weights.

Applying the chain rule on Eq. (B.18), it is shown in [15] that

∂ekp

∂wkj
=

∂ekp

∂vkn

∂vkn

∂wkj
= ḟ (vkp)yjn = Skpyjn (B.19)

where Skp is the Marquardt sensitivity, indicating the direction the weights are updated
and ḟ (vkp) denotes the derivation of the activation function with respect to the argu-
ment vkp. The above expression is valid for the output layer only, then another chain
rule has to be applied to obtain the update of the hidden layers, as

∂ekp

∂wji
=

∂ekp

∂vkp

∂vkp

∂vjn

∂vjn

∂wji
= Skpwkj ḟ (vjn)yin (B.20)

Finally, with Eqs. (B.19) and (B.20), the Jacobian can be determined and the NN
weights update in Eq. (B.17) can be calculated.

Neural network parameters

For the crack identification problem depicted in Figs. B.2 or B.4, the NN parameters
used are:
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• Architecture: Ni neurons in the input layer, 25 neurons in the first hidden layer,
20 neurons in the second hidden layer and 4 neurons in the output layer. In the
output layer, the linear transfer function was used, for all other layers, the hyper-
bolic tangent sigmoid transfer function was applied [18]. Ni stands for the used
number of measurement positions on the boundary and the 4 output neurons
correspond to the xc, yc, L and θ parameters to be determined;

• Input: four different types of inputs were analyzed separately in this work, with
Ni measurements

– the electric potential ϕ

– the magnetic potential φ

– the electric and magnetic potentials taken on each measurement position

– the elastic displacements ux and uy taken on each measurement position

• Output: the crack parameters xc, yc, L and θ;

• Training set: 1500 input/output entries;

• Validation set: 1500 input/output entries, not used in training;

• Training algorithm: Levenberg-Marquardt [15];

• Goal MSE: 0.2;

• Maximum number of iterations: 100.

Uncertainities present in inverse problems (for example, noise) need to be regular-
ized in order to obtain a better solution. Several mathematical formulations have been
developed for such purpose [16, 27, 45], and some were modified to be applied with
NN [4]. In this study, a conjoint Levenberg-Marquardt and Gaussian formulation [10]
has been used to smooth the update of the weights of the NN. The mean square error
is then redefined as

εreg = αε + β ∑
i,j

w2
ij = αε + βεW (B.21)

where α and β are defined as

α =
η

2ε
; β =

Np − η

2εW
(B.22)

where η = Np − 2αtr(εreg), η is the effective number of parameters and Np is the total
number of parameters in the NN. The parameter η quantifies the number of parameters
effectively used in the error function reduction [10].
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For α � β, the NN error will be smaller, whereas for β � α the weights are reduced
to the detriment of a higher error, and a smoother response from the NN. A balance
between α and β has to be found during the training process to have a NN with an
acceptable error and a sufficiently smooth response.

B.4.2 Training set division (TSD)

In a recent work, the authors [17] have implemented NN to perform damage identifi-
cation in 2D MEE materials. It was shown that the use of a single standard NN was
not sufficiently robust to identify every crack pattern, as the NN failed when trying to
locate small cracks, even when disconsidering the influence of noise. To overcome this
limitation, a training set division (TSD) was introduced that partitioned the training set
in several groups to subsequently assign each of them to an individual NN. Although
the resulting TSD approach in [17] led to very good results, it still lacked of some gener-
ality since the decision on the type of division had to be user-driven, once gained some
insight on the problem. For instance, for the identification problem depicted in Fig. B.4,
the training set was divided in five regions: a central circular region plus four equally
distributed regions, as Fig. B.6(b) illustrates. The parameter selected to uniquely de-
fine whether a particular crack (i.e., a training set entry) belonged to one of these five
regions was the crack center position. Furthermore, when using the resulting AI tool to
predict the crack location, the input data had to be assigned to each one of the five NN
resulting from the TSD although, as expected, only one of the NN predicted the crack
center position within the limits of its own training space. Hence, data manipulation is
still important during the postprocessing of the identification results. Moreover, such
rearrangement of the training set was only possible due to the use of some particular-
ities of this problem,i.e, the tendency of the NN to locate small crack patterns around
the same central region.

Fig. B.6 illustrates the partitioning process of 10% of the training set where each
element in the graphic represents the position of a crack center.

In conclusion, although the TSD proposed in [17] showed that the learning process
clearly improves when considering smaller training sets with similar patterns, it is de-
sirable to implement an automated division technique that: (1) performs the mapping
using only the data set, without requiring any prior information on the problem; and (2)
permits to determine beforehand which NN should recognize a specific input pattern.
This later condition may be fulfilled if the mapping is based just on intrinsic proper-
ties of the training set. For this purpose, the TSD will be next performed by means
of self-organizing algorithms. Two different algorithms are considered in the present
work and their performance is analyzed and evaluated next, namely K-means [35] and
Gaussian Mixtures [8].

80



0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

x

y

(a) Before partitioning

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

x
y

 

 

S1

S2

S3

S4

S5

(b) After partitioning

Figure B.6: Sample of the training set partitioning: square plate with sides normalized
to 1.

B.4.3 Self-organizing algorithms

These techniques require no error minimization with some known reference solution,
depending uniquely on the given data set. For this reason, it is said that self-organizing
algorithms are unsupervised methods. The main idea of the technique is to form groups
with elements which have similar properties. The only parameter that has to be speci-
fied in the method is the desired number of groups to be created.

Some authors have employed self-organizing techniques in damage identification. In
[30], the K-means algorithm has been used with the acoustic emission to identify the
center-hole of 2D carbon/carbon faillure mechanisms during tensile tensile loading. In
[26], the experimental data was processed by a covariance driven stochastic subspace
identification algorithm, in order to increase the stability, so a hierarchical clustering
algorithm was applied to recognize the first twelve vibration modes of a real bridge.
Clustering was used to separate the measured data into two types of damage in com-
posite materials in [48]. A revision of the most common algorithms may be found in
more detail in [43].

In this study, the self-organizing methods will be used to separate the training set into
five groups, as Fig. B.3 illustrates. As pointed before, the division of the training set
enhances the quality of crack identification with the TSD, by allocating crack patterns
with similar characteristics into smaller training sets.

For our purposes, the Principal Component Analysis (PCA) will be used as well, in
order to facilitate the partitioning. PCA is a well known method for dimension re-
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duction without losing information from the data [1]. In this work, each input of the
training set, with dimension Ni × 1, is reduced to a bidimensional vector.

The two algorithms used in this paper are briefly described next.

K-means

K-means is a method based on punctual observation of the database. The only infor-
mation given to the algorithm is the Ng groups that have to be formed. Each group
has a centroid, which has the property of presenting the minimum sum of the distances
to all elements of a given group. A rigorous mathematical deduction of the algorithm
convergence can be found in [35].

The K-means can be defined through the minimization of a functional cost

min f (K, Q) = ∑
Ng

l=1 ∑M
i=1 κild(Kl , qi) (B.23)

subject to ∑
Ng

l=1 κil = 1 (B.24)

κil = 0 or 1

where K = [K1 · · · Kl · · · KNg ], Kl is the position of the l-th centroid, q i is the i-th input
(with dimension Ni × 1) of the training set matrix Q = [q1 q2 · · · qM], κil is a partition
matrix element, which assumes value 1 if the i-th element belongs to the l-th group,
and 0 if not, d(·) is the Euclidean distance between Kl and qi.

The partition matrix is responsible for assigning each input q i to a group. Each group
is determined by its centroid, which represents the average Euclidian distance of the
group members. When an element changes of group, the mean distance of each affected
group is also modified, thus leading to an update of each group centroid position. For
every update, elements may come close to other centroids than the actual one, leading
to a new group interchange. In the K-means algorithm, the changes between groups are
performed until some convergence is achieved, and the variation of elements between
the groups have come to a minimum.

Fig. B.7 illustrates the generated mapping of the training set using the K-means algo-
rithm, where each element represent a crack pattern. The electric potential ϕ was used
for the PCA decomposition and the number of training entries assigned to each of the
five sets S1, S2, S3, S4 and S5 is indicated in the Figure.

The algorithm of the K-means used in this work can be summarized as

1. A mapping is created using the PCA in the training set;

2. Kg centroids are selectioned in the created mapping and assigned to K g distincts
groups. The means of each group are calculated, assuming as parameter the Eu-
clidian distance between the elements;
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Figure B.7: Training set mapping. K-means. Input: electric potential ϕ.

3. The distance of the elements is measured with respect to the actual centroid. Each
element is assigned to the closest centroid;

4. The elements are relocated to the group with similar properties (mean). For each
new (or lost) element, the centroid position is also updated;

5. Step 4 is repeated until some sort of equilibrium is attained, for example, small
variation (say < 10%) of elements between the groups.

Gaussian Mixtures (GM)

This type of approach attempts to find the most probable division of data, i.e., to es-
tablish the elements that have a probability of belonging to a particular group. The
mixture is the set of Ng distributions, representing Ng clusters. The method searches
for probabilistic attributes of each distribution as the mean and standard variation, and
thus calculates the probabilities for each component of the group.

However, it is not known the prior distribution that the components of the groups
should have. Thus, an iterative algorithm is used to determine the Ng distributions.
The algorithm used is the Expectation Maximization (EM), an efficient iterative proce-
dure to obtain the Maximum Likelihood Estimate (MLE) when some data parameters
are unknown. The algorithm consists of two steps, an Estimation step (E-step), where
the unknown data is estimated given the observed data and the current state of the
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model parameters. Then a maximization step (M-step) is executed, where the likeli-
hood function is maximized under the assumption that the previously unknown data
has been determined. A detailed deduction of the method can be found in [8].

A GM model is defined by a weighted sum of Ng Gaussian densities as [31]

f (q|λ) =
Ng

∑
i=1

αig(q|μi, Σi) (B.25)

Ng

∑
i=1

αi = 1 (B.26)

where q is a N-dimensional continuous valued data vector, λ are the model parameters,
αi, i = 1 · · · Ng are the mixture weights and g(q|μ i, Σi), i = 1 · · · Ng are the component
Gaussian densities and are defined as

g(q|μi, Σi) =
1√

((2π)N |Σi|)
exp

(
−1

2
(q − μi)

TΣ−1
i (q − μi)

)
(B.27)

where μi is the mean vector and Σi is the covariance matrix. These two parameters
plus the mixture weights compose the GM model and can be collectively represented
as λ = {αi, μi, Σi}.

Given the training set matrix Q with M columns, the EM is used to find the best fit
of the parameters λ with the training set. The GM likelihood can be stated as

log f (Q|λ) =
M

∏
m=1

log f (qm|λ) (B.28)

Starting from an initial model λn, a new model λn+1 is estimated (E-step) such that

log f (Q|λn+1) ≥ log f (Q|λn) (B.29)

Next, in the M-step, λn+1 is updated, corresponding to the reestimation of α i, μi and
Σi as

αn+1
i =

1
M

M

∑
m=1

Pr(i|qm, λ) (B.30)

μn+1
i =

∑M
m=1 Pr(i|qm, λ)qm

∑M
m=1 Pr(i|qm, λ)

(B.31)

Σn+1
i =

∑M
m=1 Pr(i|qm, λ)q2

m

Pr(i|qm, λ)
− μn+1

i (B.32)

and the a posteriori probability for component i is expressed by

Pr(i|qm, λ) =
αig(qm|μi, Σi)

∑
Ng

k=1 αkg(qm|μk, Σk)
(B.33)
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where μi and Σi are arbitrary elements of μi and Σi, respectively.
Fig. B.8 shows the training set division using the PCA and GM. Again, the electric

potential ϕ was used for the PCA dimension reduction. One can observe that in the
GM partitioning the S2 set is delimitated by the S1 set. This is consistent with the
probabilistic particularity of the GM.
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Figure B.8: Training set mapping. Gaussian Mixtures.Input: electric potential ϕ.

The Gaussian mixtures method can be summarized as

1. A mapping is created using the PCA in the training set;

2. Initial estimation of the distribution parameters (properties of the formed groups);

3. Calculation of the probability that a given element belongs to a given group;

4. Re-estimation of the distribution parameters;

5. Repeat steps 3 and 4 until the algorithm converges. The maximum value of Eq.
(B.28) was used as stopping criteria. The final parameter to be obtained is the
maximum likelihood of the distributions for the data of the mixture.

From Figs. B.7 and B.8, one can observe that both the K-means and GM methods do
not necessarily lead to a uniform distribution of the elements of the training set. Some
groups may have significantly more elements than the others since more crack patterns
may be similar depending of the applied partitioning method. However, the groups
are formed to have the smoother possible distribution, resulting in easier patterns for
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the NN to learn. The NN identification results are also conditioned by the number
of divisions imposed to the self-organizing methods, as it will be shown in the next
section.

B.5 Implementation and validation results

To validate the proposed identification method, a bidimensional square plate was used
(Fig. B.4), where each side has Ls = 8 cm, of a MEE composite with equal fractions
(Vf = 0.5) of piezoelectric (BaTiO3) and piezomagnetic (CoFe2O4) phases. A unitary
uniformly distributed mechanic load was applied on the top and bottom of the MEE
plate. The properties of each composite component are explicited in Table B.1 [39] us-
ing the Voigt notation [46], as well as the resulting electromagnetic behavior of the MEE
material. The crack parameters range considered is found in Table B.2. The crack center
position and the crack length have been normalized with respect to Ls and the orienta-
tion angle θ has been normalized dividing its value in degrees by 180.

Table B.1: Magnetoelectroelastic material properties.

Properties BaTiO3 CoFe2O4 Vf = 0.5
C11(GPa) 166 286 226
C12(GPa) 78 170 125
C22(GPa) 162 269.5 216
C66(GPa) 43 45.3 44
e16(C/m2) 11.6 0 5.8
e21(C/m2) -4.4 0 −2.2
e22(C/m2) 18.6 0 9.3

ε11(×10−10C2/Nm2) 112 0.8 56.4
ε12(×10−10C2/Nm2) 126 0.93 63.5

h16(N/Am) 0 550 275
h21(N/Am) 0 580.3 290.2
h22(N/Am) 0 699.7 350

γ11(×10−6Ns2/C2) 5 590 297
γ12(×10−6Ns2/C2) 10 157 350
β11(×10−12Ns/VC) − − 5.367
β12(×10−12Ns/VC) − − 2737.5

The training set is composed by the extended displacements u I on the right side of the
plate, for a large number of random combinations of the damage parameters, allowing
a uniform representation of all possible crack configuration. The randomness of the
NN input can be defined as:

Cp = Cpr + �ζ (B.34)
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Table B.2: Crack parameters range.

xc
Ls

yc
Ls

L
Ls

θ
180

min 0.1875 0.1875 0.0312 0
max 0.8125 0.8125 0.2500 1

where Cp is one of the crack parameters, Cpr is a value between the crack parameter
range given in Table B.2, � is a ponderation number depending on the crack param-
eter and ζ is a random Gaussian component with mean 0 and standard deviation 1.
The crack parameter range was vectorized using an interval of 0.25/Ls for the center
crack position (xc,yc) parameter and the crack length L parameter and an interval of
15/180 for the crack orientation θ parameter. The � constant was set to 15/180 to the θ

parameter and 0.25/Ls for the remaining ones.

In order to solve the direct problem with the DBEM formulation described in Section
3, and thus generate the training set, each side of the external boundary was discretized
with six quadratic elements. The crack boundary was discretized using ten discontin-
uous quadratic elements, where the crack tip elements are discontinuous quarter-point
(see [34]).

Two crack configurations will be used to verify the accuracy of the different dam-
age identification approaches. Figs. B.9(a) and B.9(b) represent the adopted reference
solutions, where the x and y-axis have been normalized in terms of the plate side Ls.
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Figure B.9: Reference cracks
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B.5.1 Neural network training parameters

To verify the proper training of the NN, two parameters were analyzed, namely the
MSE and the number of iterations, as shown in Figs. B.10 and B.11, respectively. The
objective of these graphics is to show whether the NN has achieved convergence within
the limits of allowed training iterations (100 in this work). We also analyzed how the
different input types led to different values of the MSE, which will indicate the better
choice of the input type, presenting the lowest MSE for the training set. Four different
types of input data are considered, depending on the information available for measure
at Γp: (1) the input only consists of electric potential ϕ values at Γp; (2) the input only
consists of magnetic potential φ values at Γp; (3) the input consists of values of both
electric and magnetic potentials at Γp; and (4) the input consists of values of the elastic
displacements ux and uy at Γp. In these figures NN1, NN2, NN3, NN4 and NN5 denote
the NN assigned to each of the five groups S1, S2, S3, S4 and S5, respectively, that follow
from applying the TSD. The obtained results for both K-means and GM are presented
for comparison purposes.
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Figure B.10: NN training parameters. Mean Square Error for different combinations of
input data.
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Figure B.11: NN training parameters. Number of iterations for different combinations
of input data.
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From Figs. B.10 and B.11, the NN achieves convergence (MSE ≤ 0.2 and number of
iterations less or equal than 100) either when using combined inputs (electric and mag-
netic potential; elastic displacements) for both K-means and GM, or using the magnetic
potential together with the GM algorithm. In these cases one can remark that the MSE
remains basically constant with increasing noise levels. Although the NN1 of the K-
means method was unable to achive convergence, it keeps low MSE levels when using
combined type of inputs. No improvement in the quality of the identification was at-
tained when increasing the number of iterations or decreasing the maximum admissible
MSE value.

B.5.2 Neural network damage identification performance

The performance of the NN with the validation set is given by the dist parameter, de-
fined by Eq. (B.4). It can be visualized in Fig. B.12 for the two partitioning methods
employed.
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Figure B.12: NN identification performance: percentage of validation set predicting
crack geometry with dist/Ls ≤ 0.1.

A comparison between the NN output and the real cracks is shown in Fig. B.12 using
the validation set. It is important to remark that the objective of the hybrid approach
is to obtain the smallest values of the dist parameter for as many crack patterns as
possible. For this matter, it was considered that an input is successfully identified if
dist/Ls ≤ 0.1. Identified cracks with values higher than this limit were disconsidered
in this graphic. The results are shown in terms of percentage of the total patterns of the
validation set.

For the K-means partitioning, the combined inputs lead to better identification re-
sults. The NN identification performance decreases with noise levels. High assessment
accuracy is found for the noiseless cases, in contrast with poor identification perfor-
mance for high noise levels. In contrast with the K-means, the NN trained with the
GM algorithm present excellent results for all analyzed input types, with the elastic
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displacements input leading to the best identification results. Moreover, the identifica-
tion results are quite noise insensitive, a desirable characteristic in damage evaluation
schemes.

Table B.3: Detailed information of number of inputs per dist/Ls parameter. Input: elas-
tic displacements ux; uy. Validation set: 1500 inputs.

K-means
dist/Ls

0 0.04 0.08 0.12 0.16 0.20 0.40 0.60 0.80 1.00

Noise
0% 547 649 133 57 25 33 22 6 4 24
5% 406 691 177 73 33 35 30 7 7 41

20% 335 686 251 89 48 56 21 5 3 6

Gaussian mixtures

Noise
0% 765 526 112 50 13 15 8 5 1 5
5% 779 516 105 38 17 23 15 5 1 1

20% 790 522 106 33 19 12 6 5 0 7

The dist parameter is detailled in Table B.3 for the elastic displacements input, since
this one presents the best identification performance. One can analyze quantitatively
how the dist parameter values are distributed in the validation set, for all used parti-
tioning methods. For all cases, the majority of the inputs have dist/Ls ≤ 0.08, which
means the crack tip positions given by the NN are close to the real crack. It can be
observed that the identification ratio decreases with the noise levels for the K-means
partitioning. As pointed before, the GM NN do not present loss of precision with in-
creasing noise.

Fig. B.13 illustrates the identification results of the reference cracks for the K-means
and GM NN, with the elastic displacements as NN input and evaluating different noise
levels. Excellent identification results were achieved for the large crack (Figs. B.13(a)
and B.13(c)). The K-means NN did not lead to good results when identifying the small
crack (Fig. B.13(b)), while the GM NN can identify smaller cracks accurately (Fig.
B.13(d)), for all noise levels. Table B.4 contains the identification information for the
other types of inputs for the GM networks, where both reference cracks are identified
for all input types and noise levels, showing high precision for every case.

B.5.3 Some remarks about the choice of the number of divisions with
self-organizing methods

The optimal choice of how many clusters have to be formed is also an issue of study.
In this sense, clustering methods are similar to the NN, where the architecture of the
network is the most important feature to be determined. A specific field of study is
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Figure B.13: Crack identification. Input: elastic displacements ux; uy.

dedicated to obtain methods to optimize the number of divisions for a given data set.
Dunn’s index [9] or the Davies-Bouldin index [6] were some of the first methods to eval-
uate the quality of the unsupervised methods. In this work we determined the number
of division by analyzing the number of elements per group and the performance of the
trained NN using the parameter dist.

The formation of an excessive number of groups may implicate a low ratio of el-
ements per group, which may cause overfitting of the NN trained with these crack
patterns. On the other hand, not having sufficient divisions of the training set may im-
plicate in a suboptimal NN identification performance. Table B.5 shows the distribution
of the number of identified crack patterns of the validation set using the dist parame-
ter, assuming different number of formed groups. Table B.6 details the percentage of
elements of the training set which belong to each group.
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Table B.4: Crack identification of the reference solutions. Gaussian Mixtures.

Large crack - Fig. B.9(a)
Noise Input xc

Ls

yc
Ls

L
Ls

θ
180

Real crack 0.6645 0.6775 0.1740 0.2029

0%

ϕ 0.6630 0.67498 0.1693 0.2009
φ 0.6645 0.67783 0.1753 0.1999

ϕ; φ 0.6645 0.67752 0.1740 0.2022
ux; uy 0.6645 0.6775 0.1740 0.2028

5%

ϕ 0.6657 0.6773 0.1806 0.2032
φ 0.6648 0.6783 0.1697 0.2056

ϕ; φ 0.6646 0.6775 0.1742 0.2035
ux; uy 0.6646 0.6774 0.1740 0.2028

20%

ϕ 0.6655 0.6792 0.1733 0.2097
φ 0.6647 0.6774 0.1753 0.2053

ϕ; φ 0.6646 0.6776 0.1744 0.2038
ux; uy 0.6646 0.6776 0.1740 0.2030

Small crack - Fig. B.9(b)
Real crack 0.3034 0.2415 0.0577 0.7257

0%

ϕ 0.2873 0.2518 0.0524 0.6902
φ 0.3015 0.2052 0.0528 0.7369

ϕ; φ 0.1879 0.1975 0.0456 0.6848
ux; uy 0.2831 0.2612 0.0599 0.7048

5%

ϕ 0.2915 0.2654 0.0514 0.7059
φ 0.3324 0.2342 0.0691 0.6903

ϕ; φ 0.2712 0.2557 0.0599 0.6243
ux; uy 0.2889 0.2610 0.0719 0.6658

20%

ϕ 0.3258 0.2770 0.0520 0.7233
φ 0.2522 0.2308 0.0505 0.7153

ϕ; φ 0.2642 0.2721 0.0452 0.6379
ux; uy 0.2822 0.2642 0.0618 0.6782

The performance of the K-means division is very similar for every number of used
divisions. In this case, 3 divisions of the training set are sufficient to enable the NN to
perform a good identification. The NN performance is better with 7 divisions when
noise is neglected, and for high levels of noise, 5 divisions are more appropriate.

The obtained identification results using the GM algorithm shows that the NN iden-
tification results are similar with 3 and 7 divisions, and NN identification improvement
is clearly noticed with 5 divisions. In this study, we can conclude that the results are
optimal when considering 5 divisions.
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Table B.5: Comparison between the number of divisions with self-organizing algo-
rithms. dist parameter

K-means - 3 divisions
dist/Ls

0 0.04 0.08 0.12 0.16 0.20 0.40 0.60 0.80 1.00

Noise
0% 534 624 154 62 33 54 18 6 4 11
5% 423 676 179 76 38 41 28 13 7 19
20% 268 648 222 112 81 70 45 17 8 29

K-means - 5 divisions

Noise
0% 547 649 133 57 25 33 22 6 4 24
5% 406 691 177 73 33 35 30 7 7 41
20% 335 686 251 89 48 56 21 5 3 6

K-means - 7 divisions

Noise
0% 595 552 115 67 35 40 38 16 7 35
5% 447 641 175 65 36 68 23 16 8 21
20% 310 629 220 96 55 65 49 13 14 49

Gaussian mixtures - 3 divisions

Noise
0% 627 537 126 62 34 41 37 16 6 14
5% 550 513 158 72 46 61 49 16 12 23
20% 597 544 160 53 43 50 20 20 4 9

Gaussian mixtures - 5 divisions

Noise
0% 765 526 112 50 13 15 8 5 1 5
5% 779 516 105 38 17 23 15 5 1 1
20% 790 522 106 33 19 12 6 5 0 7

Gaussian mixtures - 7 divisions

Noise
0% 592 489 155 72 40 56 35 18 10 33
5% 521 521 175 98 40 57 35 15 13 25
20% 604 493 169 73 37 59 22 17 8 18

Table B.6: Comparison of number of divisions in percentage of the training set. K-
means and GM

Components per group (%)
3 divisions 5 divisions 7 divisions

K-means
75.93 12.87 11.20 − − − −
60.73 16.67 14.73 4.20 3.67 − −
47.47 23.00 10.53 8.20 5.73 3.60 1.47

GM
57.00 23.60 19.40 − − − −
42.87 25.67 21.60 5.13 4.73 − −
32.33 21.27 17.20 12.00 7.27 5.80 4.13
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B.6 Summary and conclusions

This work presents a new damage identification framework for MEE materials, combin-
ing supervised and unsupervised artificial intelligence techniques, to result into a hy-
brid approach. The direct problem was solved with a DBEM formulation, and only part
of the solution on the boundary was used to assess the damage. A number of solutions
of the direct problem composed the employed NN data set. In order to simulate more
realistic experimental conditions, noise was introduced into the data set. The electric
potential, the magnetic potential, a combined input with electric and magnetic poten-
tials, and the elastic displacements were studied as inputs for the NN. Self-organizing
algorithms were used to partition the training set, and each formed group was trained
by an individual NN. A regularization scheme was used along with the training algo-
rithm to smooth the response provided by the NN. A validation set was used to verify
the generalization of the NN. It was seen that the Gaussian Mixtures self-organizing
algorithm provides excellent identification results. Additionally, the input type affects
the identification behavior of the networks: better results are achieved when using the
elastic displacements or the combination of electric and magnetic potentials. The NN
simulation may be used as a good estimation of the crack location in MEE materials.
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Appendix: Static fundamental solutions for MEE materials

The fundamental solution of an infinite MEE material subject to a static point force can
be expressed explicitly in terms of the Stroh’s formalism. The displacement and traction
at the observation point x = (x1, x2) in the J-direction due to an extended point load
applied at the source point ξ = (ξ1, ξ2) in I-direction is given by [13]

u∗
I J(x, ξ) = − 1

π
�(AJMQMIln(zx

M − zξ
M)) (B.35)

p∗I J(x, ξ) =
1
π
�
(

BJMQMI
μMn1 − n2

zx
M − zξ

M

)
(B.36)

where � represent the real part and the summation rule on repeated indices applies.
zx

M and zξ
M are the observation and source points location on the complex plane and are
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expressed as

zx
M = x1 + μMx2 (B.37)

zξ
M = ξ1 + μMξ2 (B.38)

where the index M takes the values 1,2,4,5 and μM are the roots of the characterist
equation of the material with positive imaginary part. These roots are obtained by
solving the following eigenproblem

(
−L−1N −L−1

Z − NTL−1N −NTL−1

)(
AM

BM

)
= μM

(
AM

BM

)
(B.39)

where matrices A and B are also obtained and

Z = C1JK1; N = C2JK1; L = C2JK2 (B.40)

which are defined from the extended constitutive matrix CiJKl in Eq. (B.9).
Finally the matrix Q is calculated from

Q = A−1(P−1 + P
−1
)−1 (B.41)

with P = iAL−1 and · stands for the complex conjugate.
The kernels s∗rI J and d∗rI J , necessary for the calculation of the boundary integral equa-

tion given in Eq. (B.11) are obtained as

d∗rI J = CrIMsu∗
MJ,s (B.42)

s∗rI J = CrIMs p∗MJ,s (B.43)
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[45] A. Tikhonov and V. Arsénine. Méthodes de résolution de problmes mal posés.
MIR, 1976.

[46] W. Voigt. Lehrbuch der Kristallphysik. B.G. Teubner, 1928.

[47] T. L. Wu and J. H. Huang. Closed-form solutions for the magnetoelectric coupling
coefficients in fibrous composites with piezoelectric and piezomagnetic phases.
International Journal of Solids and Structures, 37(21):2981–3009, 2000.

[48] B. L. Yang, X. M. Zhuang, T. H. Zhang, and X. Yan. Damage mode identification
for the clustering analysis of AE signals in thermoplastic composites. Journal of
Nondestructive Evaluation, 28(3-4):163–168, 2009.

[49] X. C. Zhong and X. F. Li. Magnetoelectroelastic analysis for an opening crack in a
piezoelectromagnetic solid. European Journal of Mechanics, 26:405–417, 2007.

99



100



Paper C: New anisotropic crack-tip enrichment functions for

the extended finite element method

The original version of this paper can be found in www.springer.com

• DOI: 10.1007/s00466-012-0691-0

• Journal Name: Computational Mechanics

• ISSN: 0178-7675

• ISI 2011: Q1 (15/132) Impact factor: 2.065

• SCIMAGO 2011: Q1 (5/68) SJR: 1.859

101



102



New anisotropic crack-tip enrichment functions for the
extended finite element method

Authors: Gabriel Hattori, Ramón Rojas-Dı́az, Andrés Sáez, Natarajan Sukumar and
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ABSTRACT

In this paper, the extended finite element method (X-FEM) is implemented to analyze
fracture mechanics problems in elastic materials that exhibit general anisotropy. In the
X-FEM, crack modeling is addressed by adding discontinuous enrichment functions to
the standard FE polynomial approximation within the framework of partition of unity.
In particular, the crack interior is represented by the Heaviside function, whereas the
crack-tip is modeled by the so-called crack-tip enrichment functions. These functions
have previously been obtained in the literature for isotropic, orthotropic, piezoelec-
tric and magnetoelectroelastic materials. In the present work, the crack-tip functions
are determined by means of the Stroh’s formalism for fully anisotropic materials, thus
providing a new set of enrichment functions in a concise and compact form. The pro-
posed formulation is validated by comparing the obtained results with other analytical
and numerical solutions. Convergence rates for both topological and geometrical en-
richments are presented. Performance of the newly derived enrichment functions is
studied, and comparisons are made to the well-known classical crack-tip functions for
isotropic materials.

Keywords: Crack-tip enrichment functions; Anisotropic materials; X-FEM; Stroh’s for-
malism

C.1 Introduction

The strong demand for materials with a high strength per unit weight ratio in differ-
ent branches of engineering has led to the development of different analytical and nu-
merical techniques to solve fracture mechanics problems in anisotropic materials. Pi-
oneering works by Muskhelishvili [15] and Sih et al. [20], or more recently, works by
Nobile and Carloni [16], developed analytical techniques to solve crack problems in
anisotropic and orthotropic plates. However, these methods are limited to simple ge-
ometries and load combinations. Therefore, numerical methods become essential to
analyze more complicated engineering applications. In particular, models based on the
boundary element method (both the classical [22] and the dual [11, 17, 23] approxima-
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tions), meshless (meshless local Petrov-Galerkin [21]), and the finite element method
(FEM) [7], have been developed.

All the above-mentioned numerical techniques have proven to be accurate and ro-
bust to solve crack problems. However, in the case of the FEM, its direct application is
unwieldly, since the mesh must conform to the crack geometry, mesh refinement is re-
quired near the crack-tip, and for crack propagation simulations, remeshing is needed.
To circumvent these difficulties, the extended finite element method (X-FEM), first pre-
sented by Belytschko and co-workers [6, 13], has emerged as a powerful alternative in
computational fracture. It has been successfully applied to solve crack problems in ma-
terials with different constitutive laws: see, for example, the works by Moës et al. [13]
in isotropic media, Sukumar et al. [25] in bimaterials, Asadpoure and Mohammadi [2]
in orthotropic materials, Béchet et al. [5] in piezoelectric solids and Rojas-Dı́az et al. [19]
in magnetoelectroelastic materials. Abbas and Fries [1] have obtained enrichment func-
tions that can be applied to brittle as well as cohesive cracks. In the X-FEM, additional
(enrichment) functions are added to the classical finite element polynomial approxima-
tion through the framework of partition of unity [3]. To model the crack discontinuity,
the crack interior is represented by a discontinuous (Heaviside) function, whereas the
behavior around the crack-tip is modeled by the asymptotic crack-tip enrichment func-
tions.

In this work, a new set of crack-tip enrichment functions is derived to simulate two-
dimensional elastic fracture in general anisotropic media. These new functions are
obtained in a concise and compact form in terms of the Stroh’s formalism [24]. The
resulting formulation is validated by comparison of the obtained results for several
crack configurations with previous analytical and/or numerical solutions. Two differ-
ent enrichment strategies have been adopted: the conventional X-FEM using a topo-
logical enrichment and a geometrical (fixed area) enrichment [4,12]. Convergence rates
for both enrichments are presented and performance of the newly derived enrichment
functions is further analyzed and compared with the classical crack-tip functions for
isotropic materials.

The paper is structured as follows. The governing equations are stated in Section
2. The theoretical foundations of the X-FEM are presented in Section 3, and the new
crack-tip enrichment functions are derived in Section 4 and the computation of frac-
ture parameters using the domain form of the contour interaction integral is briefly
described in Section 5. Several crack problems are solved in Section 6 to validate the
approach and characterize its convergence. The main conclusions from this study are
summarized in Section 7.
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C.2 Governing equations

C.2.1 Basic equations

In an anisotropic elastic domain, the static equilibrium equations in the presence of
body forces b are given by

σij,j + bi = 0 (C.1)

Both the stress and strain tensors are symmetric: σij = σji; ε ij = ε ji.

ε ij =
1
2
(ui,j + uj,i) (C.2)

The linear constitutive relations between stresses σij and strains εkl are given by the
generalized Hooke’s law

σij = Cijklεkl (C.3)

where Cijkl define the material constants tensor, satisfying the following symmetry re-
lations

Cijkl = Cjikl = Cijlk = Cklij (C.4)

that lead to a tensor with only 21 independent components for the 3D case, and 6 com-
ponents in the 2D case.

C.2.2 Stroh’s formalism

To satisfy the equilibrium equations stated in (C.1), the displacement field in a generally
anisotropic plane domain may be written as [24, 27]

u = a f (z) (C.5)

where z = x1 + μmx2 is the transformation into the complex plane of the physical co-
ordinates (x1, x2), and μm represents the complex roots with positive imaginary part, of
the characteristic equation of the material. Such an equation follows from derivation of
(C.5), and subsequent substitution of (C.3) into the equilibrium relations (C.1), leading
to

{Z + (M + MT)μm + Lμ2
m}a = 0 (C.6)

with
Z := C1ij1; M := C2ij1; L := C2ij2 (C.7)

Equation (C.6) can be rearranged and further expressed as the following eigenvalue
problem

(
−L−1M −L−1

Z − MTL−1M −MTL−1

)(
Am

Bm

)
= μm

(
Am

Bm

)
(no sum on m) (C.8)
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Since the tensors A and B and the eigenvalues μm depend only on the material prop-
erties, they are independent of the geometrical position of the adopted coordinated sys-
tem. These characteristics allow the calculation of precise and general terms by means
of the Stroh’s formalism.

C.2.3 Asymptotic fields around the crack-tip

The asymptotic displacement field around a crack-tip in a plane anisotropic domain
was first derived by Sih et al. [20]. Adopting a polar coordinate system (r, θ) with
origin at the crack-tip, the displacement field can be expressed by means of the Stroh’s
formalism [26] as

ui(r, θ) =

√
2
π
�
(

KαAimB−1
mα

√
r (cos θ + μm sin θ)

)
(C.9)

where the summation convention over repeated indices holds; i, m = 1, 2; α = I, I I is
associated with the fracture modes; and �(·) is the real part of (·).

Similarly, the asymptotic stress fields may be written as

σij(r, θ) = (−1)j

√
1

2π
�
(

KαBimB−1
mα

δj1μm + δj2√
r (cos θ + μm sin θ)

)
(C.10)

where δjk is the Kronecker-delta.

C.3 Extended finite element formulation

Equation (C.10) reveals that the discontinuity induced by the crack leads to a non-
smooth behavior of the field variables, with resulting singular gradient that needs to
be taken into account. For this purpose, the extended finite element method [6, 13] is
adopted in which the classical FEM polynomial space is enriched through the frame-
work of partition of unity [3] with the addition of special shape functions: the crack
jump is represented by a discontinuous (Heaviside) function and the crack-tip

√
r-

behavior is modeled by asymptotic crack-tip enrichment functions. In this way, the
FE mesh does not need to match the crack geometry and only a subset of nodes close
to the crack needs to be enriched. Currently, the X-FEM is a well-established technique
and its advantages over conventional FEM for problems with non-smooth behavior are
well-recognized [10].

C.3.1 Crack modeling and selection of enriched nodes

Consider a domain Ω ⊂ R2 with boundary Γ, which contains a crack Γc = Γ−
c ∪ Γ+

c .
The domain is discretized by finite elements, so that N denotes the nodal set. Displace-
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Γu

u

Figure C.1: Boundary-value problem with an internal crack.

ments are prescribed on Γu, whereas tractions are imposed on Γt, so that Γ = Γu ∪ Γt as
illustrated in Figure C.1. The displacement approximation in the X-FEM can be written
as [13]

uh(x) = ∑
i∈N

Ni(x)ui + ∑
j∈NH

Nj(x)H(x)aj + ∑
k∈NCT

Nk(x)∑
α

Fα(x)bα
k (C.11)

where Ni is the standard finite element shape function associated with node i, u i is the
vector of nodal degrees of freedom for classical finite elements, and a j and bα

k are the
added set of degrees of freedom that are associated with enriched basis functions. H(x)
is the generalized Heaviside function, defined as +1 or −1, depending on whether it is
evaluated above or below the crack, respectively. The Heaviside function thus enables
modeling of a crack that fully cuts a finite element. Additionally, at the nodes around
the crack-tip, crack-tip functions Fα(x) are included. They are described in more detail
in Section C.4. In elastic materials, bα

k is an 8-component vector for two-dimensional
problems, since only two nodal variables (u1, u2) and four enrichment functions are
needed to describe all the possible deformation states in the vicinity of the crack-tip.
This holds for both the well-known isotropic crack-tip functions [13] as well as for the
orthotropic [2] and fully anisotropic cases, as will be shown next.

Figure C.2 illustrates the classical topological enrichment strategy [13] to model a
crack in the X-FEM. The nodes that are enriched with the Heaviside function (set N H)
are marked with a filled circle and they belong to elements fully cut by the crack. The
nodes that are enriched with crack-tip enrichment functions (set N CT) are marked with
a square and they belong to elements that contain the crack-tip.

More recently, an alternative enrichment strategy that leads to improved results was
proposed by Laborde et al. [12] (geometrical enrichment): some nodes around the ones
belonging to the elements that contain the crack-tips are also enriched with the crack-
tip functions, in order to improve the convergence of the method. Here we adopt a
fixed area enrichment, so that all nodes lying inside a circle of diameter 2re centered at
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Figure C.2: Node selection for topological enrichment.

the crack-tip are enriched with the crack-tip functions, as is depicted in Figure C.3.

Heaviside enrichment

Crack-tip enrichment

2re2re

Figure C.3: Node selection for geometrical enrichment.

C.3.2 Weak formulation and discrete equations

Let u be the displacement vector and σ the stress tensor. The weak form (principle
of virtual work) for a continuum elastostatic problem in a general anisotropic solid is
given by ∫

Ω
σ : δε dΩ =

∫

Γt

t · δu dΓ +
∫

Ω
b · δu dΩ (C.12)

where δ is the variation operator, t is the prescribed traction vector and b are the body
forces. On substituting the trial and test approximations in the above equation, and
using the arbitrariness of nodal variations, we obtain the discrete equations:

Kd = f (C.13)

where K is the global stiffness matrix and f is the force vector.
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The element contribution to K and f are as follows:

ke
ij =

⎡
⎢⎣

kuu
ij kua

ij kub
ij

kau
ij kaa

ij kab
ij

kbu
ij kba

ij kbb
ij

⎤
⎥⎦ (C.14a)

fe
i = {fu

i fa
i fbα

i }T (α = 1, 4) (C.14b)

where the indices u, a, b refer to the nodal displacements vector, the Heaviside enriched
nodes and the crack-tip enriched nodes, respectively.

krs
ij =

∫

Ωe

(Br
i )

TC(Bs
i ) dΩ (r, s = u, a, b) (C.15a)

fu
i =

∫

∂Ωe

NitdΓ +
∫

Ωe

NibdΩ (C.15b)

fa
i =

∫

∂Ωe

NiHtdΓ +
∫

Ωe

NiHbdΩ (C.15c)

fbα
i =

∫

∂Ωe

NiFαtdΓ +
∫

Ωe

NiFαbdΩ (α = 1, 4) (C.15d)

In (C.15), Bu
i , Ba

i and Bb
i are the matrices of shape function derivatives, which are

defined as

Bi =

⎡
⎢⎣

Ni,x 0
0 Ni,y

Ni,y Ni,x

⎤
⎥⎦ (C.16a)

Ba
i =

⎡
⎢⎣

(NiH),x 0
0 (NiH),y

(NiH),y (NiH),x

⎤
⎥⎦ (C.16b)

Bbα
i =

⎡
⎢⎣

(NiFα),x 0
0 (NiFα),y

(NiFα),y (NiFα),x

⎤
⎥⎦ (α = 1, 4) (C.16c)

C.4 Enrichment functions

Crack-tip enrichment functions are defined by the set of functions that span the asymp-
totic fields around the crack-tip [6]. Such displacement fields are given in (C.9) for a
plane anisotropic solid. By expanding the summation in (C.9), these asymptotic dis-
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placements may be expressed as follows:

u1(r, θ) =

√
2r
π
[KI(�{A11B−1

11 β1 + A12B−1
21 β2}) + KII(�{A11B−1

12 β1 + A22B−1
22 β2})]

(C.17a)

u2(r, θ) =

√
2r
π
[KI(�{A21B−1

11 β1 + A22B−1
21 β2}) + KII(�{A21B−1

12 β1 + A22B−1
22 β2})]

(C.17b)

where

βi =
√

cos θ + μi sin θ (C.17c)

and μi are the eigenvalues from (C.8) with the positive imaginary part.
Therefore, four crack-tip enrichment functions may be directly derived from (C.17a)

and (C.17b), to yield

Fl(r, θ) =
√

r

⎛
⎜⎜⎜⎝

�{A11B−1
11 β1 + A12B−1

21 β2}
�{A11B−1

12 β1 + A12B−1
22 β2}

�{A21B−1
11 β1 + A22B−1

21 β2}
�{A21B−1

12 β1 + A22B−1
22 β2}

⎞
⎟⎟⎟⎠ (C.18)

which may be expressed in matrix form as

F(r, θ) =
√

r

(
�
[

B−1A1β

B−1A2β

])
(C.19)

where A1 and A2 correspond to the first and second row of matrix A, respectively, and

β =

[
β1 0
0 β2

]
(C.20)

The matrices A and B depend only on the material properties, but are independent
of the adopted coordinate system and the geometry of the problem. In contrast to the
isotropic enrichment functions, the anisotropic enrichment functions depend on the
material properties of the domain, and are concisely obtained using the Stroh’s formal-
ism. It should be remarked that, from a mathematical point of view, Stroh’s formalism is
valid for anisotropic material behavior laws and it does not further lead to the isotropic
enrichment functions, since this is a degenerate case where repeated roots occur for the
characteristic equation of the material. However, the derived enrichment functions for
anisotropic materials may be readily applied to the isotropic case by simply introduc-
ing a small perturbation to one of the repeated Stroh’s eigenvalues, leading to stable
and precise results as well.
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C.5 Computation of the stress intensity factors

As in previous extended finite element studies [2,13], we adopt the domain form of the
contour interaction integral to calculate the stress intensity factors (SIFs). In order to
make this paper self-contained, a brief description of this approach follows.

The classical path independent J-integral is expressed by [18]

J =
∫

Γq

(Wδ1j − σijui,1)nj dΓq (C.21)

where the indexes i and j vary from 1 to 2 in a two-dimensional solid, Γq is an arbitrary
closed contour that contains the crack-tip, nj is the j-th component of the outward unit
vector normal to such a contour, and W is the strain energy density, which for a linear
material can be expressed as

W =
1
2
(σijε ij) (C.22)

Applying the divergence theorem to (C.21) the following equivalent domain expression
may be obtained for homogeneous materials:

J =
∫

A
(σijui,1 −Wδ1j)q,j dA (C.23)

where A is the area inside the contour Γq and q is an arbitrary smoothing function such
that it is unity at the crack tip and zero on Γq.

Next, let us consider two independent states: a principal one, which is the object of
interest and denoted as state (1), and an auxiliary state, denoted as (2). This auxiliary
state may be chosen to coincide with the crack-tip asymptotic field, so that it satisfies
both equilibrium and the traction-free boundary condition on the crack surface. Such
auxiliary state is expressed in terms of the generalized Stroh’s formalism [24,27] in (C.9)
and (C.10).

The superposition of these two states produces another equilibrium state [2, 13] for
which the J-integral is

J(S) =
∫

A

(
(σ

(1)
ij + σ

(2)
ij )(u(1)

i,1 + u(2)
i,1 )−W(S)δ1j

)
q,jdA (C.24)

with
W(S) =

1
2

[
(σ

(1)
ij + σ

(2)
ij )(ε

(1)
ij + ε

(2)
ij )
]

(C.25)

The J-integral in (C.24) can be further decomposed into three distinct integrals as

J(S) = J(1) + J(2) + M(1,2) (C.26)

where M(1,2) is the interaction integral, defined as

M(1,2) =
∫

A
(σ

(1)
ij u(2)

i,1 + σ
(2)
ij u(1)

i,1 − W(1,2)δ1j)q,jdA (C.27)
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with
W(1,2) =

1
2
(σ

(1)
ij ε

(2)
ij + σ

(2)
ij ε

(1)
ij ) (C.28)

The J-integral is related to the energy release rate, and it may be written in terms of
the SIFs as [26]:

J =
1
2

KNYKT
N (C.29)

where KN = [KI KII ] and Y is the (2× 2) Irwin matrix, which depends on the material
properties

Y = �(i · AB−1)

where A and B are defined in (C.8).
Thus, for plane problems, the following relation holds for every equilibrium state

J =
1
2

K2
I IY11 +

1
2

K2
IY22 + KIKIIY12 (C.30)

Substituting this expression into (C.26), the interaction integral M(1,2) can be rewrit-
ten as

M(1,2) =K(1)
I I K(2)

I I Y11 + K(1)
I K(2)

I Y22+

(K(1)
I K(2)

I I + K(1)
I I K(2)

I )Y12

(C.31)

The individual mode I and mode I I SIFs may be evaluated by solving the system
of linear algebraic equations obtained from (C.31) by choosing appropriate auxiliary
states. If the auxiliary state is chosen so that K (2)

I = 1 and K(2)
I I = 0, (C.31) is reduced to

M(1,I) = K(1)
I Y22 + K(1)

I I Y12 (C.32)

whereas selecting an auxiliary state satisfying K(2)
I = 0 and K(2)

I I = 1, (C.31) is reduced
to

M(1,I I) = K(1)
I I Y11 + K(1)

I Y12 (C.33)

Therefore, the determination of the SIF is reduced to solve the following system of
linear equations: (

M(1,I I)

M(1,I)

)
= Y

(
K(1)

I I

K(1)
I

)
(C.34)

C.6 Numerical results

The performance of the proposed enrichment functions is evaluated by solving several
fracture problems. A convergence study is further conducted to characterize our ap-
proach. To this end, the obtained results are compared with available solutions in the
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literature, derived either analytically or numerically by means of the boundary element
method (BEM) [11, 23].

In all simulations bi-linear quadrilateral elements are used, with a 2 × 2 Gaussian
quadrature for non-enriched finite elements and a 5 × 5 quadrature for elements with
enriched nodes but not cut by the crack. The elements cut by the crack are partitioned
into triangles [8], as Figure C.4 illustrates, and a 7 point triangular Gaussian quadrature
is used within each subtriangle.

Figure C.4: Partitioning elements that are cut by a crack.

C.6.1 Convergence study

Consider an anisotropic plate occupying [0, 2a]2, with a center-crack of length a with
crack-tips located at (a/2, a) and (3a/2, a). The material properties of the anisotropic
plate are given by: C11 = 90.6448 GPa, C12 = 23.7448 GPa, C16 = 41.2055 GPa, C22 =

23.8568 GPa, C26 = 16.6346 GPa and C66 = 30.9390 GPa.
The Dirichlet conditions corresponding to KI = 1 and KII = 0 are imposed on the

boundaries. Convergence is analyzed in terms of the relative error in the energy norm,
defined as

Erel =
||u − u∗||E(Ω)

||u∗||E(Ω)
=

(
∫

Ω(ε − ε∗)TC(ε − ε∗)dΩ)1/2

(
∫

Ω ε∗TCε∗dΩ)1/2

where the superscript ∗ refers to the exact analytical solution for the displacement and
strain fields.

Figure C.5 shows the obtained relative error in the energy norm versus the mesh den-
sity on a logarithmic scale. Results are obtained for both topological and geometrical
enrichment strategies. The geometrical fixed area enrichment is done for two radii of
the enriched domain, namely re/a = 0.2 and re/a = 0.3. Furthermore, two sets of en-
richment functions are considered: the newly derived anisotropic crack-tip functions
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proposed in this work, and the simpler enrichment functions for isotropic solids [9],
namely

Fiso(r, θ) =

{√
r cos

θ

2
,
√

r sin
θ

2
,
√

r sin
θ

2
sinθ,

√
r cos

θ

2
sinθ

}
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slope ≈ 0.5

slope ≈ 1.0

Figure C.5: Relative energy norm for different types of crack-tip enrichments.

It can be noticed that the errors in the energy norm calculated with topological en-
richment are similar when using either the anisotropic or the isotropic crack-tip func-
tions. However, differences are apparent with geometrical enrichment. For this case,
although isotropic enrichment leads to a reasonable approximation with a simpler en-
richment function, the error in the energy norm obtained with the isotropic enrichment
functions is about 10% larger than the one obtained with the anisotropic enrichment
functions. Convergence rates are in accordance with finite element theory and consis-
tent with previous extended finite element studies [14, 25]: slopes of approximately 0.5
and 1 are obtained when using topological and geometrical enrichment, respectively.

C.6.2 Center-crack in an orthotropic plate

A square plate (h/w = 1) with a center-crack of length 2a under uniform traction at two
opposite sides is analyzed (Figure C.6). The size of the crack is defined by a/w = 0.2.
Results are obtained using topological and geometrical enrichment (fixed area with
re/a = 0.3), as well as with both the enrichment functions derived in this work for
anisotropic behavior and the simpler isotropic enrichment functions.

Different material properties are considered. The shear modulus and the Poisson’s
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Figure C.6: Square plate with a center-crack under uniform traction.

ratio are fixed: G12 = 6 GPa and ν12 = 0.03, and the Young moduli E1 and E2 are
calculated from the expressions:

E1 = G12(ϕ + 2ν12 + 1) (C.35)

E2 = E1/ϕ (C.36)

with ϕ being a material parameter defined by the ratio between Youngs moduli. The
numerical results are compared with those obtained using the boundary element method
in References [11, 23] and the extended finite element method in Reference [2].

The plate is discretized using two different Ne × Ne meshes, with Ne = 45 and
Ne = 85. The normalized mode I SIF (KI/(σ

√
πa)), calculated for several values of

the material parameter ϕ are shown in Figures C.7 and C.8 for the Ne = 45 and the
Ne = 85 meshes, respectively.

It can be observed that the results obtained with X-FEM are in good agreement with
the ones calculated via BEM and with the orthotropic X-FEM enrichment functions.
Moreover, the geometrical enrichment leads to a slightly better approximation as com-
pared to the topological enrichment. The difference in between the adopted reference
BEM results [11] and the X-FEM results is shown in Table C.1 for the two FE meshes, as
well as for the different enrichment strategies and crack-tip enrichment functions con-
sidered. Results are shown with a precision of four decimal digits so that comparisons
to those obtained using isotropic enrichment functions can be made.
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Figure C.7: Results for the orthotropic square plate with a center-crack (45 × 45 FE
mesh).
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Figure C.8: Results for the orthotropic square plate with a center-crack (85 × 85 FE
mesh).

C.6.3 Double edge-crack in an anisotropic plate

A square plate (h/w = 1) with a double edge-crack (a/w = 0.5) is considered. The
plate is subjected to a uniform traction applied on opposite sides, as depicted in Figure
C.9.

The plate is a symmetric angle ply composite laminate consisting of four graphite-

116



Table C.1: Difference (%) between the normalized mode I SIF obtained with X-FEM and
the reference BEM solution [11]. Orthotropic plate with center-crack.

45 × 45 mesh

ϕ Anisotropic Isotropic

Topological Geometrical Topological Geometrical

0.1 0.4399 0.1097 0.4926 0.2413
0.3 0.8684 0.5986 0.8699 0.6294
0.5 0.8329 0.5740 0.8307 0.5849
0.7 0.9211 0.6685 0.9193 0.6722
0.9 0.6677 0.4191 0.6670 0.4198
1.1 0.2173 0.0286 0.2181 0.0290
1.5 0.8856 0.6468 0.8893 0.6466
2.5 0.7795 0.5476 0.7907 0.5508
3.5 0.2141 0.0167 0.2321 0.0097
4.5 0.4413 0.2116 0.4654 0.2220

85 × 85 mesh

ϕ Anisotropic Isotropic

Topological Geometrical Topological Geometrical
0.1 0.0323 0.2187 0.0609 0.1469
0.3 0.5883 0.3968 0.5881 0.4140
0.5 0.5726 0.3915 0.5706 0.3977
0.7 0.6693 0.4937 0.6679 0.4958
0.9 0.4207 0.2483 0.4202 0.2487
1.1 0.0263 0.1968 0.0259 0.1971
1.5 0.6504 0.4851 0.6527 0.4847
2.5 0.5546 0.3945 0.5607 0.3957
3.5 0.0069 0.1656 0.0023 0.1622
4.5 0.2231 0.0659 0.2349 0.0713

epoxy laminae, with the following elastic properties: E1 = 144.8 GPa, E2 = 11.7 GPa,
G12 = 9.66 GPa and ν12 = 0.21. To analyze the influence of the fiber orientation on the
SIF, the fibers are rotated from φ = 0◦ to φ = 90◦.

Due to the symmetry of the problem, only half of the plate is discretized, using two
different meshes with 45 × 95 and 85 × 175 elements, respectively. Figures C.10 and
C.11 present the variation of the mode I normalized SIF KI/(σ

√
πa) with respect to the

direction of the fibers φ for each mesh. The normalized SIF calculated with X-FEM show
good agreement with the reference BEM solutions [11, 23]. As expected, better results
are obtained when using the finer mesh with geometrical enrichment (with re/a = 0.3).

The difference between the X-FEM results and the reference BEM solution [11] are
given in Table C.2 for the 85 × 175 mesh.
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Figure C.9: Square plate with double edge-crack under uniform traction.
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Figure C.10: Results for the anisotropic square plate with a double edge-crack (45 × 95
FE mesh).

118



0 10 20 30 40 50 60 70 80 90
1

1.5

2

2.5

 

 

φ

K
I/
(σ
√

π
a)

Sollero and Aliabadi [23]
Garcı́a-Sánchez et al. [11]

topological enrichment (anisotropic)
geometrical enrichment (anisotropic)
topological enrichment (isotropic)
geometrical enrichment (isotropic)

Figure C.11: Results for the anisotropic square plate with a double edge-crack (85 × 175
FE mesh).

Table C.2: Difference (%) between the normalized mode I SIF obtained with X-FEM and
the reference BEM solution [11]. Plate with double edge-crack.

φ(◦)
Anisotropic Isotropic

Topological Geometrical Topological Geometrical

0◦ 2.3827 2.1387 2.4300 2.1759
10◦ 2.0287 1.7646 2.0765 1.8033
20◦ 1.5723 1.2415 1.6303 1.2894
30◦ 1.2332 0.7937 1.2994 0.8480
40◦ 0.3971 0.9580 0.3501 0.9058
50◦ 0.7346 0.0557 0.7591 0.1322
60◦ 4.4156 2.4605 4.4188 2.5704
70◦ 5.8270 3.8994 5.8253 3.9919
80◦ 3.1199 2.4017 3.1228 2.4335
90◦ 1.3978 0.6911 1.3907 0.6614

C.6.4 Slanted center-crack in an anisotropic plate

A rectangular plate (h/w = 2) with an inclined center-crack is considered (see Fig-
ure C.12). Uniform traction is applied on opposite sides of the plate. The material is
a glass-epoxy composite with properties: E1 = 48.26 GPa, E2 = 17.24 GPa, G12 =

6.89 GPa and ν12 = 0.29. The crack length is 2a = 0.4w and the crack is inclined at an
angle of 45◦. The directions of the fibers are rotated from φ = 0◦ to 180◦.

The numerical results are given in Figure C.13 for the normalized mode I SIF (KI/σ
√

πa)
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Figure C.12: Slanted center-crack under uniform traction.

and in Figure C.14 for the normalized mode I I SIF (KII/σ
√

πa), considering a 85 × 175
mesh. As in previous examples, a normalized radius of re/a = 0.3 was adopted for the
geometrical enrichment.

Good agreement is observed between the obtained X-FEM results and the reference
BEM solution [11]. Differences between both sets of results are given in Tables C.3 and
C.4.

C.7 Concluding remarks

In this paper, we presented an extended finite element formulation for the analysis of
fracture problems in plane fully anisotropic materials. New crack-tip enrichment func-
tions were derived in a compact form using Stroh’s formalism. Fracture parameters
were accurately computed by means of the interaction integral method. Several crack
configurations were analyzed, and the accuracy of the obtained results compared favor-
ably with those available in the literature [11, 23]. Results based on anisotropic crack-
tip enrichment functions was compared with those obtained using isotropic crack-tip
functions. Furthermore, both topological and geometrical enrichment strategies were
adopted, and it was demonstrated that the latter yielded better accuracy at the opti-
mal rate of convergence in energy. Although the differences between both types of
enrichment are small, the anisotropic enrichment function provide better results than
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Figure C.13: Normalized mode I SIF for a slanted center-crack (85 × 175 FE mesh).

Table C.3: Difference (%) between the normalized mode I SIF obtained with X-FEM and
the reference BEM solution [11]. Plate with slanted center-crack.

φ
Anisotropic Isotropic

Topological Geometrical Topological Geometrical

0◦ 0.1516 0.0962 0.1717 0.0819
45◦ 1.1000 0.5624 1.0582 0.5048
90◦ 1.1449 0.9689 1.9120 1.7344
105◦ 1.8646 1.7598 2.6425 2.5376
120◦ 1.9719 1.8644 2.7595 2.6561
135◦ 1.9912 1.8579 2.7603 2.6226
180◦ 0.1516 0.0962 0.1717 0.0819

the isotropic ones. The proposed formulation is versatile and can be extended to model
coupled phenomena such as thermoelasticity, piezoelectricity and magnetoelectroelas-
ticity. Moreover, the new enrichment functions allow one to explore other types of
problems, such as crack identification in fully anisotropic two-dimensional materials.
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Figure C.14: Normalized mode I I SIF for a slanted center-crack (85 × 175 FE mesh).

Table C.4: Difference (%) between the normalized mode I I SIF obtained with X-FEM
and the reference BEM solution [11]. Plate with slanted center-crack.

φ
Anisotropic Isotropic

Topological Geometrical Topological Geometrical

0◦ 0.3451 1.0546 0.3026 1.0808
45◦ 1.6632 1.4036 1.6648 1.3965
90◦ 1.8654 0.9698 1.8555 0.9723
105◦ 0.9673 0.6836 0.9614 0.6816
120◦ 0.2618 0.5503 0.2842 0.5850
135◦ 0.4615 0.1919 0.4340 0.1528
180◦ 2.0109 1.8399 2.0534 1.8661
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ABSTRACT

Smart materials such as magnetoelectroelastic (MEE) composites have been studied ex-
tensively in the last few years. These materials exhibit an inherent coupling between
the elastic, electric and magnetic fields. One of the most widely used numerical tools
for simulating its operation under both static and dynamic loading conditions is the
boundary element method (BEM), which requires suitable Green’s functions as the ker-
nel of the method. Although such functions have been deduced for dynamic loading
in terms of the Radon transform [6] by Rojas-Dı́az et al. [9], the resulting fundamen-
tal solution is implicit, and it has to be computed in terms of surface integrals over a
unit sphere, whose kernels show a highly oscillatory behavior for far field points. This
fact leads to very time-consuming computational codes unless a far field asymptotic
approximation is further developed

Keywords: Green’s functions; BEM; magnetoelectroelastic materials; far-field.

D.1 Introduction

The number of applications using smart materials has increased in the last few years.
Sensors, actuators, transducers, electric generators, energy harvesters, medical applica-
tions, are just some of the recent applications of smart materials. The main characteristic
of these materials is their coupling behavior. Examples of smart materials include the
piezoelectric material, presenting coupling between the elastic and electric fields, and
the magnetoelectroelastic (MEE) materials, presenting a more sophisticated coupling
among the elastic, eletric and magnetic fields.

A number of authors have studied the behavior of these materials numerically using
the boundary element method (BEM), which has been proved to be stable and accurate
specially in fracture mechanics problems. The kernel of the BEM lays on the Green’s
functions, responsible for characterizing the behavior of the discretized medium, and it
has been obtained for piezoelectric [2, 5] and MEE materials [4, 9] under different load-
ing conditions. In particular, [9] obtained a Green’s function through an integral over
a unit radius sphere by means of the Radon transform [6]. In this case, the oscillatory
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behavior of the integrand increases with the frequency, becoming infeasible the eval-
uation of the Green’s function for high frequencies or when the distance between the
collocation and the observation points is large.

To overcome this situation, a far field Green’s functions have been deduced for MEE
materials. The proposed approach is based on the work of [10], combining the residue
theorem and the method of stationary phase.

D.2 Formulation

The Hooke’s law applied to a transversely isotropic MEE material with x3 direction as
the symmetry axis is given in Eq.(D.1) using the Voigt notation [11].
⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

σ11
σ22
σ33
σ23
σ13
σ12

D1
D2
D3

B1
B2
B3

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

=

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

C11 C12 C13 0 0 0 0 0 e31 0 0 h31
C12 C22 C23 0 0 0 0 0 e31 0 0 h31
C13 C23 C33 0 0 0 0 0 e33 0 0 h33
0 0 0 C44 0 0 0 e15 0 0 h15 0
0 0 0 0 C44 0 e15 0 0 h15 0 0
0 0 0 0 0 C66 0 0 0 0 0 0
0 0 0 0 e15 0 −ε11 0 0 −β11 0 0
0 0 0 e15 0 0 0 −ε11 0 0 −β11 0

e31 e31 e33 0 0 0 0 0 −ε33 0 0 −β33

0 0 0 0 h15 0 −β11 0 0 −γ11 0 0
0 0 0 h15 0 0 0 −β11 0 0 −γ11 0

h31 h31 h33 0 0 0 0 0 −β33 0 0 −γ33

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

ε1
ε2
ε3

2ε23
2ε13
2ε12

−E1
−E2
−E3

−H1
−H2
−H3

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

(D.1)

where σij represents the stress tensor, Di is the the electric displacement and Bi is the
magnetic induction; Cij represents the elastic stiffness tensor, e ij, hij and βij represent
the piezoelectric, the piezomagnetic and the electromagnetic coupling coefficients, re-
spectively; εij and γij are the dielectric permittivities and the magnetic permeabilities
tensors, respectively; ε ij is the elastic strain tensor, Ei is the electric field and Hi is the
magnetic field. In Eq. (D.1), C66 = 0.5(C11 − C12).

The Navier’s equation of a MEE material under harmonic loads can be defined as

CiJKluK,il + ρω2δJKuK + bJ = 0 (D.2)

where CiJKl is the 4-rank tensor of the constitutive matrix in Eq. (D.1), ρ is the mass
density of the material, ω is the angular frequency, δ JK is the generalized Kronecker
delta, bJ is the generalized body forces vector and uK is defined as

uK =

⎧
⎪⎨
⎪⎩

uk, K=1,2,3
ϕ, K=4
φ, K=5,

(D.3)
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where uk represent the elastic displacements, ϕ is the electric potential and φ is the
magnetic potential. The lowercase subscripts vary from 1 to 3, whilst the uppercase
subscripts vary from 1 to 5.

After some mathematical manipulation, Eq. (D.2) can be redefined as

−ω2Λ = a4∇2Λ+ a5
∂2Λ

∂x2
3
+

∂b2

∂x1
− ∂b1

∂x2
(D.4)

−ω2Γ = a5∇2Γ + a2
∂2Γ
∂x2

3
+ a3

∂2Δ
∂x2

3
+ d2∇2Ψ + d3

∂2Ψ
∂x2

3
+ m2∇2Φ + m3

∂2Φ
∂x2

3
+

∂b3

∂x3
(D.5)

−ω2Δ = a3∇2Γ + a1∇2Δ + a5
∂2Δ
∂x2

3
+ d1∇2Ψ + m1∇2Φ +

∂b1

∂x1
+

∂b2

∂x2
(D.6)

0 = d2∇2Γ + d3
∂2Γ
∂x2

3
+ d1

∂2Δ
∂x2

3
+ d4∇2Ψ + d5

∂2Ψ
∂x2

3
+ z4∇2Φ + z5

∂2Φ
∂x2

3
+

∂b4

∂x3
(D.7)

0 = m2∇2Γ + m3
∂2Γ
∂x2

3
+ m1

∂2Δ
∂x2

3
+ z4∇2Ψ + z5

∂2Ψ
∂x2

3
+ m4∇2Φ + m5

∂2Φ
∂x2

3
+

∂b5

∂x3
(D.8)

where ∇2 = ∂2

∂x2
1
+ ∂2

∂x2
2

and the auxiliary variables are given by

Λ =
∂u2

∂x1
− ∂u1

∂x2
, Δ =

∂u1

∂x1
+

∂u2

∂x2
, Γ =

∂u3

∂x3
, Ψ =

∂ϕ

∂x3
, Φ =

∂φ

∂x3
(D.9)

and the material constants are defined as

a1 =
C11

ρ
, a2 =

C33

ρ
, a3 =

C13 + C44

ρ
, a4 =

C11 − C12

2ρ
, a5 =

C44

ρ

d1 =
e15 + e31

ρ
, d2 =

e15

ρ
, d3 =

e33

ρ
, d4 =

−ε11

ρ
, d5 =

−ε33

ρ

m1 =
h15 + h31

ρ
, m2 =

h15

ρ
, m3 =

h33

ρ
, m4 =

−γ11

ρ
, m5 =

−γ33

ρ

z4 =
−β11

ρ
, z5 =

−β33

ρ

The solution of Eqs. (D.4) to (D.8) can be easily obtained through application of the
Fourier transform. Hence, taking for example the auxiliary variable Λ we obtain

Λ =
∫ ∫ ∫ ∞

−∞
Λ exp(iα.x) dα (D.10)

where the overbar indicates the Fourier transformed variables and α = (α1, α2, α3) is the
wave number vector. Similar expressions can be obtained for the remaining auxiliary
variables Δ, Γ, Ψ and Φ. Thus, the Cartesian displacements transforms u1, u2, u3, ϕ and
φ can be defined as
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u1 =
α1Δ − α2Λ

i(α2
1 + α2

2)
, u2 =

α1Δ + α2Λ

i(α2
1 + α2

2)
, u3 =

Γ
iα3

, ϕ =
Ψ

iα3
, φ =

Φ
iα3

, (D.11)

Lighthill [7] has used the Fourier transform with a mixed approach of the residue the-
orem and the stationary phase method, further extended to elastodynamics by Buch-
wald [1] and used by Sáez and Domı́nguez [10] for the calculation of far field Green’s
functions. An asymptotic aproximation for uK can be defined for large values of x and
is expressed by

uK ≈ 4π2

|x|

⎛
⎝

NH

∑
r=1

CHr fKH (α
(r))√

|KHr ||∇H(r)|
exp(iα(r).x) +

NG

∑
p=1

CGr fKG (α
(p))√

|KGp ||∇G(p)|
exp(iα(p).x)

⎞
⎠ (D.12)

where fHr represents the body forces; NH is the number of points on the surface H = 0
where the normal is parallel to x and α(r)x > 0; ∇H(r) is the gradient of H = 0 at the α(r)

positions; KHr is the Gaussian curvature of H = 0, defined as KHr = κH1κH2 , being κH1

and κH2 the principal curvatures of the surface H = 0; and CHr = exp( 1
4 πi(sgn κH1 +

sgn κH2)). The variables fGr , NG, ∇G(r), KGr and CGr are defined analogously for the
surface G = 0.

Applying the Fourier transform in Eq. (D.4), the surface G = 0 can be stated as

G(α1, α2, α3) = a4(α
2
1 + α2

2) + a5α2
3 − ω2 = 0 (D.13)

which is the slowness surface equation for purely transversal motions. In this class of
material the sheet of the slowness surface associated to the purely transversal motion
is uncoupled.

The surface H = 0 is a quartic which represents the quasi-longitudinal and the quasi-
transversal motions. The equation describing both slowness surfaces can be obtained
through application of the Fourier transform in Eqs. (D.5) to (D.8), obtaining the fol-
lowing linear system

⎡
⎢⎢⎢⎣
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2
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2) a1(α
2
1 + α2
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3 − ω2 d1(α

2
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2) m1(α
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⎤
⎥⎥⎥⎦ ...

...

⎛
⎜⎜⎜⎝

Γ
Δ
Ψ
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⎞
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≡ Ax = b

(D.14)
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where
H(α1, α2, α3) = det(A) = 0 (D.15)

To simplify the formulation, an auxiliary system of coordinates has been used, and
it is illustrated in Fig. D.1, where x3 ≡ x′3 and x′1 has the direction of the projection
of x over the plane x1 − x2. In the new coordinate system, α

(r)
2 = 0, enforcing the

fundamental solution expressions (and its derivatives) represented in the x ′
2 direction

to be zero.

θ

φ

x′3 ≡ x3

x′2

x

x2

x′1x1

Figure D.1: Auxiliary coordinate system.

As studied by Payton [8] and Sáez and Domı́nguez [10], the surface G = 0 is an
ellipsoid, therefore there is only one α(p) point. The quartic H can be decomposed in
two sheets corresponding to the quasi-longidutinal and quasi-transversal motions, H−
and H+ respectively. Duff [3] has shown that the quasi-longitudinal slowness surface
is always convex, thus containing only one α(p) point. The H+ surface may be convex
or not, depending on the class type of the analyzed material, having at least one and
at most three α(r) points. An extensive study on the classification of materials can be
found in [8].

The determination of the α(r) can be simplified by the use of cylindrical coordinates.
The quartic H = 0 can be redefined in terms of polar coordinates as

α1 = R(θ)sin(θ), α3 = R(θ)cos(θ) (D.16)

H = A(θ)R(θ)4 − ω2B(θ)R(θ)2 + C(θ)ω4 = 0

⇒ R±(θ) = ω

(
B(θ)±

√
B(θ)2 − 4A(θ)C(θ)

2A(θ)

)1/2 (D.17)

where R±(θ) defines the H± sheet. The variables A(θ), B(θ) and C(θ) are determined
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substituting Eq. (D.16) in (D.15). The values of θ corresponding to the desired α are
obtained from the solution of the non-linear equation

R(θ)(cosθe′x1 − sinθe′x3) +
dR(θ)

dθ
(sinθe′x1 + cosθe′x3) = 0 (D.18)

where e′x1 and e′x3 are the cosine directors of x in the new coordinate system.

D.3 Numerical results

To validate the proposed far field approach, a degenerate isotropic material has been
considered. The material constants are: C11 = C33 = 283 GPa, C12 = C13 = 121 GPa,
C44 = 80.8 GPa and the rest are neglected. In this case, the slowness surfaces are convex,
therefore there is only one α(r) point. The results for the displacement due to a point
load, both in the x3 direction, are illustrated in Figs. D.2 and D.3, where CL =

√
C33/ρ

and r is the distance taken between the point where to load is applied and the position
where the displacements are measured, forming an angle θ in respect to the x3 direction
in this work. One can verify that the solution obtained with the far field formulation
has a perfect agreement with the analytical solution (see [10]).
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Figure D.2: U33 displacement for θ = 30.

D.4 Summary

This work proposes a new set of far field Green’s functions for MEE materials under
time-harmonic loadings. The method is similar to the one developed by Sáez and
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Figure D.3: U33 displacement for θ = 60.

Domı́nguez [10] for general transversely isotropic materials. A large computational
gain is achieved due to the absence of implicit integration in the formulation, which is
particularly important in 3D problems.

Acknowledgments

This work was funded by the research project DPI2010-21590-C02-02 from the Spanish
Ministerio de Economı́a y Competitividad and the Excelence research project P09-TEP-5054
from the Junta de Andalucı́a.

Bibliography

[1] V. T. Buchwald. Elastic waves in anisotropic media. Philosophical Transactions of the
Royal Society of London. Series A, Mathematical and Physical Sciences, 253(1275):563–
580, 1959.

[2] M. Denda, Y. Araki, and Y. K. Yong. Time-harmonic BEM for 2-D piezoelectric-
ity applied to eigenvalue problems. International Journal of Solids and Structures,
26:7241–7265, 2004.

[3] G. F. D. Duff. The Cauchy problem for elastic waves in an anisotropic medium.
Philosophical Transactions of the Royal Society of London. Series A, Mathematical and
Physical Sciences, 252(1010):pp. 249–273, 1960.

133



[4] F. Garcı́a-Sánchez, R. Rojas-Dı́az, A. Sáez, and C. Zhang. Fracture of magnetoelec-
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ABSTRACT

In this work, an experimental approach for the identification of through thickness
cracks in piezoelectric materials is presented, where the electric potential on the sur-
face of the PZT elements was measured at different locations before and after the crack
was introduced. A damage index (DI) was defined, based on the amount of change in
electrical potential between the intact and damaged states, which was later used to de-
velop an algorithm for identifying and assessing cracks in a PZT element under a time
harmonic load. Cracks of different lengths, depths and orientation were successfully
identified.

Keywords: PZT; Electric potential; Cracks; Damage identification.

E.1 Introduction

Piezoelectricity is the phenomenon described as an electric field is generated upon ap-
plying a mechanical load and vice versa. This effect is utilized for the development of
piezoelectric sensors and actuators. Piezoelectric wafer active sensors (PWAS) are rela-
tively cheap and make use of the piezoelectric principles. For many years, PWAS was
used in structural health monitoring (SHM) for generation of guided waves which have
high sensitivity to surface and embedded structural damage. They have been widely
used to develop various damage identification algorithms for assessing delamination,
de-bonding, holes, cracks/notches and corrosion in both composite and metallic mate-
rials [2, 3, 7, 11, 12, 14].

The behavior of the piezoelectric materials (e.g. PZT) has been studied extensively in
the past decades. Researchers have focused on the study of the effect of damage on the
measured dynamic response of structures where PZT elements were used as actuators
or sensors. However, limited attention has been directed towards monitoring the state
of the PZT elements themselves, which is considered very critical in order to ensure
that the acquired data host structure are trustful.

PZT sensors are usually brittle and could easily crack, several reports indicated that a
positive electrical field applied to the PZT ceramic could slow down the crack propaga-
tion, however a negative electrical field would have an contrary effect [9,13,16]. Putting
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a structural component in service with the piezoelectric ceramics installed on it, entails
the need for evaluation methods to access the integrity of the structural health moni-
toring system itself during the life service. A minimum amount of work have focused
on inspection of the sensors, while some researchers have focused on numerically sim-
ulation the change in electric potential due to the existence of crack or damage [4,8,10],
on the other hand no experimental results has been recalled.

In this work, PZT ceramics with different types of damage including through thick-
ness cracks and holes were assessed experimentally. Measures of the electric potential
are taken at different locations on the PZT surface and compared to the original state. A
damage index is defined and a hybrid scheme is proposed, using probabilistic analysis,
sensing paths and mapping of the damage indexes.

E.2 Experiment

E.2.1 Sample preparation and experimental set-up

Two PZT plate measuring 50 x 50 mm (PQYY+0598) with a thickness of 1mm were
bonded to an aluminum plate (60 x 60 mm acting like a substrate) using LOCTITE©
super glue. The properties of the PZT ceramic are shown in Table E.1 [1]. Another
circular PZT element measuring 10 mm in diameter and 1 mm in thickness was placed
on the opposite side of the aluminum plate and located in the middle of the plate as
shown in Fig. E.1 functioning as actuator.

Table E.1: Piezoelectric plate properties.

Physical and dielectric properties PIC 151 Unit Value
Density ρ Kg/m3 7800
Curie temperature Tc

◦C 250

Relative permittivity
In the polarization direction εT

33/ε0 - 2400
Direction ⊥ to the polarity εT

11/ε0 - 1980
Electro-mechanical properties

Coupling factor

Kp - 0.62
Kt - 0.53
K31 - 0.38
K33 - 0.69

Piezoelectric voltage coefficient
d31 10−12C/N

−210
d33 500

Piezoelectric voltage coefficient
g31 10−3Vm/N

−11.5
g33 - 22

A sinusoidal tone burst enclosed in a Hanning window with peak-to-peak voltage
of 15 Volts was used as the input signal for the actuator. Activation and acquisition
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Figure E.1: Schematic view of the experiment set-up.

of wave signals were fulfilled using an active signal generation and data acquisition
system developed on the VXI platform, consisting mainly of a signal generation unit
(Agilent© E1441), signal amplifier (PiezoSys EPA-104), signal conditioner (Agilent©
E3242A) and signal digitizer (Agilent© E1437A). The wave signals were captured at a
sampling rate of 20.48 MHz. The acquisition duration was set to insure that the acti-
vated wave modes were captured. Three damage cases were introduced into the ce-
ramic plate and they are summarized in Fig. E.2. The panels were clamped at the four
edges during the experiment. Twenty four measurements of the electrical potential
were taken on top of the plate as show in Fig. E.2.

The objective of this set-up is to determine the influence of different types of damage
on the measure of the electric potential. It may be seen that is straight forward to detect
damage in a PZT plate, however is slightly difficult to quantify it accordingly.
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Figure E.2: Damage cases tested.

E.3 Signal processing and data fusion

The applied methodology for damage identification in piezoelectric materials was to
define a damage index (DI) as the quantification of the damage influence on the ac-
quired signal. The DI was calculated using the correlation between two different states,
i.e. the damaged and the undamaged, and it is stated as

ρx,y =
n ∑ xiyi − ∑ xi ∑ yi√(

n ∑ x2
i − (∑ xi)2

) (
n ∑ y2

i − (∑ yi)2
) (E.1)

where x and y are two signals with n entries. Low values of the correlation indicates
that the damage is very close to the point of inspection, in contrast, high values means
that the damage is far away.

Data fusion is applied to obtain an approximation of the area affected by the damage.
This scheme has the advantage of providing a graphical solution in the considered do-
main. A number of sensing paths Dsk is considered, taken from the known measuring
points Sm (m = 1 · · · 24) to a specific position (x, y) on the plate. The probability of the
presence of damage (POD) can be defined as [15]

P(x, y) =
M

∑
k=1

DIkWk (E.2)
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where M is the number of measurements, DIk = 1 − |ρx,y| is the damage index and Wk

is a weight parameters which depends on the distance between position (x, y) and the
kth measuring point. In this work, a Gaussian distribution was used in order to smooth
the distribution of the damage index. The parameter Wk can be written as

Wk =
1

σ
√

2π
exp

(
−D2

sk
2σ2

)
(E.3)

with the standard deviation parameter σ = 12 mm.

E.4 Results

A 5-cycles toneburst wave at the centered frequency of 200 kHz was used as exciting
signal, except if specified differently. The current response corresponds to the actual
damage state of the PZT plate, and it is compared to a reference state, composed by the
measures of the previous state. Damages were introduced into the PZT plate and their
assessment will be presented in the following sections.

E.4.1 Slanted crack identification

A slanted crack centered at the position (25.95;14.5) mm with length 21.58 mm and
orientation θ = 56.5◦ is analysed. Due to the particularity of the material properties,
the results are very similar at all measuring positions. The measured signals in Fig. E.3
represent the comparison of the present and reference state at the position (27.65;25.0)
mm.

The difference in the amplitude of signals is clearly identified, and in addition the
crack resulted in some time delay between both states. It may be challenging to extract
the damage features from the signals in order to located and assess the damage.

As stated before, the damage index depends on the correlation of the signals from
different states. High values indicate a significant difference of both signals, whilst
small values implicate that the signals are very identical to each other. Fig. E.4 includes
the data fusion of the probability image of the damage, calculated using Eq. (E.2), where
the DI is obtained from the present and reference states. The data fusion of the results
in this damage cases did not give precise prediction of the crack location, which may be
attributed to two factors: (a) the signal obtained from the damage state is very identical
to the reference one, and (b) the actuator is fixed at the center of the plate, therefore it
may restrict the damage sensitivity provided by the input signal.

An alternative was to map the current DI into a new configuration, where the infor-
mation concerning the state of the plate is the same, and still allowing the data fusion to
present relevant information of the probability of damage in the plate. This approach
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Figure E.3: Comparation between present (damaged) and reference (undamaged)
states.
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Figure E.4: Data fusion of present (damaged) and reference (undamaged) states for the
slanted crack identification.
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is very common in damage identification problems using neural networks [5]. In this
situation, a large amount of data representing the analysed problem is normalized in
function of a mapping technique, leading to a faster training of the neural network and
improved identification results. For more details refer to [4, 6, 12].

A Gaussian type mapping was applied and it is defined as

z = (x − x)
(

zσ

xσ

)
+ z (E.4)

where x and xσ are the mean and standard deviation of x, respectively. z and zσ are the
desired values of mean and standard deviation of the resulting mapping. In this study,
z = 0.5 and zσ = 1. The application of this mapping technique is consistent with the
calculation of previous parameters for obtaining the POD of the plate, since the weights
have a Gaussian distribution as well. Fig. E.5 shows the new reconstructed image after
the mapping of the DI.
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Figure E.5: Data fusion and mapping techniques applied in the slanted crack
identification.

The crosses indicate the signal acquisition positions and the line depicts the real
crack. A dramatic improvement in the results was noticed upon introducing the map-
ping into the algorithm.
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E.4.2 Horizontal crack identification

Another crack with zero slope was introduced into a second plate and was evaluated.
The crack is centered at the position (15.5;10.1) mm with length 8 mm and parallel to
the x-axis. Fig. E.6 shows the signals of present and reference states. In this case, the
excitation signal is centered at the frequency 250 kHz. As in the previous case, only the
signals at one position are shown for demonstration.
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Figure E.6: Comparation between present (damaged) and reference (undamaged) states
for the horizontal crack identification.

A small vertical shift and the decrease of the signal amplitude in some peaks are the
perceived changes caused by the introduction of the crack. Fig. E.7 illustrates the data
fusion of the DI mapping for the crack identification. A reasonable identification is
provided for this crack.

E.4.3 Experimental hole identification

A hole was introduced into the PZT plate, centered at the position (14.43;37.5) mm
and radius equal to 4.5 mm. Fig. E.8 illustrates the signals for present and reference
states. We consider the reference state as the damaged state of the previous section.
Thus, the differences between the signals remarked at the present state are caused by
the introduction of an additional defect in the PZT plate.

Fig. E.9 depicts the data fusion of the mapped DI. An excellent estimation of the hole
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Figure E.7: Data fusion and mapping techniques applied in the horizontal crack
identification.
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Figure E.8: Comparation between present (introduction of hole) and reference (horizon-
tal crack) states for the hole identification.
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position was predicted.
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Figure E.9: Data fusion and mapping techniques applied in the hole identification.

E.5 Conclusions

In this work, an experimental approach for damage assessment in piezoelectric plates
has been proposed, based on the correlation at several positions on the plate surface. A
data fusion scheme to calculate the probability of damage over the surface, improved
by the adoption of a Gaussian mapping. Changes in the electric potential were found
to be very small, even for large imposed damages, which could be due to the fact that
the electric potential on the surface is almost constant, since the poling direction is in
the z-axis. If the poling were in the x or y-axis, a more proeminent change would be
noticed. Using the proposed methodology, other types of defects such as de-bonding
and impact damage can be detected and quantified.
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