
University of Poitiers University of Seville
Department XLIM-SIC Department of Applied Maths I

Thesis submitted by Ana Maŕıa PACHECO-MARTÍNEZ
for obtaining the degree of Doctor

Extracting cell complexes from
4–dimensional digital images

Advisors : Pascal LIENHARDT and Pedro REAL

Tutor : Juan NÚÑEZ-VALDÉS

Thesis reported by :

Prof. Guillaume DAMIAND .......................................... University of Lyon
Prof. Massimo FERRI ................................................... University of Bologna

Thesis defended in front of the jury composed by :

Prof. Ángel FRANCÉS ............................................ University of Saragossa
Prof. Patrizio FROSINI ........................................... University of Bologna
Prof. Yukiko KENMOCHI ....................................... University of Paris Est
Prof. Pascal LIENHARDT ...................................... University of Poitiers
Prof. Pedro REAL ................................................... University of Seville



RÉSUMÉ

Une image numérique peut être définie comme un ensemble de n–xels
sur une grille constituée de n–cubes. Les n–xels peuvent être identifiés avec :
(1) les n–cubes de la grille, ou avec (2) les points centraux de ces n–cubes.
Dans le premier cas, nous travaillons avec une grille primale, mais dans le
deuxième cas, nous travaillons avec une grille duale construite à partir de la
grille primale.

La segmentation consiste à calculer une partition d’une image en régions.
Les n–xels ayant des caractéristiques similaires (couleur, intensité, etc.) sont
regroupés. Schématiquement, à chaque n–xel est attribuée une étiquette, et
chaque région de l’image est constituée de n–xels de même étiquette. En
particulier, si les uniques étiquettes autorisées pour les n–xels sont “blanche”
et “noire”, la segmentation est dit binaire : les n–xels noirs forment le premier
plan (foreground) ou région d’intérêt dans une tâche d’analyse d’image, et les
n–xels blancs forment le fond (background).

Certains modèles, comme les Graphes d’Adjacence de Régions (RAGs),
les Graphes Duaux (DGs) et la carte topologique, ont été proposés pour
représenter les partitions en régions, et en particulier pour représenter la to-
pologie de ces régions, c.a.d. les relations d’incidence et/ou d’adjacence entre
les différentes régions. Le RAG [27] est un précurseur de ce type de modèles,
et il a été une source d’inspiration des DGs [18] et de la carte topologique
[9, 10]. Un RAG représente une image primale étiquetée par un graphe : les
sommets du graphe correspondent à des régions de l’image, et les arêtes du
graphe représentent les relations d’adjacence entre les régions. Les DGs sont
un modèle permettant de résoudre certains inconvénients des RAGs pour
représenter des images de dimension 2. La carte topologique est une exten-
sion des modèles précédents définie pour manipuler des images primales de
dimension 2 et 3 ; elle représente non seulement les relations topologiques,
mais aussi les relations géométriques.

D’autre part, les methodes “de type” Marching cubes [12, 23, 24] et Ken-
mochi et al. [14, 15, 16] construisent des complexes représentant la topologie
de la région d’intérêt d’une image numérique binaire de dimension 3. Dans
la première méthode, l’algorithme construit un complexe simplicial, dont
0–cellules sont des points des arêtes de la grille duale. Dans la deuxième



RÉSUMÉ ii

méthode, les auteurs construisent un complexe cellulaire sur une grille duale,
c.a.d les 0–cellules du complexe sont des sommets de la grille duale. Afin
de construire le complexe, Kenmochi et al. calculent (à rotations près) les
différentes configurations de sommets blancs et noirs d’un cube, puis, ils
construisent les enveloppes convexes des points noirs de ces configurations.
Ces enveloppes convexes définissent les cellules du complexe, à rotations près.

Le travail développé dans cette thèse étend la méthode de Kenmochi et
al. en dimension 4. L’objectif est de construire un complexe cellulaire à partir
d’une image numérique binaire définie sur une grille duale. Nous calculons
d’abord les différentes configurations de sommets blancs et noirs d’un 4–
cube (à isométries près), puis, nous construisons des enveloppes convexes
définies par ces configurations. Ces enveloppes convexes sont construites par
déformation du 4–cube d’origine, et nous distinguons différentes opérations
de construction de base (déformation, dégénérescence de cellules, etc.) Enfin,
nous précisons la construction du complexe cellulaire correspondant à une
image duale par assemblage des cellules ainsi obtenues.



RESUMEN

Una imagen digital puede ser definida como un conjunto de n–xeles en un
mallado constituido de n–cubos. Los n–xeles pueden ser identificados con:
(1) los n–cubos del mallado, o con (2) los puntos centrales de estos n–cubos.
En el primer caso, trabajamos con un mallado primal, mientras que en el
segundo, trabajamos con un mallado dual construido a partir del mallado
primal.

La segmentación consiste en calcular una partición de una imagen en
regiones. Los n–xeles que tienen caracteŕısticas similares (color, intensidad,
etc.) son reagrupados. Esquemáticamente, a cada n–xel se le asocia una eti-
queta, y cada región de la imagen está constituida de n–xeles con la misma
etiqueta. En particular, si las únicas etiquetas permitidas para los n–xeles
son “blanca” y “negra”, la segmentación se dice binaria: los n–xeles negros
forman el primer plano (foreground) o región de interés en cuestión de análisis
de la imagen, y los n–xeles blancos forman el fondo (background).

Ciertos modelos, como los Grafos de Adyacencia de Regiones (RAGs), los
Grafos Duales (DGs) y la carta topológica, han sido propuestos para represen-
tar las particiones en regiones, y en particular para representar la topoloǵıa
de estas regiones, es decir las relaciones de incidencia y/o adyacencia entre
las diferentes regiones. El RAG [27] es un precursor de este tipo de modelos,
y ha sido una fuente de inspiración de los DGs [18] y de la carta topológica
[9, 10]. Un RAG representa una imagen primal etiquetada por un grafo: los
vértices del grafo corresponden a regiones de la imagen, y las aristas del grafo
representan las relaciones de adyacencia entre la regiones. Los DGs son un
modelo que permite resolver ciertos inconvenientes de los RAGs para repre-
sentar imágenes de dimensión 2. La carta topológica es una extensión de los
modelos anteriores definida para manipular imágenes primales de dimensión
2 y 3, representando no solamente las relaciones topológicas, sino también
las relaciones geométricas.

Por otra parte, los métodos “de tipo” Marching cubes [12, 23, 24] y Ken-
mochi et al. [14, 15, 16] construyen complejos que representan la topoloǵıa
de la región de interés de una imagen digital binaria de dimensión 3. En el
primer método, el algoritmo construye un complejo simplicial cuyas 0–celdas
son puntos de las aristas del mallado dual. En el segundo método, los autores



RESUMEN iv

construyen un complejo celular en un mallado dual, es decir las 0–celdas del
complejo son vértices del mallado dual. Con el fin de construir el complejo,
Kenmochi et al. calculan (salvo rotaciones) las diferentes configuraciones de
vértices blancos y negros de un cubo, después, ellos construyen las envolven-
tes convexas de los puntos negros de estas configuraciones. Estas envolventes
convexas definen las celdas del complejo, salvo rotaciones.

El trabajo desarrollado en esta tesis extiende el método de Kenmochi et
al. a dimensión 4. El objetivo es construir un complejo celular a partir de una
imagen digital binaria definida en un mallado dual. Calculamos primero las
diferentes configuraciones de vértices blancos y negros de un 4–cubo, salvo
isometŕıas, después, construimos las envolventes convexas definidas por estas
configuraciones. Estas envolventes convexas se construyen mediante deforma-
ciones del 4–cubo de origen, para lo que distinguiremos distintas operaciones
elementales de construcción (deformación, degeneración de celdas, etc.). Fi-
nalmente, precisamos la construcción del complejo correspondiente a una
imagen dual ensamblando las celdas aśı obtenidas.



ACKNOWLEDGEMENTS

This thesis begins on September 30, 2007, when I leave my home town
(Cádiz) in order to go to Sevilla for writing a doctoral thesis.

At Seville, during my master courses, I meet Prof. Núñez-Valdés (Juan),
who will become tutor of this thesis. Juan shows me the “small world” of the
research, and he welcomes me to his research group, allowing me to attend to
my first conferences. Thanks to Juan, I meet several colleagues sharing my
same interests. I have lived a lot of important moments of my “researcher
life” with them. Thank you very much to all of them.

During the last months of the master, Juan introduces me to Prof. Real-
Jurado (Pedro), one of the advisors of this thesis. Pedro helps me to get
a grant (actually two grants), which allows me to continue researching. In
mid-2008, I start with Pedro a research line that will become this thesis.

After obtaining my first grant, Pedro introduces me to Prof. Lienhardt
(Pascal), who is also an advisor of this thesis. I will be eternally grateful to
Pascal, because this thesis would never have existed without him. Pascal,
every minute that I have spent working with you has been a pleasure and an
honor for me. Thanks for helping me to overcome all the difficulties (as those
related to language as those of intellectual type) that have emerged during
these years.

I want to appreciate the help that my family has given me, not only during
this thesis, but during all my life. I remember the first years on my way to
the kindergarten, when I read the numbers of the houses; the wonderful years
at the school; the choice of high school; and then that of the degree... Thanks
for supporting my decisions, thanks for helping me to become the person I
am today.

I am grateful to all my colleagues at the Department of Applied Math-
ematics I of Seville University. Thanks for giving me my first contract of
employment, helping me to discover the “small world” of the teaching at the
university level. Thank you very much for the support that you have given
me during these years. Thanks for worrying about me, and for telling me
the words I needed to hear.

I am also grateful to my colleagues at the Laboratory XLIM-SIC of
Poitiers University. They have enabled that I have found that my three long



ACKNOWLEDGEMENTS vi

stays (five months each of them) in Poitiers had been very quickly. Thanks
for your professional and personal interest for me, thanks for your smiles,
thanks for your kindness, and thanks for receiving me. You have enabled
that I feel at home.

Finally, I am grateful to the members of the jury and to the reviewers
who have drawn up the reports of this thesis.



CONTENTS

1. Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

2. Reconstruction methods . . . . . . . . . . . . . . . . . . . . . . . . 3
2.1 Context . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
2.2 State of the art . . . . . . . . . . . . . . . . . . . . . . . . . . 8

2.2.1 Object reconstruction from labeled images . . . . . . . 9
2.2.1.1 Region Adjacency Graph (RAG) . . . . . . . 9
2.2.1.2 Dual Graphs (DGs) . . . . . . . . . . . . . . 10
2.2.1.3 Topological map . . . . . . . . . . . . . . . . 12

2.2.2 Object reconstruction from binary images . . . . . . . 15
2.2.2.1 Marching squares . . . . . . . . . . . . . . . . 15
2.2.2.2 Kenmochi et al. method in 2D . . . . . . . . 16
2.2.2.3 Marching squares vs. Kenmochi et al. method

in 2D . . . . . . . . . . . . . . . . . . . . . . 16
2.2.2.4 Marching cubes . . . . . . . . . . . . . . . . . 18
2.2.2.5 Kenmochi et al. method . . . . . . . . . . . . 26
2.2.2.6 Marching cubes vs. Kenmochi et al. . . . . . 31

3. Extracting 3–dimensional cell complexes from binary digital images 33
3.1 Look-up table construction . . . . . . . . . . . . . . . . . . . . 34

3.1.1 Pattern subsets . . . . . . . . . . . . . . . . . . . . . . 34
3.1.1.1 A first solution . . . . . . . . . . . . . . . . . 34
3.1.1.2 A second solution . . . . . . . . . . . . . . . . 44

3.1.2 Pattern cells . . . . . . . . . . . . . . . . . . . . . . . . 50
3.1.2.1 Finding the edges to degenerate . . . . . . . . 50
3.1.2.2 An order relation on the edge degeneracies . . 55
3.1.2.3 Convex hull of a pattern subset . . . . . . . . 58

3.2 Construction of the cell complex . . . . . . . . . . . . . . . . . 64
3.2.1 Subsets of points of an image . . . . . . . . . . . . . . 65

3.2.1.1 Localizing subsets of points of an image . . . 65
3.2.1.2 Classifying subsets of points of an image . . . 67

3.2.2 Cells of the cell complex . . . . . . . . . . . . . . . . . 68



Contents viii

3.2.2.1 Pattern cells of the cell complex . . . . . . . . 68
3.2.2.2 Inverting the isometries . . . . . . . . . . . . 69

3.3 Simplification of the cell complex . . . . . . . . . . . . . . . . 70
3.4 Comparison with Kenmochi et al. method . . . . . . . . . . . 71

4. Extracting 4–dimensional cell complexes from binary digital images 75
4.1 Look-up table construction . . . . . . . . . . . . . . . . . . . . 75

4.1.1 Pattern subsets . . . . . . . . . . . . . . . . . . . . . . 75
4.1.1.1 A first solution . . . . . . . . . . . . . . . . . 76
4.1.1.2 A second solution . . . . . . . . . . . . . . . . 83

4.1.2 Pattern cells . . . . . . . . . . . . . . . . . . . . . . . . 86
4.1.2.1 Convex hull of a pattern subset . . . . . . . . 88

4.2 Construction of the cell complex . . . . . . . . . . . . . . . . . 94
4.2.1 Vertex level . . . . . . . . . . . . . . . . . . . . . . . . 94
4.2.2 Cell level . . . . . . . . . . . . . . . . . . . . . . . . . . 95

4.3 Simplification of the cell complex . . . . . . . . . . . . . . . . 96

5. Conclusions and future works . . . . . . . . . . . . . . . . . . . . . 99

Bibliography . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101

Appendix 104

A. Pattern subsets in Z4 . . . . . . . . . . . . . . . . . . . . . . . . . . 107

B. Pattern cells in R4 . . . . . . . . . . . . . . . . . . . . . . . . . . . 129



LIST OF FIGURES

2.1 Photographs, statues and holograms are images . . . . . . . . 3
2.2 Approaches for defining a digital image . . . . . . . . . . . . . 4
2.3 Primal and dual grid for n = 2 . . . . . . . . . . . . . . . . . . 4
2.4 Extruding a point, edge, square and cube . . . . . . . . . . . . 5
2.5 Primal and dual complexes . . . . . . . . . . . . . . . . . . . . 5
2.6 Neighborhoods between pixels . . . . . . . . . . . . . . . . . . 6
2.7 Neighborhoods between n–xels of the primal grid . . . . . . . 7
2.8 Neighborhoods between n–xels of the dual grid . . . . . . . . . 8
2.9 An image and its RAG . . . . . . . . . . . . . . . . . . . . . . 10
2.10 Different images with the same RAG . . . . . . . . . . . . . . 10
2.11 Multi-graph constructed from a RAG . . . . . . . . . . . . . . 11
2.12 Labeled image with three regions . . . . . . . . . . . . . . . . 12
2.13 A combinatorial map . . . . . . . . . . . . . . . . . . . . . . . 13
2.14 Level 0 map . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
2.15 Level 1 map . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
2.16 Level 2 map . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
2.17 Level 3 map . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
2.18 Marching squares . . . . . . . . . . . . . . . . . . . . . . . . . 16
2.19 Kenmochi et al. method in 2D . . . . . . . . . . . . . . . . . 16
2.20 An example of grid in marching cubes . . . . . . . . . . . . . 18
2.21 Unmarked and marked points of a grid in marching cubes . . . 20
2.22 Intersection points on a marching cubes grid . . . . . . . . . . 21
2.23 Surfaces intersecting complementary cubes . . . . . . . . . . . 22
2.24 Portion of surface contained in the cubes . . . . . . . . . . . . 23
2.25 Ambiguous topologies . . . . . . . . . . . . . . . . . . . . . . . 24
2.26 Holes in a face due to an ambiguity . . . . . . . . . . . . . . . 25
2.27 3–dimensional binary digital image . . . . . . . . . . . . . . . 29
2.28 Cell complex constructed from an image . . . . . . . . . . . . 30
2.29 Representation of an object . . . . . . . . . . . . . . . . . . . 31

3.1 Steps of the procedure . . . . . . . . . . . . . . . . . . . . . . 33
3.2 Multi-graph associated with a subset of vertices of the unit cube 35
3.3 Isometry sending S into S ′ and CS into CS′ . . . . . . . . . . 36



List of Figures x

3.4 Two isometries sending S into S ′ . . . . . . . . . . . . . . . . 36
3.5 Two isometries sending S into S ′ and CS into CS′ . . . . . . . 37
3.6 Multi-graphs associated with the subsets of 7 vertices . . . . . 40
3.7 Scheme of an efficient algorithm for finding pattern subsets . . 44
3.8 Rotation on a face of angle π/2, −π/2 and π radians . . . . . 45
3.9 Rotation on an edge of angle π radians . . . . . . . . . . . . . 45
3.10 Rotation on a vertex of angle 2

3
π and −2

3
π radians . . . . . . . 45

3.11 Reflection on a face . . . . . . . . . . . . . . . . . . . . . . . . 46
3.12 Reflection on an edge . . . . . . . . . . . . . . . . . . . . . . . 46
3.13 Edge, face and volume degeneracy . . . . . . . . . . . . . . . . 50
3.14 Computing the convex hull of a subset of a cube . . . . . . . . 51
3.15 Degenerating any edge . . . . . . . . . . . . . . . . . . . . . . 52
3.16 Degenerating an edge of the cube . . . . . . . . . . . . . . . . 52
3.17 Decomposing a cube into two prisms . . . . . . . . . . . . . . 53
3.18 Degenerating an edge of the prism . . . . . . . . . . . . . . . . 53
3.19 Degenerating a pyramid from the apex . . . . . . . . . . . . . 53
3.20 Deforming a pyramid from its base . . . . . . . . . . . . . . . 54
3.21 A tetrahedron, triangle and edge degeneracy . . . . . . . . . . 54
3.22 Deforming a volume of 6 vertices into a volume of 5 vertices . 55
3.23 Importance of an order on the edge degeneracies . . . . . . . . 56
3.24 An order on the edge degeneracies . . . . . . . . . . . . . . . . 57
3.25 Rooted spanning trees in the cube . . . . . . . . . . . . . . . . 58
3.26 A square is deformed into a non-planar face with 4 vertices . . 59
3.27 A square is deformed into a triangle . . . . . . . . . . . . . . . 60
3.28 A triangle is deformed into a triangle . . . . . . . . . . . . . . 60
3.29 Degeneracy of a triangle into an edge . . . . . . . . . . . . . . 61
3.30 Degeneracy of a pyramid into a square . . . . . . . . . . . . . 61
3.31 Degeneracy of a tetrahedron into a triangle . . . . . . . . . . . 61
3.32 Diagram of the procedure . . . . . . . . . . . . . . . . . . . . 65
3.33 Stages of the cube scanning . . . . . . . . . . . . . . . . . . . 66
3.34 Pattern subsets of an image . . . . . . . . . . . . . . . . . . . 68
3.35 Pattern cells of the cell complex . . . . . . . . . . . . . . . . . 69
3.36 Attaching a square to a triangle . . . . . . . . . . . . . . . . . 69
3.37 Cell complex constructed from an image . . . . . . . . . . . . 70
3.38 Simplified cell complex . . . . . . . . . . . . . . . . . . . . . . 71
3.39 Multi-graphs associated with configurations of voxels . . . . . 72
3.40 Image comparison . . . . . . . . . . . . . . . . . . . . . . . . . 73
3.41 Object comparison . . . . . . . . . . . . . . . . . . . . . . . . 74

4.1 Multi-graph associated with a subset of the unit 4–cube . . . . 76
4.2 Two non-isometric isomorphic multi-graphs . . . . . . . . . . 79



List of Figures xi

4.3 Multi-graphs associated with the subsets of 8 vertices . . . . . 80
4.4 Degenerated 4–cube . . . . . . . . . . . . . . . . . . . . . . . . 86
4.5 Computing the convex hull of a subset of a 4–cube . . . . . . 87
4.6 Importance of an order on the edge degeneracies . . . . . . . . 87
4.7 Order on the degeneracy of edges of the 4–cube . . . . . . . . 88
4.8 A tetrahedron is deformed into a tetrahedron . . . . . . . . . 89
4.9 A pyramid is deformed into a pyramid . . . . . . . . . . . . . 89
4.10 A pyramid is deformed into a non-spatial volume . . . . . . . 90
4.11 Non-spatial volume cut up into two cospatial volumes . . . . . 91
4.12 Non-spatial volume cut up into two volumes . . . . . . . . . . 91
4.13 Degeneracy of a hypertetrahedron into a tetrahedron . . . . . 92
4.14 A hypervolume is deformed into a cube with an inside edge . . 93
4.15 A hypervolume is deformed into two cospatial volumes . . . . 93



LIST OF TABLES

2.1 Extreme case of marching squares . . . . . . . . . . . . . . . . 17
2.2 Configurations with one (resp. seven) black voxel . . . . . . . 19
2.3 Configurations of unmarked and marked vertices of a cube . . 19
2.4 Marching cubes look-up table . . . . . . . . . . . . . . . . . . 21
2.5 Configurations of unmarked and marked vertices of a square . 24
2.6 The ways a surface can intersect a square face . . . . . . . . . 24
2.7 Neighborhoods resolving ambiguities . . . . . . . . . . . . . . 25
2.8 Configurations of voxels obtained by Kenmochi et al. . . . . . 27
2.9 The 22 unit cells obtained by Kong and Roscoe . . . . . . . . 28
2.10 The 23 cells obtained by Kenmochi et al. . . . . . . . . . . . . 29
2.11 Chernyaev look-up table . . . . . . . . . . . . . . . . . . . . . 31

3.1 Inner and outer square faces of a cube . . . . . . . . . . . . . 39
3.2 Isomorphisms between some multi-graphs of 7 vertices . . . . 41
3.3 Pattern subsets in Z3 . . . . . . . . . . . . . . . . . . . . . . . 43
3.4 CPU time for computing pattern subsets in Z3 . . . . . . . . . 48
3.5 Pattern subsets by using lexicographic order . . . . . . . . . . 49
3.6 Pattern cells (together with its boundary) in R3 . . . . . . . . 64

4.1 Inner and outer cubic volumes of a 4–cube . . . . . . . . . . . 78
4.2 Isomorphic and non-isomorphic multi-graphs with 8 vertices . 81
4.3 Pattern subsets in Z4 with 0,1,2,14,15,16 points . . . . . . . . 82
4.4 CPU time for computing pattern subsets in Z4 . . . . . . . . . 85
4.5 Pattern subsets in Z4 with 0,1,2,14,15,16 points by using lex-

icographic order . . . . . . . . . . . . . . . . . . . . . . . . . . 85



1. INTRODUCTION

A digital image can be defined as a set of n–xels on a grid made up by
n–cubes. The n–xels can be identified with (1) the n–cubes of the grid; or
with (2) the central points of these n–cubes. In the first case, we work with a
primal grid; whereas in the second one, we work with a dual grid constructed
from the primal one.

Segmentation consists in computing a partition of an image into regions.
The n–xels having similar characteristics (color, intensity, etc.) are re-
grouped. Schematically, each n–xel is assigned a label, and each region of
the image is made up by n–xels with the same label. Particularly, if the only
labels allowed for the n–xels are “white” and “black”, the segmentation is
said binary: the black n–xels form the foreground or region of interest in an
image analysis task, and the white n–xels form the background.

Some models, as Region Adjacency Graphs (RAGs), Dual Graphs (DGs)
and Topological map, have been proposed for representing partitions into re-
gions, and particularly for representing the topology of these regions, i.e. the
incidence and/or adjacency relations between the different regions. RAG [27]
is a precursor of this type of models, and it has been a source of inspiration
of the DGs [18] and the topological map [9, 10]. A RAG represents a labeled
primal image by a graph: the vertices of the graph correspond to regions
of the image, and the edges of the graph represent the adjacency relations
between regions. DGs are a model allowing us to resolve some disadvantages
of RAGs for representing 2–dimensional images. The topological map is an
extension of the previous models defined for handling primal images of di-
mension 2 and 3, representing not only the topological relations but also the
geometrical ones.

On the other hand, the methods “type” Marching cubes [12, 23, 24] and
Kenmochi et al. [14, 15, 16] construct complexes representing the topology
of the region of interest of a 3–dimensional binary digital image. In the first
method, the algorithm constructs a simplicial complex, whose 0–cells are
points of the edges of the dual grid. In the second one, the authors construct
a cell complex on a dual grid, i.e. the 0–cells of the complex are vertices of
the dual grid. In order to construct the complex, Kenmochi et al. compute
(up to rotations) the different configurations of white and black vertices of a



1. Introduction 2

cube, and then, they construct the convex hulls of the black points of these
configurations. These convex hulls define the cells of the complex, up to
rotations.

The work developed in this thesis extends Kenmochi et al. method to
dimension 4. The goal is to construct a cell complex from a binary digital
image defined on a dual grid. First, we compute the different configurations
of white and black vertices of a 4–cube, up to isometries, and then, we
construct the convex hulls defined by these configurations. These convex
hulls are constructed by deforming the original 4–cube, and we distinguish
several basic construction operations (deformation, degeneracy of cells, etc.).
Finally, we construct the cell complex corresponding to the dual image by
assembling the cells so obtained.

This thesis is structured as follows. In Chapter 2, first, we recall some
important notions related to digital images such as: primal and dual grid,
primal and dual complex, neighborhood, etc.; and then, we list different
methods for representing a partition of an image into regions, we show the
advantages and disadvantages of these methods, and we compare each other.
In Chapter 3, we construct a look-up table containing (up to isometries) all
the cells which can be defined from a subset of vertices of a cube. These cells
allow us to construct a cell complex associated with the image. Then, we
simplify this complex in order to represent the only region of interest of the
image. Finally, we compare the results obtained by using our method with
those obtained by using Kenmochi et al. method. In Chapter 4, we extend to
dimension 4 the results obtained in Chapter 3. Consequently, we construct a
look-up table containing (up to isometries) all the cells which can be defined
from a subset of vertices of a 4–cube. These cells allow us to construct a cell
complex associated with the 4–dimensional image. Finally, the only region
of interest of the image is obtained by simplifying this complex.



2. RECONSTRUCTION METHODS

2.1 Context

An image (from latin imago) is a representation of an object. It means an
effective way of storing and communicating visual information, since images
usually condensate or summary the information of the objects they represent.

Images of dimension two are, for instance, photographs whereas statues
and holograms are examples of three-dimensional images. In Figure 2.1 sev-
eral images are shown.

Fig. 2.1: Photographs are images of dimension two, whereas statues and holo-
grams are images of dimension three.

Digitizing is a procedure for converting an image to numerical data. The
image is divided into elements called n–xels, particularly pixels for n = 2 and
voxels for n = 3. Every n–xel, localized in a position, is assigned a scalar
value representing the brightness or darkness of the image at that point.
Digital images are numerical representations of objects and they allow us to
process images by using computational tools.

There does not exist a unique way of defining a digital image or of dig-
itizing an image. This problem has been studied since 40 years and many
different digital image definitions have been proposed. One can say that
authors have followed two main approaches for defining digital images: (a)
an analytical approach; and (b) a geometrical approach (see Figure 2.2 for
examples of both approaches). From an analytical point of view, a gray-
level digital image is a function from a subset X ⊂ Zn to R. Every x ∈ X



2. Reconstruction methods 4

denotes the position of an n–xel, and f(x) indicates the intensity (or gray
level) of the image at that point. Moreover, this function can be represented
by a matrix of size s1 × ...× sn, where sk denotes the number of n–xels per
unit length k. The element i1...in of the matrix coincides with f(i1, ..., in),
i.e. it indicates the intensity of the n–xel localized in the position (i1, ..., in).
Geometrically, a digital image is defined as a subset of a grid made up by
n–cubes, particularly squares for n = 2 and cubes for n = 3.

Fig. 2.2: On the left: 2–dimensional digital image defined by a matrix of size 10
pixels per width × 10 pixels per height. On the right: 2–dimensional
digital image defined by (1) color squares and (2) color points, of a grid.

Focusing on the second approach, the n–xels of an image can be identified
with (1) the n–cubes of the grid; or with (2) the central points of these n–
cubes. In the first case, we work with a primal grid made up by n–cubes
centered at points with integer coordinates; so that the corner points of
these n–cubes are determined by points with semi-integer coordinates. In
the second one, we work with a dual grid (constructed from the primal one)
made up by n–cubes whose corner points are assigned to points with integer
coordinates. The procedure for constructing the dual grid from a primal grid
is shown in Figure 2.3 for n = 2.

Fig. 2.3: By considering the central point (b) of each square of the primal grid
(a), we construct a dual grid (c).



2. Reconstruction methods 5

The digital images defined as subsets of primal grids can be considered
as cubical complexes (see [7, 8]). These structures are similar to simplicial
complexes but they are constructed from n–cubes instead of simplices. More
concretely, each n–cube of a primal image is a unit subcomplex made up
by 2n vertices (0–cells), n · 2n−1 edges (1–cells) and generally, by

(
n
k

)
· 2n−k

k–faces (k–cells) with 0 ≤ k ≤ n − 1. The number of k–faces is obtained
as follows: an n–cube is constructed by extruding an (n − 1)–cube in any
direction (see Figure 2.4), so the number of k–faces of an n–cube is twice the
number of k–faces of an (n− 1)–cube plus the number of (k − 1)–faces of a
(n− 1)–cube. Moreover, the n–cube contains one n–cell which is its interior.

Fig. 2.4: By extruding a point, we construct an edge; by extruding an edge, we
construct a square; by extruding a square, we construct a cube; and by
extruding a cube, we construct a 4–cube.

The digital images defined as subsets of dual grids can be considered
as dual complexes (see [19]). These complexes are constructed from primal
complexes in the same way that dual grids are constructed from primal grids.
More concretely, let IP be a primal image and let C(IP ) be the cubical
complex associated with IP . Every 0–cell of the dual complex C∗(IP ) is
defined by the central point of an n–cell of C(IP ). A 1–cell of C∗(IP ) is
incident to two of its 0–cells if the two corresponding n–cells of C(IP ) are
incident to a same (n− 1)–cell of it. More generally, every k–cell of C∗(IP )
corresponds to a (n− k)–cell of C(IP ) with 0 ≤ k ≤ n. Figure 2.5 shows the
construction of a dual complex from a cubical complex of dimension two.

Fig. 2.5: (a) A 2–dimensional cubical complex, and (b) the corresponding dual
complex.

Another important task in the context of digital images is to define neigh-
borhoods between n–xels. These neighborhoods are determined by the adja-
cency relations between the n–xels. Moreover, these adjacency relations can
be approached from two different points of view, depending on the considered



2. Reconstruction methods 6

grid: (a) one approach consists in determining the intersection of each pair
of n–cubes of the primal grid; and (b) the other one consists in computing
the distance between each pair of vertices of the dual grid. See Figure 2.6 for
an example of both of them.

Fig. 2.6: On the left: the intersection of the two red pixels of the primal grid is
an edge; that of the blue ones is a point; and that of the green ones is
empty. On the right: the distance between the two red pixels of the dual
grid is 1; that between the blue ones is

√
2; and that between the green

ones is greater than
√

2, so they are not adjacent.

Taking into account that the non-empty intersection of two n–cubes of the
primal grid is a k–cube with 0 ≤ k ≤ n− 1, following the first point of view,
we have that two n–xels of the primal grid are neighboring n–cubes if they
share a k–cube with 0 ≤ k ≤ n− 1. Depending on the values of k, different
types of neighborhoods between n–xels can be defined. Particularly, (a) two
pixels are 4–neighboring pixels if they share one edge (1–cube), and they are
8–neighboring pixels if they share at least one vertex (0–cube); (b) two voxels
are 6–neighboring voxels if they share one square face (2–cube), they are 18–
neighboring voxels if they share at least one edge, and they are 26–neighboring
voxels if they share at least one vertex; (c) two 4–xels are 8–neighboring 4–
xels if they share one cubic face (3–cube), they are 32–neighboring 4–xels if
they share at least one square face, they are 64–neighboring 4–xels if they
share at least one edge, and they are 80–neighboring 4–xels if they share
at least one vertex. A pictorial description about neighboring n–xels of the
primal grid is shown in Figure 2.7.



2. Reconstruction methods 7

Fig. 2.7: On the top: a blue pixel of the primal grid with its 4 and 8–neighboring
pixels (in red), respectively. On the bottom: a voxel of the primal grid
with its 6 and 26–neighboring voxels (in red), respectively.

A distance is a function d : Rn × Rn → R satisfying the following proper-
ties: (a) d(x, y) ≥ 0; (b) d(x, y) = 0 if and only if x = y; (c) d(x, y) = d(y, x)
and (d) d(x, z) ≤ d(x, y) + d(y, z).

Some well-known distances are: (1) d1(x, y) =
∑n

i=1 |xi−yi|; (2) d2(x, y) =√∑n
i=1(xi − yi)2; and (3) d∞(x, y) = maxni=1{|xi − yi|}.

Following the second point of view, the neighborhood relation between
two vertices of the dual grid is related to their distance. Depending on the
distance, different types of neighborhoods between n–xels of the dual grid
can be obtained. Particularly, (a) two pixels P = (i, j), Q = (i′, j′) are
4–neighboring pixels if they satisfy d1(P,Q) = |i − i′| + |j − j′| = 1 and
d∞(P,Q) = max{|i − i′|, |j − j′|} = 1, and they are 8–neighboring pixels if
they satisfy d1(P,Q) ≤ 2 and d∞(P,Q) = 1; (b) two voxels P = (i, j, k),
Q = (i′, j′, k′) are 6–neighboring voxels if they satisfy d1(P,Q) = |i − i′| +
|j− j′|+ |k− k′| = 1 and d∞(P,Q) = max{|i− i′|, |j− j′|, |k− k′|} = 1, they
are 18–neighboring voxels if they satisfy d1(P,Q) ≤ 2 and d∞(P,Q) = 1, and
they are 26–neighboring voxels if they satisfy d1(P,Q) ≤ 3 and d∞(P,Q) = 1;
(c) two 4–xels P = (i, j, k, l), Q = (i′, j′, k′, l′) are 8–neighboring 4–xels if they
satisfy d1(P,Q) = |i − i′| + |j − j′| + |k − k′| + |l − l′| = 1 and d∞(P,Q) =
max{|i − i′|, |j − j′|, |k − k′|, |l − l′|} = 1, they are 32–nieghboring 4–xels if
they satisfy d1(P,Q) ≤ 2 and d∞(P,Q) = 1, they are 64–neighboring 4–xels
if they satisfy d1(P,Q) ≤ 3 and d∞(P,Q) = 1, and they are 80–neighboring
4–xels if they satisfy d1(P,Q) ≤ 4 and d∞(P,Q) = 1. A pictorial description
about neighboring n–xels of the dual grid is shown in Figure 2.8.



2. Reconstruction methods 8

Fig. 2.8: On the top: a blue pixel of the dual grid with its 4 and 8–neighboring
pixels (in red), respectively. On the bottom: a blue voxel of the dual grid
with its 6 and 26–neighboring voxels (in red), respectively.

More questions about the relationship between both approaches of neigh-
boring n–xels are studied in [11].

2.2 State of the art

As we have commented previously, from a geometrical point of view, a
digital image is a set of n–xels with a color. An image is said labeled if every
n–xel is assigned with a label. Particularly, if the only labels allowed for the
n–xels are “white” and “black”, the image is said binary. A region of an
image is defined as a maximal connected set of n–xels with the same label.
Moreover, if the image is a binary one there exist only two regions: the black
n–xels form the foreground or region of interest in an image analysis task; and
the white n–xels form the background. On the other hand, if more than two
labels are allowed then the image has multiple regions, and each region can
be considered as a binary image, in such a way that the n–xels of the region
form the foreground and the remaining of the image forms the background.

Several authors [10, 15, 18, 23, 27] have developed some methods for
reconstructing objects from digital images. They represent a partition of
an image into regions, and they study the incidence and adjacency relations
between regions. Particularly, in the case of binary images, there exists only
one region of interest, so it suffices to represent the boundary of it.

In Section 2.2.1, we describe several methods which construct differ-
ent “models” from labeled images. These “models” represent the incidence



2. Reconstruction methods 9

and/or adjacency relations between the different regions of an image. As a
precursor of this type of methods, we present the Region Adjacency Graph
(RAG) [27], source of inspiration of the Dual Graphs (DGs) [18] and the topo-
logical map [9, 10]. A RAG represents a labeled primal image by a graph.
DGs are a method allowing us to resolve some disadvantages of RAGs for
representing 2–dimensional images. The topological map is an extension of
the previous methods defined for handling primal images of any dimension,
representing not only the geometrical relations but also the topological ones.

In Section 2.2.2, we introduce some methods defined for handling binary
digital images. These methods construct complexes representing the topology
of the region of interest of a 3–dimensional binary digital image. In this sense,
we highlight the methods “type” marching cubes [12, 23, 24] and Kenmochi
et al. [14, 15, 16]. In the first method, the algorithm constructs a simplicial
complex whose 0–cells are points of the edges of the dual grid. In the second
one, the authors construct a cell complex on a dual grid, i.e. the 0–cells
of the complex are vertices of the dual grid. At the end of this section, we
show that Kenmochi et al. method can be considered as an extreme case of
marching cubes.

2.2.1 Object reconstruction from labeled images

The methods shown in this section use as input data labeled digital images
placed on a primal grid. These images contain multiple regions, so they
cannot only be represented by their boundary.

2.2.1.1 Region Adjacency Graph (RAG)

In [27], Rosenfeld introduces the first method for representing 2–dimensional
images with multiple regions placed on a primal grid. An image of this type
is made up by a subset of color squares of the grid satisfying that all the
squares of a connected region have the same color, different from the colors
of the adjacent regions. In this sense, two regions are adjacent if (a) the color
of the squares of one of them is different from the color of the squares of the
other one, and (b) there exists at least a curve bordering both regions.

The image is represented by a graph whose vertices are the regions of the
image and whose edges join the pairs of adjacent regions. This graph is called
Region Adjacency Graph (RAG). The RAG provides a “simple-connectivity
view” of the image. Figure 2.9 shows an example of a 2–dimensional image
with seven regions and its corresponding RAG.



2. Reconstruction methods 10

Fig. 2.9: On the left: 2–dimensional digital image with seven regions placed on
a primal grid. On the right: RAG consisting of seven vertices and nine
edges which show the adjacency relations between the regions of the
image.

The two main advantages of RAGs are: (a) they are easy to define; and
(b) they can be extended easily to higher dimension. On the other hand,
the disadvantages of RAGs are: (a) there is no difference between inclusion
and adjacency relations (see grey region and green region in Figure 2.9); (b)
they do not represent multiple adjacency, for instance, in Figure 2.9 the red
region is twice adjacent to the green region; and (c) two images that are not
topologically equivalent can have the same RAG (see Figure 2.10). Many of
these disadvantages are resolved in dimension two by using the dual graphs.

Fig. 2.10: Two images topologically non-equivalent with the same RAG.

2.2.1.2 Dual Graphs (DGs)

In [18], Kropastch introduces the dual graphs. These graphs extend the
notion of RAG. The dual graphs consist of two graphs: (1) a multi-graph,
which extends the RAG by adding the inclusion relations and multiple adja-
cency between the regions; and (2) its dual graph.

The multi-graph inherits the vertices and the edges of the RAG; it at-
taches loops for describing the inclusion relations between regions; and it
adds edges between the pairs of vertices which represent multi-adjacent re-
gions. More concretely, each loop describing an inclusion relation is defined
on the vertex which represents the container region and it encloses the ver-



2. Reconstruction methods 11

tex which represents the contained region; and the number of edges between
each pair of vertices coincides with the number of times the corresponding
regions are adjacent. Figure 2.11 (a) shows the multi-graph corresponding
to the image which appears in Figure 2.9.

Fig. 2.11: (a) Multi-graph constructed from the RAG shown in Figure 2.9. (b)
Its dual graph. (c) Both of them representing the image.

The dual graph of this multi-graph is a graph (indeed a multi-graph) and
it is constructed as follows: vertices of the dual graph are associated with
intersection points of maximal curves dividing the two same regions, and
edges (up to isthmuses) of the dual graph correspond to curves bordering
two adjacent regions. Moreover, each isthmus between two vertices of the
dual graph corresponds to a loop of the multi-graph constructed from the
RAG. In Figure 2.11 (b), we show the dual graph of the multi-graph shown
in Figure 2.11 (a).

Remark 2.2.1. Let us note that the multi-graph constructed from the RAG
represents the dual of the image, since for each region of the image there is a
vertex of the multi-graph, and for each curve bordering two adjacent regions
there is an edge of the multi-graph. Consequently, the dual graph of this
multi-graph represents the dual of the dual of the image, i.e. this dual graph
is equivalent to the primal image.

The image is represented by both the multi-graph constructed from the
RAG and its graph dual. Figure 2.11 (c) shows the representation of the
image in Figure 2.9 by using dual graphs. Let us note that the dual graph
of the multi-graph has two “fictive” edges (dotted lines) joining the bound-
ary of the white region with that of the brown region, and the boundary
of the green region with that of the grey region, respectively. These edges
are “fictive” because they do not represent a curve bordering two adjacent
regions, although they are necessary to preserve the connection of the dual
graph. The dual of each of these “fictive” edges on the multi-graph is the



2. Reconstruction methods 12

loop around the brown region, and the loop around the grey region, respec-
tively. These loops allow us to differentiate between adjacency relations and
inclusion relations.

DGs resolve many disadvantages of RAGs, but they have other disadvan-
tages: (a) two graphs are necessary to represent the image; (b) there exist
“fictive” edges that do not represent curves bordering two adjacent regions;
and (c) they cannot be extended easily to higher dimension. In this sense,
Damiand et al. works are addressed to improve and extend RAGs and DGs
for representing higher dimension images.

2.2.1.3 Topological map

Damiand et al. define 3–dimensional digital images as subsets of a primal
grid (see, for instance, [9, 10]). The voxels of these images are represented
by cubes of the primal grid. They work with labeled images, so two voxels
with the same label belong to the same connected region (see Figure 2.12
extracted of [10]).

Fig. 2.12: Labeled image with three regions: R1 has six voxels, R2 has five voxels,
and R3 has four voxels.

They define the topological map as a model which represents both the
topological and geometrical information of a three-dimensional labeled image.

First, Damiand et al. construct a model that describes all the geometric
relations between the elements of the image. This model is called level 0 map
and it is constructed as follows: the image is considered as a cubical complex,
where each voxel is a cube made up by eight 0–cells, twelve 1–cells, and six
2–cells together with the incidence relations between them. More concretely,
a 1–cell is incident to two 0–cells and a 2–cell is incident to four 1–cells.
These voxel subdivisions together with the incidence relations between the
cells are represented by a combinatorial map (see [22]).



2. Reconstruction methods 13

The concept of combinatorial map generalizes the notion of graph since
it not only describes the incidence relations between 0–cells and 1–cells, but
it also describes the whole topological information. A combinatorial map is
defined by a set of abstract elements called darts and by a set of permutations
(some of them being involutions). A dart corresponds to a n–cell seen from
a (n − 1)–cell seen from a (n − 2)–cell ... seen from a 0–cell. Permutations
link these abstract elements for describing the cells. See Figure 2.13 for an
example of combinatorial map.

Fig. 2.13: The combinatorial map on the right represents the subdivision on
the left. Darts are represented by numbered arrows. Moreover, two
darts linked by the composition of the permutation and the involu-
tion are drawn consecutively (for instance, darts {1} and {3}); and two
darts linked by the involution are drawn parallel and in reverse orien-
tation (for instance, darts {7} and {8}). More concretely, the darts
{15},{16},{17},{18} describe the apex of the triangle; darts {5},{6} de-
scribe its base; and darts {{5}, {6}, {15}, {16}, {17}, {18}} describe the
triangle.

The level 0 map of the image shown in Figure 2.12 appears in Figure 2.14.

Fig. 2.14: Level 0 map of the labeled image shown in Figure 2.12.

Second, they construct the level 1 map. This map is obtained from the



2. Reconstruction methods 14

level 0 map by removing each face between two voxels having the same label;
it allows us to merge these pairs of voxels. These faces are removed because
they correspond to inner faces of the same region. Consequently, the non-
removed faces border different regions. In Figure 2.15, the level 1 map of the
image shown in Figure 2.12 is presented.

Fig. 2.15: On the left: level 1 map obtained from the level 0 map shown in
Figure 2.14. On the right: subdivision corresponding to the level 1
map.

The following step in Damiand et al. method is to construct the level 2
map. This map is obtained from the level 1 map by removing the degree two
edges, i.e. the edges incident to exactly two faces of voxels having the same
label; it allows us to merge these pairs of faces. Figure 2.16 presents the level
2 map of the image shown in Figure 2.12.

Fig. 2.16: On the left: level 2 map obtained from the level 1 map shown in
Figure 2.15. On the right: subdivision corresponding to the level 2
map.

The minimal topological information of the image is represented from the
level 3 map. This map is constructed from level 2 map by removing the degree
two vertices, i.e. the vertices incident to exactly two edges of voxels having
the same label; it allows us to merge these pairs of edges. The level 3 map
is the minimal map (in number of cells) which describes the topology of the



2. Reconstruction methods 15

object, since it is not possible to remove any cell without losing topological
information. In Figure 2.17, we present the level 3 map of the image shown
in Figure 2.12.

Fig. 2.17: On the left: level 3 map obtained from the level 2 map shown in
Figure 2.16. On the right: geometrical subdivision of the image shown
in Figure 2.12, corresponding to the level 3 map.

Summarizing, the topological map obtained from the image is defined by
three levels: (a) removal of faces; (b) removal of edges; and (c) removal of
vertices.

2.2.2 Object reconstruction from binary images

The methods shown in this section, on the contrary to the previous ones,
use as input data binary digital images placed on a dual grid. Here the
images contain only one region of interest, so they can be represented by
their boundary.

2.2.2.1 Marching squares

Given a subset of black points in a grid made up by squares (see Fig-
ure 2.18 (a)), the algorithm constructs a simplicial complex (see Figure 2.18
(b)) which approximates the curve containing the points (see Figure 2.18
(c)). The edges of the squares of the grid which have one black end-point
and the other one white are intersected by the curve containing the points.
Moreover, these intersection points (shown in red in Figure 2.18 (b)) are the
0–simplices of the complex. The last step in marching squares is to construct
the 1–simplices of the complex from the 0–simplices.



2. Reconstruction methods 16

Fig. 2.18: (a) Subset of points; (b) simplicial complexes extracted from (a); and
(c) curves containing the points in (a).

2.2.2.2 Kenmochi et al. method in 2D

Given a subset of black points in a grid made up by squares, Kenmochi
et al. method constructs a cell complex from the convex hulls of the black
vertices of each square. The vertices, edges and faces of these convex hulls
are the cells of dimension 0, 1 and 2, respectively, of the cell complex (see
Figure 2.19).

Fig. 2.19: Cell complex constructed from Figure 2.18 (a).

2.2.2.3 Marching squares vs. Kenmochi et al. method in 2D

We consider the extreme case of marching squares in which the black
points of the grid coincide with the intersection points between the edges of
the grid and the curve containing the black points (see Table 2.1).



2. Reconstruction methods 17

Tab. 2.1: The portion of the simplicial complex contained in each square of the
grid corresponding to the extreme case (on the bottom) can be deter-
mined by “sending” the intersection points (shown in red) to the corre-
sponding black vertices of the square.

Let us observe that the results shown on the bottom in Table 2.1 co-
incide with the boundary of the convex hulls of the black vertices, except
for the case where there are both two diagonally opposite black vertices and
two diagonally opposite white vertices. In this case there are ambiguous
topologies. This ambiguity can be resolved in a similar way that proposed
by Lachaud et al. in [21], i.e. by choosing a correct neighborhood between
the black vertices and other one between the white vertices. In dimension
two, the different pairs of neighborhoods between black vertices and white
vertices are {(4, 4), (4, 8), (8, 4), (8, 8)}. A study of these pairs allows us to
set down that by choosing the pair (4,8) or (8,4), the intersection of the
curve with any square is univocally determined. Moreover, by choosing the
8–neighborhood between the black vertices and the 4–neighborhood between
the white vertices, each of the portions of the complex obtained in this ex-
treme case coincides with the boundary of one of the portions of the complex
constructed by Kenmochi et al.

Remark 2.2.2. Let us observe that the pair (λ, µ) of neighborhood relations
for white and black vertices of the square, respectively, is called Jordan pair.



2. Reconstruction methods 18

Remark 2.2.3. If in this extreme case of marching squares we choose a
neighborhood relation more restrictive between white vertices than between
black vertices, then the simplicial complex constructed by marching squares
coincide with the boundary of the cell complex obtained by Kenmochi et al.

2.2.2.4 Marching cubes

The method of marching cubes, developed by Lorensen and Cline in 1987
[23], uses as input data a scalar value α and a subset of points in R3 placed on
a grid and associated with scalar values (see Figure 2.20 for an example). The
basic idea of marching cubes is to suppose that the subset of points together
with their assigned scalar values approximate a scalar function f on R3. The
goal of this method is to construct a simplicial complex approximating the
surface defined by f(x, y, z) = α.

Fig. 2.20: Grid obtained from the subset of points
{(0, 0, 0), (0, 0, 0.5), (0, 0, 1), (0, 0.5, 0), (0, 0.5, 0.5), (0, 0.5, 1), (0, 1, 0),
(0, 1, 0.5), (0, 1, 1), (0.5, 0, 0), (0.5, 0, 0.5), (0.5, 0, 1), (0.5, 0.5, 0), (0.5, 0.5,
0.5), (0.5, 0.5, 1), (0.5, 1, 0), (0.5, 1, 0.5), (0.5, 1, 1), (1, 0, 0), (1, 0, 0.5),
(1, 0, 1), (1, 0.5, 0), (1, 0.5, 0.5), (1, 0.5, 1), (1, 1, 0), (1, 1, 0.5), (1, 1, 1)},
whose assigned values are {0,−0.5,−1,−0.5,−1,−1.5,−1,−1.5,−2,
0.25,−0.25,−0.75,−0.25,−0.75,−1.25,−0.75,−1.25,−1.75, 1, 0.5, 0,
0.5, 0,−0.5, 0,−0.5,−1}, respectively.

First, the algorithm processes the vertices of the cubes of the grid marking
those vertices whose assigned value is equal to or greater than α. The vertices
of the cubes whose value is lesser than α are unmarked.

A cube has eight vertices and each vertex can be a marked vertex or an
unmarked vertex, so there exist 28 = 256 configurations of unmarked and
marked vertices of a cube. More precisely, there exist C(8, c) configurations
with c marked vertices and 8− c unmarked vertices of a cube. Properties of



2. Reconstruction methods 19

combinatorial numbers allows us to set down that C(8, 8 − c) = C(8, c), so
that C(8, c) is also the number of configurations with 8− c marked vertices
and c unmarked vertices of a cube. In Table 2.2 it is shown an example for
c = 1.

Tab. 2.2: On the top: configurations with one marked vertex and seven unmarked
vertices of a cube. On the bottom: configurations with seven marked
vertices and one unmarked vertex of a cube.

Marching cubes considers that two configurations on a cube which have
the same number of marked vertices are identical if there exists a rotation
which sends the first configuration to the second one. Hence, by ignoring
complementary cases derived from the properties of combinatorial numbers,
marching cubes reduces the 256 configurations of unmarked and marked ver-
tices of a cube to 23 configurations (15 configurations with 0 ≤ c ≤ 4 marked
vertices, and 8 complementary configurations with 5 ≤ c ≤ 8 marked ver-
tices). In Table 2.3, the 15 configurations with 0 ≤ c ≤ 4 marked vertices of
a cube are shown.

Tab. 2.3: Configurations of unmarked and marked vertices of a cube obtained by
Lorensen and Cline.



2. Reconstruction methods 20

In their works, they state that any subset of points in R3 placed on
a grid and associated with scalar values is made up by combining (up to
complementary cases and rotations) these 15 configurations of unmarked and
marked vertices, taking into account that it is not necessary to use all them
and any of them can be used more than once. In Figure 2.21, we present the
result obtained by applying the first step of marching cubes algorithm to the
set of points shown in Figure 2.20 for α = −0.1.

Fig. 2.21: The points with value equal to or greater than−0.1 are marked; whereas
the points with values lesser than −0.1 are unmarked. Each one of
the 8 configurations of unmarked and marked vertices coincides (up
to complementary cases and rotations) with one of the configurations
shown in Table 2.3. More concretely, the configuration on the green
cube coincides with the Case 5 in Table 2.3.

Second, the edges of the cubes which have one marked end-point vm and
the other one unmarked vu are closed intervals on R3 satisfying f(vm) −
α ≥ 0 and f(vu) − α < 0; so that Bolzano’s Theorem allows us to set
down that the surface f(x, y, z) = α intersects these edges. Moreover, the
intersection point of the surface with each of these edges can be estimated
by using linear interpolation. More concretely, if e is an edge of one of
the cubes of the grid made up by a marked vertex vm(e) and a unmarked
vertex vu(e), whose assigned values are vvm(e) and vvu(e), respectively, then
the intersection point of the surface f(x, y, z) = α with the edge e is given

by vm(e) +
α−vvm(e)

vvu(e)−vvm(e)
(vu(e)− vm(e)). In this way, the intersection points of

the surface with the cubes of the grid are estimated.
In Figure 2.22, we show the intersection points of the surface f(x, y, z) =

−0.1 with the cubes of the grid shown in Figure 2.20. The computations
have been made by using the method described above.



2. Reconstruction methods 21

Fig. 2.22: In red, intersection points (computed by using linear interpolation) of
the surface f(x, y, z) = −0.1 with the edges of the cubes of the grid
shown in Figure 2.20.

The last step in marching cubes is to generate triangular facets repre-
senting the portion of surface that intersects each of the cubes. In Table 2.4,
Lorensen and Cline present a triangulation of each of the 15 configurations
of unmarked and marked vertices shown in Table 2.3.

Tab. 2.4: The ways a surface can intersect a cube obtained by Lorensen and Cline
in [23].

Remark 2.2.4. Let us note that the portions of surface shown in Table 2.4
correspond to choose a neighborhood relation more restrictive between the
marked vertices than between the unmarked vertices. Moreover, let X be one
of the configurations shown in Table 2.3 and let X ′ be the complementary



2. Reconstruction methods 22

configuration; if on the cube containing to X ′ we choose a neighborhood rela-
tion more restrictive between the unmarked vertices than between the marked
vertices, then the portion of surface intersecting this cube is the same than
the portion of surface intersecting the cube containing to X. See Figure 2.23
for an example.

Fig. 2.23: On the left: the portion of surface corresponding to the Case 3 in
Table 2.3. On the right: the portion of surface corresponding to the
complementary configuration by choosing a neighborhood relation more
restrictive between the unmarked vertices than between the marked ver-
tices.

In their works, they state that the approximation of any surface is made
up by combining (up to complementary cases and rotations) the 15 ways a
surface can intersect a cube shown in Table 2.4, taking into account that it
is not necessary to use all them and any of them can be used more than
once. In Figure 2.24, we show a triangulation of the portion of surface con-
tained in each of the cubes of the grid shown in Figure 2.20, as well as the
approximation of the triangulated surface defined by f(x, y, z) = −0.1.



2. Reconstruction methods 23

Fig. 2.24: The pictures (a), (b), (c), (d), (e) coincide (up to rotations) with the
Cases 2, 5, 5, 5, 1 in Table 2.4, respectively, and they show the portion
of surface contained in each of the cubes of the grid; the picture (f)
shows the approximation of the triangulated surface.

Marching cubes problems

About seven years after marching cubes method was introduced, several
authors [24, 28] demonstrated that the portion of surface that intersects each
of the cubes (see Table 2.4) is not univocally determined by the intersection
points (see Figure 2.25 for an example), i.e. there are several surfaces which
can intersect the cubes in those intersection points. More concretely, the
previous authors obtained seven ambiguous topologies corresponding to the
Cases 3, 4, 6, 7, 10, 12 and 13 in Table 2.4, respectively.



2. Reconstruction methods 24

Fig. 2.25: The intersection points obtained by using linear interpolation give rise
to both surfaces and it is not possible to take a decision on the inter-
pretation of these types of situations.

In [21], Lachaud et al. propose a solution for lifting these ambiguities.
The idea is to choose a correct neighborhood relation between the marked
vertices and other one between the unmarked vertices of the cube.

First, Lachaud et al. consider the different configurations of unmarked
and marked vertices of a face of a cube (see Table 2.5).

Tab. 2.5: Configurations of unmarked and marked vertices of a square face.

Marching cubes algorithm determines the intersection points of the sur-
face with the edges having a marked vertex and a unmarked vertex. Table 2.6
shows the ways a surface can intersect a face of a cube.

Tab. 2.6: The ways a surface can intersect a square face.

Let us observe that the intersection of the surface with each face is uni-
vocally determined, except for the case where there are both two diagonally
opposite marked vertices and two diagonally opposite unmarked vertices.
This ambiguity can be resolved by choosing a correct neighborhood between
the vertices marked and other one between the unmarked vertices. In dimen-
sion three, the different pairs of neighborhoods between marked vertices and



2. Reconstruction methods 25

unmarked vertices are {(6, 6), (6, 18), (6, 26), (18, 6), (18, 18), (18, 26), (26, 6),
(26, 18), (26, 26)}. In Table 2.7, we show the intersections of the surface
with a face with two diagonally opposite marked vertices and two diagonally
opposite unmarked vertices by using each of these pairs.

Tab. 2.7: The blue (resp. yellow) segments show a neighborhood relation more
restrictive between the marked (resp. unmarked) vertices. The 6–
neighborhood between marked vertices and the 6–neighborhood between
unmarked vertices does not allow to resolve the ambiguity; and neither
do the (18,18), (18,26), (26,18), (26,26). However, the (6,18), (6,26),
(18,6) and (26,6) allow us to resolve it.

Remark 2.2.5. Let us observe that the pair (λ, µ) of neighborhood relations
for unmarked and marked vertices of the faces of a cube, respectively, is called
Jordan pair.

The study of the different pairs of neighborhoods allows us to set down
that by choosing the pair (6,18), (6,26), (18,6), or (26,6), the intersection of
the surface with any face of a cube is univocally determined.

Fig. 2.26: (a) Surface with holes due to an ambiguity in a face shared by two
cubes. (b) Choosing the 26–neighborhood between the marked vertices,
and the 6–neighborhood between the unmarked vertices resolves the
inconsistency.



2. Reconstruction methods 26

Marching cubes can also produce a topologically inconsistent surface that
contains holes caused by the ambiguities. Figure 2.26 (a) (extracted of [25])
shows two adjacent cubes which share a face. The portion of surface con-
tained in each of these two cubes corresponds to the Cases 6 and 3 in Ta-
ble 2.4, respectively. In the figure, the shared face is intersected differently
in each cube. This ambiguity produces a hole in the surface. The inconsis-
tency can be resolved by choosing the same pair of neighborhoods for each
cube, in which case, we obtain that the shared face is intersected in the same
way in each cube. For instance, in Figure 2.26 (a) the inconsistency can
resolved by choosing the 26–neighborhood between the marked vertices, and
the 6–neighborhood between the unmarked vertices (see Figure 2.26 (b)).

2.2.2.5 Kenmochi et al. method

Kenmochi et al. define 3–dimensional digital images as subsets of a dual
grid (see, for instance, [14, 15, 16]). The voxels of these images are the
vertices of the cubes of the dual grid. They work with binary images, so
that the voxels are white or black. Kenmochi et al. construct a cell complex
from the black voxels of the image, in such a way that the boundary of the
complex represents the object. The cell complex consists of a collection of
cells together with the information on how they are attached to each other.
The black voxels are the 0–cells of the complex. Every cell is defined by the
black vertices of a cube of the grid. More concretely, every cell is an open set
including the points inside of the convex hull of the vertices which define it.
Moreover, the boundary of the cell is given by the vertices, edges and faces of
the convex hull. The cells are attached to each other along their boundaries.

The same reasoning used in marching cubes allows us to set down that
there exist 28 = 256 configurations of white and black voxels on a cube.
By considering the notion of identical configurations in the same sense as
marching cubes, Kenmochi et al. reduce the 256 configurations of white and
black voxels on a cube to 23 configurations. In Table 2.8, extracted of [14],
these 23 configurations of white and black voxels on a cube are shown.



2. Reconstruction methods 27

Tab. 2.8: Configurations of white and black voxels on a cube obtained by Ken-
mochi et al.

Remark 2.2.6. Let us note that similar results were obtained in 1985 by
Kong and Roscoe [17], who used Pólya’s enumeration theorem (see [5]) for
computing the number of different ways in which it can color the corner points
of a cube by using two colors (black and white) taking into account that two
colorings are the same if one is a rotation of the other. In this way, they
obtained 23 configurations, and they constructed Table 2.9, where the only
remaining configuration corresponds to a reflection of the cell 11. Hence,
they determined 22 unit cells (configurations of white and black voxels on a
cube together with the edges, the faces and the volume of the cube).



2. Reconstruction methods 28

Tab. 2.9: The 22 unit cells obtained by Kong and Roscoe (extracted of [17]).

In their works, Kenmochi et al. state that any 3–dimensional binary
digital image is made up by combining (up to rotations) the 23 configurations
of white and black voxels shown in Table 2.8, taking into account that it
is not necessary to use all them and any of them can be used more than
once. In this way, given a 3–dimensional binary digital image on a dual grid,
every configuration of white and black voxels on a cube of the grid coincides
(up to rotations) with one of the 23 configurations shown in Table 2.8. In
Figure 2.27, we show an example of a 3–dimensional binary digital image
which consists of 39 black voxels on a dual grid of size 4× 4× 4.



2. Reconstruction methods 29

Fig. 2.27: Each one of the 27 configurations coincides (up to rotations) with one
of the configurations in Table 2.8. More concretely, the configuration on
the green cube coincides (up to rotations) with the configuration P5b
in Table 2.8.

Next, for each configuration in Table 2.8, Kenmochi et al. construct a
cell defined by the black voxels of the configuration. We recall that each of
these cells is an open set including the points inside of the convex hull of the
vertices which define it, and the boundary of the cell is given by the vertices,
edges and faces of the convex hull. In this way, Kenmochi et al. obtain the 23
cells shown in Table 2.10 from the black voxels of the configurations shown in
Table 2.8. These cells are used later for constructing the cell complex whose
boundary represents the object encoded by the image.

Tab. 2.10: The 23 cells obtained by Kenmochi et al. (extracted of [14]) from the
black voxels of the configurations shown in Table 2.8.



2. Reconstruction methods 30

Remark 2.2.7. A similar work was described in [17] for determining the
“continuous analog” of the 22 unit cells. This structure is defined by Kong
and Roscoe as a union of points, edges, triangles and tetrahedra obtained
from the corner points of every unit cell.

In their works, Kenmochi et al. state that the cell complex correspond-
ing to a 3–dimensional binary digital image is made up by combining (up to
rotations) the 23 cells shown in Table 2.10. In this way, every cell of the com-
plex coincides (up to rotations) with one of the 23 cells shown in Table 2.10.
In Figure 2.28, it is shown the cell complex corresponding to the image in
Figure 2.27.

Fig. 2.28: Cell complex constructed from the 3–dimensional binary digital image
shown in Figure 2.27 by using Kenmochi et al. method.

Finally, Kenmochi et al. extract the boundary of the complex. This
boundary includes all the information, since the image is a binary one. There-
fore, the object is contained in only one region and its internal structure is
not necessary to represent it. In this sense, they represent the object as the
set of 2–cells (together with their boundary) incident to exactly one of the
3–cells of the complex constructed from the image. More concretely, they
make a list of all the 2–cells incident to at least one of these 3–cells. The set
of 2–cells which represents the object is chosen from this list by counting the
number of times each 2–cell appears in the list. If the 2–cell appears more
than once, it is incident to two 3–cells, so it is not in the representation of
the object since it is localized inside of it; whereas if the 2–cell appears only
once, it is incident to exactly one of the 3–cells, so it is in the representation
of the object since it is in the boundary of it. In Figure 2.29, we show the
boundary of the cell complex in Figure 2.28.



2. Reconstruction methods 31

Fig. 2.29: Representation of the object encoded by the digital image shown in
Figure 2.27 by using Kenmochi et al. method.

2.2.2.6 Marching cubes vs. Kenmochi et al.

By reasoning in a similar way as dimension two, Kenmochi et al. method
in dimension three can also be considered as an extreme case of marching
cubes.

Tab. 2.11: The ways a surface can intersect a cube obtained by Chernyaev in [6].

Let us recall that from Table 2.3 marching cubes algorithm computes the
intersection points of the surface f(x, y, z) = α with the edges of each of the
cubes whose end-points are a marked vertex and an unmarked vertex. In



2. Reconstruction methods 32

1995, Chernyaev [6] showed the 33 portions of surface that can be obtained
from these points (see Table 2.11).

In an analogous way as two-dimensional case, in the extreme case of all
the marked vertices are assigned the value α, i.e. the surface f(x, y, z) =
α crosses all the marked vertices, the intersection points coincide with the
marked vertices. Moreover, the portions of surface corresponding to this
extreme case can be determined by “sending” the intersection points obtained
in Table 2.11 to the corresponding marked vertices of the cube.

Likewise, the portions of surface corresponding to this extreme case co-
incide (up to complementary cases) with the boundary of the cells shown in
Table 2.10, except for the cases where there are ambiguous topologies, i.e.
the Cases 3, 4, 6, 7, 10, 12 and 13. As we have commented previously, these
ambiguities can be resolved by choosing one of these four pairs of neighbor-
hoods: (6,18), (6,26), (18,6), or (26,6). Moreover, by choosing one of the
last two pairs, each of the portions of surface obtained in this extreme case
coincides with the boundary of one of the cells in Table 2.10.

Remark 2.2.8. Analogously to dimension 2, the pair (λ, µ) of neighborhood
relations for unmarked and marked vertices of the cube, respectively, is called
Jordan pair.

Remark 2.2.9. If in this extreme case of marching cubes we choose a neigh-
borhood relation more restrictive between unmarked vertices than between
marked vertices, then the simplicial complex constructed by marching cubes
coincide with the boundary of the cell complex obtained by Kenmochi et al.



3. EXTRACTING 3–DIMENSIONAL CELL COMPLEXES
FROM BINARY DIGITAL IMAGES

In this chapter we retrieve the works [14, 15, 16] developed by Kenmochi
et al., in which topological tools are used to construct cell complexes from
3–dimensional binary digital images. We recall that Kenmochi et al. define
the binary digital images as subsets of white and black points on a dual grid.
The black points are the 0–cells of a cell complex. Here, every cell of the
complex is constructed by using an algorithmic procedure which consists in
deforming a cube of the dual grid, in such a way that the cell is defined by the
black points of the cube. This deformation is a consequence of degenerating 1

edges of the cube incident to white vertices. The cell complex is formed by
attaching the cells along their boundaries. See Figure 3.1 for an example.
Finally, we simplify the complex by keeping the 0,1,2–cells which are not
incident to a 3–cell, together with the 2–cells (and their boundary) which are
incident to exactly one 3–cell of the complex.

Fig. 3.1: (a) Binary image on a dual grid of size 3 × 3 × 2; (b) deformation of
each cube of the grid by degenerating edges incident to white vertices;
(c) cells of the cell complex; and (d) cell complex corresponding to the
image in (a).

The outline of this chapter is as follows: in Section 3.1, we construct a
look-up table containing (up to isometries) all the cells which can be obtained
by deforming a cube; in Section 3.2, we present a procedure for constructing
the cell complex; in Section 3.3, we conceive an algorithm for simplifying the

1. deforming a k–cell into a (k − 1)–cell belonging to the boundary of the k–cell



3. Extracting 3–dimensional cell complexes from binary digital images 34

complex; and finally, in Section 3.4, we compare our results with the results
of Kenmochi et al.

3.1 Look-up table construction

We construct all the cells which can be obtained (up to isometries) by
deforming a cube. The procedure is done in two steps: (a) we determine
the vertices which define these cells, and we store them in a look-up table;
and (b) we compute the convex hull of these vertices. Each cell is an open
set made up by all the points inside of the convex hull of the vertices which
define the cell. The boundary of this convex hull is given by its vertices,
edges, and faces. The cells (together with their boundary) are stored in a
look-up table shown at the end of this section.

3.1.1 Pattern subsets

We compute the different sets of vertices defining the cells which can be
obtained (up to isometries) by deforming a cube. The set of vertices which
defines a cell is the set of black points of a cube of the grid. In Chapter 2, we
exposed that there exist 28 = 256 subsets of points which can be constructed
from the vertices of a cube. The points of each subset are black vertices of
the cube, whereas the points of the complement subset are white vertices of
the cube. Next, we explain two methods for computing the isometric subsets,
and we store a representative of each isometry class. They are the pattern
subsets.

3.1.1.1 A first solution

There exist several solutions for finding these pattern subsets. A first
idea, easy to implement, consists in associating each subset with a multi-
graph, in such a way that two subsets identified with a same pattern subset
are associated with isomorphic multi-graphs.

Below, we describe the method for constructing these multi-graphs. Let
S = {p1, ..., pc} be a subset with 1 ≤ c ≤ 8 points. The vertices of the
multi-graph GS associated with S are the points p1, ..., pc; and the number of
edges between each pair of vertices pi, pj ∈ GS is determined by the number
of different coordinates between pi and pj. This way of constructing the
edges of GS takes into account the relative positions of the vertices in the
space. In Figure 3.2, we show the multi-graph associated with the subset
S = {(0, 0, 0), (1, 0, 0), (1, 0, 1), (1, 1, 1)} of the unit cube.



3. Extracting 3–dimensional cell complexes from binary digital images 35

Fig. 3.2: The vertices of the multi-graph associated with S =
{(0, 0, 0), (1, 0, 0), (1, 0, 1), (1, 1, 1)} are the points of S and the ele-
ment mij of its adjacency matrix coincides with the number of different
coordinates between the vertices pi and pj .

Considering the previous association between multi-graphs and subsets,
it is natural to establish Definition 3.1.1.

Definition 3.1.1. Let S and S ′ be two subsets of vertices of a cube. We
say that S and S ′ are isomorphic subsets if their respective associated multi-
graphs are isomorphic.

In Theorem 3.1.2, we show that two subsets with at least 4 points are
isomorphic iff they are identified with a same pattern subset.

Theorem 3.1.2. Let S and S ′ be two subsets with 4 ≤ c ≤ 8 points. S
and S ′ are isomorphic subsets if and only if there exists a linear isometry
f : R3 → R3 which sends S into S ′ and the cube CS containing S into the
cube CS′ containing S ′.

Remark 3.1.3. Let us note that the condition of sending CS into CS′ leads
to the fact that the isometry also sends the subset CS − {S} into the subset
CS′ − {S ′}.

Proof. The scheme of the proof is the following.
We construct an isometry from R3 to itself from the points of S and S ′.

This isometry must send every point of S into a point of S ′, and every point
of CS − {S} into a point of CS′ − {S ′}. Moreover, if we construct a vector
basis of the convex hull of S (resp. S ′) from the points of S (resp. S ′), then
every edge of the convex hull of S must be sent to an edge of the convex hull
of S ′.

In this way, if the number of points of S and S ′ is at least five, we
have two vector bases with three linearly independent vectors each one, and
consequently, we have two bases of R3. It allows us to construct an isometry
from R3 to itself sending S into S ′ and CS into CS′ . See Figure 3.3 for two
examples of this case.



3. Extracting 3–dimensional cell complexes from binary digital images 36

Fig. 3.3: The points of S (resp. S′) allows us to construct an isometry from R3

to itself sending S into S′ and CS into CS′ .

Otherwise, if the number of points of S and S ′ is four, the vector basis
may only have two linearly independent vectors. In this case, we must choose
a fifth vertex p ∈ CS−{S}, in such a way that the isometry must send p into
a vertex q ∈ CS′ − {S ′}. This fifth point p (resp. q) allows us to construct,
together with the points of S (resp. S ′), a basis of R3 and consequently an
isometry from R3 to itself sending S into S ′ and CS into CS′ . See Figures 3.4
and 3.5 for two examples of this case.

Fig. 3.4: There are two isometries of R3 to itself sending S into S′. Moreover,
by choosing a point p ∈ CS − {S} (resp. q ∈ CS′ − {S′}), the points of
S (resp. S′) together with p (resp. q) allow us to construct an isometry
from R3 to itself sending S into S′ and CS into CS′ .



3. Extracting 3–dimensional cell complexes from binary digital images 37

Fig. 3.5: There are two isometries of R3 to itself sending S into S′. Moreover, both
of them send CS into CS′ . Consequently, the vertex q is not univocally
determined from p, i.e. p can be sent to two different vertices in CS′−{S′}
by the isometry.

More precisely, the proof of the theorem is as follows.
⇒ We suppose that S = (pi)i and S ′ = (qi)i are two isomorphic subsets

with 4 ≤ c ≤ 8 points each one. Let GS and GS′ be their respective associated
multi-graphs. By definition GS and GS′ are isomorphic, so there exists a
bijective map f : (pi)i → (qi)i preserving the distance between the points of
S and S ′. Moreover, we can suppose without loss of generality that f(pi) = qi.
It suffices to rearrange the vertices of GS and GS′ . In this way d(pi, pj) =
d(f(pi), f(pj)) = d(qi, qj).

Starting from S = {p1, ..., pc} (resp. S ′ = {q1, ..., qc}) we construct the
vector space generated by {pi − p1}2≤i≤c (resp. {qi − q1}2≤i≤c). A cube has
eight vertices and each one of its square faces has four vertices, so

1. If 4 < c ≤ 8, then the vector space generated by {pi − p1}2≤i≤c (resp.
{qi − q1}2≤i≤c) has three linearly independent vectors. In fact, we can
assume without loss of generality that these three vectors are deter-
mined by the first four points of S (resp. S ′). It suffices to rearrange
S. Consequently, the vector space {p2 − p1, p3 − p1, p4 − p1} (resp.
{q2− q1, q3− q1, q4− q1}) is linearly independent and maximal, i.e. it is
a basis of R3. Therefore f is an isometry from R3 to itself which sends
S into S ′.

Next, we show that f also sends CS into CS′ .

(a) We suppose that p1, p2, p3, p4 satisfy d(pi, p1) = 1 for i = 2, 3, 4,
and let p be a vertex of CS. We prove that f(p) is a vertex of
CS′ : since p ∈ CS ⊂ R3 and {p2− p1, p3− p1, p4− p1} is a basis of
R3, we can write the vector p − p1 as a finite linear combination
of the elements of the basis, i.e. p − p1 =

∑4
i=2 λi(pi − p1), with

λi = 0, 1 for i = 2, 3, 4. By applying f , we obtain f(p − p1) =
f(
∑4

i=2 λi(pi − p1)) =
∑4

i=2 f(λi(pi − p1)) =
∑4

i=2 λif(pi − p1) =∑4
i=2 λi(qi − q1), i.e. the vector f(p − p1) = f(p) − f(p1) is a

finite linear combination (with the same coefficients λi = 0, 1 for



3. Extracting 3–dimensional cell complexes from binary digital images 38

i = 2, 3, 4) of the basis vectors {q2 − q1, q3 − q1, p4 − q1}, which
satisfy d(qi, q1) = d(f(pi), f(p1)) = d(pi, p1) = 1 for i = 2, 3, 4.
Consequently, f(p) is a vertex of CS′ . See on the top in Figure 3.3
for an example.

(b) Otherwise, we choose a2, a3, a4 such that d(ai, p1) = 1 for i =
2, 3, 4, and we proceed with the points p1, a2, a3, a4 in a similar way
as in (a). Let a2, a3, a4 be the three vertices of CS satisfying that
d(ai, p1) = 1 for i = 2, 3, 4. Since ai ∈ CS ⊂ R3 and {p2 − p1, p3 −
p1, p4 − p1} is a basis of R3, we can write the vector ai − p1 as a
finite linear combination of the elements of the basis, i.e. ai−p1 =∑4

i=2 αi(pi−p1) for i = 2, 3, 4. Moreover, {a2−p1, a3−p1, a4−p1}
is a basis of R3 satisfying the conditions in (a). See on the bottom
in Figure 3.3 for an example.

2. If c = 4, then S = {p1, p2, p3, p4} (resp. S ′ = {q1, q2, q3, q4}).

(a) If the three vectors of the vector space generated by {pi−p1}2≤i≤4
(resp. {qi − q1}2≤i≤4) are linearly independent, then it will be a
basis of R3. By reasoning as in Case 1, we deduce that f is an
isometry from R3 to itself which sends S into S ′ and CS into CS′ .

(b) If only two vectors of the vector space generated by {pi−p1}2≤i≤4
(resp. {qi−q1}2≤i≤4) are linearly independent, then S (resp. S ′) is
made up by four coplanar points. In a cube, there exist two types
of 4–tuple of coplanar vertices, those corresponding to vertices of
outer faces, and those corresponding to vertices of inner faces (see
Table 3.1). The Euclidean distance between the pairs of vertices of
an outer face is 1 and

√
2, whereas the Euclidean distance between

the pairs of vertices of an inner face is 1,
√

2 and
√

3. The points
of S and S ′ have the same pairwise distances, so we can suppose
that the points of S and S ′ are the vertices of an outer (resp.
inner) face of a cube. In this case, we must choose a fifth vertex
p ∈ CS − {S} and a fifth vertex q ∈ CS′ − {S ′} which allows
us to construct two base of R3. Moreover, p and q must satisfy
that the distance between every point pi ∈ S and p coincides
with the distance between qi ∈ S ′ and q 1. This fifth point p
(resp. q), together with the points of S (resp. S ′), allows us to
obtain a third vector linearly independent with the two (linearly
independent) vectors constructed from the points of S (resp. S ′).
Therefore f is an isometry from R3 to itself which sends S into

1. a constructive proof shows that there always exist two points p and q satisfying these
conditions



3. Extracting 3–dimensional cell complexes from binary digital images 39

S ′. Moreover, f also sends CS into CS′ since f sends five vertices
of CS (p, p1, p2, p3, p4) into five vertices of CS′ (q, q1, q2, q3, q4). In
this way, we are under the assumptions of Case 1. See Figures 3.4
and 3.5 for examples of this case.

Tab. 3.1: On the top: the six outer faces of the unit cube are determined by the
intersection of the unit cube with the planes X = 0, Y = 0, Z = 0,
X = 1, Y = 1, Z = 1, respectively. On the bottom: the six inner square
faces of the unit cube are determined by the intersection of the unit
cube with the planes X = Y , Y = Z, X = Z, X + Y = 1, Y + Z = 1,
X + Z = 1, respectively.

⇐ We suppose that there exists an isometry σ which sends S into S ′

and CS into CS′ . Then the points of both S and S ′ have the same pairwise
distances. We construct the multi-graph GS (resp. GS′) associated with S
(resp. S ′), whose vertices are the points of S (resp. S ′) and the number of
edges between each pair of vertices of GS (resp. GS′) is given by the number
of different coordinates between both vertices. Moreover, the number of
different coordinates between two vertices of GS (resp. GS′) coincides with
the square of the Euclidean distance between them. In this way, the isometry
σ preserves the number of edges between each pair of vertices of GS and GS′ .
Consequently, these two multi-graphs are isomorphic to each other. Hence,
S and S ′ are isomorphic.

Remark 3.1.4. Let us note that any isometry of R3 to itself which sends a
subset S of a cube CS into a subset S ′ of a cube CS′, it also sends CS into CS′,
regardless of the number of points of the subsets. In this way, Theorem 3.1.2
is true for subsets of a cube with 0 ≤ c ≤ 8 points. However, in Chapter 4,
we show that a generalization to higher dimension of Theorem 3.1.2 is not
true if we remove the hypothesis of cardinality. More concretely, we show
that there exists an isometry of R4 to itself which sends a subset S made up
by 4 vertices of a 4–cube HCS into a subset S ′ made up by 4 vertices of a
4–cube HCS′, and it does not send HCS into HCS′.



3. Extracting 3–dimensional cell complexes from binary digital images 40

Taking into account the previous results, we arrange the set V of vertices
of the unit cube on an order relation ≺ (for instance, the lexicographic order)
and we conceive an algorithm which uses as input the ordered set (V,≺). For
4 ≤ c ≤ 8, this algorithm: (a) constructs an ordered set (Vc,≺) containing
the C(8, c) subsets with c points; (b) associates each subset (Vc)i ⊂ Vc with
a multi-graph (GVc)i. The vertices of (GVc)i are the points of (Vc)i, and the
number of edges between each pair of vertices pk, pl ∈ (GVc)i coincides with
the number of different coordinates between both vertices; and (c) checks if
there exists an isomorphism between each pair (GVc)i1 , (GVc)i2 of multi-graphs
associated with two subsets (Vc)i1 , (Vc)i2 ⊂ Vc which satisfy (Vc)i1 ≺ (Vc)i2 .
In Example 3.1.5 the procedure for c = 7 is described with detail.

Example 3.1.5. Let V = {v1, v2, v3, v4, v5, v6, v7, v8} = {{0, 0, 0}, {0, 0, 1}, {0,
1, 0}, {0, 1, 1}, {1, 0, 0}, {1, 0, 1}, {1, 1, 0}, {1, 1, 1}} be the set of vertices of the
unit cube arranged on lexicographic order (≺lex).

First, we consider the ordered set (V7,≺lex) containing the eight subsets
with seven points, i.e. V7 = {{v1, v2, v3, v4, v5, v6, v7}, {v1, v2, v3, v4, v5, v6, v8},
{v1, v2, v3, v4, v5, v7, v8}, {v1, v2, v3, v4, v6, v7, v8}, {v1, v2, v3, v5, v6, v7, v8}, {v1,
v2, v4, v5, v6, v7, v8}, {v1, v3, v4, v5, v6, v7, v8}, {v2, v3, v4, v5, v6, v7, v8}}.

Next, for i = 1, ..., 8 each subset (V7)i ⊂ V7 is associated with a multi-
graph (GV7)i. The vertices of (GV7)i are the points of (V7)i and the number
of edges between two vertices vk, vl ∈ (GV7)i is determined by the number
of different coordinates between vk and vl. These multi-graphs are shown in
Figure 3.6.

Fig. 3.6: Multi-graphs associated with the subsets of V7.



3. Extracting 3–dimensional cell complexes from binary digital images 41

Finally, it is checked if there exists an isomorphism between each pair
(GV7)i1 , (GV7)i2 of multi-graphs associated with two subsets (V7)i1 , (V7)i2 ⊂ V7
which satisfy (V7)i1 ≺lex (V7)i2. In Table 3.2, the isomorphisms between some
pairs of these multi-graphs are shown.

Tab. 3.2: Given (GV7)1 and (GV7)i, the third element of each list shows a re-
arrangement of the vertices of the multi-graph (GV7)1 for obtaining the
multi-graph (GV7)i, with i = 2, ..., 8. Algorithm 3.1.1 shows that there
exists only one pattern subset with seven points.

Algorithm 3.1.1 determines the pattern subsets with 4 ≤ c ≤ 8 points.
The pattern subsets with 0 ≤ c < 4 points are determined by complemen-
tation. In Section 3.1.2, we will associate a pattern cell with each pattern
subset.

Algorithm 3.1.1

Input: (V,≺) set of vertices of the unit cube together with an order relation ≺.
Output: pattern subsets with 4 ≤ c ≤ 8 points.
begin
// PS: empty list to store the vertices of the non-isomorphic multi-graphs.

1: for c = 4, ..., 8 do



3. Extracting 3–dimensional cell complexes from binary digital images 42

2: Construct an ordered set (Vc,≺) containing the C(8, c) subsets with c points
3: for each (Vc)i ⊂ Vc do
4: Determine the multi-graph (GVc)i associated with (Vc)i
5: end for
6: for all (Vc)i1 ⊂ Vc and (Vc)i2 ⊂ Vc such that (Vc)i1 ≺ (Vc)i2 do
7: if (GVc

)i1 and (GVc
)i2 are isomorphic then {(Vc)i1 and (Vc)i2 are isometric.}

8: Vc = Vc − {(Vc)i2}
9: end if

10: end for
11: PS = PS

⋃
Vc

12: end for
13: return PS

end

Remark 3.1.6. Given an order relation ≺ on the set of vertices of the unit
cube, Algorithm 3.1.1 determines the smallest pattern subsets with respect to
≺. Moreover, by changing the order relation, other pattern subsets (isometric
to those shown in Table 3.3) are obtained.

The results shown in Theorem 3.1.7 are determined by Algorithm 3.1.1.

Theorem 3.1.7. In Z3, there exist: (a) six pattern subsets with four points;
(b) three pattern subsets with five points; (c) three pattern subsets with six
points; (d) one pattern subset with seven points; and (e) one pattern subset
with eight points.

Taking into account the complementation, we can formulate Corollary 3.1.8.

Corollary 3.1.8. In Z3, there exist: (b’) three pattern subsets with three
points; (c’) three pattern subsets with two points; (d’) one pattern subset
with one point; and (e’) one pattern subset with zero points.

Remark 3.1.9. Let us note that the results shown in Theorem 3.1.7 and
Corollary 3.1.8 coincide with those obtained by using marching cubes algo-
rithm and Kenmochi et al. method except for the subsets with four points.



3. Extracting 3–dimensional cell complexes from binary digital images 43

Tab. 3.3: On the left: pattern subsets with 4 ≤ c ≤ 8 points, obtained by using
lexicographic order in Algorithm 3.1.1. On the right: pattern subsets
with 0 ≤ c < 4 points, obtained by complementation.



3. Extracting 3–dimensional cell complexes from binary digital images 44

3.1.1.2 A second solution

Algorithm 3.1.1 is based on graph isomorphisms, which is a problem in NP
(see [3, 20] for more details). For this reason, a more efficient algorithm for
finding the pattern subsets has been implemented. The algorithm defined
in this paragraph computes the isometric subsets in a direct way. More
concretely, the group of isometries of a cube is determined and applied to
the subsets of points. In this way, we obtain the subsets isometric to a given
subset, and consequently, the pattern subsets. A scheme of this algorithm is
shown in Figure 3.7.

Fig. 3.7: Scheme of a more efficient algorithm than Algorithm 3.1.1 for finding
the pattern subsets.

Computing the group of isometries of a cube

The group iso cube of isometries of a cube consists of rigid motions (ro-
tations, reflections and translations) leaving it invariant. Moreover, there do
not exist translations leaving a cube invariant, so iso cube is only made up
by the rotations and reflections which leave a cube invariant.

Rotations are determined by angles and rotation axes. The points of the
axis are fixed under the rotation. If the rotation leaves a cube invariant, then
the axis must go through the cube passing by its central point. Below, we
show some well-known results (see [2, 13]) about the angle and the axis of
each of the rotations which leave a cube invariant.



3. Extracting 3–dimensional cell complexes from binary digital images 45

– Rotation about an axis from the center of a face to the center of the
opposite face by an angle of π/2, −π/2 or π radians: there exist 3 axes
(see Figure 3.8), so there are 3 rotations of this type for each angle,
altogether 9 rotations of this type.

Fig. 3.8: The rotation determined by each of the red axes and by an angle of π/2,
−π/2 and π radians, respectively, leaves the cube invariant.

– Rotation about an axis from the center of an edge to the center of
the opposite edge by an angle of π radians: there exist 6 axes (see
Figure 3.9) and 1 rotation per axis, so there are 6 rotations of this
type.

Fig. 3.9: The rotation determined by each of the red axes and by an angle of π
radians leaves the cube invariant.

– Rotation about an axis from one vertex to the opposite vertex by an
angle of 2

3
π or −2

3
π radians: there exist 4 axes (see Figure 3.10), so

there are 4 rotations of this type for each angle, altogether 8 rotations
of this type.

Fig. 3.10: The rotation determined by each of the red axes and by an angle of 2
3π

radians (resp. −2
3π radians) leaves the cube invariant.



3. Extracting 3–dimensional cell complexes from binary digital images 46

Reflections are determined by reflection planes. The points of this plane
are fixed under the reflection. If the reflection leaves a cube invariant, then
the plane must contain the central point of the cube and to split it into
two identical polyhedra. Below, we show some well-known results (see [2,
13]) about the reflection plane of each of the reflections which leave a cube
invariant.

– 3 reflections with planes midway between pairs of opposite faces (see
Figure 3.11).

Fig. 3.11: The reflection determined by each of the red planes leaves the cube
invariant.

– 6 reflections with planes passing through pairs of opposite edges (see
Figure 3.12).

Fig. 3.12: The reflection determined by each of the red planes leaves the cube
invariant.

Let us note that the group of the isometries of a cube is made up by
48 elements, namely: (a) the identity map; (b) 23 rotations (see Figures
3.8, 3.9 and 3.10); (c) 9 reflections (see Figures 3.11 and 3.12); and (d) 15
compositions of one rotation with one reflection such that the rotation axis
and the reflection plane are incident at a point. See [13] for more details.

Remark 3.1.10. Let {v1, v2, v3, v4, v5, v6, v7, v8} be the set of vertices of the
unit cube. Automorphisms[Hypercube[3]] in the Mathematica package
Combinatorica’ gives the following list with the 48 permutations of vertices
which leave the unit cube invariant.
{{v1, v2, v3, v4, v5, v6, v7, v8}, {v1, v2, v7, v8, v5, v6, v3, v4}, {v1, v3, v2, v4, v8, v6, v7, v5},
{v1, v3, v7, v5, v8, v6, v2, v4}, {v1, v7, v2, v8, v4, v6, v3, v5}, {v1, v7, v3, v5, v4, v6, v2, v8},
{v2, v1, v4, v3, v6, v5, v8, v7}, {v2, v1, v8, v7, v6, v5, v4, v3}, {v2, v4, v1, v3, v7, v5, v8, v6},
{v2, v4, v8, v6, v7, v5, v1, v3}, {v2, v8, v1, v7, v3, v5, v4, v6}, {v2, v8, v4, v6, v3, v5, v1, v7},
{v3, v1, v4, v2, v6, v8, v5, v7}, {v3, v1, v5, v7, v6, v8, v4, v2}, {v3, v4, v1, v2, v7, v8, v5, v6},
{v3, v4, v5, v6, v7, v8, v1, v2}, {v3, v5, v1, v7, v2, v8, v4, v6}, {v3, v5, v4, v6, v2, v8, v1, v7},



3. Extracting 3–dimensional cell complexes from binary digital images 47

{v4, v2, v3, v1, v5, v7, v6, v8}, {v4, v2, v6, v8, v5, v7, v3, v1}, {v4, v3, v2, v1, v8, v7, v6, v5},
{v4, v3, v6, v5, v8, v7, v2, v1}, {v4, v6, v2, v8, v1, v7, v3, v5}, {v4, v6, v3, v5, v1, v7, v2, v8},
{v5, v3, v6, v4, v8, v2, v7, v1}, {v5, v3, v7, v1, v8, v2, v6, v4}, {v5, v6, v3, v4, v1, v2, v7, v8},
{v5, v6, v7, v8, v1, v2, v3, v4}, {v5, v7, v3, v1, v4, v2, v6, v8}, {v5, v7, v6, v8, v4, v2, v3, v1},
{v6, v4, v5, v3, v7, v1, v8, v2}, {v6, v4, v8, v2, v7, v1, v5, v3}, {v6, v5, v4, v3, v2, v1, v8, v7},
{v6, v5, v8, v7, v2, v1, v4, v3}, {v6, v8, v4, v2, v3, v1, v5, v7}, {v6, v8, v5, v7, v3, v1, v4, v2},
{v7, v1, v5, v3, v6, v4, v8, v2}, {v7, v1, v8, v2, v6, v4, v5, v3}, {v7, v5, v1, v3, v2, v4, v8, v6},
{v7, v5, v8, v6, v2, v4, v1, v3}, {v7, v8, v1, v2, v3, v4, v5, v6}, {v7, v8, v5, v6, v3, v4, v1, v2},
{v8, v2, v6, v4, v5, v3, v7, v1}, {v8, v2, v7, v1, v5, v3, v6, v4}, {v8, v6, v2, v4, v1, v3, v7, v5},
{v8, v6, v7, v5, v1, v3, v2, v4}, {v8, v7, v2, v1, v4, v3, v6, v5}, {v8, v7, v6, v5, v4, v3, v2, v1}}

Let us note that each of these permutations corresponds to an isometry of the
unit cube.

Remark 3.1.11. A standard implementation for computing the permuta-
tions of vertices which leave the unit cube C invariant can be conceived as
follows.

Let {v1, v2, v3, v4, v5, v6, v7, v8} be the set of vertices of C: (a) v1 can be
placed on eight different positions; (b) if v2 is the end-point of an edge incident
to v1, then v2 can be placed on three different positions since there exist three
edges incident to v1; (c) if v3 is the end-point of another edge incident to v1,
then (once v2 is placed) v3 can be placed on two different positions; (d) if v4
is the end-point of another edge incident to v1, then (once v2, v3 are placed)
v4 can be placed on only one position; analogously, (e) the positions of the
vertices v5, v6, v7, v8 are fixed.

In this way, we can conclude that there exist 8 · 3 · 2 · 1 = 48 elements in
the group of isometries of C.

Applying the group of isometries to the subsets

Once computed the group of isometries iso cube of a cube, we define
Algorithm 3.1.2 for obtaining the pattern subsets from this group.

Algorithm 3.1.2

Input: (V,≺) set of vertices of the unit cube together with an order relation ≺.
iso cube: group of isometries of the unit cube.

Output: pattern subsets with 0 ≤ c ≤ 8 points.
begin
// PS: empty list to store the pattern subsets with 0 ≤ c ≤ 8 points.

1: for c = 0, ..., 8 do
2: Construct an ordered set (Vc,≺) containing the C(8, c) subsets with c points
3: for each (Vc)i ⊂ Vc ordered by ≺ do
4: for each σ ∈ iso cube− {identity} do



3. Extracting 3–dimensional cell complexes from binary digital images 48

5: Vc = Vc − {σ((Vc)i)}
6: end for
7: end for
8: PS = PS

⋃
Vc

9: end for
10: return PS

end

First, Algorithm 3.1.2 constructs an ordered set (Vc,≺) containing the
C(8, c) subsets with 0 ≤ c ≤ 8 vertices of the unit cube. Next, for (Vc)i ⊂ Vc,
it computes and removes any subset (Vc)j 6= (Vc)i isometric to (Vc)i. In
this way, Algorithm 3.1.2 allows us to obtain a representative subset of each
isometry class.

Remark 3.1.12. Algorithm 3.1.2 improves the computational time of Algo-
rithm 3.1.1 (see Table 3.4).

Tab. 3.4: Algorithm 3.1.1 constructs and checks C(8, 4) = 70, C(8, 5) = 56,
C(8, 6) = 28 and C(8, 7) = 8 multi-graphs in 3.12, 3.83, 2.8 and 1.58
seconds of CPU time, respectively. These results are improved by Algo-
rithm 3.1.2 to 0.31, 0.29, 0.26 and 0.21 seconds of CPU time, respectively.
The computations have been made by using Mathematica 7.0.0 in AMD
Turion(tm) 64 X2 Mobile Technology TL-58 1.90 GHz.

Remark 3.1.13. In the same way as Algorithm 3.1.1, Algorithm 3.1.2 de-
termines the smallest pattern subsets with respect to the order relation given
on the set of vertices of the unit cube; so that, by changing the order relation,
other pattern subsets (isometric to those shown in Table 3.5) are obtained.



3. Extracting 3–dimensional cell complexes from binary digital images 49

Tab. 3.5: Pattern subsets in Z3 obtained by using the lexicographic order in Algo-
rithm 3.1.2. The pattern subsets on the left coincide (up to isometries)
with those on the right in Table 3.3. The pattern subsets on the right
coincide with those on the left in Table 3.3.

Remark 3.1.14. Theorem 3.1.7 and Corollary 3.1.8 can be proved by using
Algorithm 3.1.2.

Remark 3.1.15. Let us observe that the twenty-two pattern subsets shown in
Table 3.5 coincide (up to isometries) with the twenty-two unit cells presented
by Kong and Roscoe in [17] (see Table 2.9). More concretely, the pattern sub-
set (V0)1, (V1)1, (V2)1, (V2)2, (V2)3, (V3)1, (V3)2, (V3)3, (V4)1, (V4)2, (V4)3,



3. Extracting 3–dimensional cell complexes from binary digital images 50

(V4)4, (V4)5, (V4)6, (V5)1, (V5)2, (V5)3, (V6)1, (V6)2, (V6)3, (V7)1, (V8)1, coin-
cides with the unit cell labeled by 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14,
17, 15, 16, 20, 19, 18, 21, 22, respectively, in Table 2.9.

Below, we associate each of the 22 pattern subsets with a pattern cell.
Every pattern cell consists in the convex hull of the points of the correspond-
ing pattern subset. More precisely, every pattern subset is associated with
(1) an open cell made up by the points inside of the convex hull, and (2) a
boundary made up by the boundary cells of the convex hull.

3.1.2 Pattern cells

We show a computational method for determining the convex hull of each
of the pattern subsets. The technique consists in deforming the cube which
contains the subset. Moreover, we deform the faces of the cube which contain
white vertices (see Figure 3.13 (a)). These deformations are a consequence of
degenerating edges incident to white vertices. These edge degeneracies can
lead to the fact that a face (resp. volume) degenerates into an edge (resp.
face) incident to it (see Figure 3.13 (b) and (c)).

Fig. 3.13: (a) Degeneracy of the edge v4v8 into the vertex v4. This edge de-
generacy leads to the fact that the square faces v2v4v6v8 and v3v4v7v8
are deformed into the triangular faces v2v4v6 and v3v4v7, respectively.
Moreover, the square face v5v6v7v8 is geometrically deformed into a fold
face; it leads to the fact that this face is subdivided into two triangular
faces v4v6v7 and v5v6v7. (b) Degeneracies of the edges v3v7 and v4v8
into the vertices v3 and v4, respectively. These edge degeneracies lead
to the fact that the square face v3v4v7v8 degenerates into the edge v3v4.
(c) Degeneracies of the edges v1v5, v2v6, v3v7 and v4v8 into the vertices
v1, v2, v3 and v4, respectively. These edge degeneracies lead to the fact
that the cube degenerates into the square face v1v2v3v4.



3. Extracting 3–dimensional cell complexes from binary digital images 51

3.1.2.1 Finding the edges to degenerate

We show that by degenerating edges incident to a white vertex which
do not belong to the cube, we do not always obtain the convex hull of the
pattern subset. Moreover, we justify that if during the deformation of the
cube we only degenerate edges belonging to the cube, then we always obtain
the convex hull of the subset.

Degenerating edges non-belonging to the cube

We suppose that we want to compute the convex hull of the subset
{v1, v2, v3, v4, v8} of vertices of the cube (see Figure 3.14 (a)), and we sup-
pose that at the penultimate step of the deformation we have obtained the
polyhedron shown in Figure 3.14 (b). The last step of the procedure consists
in degenerating one of the edges incident to v5.

Fig. 3.14: (a) Subset {v1, v2, v3, v4, v8} of vertices of the cube. (b) Result obtained
at the penultimate step of the deformation.

If we degenerate the edge v2v5 (see Figure 3.15 (a)), we do not obtain
the convex hull of the subset of black points. Actually, the black points
define a volume contained in the cube. However, in Figure 3.15 (b) we have
obtained an object made up by the square face v1v2v3v4 (containing the
triangular face v1v2v3) and three non-coplanar triangular faces v2v3v8, v2v4v8
and v3v4v8 attached each other by an edge, containing the volume incident
to these three faces and a half of the square. It is because to degenerate the
edge v2v5, the edge v3v5 goes through the polyhedron shown in Figure 3.14
(b), sending it to the volume v2v3v4v8 together with a face v1v2v3 out of the
volume.



3. Extracting 3–dimensional cell complexes from binary digital images 52

Fig. 3.15: (a) By degenerating the edge v2v5, we do not obtain the convex hull
of the points in Figure 3.14 (a). (b) We obtain an object made up by
a square face v1v2v3v4 and three non-coplanar triangular faces v2v3v8,
v2v4v8 and v3v4v8, containing the volume incident to these three faces
and a half of the square.

Let us note that we obtain a similar result by degenerating the edge v3v5.
On the other hand, if we degenerate the edge v1v5 or v5v8, we obtain the
convex hull of the black points (see Figure 3.16).

Fig. 3.16: By degenerating the edge v1v5, we obtain the convex hull of the points
in Figure 3.14 (a).

Degenerating edges belonging to the cube

We show that by degenerating an edge belonging to the cube, at each
step, we obtain the convex hull. Moreover, taking into account that a cube
can be decomposed into two prisms with triangular bases (see Figure 3.17),
by symmetries, it suffices to prove that by degenerating an edge of these
prisms, at each step, we obtain the convex hull.



3. Extracting 3–dimensional cell complexes from binary digital images 53

Fig. 3.17: A cube decomposed into two prisms with triangular bases.

At the first step of the deformation of a cube C, we consider the prism D
containing the white vertex B. If we degenerate an edge e ∈ C

⋂
D incident

to B, we obtain a pyramid (first two pairs of pictures in Figure 3.18) or into a
pyramid with a non-planar convex foursquare face (last four pairs of pictures
in Figure 3.18). Latter appears by deforming the square face of D which
contains B and it is not incident to e. We can interpret this deformation as
a fold face, so it is necessary to introduce an edge for representing the fold.
In this way, the non-planar face is replaced by two triangular faces.

Fig. 3.18: By degenerating any edge of C
⋂
D, the prism is deformed into a pyra-

mid.

We suppose, without loss of generality, that at the following step of the
deformation, B′ is a white vertex of one of the pyramids P obtained in
Figure 3.18 by deforming D. Let us note that B′ can be the apex or a base
vertex of the pyramid P . Below, we show that, in both cases, if we degenerate
an edge e′ ∈ C

⋂
P , then we obtain the convex hull of the vertices of P−{B′}.

– If B′ is the apex of P , we degenerate an edge e′ ∈ C
⋂
P incident to

the apex. Consequently, P degenerates into its square base, and we
obtain a square face divided into two coplanar triangular faces sharing
an edge. In order to obtain the square face, we remove the edge shared
by the two triangular faces (see Figure 3.19).

Fig. 3.19: By degenerating any edge of C
⋂
P incident to the apex, the pyramid

is degenerated into a square.

– If B′ is a vertex of the base of P , we degenerate any edge e′ ∈ C
⋂
P

incident to B′. Consequently, P is deformed into a tetrahedron (see



3. Extracting 3–dimensional cell complexes from binary digital images 54

first four pairs of pictures in Figure 3.20) or into a tetrahedron with
a non-planar convex foursquare face (see last pair of pictures in Fig-
ure 3.20). Likewise to the case of the triangular prism, the remaining
edge is because it appears a non-planar convex foursquare face. This
fact involves to have to introduce the edge which represents the fold of
the face.

Fig. 3.20: By degenerating any edge of C incident to two vertices of the base of
P , we obtain a tetrahedron. By degenerating any edge of C which joins
a vertex of the base of P with the apex, we obtain a tetrahedron (except
for an edge).

Finally, the degeneracy of a tetrahedron into a triangle, a triangle into
an edge, and an edge into a point, respectively, is obtained trivially by de-
generating an edge belonging to the cube incident to a white vertex (see
Figure 3.21).

Fig. 3.21: From left to right: degeneracy of a tetrahedron into a triangle, a triangle
into an edge, and an edge into a point.

Remark 3.1.16. If, at each step, we degenerate an edge belonging to the
cube incident to a white vertex, the previous results prove that we always
obtain the convex hull.

Remark 3.1.17. It is also possible to obtain the convex hull by degenerating
edges which do not belong to the cube; it happened in Figure 3.15 with the
edge v5v8. In this sense:

– Figure 3.18 allows us to note that by degenerating any edge (belonging
or not to the cube) of a prism, we obtain a pyramid.

– Figure 3.19 shows that if the apex is the white vertex, then the pyramid
is degenerated into its basis by degenerating any edge (belonging or not
to the cube) of the pyramid incident to the apex.

– If the white vertex is a vertex of the base of the pyramid, then by de-
generating any edge (belonging or not to the cube) incident to it and to



3. Extracting 3–dimensional cell complexes from binary digital images 55

another base vertex, we obtain a tetrahedron. It is the case of the edge
v5v8 in Figure 3.15, which the vertices v1, v2, v4, v5, v8 define a pyramid
in.
Moreover, the only operation which does not allow us to obtain a tetra-
hedron consists in degenerating an edge of the pyramid which does not
belong to the cube and it joins the apex with a white vertex of the base.
It is the case of the edge v2v5 (resp. v3v5) in Figure 3.15, which the
vertices v1, v2, v4, v5, v8 (resp. v1, v3, v4, v5, v8) define a pyramid in. On
the other hand, if v1 were the white vertex in Figure 3.14 (b), then by
degenerating the edge v1v2 (resp. v1v3) we would obtain the convex hull
(see Figure 3.22).

Fig. 3.22: By degenerating the edge v1v2, we obtain the convex hull of
v2, v3, v4, v5, v8.

In the following paragraph, we detail a procedure to assure that at each
step of the deformation of the cube, there exists an edge of the cube incident
to the white vertex to treat. This edge is degenerated in order to obtain the
convex hull.

3.1.2.2 An order relation on the edge degeneracies

We show that the edges of the cube have to degenerate following a certain
order; otherwise, in the procedure of deformation of the cube there can be
white vertices non-incident to edges of it (see Figure 3.23), in which case
it may not be obtained the convex hull of the points of the pattern subset.
Moreover, we describe a procedure for obtaining an order relation for degen-
erating the edges of the cube. This order relation guarantees that, at each
step of the deformation of the cube, the white vertex to treat is incident to
an edge of the cube, avoiding situations as that shown in Figure 3.23.



3. Extracting 3–dimensional cell complexes from binary digital images 56

Fig. 3.23: The first picture shows an order for degenerating the edges incident to
the white vertices of the cube. The degenerated edges in the second,
third, and fourth picture, respectively, lead to the deformation of the
three edges of the cube incident to the vertex B4. There are not any
edge of the cube incident to the vertex B4 for degenerating.

The procedure for obtaining an order relation on the edge degeneracies
consists of two steps: (1) considering the white vertices of the cube and the
edges which join them as a subgraph S of the cube; and (2) constructing a
rooted spanning tree of each connected component of S. These trees allow
us to establish a hierarchy on the set of white vertices (the last vertex is
the root), and consequently, an order for degenerating the edges which join
these vertices. The idea to avoid situations as that shown in Figure 3.23 is
to choose as root of each tree a white vertex adjacent to a black vertex of the
cube. In this way, each root is always incident to an edge of the cube which
has not been deformed.

Let (Vc)i ⊂ Z3 be a pattern subset with 0 ≤ c ≤ 8 points, contained
in a cube C(Vc)i . First, we consider the cube C(Vc)i as a graph with eight
vertices and twelve edges. Then, we delete the points of (Vc)i from C(Vc)i

and, consequently, the edges incident to these points. In this way, we obtain
a subgraph S of C(Vc)i with 8−c vertices and the remaining edges of C(Vc)i (see
Figure 3.24 for an example). Next, we compute the connected components
of the subgraph S. Additionally, for each connected component of S, we
construct a rooted spanning tree whose root is a white vertex adjacent to a
black vertex of the cube. Let us note that these trees establish a hierarchy
on the set of white vertices of C(Vc)i . Moreover, this hierarchy determines an
order for degenerating the edges of these trees (which, obviously, are edges of
the cube incident to white vertices) since the number of edges of a tree with
v vertices is v − 1. Hence, except for the root, each vertex of a rooted tree
is associated with the edge whose end-points are itself and its father. After
degenerating all the edges of a tree, we degenerate the edge whose end-points
are the root and a black vertex adjacent to it.



3. Extracting 3–dimensional cell complexes from binary digital images 57

Fig. 3.24: On the left: the subgraph obtained by deleting the black vertices of the
cube shown in Figure 3.23. On the right: its rooted spanning tree.

Remark 3.1.18. In the procedure described previously, we have imposed that
the root of each tree is adjacent to a black vertex of the cube. This condition
is essential for obtaining the order relation since after degenerating the edges
of the tree, it allows us that the root is still incident to an edge of the cube.
This edge is the last one in degenerating. Let us observe that this condition
is not satisfied in Figure 3.23, since the last edge in degenerating is incident
to the white vertex B4 which is not adjacent to any black vertex of the cube.

On the other hand, the procedure assures that the degenerated edges are
always edges of the cube. It is because they are edges of a spanning tree of
a subgraph of the cube. In this way, we avoid situations as that shown in
Figure 3.23.

In Figure 3.25, we show an order relation for degenerating the edges of
the cubes which contain the pattern subsets (V3)3 and (V1)1, respectively.



3. Extracting 3–dimensional cell complexes from binary digital images 58

Fig. 3.25: On the top: (a) the pattern subset (V3)3; (b) the subgraph of the cube
obtained by deleting the points of (V3)3 and the edges of the cube inci-
dent to these points; (c) the rooted spanning trees of the two connected
components of the subgraph, respectively. On the bottom: (a) the pat-
tern subset (V1)1; (b) the subgraph of the cube obtained by deleting
the points of (V1)1 and the edges of the cube incident to these points;
(c) the rooted spanning tree of the single connected component of the
subgraph. The root of each tree is denoted by r and the arrows indicate
how to degenerate the edges.

3.1.2.3 Convex hull of a pattern subset

We describe a procedure for constructing the convex hull of any pattern
subset in Z3. These convex hulls allow us to determine (up to isometries) the
cells (together with their boundary) which can be obtained by deforming a
cube. The procedure is based on degenerating edges of the cube incident to
white vertices.

As we commented at the beginning of Section 3.1.2, the degeneracy of



3. Extracting 3–dimensional cell complexes from binary digital images 59

an edge of the cube incident to a white vertex can lead to the degeneracy of
faces and/or volumes contained in the cube. Below, we relate the existence
of degenerated faces and/or volumes to the star of the degenerated edge and
to that of the white vertex to treat. We recall that the star of a cell c is the
set of cells whose boundary contains c.

Let (Vc)i be a pattern subset contained in the cube C(Vc)i , and let S be the
subgraph of C(Vc)i constructed by deleting the points of (Vc)i. For each white
vertex B of C(Vc)i , we consider the rooted spanning tree T of the connected
component of S containing B, and the edge e = AB of T whose end-points
are B and its father. Let S(B) be the star of the white vertex to treat, and
let S(e) be the star of the edge e. Next, we degenerate e.

1. Let f be a square face contained in S(B).

(a) If f /∈ S(e), then f is deformed into a face of four non-coplanar
vertices. In this case, in order to avoid convexity problems related
to this non-planar face, we attach the edge whose vertices are the
other end-points of the edges of f incident to B. This edge allows
us to cut up the non-planar face into two triangular faces sharing
an edge. The shared edge is the attached edge. See Figure 3.26
for a pictorial description.

Fig. 3.26: The square face f is deformed into a non-planar face with four vertices,
as a consequence of degenerating an edge which is not incident to f . To
avoid convexity problems, the red edge is attached. This edge cuts up
the non-planar face into two triangular faces, f ′1 and f ′2.

(b) If f ∈ S(e), then f is deformed into a triangular face f ′. The
vertices of f ′ are those of f except B (see Figure 3.27).



3. Extracting 3–dimensional cell complexes from binary digital images 60

Fig. 3.27: The square face f is deformed into the triangular face f ′, as a conse-
quence of degenerating an edge which is incident to f .

2. Let T be a triangular face contained in S(B).

(a) If T /∈ S(e), then T is deformed into another triangular face T ′.
The vertices of T ′ are those of T except B, which is replaced with
the other end-point of e. An example of this case is shown in
Figure 3.28.

Fig. 3.28: The triangular face T is deformed into another triangular face T ′, as a
consequence of degenerating an edge which is not incident to T .

(b) If T ∈ S(e), then T degenerates into an edge e′ 6= e incident
to T . The end-points of e′ are the vertices of T except B. The
degenerated edge leads to a degenerated triangular face. This
degenerated triangular face must be removed starting from the
third edge a 6= e, e′ incident to T (see Figure 3.29).



3. Extracting 3–dimensional cell complexes from binary digital images 61

Fig. 3.29: The triangular face T degenerates into an edge e′ which is incident to
T . This degenerated face appears as a consequence of degenerating an
edge of the cube which is incident to T . The degenerated face is removed
starting from the edge a.

3. Let V be a volume contained in C(Vc)i , and let F be the set of faces
of V .

If there exists only one face f ∈ F − S(B), then V degenerates into f .
The degenerated edge leads to a degenerated volume. This degenerated
volume must be removed starting from a face incident to it (see Figures
3.30 and 3.31).

Fig. 3.30: The only face of the pyramid which does not belong to S(B) is its square
base, so the pyramid degenerates into it. This degenerated pyramid is
removed starting from its square base.

Fig. 3.31: There exists only one face of the tetrahedron which does not belong to
S(B), so the tetrahedron degenerates into it. This degenerated tetrahe-
dron is removed starting from the only face contained in S(B)− S(e).



3. Extracting 3–dimensional cell complexes from binary digital images 62

As a consequence of these operations, two coplanar triangular faces shar-
ing an edge may have appeared (see Figure 3.30). In this case, we must
remove the shared edge. The two coplanar triangular faces become only one
square face. Hence, the vertices of this square face are those of the two
triangular faces.

Summarizing, the developed technique for constructing the convex hull of
a pattern subset consists in: (1) attaching edges to convert non-planar faces
with four vertices into two triangular faces sharing an edge; (2) studying the
degenerated i–cells, for i = 1, 2, 3; and (3) removing edges for converting two
coplanar triangular faces into only one square face.

In Algorithm 3.1.3, we define the procedure for: (1) deforming the unit
cube into the convex hull of any pattern subset (Vc)i ⊂ Z3; (2) constructing
the cell defined by this pattern subset; and (3) computing its boundary.

Algorithm 3.1.3

Input: the unit cube CV .
a pattern subset (Vc)i ⊂ CV with c points.

Output: convex hull of (Vc)i.
begin
// V e: vertices of CV .
// Ed: edges of CV .
// Fa: faces of CV .
// V o: volume of CV .
// S: subgraph of CV constructed by deleting the points of (Vc)i.
// WV : set of white vertices of CV ordered according to Section 3.1.2.2.

1: Ed′ = Ed
2: for each B ∈WV ordered according to Section 3.1.2.2 do
3: • Construct the rooted spanning tree T of the connected component of S contain-

ing B
4: • Degenerate the edge incident to B and to its father in T

{This edge degeneracy replaces B with A, where A is the father of B in T .}
5: • Obtain the lists V e′, Ed′, Fa′, V o′ of vertices, edges, faces and volumes, respec-

tively, by replacing B with A
6: for each f ′ ∈ Fa′ do
7: if f ′ is a face of 4 non-coplanar vertices then
8: • Ed′ = Ed′

⋃
{XX ′}, where X,X ′ ∈ V e′ satisfy that XA,X ′A ∈ ∂(f ′)

{We attach an edge for cutting up the non-planar face into two triangular
faces.}

9: • Fa′ = Fa′
⋃
{XX ′A}

10: • Fa′ = Fa′
⋃
{XX ′P}, where P 6= A is such that P ∈ V e′ and it satisfies

XP,X ′P ∈ ∂(f ′)
{We attach the two triangular faces.}

11: • Fa′ = Fa′ − {f ′}
{We remove the non-planar face.}

12: end if
13: if f ′ is a face degenerated into an edge e′ ∈ Ed′ then



3. Extracting 3–dimensional cell complexes from binary digital images 63

14: Fa′ = Fa′ − {f ′}
{We remove f starting from a, where f is the triangular face which became
f ′ when B was replaced with A, and a 6= e, e′ is the third edge of f .}

15: end if
16: if v′ ∈ V o′ is a volume degenerated into f ′ then
17: • V o′ = V o′ − {v′}

{We remove v starting from g, where v is the volume which became v′ when
B was replaced with A, and g is a face incident to v.}

18: end if
19: if f ′ 6= f ′′ ∈ Fa′ are two coplanar triangular faces sharing an edge e′′ ∈ Ed′

then
20: if {f ′ + f ′′} /∈ Fa′, where f ′ + f ′′ denotes the closure of the all the points

inside of the convex hull of the vertices of f ′ and f ′′ then
21: • Fa′ = Fa′

⋃
{f ′ + f ′′}

{We attach the square face made up by the two coplanar triangular faces.}
22: end if
23: • Fa′ = Fa′ − {f ′}
24: • Fa′ = Fa′ − {f ′′}
25: • Ed′ = Ed′ − {e′′}

{We remove the two coplanar triangular faces and the edge shared by both
faces.}

26: end if
27: end for
28: end for
29: return V e′, Ed′, Fa′

end

Remark 3.1.19. Given a pattern subset (Vc)i, Algorithm 3.1.3 deforms and
degenerates the cells contained in the unit cube CV for computing the convex
hull of the points of (Vc)i. In this way, the cell C((Vc)i) defined by (Vc)i is
determined by the points inside of this convex hull. Moreover, the boundary
of C((Vc)i) is computed in terms of the vertices, edges and faces of the convex
hull. More concretely, ∂(C((Vc)i)) is given by V e′, Ed′, Fa′.

By using as input the 22 pattern subsets shown in Table 3.5, Algo-
rithm 3.1.3 returns the 22 pattern cells shown in Table 3.6. Let us note that
12 of them are 3–cells (see Figure 1 in [1]). More concretely, C((V4)2), C((V4)3),
C((V4)4), C((V4)6), C((V5)1), C((V5)2), C((V5)3), C((V6)1), C((V6)2), C((V6)3),
C((V7)1), C((V8)1) are 3–cells.

Remark 3.1.20. The pattern cells shown in Table 3.6 are stored in a look-up
table. In the next section, this table is used to construct a cell complex from
a 3–dimensional binary digital image.



3. Extracting 3–dimensional cell complexes from binary digital images 64

Tab. 3.6: Pattern cells defined by the pattern subsets shown in Table 3.5.

3.2 Construction of the cell complex

We present a procedure for constructing a cell complex from a given
3–dimensional binary digital image. The work is done in five steps (see
Figure 3.32): (1) computing the subsets of points of the image; (2) associating
each of these subsets with a pattern subset; (3) identifying the pattern cell
defined by each of these pattern subsets; (4) inverting the isometry between
each subset and its associated pattern subset. It allows us to obtain the
cells of the cell complex. Let us note that a cell can appear several times,
since it can be contained in more than one cube of the grid. In this sense,
(5) the cell complex is constructed by attaching only one copy of each cell.
Moreover, this cell complex can be simplified by removing the faces incident



3. Extracting 3–dimensional cell complexes from binary digital images 65

to two volumes, the edges incident to exactly two coplanar faces, and the
vertices incident to exactly two collinear edges. Some of these simplifications
are treated in Section 3.3.

Fig. 3.32: The diagram shows the procedure which allows us to construct the cell
complex from the image.

3.2.1 Subsets of points of an image

This subsection is devoted to Stages (1) and (2) working out only the
vertex level. Given a binary digital image on a dual grid, we want to associate
each subset of points of the image with a pattern subset. The association is
done by localizing and classifying the subsets of black points of the image in
each cube of the grid. The step of localization consists in scanning each cube
of the grid and checking which is the subset of points corresponding to its
vertex set. The step of classification consists in finding the pattern subsets
of the image.

3.2.1.1 Localizing subsets of points of an image

Let I be a binary digital image which consists of r black points v1, ..., vr
on a dual grid G made up by m1 × m2 × m3 cubes, with 0 ≤ r ≤ (m1 +
1)(m2 + 1)(m3 + 1). A naive algorithm of localization (as Algorithm 3.2.4)
allows us to scan each cube of the grid and check which is the subset of points
corresponding to its vertex set.

Algorithm 3.2.4

Input: black points {v1, ..., vr} of a dual image I.
dual grid G = {C1, ..., Cm1m2m3

}.
Output: subsets of points of the image.



3. Extracting 3–dimensional cell complexes from binary digital images 66

begin
// V (I): empty set to store the lists of points of the image.

1: for each cube Ci ⊂ G do
2: Let L be the list of black vertices of Ci

3: V (I) = V (I)
⋃
{L}

4: end for
5: return V (I)

end

In Example 3.2.1, Algorithm 3.2.4 is used to localize the subsets of points
of a binary digital image.

Example 3.2.1. Let {{0, 0, 0}, {0, 0, 1}, {0, 0, 2}, {0, 0, 4}, {0, 1, 0}, {0, 1, 1}, {0, 1,
3}, {0, 1, 4}, {0, 2, 1}, {0, 2, 2}, {0, 2, 4}, {0, 3, 1}, {0, 3, 2}, {0, 3, 3}, {0, 3, 4}, {0, 4, 0},
{0, 4, 1}, {0, 4, 2}, {0, 4, 3}, {1, 0, 0}, {1, 0, 1}, {1, 0, 2}, {1, 0, 3}, {1, 0, 4}, {1, 1, 1}, {1,
1, 2}, {1, 1, 3}, {1, 2, 0}, {1, 2, 1}, {1, 2, 3}, {1, 2, 4}, {1, 3, 0}, {1, 3, 1}, {1, 3, 2}, {1, 3,
3}, {1, 3, 4}, {1, 4, 0}, {1, 4, 2}, {2, 0, 1}, {2, 0, 3}, {2, 0, 4}, {2, 1, 0}, {2, 1, 1}, {2, 1, 2},
{2, 1, 3}, {2, 2, 1}, {2, 2, 2}, {2, 2, 4}, {2, 3, 0}, {2, 3, 1}, {2, 3, 3}, {2, 3, 4}, {2, 4, 1}, {2,
4, 2}, {2, 4, 3}, {3, 0, 0}, {3, 0, 1}, {3, 0, 3}, {3, 0, 4}, {3, 1, 0}, {3, 1, 2}, {3, 1, 3}, {3, 1, 4
}, {3, 2, 0}, {3, 2, 1}, {3, 2, 2}, {3, 2, 3}, {3, 2, 4}, {3, 3, 0}, {3, 3, 2}, {3, 3, 3}, {3, 3, 4}, {
3, 4, 0}, {3, 4, 1}, {3, 4, 2}, {3, 4, 3}, {3, 4, 4}, {4, 0, 1}, {4, 0, 2}, {4, 0, 3}, {4, 0, 4}, {4, 1,
0}, {4, 1, 1}, {4, 1, 2}, {4, 1, 3}, {4, 1, 4}, {4, 2, 0}, {4, 2, 2}, {4, 2, 4}, {4, 3, 0}, {4, 3, 2},
{4, 4, 0}, {4, 4, 1}, {4, 4, 3}, {4, 4, 4}} be the set of the 95 black points of a dual
grid G made up by 4× 4× 4 cubes.

Algorithm 3.2.4 scans each of the 64 cubes of the grid and checks which is
the subset of points corresponding to its vertex set. In Figure 3.33, we show
several stages of the cube scanning.

Fig. 3.33: The first four pictures correspond to the scanning of the cubes 1, 7,
53 and 64 of the grid, respectively. The last one represents the binary
digital image defined by the 95 black points in Example 3.2.1.



3. Extracting 3–dimensional cell complexes from binary digital images 67

Remark 3.2.2. Algorithm 3.2.4 splits the set of black points of a binary
digital image. The method for associating each of these subsets with one of
the pattern subset shown in Table 3.5 is explained next.

3.2.1.2 Classifying subsets of points of an image

Algorithm 3.1.2 at pages 47–48 computes the action of the group of isome-
tries of a cube on the subsets of points. This allows us to characterize the
subsets of points in two disjoint families: (a) one consisting of the pattern
subsets; and (b) other one with the rest of subsets. Note that each subset
of type (b) is isometric to a pattern subset, i.e. to a subset of type (a). In
this way, given V (I) as the set containing the subsets of points of an image
I, a naive algorithm (as Algorithm 3.2.5) allows us to associate each subset
contained in V (I) with a pattern subset, giving the set of the pattern subsets
of I.

Algorithm 3.2.5

Input: V (I): subsets of points of a binary digital image.
PS: pattern subsets.

Output: pattern subsets of the image.
begin

1: for X ∈ V (I) do
2: if Y ∈ PS

⋂
iso cube(X) then

3: Replace X with Y in V (I)
4: Save σ ∈ iso cube such that σ(X) = Y
5: end if
6: end for
7: return V (I)

end

Example 3.2.3. Algorithm 3.2.5 replaces each subset of points of the image
shown in Example 3.2.1 with a pattern subset, giving the set of the pattern
subsets of the image. In Figure 3.34, the pattern subsets of this image are
shown for the cubes 1, 7, 53 and 64 of the grid.



3. Extracting 3–dimensional cell complexes from binary digital images 68

Fig. 3.34: Pattern subsets of the image shown in Example 3.2.1 for the cubes 1,
7, 53 and 64 of the grid, respectively.

Theorem 3.2.4. Any 3–dimensional binary digital image on a dual grid is
made up by combining (up to isometries) the 22 pattern subsets shown in
Table 3.5, taking into account that it is not necessary to use all them and
any of them can be used more than once.

The results shown in Theorem 3.2.4 are determined by Algorithms 3.2.4
and 3.2.5, since they allow us to find the pattern subsets of any given image.

3.2.2 Cells of the cell complex

This subsection is devoted to Stages (3), (4) and (5) working out only the
cell level. The cells (together with their boundary) of the cell complex can be
obtained following these two steps: (a) identifying the pattern cells defined
by the pattern subsets of the image; and (b) inverting the isometry from each
subset of points of the image to its associated pattern subset. Finally, the
cell complex is constructed by attaching only one copy of each of these cells
along their boundaries.

3.2.2.1 Pattern cells of the cell complex

We identify the cells defined by each of the pattern subsets of the image
according to Table 3.6.

Remark 3.2.5. By identifying each subset with a cell, we obtain the pattern
cells of the cell complex.

In Figure 3.35, we present the cells defined by some of the pattern subsets
of the image shown in Example 3.2.1.



3. Extracting 3–dimensional cell complexes from binary digital images 69

Fig. 3.35: Pattern cells (together with their boundary) defined by the pattern
subsets of the image shown in Example 3.2.1 for the cubes 1, 7, 53 and
64 of the grid, respectively.

3.2.2.2 Inverting the isometries

Algorithm 3.2.5 replaces each subset X of points of the image with a
pattern subset Y . This subset Y is the image of X under the action of an
element σ of the group of isometries of a cube; i.e. each vertex p ∈ X is
replaced with a vertex p′ = σ(p) ∈ Y .

Let C(Y ) be the pattern cell corresponding to the pattern subset Y . This
cell consists of (1) the inside of the convex hull of the points of Y , and (2) the
boundary of this convex hull. In this way, if we replace every point with its
pre-image under σ, then we obtain the inside of the convex hull of the points
of X, and the boundary of this convex hull; i.e. the cell C(X) corresponding
to the subset X.

Remark 3.2.6. By applying this procedure to each subset of points of the
image, we obtain the cells (together with their boundary) defined by these
subsets. The cell complex is constructed by attaching only a copy of each
of these cells along their boundaries (see Figure 3.36 for a simple example).
The results shown in Theorem 3.2.7 are determined by this procedure.

Fig. 3.36: By attaching a square face to a triangular face along their common
edge, we construct a cell complex.

Theorem 3.2.7. The cell complex constructed from a given 3–dimensional
binary digital image on a dual grid is made up by combining (up to isometries)
the 22 pattern cells shown in Table 3.6, taking into account that it is not
necessary to use all them and any of them can be used more than once.



3. Extracting 3–dimensional cell complexes from binary digital images 70

In Figure 3.37, we show the cells (together with their boundary) resulting
of inverting the isometries which associate the subsets of points of the image
shown in Example 3.2.1 with the pattern subsets contained in the cubes 1,
7, 53 and 64 of the grid, respectively. Additionally, we show the cell complex
constructed from this image.

Fig. 3.37: The first four pictures correspond to the cells (together with their
boundary) defined by the subsets of points of the image shown in Ex-
ample 3.2.1 for the cubes 1, 7, 53 and 64 of the grid, respectively. The
last one represents the cell complex.

3.3 Simplification of the cell complex

We define an algorithm (Algorithm 3.3.6) for simplifying the cell complex
constructed from a given 3–dimensional binary digital image. The simplifi-
cation consists in removing the 2–cells of the complex incident to two 3–cells.
More concretely, the simplified complex is given by: (a) the 0,1,2–cells of the
initial complex which are not incident to a 3–cell; and (b) the set of 2–cells
(together with their boundary) incident to exactly one of the 3–cells of the
initial complex.

Algorithm 3.3.6

Input: Ci(V (I)): i–cells of the cell complex constructed from the image I, for i = 0, 1, 2, 3.
∂(C3(V (I))): boundary of the cells contained in C3(V (I)).

Output: simplified cell complex.
begin
// Bord: empty list to store the cells of the simplified complex.

1: for i ∈ {0, 1, 2} do
2: for each i–cell c ∈ Ci(V (I)) do
3: if c is not incident to a 3–cell then
4: Bord = Bord

⋃
{c}

5: else
6: if i 6= 2 or c is incident to exactly one 3–cell then
7: Bord = Bord

⋃
{c}

⋃
{∂c}

8: end if
9: end if



3. Extracting 3–dimensional cell complexes from binary digital images 71

10: end for
11: end for
12: return Bord

end

Example 3.3.1. Algorithm 3.3.6 is applied to the cell complex shown in
Figure 3.37. This algorithm determines that all the 0,1,2–cells are incident
to a 3–cell, and it computes the 174 2–cells incident to exactly one of the
3–cells of the complex (see Figure 3.38).

Fig. 3.38: Three viewpoints of the simplified cell complex obtained from the cell
complex shown in Figure 3.37.

3.4 Comparison with Kenmochi et al. method

The main difference between the results obtained by Kenmochi et al. and
our results is the number of configurations of white and black voxels on a
cube. They consider that two configurations are the same if one is a rotation
of the other one; whereas we consider that two configurations are the same
if one is an isometry of the other one. In this way, Kenmochi et al. obtain
23 different configurations (see Table 2.8 at page 24); whereas we obtain 22
pattern subsets (see Table 3.5 at page 49). Moreover, each configuration
in Table 2.8 corresponds (up to rotations) to a pattern subset in Table 3.5,
except those with four black voxels. In this case, Kenmochi et al. obtain 7
configurations; whereas we obtain 6 pattern subsets. More concretely, the
configurations P4c and P4d in Table 2.8 coincide (up to isometries) with the
pattern subset C((V4)3) in Table 3.5. Kenmochi et al. consider that the con-
figurations P4c and P4d are different because there does not exist a rotation
which sends P4c into P4d; whereas we consider that both configurations are
identical because there exists a reflection from P4c into P4d. In Figure 3.39,



3. Extracting 3–dimensional cell complexes from binary digital images 72

we can see that the multi-graphs associated with P4c and P4d, respectively,
are isomorphic.

Fig. 3.39: On the left: multi-graphs associated with P4c and P4d, respectively.
On the right: the isomorphism existing between both multi-graphs.

Consequently, Kenmochi et al. set down that a 3–dimensional binary
digital image I can be made up (up to rotations) by both configurations P4c
and P4d; whereas we asserts that I can only be made up (up to isometries)
by one of the two configurations. In Example 3.4.1, we show this fact for a
simple image.

Example 3.4.1. Let {{0, 0, 0}, {0, 0, 1}, {0, 2, 1}, {1, 1, 0}, {1, 1, 1}, {1, 2, 1}, {2, 0,
1}, {2, 1, 1}, {2, 2, 0}, {3, 3, 4}, {3, 3, 5}, {3, 4, 3}, {3, 4, 4}, {3, 5, 4}, {4, 4, 3}, {4, 4, 5},
{4, 5, 3}, {4, 5, 4}, {5, 0, 0}, {5, 0, 4}, {5, 0, 5}, {5, 1, 0}, {5, 1, 5}, {5, 3, 3}, {5, 3, 4}, {5,
3, 5}, {5, 4, 3}, {5, 4, 4}, {5, 5, 0}, {5, 5, 3}, {5, 5, 4}} be the set of the 31 black points
of a dual grid of size 6× 6× 6.

On the first row in Figure 3.40, we show the scanning of the cubes 6,
26 and 93, and the representation of the image. On the second row in Fig-
ure 3.40, we show the configurations of Table 2.8 associated with the cubes
6, 26 and 93, respectively. Finally, on the third row in Figure 3.40, we show
the pattern subsets of Table 3.5 associated with the cubes 6, 26 and 93, re-
spectively.

Let us observe that Kenmochi et al. associate different configurations of
Table 2.8 with the cubes 6 and 26 of the grid; whereas our method associates
the same pattern subset of Table 3.5 with these cubes.



3. Extracting 3–dimensional cell complexes from binary digital images 73

Fig. 3.40: On the first row: the first three pictures show the scanning of the cubes
6, 26 and 93, respectively; the fourth one shows the image. On the
second row: configurations of Table 2.8 associated with the cubes 6, 26
and 93, respectively. On the third row: pattern subsets of Table 3.5
associated with the cubes 6, 26 and 93, respectively.

Another difference between Kenmochi et al. method and our method lies
in the simplification of the cell complex obtained from the image. Kenmochi
et al. construct the simplified complex simply from the 2–cells (together with
their boundary) incident to exactly one of the 3–cells of the initial complex;
whereas we also attach the 0,1,2–cells of the initial complex which are not
incident to a 3–cell. See Figure 3.41 for an example.

Let us note that this last difference is question of choosing one or another
way of simplifying the complex obtained from the image.



3. Extracting 3–dimensional cell complexes from binary digital images 74

Fig. 3.41: On the top: different viewpoints of the simplified complex obtained
by Kenmochi et al. from the image shown in Example 3.4.1. On the
bottom: different viewpoints of the simplified complex obtained by Al-
gorithm 3.3.6 from the image shown in Example 3.4.1.



4. EXTRACTING 4–DIMENSIONAL CELL COMPLEXES
FROM BINARY DIGITAL IMAGES

In this chapter, we generalize to dimension four the work developed
in Chapter 3. In this way, we use topological tools for constructing cell
complexes from 4–dimensional binary digital images. Analogously, a 4–
dimensional binary digital image can be defined as a discrete subset of white
and black points on a dual grid made up by 4–cubes. The black points are the
0–cells of a cell complex. By generalizing the algorithmic procedure shown
in Chapter 3, every cell of the complex is constructed by deforming a 4–cube
of the dual grid, in such a way that the cell is defined by the black points of
the 4–cube. Finally, we keep the 0,1,2,3–cells of the complex which are not
incident to a 4–cell, together with the 3–cells (and their boundary) which are
incident to exactly one 4–cell of the complex.

This chapter has a structure similar to that of Chapter 3. In Section
4.1, we construct a look-up table containing (up to isometries) all the cells
which can be obtained by deforming a 4–cube; in Section 4.2, we present a
procedure for constructing the cell complex; and finally, in Section 4.3, we
conceive an algorithm for simplifying the complex.

4.1 Look-up table construction

We construct all the cells which can be obtained (up to isometries) by
deforming a 4–cube: (a) first, we determine the vertices which define these
cells, they are the pattern subsets, and we store them in a look-up table
(Appendix A); and (b) then, we compute the convex hull of each pattern
subset. It allows us to determine the pattern cells, which are stored in another
look-up table (Appendix B).

4.1.1 Pattern subsets

As we have commented previously, the first step of the procedure consists
in computing (up to isometries) the different subsets of vertices of a 4–cube.
There exist 216 = 65536 subsets of points which can be constructed from



4. Extracting 4–dimensional cell complexes from binary digital images 76

the vertices of a 4–cube. We extend to dimension four the two techniques
described in Chapter 3 for computing the isometric subsets.

4.1.1.1 A first solution

Analogously to Chapter 3, a first idea consists in associating each subset
with a multi-graph, in such a way that two subsets identified with a same
pattern subset are associated with isomorphic multi-graphs. Let us note that
the multi-graph associated with a subset of vertices of a 4–cube can have up
to four edges between each pair of vertices. In Figure 4.1, we show the multi-
graph associated with the subset S = {(0, 0, 0, 0), (0, 0, 1, 1), (0, 1, 1, 1), (1, 1, 1,
1)} of vertices of the unit 4–cube, latter is represented by a Schlegel diagram.

Fig. 4.1: The vertices of the multi-graph associated with S =
{(0, 0, 0, 0), (0, 0, 1, 1), (0, 1, 1, 1), (1, 1, 1, 1)} are the points of S and
the element mij of its adjacency matrix coincides with the number of
different coordinates between the vertices pi and pj .

By generalizing the notion of isomorphic subsets to subsets of points con-
structed starting from the vertices of a 4–cube, we can associate isomorphic
subsets with isomorphic multi-graphs, and prove an analogous result to The-
orem 3.1.2 established in Chapter 3.

Theorem 4.1.1. Let S and S ′ be two subsets with 8 ≤ c ≤ 16 points. S
and S ′ are isomorphic subsets if and only if there exists a linear isometry
f : R4 → R4 which sends S into S ′ and the 4–cube HCS containing S into
the 4–cube HCS′ containing S ′.

Proof. ⇒ Starting from S = {p1, ..., pc} (resp. S ′ = {q1, ..., qc}) we construct
the vector space generated by {pi − p1}2≤i≤c (resp. {qi − q1}2≤i≤c).

– If this vector space has four linearly independent vectors, then it will
be a basis of R4. Therefore we can extend the isomorphism f between
the multi-graphs GS and GS′ to an isometry from R4 to itself which
sends S into S ′. Moreover, f also sends HCS into HCS′ . It suffices (1)
to choose four vertices a2, a3, a4, a5 of HCS such that d(ai, p1) = 1 for



4. Extracting 4–dimensional cell complexes from binary digital images 77

i = 2, 3, 4, 5, (2) to write p − p1 as a finite linear combination of the
basis {a2−p1, a3−p1, a4−p1, a5−p1}, with p ∈ HCS, and (3) to apply
f for proving that f(p) is a vertex of HCS′ .

– If only three vectors of the vector space generated by {pi − p1}2≤i≤8
(resp. {qi − q1}2≤i≤8) are linearly independent, then S (resp. S ′) is
made up by eight cospatial points. In a 4–cube, there exist two types
of 8–tuple of cospatial vertices, those corresponding to vertices of one of
the eight cubes of the 4–cube, and those not corresponding to vertices
of one of the eight cubes of the 4–cube. The elements in the first group
are called outer cubic volumes, whereas those in the second group are
called inner cubic volumes (see Table 4.1). Taking into account that
the points of S and S ′ have the same pairwise distances, we can suppose
that the points of S and S ′ are the vertices of an outer (resp. inner)
cubic volume contained in a 4–cube (see Remark 4.1.2 for more details).
In this case, we must choose a ninth vertex p ∈ HCS − {S} (resp.
q ∈ HCS′−{S ′}) which allows us to construct a basis of R4. Therefore
we can extend the isomorphism f between the multi-graphs GS and
GS′ to an isometry from R4 to itself which sends S into S ′. Moreover,
f also sends HCS into HCS′ since f sends nine vertices of HCS into
nine vertices of HCS′ .
⇐ If there exists an isometry σ which sends S into S ′ and HCS into

HCS′ , then σ preserves the distance between each pair of points of S and
S ′. Consequently, σ preserves the number of edges between each pair of
vertices of the multi-graphs GS and GS′ . Therefore these two multi-graphs
are isomorphic to each other. Hence, S and S ′ are isomorphic.

Remark 4.1.2. The unit 4–cube has twenty 8–tuple of cospatial vertices,
which correspond to vertices of cubic volumes. More concretely, the eight
outer cubic volumes are given by the intersection of the unit 4–cube with the
hyperplanes X = 0, Y = 0, Z = 0, T = 0, X = 1, Y = 1, Z = 1, T = 1,
respectively; and the twelve inner cubic volumes are given by the intersection
of the unit 4–cube with the hyperplanes X = Y , X = Z, X = T , Y = Z,
Y = T , Z = T , X + Y = 1, X +Z = 1, X + T = 1, Y +Z = 1, Y + T = 1,
Z + T = 1, respectively. In Table 4.1 1 the twenty cubic volumes contained
in a 4–cube are shown.

1. screenshots of “Hypercube” software developed by Régis Meyssonnier in his Final
Master Project supervised by Prof. Jean-Luc Mari from University of Marseille (see [29])



4. Extracting 4–dimensional cell complexes from binary digital images 78

Tab. 4.1: The first two rows show the eight outer cubic volumes contained in a
4–cube. The last six ones show the inner ones.



4. Extracting 4–dimensional cell complexes from binary digital images 79

Remark 4.1.3. Let us note that Theorem 4.1.1 is not true if the subsets have
7 or less points. It suffices to choose S = {{0, 0, 1, 1}, {0, 1, 0, 1}, {1, 0, 0, 1},
{1, 1, 1, 1}} and S ′ = {{0, 1, 1, 1}, {1, 0, 1, 1}, {1, 1, 0, 1}, {1, 1, 1, 0}}. The
multi-graphs GS and GS′ associated with S and S ′, respectively, are isomor-
phic, but there does not exist a linear isometry which sends S and S ′ and
HCS into HCS′ (see Figure 4.2).

Fig. 4.2: The multi-graph GS is isomorphic to the multi-graph GS′ , but the isom-
etry which sends S into S′ does not send HCS into HCS′ . It suffices to
check that the white vertex (0, 1, 1, 1) ∈ HCS is not sent to any white
vertex in HCS′ by the isometry.

Taking into account the previous results, a generalization of Algorithm
3.1.1 in Chapter 3 is conceived. By using as input the set (V,≺) of ver-
tices of the unit 4–cube arranged on an order relation ≺, for 8 ≤ c ≤ 16,
this algorithm: (a) constructs an ordered set (Vc,≺) containing the C(16, c)
subsets with c points; (b) associates each subset (Vc)i ⊂ Vc with a multi-
graph (GVc)i; and (c) checks if there exists an isomorphism between each pair
(GVc)i1 , (GVc)i2 of multi-graphs associated with two subsets (Vc)i1 , (Vc)i2 ⊂ Vc
which satisfy (Vc)i1 ≺ (Vc)i2 . In Example 4.1.4, we describe with detail the
procedure for c = 8.

Example 4.1.4. Let V = {v1, v2, v3, v4, v5, v6, v7, v8, v9, v10, v11, v12, v13, v14,
v15, v16} = {{0, 0, 0, 0}, {0, 0, 0, 1}, {0, 0, 1, 0}, {0, 0, 1, 1}, {0, 1, 0, 0}, {0, 1, 0,
1}, {0, 1, 1, 0}, {0, 1, 1, 1}, {1, 0, 0, 0}, {1, 0, 0, 1}, {1, 0, 1, 0}, {1, 0, 1, 1}, {1, 1,
0, 0}, {1, 1, 0, 1}, {1, 1, 1, 0}, {1, 1, 1, 1}} be the set of vertices of the unit 4–
cube arranged on lexicographic order (≺lex).

First, we consider the ordered set (V8,≺lex) containing the C(16, 8) sub-
sets with eight points of V .

Next, for i = 1, ..., C(16, 8) each subset (V8)i ⊂ V8 is associated with a
multi-graph (GV8)i. The vertices of (GV8)i are the points of (V8)i and the
number of edges between two vertices vk, vl ∈ (GV8)i is determined by the



4. Extracting 4–dimensional cell complexes from binary digital images 80

number of different coordinates between vk and vl. Some of these multi-graphs
are shown in Figure 4.3.

Fig. 4.3: Multi-graphs associated with some of the subsets of V8.

Finally, it is checked if there exists an isomorphism between each pair
(GV8)i1 , (GV8)i2 of multi-graphs associated with two subsets (V8)i1 , (V8)i2 ⊂ V8
which satisfy (V8)i1 ≺lex (V8)i2. In Table 4.2, we show the isomorphisms
between some pairs of these multi-graphs.



4. Extracting 4–dimensional cell complexes from binary digital images 81

Tab. 4.2: The multi-graphs (GV8)3 and (GV8)4 are isomorphic; whereas (GV8)3
and (GV8)5 are non-isomorphic. In this way, the subsets (V8)3 and
(V8)4 are isomorphic; whereas (V8)3 and (V8)5 are non-isomorphic. Al-
gorithm 4.1.7 shows that there exist twenty-seven pattern subsets with
eight points.

Below, we show the generalization of Algorithm 3.1.1 in Chapter 3. More
concretely, Algorithm 4.1.7 is obtained by: (a) using as input data in Algo-
rithm 3.1.1 the ordered set of vertices of the unit 4–cube, instead of that of
the unit cube; and (b) changing the range of the first “for” loop.

Algorithm 4.1.7

Input: (V,≺) set of vertices of the unit 4–cube together with an order relation ≺.
Output: pattern subsets with 8 ≤ c ≤ 16 points.
begin
// PS: empty list to store the vertices of the non-isomorphic multi-graphs.

for c = 8, ..., 16 do
Construct an ordered set (Vc,≺) containing the C(16, c) subsets with c points
{Lines 3–11 in Algorithm 3.1.1 in Chapter 3.}
for each (Vc)i ⊂ Vc do

Determine the multi-graph (GVc
)i associated with (Vc)i

end for
for all (Vc)i1 ⊂ Vc and (Vc)i2 ⊂ Vc such that (Vc)i1 ≺ (Vc)i2 do

if (GVc)i1 and (GVc)i2 are isomorphic then {(Vc)i1 and (Vc)i2 are isometric.}
Vc = Vc − {(Vc)i2}

end if
end for
PS = PS

⋃
Vc

end for
return PS



4. Extracting 4–dimensional cell complexes from binary digital images 82

end

Remark 4.1.5. Let us note that Algorithm 4.1.7 can only be used to con-
struct the pattern subsets with at least 8 points, as it is shown in Remark 4.1.3.

Remark 4.1.6. Given an order relation ≺ on the set of vertices of the unit 4–
cube, Algorithm 4.1.7 determines the smallest pattern subsets with respect to
≺. Moreover, by changing the order relation, other pattern subsets (isometric
to these ones) are obtained.

In Table 4.3, we show the pattern subsets in Z4 with 14 ≤ c ≤ 16 points
obtained by using lexicographic order in Algorithm 4.1.7, and we also show
the subsets with 0 ≤ c ≤ 2 points obtained by complementation.

Tab. 4.3: On the left: pattern subsets in Z4 with 14 ≤ c ≤ 16 points obtained
by using lexicographic order in Algorithm 4.1.7. On the right: pattern
subsets in Z4 with 0 ≤ c ≤ 2 points obtained by complementation.

The results shown in Theorem 4.1.7 (analogous to Theorem 3.1.6 in Chap-
ter 3) are determined by Algorithm 4.1.7.

Theorem 4.1.7. In Z4, there exist: (a) seventy-four pattern subsets with
eight points; (b) fifty-six pattern subsets with nine points; (c) fifty pattern
subsets with ten points; (d) twenty-seven pattern subsets with eleven points;
(e) nineteen pattern subsets with twelve points; (f) six pattern subsets with
thirteen points; (g) four pattern subsets with fourteen points; (h) one pattern
subset with fifteen points; and (i) one pattern subset with sixteen points.

Taking into account the complementation, we can formulate Corollary 4.1.8.

Corollary 4.1.8. In Z4, there exist: (b’) fifty-six pattern subsets with seven
points; (c’) fifty pattern subsets with six points; (d’) twenty-seven pattern
subsets with five points; (e’) nineteen pattern subsets with four points; (f ’)



4. Extracting 4–dimensional cell complexes from binary digital images 83

six pattern subsets with three points; (g’) four pattern subsets with two points;
(h’) one pattern subset with one point; and (i’) one pattern subset with zero
points.

Remark 4.1.9. The results shown in Theorem 4.1.7 and Corollary 4.1.8
confirm Pólya’s count in 1940 (see Table II in [26]), whose main difficulty
to count the different 2–colorings of the 4–cube was the derivation of the
appropriate cycle indices (see [4] for more details).

4.1.1.2 A second solution

In an analogous way as Chapter 3, a more efficient algorithm than Algo-
rithm 4.1.7 has been defined in order to find the pattern subsets. Similarly,
this algorithm applies the group of isometries of a 4–cube to the subsets of
points. In this way, it returns the pattern subsets.

Computing the group of isometries of a 4–cube

Remark 4.1.10. Analogously to Chapter 3, Automorphisms[Hypercube[4]]
in the Mathematica package Combinatorica’ gives the list with the 384 per-
mutations of vertices which leave the unit 4–cube invariant. Each of these
permutations corresponds to an isometry of the unit 4–cube.

Remark 4.1.11. Similarly, a standard implementation for computing the
permutations of vertices which leave the unit 4–cube HC invariant can be
conceived as follows.

Let {v1, v2, v3, v4, v5, v6, v7, v8, v9, v10, v11, v12, v13, v14, v15, v16} be the set of
vertices of HC: (a) v1 can be placed on sixteen different positions; (b) if
v2 is the end-point of an edge incident to v1, then v2 can be placed on four
different positions since there exist four edges incident to v1; (c) if v3 is the
end-point of another edge incident to v1, then (once v2 is placed) v3 can be
placed on three different positions; (d) if v4 is the end-point of another edge
incident to v1, then (once v2, v3 are placed) v4 can be placed on two different
positions; (e) if v5 is the end-point of another edge incident to v1, then (once
v2, v3, v4 are placed) v5 can be placed on only one position; analogously, (f)
the positions of the vertices v6, v7, v8, v9, v10, v11, v12, v13, v14, v15, v16 are fixed.

In this way, we can conclude that there exist 16 ·4 ·3 ·2 ·1 = 384 elements
in the group of isometries of HC.



4. Extracting 4–dimensional cell complexes from binary digital images 84

Applying the group of isometries to the subsets

Once computed the group iso 4cube of isometries of a 4–cube, we define
Algorithm 4.1.8 for obtaining the pattern subsets from this group.

Algorithm 4.1.8

Input: (V,≺) set of vertices of the unit 4–cube together with an order relation ≺.
iso 4cube: group of isometries of the unit 4–cube.

Output: pattern subsets with 0 ≤ c ≤ 16 points.
begin
// PS: empty list to store the pattern subsets with 0 ≤ c ≤ 16 points.

for c = 0, ..., 16 do
Construct an ordered set (Vc,≺) containing the C(16, c) subsets with c points
{Lines 3–8 in Algorithm 3.1.2 in Chapter 3}
for each (Vc)i ⊂ Vc ordered by ≺ do

for each σ ∈ iso cube− {identity} do
Vc = Vc − {σ((Vc)i)}

end for
end for
PS = PS

⋃
Vc

end for
return PS

end

First, Algorithm 4.1.8 constructs an ordered set (Vc,≺) containing the
C(16, c) subsets with 0 ≤ c ≤ 16 vertices of the unit 4–cube. Next, for
(Vc)i ⊂ Vc, it computes and removes any subset (Vc)j 6= (Vc)i isometric to
(Vc)i. In this way, Algorithm 4.1.8 allows us to obtain a representative subset
of each isometry class.

Remark 4.1.12. Algorithm 4.1.8 not only improves the computational time
of Algorithm 4.1.7 (see Table 4.4) but it can be used to construct pattern
subsets regardless of the number of points of these.



4. Extracting 4–dimensional cell complexes from binary digital images 85

Tab. 4.4: Algorithm 4.1.7 constructs and checks C(16, 8) = 12870, C(16, 9) =
11440, C(16, 10) = 8008, C(16, 11) = 4368, C(16, 12) = 1820,
C(16, 13) = 560, C(16, 14) = 120 and C(16, 15) = 16 multi-graphs in
11092.3, 9482.27, 11652.5, 8382.22, 2384.01, 734.34, 175.04 and 25.78
seconds of CPU time, respectively. These results are improved by Al-
gorithm 4.1.8 to 223.39, 189.3, 186.73, 112.68, 84.7, 29.85, 21.26 and
6.02 seconds of CPU time, respectively. The computations have been
made by using Mathematica 7.0.0 in AMD Turion(tm) 64 X2 Mobile
Technology TL-58 1.90 GHz.

Remark 4.1.13. Analogously to Algorithm 4.1.7, Algorithm 4.1.8 deter-
mines the smallest pattern subsets with respect to the order relation given on
the set of vertices of the unit 4–cube; so by changing the order relation, other
pattern subsets (isometric to those shown in Appendix A) are obtained.

In Table 4.5, we show the pattern subsets in Z4 with 0,1,2,14,15,16 points
obtained by using lexicographic order in Algorithm 4.1.8.

Tab. 4.5: Pattern subsets in Z4 with 0,1,2,14,15,16 points obtained by using lex-
icographic order in Algorithm 4.1.8. The pattern subsets on the left
coincide (up to isometries) with these on the right in Table 4.3. The
pattern subsets on the right coincide with these on the left in Table 4.3.

Remark 4.1.14. Theorem 4.1.7 and Corollary 4.1.8 can be proved by using
Algorithm 4.1.8.



4. Extracting 4–dimensional cell complexes from binary digital images 86

Following the structure of Chapter 3, below, we associate each of the 402
pattern subsets with a pattern cell.

4.1.2 Pattern cells

We generalize the computational method shown in Section 3.1.2 in Chap-
ter 3 in order to determine the convex hull of the pattern subsets in Z4. In a
similar way, the technique consists in deforming the 4–cube which contains
to the subset. The deformation is a consequence of degenerating the edges
of the 4–cube incident to white vertices. In this case, the degeneracies of
the edges of the 4–cube can lead to the deformations and/or degeneracies of
faces, volumes and hypervolumes contained in the 4–cube (see Figure 4.4).

Fig. 4.4: The degeneracies of the edges v1v2, v3v4, v5v6, v7v8, v9v10, v11v12, v13v14,
v15v16 into the vertices v2, v4, v6, v8, v10, v12, v14, v16, respectively, lead to
the fact that the 4–cube is degenerated into the cube v1v3v5v7v9v11v13v15.

Remark 4.1.15. Let us recall that in dimension 3, the convex hull may not
be obtained by degenerating edges not belonging to the cube. In dimension
4, this problem is inherited. It suffices to embed in the 4–cube the example
shown in Figure 3.15 in Chapter 3. Nevertheless, in Figure 4.5, we show a
4–dimensional example obtained by extending a similar case to that shown in
Figure 3.15 in Chapter 3.



4. Extracting 4–dimensional cell complexes from binary digital images 87

Fig. 4.5: (a) The hypervolume with six vertices is deformed by degenerating the
edge v2v5. (b) The vertices v, v1, v2, v3, v8 define a hypertetrahedron, but
the convex hull of these vertices cannot be obtained from (a). Moreover,
we obtain similar results by degenerating the edge vv5 or v3v5, but if we
degenerate the edge v1v5 or v5v8, we obtain the convex hull.

Remark 4.1.16. Analogously to dimension 3, the edges of the 4–cube have
to degenerate following a certain order; otherwise, at one of the steps of the
deformation of the 4–cube, the white vertex to treat may not be incident to
any edge of the 4–cube. Figure 4.6 shows the generalization of the example
presented in Figure 3.23 in Chapter 3.

Fig. 4.6: If we degenerate (1) the edge incident to B0 marked with an arrow, (2)
the edge incident to B1 marked with an arrow, (3) the edge incident to
B2 marked with an arrow, and (4) the edge incident to B3 marked with
an arrow, then there is not any edge of the 4–cube incident to B4 for
degenerating.

A procedure similar to that shown in Section 3.1.2.2 in Chapter 3 allows
us to determine an order relation on the edge degeneracies, in such a way
that at each step of the deformation of the 4–cube, there exists an edge of it
incident to the white vertex to treat. More concretely, the procedure consists
in: (1) considering the white vertices of the 4–cube and the edges which join
them as a subgraph S of the 4–cube; and (2) constructing a rooted spanning



4. Extracting 4–dimensional cell complexes from binary digital images 88

tree of each connected component of S, whose root is a white vertex adjacent
to a black vertex of the 4–cube. These trees establish a hierarchy on the set
of white vertices, and consequently, they determine an order for degenerating
the edges incident to white vertices, where the last edge in degenerating is
that made up by the root and by a black vertex adjacent to it. Let us note
that in dimension 4, a vertex of the rooted spanning tree can be adjacent to
at most four vertices of the tree, i.e. a father can have at most three children.
See Figure 4.7 for an example.

Fig. 4.7: From left to right: (a) one of the pattern subsets with eleven points; (b)
the subgraph of the 4–cube obtained by deleting the black vertices (and,
obviously, the edges incident to these vertices); (c) the rooted spanning
tree of the only connected component of the subgraph. The root of the
tree is denoted by r and the arrows indicate how to degenerate the edges.

4.1.2.1 Convex hull of a pattern subset

We extend the procedure shown in Chapter 3 in order to construct the
convex hull of any pattern subset in Z4. In this way, we determine (up to
isometries) the cells (together with their boundary) which can be obtained
by deforming a 4–cube. Analogously, we degenerate the edges of the 4–cube
incident to white vertices.

As we commented at the beginning of Section 4.1.2, the degeneracies of
edges of the 4–cube incident to white vertices can lead to the degeneracies
of faces, volumes, and/or hypervolumes contained in the 4–cube. Below, we
relate the existence of degenerated faces, volumes, and/or hypervolumes to
the star of the degenerated edge and to that of the white vertex to treat.

Let (Vc)i be a pattern subset contained in the 4–cube HC(Vc)i , and let S
be the subgraph of HC(Vc)i constructed by deleting the points of (Vc)i. For



4. Extracting 4–dimensional cell complexes from binary digital images 89

each white vertex B of HC(Vc)i , we consider the rooted spanning tree T of the
connected component of S containing B, and the edge e = AB of T whose
end-points are B and its father. Let S(B) be the star of the white vertex to
treat, and let S(e) be the star of the edge e. Next, we degenerate e.

Cell deformations

– The faces contained in S(B) are deformed under the same conditions
as in the three-dimensional case.

– Let v be a volume contained in S(B).

1. If v /∈ S(e) is a tetrahedron, then v is deformed into another
tetrahedron v′. The vertices of v′ are those of v except B which
is replaced with the other end-point of the edge e. An example of
this case is shown in Figure 4.8.

Fig. 4.8: The tetrahedron v is deformed into another tetrahedron v′, as a conse-
quence of degenerating an edge e satisfying that v /∈ S(e).

2. If v /∈ S(e) is a pyramid, then v is deformed into another (spatial
or not) volume with five vertices. Below, we detail both cases:

(a) If B is the apex of v, then v is deformed into another pyramid
v′ whose base is that of v. See Figure 4.9.

Fig. 4.9: A pyramid v is deformed into another pyramid v′, as consequence of
degenerating an edge incident to the apex of v.



4. Extracting 4–dimensional cell complexes from binary digital images 90

(b) If B is a vertex of the base of v, then v is deformed into
a volume v′ of five non-cospatial vertices. In this case, in
order to avoid convexity problems related to this non-spatial
volume, we attach the triangular face whose vertices are the
other end-points of the edges of v incident to B. This face
allows us to cut up the non-spatial volume into two tetrahedra
sharing a face. The shared face is the attached face. See
Figure 4.10.

Fig. 4.10: A pyramid v is deformed into a non-spatial volume v′ with five vertices,
as a consequence of degenerating an edge e satisfying that v /∈ S(e). To
avoid convexity problems, the shaded face is attached. This face cuts
up the non-spatial volume into two tetrahedra v1 and v2.

3. If v /∈ S(e) is a volume with p ≥ 5 vertices different from a pyra-
mid, then v is deformed into a volume v′ of p ≥ 5 non-cospatial
vertices. In this case, in order to avoid convexity problems related
to this non-spatial volume, we attach the face f whose vertices
are the other end-points of the edges of v incident to B. This face
allows us to cut up the non-spatial volume v′ into two volumes
v1 and v2 (see Figure 4.11). More concretely, v1 is the volume
consisted of p − 1 cospatial vertices which coincide with those of
v except B; and v2 is the volume whose vertices are the other
end-point of e and the vertices of the attached face. Moreover,
the relation between the vertices of f and those of v2 is shown in
Corollary 4.1.17.



4. Extracting 4–dimensional cell complexes from binary digital images 91

Fig. 4.11: The volume v′ of non-cospatial vertices is cut up into two volumes with
a common face.

If f is a face of four non-coplanar vertices, then, in order to avoid
convexity problems related to this non-planar face, we attach the
edge XX ′ which allows us to cut up the non-planar face into two
triangular faces sharing an edge. The shared edge is the attached
edge.

Moreover, Corollary 4.1.17 assures that v2 is a volume of five non-
cospatial vertices. In order to avoid convexity problems related
to this non-spatial volume, we attach the face whose vertices are
X,X ′ and the other end-point of e. This face allows us to cut
up the non-spatial volume v2 into two tetrahedra sharing a face.
The shared face is the attached face. Furthermore, each of these
tetrahedra is attached to v1 by one of the triangular faces forming
f . All this has allowed us to cut up the non-spatial volume v′ into
three volumes sharing a face two by two. See Figure 4.12.

Fig. 4.12: The volume v′ = AXX ′Y Y ′Q of non-cospatial vertices is cut up into
the volumes v1 = XX ′Y Y ′Q of cospatial vertices and v2 = AXX ′Y Y ′ of
non-cospatial vertices sharing the non-planar face f = XX ′Y Y ′. More-
over, f is cut up into two triangular faces sharing an edge, and v2 is cut
up into two tetrahedra AXX ′Y and AXX ′Y ′ sharing a face.



4. Extracting 4–dimensional cell complexes from binary digital images 92

Corollary 4.1.17. f is a face of four non-coplanar vertices if and only if v2
is a volume of five non-cospatial vertices. Moreover, by replacing the other
end-point of e with B in the set of vertices of v2, we obtain (up to isometry)
the pattern cell C((V5)2) (see Table 3.6 in Chapter 3).

Cell degeneracies

– The faces contained in S(B) are degenerated under the same conditions
as in the three-dimensional case.

– The volumes contained in S(B) are degenerated under the same con-
ditions as in the three-dimensional case.

– Let HV be a hypervolume contained in HC(Vc)i , and let V be the set
of volumes of HV .
If there exists only one volume O ∈ V − S(B), then HV degenerates
into O. This degenerated hypervolume must be removed starting from
a volume incident to it (see Figure 4.13). The degenerated edge leads
to a degenerated hypervolume.

Fig. 4.13: There exists only one tetrahedron O of the hypertetrahedron HV which
does not belong to S(B), so HV degenerates into O. This degenerated
hypertetrahedron is removed starting from the only volume O1 in S(B)−
S(e).

The corresponding operations in the three-dimensional case led to the
fact that two coplanar triangular faces sharing an edge may appear. In the
four-dimensional case, cospatial volumes (with up to seven vertices) sharing
a face may have appeared. By reasoning in a similar way as Chapter 3, we
remove the shared face and the edges which are inside of another volume.
More concretely, in dimension four, it may have appeared (a) three cospatial
volumes with common faces two by two sharing an edge. In this case, we
remove the shared edge, three common faces, and three volumes, and we
attach a new volume made by the union of those three faces (see Figure



4. Extracting 4–dimensional cell complexes from binary digital images 93

4.14); and it may also have appeared (b) two cospatial volumes sharing a
face. In this case, we remove the common face, and both volumes, and
we attach a new volume made up by the union of those two volumes (see
Figure 4.15).

Fig. 4.14: By degenerating an edge of a hypervolume with nine vertices, which
consists of a cube with one pyramid attached on each of its faces, we
obtain three pyramids forming a cube with an edge inside of it.

Fig. 4.15: By degenerating an edge of a hypervolume with six vertices, which
consists of one pyramid attached to other on its square face, and four
tetrahedra attached to the corresponding pairs of triangular faces of
both pyramids, we obtain two cospatial tetrahedra sharing a face. By
removing this face, we obtain a pyramid.

Summarizing, the technique developed for constructing the convex hull
of a pattern subset in Z4 includes, in addition to the operations of the three-
dimensional case, the steps of: (1) attaching edges and faces for converting
non-spatial volumes into spatial volumes sharing a face two by two; (2) re-
moving faces and edges for converting cospatial volumes into only one volume;
and (3) studying the degenerated 4–cells.

The previous results allow us to define a procedure (Algorithm 4D) for:
(1) deforming the unit 4–cube into the convex hull of any pattern subset



4. Extracting 4–dimensional cell complexes from binary digital images 94

(Vc)i ⊂ Z4; (2) constructing the cell defined by this pattern subset; and (3)
computing its boundary.

Remark 4.1.18. Given a pattern subset (Vc)i, Algorithm 4D deforms and
degenerates the cells contained in the unit 4–cube HCV for computing the
convex hull of the points of (Vc)i. In this way, the cell C((Vc)i) defined by (Vc)i
is determined by the points inside of this convex hull. Moreover, the boundary
of C((Vc)i) is computed in terms of the vertices, edges, faces and volumes of
the convex hull. More concretely, ∂(C((Vc)i)) is given by V e′, Ed′, Fa′, V o′.

Remark 4.1.19. Let us observe that Algorithm 4D generalizes Algorithm
3.1.3 in Chapter 3. Moreover, the cases treated in Algorithm 3.1.3 are in-
cluded in Algorithm 4D.

In the same way as the three-dimensional case, by using as input the
402 pattern subsets shown in Appendix A, Algorithm 4D returns the 402
pattern cells shown in Appendix B. Let us note that 347 of them are 4–cells
(see second column of Table 3 in [1]).

4.2 Construction of the cell complex

The same procedure used in the corresponding section in Chapter 3 allows
us to construct a cell complex from a given 4–dimensional binary digital
image. In the same way, the work is done in two levels: (a) the vertex level,
where we compute the subsets of points of the image and we associate them
with pattern subsets; and (b) the cell level, where we determine the cells of
the complex from the pattern cells. Finally, the cell complex is constructed
by attaching only one copy of each cell.

4.2.1 Vertex level

We localize and classify the subsets of black points of the image in each
4–cube of the grid. The localization is made by using an algorithm identical
to Algorithm 3.2.4 in Chapter 3, where the grid is made up by 4–cubes. The
classification of the subsets is done with an algorithm similar to Algorithm
3.2.5 in Chapter 3, where the group of isometries and the pattern subsets
now correspond to those of the 4–cube.

In Example 4.2.1, we show the results of localizing and classifying the
subsets of black points of a simple image. These results have been obtained
by using algorithms close to Algorithm 3.2.4 and 3.2.5 in Chapter 3.

Example 4.2.1. Let {{0, 0, 0, 0}, {0, 1, 0, 0}, {0, 1, 0, 1}, {0, 1, 1, 0}, {0, 2, 0, 0},



4. Extracting 4–dimensional cell complexes from binary digital images 95

{1, 1, 0, 0}} be the set of the 6 black points of a dual grid G made up by
2× 2× 2× 2 4–cubes.

The scanning of the 16 4–cubes of the grid returns: (a) the set V (I) with
the 8 non-empty subsets of points of the image, and (b) the set V (I)′ with
the 8 non-empty pattern subsets associated with each of the subsets of V (I).
V (I) = {{{0, 0, 0, 0}, {0, 1, 0, 0}, {0, 1, 0, 1}, {0, 1, 1, 0}, {1, 1, 0, 0}}, {{0, 1, 0, 1}},
{{0, 1, 1, 0}}, {{0, 1, 0, 0}, {0, 1, 0, 1}, {0, 1, 1, 0}, {0, 2, 0, 0}, {1, 1, 0, 0}}, {{0, 1, 0, 1}},
{{0, 1, 1, 0}}, {{1, 1, 0, 0}}, {{1, 1, 0, 0}}}
V (I)′ = {{{0, 0, 0, 0}, {0, 0, 0, 1}, {0, 0, 1, 0}, {0, 1, 0, 0}, {1, 0, 0, 0}}, {{0, 0, 0, 0}},
{{0, 0, 0, 0}}, {{0, 0, 0, 0}, {0, 0, 0, 1}, {0, 0, 1, 0}, {0, 1, 0, 0}, {1, 0, 0, 0}}, {{0, 0, 0, 0}},
{{0, 0, 0, 0}}, {{0, 0, 0, 0}}, {{0, 0, 0, 0}}}

The results shown in Theorem 4.2.2 (extension to dimension 4 of Theorem
3.2.4) are determined by algorithms closed to Algorithm 3.2.4 and 3.2.5 in
Chapter 3.

Theorem 4.2.2. Any 4–dimensional binary digital image on a dual grid is
made up by combining (up to isometries) the 402 pattern subsets shown in
Appendix A, taking into account that it is not necessary to use all them and
any of them can be used more than once.

4.2.2 Cell level

We identify the pattern cells of the cell complex and we invert the isometry
from each subset of points of the image to its associated pattern subset.
We identify each pattern subset of the image with a pattern cell according
to Appendix B. As we have commented in the corresponding subsection in
Chapter 3, by inverting the isometry between a subset X of points of the
image and its associated pattern subset Y , we can determine the cell C(X)
from the pattern cell C(Y ).

Remark 4.2.3. By applying this procedure to each subset of points of the
image, we obtain the cells (together with their boundary) defined by each of
these subsets. The cell complex is constructed by attaching only one copy
of each of these cells along their boundaries. In this way, we can prove
Theorem 4.2.4 which is a 4–dimensional version of Theorem 3.2.7.

Theorem 4.2.4. The cell complex constructed from a given 4–dimensional
binary digital image on a dual grid is made up by combining (up to isometries)
the 402 pattern cells shown in Appendix B, taking into account that it is not
necessary to use all them and any of them can be used more than once.



4. Extracting 4–dimensional cell complexes from binary digital images 96

In Example 4.2.5, we show the cells obtained by inverting the isometries
which associate the subsets of points of the image shown in Example 4.2.1
with the pattern subsets.

Example 4.2.5. The six singleton subsets of the image shown in Example 4.2.1
correspond to 0–cells.
{{{0, 0, 0, 0}}, {{0, 1, 0, 0}}, {{0, 1, 0, 1}}, {{0, 1, 1, 0}}, {{0, 2, 0, 0}}, {{1, 1, 0, 0}}}

The fourteen subsets made up by two points correspond to 1–cells.
{{{0, 0, 0, 0}, {0, 1, 0, 1}}, {{0, 0, 0, 0}, {0, 1, 1, 0}}, {{0, 0, 0, 0}, {1, 1, 0, 0}},
{{0, 1, 0, 0}, {0, 0, 0, 0}}, {{0, 1, 0, 0}, {0, 1, 0, 1}}, {{0, 1, 0, 0}, {0, 1, 1, 0}},
{{0, 1, 0, 0}, {0, 2, 0, 0}}, {{0, 1, 0, 0}, {1, 1, 0, 0}}, {{0, 1, 0, 1}, {0, 1, 1, 0}},
{{0, 1, 0, 1}, {0, 2, 0, 0}}, {{0, 1, 0, 1}, {1, 1, 0, 0}}, {{0, 1, 1, 0}, {0, 2, 0, 0}},
{{0, 1, 1, 0}, {1, 1, 0, 0}}, {{0, 2, 0, 0}, {1, 1, 0, 0}}}

The sixteen subsets made up by three points correspond to 2–cells.
{{{0, 0, 0, 0}, {0, 1, 0, 1}, {0, 1, 1, 0}}, {{0, 0, 0, 0}, {0, 1, 0, 1}, {1, 1, 0, 0}},
{{0, 0, 0, 0}, {0, 1, 1, 0}, {1, 1, 0, 0}}, {{0, 1, 0, 0}, {0, 0, 0, 0}, {0, 1, 0, 1}},
{{0, 1, 0, 0}, {0, 0, 0, 0}, {0, 1, 1, 0}}, {{0, 1, 0, 0}, {0, 0, 0, 0}, {1, 1, 0, 0}},
{{0, 1, 0, 0}, {0, 1, 0, 1}, {0, 1, 1, 0}}, {{0, 1, 0, 0}, {0, 1, 0, 1}, {0, 2, 0, 0}},
{{0, 1, 0, 0}, {0, 1, 0, 1}, {1, 1, 0, 0}}, {{0, 1, 0, 0}, {0, 1, 1, 0}, {0, 2, 0, 0}},
{{0, 1, 0, 0}, {0, 1, 1, 0}, {1, 1, 0, 0}}, {{0, 1, 0, 0}, {0, 2, 0, 0}, {1, 1, 0, 0}},
{{0, 1, 0, 1}, {0, 1, 1, 0}, {0, 2, 0, 0}}, {{0, 1, 0, 1}, {0, 1, 1, 0}, {1, 1, 0, 0}},
{{0, 1, 0, 1}, {0, 2, 0, 0}, {1, 1, 0, 0}}, {{0, 1, 1, 0}, {0, 2, 0, 0}, {1, 1, 0, 0}}}

The nine subsets made up by four points correspond to 3–cells.
{{{0, 0, 0, 0}, {0, 1, 0, 1}, {0, 1, 1, 0}, {1, 1, 0, 0}}, {{0, 1, 0, 0}, {0, 0, 0, 0},
{0, 1, 0, 1}, {0, 1, 1, 0}}, {{0, 1, 0, 0}, {0, 0, 0, 0}, {0, 1, 0, 1}, {1, 1, 0, 0}},
{{0, 1, 0, 0}, {0, 0, 0, 0}, {0, 1, 1, 0}, {1, 1, 0, 0}}, {{0, 1, 0, 0}, {0, 1, 0, 1},
{0, 1, 1, 0}, {0, 2, 0, 0}}, {{0, 1, 0, 0}, {0, 1, 0, 1}, {0, 1, 1, 0}, {1, 1, 0, 0}},
{{0, 1, 0, 0}, {0, 1, 0, 1}, {0, 2, 0, 0}, {1, 1, 0, 0}}, {{0, 1, 0, 0}, {0, 1, 1, 0},
{0, 2, 0, 0}, {1, 1, 0, 0}}, {{0, 1, 0, 1}, {0, 1, 1, 0}, {0, 2, 0, 0}, {1, 1, 0, 0}}}

The two subsets made up by five points correspond to 4–cells.
{{{0, 0, 0, 0}, {0, 1, 0, 0}, {0, 1, 0, 1}, {0, 1, 1, 0}, {1, 1, 0, 0}},
{{0, 1, 0, 0}, {0, 1, 0, 1}, {0, 1, 1, 0}, {0, 2, 0, 0}, {1, 1, 0, 0}}}

4.3 Simplification of the cell complex

We conceive Algorithm 4.3.9 which extends Algorithm 3.3.6 defined in
Chapter 3 to dimension four. In this way, Algorithm 4.3.9 simplifies the cell
complex constructed from a given 4–dimensional binary digital image. More
concretely, the simplified complex is given by: (a) the 0,1,2,3–cells of the
initial complex which are not incident to a 4–cell; and (b) the set of 3–cells
(together with their boundary) incident to exactly one of the 4–cells of the
initial complex.



4. Extracting 4–dimensional cell complexes from binary digital images 97

Algorithm 4.3.9

Input: Ci(V (I)): i–cells of the cell complex constructed from the image I, for i =
0, 1, 2, 3, 4.

∂(C4(V (I))): boundary of the cells in C4(V (I)).
Output: simplified cell complex.
begin
// Bord: empty list to store the cells of the simplified complex.

for i ∈ {0, 1, 2, 3} do
for each i–cell c ∈ Ci(V (I)) do

if c is not incident to a 4–cell then
Bord = Bord

⋃
{c}

else
if i 6= 3 or c is incident to exactly one 4–cell then
Bord = Bord

⋃
{c}

⋃
{∂c}

end if
end if

end for
end for
return Bord

end

Example 4.3.1. Algorithm 4.3.9 is applied to the cell complex whose cells
are shown in Example 4.2.5. This algorithm determines that all the 0,1,2,3–
cells are incident to a 4–cell, and it computes the eight 3–cells incident to
exactly one of the 4–cells of the complex.
Bord = {{{0, 0, 0, 0}, {0, 1, 0, 0}, {0, 1, 0, 1}, {0, 1, 1, 0}}, {{0, 0, 0, 0}, {0, 1, 0, 0},
{0, 1, 0, 1}, {1, 1, 0, 0}}, {{0, 0, 0, 0}, {0, 1, 0, 0}, {0, 1, 1, 0}, {1, 1, 0, 0}}, {{0, 0, 0, 0},
{0, 1, 0, 1}, {0, 1, 1, 0}, {1, 1, 0, 0}}, {{0, 1, 0, 0}, {0, 1, 0, 1}, {0, 1, 1, 0}, {0, 2, 0, 0}},
{{0, 1, 0, 0}, {0, 1, 0, 1}, {0, 2, 0, 0}, {1, 1, 0, 0}}, {{0, 1, 0, 0}, {0, 1, 1, 0},
{0, 2, 0, 0}, {1, 1, 0, 0}}, {{0, 1, 0, 1}, {0, 1, 1, 0}, {0, 2, 0, 0}, {1, 1, 0, 0}}}



5. CONCLUSIONS AND FUTURE WORKS

In this thesis we have developed a procedure for extracting cell complexes
from dual binary digital images of dimension 3 and 4.

The first step of the procedure consists in determining the non-isometric
subsets of points which can be obtained from the vertices of a cube (resp.
4–cube), and constructing the convex hull of these subsets of points. The
second step is scanning each subset of vertices of a cube (resp. 4–cube) of
the grid and associating it with one of the non-isometric subset determined
in the first step. Finally, we consider the convex hull of the non-isometric
subset and we invert the isometry between this one and its corresponding
subset of vertices, in this way, we obtain the cells of the cell complex.

The non-isometric subsets of points are determined by using a standard
algorithm whose input are (1) all the subsets of points which can be de-
termined from the vertices of a cube (resp. 4–cube); and (2) the group of
isometries of a cube (resp. 4–cube).

The convex hull of the non-isometric subsets is constructed into two steps:
(1) a first step of “deformation” and “degeneracy” of cells of a cube (resp.
4–cube); and (b) a second step of “correction” which allows us to assure the
convexity.

Let us observe that by constructing the convex hull we work with the max-
imal neighborhood, i.e. with the 26–neighborhood (resp. 80–neighborhood).
The results of working with other types of neighborhoods, for example the
6,18–neighborhood (resp. 8,32,64–neighborhood), can be obtained by re-
moving the edges of the convex hull which are not defined in these types of
neighborhoods.

The procedure developed in this thesis can be generalized to higher di-
mension. Moreover, (1) for determining the non-isometric subsets in nD it
suffices to compute the group of isometries of an n–cube; and (2) for con-
structing the convex hull of these subsets it suffices to use the deformations
and degeneracies of the cells of an (n−1)–cube, and to study the deformations
and degeneracies of the cells of dimension n− 1 of an n–cube.

In a near future is our interest to develop a similar procedure for extract-
ing cell complexes from dual binary digital images of any dimension and by
using any type of neighborhood.



BIBLIOGRAPHY

[1] O. Aichholzer. Extremal properties of 0/1-polytopes of dimension 5. In
G. Ziegler and G. Kalai (eds.), Polytopes - Combinatorics and Compu-
tation, Birkhäuser, 111–130, 2000.

[2] R. C. Alperin. 2–Colorings of Cube Edges With 6 Each.

[3] J. Arias-Fisteus, N. Fernández-Garćıa, L. Sánchez-Fernández and C.
Delgado-Kloos. Hashing and canonicalizing Notation 3 graphs. Journal
of Computer and System Sciences 76(7): 663–685, 2010.

[4] D. C. Banks, S. A. Linton and P. K. Stockmeyer. Counting Cases in Sub-
stitope Algorithms. IEEE Transactions on Visualization and Computer
Graphics 10(4): 371–384, 2004.

[5] B. Bollobas. Graph Theory: An Introductory Course. Graduate Texts
in Mathematics, New York: Springer-Verlag, 1979.

[6] E. V. Chernyaev. Marching Cubes 33: Construction of Topologically
Correct Isosurfaces. Technical Report CN/95-17, 1995.

[7] M. Couprie, F. N. Bezerra and G. Bertrand. Topological operators for
grayscale image processing. Journal of Electronic Imaging 10(4): 1003–
1015, 2001.

[8] M. Couprie and G. Bertrand. New characterizations of simple points,
minimal non-simple sets and p-simple points in 2d, 3d and 4d discrete
spaces. In D. Coeurjolly, I. Sivignon, L. Tougne and F. Dupont (eds.),
Discrete Geometry for Computer Imagery, Berlin Heidelberg: Springer-
Verlag 105–116, 2008.

[9] G. Damiand. Définition et étude d’un modèle topologique minimal de
représentation d’images 2d et 3d. PhD thesis, Montpellier II University,
2001.

[10] G. Damiand. Topological model for 3D Image Representation: Defini-
tion and Incremental Extraction Algorithm. Computer Vision and Image
Understanding 109(3): 260–289, 2008.

[11] S. E. Han. A generalized digital (k0, k1)-homeomorphism. Note di
Matematica 22(2): 157–166, 2004.



Bibliography 102

[12] F. Hanisch. Marching square. CGEMS: Computer graphics educational
materials source, 2008.

[13] R. Fontana. Regular Polyhedra and Symmetry. Math and Science in the
World. Miscellaneous.

[14] Y. Kenmochi and A. Imiya. Combinatorial boundary of a 3D lattice
point set. Visual Communication and Image Representation 17(4): 738–
766, 2006.

[15] Y. Kenmochi, A. Imiya and N. F. Ezquerra. Polyhedra generation from
lattice points. In S. Miguet, A. Montanvert and S. Ubéda (eds.), Discrete
Geometry for Computer Imagery, Berlin Heidelberg: Springer-Verlag,
127–138, 1996.

[16] Y. Kenmochi, A. Imiya and A. Ichikawa. Boundary Extraction of Dis-
crete Objects. Computer Vision and Image Understanding 71(3): 281–
293, 1998.

[17] T. Y. Kong and A. W. Roscoe. A theory of binary digital pictures.
Computer Vision, Graphics, and Image Processing 32(2): 221–243, 1985.

[18] W. G. Kropatsch. Building irregular pyramids by dual-graph contrac-
tion. Vision, Image and Signal Processing, 142(6): 366–374, 1995.

[19] L. J. Grady and J. R. Polimeni. Discrete Calculus: Applied Analysis on
Graphs for Computational Science. Springer, 2010.

[20] J. L. Gross and J. Yellen. Handbook of Graph Theory. CRC Press, 2004.

[21] J.-O. Lachaud. Extraction de surfaces à partir d’images tridimension-
nelles: approche discrète et approche par modèle déformable. PhD the-
sis, Joseph Fourier University, 1998.

[22] P. Lienhardt. N-dimensional generalized combinatorial maps and cellular
quasi-manifolds. International Journal on Computational Geometry and
Applications, 4(3): 275–324, 1994.

[23] W. E. Lorensen and H. E. Cline. Marching cubes: A high-resolution
3D surface construction algorithm. Computer Graphics 21(4): 163–169,
1987.

[24] B. K. Natarajan. On generating topologically consistent isosurfaces from
uniform samples. The Visual Computer, 11(1): 52–62, 1994.

[25] T. S. Newman and H. Yi. A survey of the marching cubes algorithm.
Computers & Graphics, 30(5): 854–879, 2006.

[26] G. Pólya. Sur Les Types Des Propositions Composées. The Journal of
Symbolic Logic 5(3): 98–103, 1940.



Bibliography 103

[27] A. Rosenfeld. Adjacency in digital pictures. Information and Control
26(1): 24–33, 1974.

[28] A. V. Gelder and J. Wilhelms. Topological considerations in isosurface
generation. ACM Transactions on Graphics, 13(4): 337–375, 1994.

[29] R. Meyssonnier. Régis Meyssonnier - France | LinkedIn[Proffesional
Network]. Website: http://fr.linkedin.com/pub/r%C3%A9gis-
meyssonnier/41/77b/866/en



APPENDIX



A. PATTERN SUBSETS IN Z4

with 0 vertices

with 1 vertex

with 2 vertices



A. Pattern subsets in Z4 108

with 3 vertices

with 4 vertices



A. Pattern subsets in Z4 109

with 5 vertices



A. Pattern subsets in Z4 110

with 6 vertices



A. Pattern subsets in Z4 111



A. Pattern subsets in Z4 112



A. Pattern subsets in Z4 113

with 7 vertices



A. Pattern subsets in Z4 114



A. Pattern subsets in Z4 115

with 8 vertices



A. Pattern subsets in Z4 116



A. Pattern subsets in Z4 117



A. Pattern subsets in Z4 118

with 9 vertices



A. Pattern subsets in Z4 119



A. Pattern subsets in Z4 120



A. Pattern subsets in Z4 121

with 10 vertices



A. Pattern subsets in Z4 122



A. Pattern subsets in Z4 123

with 11 vertices



A. Pattern subsets in Z4 124



A. Pattern subsets in Z4 125

with 12 vertices

with 13 vertices



A. Pattern subsets in Z4 126

with 14 vertices

with 15 vertices

with 16 vertices



A. Pattern subsets in Z4 127



B. PATTERN CELLS IN R4

with 0 vertices

with 1 vertex

with 2 vertices



B. Pattern cells in R4 130

with 3 vertices

with 4 vertices



B. Pattern cells in R4 131

with 5 vertices



B. Pattern cells in R4 132

with 6 vertices



B. Pattern cells in R4 133



B. Pattern cells in R4 134



B. Pattern cells in R4 135

with 7 vertices



B. Pattern cells in R4 136



B. Pattern cells in R4 137

with 8 vertices



B. Pattern cells in R4 138



B. Pattern cells in R4 139



B. Pattern cells in R4 140

with 9 vertices



B. Pattern cells in R4 141



B. Pattern cells in R4 142



B. Pattern cells in R4 143

with 10 vertices



B. Pattern cells in R4 144



B. Pattern cells in R4 145

with 11 vertices



B. Pattern cells in R4 146



B. Pattern cells in R4 147

with 12 vertices

with 13 vertices



B. Pattern cells in R4 148

with 14 vertices

with 15 vertices

with 16 vertices



B. Pattern cells in R4 149

Figures in Appendices A and B are screenshots of “Hypercube” software developed
by Régis Meysonnier in his Final Master Project supervised by Prof. Jean-Luc Mari from
Marseille University (see [29])


