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Abstract

You will have only one opportunity
to make a first impression.

Popular saying

In recent years, software product lines have been introduced as a new tech-
nical paradigm to build software products focussing on the development of a
set of distinctive products sharing a common part rather than building dif-
ferent products one by one from scratch. There is an important piece on this
paradigm that serves as a model to represent the set of products of the soft-
ware product line. To this end, one of the most widely used models is the
so–called feature model that was proposed back in 1990 and has been a topic
of research throughout recent years. Feature models have been mostly used
as graphical notations to communicate different stakeholders. The automated
analysis of feature models was stated as a research challenge in the original
proposal, however only in recent years some publications have paid attention
to this task.

In this dissertation, we present FAMA (FeAture Model Analyser), a new
framework to automate the analysis of software product lines in general and
feature models in particular. Its main advantages lie in its formal semantics
which avoid misinterpretation, its abstraction that allows to extend the frame-
work with other models than feature models, the capability of analysing ex-
tended feature models where features attributes are included, and finally the
support of multiple solvers in the implementation of feature model analysis.
Putting all this together we can set the basis to develop automated tool sup-
port.
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Resumen

Sólo tendrás una oportunidad
de dar una primera impresión.

Dicho popular

En los últimos años, ha habido un gran empuje por parte de la comunidad
investigadora en torno a una nueva línea de investigación. Se trata de las
líneas de producto software. Las líneas de producto software se centran en
proponer soluciones, métodos y técnicas para la producción y construcción de
una serie de productos software que comparten características comunes pero
que también tienen partes peculiares. De esta manera, la construcción de un
nuevo producto se debería hacer partiendo de una base común de tal modo
que no haya que empezar desde cero.

Una parte importante dentro de este nuevo paradigma de construcción de
software es un modelo que represente a todos los posibles productos de una
misma línea de productos. Uno de los modelos más utilizados con este fin
son los modelos de características (feature models) que fueron propuestos por
primera vez en 1990 y han sido objeto de investigación a lo largo de estos
años. Hasta ahora, los modelos de características han sido principalmente us-
ados como notaciones gráficas para comunicar a los diferentes participantes
en la producción de software, desde clientes hasta desarrolladores. Es impor-
tante señalar que el análisis automático de estos modelos fue propuesto como
una menta a alcanzar en el informe original de 1990, sin embargo, ha sido
en los últimos años cuándo han aparecido algunas propuestas para el análisis
automático de los modelos de características.

En esta tesis doctoral, se presenta FAMA (FeAture Model Analyser), un
nuevo marco de trabajo para el análisis automático de líneas de producto soft-
ware en general y de modelos de características en particular. Sus principales
ventajas están basadas en su base formal que permite evitar interpretaciones
erróneas de su semántica; su abstracción que permite extender FAMA con
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otros modelos distintos de los modelos de características; la posibilidad de
analizar modelos de características extendidos en los que se incluyen atrib-
utos sobre las características y finalmente la inclusión de varios resolutores
distintos en la implementación. De este modo, FAMA supone un paso ade-
lante para establecer las bases que permitan la construcción de herramientas
software para el análisis automático de modelos de características.
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Chapter 1

Introduction

There is nothing more difficult to take in hand,
more perilous to conduct or more uncertain in its success

than to take the lead in the introduction
of a new order of things

Niccolo Machiavelli, 1469–1527
Italian dramatist, historian, and philosopher

A s in other industrial environments, the way that software products are be-
ing built is changing from mass production to mass customization. Software

product line engineering deals with the production of a set of products sharing a com-
mon set of features. This leads to the existence of several challenges from management
to code that are being contemplated as research directions in recent years. One of the
main goals of software product line engineering is the automation of tasks to produce
software as automatically as possible. In fact, this has been an old dream in software
engineering. There is an important piece in this puzzle which serves a model to rep-
resent the possible products of a software product line. Feature models are one of the
most used models to this end and their automated analysis is still a research challenge
and the main motivation of our thesis.

In this dissertation, we report on our work to design a new framework to automate
the analysis of software product lines in general and feature models in particular. In
this chapter, we first introduce the elements that constitute the context of our research
work in Section §1.1; then, we summarise our main contributions in Section §1.2;
finally, we describe the structure of the dissertation in Section §1.3.
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1.1 Research context

In this section, we briefly present the main concepts we use throughout
the rest of the dissertation. First we present software product lines in Section
§1.1.1; we focus on feature models in section §1.1.2; finally, we outline con-
straint programming in Section §1.1.3

1.1.1 Software product lines

The changes in economical paradigms bring with it changes in all aspects
of life. We are immersed in a new economical paradigm change whose main
wave is globalization. Globalization is changing the way we communicate (e.g.
virtual chats, forums, virtual planets such as second life), we reproduce (e.g.
cloning, genetic engineering) and we produce (from mass production to mass
customization) [30]. Obviously, software production is not excluded from this
shift and consequently it is changing from single production to the production
of software product families, a.k.a. software product lines.

After the industrial revolution in the late 18th century the production of
goods changed due to the introduction of machines. During that time, man-
ual and artisanal labour was replaced progressively by an industry dominated
by the manufacture where machines played a very important role. In terms
of production, the industrial revolution reached its zenith when the mass pro-
duction of goods was converted somehow in an obvious task. Mass production
can be defined as the production of a large amount of standardized products
using standardized processes that allow to produce a big amount of the same
product in a reduced time to market. Generally, in a mass production envi-
ronment, the customers’ requirements are the same and no customization is
applied. After industrial revolution, large companies started to organize (and
they are still organizing) their production in a mass production environment.
A well–known example is the mass production of bicycles [69] in the National
Industrial Bicycle Company of Japan. Figure §1.1 illustrates it.

However, mass production is starting to be not enough in a highly com-
petitive and segmented market [69] and mass customization is due to become
a must for market success. Tseng and Jiao define mass customization as "pro-
ducing goods and services to meet individual customer’s needs with near mass pro-
duction efficiency" [98]. There are two key parts in this definition. First, mass
customization tries to meet as many individual customer’s needs as possible
and second, it has to be done meeting the mass production efficiency as much
as possible. Therefore, in an organization that produces its goods in a mass
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Figure 1.1: A mass of bicycles illustrating mass production.

production environment, the production of individual products is replaced
by the production of a family of similar products that allows enough flexi-
bility to be adapted while sharing a common part. In the case of the National
Industrial Bicycle Company of Japan we can imagine a web site with an ample
set of possibilities to produce a bicycle taking into account individual needs.
Mass customization takes these individual needs as inputs and produces cus-
tomized bicycles as illustrated in Figure §1.2.

Figure 1.2: Mass customization of bicycles.
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The software industry is a peculiar branch of industry compared to more
traditional branches like bicycle production. In fact, it started to take off af-
ter the first personal computer around the mid 1970s and it is curious to re-
member how the sentence “The software Industry is not industrialized” [75] was
already inscribed in the NATO conference proceedings back in 1968 and how
nowadays, in many aspects, this affirmation remains valid. It is possible to
make the parallelism with the history of traditional industries and we can say
that the industrialization of software products started with artisanal methods,
evolved to mass production and is now pursuing mass customization. The
mass customization of software products is known in literature as Software
Product Lines (SPLs) [40] or software product families [81].

Many software organizations start a new project from scratch. Thus, if a
new project needs to be started most of the effort of previous project goes to
waste. In order to achieve customer’s customization, software product line en-
gineering tries to avoid this situation by promoting the production of a family
of software products with common features instead of producing them one by
one from scratch.

According to Clements and Northrop [40], a software product line consists
of a set of software products sharing a common set of features that satisfy the
needs of a particular domain and that are developed from a common set of
core assets in a prescribed way. Therefore, software product line engineering
is about producing families of similar systems rather than the production of
individual systems. Software product line engineering consists of three main
activities: domain engineering (also called core asset development) and applica-
tion engineering(also called product development) and management. These three
activities are complementary and provide feedback to each other. Domain en-
gineering deals with the production of software assets to be used in different
products of the product line. On the other hand, application engineering deals
with the production of individual systems from core assets and individual
needs and management that is responsible for giving resources, coordinating,
and supervising domain and application engineering activities.

1.1.2 Feature models

The essence of software product lines is the systematic and efficient cre-
ation of different products to satisfy customer’s needs. A key technical ques-
tion that confronts software engineers is how to specify a particular product
in a software product line. When this question was first considered, there was
ample evidence for a solution. People were familiar with automobile product
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lines: cars offered optional features to satisfy different customer needs. Prod-
uct lines of televisions, appliances, and plumbing fixtures were also familiar,
all offering a host of optional features for similar reasons. The solution was
simple: products of a product line were differentiated by their features, where
a feature is an increment in product functionality. While single software sys-
tems are specified in terms of features, software product lines are specified
using feature models.

Feature models are recognized in the literature to be one of the most im-
portant contributions to software product line engineering [11, 43]. A key task
in software product line engineering is to capture commonalities and variabil-
ities among products [71] and feature models are used for this purpose.

A feature model represents all possible products of a software product line.
It is a hierarchically arranged set of features composed by:

i. relationships between a parent (or compound) feature and its child fea-
tures (or subfeatures).

ii. cross–tree constraints that are typically inclusion or exclusion statements
of the form: if feature F is included, then features A and B must also be in-
cluded (or excluded).

Since feature models were first presented in 1990 [65], there have been
many publications and proposals to extend, improve and modify the origi-
nal feature model. However, despite years of research, there is no consensus
on a feature model notation. There are two branches of notations: cardinality–
based feature models [46] and feature models without cardinalities [9]. The
main distinction is that the former allows more complex relations in the tree
structure than the latter.

Right from the introduction of feature models an error-prone task was pre-
sented that still has not been fully solved: the automated analysis of feature
models[11]. The analysis of a feature model consists of the observation of its
properties such as whether a feature model is void (it represents no products),
whether a feature model has internal dead features (features that although rep-
resented in a feature model are not in any of its represented products), deter-
mining the number of products represented by a feature model and so forth.
Feature models are used as input in many other software product line engi-
neering processes such as code generation [9, 12], requirements engineering
[81, 86] or feature oriented model driven development [95]. Therefore, the
analysis of feature models is an important task since it must be done before
starting any other activity.
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1.1.3 Constraint programming

Constraint programming [97] has been a topic of research in artificial intelligence
for the last few decades and is recognized to be one of the strategic research
directions in computer research by the ACM (Association for Computing Ma-
chinery) since 1996 [61].

In the words of Freuder [56] “constraint programming represents one of the
closest approaches computer science has yet made to the Holy Grail of programming:
the user states the problem, the computer solves it”.

One of the main branches of research in constraint programming is con-
straint satisfaction problems (CSPs). A CSP is defined as a set of variables, each
ranging on a finite domain, and a set of constraints restricting all the values
that variables can take simultaneously. A solution to a CSP is the assignment
of a value from its domain to every variable, in such a way that all constraints
are satisfied simultaneously.

1.2 Contributions

1.2.1 Summary of contributions

In this section we summarize the main contributions of our dissertation
and research work.

On the one hand, our dissertation focuses on the automated analysis of
feature models in the context of software product lines. We have analysed
current proposals to automate the analysis of feature models. We concluded
that there are some gaps that have to be bridged. We have devised a rigorous
framework called FAMA (FeAture Model Analyser) to solve these problems.
FAMA is designed on four levels from the more abstract to the more detailed.
The contributions of this dissertation are summarized as follows:

i. FAMA is defined using Z formal language which provides a high level
of rigour in the definitions avoiding misinterpretations.

ii. FAMA defines analysis operations at a higher level of abstraction which
allows to reuse semantics in more detailed levels and allows to analyse
software product lines using other models than feature models.

iii. In addition to basic feature models, FAMA supports the analysis of fea-
ture models with attributes.
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iv. In the lower level of FAMA, it allows to implement the automated analy-
sis of feature model using different solvers. It is important to remark that
FAMA uses general CSP solvers which is a novel contribution.

The aforementioned contributions have been partially published in jour-
nals and papers, as described afterwards. However, the framework as a whole
has not been published yet. These results are part of an ongoing paper to be
sent to a journal in the early future.

On the other hand, during our research work and before writing this dis-
sertation we have made some contributions that can be summarized as fol-
lows:

i. OPERATIONAL SUPPORT FOR FEATURE MODEL ANALYSIS

Problem statement: Feature models need an operational support to auto-
mate its analysis.

Contribution: We have pioneered the mapping of extended feature mod-
els to constraint programming to provide an operational support.
In addition, we have proposed to use a multi solver approach to
analyse feature models.

ii. EXTENDED FEATURE MODELS

Problem statement: Basic feature models have limited expressiveness.

Contribution: We have proposed to add attributes and relationships be-
tween them to features, i.e. we have proposed the notion of ex-
tended feature models to provide more expressiveness to basic fea-
ture models. In addition, we have provided a first approach to au-
tomate the analysis of extended feature models.

iii. TOOL SUPPORT FOR FEATURE MODEL ANALYSIS

Problem statement: The analysis of feature models needs tool support.

Contribution: We have developed a set of techniques and tools for sup-
porting automated analysis of feature models. As a result, we have
built a first version of a FAMA Eclipse plug–in.
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iv. SURVEY AND RESEARCH AGENDA

Problem statement: The automated analysis of feature models is a new
research area that requires a survey and research agenda to follow.

Contribution: We have surveyed the state of the art on the automated
analysis of feature models and provided a research agenda to follow
in the future.

v. WEB SERVICES AND SOFTWARE PRODUCT LINES DEVELOPMENT

Problem statement: Web services need a development process to achieve
service oriented mass customization.

Contribution: We have proposed to gather web service development and
software product lines as the development process of future service
oriented applications.

vi. INDUSTRIAL EXPERIENCES

Problem statement: Industry generates research problems while acad-
emia provides solutions to be implemented in industry.

Contribution: We explored topics of research in industry and we have
applied some of our solutions in industrial settings.

vii. FEATURE MODEL ERROR ANALYSIS

Problem statement: Error analysis on feature models needs an automated
platform.

Contribution: We layed the foundations on the use of theory of diagno-
sis for error analysis in feature models. This is a contribution that
follows up the results of this dissertation.

Table §1.1 summarizes our main contributions. The first column corre-
sponds to the category of the contribution. The second column contains acronyms
of the publications. The third column is the number of citations to our papers.
Our main publications are highlighted in boldface. Acronyms will be better
understood by reading the next Section.

1.2.2 Publications in chronological order

Our research on software product lines started in a large software com-
pany (Telvent) with whom we participated in two European projects: CAFE
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Contributions Publications Citations
Operational support ICSR04, ADIS04,

SVM04, CAiSE05,
SEKE05

24

Extended feature models ECOOP03 -
Tool support SPLC05, GTTSE05,

SPLC06, VAMOS07
1

Survey and research agenda JISBD06, CACM06,
COMPUTER07

5

WS–SPL SIT02, ZOCO02, IICS05 1
Industrial experiences PFE04, TELVENT07 -
Error analysis CAiSE06, APLE06,

JSS07
-

Total 19 + 2 (submitted) 31

Table 1.1: Summary of publications grouped by subject.

and FAMILIES [99]. Our experiences in those projects allowed us to start es-
tablishing contacts and topics of research for our PhD dissertation.

Our research work has followed a clear path, allowing us to publish our
contributions in mainstream conferences and journals. Below is a complete
list of publications in which we point out the main cornerstones of the devel-
opment of our results in chronological order .

• Our first result was published in a national conference [13]. We proposed
a set of techniques using XML to represent the variability of a software
product line and claimed the need of including extra–functional aspects
in software product line models. This paper was prepared in conjunction
with Dr. M.A. Serrano and Dr. C. Montes de Oca from CIMAT at Mexico.

SIT02. D. Benavides, A. Durán, M.A. Serrano, and C. Montes de Oca.
Quality Of Service in System Families Based on Web Services.In
Proceedings of the Symposium on Informatics and Telecommunications,
Seville, Spain, September, 2002.

• Secondly, in [18] we provided an overview of the benefits that a software
product line approach could bring to the development of applications
based on web services. This paper was extended and accepted in [19].
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ZOCO02. D. Benavides, A. Ruiz-Cortés, O. Martín, and J. Bermejo. A
first approach to build product lines of MOWS. In Proceedings of the
ZOCO02 workshop, El Escorial, Madrid, 2002.

IICS05. D. Benavides, A. Ruiz-Cortés, M.A. Serrano, and C. Montes de
Oca. A first approach to build product lines of multi-organizational
web based systems (MOWS). In Innovative Internet Community Sys-
tems, IICS 2004, volume 3473 of Lecture Notes in Computer Sciences,
pages 91–98. Springer–Verlag, 2005.

• Later, in [15] we focused our challenges on introducing extra–functional
information in software product lines. We can say that the attendance to
this workshop provided us the necessary background to start working
on feature models which are one of the pillars of strength of this disser-
tation.

ECOOP03. D. Benavides, A. Ruiz-Cortés, R. Corchuelo, and A. Durán.
Seeking for extra-functional variability. In Proceedings of the ECOOP
Workshop on Modeling Variability for Object-Oriented Product Lines,
Darmstadt, Germany, 2003.

• The study of feature models allowed us to present a contribution to the
software product line conference [53]. This can be seen as a marginal
result but it is important to remark that it was presented in the major
research forum of software product lines and it was the result of joint
work with a large company.

PFE04. A. Durán, D. Benavides, and J. Bermejo. Applying system fam-
ilies concepts to requirements engineering process definition. In
Software Product-Family Engineering, volume 3014 of Lecture Notes in
Computer Sciences (LNCS), pages 140–151. Springer-Verlag, 2004.

• After a deep study of feature models, we concluded that an automated
support to the analysis of feature models was mandatory. We presented
our first approach in [16] and later in [22] where we provided a method
to translate a feature model into a constraint satisfaction problem. This
allows us to have an automated support for feature models analysis:

ICSR04. D. Benavides, A. Ruiz-Cortés, R. Corchuelo, and O. Martín-
Díaz. SPL needs an automatic holistic model for software reasoning
with feature models. In International Workshop on Requirements Reuse
in System Family Engineering, pages 27–33, Madrid, Spain, 2004. Uni-
versidad Politécnica de Madrid.
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SVM04. D. Benavides, A. Ruiz-Cortés, and P. Trinidad. Coping with
automatic reasoning on software product lines. In Proceedings of the
2nd Groningen Workshop on Software Variability Management, Novem-
ber 2004.

• We presented a paper in a national workshop where we proposed to
use the automated analysis of feature models for the management of
production plans [92]:

ADIS04. P. Trinidad, D. Benavides, and A. Ruiz-Cortés. Improving de-
cision making in software product lines product plan management.
In J. Dolado, I. Ramos, and J. Cuadrado-Gallego, editors, Proceedings
of the V ADIS 2004 Workshop on Decision Support in Software Engineer-
ing, volume 120. CEUR Workshop Proceedings (CEUR-WS.org),
2004.

• The former papers were the starting point for our paper in the CAiSE
conference where we presented a mapping from feature models to con-
straint satisfaction problems. [23].

CAiSE05. D. Benavides, A. Ruiz-Cortés, and P. Trinidad. Automated
reasoning on feature models. In Advanced Information Systems En-
gineering: 17th International Conference, CAiSE 2005, volume 3520 of
Lecture Notes in Computer Sciences, pages 491–503. Springer–Verlag,
2005.

• An extension of [23] was accepted in [24].

SEKE05. D. Benavides, A. Ruiz-Cortés, and P. Trinidad. Using con-
straint programming to reason on feature models. In The Seven-
teenth International Conference on Software Engineering and Knowledge
Engineering, SEKE, 2005.

• Jointly with the ONEKIN group at the University of the Basque Country
was materialized as a workshop paper [29] within the Software Product
Lines Conference (SPLC’05). We proposed the modularization of feature
models using XML Schemas.

SPLC05. D. Benavides, S. Trujillo, and P. Trinidad. On the modulariza-
tion of feature models. In First European Workshop on Model Transfor-
mation. Software Product Line Conference, September 2005.
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• We participated in the Summer School on Generative and Transforma-
tional Techniques in Software Engineering (GTTSE’05) where we sub-
mitted an abstract of our work that was selected with other fourteen
other submissions to be presented during the summer school. Later, the
organizers selected six presentations to be written for inclusion in a chap-
ter of a special volume of Springer–Verlag Lecture Notes in Computer
Science where it was published [27]. We compared two CSP solvers on
the automated analysis of cardinality–based feature models:

GTTSE05. D. Benavides, S. Segura, P. Trinidad, and A. Ruiz-Cortés. Gen-
erative and Transformational Techniques in Software Engineering, vol-
ume 4143 of Lecture Notes in Computer Science, chapter Using Java
CSP Solvers in the Automated Analyses of Feature Models, pages
389–398. Springer–Verlag, 2006.

• We published some papers in different workshops at SPLC’06 [26, 94]
and CAiSE’06 [93] where we presented the first steps towards a frame-
work for the automated analysis and how to automatically deal with
errors in feature models:

SPLC06. D. Benavides, S. Segura, P. Trinidad, and A. Ruiz-Cortés. A
first step towards a framework for the automated analysis of feature
models. In Proceedings of the Workshop on Managing Variability for
Software Product Lines: Working With Variability Mechanisms, pages
39–45, 2006.

APLE06. P. Trinidad, D. Benavides, A. Ruiz-Cortés, S. Segura, and M. Toro.
Explanations for agile feature models. In X. Franch and K. Cooper,
editors, 1st International Workshop on Agile Product Line Engineering
(APLE’06), 2006.

CAiSE06. P. Trinidad, D. Benavides, and A. Ruiz-Cortés. A first step
detecting inconsistencies in feature models. In CAiSE Short Paper
Proceedings, 2006.

• In 2006, we presented a paper at the Spanish conference Jornadas de In-
geniería del Software y Bases de Datos (JISBD) [25] where we surveyed the
state of the art on the automated analysis of feature models:

JISBD06. D. Benavides, A. Ruiz-Cortés, P. Trinidad, and S. Segura. A
survey on the automated analyses of feature models. In Jornadas de
Ingeniería del Software y Bases de Datos (JISBD), pages 367–376, 2006.

• We have published a paper in a special issue on software product lines
of the “Communications of the ACM” journal [11] jointly with professor
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Don Batory, head of the software product lines group at the University
of Texas. We presented the main research challenges we envision for the
future in the automated analysis of feature models:

CACM06. D. Batory, D. Benavides, and A. Ruiz-Cortés. Automated
analysis of feature models: Challenges ahead. Communications of
the ACM, 49(12):45–47, December 2006.

• We presented a first implementation of our framework in [28]:

VAMOS07. D. Benavides, S. Segura, P. Trinidad, and A. Ruiz-Cortés.
FAMA: Tooling a framework for the automated analysis of feature
models. In Proceeding of the First International Workshop on Variability
Modelling of Software-intensive Systems (VAMOS), 2007.

• We have submitted a paper to the Journal of System and Software where
we present a first extension of the framework presented in this disserta-
tion to cope with the operations of detection and explanation of errors in
feature models [91]:

JSS07. P. Trinidad, D. Benavides, A. Ruiz-Cortés, A. Durán and M. Toro.
Agile error analysis of feature models. Journal of System and Software
(conditionally accepted), 2007.

• We have contributed to a book on experiences in software product lines
in action jointly with a large company [31]:

TELVENT07. J. Bermejo, P. Trinidad, D. Benavides, and A. Ruiz-Cortés.
Software product lines in action, chapter Experience reports: Telvent.
Springer, June 2007.

• We have submitted a paper to the journal “IEEE Computer” by invita-
tion. In this paper we introduce software product lines, revise the state
of the art on the automated analysis of feature models and provide a
revised research agenda [14]. This is also a joint work with professor
Batory:

COMPUTER07. D. Benavides, A. Ruiz-Cortés, and D. Batory. Auto-
mated analysis of software product lines using feature models: Ap-
plications, current solutions and challenges. IEEE Computer (submit-
ted), 2007.

Table §1.2 summarises and classifies our contributions according to the
place of publication.
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Category Number Acronyms
Published by LNCS 3 IICS05, PFE04, CAiSE05
Book chapters 2 GTTSE05, TELVENT07
International conferences 1 SEKE05
International Workshops 8 ECOOP03, ICSR04,

SVM04, SPLC05, SPLC06,
APLE06, CAiSE06, VA-
MOS07

National conferences 2 SIT02, JISBD06
National workshops 2 ADIS04, ZOCO04
Journals 1 + 2 (submitted)

CACM06, JSS07, COM-
PUTER07

Total
19 + 2

Table 1.2: Summary of publications grouped by place of publication.

1.2.3 Citations

Our work has been cited in the context of software product lines and fea-
ture modelling. The paper that has received most quotes has been the one that
we consider as our seminal paper [23]. It may be important to highlight that
our paper is the most quoted paper of CAISE’05 according to google scholar
(http://scholar.google.com). Below we enumerate the papers that have cited
our work. In parenthesis we indicate the acronyms of the papers cited:

JCR Journals

i. P. Schobbens, J.C. Trigaux P. Heymans, and Y. Bontemps. Generic seman-
tics of feature diagrams. Computer Networks, 51(2):456–479, Feb. 2007.
[87]. (CAiSE05).

ii. J. Pena, M. Hinchey, and A. Ruiz-Cortés. Multiagent system product
lines: Challenges and benefits. Communications of the ACM, 49(12):82–84,
December 2006. [78]. (CAiSE05,IICS05).

Other Journals

iii. M. Cengarle, P. Graubmann, and S. Wagner. Semantics of UML 2.0 inter-
actions with variabilities. Electronic Notes in Theoretical Computer Science,
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160:141–155, 2006. [38]. (CAiSE05).

iv. W. Zhang, H. Mei, and H. Zhao. Feature-driven requirement depen-
dency analysis and high-level software design. Requirements Engineering,
11(3):205–220, June 2006. [108]. (CAiSE05).

Conferences indexed by ISI

v. D. Batory. Feature models, grammars, and propositional formulas. In
Software Product Lines Conference, volume 3714 of Lecture Notes in Com-
puter Sciences, pages 7–20. Springer–Verlag, 2005. [9]. (CAiSE05).

vi. T. Asikainen, T. Mannisto, and T. Soininen. A unified conceptual founda-
tion for feature modelling. In Software Product Line Conference, 2006 10th
International Conference, pages 31–40. IEEE Press, 2006. [6]. (CAiSE05).

vii. J. White, D.C. Schmidt, E. Wuchner, and A. Nechypurenko. Automat-
ing product-line variant selection for mobile devices. In Proceedings of
the 11th Annual Software Product Line Conference (to appear), 2007. [106].
(CAiSE05)

viii. V. Alves, R. Gheyi, T. Massoni, U. Kulesza, P. Borba, and C. Lucena.
Refactoring product lines. In GPCE ’06: Proceedings of the 5th international
conference on Generative programming and component engineering, pages 201–
210, New York, USA, 2006. ACM Press. [3]. (CAiSE05).

ix. P. Schobbens, P. Heymans, and J. Trigaux. Feature diagrams: A survey
and a formal semantics. In Proceedings of the 14th IEEE International Re-
quirements Engineering Conference (RE). IEEE Computer Society, 2006.[86].
(CAiSE05).

x. A. Metzger, P. Heymans, K. Pohl, and P. Y. Schobbens. Disambiguating
the documentation of variability in software product lines: A separa-
tion of concerns, formalization and automated analysis. In Proceedings of
the 15th IEEE International Requirements Engineering Conference (to appear),
2007. [76]. (CAiSE05, JISBD06, CACM06).

xi. D. Wagelaar and V. Jonckers. Explicit platform models for MDA. In
MODELS 2005 8th International Conference on Model Driven Engineering
Languages and Systems, volume 3713 of Lecture Notes in Computer Science.
Springer–Verlag, 2005. [104]. (CAiSE05).

xii. J. Peña, M. Hinchey, A. Ruiz-Cortés, and P. Trinidad. Building the core
architecture of a multiagent system product line: With an example from a
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future nasa mission. In 7th International Workshop on Agent Oriented Soft-
ware Engineering, Lecture Notes in Computer Sciences. Springer–Verlag,
2006. [79]. (CAiSE05, JISBD06).

xiii. O. Diaz, S. Trujillo, and S. Perez. Turning portlets into services: The
consumer profile. In Proceedings of the 16th International World Wide Web
Conference, 2007. [52]. (SPLC05).

International workshops

xiv. K. Czarnecki and P. Kim. Cardinality-based feature modeling and con-
straints: A progress report. In Proceedings of the International Workshop on
Software Factories At OOPSLA 2005, 2005. [48]. (CAiSE05).

xv. J. Trigaux, P. Heymans, P. Schobbens, and A. Classen. Comparative se-
mantics of feature diagrams: FFD vs. vDFD. In Proceedings of the Fourth
International Workshop on Comparative Evolution in Requirements Engineer-
ing (CERE), 2006. [90]. (CAiSE05).

xvi. P. Heymans, P.Y. Schobbens, J.C. Trigaux, R. Matulevicius, A. Classen,
and Y. Bontemps. Towards the comparative evaluation of feature di-
agram languages. In Proceedings of the Software and Services Variability
Management Workshop - Concepts, Models and Tools, 2007. [62]. (CAiSE05,
JISBD06).

xvii. R. Gheyi, T. Massoni, and P. Borba. A theory for feature models in alloy.
In Proceedings of the ACM SIGSOFT First Alloy Workshop, pages 71–80,
2006.[57]. (CAiSE05)

xviii. D. Wagelaar. Towards context-aware feature modelling using ontolo-
gies. In Proceedings of the MoDELS 2005 International workshop on MDD
for Software Product Lines, 2005. [103]. (CAiSE05).

xix. L. Etxeberria, G. Sagardui, and L. Belategi. Modelling variation in qual-
ity attributes. In Proceeding of the First International Workshop on Variabil-
ity Modelling of Software-intensive Systems (VAMOS), 2007. [54]. (SEKE05,
CAiSE05, SPLC06).

National conferences

xx. G. Aldekoa, S. Trujillo, G. Sagardui, and O. Díaz. Experience measur-
ing maintenability in software product lines. In Jornadas de Ingeniería del
Software y Bases de Datos (JISBD), 2006. [2]. (CAiSE05).
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Books and PhD dissertations

xxi. V. Pankratius. Software product lines for digital information products. Karl-
sruhe University Press, 2007. [77]. (CACM06)

xxii. S. Trujillo. Feature Oriented Model Driven Product Lines. Doctor of philos-
ophy, University of the Basque Country, San Sebastián, Spain, 2007. [95].
(CAiSE05, SPLC05, VAMOS07).

Number
JCR journals 2
Other journals 2
Conferences indexed by ISI 9
International workshops 6
National conferences 1
Books and dissertations 2
Recommended bibliography 4
Total 26

Table 1.3: Summary of citations.

Recommended bibliography

xxiii. “Feature Oriented Programming” post–graduate course of the Computer
Science Department of the University of Texas at Austin (USA). †1 (CAiSE05).

xxiv. “Tutorial on Feature Oriented Programming”. Held in Braga (Portugal) dur-
ing the Summer School on Generative and Transformational Techniques
in Software Engineering 2005. †2 (CAiSE05).

xxv. “Tutorial on Feature Modularity for Product–Lines”. Held in Portland (USA)
during the Generative Programming and Component Engineering Con-
ference 2006. †3 (CAiSE05).

xxvi. “From SAT to SAT4J. Providing efficient SAT solvers for the Java platform”.
Presentation of SAT4J to the constraints and proofs group at Polytech’Nice–
Sophia. (CAiSE05). †4

†1www.cs.utexas.edu/users/dsb/FOPCourse.html
†2www.di.uminho.pt/GTTSE2005
†3www.gpce.org
†4www.sat4j.org/sat4joverview.pdf
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Table §1.3 summarises the type of citations we have received.

1.2.4 Research visits

During the development of this thesis, we have visited two research cen-
tres:

• Centro de Investigación en Matemáticas (CIMAT)†5: This research cen-
tre located in Guanajuato (Mexico) is considered to be one of the most
important research centres in Latin America in the field of mathematics.
They are a small group of researchers interested in software engineering.
The hosts were Dr. Carlos Montes de Oca and Dr. Miguel A. Serrano.
During the summer of 2001, in the early stages of our research, we spent
one month in this centre. The main topic of research was the quality
of service variability in multiorganizational web–based systems in the
context of software product lines. The results of the visit were material-
ized in two seminars held at CIMAT with an audience of more than one
hundred people. In addition we have written two joint papers that have
been presented in a national [13] and an international conference[19].

• Cork Constraint Computation Centre (4C)†6: This research centre lo-
cated in Cork (Ireland) is one of the most important research centres in
the field of constraint programming in the world according to its pub-
lications and staff. In 2005, we spent three months in 4C where we
improved our knowledge on constraint programming. The hosts were
Dr. Barbara Smith and Prof. Eugene Freuder. The results of the visit
were materialized in a framework agreement between the University of
Seville and 4C that opened the doors to the visit of Pablo Trinidad later
in 2006. In addition, we are working on a joint paper to analyse the com-
plexity of some operations on feature models [20].

1.3 Structure of this dissertation

This dissertation is organized as follows:

Part I: Preface. It comprises this introduction only.

†5www.cimat.mx
†6www.4c.ucc.ie



1.3. Structure of this dissertation 21

Part II: Background information. Here, our goal is to provide the reader with
a deep understanding of the research context in which our work has been
developed. In Chapter §2, we survey the most common notations of fea-
ture models providing some examples. In Chapter §3, we list the oper-
ations we have identified in the automated analysis of feature models
and we analyse current solutions. In Chapter §4, we present constraint
programming in a nutshell providing a formalization of constraint satis-
faction problems using Z.

Part III: Our Contribution. This part is the core of our dissertation, and is or-
ganized in five chapters. In Chapter §5, we motivate our research and
explain why current solutions do not cover all the properties we have
identified. In Chapter §6, we rigorously present the FAMA framework
and we describe the abstract foundation layer of FAMA. In Chapter §7,
we describe the characteristic model layer of our framework where we
provide semantics to feature models using Z specification language. In
Chapter §8, we describe the operational paradigm layer where feature
models are expressed in terms of constraints but without being cou-
pled to any constraint solver implementation. Finally, in Chapter §9,
we present a proof of concepts implementation of FAMA using concrete
solvers.

Part IV: Final Remarks. It consists of Chapter §10 in which we report our
main conclusions and future research.

Part V: Appendices. The implementation of an Eclipse plug–in for the au-
tomated analysis of feature model is described in Appendix §A, some
mathematical notes are presented in Appendix §B and the acronyms
used throughout the thesis are presented in Appendix §C.
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Background information





Chapter 2

Feature models

First learn the meaning of what you say, and then speak.

Epictetus, 54–135 AD
Roman (Greek-born) slave & Stoic philosopher

I n this chapter, we focus on feature models describing the most common notations
of feature models and providing some examples. In Section §2.1, we introduce

feature models; In Section §2.2, we describe basic feature models; In Section §2.3, we
describe cardinality–based feature models; In Section §2.4, we describe extended fea-
ture models providing some examples of basic, cardinality–based and extended feature
models in Section §2.5. Finally in Section §2.6 we summarise the chapter and detail
our main contributions in this field.
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2.1 Introduction

Software product lines are conceived for the efficient and systematic cre-
ation of software products. This aim could not be achieved if software reuse
is not planned and controlled. A product that is a part of a software product
line is created based on the reuse of existing assets. Some of these assets are
common to other products in the same product line and some others are spe-
cific for individual products. Therefore, a fundamental artifact in this context
is a model to capture and express variabilities and commonalities among dif-
ferent products. A key technical question that confronts software engineering
when coping with software product lines is how to specify a particular prod-
uct and how to specify the software product line itself to express variabilities
and commonalities.

The concept of product lines is not new in other engineering and manufac-
tory branches. Car product lines, appliance product lines, computers product
lines and even hamburgers product lines are commonly applied in practice.
In all these product lines the way a product is specified is similar: using prod-
uct features. Then, in software product lines, features are also a widely used
way to specify individual products and feature models are used to specify the
software product line itself where a feature is considered to be an increment in
product functionality [11, 65].

Feature models are considered by some authors as one of the most impor-
tant advances in software product line engineering [11, 43, 67], because it is
more natural and intuitive for both customers and developers to express com-
monalities and variabilities of a software product line in terms of features since
features are understood by all stakeholders [67].

A feature model represents all possible products of a software product line
in a single model. Feature models are used in different scenarios such as re-
quirements engineering [64, 73, 108], architecture definition [79], architecture
maintainability measurement [2] code generation [9, 12, 43, 82] or portlet–
based applications [96].

A feature model is a hierarchically arranged set of features and consists of:

i. Relationships between a parent feature and its child features.

ii. Cross–tree constraints that are typically inclusion or exclusion statements
of the form “if feature F is included, then feature X must also be included (or
excluded)”.
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In 1990, Kang et al. [65] proposed feature models for the first time. How-
ever, despite years of research, there is no consensus on the modeling artifacts
allowed in feature models and many extensions have been proposed since
then. Most of the extensions are based on the relationships allowed between
parent and child features.

First, the original feature model notation called FODA [65] was proposed.
Later, Feature-RSEB [58] was presented as a FODA extension with an addi-
tional relationship. Finally, Riebisch et al. [84] and Czarnecki et al. [42, 46]
proposed cardinality–based feature models where cardinalities were introduced.
In the following sections, we summarize these notations.

2.2 Basic feature models

There are two notations that we have classified as basic feature models.
FODA feature models and feature–RSEB feature models.

2.2.1 FODA feature models

The modeling elements of a feature model are features and relationships
between parent and child features. FODA defined three different kind of rela-
tionships †1:

• Mandatory. There exist a mandatory relationship between a parent and a
child feature when the child feature of the relationship is required to be
included in a product when the parent feature is included. For instance,
it is mandatory to have the body of a car in the feature model of Figure
§2.7 (pag. 33).

A

B

A

B

Figure 2.1: mandatory and optional relationships.

†1for some samples see Section §2.5 (pag. 32)
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• Optional. There exist an optional relationship between a parent and a
child feature when the child feature can be included in a product or not
when the parent feature is included. For instance, it is optional to have
air conditioning in a car.

• Alternative. There exist an alternative relationship between a parent fea-
ture and a set of children features when only one child feature can be
included in a product when the parent feature is included. For instance
the transmission of a car can only be automatic or manual.

A

B C

choose1

Figure 2.2: An alternative relationship between features A, B and C.

In addition, cross-tree constraints are allowed that restrict feature combi-
nations. These cross–tree constraints allowed in FODA are:

• Excludes. A feature X excludes Y means that if X is included in a prod-
uct, then Y should not be included and backwards. For instance, PDA
excludes Repository in the feature model of Figure §2.8 (pag. 34).

• Requires. A feature X requires Y means that if X is included in a product,
then Y should be included as well, but not backwards. For instance,
CongressManagement requires Repository in the feature model of Figure §2.8.

2.2.2 Feature–RSEB feature models

In 1998, Griss et al. [58] presented an extension of FODA feature mod-
els that is usually referred as Feature–RSEB. Although they presented a new
graphical notation, the semantic of the model was very similar, because the
relationships allowed for features were the same as the original FODA model
plus an additional relationship, namely: mandatory, optional, alternative and
cross–tree constraints: excludes and requires. In addition, a new relationship
was introduced:
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• Or: There exist an or relationship between a parent feature and a set of
children features when one or more child features can be included in a
product when the parent feature is included. For instance, the Engine of
a car can be Gasoline or Electric or both.

A

B C

1+

Figure 2.3: An or relationship between features A, B and C.

2.3 Cardinality–based feature models

Another set of feature models are those based on cardinalities (also known
as multiplicities). The main motivation to extend feature models with cardi-
nalities was that some cases could not be modeled using alternative and or
relationships [83].

First, some authors [42, 83, 84] proposed the extension of feature models
with multiplicities. Mandatory and optional relationships kept the same mean-
ing as in the original FODA models, meanwhile alternative and or relationships
were generalized in such a way that only a set relationship was considered:

• Set. A set of child features are said to have a set relationship if a num-
ber of features can be included in a product when their parent feature is
included. This number depends on the cardinality. Thus, an alternative
relationship is equivalent to a set relationship with cardinalities 〈1 − 1〉
(e.g. the relationship R6 of Figure §2.8 on page 34 can be expressed using
an alternative relationship or a set relationship with cardinality 〈1 − 1〉).
Likewise, an or relationship is equivalent to a multiplicity relationship
with cardinalities 〈1 − N〉 being N the number of features in the relation-
ship (e.g. the relationship R8 of Figure §2.8 can be expressed using an or
relationship or a set relationship with cardinality 〈1 − 4〉)

Later, Czarnecki et al. [44, 46] proposed cardinality–based feature models.
Their main motivation was driven by practical applications [42] and “concep-
tual completeness”. The major change in the semantics of cardinality–based
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A

B C

<1..1>

Figure 2.4: A set relationship between features A, B and C.

feature models regarding multiplicity–based notation is the introduction of a
new relationship:

• Feature cardinality. With the introduction of feature cardinality, optional
and mandatory relationships are generalized in the sense that the times
that a feature is included in a product is determined by its cardinality.
Thus, an optional relationship is equivalent to a feature cardinality rela-
tionship with cardinality [0..1] and a mandatory relationship is equivalent
to a feature cardinality relationship with cardinalities [1..1].

A

B
[1..1]

Figure 2.5: A cardinality relationship between features A and B.

Figure §2.6 presents a summary of the notations and the equivalences be-
tween them †2.

2.4 Extended feature models

Basic feature models are suitable to express commonality and variability
among different products in a software product line. However, sometimes it is
necessary to extend feature models to include more information about features

†2The graphical representation of different proposals vary from one to another. Thus, for
the sake of simplicity we decided to use the same graphical notation



2.4. Extended feature models 31

FODA Feature-RSEB Cardinality-based
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Figure 2.6: Comparison of feature model notations.

like the inclusion of attributes in feature models. These type of models where
additional information is included are called extended feature models[11, 23].

In fact, FODA already contemplated the inclusion of some additional in-
formation in feature models [65, pag. 34], for instance, relationships between
features and features attributes were introduced. Later, in 1998 Kang et al.
[66] made an explicit reference to what they called ’non–functional’ features
related to features attributes. In 2001 Chastek et al. [39], proposed some guide-
lines for feature modelling: in [39, pag. 19], the authors once again made
the distinction between functional and quality features and pointed out the
need of a specific method to include attributes in feature models. In addition,
other group of authors have also proposed the inclusion of attributes in feature
models [42, 44, 46–48, 54, 88] and we have also contributed to this discussion
[13, 15, 16, 22–24].
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Despite of the consensus about the inclusion of attributes and attributes
relationships in feature models, there is not a standard notation nor an agree-
ment on the type of attributes that can be included in feature models.

The following concepts are usually used when dealing with feature at-
tributes:

• Feature. A prominent characteristic of a product or an increment in
product functionality.

• Attribute. An attribute of a feature is any characteristic of a feature that
can be measured. For instance, the PHP version of a module in the ex-
ample in Figure §2.8, its development cost, the number of lines of code,
and so forth.

• Attribute domain. It specifies the space of possible values for an at-
tribute. Every attribute has an associated domain. It is possible to have
discrete domains (e.g. integers, booleans, enumerated values) or contin-
uous domains (e.g. real).

• Attribute value: The value of an attribute belonging to the domain.
There can be a default value in the case the feature is not selected. A
value can be directly a value on the domain (basic attributes) or an ex-
pression combining other attributes of the same or other features (de-
rived attributes). For instance, the PHP version of a module can be a
basic attribute defined by PHPversion = 5. But the PHP version of a
complete application that has several PHP modules can be a derived at-
tribute defined as the maximum of the versions of the different modules
(see Figure §2.9 for an example).

• Attribute relationships. A relationship between one or more attributes
of a feature or a feature itself (e.g. in the feature model of Figure §2.8
“WSInterface requires Modules.version > 4”).

2.5 Some examples

In this Section we present some basic examples of feature models. Our
intention is to provide an overview of small feature models that are commonly
found in research papers in order to illustrate the operations we describe in
subsequent Chapters.
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2.5.1 Car feature model

Software is a key part of today’s automobiles. Software monitors the cor-
rect operation of a car (oil pressure, fuel consumption, etc.) and improves the
car’s performance (e.g., adjusting fuel intake for better efficiency). The soft-
ware embedded into a car is determined by the car’s features; each distinct
set of features defines a unique program in a software product line. Suppose
we only consider the features of transmission type (automatic or manual) and
engine type (electric or gasoline). Figure §2.7 depicts a feature model of this
product line using basic feature model notation. A car consists of a body,
transmission, engine, and optionally a cruise control. A transmission is ei-
ther automatic or manual (choose one), and an engine is electric–powered,
gasoline–powered, or both.

Cruise

Car

Body EngineTransmission

GasolineElectricAutomatic Manual

choose1 1+

Figure 2.7: Car feature model.

2.5.2 James feature model

A software product line of collaborative systems on the web can be con-
ceived. Different modules can be added which correspond to different prod-
ucts in the product line.

Figure §2.8 depicts the feature model of JAMES [55] using cardinality–
based notation. JAMES is a framework for developing web collaborative sys-
tems. Every JAMES product has to have the Core elements which are the base
of the product to be operative. In addition, there are JAMES products with
Web Services Interface (WSInterface) management and other without it. Every
JAMES product can have data base (DB), or LDAP user authentication, but only
one. In a JAMES product there are products with PC or PDA graphical user
interface, or both at the same time (because the cardinality). Finally, feature
CongressManagement requires Repository and feature Repository excludes PDA, i.e.
it is no possible to have a JAMES product with both features at the same time.
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JAMES

Core Modules
WSInterface

Calendar

Forum Congress 
Management

Repository

GUI

PC PDA

UserManagement

DB LDAP

R1
R2 R3 R4

R5

R6 R7 R8

R9
R10

<1..2> <1..4>
<1..1>

Figure 2.8: James feature model.

2.5.3 Extended feature model

There is not a widespread notation for extended feature models and it is
out of the scope of this dissertation to propose one. In this Section we sim-
ply propose a possible notation but not with the aim of establishing it as a
standard but to illustrate a possible example of extended feature models.

To extend the basic notations of feature models, we can use a box as used
in UML classes where the upper part represents the name of the feature and
the bottom part allows defining attributes for the feature.

Calendar
version:Natural = 5;
LOC:Natural = 1613;

Forum
version:Natural = 4;
LOC:Natural = 2718;

Repository
version:Natural = 4;
LOC:Natural = 1669;

Congress Management
version:Natural = 4;
LOC:Natural = 4153;

Modules

version: Natural = max(Calendar.version, Forum.version, CongressManagement.version, 
Repository.version);
LOC:Natural = Sum(Calendar.LOC, Forum.LOC, CongressManagement.LOC, 
Repository.LOC);

Figure 2.9: Extended James feature model example.

An example of representing attributes in feature models is illustrated in
Figure §2.9. Any of the child features of feature Modules can have an attribute
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named version referred to the versions of PHP (JAMES is implemented using
PHP) that the module requires to work (natural domain). These are examples
of basic attributes. Similarly the attribute LOC is introduced to represent the
number of lines of code of the module.

An example of derived attribute would be the attribute version of the fea-
ture Modules because it depends on the version of the modules selected in every
product. In this case the version required for modules to run will be the max-
imum of the versions of the child features of Modules. It would depend on
the type of relationships and the type of attributes how the derived attributes
would be made up.

2.6 Summary

In this chapter we have summarised the most common feature model no-
tations divided into three main groups, namely, basic, cardinality–based and
extended feature models. We have also presented some simple examples to
guide the comprehension of the different notations. We published part of this
chapter in the Jornadas de Ingeniería del Software y Bases de Datos 2006 [25].
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Chapter 3

Automated analysis of feature
models

Computers are useless.
They can only give you answers.

Pablo Picasso, 1881–1973
Spanish Cubist painter

W e provide in this chapter with a description of the operations that we have
identified on the automated analysis of feature models surveying the main

proposals in the literature. In section §3.1, we first introduce the concept of automated
analysis of feature models. We describe the operations of analysis in Section §3.2 and
the operations of modification in Section §3.3. In Section §3.4, we survey the main
proposals to automate the analysis of feature models and we finally summarise the
chapter and present our main contributions in Section §3.5.
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3.1 Introduction

In 1990 feature models were proposed as a way of specification of software
product lines by Kang et al. [65]. Managing large feature models was already
described as a difficult and error–prone task. In fact, in the original FODA
report, automated tool support for the analysis of feature models was already
pointed as an important challenge and a prototype tool was described [65,
pag. 70].

Feature models are being used in many activities of software product lines
related to domain engineering, application engineering or management but,
feature models are more than only graphical elements to specify software
product lines. They contain useful information inside such as the number
of potential products being modeled, the core and variant features of the soft-
ware product line, and so forth. Extracting this type of information manually
is an error–prone tedious task and it can be even infeasible to do with large–
scale feature models.

The automated analysis of software product lines in general and feature
models in particular deals with the computer–aided extraction of information
from the software product line that can be of important benefit for software
product line analysts, designers, programmers or even managers. To auto-
mate the analysis of software product lines a model representing the product
line is necessary.

The process to automate the analysis of software product lines is the one
depicted in Figure §3.1. First, the model representing the software product
line is translated into a logical representation such as propositional logic, con-
straint programming or description logic so that it is possible to benefit from
off–the–shelf solvers that automatically analyse the representation, thus mak-
ing possible to automatically analyse the software product line itself.

Model Translation into a 
logical representation Solver

Operation

Analysis 
Results

Figure 3.1: The process for analysing a software product line.
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3.1.1 Scenarios on the automated analysis of feature models

To leverage the automated analysis of feature models it is necessary to have
a tool implementing the operations presented in the following sections and the
possibility of adding new ones. The operations of analysis performed over
feature models will be often composed to provide an useful information. The
analysis tool will include all these operations and provide the mechanism of
composing them. Let’s motivate this with some scenarios.

Imagine a project manager that has to decide about the marketing strategy
of a software product line. An automated analysis tool can reveal the number
of potential products that is described in the feature model. According to our
experience, this data is often surprising to the manager since there are often
much more products than expected in the feature model. For instance, in the
simple feature model of Figure §2.7 there are already 12 potential products.
This number can increase rapidly with the inclusion of more features and re-
lationships. We have dealt with feature models with more than ten thousand
potential products which may not be a reasonable value for a marketing strat-
egy manager. However, this information can help him on deciding how many
ranges of products the organization will offer. For instance, even if the fea-
ture model has a myriad of potential products, the organization could reduce
its offer to high end, mid–range and low end products according to features
attributes. The automated analysis of the feature model can help on this deci-
sion on using an operation for counting the number of products and using an
optimization operation. This scenario is depicted in Figure §3.2.

Another possible scenario can be staged in application engineering activi-
ties. The aim of application engineering is to build concrete products of a soft-
ware product line. There are some promising approaches to automate product
synthesis from feature models. These approaches are based on feature oriented
programming (FOP) or model driven development for software product lines
(MDD-SPL). The idea is simple: imagine a GUI describing a feature model
with check boxes and radio buttons to select the product to be built in a soft-
ware product line, the aim of FOP or MDD-SPL is that from the selection of
features, a product can be automatically synthesized. However, there is an im-
portant point here: does the feature model have any errors? this question has
to be considered because if the feature model has errors, then this error can
be propagated to the final product. There are different type of errors that can
be detected in a feature model [91], e.g. detecting if a feature model represent
at least one product, detecting if there are some features that are not used in
any product, a.k.a. dead features. In addition to detect the error, it would be
desirable to have an explanation mechanism that explains its source, similarly
to error and warning messages in programming languages compilers.
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I want to define the SPL 
marketing strategy. 

How many products are in 
my SPL?

In the JAMES SPL,
there are 68 Potential 

Products

Figure 3.2: A scenario on the automated analysis of feature models.

Likewise, when synthesising a product in application engineering there is
an activity known as staged configurations which consists of configuring a prod-
uct step by step selecting and deselecting features. It would be of a great help
for the application engineer to have an automated tool that when selecting or
deselecting features, the tool automatically propagates decisions avoiding in-
correct product specifications. For instance, if the feature automatic of our car
feature model is selected, then manual feature has to be automatically dese-
lected by the tool, thus avoiding an incorrect product specification. Moreover,
if we are dealing with an extended feature model in which attributes are in-
cluded, then the propagation could be performed according to criteria on the
attributes. For instance, only products with a price lower than a quantity are
considered, then some features will be selected and others deselected auto-
matically. Similarly, it is possible to maximize or minimize features attributes
according to customers criteria, e.g. looking for the cheapest product or the
one with lower time to market. An automated tool able to perform these type
of operations has to rely on the automated analysis of feature models as well.

Let’s finish with another scenario that also shows the application of the
automated analysis. One of domain engineering activities is to define the soft-
ware product line architecture. If the architecture has to be built according to
a given feature model, of course, once again we have to be sure that the fea-
ture model has no internal errors, therefore in this scenario again automated
analysis can help. However, assuming that the feature model is correct, we can
still analyse it to extract useful information. The domain engineer can wonder
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about the order in which he has to build the elements of the software product
line. A first approach is to know the set of core features (those that appear
in all products) and start building these features. The set of core features can
be extracted automatically from a feature model by an automated tool plat-
form. This operation has been used to define the architecture of software for
aerospace missions [78, 79].

In recent years, some contributions have been made to the state of the art
within the automated analysis of feature models. They can be grouped in four
main sets. First, there are some proposals based on propositional calculus
where feature models are translated into propositional formulas. Secondly,
description logic is proposed as the formal base and existing description logic
reasoners are used to accomplish several automated tasks. Third, we proposed
the use of constraint programming where feature models are translated into
a constraint satisfaction problem. Finally there are proposals that use ad–hoc
solutions defining their own algorithms or using their own tools where the
formal base is not clearly stated.

The automated analysis of feature models is still not a mature research
field. As a matter of fact, there is not a consensus on the different operations
that can be performed.

In this Chapter, we first summarise the different operations identified over
feature models until now. We distinguish between operations of analysis and
modification. Subsequently, we summarise the four different approaches for
the automated analysis of feature models.

3.2 Operations of analysis

We group as operations of analysis those that observe the properties of a
feature model without modifying it. This type of operations take a feature
model as an input and provide a response.

3.2.1 Determining if a product is valid for a feature model

This operation takes as input a feature model and a product and it returns
a value determining if the product belongs to the feature model or not.
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For instance, the product P1, described below, does not belong to the fea-
ture model of Figure §2.7 because automatic and manual transmission can not
be in a product at the same time. Meanwhile, the product P2 does belong to
the feature model of Figure §2.7.

P1 = { Car, Body, Transmission, Automatic, Manual, Engine, Electric }

P2 = { Car, Body, Transmission, Manual, Engine, Electric } .

This operation can be useful for an SPL analyst in order to verify if a prod-
uct described as a set of features is available in an SPL.

3.2.2 Determining if a feature model is void

This operation takes as input a feature model and returns a value determin-
ing whether such feature model is void or not. A feature model is not void if
the feature model represents at least one product. A basic feature model with-
out cross–tree constraints can not be void because it is impossible to include
contradictions within the model without the use of cross–tree constraints, i.e.
a feature model can only be void if cross–tree constraints are included.

The feature models of figure §3.3 are void since they represent no products.

A

B C

choose1
A

CB

D E

choose1

F G

R1

``the feature model is 
void because 

relationship R1''

Figure 3.3: Void feature models.

This operation is necessary for the automated analysis of feature models
specially when coping with large–scale feature models because the debugging
of big feature models is recognized to be an error–prone task if it is performed
manually [9, 65]. By debugging of feature models we mean the localization
and explanation of errors on feature models [91].
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3.2.3 Obtaining all the products

This operation takes as input a feature model and returns all valid prod-
ucts of the model. Although this operation is sometimes practical when the
number of products is low, it is often unfeasible to perform for feature models
with a big number of potential products. This can be used to know if a fea-
ture model is void because a feature model is not void iff the set of products
retrieved by the all products operation is not empty. In other words, a feature
model is void iff the all products operations returns an empty set. However,
it is important to note that if we just want to know if a feature model is void,
you would only need to look for one product, not all of them.

For instance, obtaining all the products in the feature model of Figure §2.7
retrieves this set of products :

{Car, Body, Transmission, Automatic, Engine, Electric},
{Car, Body, Transmission, Manual, Engine, Electric},
{Car, Body, Transmission, Automatic, Engine, Gasoline},
{Car, Body, Transmission, Manual, Engine, Gasoline},
{Car, Body, Transmission, Automatic, Engine, Electric, Gasoline},
{Car, Body, Transmission, Manual, Engine, Electric, Gasoline},
{Car, Body, Transmission, Automatic, Engine, Electric, Cruise},
{Car, Body, Transmission, Manual, Engine, Electric, Cruise},
{Car, Body, Transmission, Automatic, Engine, Gasoline, Cruise},
{Car, Body, Transmission, Manual, Engine, Gasoline, Cruise},
{Car, Body, Transmission, Automatic, Engine, Electric, Gasoline, Cruise},
{Car, Body, Transmission, Manual, Engine, Electric, Gasoline, Cruise}

This operation is not often used when analysing feature models but it is
useful to define and perform other analysis operations.

3.2.4 Determining if two feature models are equivalent

This operation takes as input two feature models and returns a value de-
termining if the feature models are equivalent. Two feature models are equiv-
alent if they both represent the same set of products.

For instance, the feature models of Figure §3.4 are equivalents since the set
of products specified by them are the same: { { A, B, C} , { A, B, C, D} }.

We distinguish between partial and total equivalence:
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• Total equivalence. Two feature models are total equivalent if they repre-
sent the same sets of products and the set of features of both of them are
the same as well.

• Partial equivalence. Two feature models are partially equivalent if they
represent the same sets of products but not necessarily they are expressed
using the same set of features. This can be due to the fact that one of
the feature models has dead features inside (see Section §3.2.12). For
instance, the feature models of Figure §3.5 are partial equivalent but
not total equivalent because they both have the same set of products {
{ A, B, C, D} } but not the same set of features.

A

B

C

D

A

B C D
Ξ

Figure 3.4: Total equivalent feature models.
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Figure 3.5: Partial equivalent feature models.

This operation of analysis can be useful to compare two different feature
models or to verify whether changes on a feature model (for example, to sim-
plify it) keep the feature model equivalent.
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3.2.5 Retrieving the core features

This operation takes as input a feature model and returns the set of features
that appear in all the products. This set of features is known as core features.
For instance in the feature model of figure §2.7 the set of core features is: {
Car, Body, Transmission, Engine } .

This operation can be useful to determine which are the most important
features in an SPL and define preferences on building features [79, 92]

3.2.6 Retrieving the variant features

This operation takes as input a feature model and returns the set of features
that do not appear in all the products. This set of features is known as vari-
ant features. For instance in the feature model of figure §2.7 the set of variant
features is: { Cruise, Automatic, Manual, Electric, Gasoline } .

3.2.7 Calculating the number of products

This operation takes as input a feature model and returns the number
of products of a feature model. This operation can be related to determine
whether a feature model is void, because a feature model is not void iff the
number of products of the feature model is greater than zero.

This operation reveals information about the flexibility and complexity of
the software product line [23, 48, 49, 102]. A big number of potential products
can reveal a more flexible as well as more complex product line. For instance,
the number of products in the feature model of Figure §2.7 (page 33) is 12.

3.2.8 Calculating variability

This operation takes as input a feature model and returns the ratio between
the number of products of the feature model and the number of potential
products if all features could be combined with all other without restriction.
The number of potential products is defined by 2n − 1 being n the number of
features that are taken into account. The root is often not taken into account
and sometimes only leave features are considered. This operation can help
in the analysis of feature models since a big factor would represent a flexible
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product line meanwhile a low factor would represent a more compact product
line.

For instance, the variability of the feature model of Figure §2.7 considering
all the features but the root is:

12

28 − 1
≈ 0, 0471

3.2.9 Filtering a set of products

This operation takes as input a feature model, a set of features Fi to be
included and a set of features Fe to be excluded and returns the set of products
with the features of Fi and without the features of Fe. In this operation the
original feature model is not changed but the set of all possible products is
filtered.

For instance, the set of products of the feature model of §2.7 can be filtered
with Fi = { Manual } and Fe = { Cruise } . The resulting products are:

{Car, Body, Transmission, Manual, Engine, Electric},
{Car, Body, Transmission, Manual, Engine, Gasoline},
{Car, Body, Transmission, Manual, Engine, Electric, Gasoline}

This operation is useful when selecting products within a feature model
in a staged configuration process [45] where products are configured step by
step selecting and deselecting features.

3.2.10 Calculating commonality

This operation takes as input a feature model and a feature within this fea-
ture model and returns a value that represents the percentage of valid prod-
ucts where the feature appears.

This operation can help on deciding the order in which feature are going
to be developed [79, 92] since highest commonality in a feature may mind
highest priority in the order of development. For instance, these are the com-
monality of some features of the feature model of Figure §2.7 :

Commonality(Manual) =
6

12
= 0, 5
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Commonality(Gasoline) =
8

12
= 0, 667

Commonality(Body) =
12

12
= 1

3.2.11 Optimizing

This operation takes as input a feature model and what is called an objective
function and returns the best product according to the criterion established by
the function [23]. An objective function is a function that from a product is
able to decide how good is that product according to that function.

This operation is chiefly useful when dealing with extended feature mod-
els where attributes are added to features. For instance, if attributes are added
to the feature model of Figure §2.7 (page 33) representing the cost of develop-
ment of every feature. It would be possible to select the set of products that
are cheapest.

3.2.12 Dead features detection

This operation takes a feature model as input and returns a set of dead fea-
tures if any. A non void feature model can have internal inconsistencies in the
form of dead features. A dead feature is a feature that never appears in any
product of a feature model [48, 91, 93, 109].

Detecting those dead features is yet another challenge to be solved by auto-
mated feature models analysis platforms [11, 93] because, although non void
feature models can be considered to be error–free feature models, if there are
internal dead features in a non void feature model, then, the feature model is
said to still have some errors. Therefore, dead features can be viewed as errors
in feature models. For instance, all the cases of Figure §3.6 are cases of dead
features.

DD

D

D DD

D

D

D D D

Figure 3.6: Common cases of dead features.
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3.2.13 Providing explanations

This operation takes as input a feature model and returns an explanation
when the feature model is void, a dead feature is detected within the feature
model or, in general, an error is detected.

Debugging feature models is an error–prone task if it is performed man-
ually. Usually, the automated tools will be able to detect whether the feature
model is void, however, finding the source of the problem that causes the
feature model to be void is a key challenge for automated tools [11, 91]. Pro-
viding explanations in basic feature models is already a challenging problem
and more it is doing so in extended feature models because attributes and
relationships among attributes appear.

Unfortunately, providing explanations is not a trivial problem because,
rather than telling where the source of the problem is, it is desirable to know
the source of the problem as precisely as possible, i.e. the explanation should
be minimal. For instance, if a feature model is void, a valid explanation would
be “the feature model is the source of the problem”. However, the valid infor-
mation is to pinpoint the relationship that makes the feature model to be void.

For instance, the feature model of figure §3.7 is void. A possible mini-
mal explanation of the source of the problem is: “the feature model is void
because relationship R1”. R1 avoids features B and F appear at the same time
meanwhile both features are mandatory and have to appear in all the products
which leads to a contradiction.
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Figure 3.7: Void feature model with explanations.

3.2.14 Providing corrective explanations

This operation takes a feature model as input and returns a corrective ex-
planation when the feature model is void or a dead feature is detected. When
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the user faces a feature model with errors, it is desirable for the automated
platform to generate a corrective explanation that, rather than focusing on
what is the cause of the problem, explains what can be done to overcome it.

For instance, if the feature model of figure §3.7 is void, a possible corrective
explanation would be: “remove relationship R1” or “change features B or F as
optional features”.

3.3 Operations of modification

All previous operations are based on static feature models, i.e., feature
models that do not change over time. However, in practice, it is recognized
that feature models evolve over time and these changes have to be contem-
plated. This type of evolution is defined in the sense that the number of po-
tential products can be reduced in different stages. This is known in the litera-
ture as staged configurations [44]. During the selection process, a feature model
evolve according to selection or deselection of features. The final state of this
process would be a feature model that represents only one product or a feature
model that represents no products (a void feature model).

We group as operations of modification those that modify the feature model
itself. This group of operations take a feature model as an input and return a
modified feature model.

3.3.1 Reducing the number of possible products

This operation takes a feature model, a set of features to be selected and a
set of features to be deselected as input and modify the original feature model
so that the number of possible products of the feature model is reduced by the
selection (or deselection) of the features. It is important to note the difference
between this operation and the operation of filtering. While filtering does
not modify the feature model, this operation does modify it. The way that the
feature model is modified will depend on the implementation of the operation.
For instance, Batory assigns three states to a feature: selected, deselected and
unknown citebatory05-splc.

For instance, in Figure §2.7 (page 33), if automatic transmission is selected
the number of possible products is reduced from 12 to 6.
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3.3.2 Propagating decisions

This operation takes a feature model as input and returns a modified fea-
ture model where some features are automatically selected (or deselected) by
the system according to the relationships of the feature model. This operation
makes sense during a staged configuration process when the user can select
(or deselect) features and the platform should automatically propagate the de-
cision all along the feature model.

For instance, in Figure §2.7, if automatic transmission is selected then man-
ual transmission should be automatically deselected.

3.3.3 Simplification

This operation takes a feature model as input and returns a simplified fea-
ture model. One of the drawbacks of feature models is that the same set of
products can be specified using different feature models with different rela-
tionships among features. This leads to the need of a simplification (so–called
normalization) process where any feature model can be translated to a canon-
ical representation [49, 86, 87, 101, 109].

For instance, the feature models of figure §3.8 are two equivalent feature
models after a possible simplification process where the simplified feature
model can not have at the same level set relationships (alternative and or) and
binary relationships (optional and mandatory). The simplification of feature
models is not a trivial task and some questions would need to be clarified,
for instance, determining if the two models of Figure §3.8 remain equivalent
when a new feature is added. However, it is out of the scope of this disserta-
tion to explore all the possible simplification processes of feature models and
discuss them.
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Figure 3.8: Example of simplified feature model.
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3.4 Automated support for the analysis of feature
models

The operations identified in Section §3.2 and §3.3 can be performed us-
ing different approaches. Until now, most of these operations have been per-
formed manually, which is not practical especially when dealing with large–
scale feature models. Although automated analysis of feature models is still
a recent research area and the connection between automated platforms and
features models has not been fully appreciated yet [9, 11], there are already
some proposals in the literature to automate the analysis of feature models.
These proposals can be divided into four different groups. Those based on
propositional calculus, those based on description logic, some based on con-
straint programming and finally others based on ad–hoc solutions.

3.4.1 Propositional logic based analysis

Some authors have proposed the translation of basic feature models into
propositional formulas. Recognizing that connection has brought useful bene-
fits since there are many off–the–shelf solvers that automatically analyse propo-
sitional formulas, therefore they can be used for the automated analysis of ba-
sic feature models. We are not aware of any proposal based on propositional
logic to analyse extended feature models where attributes are included in fea-
tures.

Mannion’s proposal

Mannion [73] was the first to connect propositional formulas to feature
models. In his work, feature models were used as requirements models for
software product lines. Rules for translating such models into propositional
formulas were provided and some operations were identified on the auto-
mated analysis of feature models. Although a coherent mapping was pro-
vided, no tool support was proposed, perhaps, that is why the proposal did
not have much impact. Later, in [74] an ad–hoc algorithm was presented to
treat those propositional formulas.
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Zhang et al.’s proposal

Zhang et al. [109] suggested the use of an automated tool support based
on the SVM System †1 that allows to analyse propositional formulas. One of
the main contributions of this work is the simplification operation (see Sec-
tion §3.3.3). Moreover, a systematic way to detect dead features (see Section
§3.2.12) was provided as well.

Sun et al.’s proposal

Sun et al. [89] proposed a formalization of feature models using Z [107].
They also proposed the use of the Alloy Analyzer †2 for the automated analysis
of feature models. Specially relevant is the identification and treatment of ex-
planations (see Section §3.2.13) when a feature model is void, i.e. it represents
no products.

Batory’s proposal

In [9], Batory summarised some of the advances up to date on the au-
tomated analysis of feature models. A coherent connection between feature
models, grammars and propositional formulas was established. A basic fea-
ture model can be represented as a context–free grammar plus propositional
formulas for cross–tree constraints what can be the base for the construction
of feature model compilers and domain specific languages.

Grammars are presented as a compact representation of propositional for-
mulas, and rules for translating grammars representing feature models into
propositional formulas was provided. Furthermore, Logic Truth Maintenance
Systems (a system that maintains the consequences of a propositional formula)
is built for the automated analysis of feature models. Such a system is con-
structed using a SAT solver and known boolean constraint propagation algo-
rithms.

3.4.2 Description logic based analysis

To the best of our knowledge, there is only one work in the literature that
proposes the use of description logic reasoners for the automated analysis of

†1www.cs.cmu.edu/∼modelcheck/smv.html
†2http://alloy.mit.edu
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feature models [105]. This proposal is based on the translation of feature mod-
els into an OWL DL ontology †3. OWL DL is a expressive yet decidable sub
language of OWL (Ontology Web Language). In that connection, it is possible
to use automated tools such as RACER (Renamed ABox and Concept Expres-
sion Reasoner†4) for the automated analysis of feature models.

3.4.3 Constraint programming based analysis

We were the first to proposing the use of constraint programming for the
automated analysis of feature models [20, 23, 24, 27, 93]. A feature model
can be translated into a constraint satisfaction problem and using constraint
programming techniques it is possible to leverage the automated analyses of
feature models. Until now, this is the only proposal that supports the analysis
of both cardinality–based and extended feature models and therefore support
the optimization operation.

3.4.4 Other proposals

There are some proposals in the literature where the conceptual underpin-
nings are not clearly exposed. We have decided to group such proposals as
ad–hoc solutions. In addition, we have found a proposal that presents a for-
malization of feature models but does not present any automated support.

Deursen and Klint’s proposal

Deursen and Klint [49] proposed a feature description language to describe
feature models. From this language, a feature diagram algebra is described
based on rules over the ASF+SDF Meta–Environment [68]. Using their system
some operations over feature models are automatically performed. After the
FODA report in 1990 where feature models were first presented, this is the
first paper we have found that explicitly proposes a method for the automated
analysis of feature models.

†3www.w3.org/TR/owl-features
†4www.racer-systems.com
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Cao et al.’s proposal

Cao et al. [36, 110] presented ad–hoc algorithms for the automated analy-
sis of feature models. Their algorithms are based on the translation of basic
feature models into data structures which they claim to be enough to obtain
all the products as the base for some other operations. They also present a tool
prototype based on their algorithm.

Schobbens et al.’s proposal

Schobbens et al. [86, 87] survey feature models and study the succinctness,
embeddability and naturalness of the different proposals of feature models.
However, advanced feature models are not studied. In addition to the sur-
vey, the authors propose a generic semantic for feature models to generalize
all the works studied. Formal semantics are mentioned using mathematical
notations and studies of computational complexity for some operations are
presented and proved. Although an automated support is not explicitly pre-
sented, it is easy to translate their formal semantics to propositional calculus
to analyse feature models.

3.5 Summary

In this chapter, we have presented the operations that we have identified
on the analysis of feature models. We have divided them as operations of
analysis and operations of modification. Subsequently, we have presented
current solutions to automatically analyse feature models. We have divided
current proposals on four main groups: propositional logic, description logic,
constraint programming and others.

We have published part of these results in some papers, namely: we pre-
sented some operations of analysis on feature models in a regular paper in
the CAiSE conference [23] that was based on preliminary work that was pre-
sented in the International Conference of Software Reuse as a workshop paper
[16] and in the 2nd Groningen Workshop on Software Variability Manage-
ment [22]. Later, we improved and extended [23] and we got a regular paper
accepted in the The Seventeenth International Conference on Software Engi-
neering and Knowledge Engineering [24]. In all these papers we proposed the
use of constraint programming to analyse feature models. We also published
a paper surveying the state of the art on the automated analysis of feature
models in the Jornadas de Ingeniería del Software y Bases de Datos [25]



Chapter 4

Constraint Programming

Constraint programming represents
one of the closest approaches

computer science has yet made
to the Holy Grail of programming:

the user states the problem,
the computer solves it.[56]

Eugene Freuder,
American scientist

O ur goal in this chapter is to provide the reader with a good understanding
of constraint programming. In Section §4.1 we provide a brief introduction

to constraint programming; in Section §4.2 we rigorously define what a Constraint
Satisfaction Problem (CSP) is. In Section §4.3 we describe the main characteristics of
CSP solvers and finally, we summarise the chapter in Section §4.4. †1.

†1Some text of this chapter is partially inspired by [8, 32, 35, 59]
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4.1 Introduction

Constraint programming has been an important branch of research in ar-
tificial intelligence for the last decades [61]. Although constraint program-
ming is based on strong theoretical foundations and it is an active research
area in academic contexts, it is also applied in real life problems ranging from
scheduling, resource allocation, bioinformatics or even games like sudoku. Con-
straint programming is an interdisciplinary research area since it combines
results from different fields such as Artificial Intelligence, Programming Lan-
guages or Computational Logic.

The main idea of constraint programming is that the programmer states the
problem as constraints between variables and then the computer is responsi-
ble for providing the solutions that satisfies the constraints. The way that a
solution is retrieved depends on the search strategy so that the same problem
can be solved using different strategies.

There are two main branches of constraint programming that are distin-
guished by how problems are stated.

On the one hand, there are problems that are stated using a finite set of
variables, finite domains for those variables and a finite set of constraints over
those variables. A problem expressed that way is known as Constraint Satis-
faction Problem (CSP). A solution to a CSP is an assignment of a value from
its domain to every variable, in such a way that all constraints are satisfied
simultaneously. For solving a CSP there is a trivial algorithm that generate all
possible combinations of values and then it verifies whether each combination
satisfies all the constraints or not. If all the constraints are satisfied then the
combination is said to be a solution. However this algorithm can take a long
time to give the solution in the worst case because its exponential behaviour.

For instance, the following tuple denotes a simple CSP:

( {x, y}
︸ ︷︷ ︸
variables

, {[0..2] , [0..2]}
︸ ︷︷ ︸

domains

, {x + y < 4, x − y ≥ 1}
︸ ︷︷ ︸

constraints

)

On the other hand, there are some problems that are stated using vari-
ables that range over infinite domains like real numbers. It is also common to
find more complicated constraints in this type of problems such as non linear
equalities. Therefore, for solving these problems another type of algorithms
are necessary that use algebraic and numeric methods instead of combinations
and search.
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In general, when a problem is stated using constraints we may want to
find:

i. just one solution, with no preferences. For instance, in previous example
a valid solution would be {x = 2, y = 1}

ii. all solutions. For instance, in previous example:

{{x = 1, y = 0}, {x = 2, y = 0}, {x = 2, y = 1}}

iii. an optimal or good solution. As a matter of fact, we do not often want
to find any solution but the best solution. The quality of a solution is
determined by the so–called objective function. The goal is to find a solu-
tion that satisfies all the constraints and minimize or maximize the ob-
jective function. Such problems are referred to as Constraint Satisfaction
Optimization Problems (CSOP), which consist of a standard CSP and an
optimization function that maps every solution to a numerical value.

There are many different constraint programming solvers that allow to use
well known off–the–shelf algorithms avoiding to rewrite the strategy to search
for a solution from scratch.

4.2 Formal definitions of CSPs

As stated earlier, a CSP is defined by a set of variables, a set of domains
for those variables and a set of constraints over the variables. To provide a
rigorous definition of CSPs we use Z [107] as specification language.

4.2.1 Basic definitions

We define a CSP as a Z schema (see Appendix §B). To do so, we have
to make some definitions first. We define VarName as a given set of variable
names. Note that determining if a variable name is valid or not is out of the
scope of this specification. Constraint is also a given set, in this case a given
set of constraints. We do not specify the type of constraints that can be used.
To do so, a grammar for the language of allowed constraints would be needed
and this is again out of the scope of this specification. Finally, Value is defined
as a given set of values and Domain is a finite set of values.
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[VarName] [Given set for variable names]
[Constraint] [Given set for constraints]
[Value] [Given set for values to be assigned]
Domain == F Value [A domain is a set of values]

In the Z schema that represents a CSP, we include an assertion ensuring
that the variables in the constraint of the CSP are present in the CSP. Therefore,
we define a function variablesIn that, from a constraint, is able to return the
name of the variables that are present in the constraint. This function has to
be defined depending on the type of constraints allowed. As said earlier, we
do not specify the type of constraints allowed and so we leave the definition
open.

Definition 4.1 (variablesIn)

variablesIn : Constraint → F VarName

[concrete definition depends on how constraints are expressed]

With the former definitions we can define now a Z schema for CSPs.

Definition 4.2 (CSP.) A CSP is defined as a finite set of variables, a function (varDecl)
that from a VarName maps the Domain of the variable and a constraint. The con-
straint will be the conjunction of all the constraints of the CSP. The assertion in the
schema is that the variables in the constraints has to be a subset of the variables of
the CSP. This way, it is allowed that some variables are not present in any constraint
because there may exist variables in a problem that are not constrained.

CSP
variables : F1 VarName
varDecl : VarName �→ Domain
constraint : Constraint

dom varDecl = variables
variablesIn constraint ⊆ variables
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4.2.2 Solutions of a CSP

A solution of a CSP is an assignment for every variable of the CSP that sat-
isfies the constraints of the CSP. Let us define what an assignment is as a Z
function.

Definition 4.3 (Assignment.) An assignment is a function that maps every vari-
able of a CSP to a value.

Assignment : VarName �→ Value

To determine if an assignment belongs to the set of solutions of a given
CSP, the assignment has to map all the variables to a value on its domain
and has to satisfy all the constraints in the CSP. In Z, we define two functions
of satisfaction, one at constraint level (satisfiesc) and the other at CSP level
(isSolutionOf ).

The first function of satisfaction determines if an assignment satisfies a con-
straint. This function depends on the type of constraint, therefore we leave its
definition open.

Definition 4.4 (satisfiesc)

satisfiesc : Assignment ↔ Constraint

[concrete definition depends on how constraints are expressed]

The other satisfaction function determines if an assignment satisfies a CSP,
i.e. it is a solution of the CSP.

Definition 4.5 (isSolutionOf .) For an assignment to be a solution of a CSP, the set
of variables of the assignment has to be the same as the set of variables in the CSP. In
addition, the value of each variable in the assignment has to be in the domain of the
corresponding variable of the CSP and, of course, the assignment has to satisfy the
constraint of the CSP.

isSolutionOf : Assignment ↔ CSP

∀ a : Assignment; csp : CSP •
a isSolutionOf csp ⇔ dom a = csp.variables ∧

∀(n, v) : a • v ∈ csp.varDecl(n) ∧ a satisfiesc csp.constraint
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4.2.3 Operations over CSPs

There are two basic operations defined over CSPs. The first one is to re-
trieve the set of solutions of a CSP and the other is to determine if the CSP is
satisfiable, i.e. there is at least one assignment that satisfies the constraints of
the CSP.

In Z, we define a function returns the set of assignments that conform the
set of solutions of a CSP. The set of solutions of a CSP is every valid assignment
that satisfies the CSP.

solutions : CSP → F Assignment

∀ sol : Assignment; csp : CSP •
sol ∈ solutions csp ⇔ sol isSolutionOf csp

From the former definition we can define now a function that determines
whether a CSP is satisfiable. There are two ways of defining this function. We
can define that a CSP is satisfiable iff the set of solutions of the CSP is not
empty.

satisfiable : P CSP

∀ csp : CSP •
satisfiable csp ⇔ solutions csp �= ∅

Another definition is also possible. In this case, we define a CSP as satisfi-
able iff there exists at least one assignment that satisfies the CSP. Both defini-
tions are equivalent.

satisfiable : P CSP

∀ csp : CSP •
satisfiable csp ⇔ ∃ sol : Assignment • sol isSolutionOf csp

Another operation that we define over CSPs is the possibility of adding
constraints to the CSP. In this case, we define a Z function addc that has as in-
put a CSP and a set of constraints and returns a new CSP with the constraints
added. This function has to be redefined when the type of constraints is de-
fined.

addc : CSP × F1 Constraint → CSP

[concrete definition depends on how constraints are expressed]
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4.2.4 Constraint optimization problems

The former definitions are valid to find one or all the solutions satisfying
a given CSP. That means that all solutions are considered to be equally good.
There is another important area of research in constraint programming that
deals with the so–called Constraint Optimization Problems (CSOP). What dif-
fers a CSOP from a CSP is that while in a CSP we are interested in any solution
of the CSP, in a CSOP we do not want just a solution but the best solution. The
quality of the solution is determined by an objective function that classifies the
goodness of a given solution.

In Z, we define an objective function as a function that takes as input an
assignment and returns a real value determining how well the assignment is
adapted to that function.

Objective : Assignment → R

We define also a function called sortSolutions that returns a sequence of
solutions of a CSP ordered by the criteria of an objective function.

sortSolutions : CSP × Objective → seq Assignment

∀ csp : CSP ; o : Objective; s : seq Assignment •
sortSolutions( csp, o ) = s ⇔

#s = #solutions csp ∧

ran s = solutions csp ∧

∀ i : 1 . . #s − 1 • Objective s(i) ≤ Objective s(i + 1)

It is important to notice that these functions are a way of specifying its se-
mantics but not necessarily relate directly to the way that the functions may be
implemented in real CSP solvers. For instance, the way a CSP solver retrieve
the best solution of a CSP is not often obtained by finding all solutions and
then using the objective function to sort them. Instead, CSP solvers will use
sophisticated algorithms to ensure that a solution is the best without the need
of finding all solutions.

4.3 Constraint Solvers

Once a problem is modeled as a CSP, depending on the nature of the vari-
ables, different solvers can be used. There are many solvers both commercial
and academic in different languages and platforms. A CSP solver determines
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whether a given CSP is satisfiable or not. If a CSP is satisfiable, the solver can
retrieve a solution, all solutions or the best solution depending on the case.
Next, different type of solvers depending on the nature of the variables are
presented.

4.3.1 SAT solvers

The boolean satisfiability problem (SAT) is a well known problem in com-
putational theory. An instance of the problem is a boolean expression that has
three components [41]:

• A set of n boolean variables x1...xn.

• A set of literals that are variables or negation of variables (e.g. x1 or ¬x3).

• A set of m distinct clauses: C1...Cm. Each clause consists of only literals
combined by just logical or (∨) connectives.

The purpose of the satisfiability problem is to determine whether there ex-
ists an assignment of truth values (TRUE or FALSE) that makes the following
Conjunctive Normal Form (CNF) formula satisfiable (every propositional for-
mula can be converted into an equivalent formula that is in CNF [41]):

C1 ∧ C2 ∧ . . . Cn

A propositional formula is said to be satisfiable if there are some values
that can be assigned to its variables in a way that makes the formula true. De-
termining if there is such assignment was demonstrated to be an NP-complete
problem [41].

It is important to notice that SAT can be seen as a special case of CSP where
each constraint is expressed as a clause and variables are only boolean vari-
ables [59].

A SAT solver is a software package that basically takes as input a CNF and
determines if the formula is satisfiable. Other features are offered by SAT
solvers depending on the implementation. There is even an annual compe-
tition of SAT solvers where different improvements are presented †2

†2A list of different SAT solvers and the annual results of the competition can be found at
www.satcompetition.org
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4.3.2 BDD solvers

A Binary Decision Diagram (BDD) is a data structure used to represent
boolean functions [34, 35]. A BDD is a rooted, directed, acyclic graph and
is composed by a group of decision nodes and two types of terminal nodes
called 0–terminal and 1–terminal. Each node in the graph represents a variable
on a given formula and has two child nodes representing an assignment of
the variable to 0 (dashed lines) and 1 (solid lines). All paths from the root to
the 1–terminal represents the variable assignments for which the represented
boolean function is true meanwhile all paths from the root to the 0–terminal
represent the variable assignments for which the represented boolean function
is false. Figure §4.1 shows an example.

Figure 4.1: Example of a BDD.

A BDD solver is a software package that takes as input a propositional for-
mula and translate it into a BDD. Then, the solver can determine if the formula
is satisfiable and can efficiently count the number of possible assignments.
Other features are offered by BDD solvers depending on the implementation.

4.3.3 General CSP solvers

The above solvers are restricted to boolean variables, i.e. the problem that
is modeled to be the input of BDD or SAT solvers has to be modeled using only
boolean variables. In many situations, this approach is not feasible because
the gap between the model and the reality can be big. Although in theory any
problem that is represented as a CSP can also be represented as a compound
of propositional formulas, the language of CSP solvers is often more succinct
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than the one of BDD or SAT solvers (propositional calculus). This is one of the
seeds of the investigation on CSP solvers. It is believed in the constraint pro-
gramming community (although not proved yet in general) that CSP solvers
can be better than SAT or BDD solvers for non-boolean problems.

In general, a CSP solver takes a problem modeled as a CSP as input and
determines whether there exists any solution for the problem. Therefore, from
a modeling point of view, CSP solvers provide a richer set of variables such
as sets, finite integer domains in addition to boolean variables. From the per-
spective of the operations that a CSP allows, it is important to underline that
most of CSP solvers can perform optimization operations according to ob-
jective functions. On the contrary, CSP solvers are not good in general for
counting the number of solutions [80].†3

4.3.4 Search algorithms

When searching for a solution in a CSP, there is a trivial algorithm that
generates all the possible combinations of values for the variables and verifies
for each one whether it corresponds to a solution of the CSP or not. However,
this is a bad algorithm in general. In practice it is much less efficient than al-
gorithms that backtrack on failure, look ahead to detect failure and propagate
constraints during search.

There are plenty of advanced and proved algorithms to reduce enormously
the search space. In despite of this, developing new algorithms to reduce the
search space as much as possible is one of the main areas of research in con-
straint programming. All these algorithms need to know the order in which
variables are considered for assignments in the search algorithm. Once a vari-
able is selected, the order of values, within the variables domain, in which the
search algorithm tries to assign values is also important. Variable and value
ordering can affect dramatically to the efficiency of constraint satisfaction al-
gorithms.

4.4 Summary

In this chapter, we have presented an introduction to constraint program-
ming and we have also detailed a rigorous definition of constraint satisfaction
problems using Z. Finally, we have presented how different constraint solvers
can be used depending on the type of constraints of the problem to be solved.

†3A list of different CSP solvers can be found at www.4c.ucc.ie/web/archive/
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Chapter 5

Motivation

In don’t know of any better motivation than problems

Popular saying

R ecently, the automated analysis of feature models has been one of the most in-
teresting research areas in the field of software product lines. However, current

solutions are not practical enough since they are not able to cope with advanced feature
models, they lack abstract exhaustive definitions and only focus on one type of solver.
Our goal in this chapter is to present these problems and motivate the need for a new
solution. In Section §5.1 and §5.2 we identify the problems that have to be taken into
account in the automated analysis of feature models and in Section §5.3 we analyse
current solutions according to the problems identified earlier. In Section §5.4, we put
together all the proposals and analyse the capability to solve the problems and argue
the need for a new proposal. Finally, we summarise the chapter in Section §5.5.
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5.1 Introduction

In recent years, the research community has been paying attention to soft-
ware product lines, which has led to a huge amount of research papers and
industrial experiences. Feature models have been one of the most active areas
on software product line research. Notwithstanding these years of research,
there is an important weakness that has not been fully solved yet. Feature
models have been used mostly as graphical notations to communicate differ-
ent stakeholders and as a way of expressing commonalities and variabilities
in software product lines but something is still missing.

A major challenge in software product line engineering is to automate dif-
ferent processes. One of these processes is feature model analysis [11]. In this
context, there are several approaches to perform the automated analysis of
feature models [9, 23, 36, 49, 73, 89, 93, 105, 109] as presented in Chapter §3.
Although some of them address some of the problems that we have identified,
none of the solutions seem to be appropriate enough because:

i. All the approaches focus only on feature models.

ii. Formal semantics are not provided.

iii. None of the approaches deal with extended feature models where at-
tributes are introduced.

iv. None of the approaches integrates different solvers.

This argues for a new framework for the automated analysis of software
product lines to pave the way for the new generation of feature modelling
tools that leverage automated analysis. This is the main motivation of our
thesis.

5.2 Problems

Four main problems make it difficult to build tools for the automated analy-
sis of software product lines, namely:

Abstraction. Feature models are only one possible way of modelling software
product lines. Current proposals do not open the door to other possible
models and only focus on the automated analysis of a certain type of
feature models.
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Formal semantics. There is not a consensus on the semantics of feature mod-
els. However, for an appropriated tool support, a rigorous definition of
what a feature model is and which operations are allowed over feature
models is needed. Formal semantics are needed in order to rigorously
define what software product lines and feature models are. Without se-
mantics, errors and misconceptions can be introduced and tool building
is difficult and not rigorous [60].

Support for extended feature models. Automated analyses on basic feature
models are covered in some proposals, however a tool should support
the automated analysis of advanced feature models where attributes and
attribute relationships are considered. The automated analysis of ex-
tended feature models is something that is still missing in most of the
current works.

Multi Solver. There are some solvers that have been proposed for the imple-
mentation of the automated analysis of feature models. Some of them
are good for some operations while the performance is poor for some
others. A tool that can integrate more than one solver and allows includ-
ing other solvers would be desirable.

5.3 Analysis of current solutions

Our goal in this Section is to suggest that none of the approaches presented
in Chapter §3 addresses the aforementioned problems at the same time.

5.3.1 Abstraction

We have not found any proposal considering the analysis of software prod-
uct lines at a higher level of abstraction than feature models. We consider that
feature models are only one way of modelling software product lines. It is cer-
tainly one of the most common ways of doing so. However, the analysis can
be abstracted from the specific way of modelling (e.g. feature models) and the
operations can be defined at software product line level independently on the
specific model to represent variabilities and commonalities. This simplifies
the reuse of semantics.
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5.3.2 Formal semantics

There are a few works in the literature that provide formal semantics for
feature models [86, 87, 89]. However none of them provide those semantics at
software product line level or deal with extended feature models. Schobbens
et al. [86, 87] uses ad–hoc mathematical notations to provide formal seman-
tics for feature models which can lead to misinterpretations. We think that a
formal language such as Z [63] is more suitable for providing semantics for
feature models than non standard mathematical notations since Z is an ISO
standard [63]. As a matter of fact, Sun et al. [89], use Z to provide semantics to
feature models. However, their semantics are restricted to one type of feature
models and are not at a software product line level of abstraction.

5.3.3 Support for extended feature models

The current analysis of feature models is based only on basic feature mod-
els. We have proposed to deal with extended feature models as well [11, 23]
but in those works we did not include either abstract semantics of software
product lines or multi solver support for the analysis of feature models.

5.3.4 Support for basic feature models

Next, we analyse more in depth the current proposals to automatically
analyse basic feature models divided in four main groups.

Propositional–based analysis

Propositional–based analyses use different solvers to represent and analyse
feature models. Batory [9] proposes the use of SAT solvers. Zhang et al. [109]
propose the use of SVM system. The SVM system is a system “for checking
finite systems against specification in temporal logic”, however the proposal
does not use temporal logic but propositional logic. Sun et al. [89] propose
the use of Alloy Analyzer that internally uses a SAT solver to check model
satisfiability. All these proposals are suitable at implementation level and can
be considered of a way of performing some operations of analysis over feature
models. Nevertheless, we are not aware as a way of using these solvers to
analyse advanced feature models and this is the main drawback that we see
in these proposals.
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Description logic based analysis

Wang et al. [105] proposed the use of description logic reasoners to ac-
complish some of the operations over feature models. We are not aware of
any way of using these solvers to obtain all the possible products of a feature
model, count the number of products and analyse extended feature models.
However, this can be yet another approach to perform some of the operations
at implementation level.

Constraint programming based analysis

We have proposed the translation of feature models into CSPs [23]. As a
result, we can analyse both basic and extended feature models. We have also
proposed the translation of cardinality–based feature models [27] into CSPs.
The language used in CSP is more succinct than the one used in SAT or other
propositional solvers because CSP solvers allow the use of numerical finite
variables such as integers or sets, while for the use of those variables for rep-
resenting the problem in SAT or BDD approaches, a translation is necessary.
Nevertheless, in some operations SAT or BDD solvers can perform better than
CSP solvers [26–28], therefore they should be all considered in an automated
tool for the analysis of feature models.

5.3.5 Support for multiple solvers

There are some proposals in the literature to deal with the analysis of fea-
ture models as presented previously. In these proposals different implemen-
tations are presented using different solvers. Some solvers perform better for
certain analysis operations while other solvers are better for other operations
[26, 28]. Therefore, an automated tool should support the analysis of feature
models using different solvers.

5.4 Discussion

A summary of the proposals for the automated analysis of software prod-
uct lines is depicted in Table §5.1. We have studied five properties. The row
Abstraction refers to the level of abstraction considered on the automated
analysis of software product lines. A “+” symbol means that the level of ab-
straction is at SPL level while a ”-“ symbol means that the level of abstraction
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is at feature models level. The row Formalization refers to formal semantics
for feature models. A “+” symbol means that formal semantics are provided
while a “-” symbol means that formal semantics are not provided. The row Ex-
tended FMs refers to the capability to analyse extended feature models. A “+”
symbol means that the proposal deals with extended feature models while a
“-” symbol means that the proposal does not deal with extended feature mod-
els. The row Basic FMs refers to the capability to analyse basic feature mod-
els. A “+” symbol means that the proposal contemplates basic feature models
while a “-” symbol means that the proposal does not contemplate basic fea-
ture models. Finally the row Multi Solver refers to the implementation of the
automated analysis of feature models using different solvers. A “+” symbol
means that more than one solver is proposed while a “-” symbol means that
none or just one solver was used.
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Abstraction - - - - - - - - - +
Formalization - - + - - - - + - +
Extended FMs - + - - - - - - - +

Basic FMs + + + + + + + + + +
Multi Solver - - - - - - - - - +

Table 5.1: Summary of the proposals for the analysis of software product lines.

We have studied more in depth the proposals presented in the Table above
according to the operations over basic feature models. The summary of the
comparison is depicted in Table §5.2. Every row refers to the operations stud-
ied in Chapter §3. A “+” symbol means that the operation has been proposed,
the “∼” symbol means that although the operation has not been proposed, we
envisage that the operation can be performed, finally a “-” symbol means that
the operation has not been contemplated and we do not envisage a way to
include it in the proposal.
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Valid Product + + + - - + + + ∼ +
Void FM + + + + + + + + + +

All products + + ∼ + + ∼ + - ∼ +
Equivalent FMs ∼ ∼ + ∼ ∼ ∼ + ∼ ∼ +

Core features ∼ ∼ ∼ - ∼ ∼ ∼ - ∼ +
Variant features ∼ ∼ ∼ - ∼ ∼ ∼ - ∼ +

N. of products ∼ + ∼ + + + ∼ - ∼ +
Variability ∼ + ∼ ∼ ∼ ∼ ∼ - ∼ +

Filter + + ∼ - ∼ ∼ ∼ ∼ ∼ +
Commonality ∼ + ∼ - ∼ ∼ ∼ - ∼ +
Optimization - + - - - - - - - +
Dead features - - - - - - - - + +
Explanations + - - - - - + + - ∼

Corrective Explanations - - - - - - - - - ∼

FM reduction + - ∼ + ∼ ∼ ∼ ∼ ∼ ∼

Decision propagation + ∼ - - - - ∼ - + ∼

Simplification ∼ - + + + ∼ ∼ - + ∼

Table 5.2: Summary of the proposals for the analysis of basic feature models.
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From the previous analyses of current solutions we conclude that a new
framework able to automate the analysis of software product lines is needed.
It should i) define the automated analysis at a higher level of abstraction than
feature model level, ii) provide formal semantics for both software product
lines and feature models, iii) contemplate extended feature models in addi-
tion to basic feature models iv) provide support for multiple solvers.

FeAture Model Analyser (FAMA) is our proposal. It provides engineering sup-
port for software product line analysts to automate the analysis of feature
models. Furthermore, FAMA is extensible in the sense that it can be comple-
mented with i) further models other than feature models, ii)other operations
and iii) other solvers that will certainly appear in the future.

5.5 Summary

Our goal in this Chapter was to motivate the reason why we embarked
on the development of this thesis. We have analysed the problems involved
in the automated analysis of feature models, and have justified that none of
the previous proposals found in the literature succeeds in addressing all the
problems at a time. This justifies that our contribution is original and advances
the state of the art a step forward.



Chapter 6

The FAMA framework

High achievement always takes place
in the framework of high expectation.

Charles F. Kettering, 1876–1958
Engineer

D ue to the problems identified in previous chapter, we propose a new frame-
work called FAMA that solves these problems. Our main goal in this chap-

ter is to present the framework and describe the abstract foundation layer. In Section
§6.1, we introduce our framework and briefly describe the characteristics of the four
layers of FAMA. In Section §6.2, we provide an abstract yet rigorous definition of
software product lines. In Section §6.3, we describe the operations of observation at
a software product line level. In Section §6.4, we redefine the type feature in order to
define attributed features. Finally, in Section §6.5 we summarise the chapter.



76 Chapter 6. The FAMA framework

6.1 Introduction

As we have stated in the previous chapter, the primary focus of our re-
search work is to provide engineering support so that software product line
engineers can automatically analyse software product lines. This is materi-
alized as an abstract framework called FAMA that provides a foundation for
developing automated feature model analysis tools.

6.1.1 The four–layers framework

We have conceived our framework for the automated analysis of software
product lines in four different layers (see Figure §6.1). We have decided to
divide the framework in four layers in order to separate different concepts.
In the first layer we define software product lines at abstract level and the
operations of analysis on software product lines. Then, in the second layer,
the first layer is refined by the definition of feature models and keeping the
definitions of the operations of the former layer. The second layer serves to
define a translation from feature models to CSPs, the operational paradigm
that we use to materialize the operations. Finally in the fourth layer, concrete
solvers are used to compute the analysis operations defined in the first layer
by means of real CSP solvers.

• Abstract foundation layer. It is the basis of the framework. We for-
mally define in this layer what a software product line is and abstractly
what are the operations that can be performed in the analysis of soft-
ware product lines. It is important to underline that in this layer we do
not couple to feature models so that the semantics of the operations are
independent of how SPLs are modeled (e.g. feature models). This way,
if other models are used to describe software product lines, the defini-
tions will remain valid. This layer is described in this chapter. We use
Z, a standard specification language [63], to provide formal semantics to
SPLs and analysis operations.

• Characteristic model layer. In this layer we define the semantics of soft-
ware product lines by means of feature models. Most of the definitions of
the abstract foundation layer remain the same and only some relations
are redefined. If another model is used to describe software product
lines, this layer has to be redefined. This layer is described in Chapter
§7. We also use Z to provide formal semantics to feature models reusing
some of the definitions of the abstract foundation layer.



6.2. Abstract foundation layer 77

• Operational paradigm layer. It depends on the modeling technique
used in the characteristic model layer (e.g. feature models) and provides
a close–to–implementation semantics. In this layer we use CSPs to rep-
resent feature models. However, it is important to notice that we use a
generic form of CSPs without being coupled to any CSP implementation.
This layer is described in Chapter §8. We use Z to define the mapping
from feature models to generic CSPs.

• Implementation layer. This layer also depends on the model used in the
characteristic model layer and provides a real implementation of the op-
erational paradigm layer, for example JaCoP, SAT4j or JavaBDD solvers
are used. This layer is described in Chapter §9.

Abstract foundation

Characteristic model

Operational paradigm

Implementation

Figure 6.1: The four layers of the FAMA framework.

6.2 Abstract foundation layer

A software product line can be defined from several points of view. A quite
abstract definition of SPLs is considering it as a non-empty set of features and
a characteristic model describing allowed product configurations. Feature models
are widely used as characteristic models, but in this layer we abstract from
feature models to define what an SPL is. This allows us to avoid redefining
semantics in the case we want to use other characteristic models.

A product, considered as a finite non-empty set of features, is a valid prod-
uct of an SPL if its set of features is a subset of the SPL feature set, i.e. it is
configured using only known features, and if it is an instance of the characteris-
tic model of the SPL, i.e. it is an allowed configuration.

To be presented more formally using Z [107] †1, we can define two given
sets, Feature – which can be redefined, for instance to include attributes– and

†1see Appendix §B for an overview of the notation
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Model –which has to be redefined in the characteristic model layer–, the Product
type as a finite set of at least one feature and the isInstanceOf relation between
Product and Model. This relation does not have a concrete definition because
it depends on how features and models are expressed, therefore it has to be
redefined in the characteristic model layer.

[Feature] [Given set for features (abstract, to be redefined)]
[Model] [Given set for models (abstract, to be redefined)]
Product == F1 Feature [Definition of Product type]

isInstanceOf : Product ↔ Model

[concrete definition depends on how features and models are expressed]

We also need to define a function that returns the set of features involved
in the specification of a given characteristic model. This function is useful for
specifying that all the features in an SPL must be involved in its characteristic
model and vice versa, i.e. that an SPL cannot contain unbound features and
that a characteristic model must use all and only the features in its SPL. This
function has to be also redefined in the characteristic model layer.

featuresIn : Model → F Feature

[concrete definition depends on how features and models are expressed]

Using the previous definitions, an SPL can be defined in Z as the following
schema type with a model that represent the characteristic model of the SPL
and a non empty set of features. The assertion that has to hold in the schema is
that the set of features in the model has to be the same as the set of features of
the SPL.

SPL
features : F1 Feature
model : Model

featuresIn model = features

6.3 Operations of observation on abstract SPLs

Using the former definition of SPL we can now formally define operations
of observation in the analysis of software product lines. An operation of ob-
servation observes the properties of an SPL without modifying it. In this dis-
sertation we only deal with the operations of observation. Notice the relation
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between this operations and the operations defined in Chapter §3. Meanwhile
in Chapter §3 the operations were informally described referred to feature
models, in this Section we provide formal semantics to the same operations
but at a more abstract level. In this dissertation we only cover the operations
pinpointed in Table §5.2 so that we do not cover explanations.

6.3.1 Determining if a product is valid for an SPL

As previously stated, a product is a valid configuration for an SPL if it is
configured using the features in the SPL and is an instance of its characteristic
model. This can be expressed in Z by means of the following relation:

isValidFor : Product ↔ SPL

∀ p : Product; spl : SPL •
p isValidFor spl ⇔ p ⊆ spl.features ∧

p instanceOf spl.model

6.3.2 Void SPL

An SPL is considered to be void if there is not any product that can be
configured using the features of the SPL and its model. This can be expressed
in Z by means of the following function.

isVoid : P SPL

∀ spl : SPL • isVoid spl ⇔ �p : Product • p isValidFor SPL

Other definition would be possible. In the following definition, an SPL is
defined as void if the number of products of the SPL is equal to zero. In this
case we use a function numberOfProducts that is defined afterwards.

isVoid : P SPL

∀ spl : SPL • isVoid spl ⇔ numberOfProducts spl = 0

6.3.3 All possible products

Using the isValidFor relation, the set of all possible products of an SPL, i.e.
all valid configurations for an SPL defined using only the SPL features, can be
defined as the following function:
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products : SPL → F Product

∀ spl : SPL; p : Product •
p ∈ products spl ⇔ p isValidFor spl

An alternative definition is also possible that is semantically equivalent but
uses another Z syntax to be defined:

products : SPL → F Product

∀ spl : SPL • products spl = { p : Product | p isValidFor spl }

6.3.4 SPL total equivalence

Two SPLs are totally equivalent if they represent the same sets of prod-
ucts and the set of features of both of them are the same as well. We use the
following relation to express this operation in Z:

tEquivalentTo : SPL ↔ SPL

∀ spl1, spl2 : SPL •
spl1 tEquivalentTo spl2 ⇔ products spl1 = products spl2 ∧

spl1.features = spl2.features

6.3.5 SPL partial equivalence

Two SPLs are partially equivalent if they represent the same sets of prod-
ucts but not necessarily they are expressed using the same set of features. This
can be due to the fact that one of the SPLs contains dead features. This can be
expressed in Z using the following relation:

pEquivalentTo : SPL ↔ SPL

∀ spl1, spl2 : SPL •
spl1 pEquivalentTo spl2 ⇔ products spl1 = products spl2

It is important to notice that if two feature models are void, they are par-
tially equivalent even though they do not have any feature in common.
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6.3.6 Core features

The core features of an SPL are those that appear in all products of the SPL,
i.e. features that appear in all valid configurations. This can be expressed in Z
by means of the following function:

core : SPL → F Feature

∀ spl : SPL • core spl = { f : spl.feature | ∀ p : products spl • f ∈ p}

Another definition is also possible. In this case, the distributed intersection
(∩) is used †2

core : SPL → F Feature

∀ spl : SPL • core spl = ∩ products spl

6.3.7 Variant features

The variant features of an SPL are those that do not appear in all the prod-
ucts of the SPL, i.e. the features that are not part of the core features. This can
be expressed by means of the following function:

variants : SPL → F Feature

∀ spl : SPL • variants spl = spl.features \ core spl

An alternative definition is also possible:

variants : SPL → F Feature

∀ spl : SPL • variants spl = { f : spl.features | ∃ p : products spl • f �∈ p}

6.3.8 Number of products

The number of products of an SPL is the number of valid configurations of
the SPL. It can be defined in Z using the previously defined products function:

numberOfProducts : SPL → N

∀ spl : SPL • numberOfProducts spl = #products spl
†2the distributed intersection of A is the set consisting of all objects belonging to every set

in A
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6.3.9 Number of potential products of an SPL

The number of potential products of an SPL can be defined as the hypo-
thetical number of products that would be possible to configure if all features
could be combined with each other. This definition is useful for specifying
other later functions. It can be defined in Z using as the following function:

potential : SPL → N

∀ spl : SPL • potential spl = 2#spl.features − 1

6.3.10 Total variability

The total variability of an SPL is defined as the ratio between the number
of products of an SPL and the number of potential products of the SPL. Using
the former definitions this can be used in Z as the following function:

tVariability : SPL → R

∀ spl : SPL • tVariability spl =
numberOfProducts spl

potential spl

6.3.11 Partial variability

The partial variability of an SPL is defined as the ration between the num-
ber of products of an SPL and the possible combinations between the variant
features. Using the former definitions this can be used in Z as the following
function:

pVariability : SPL → R

∀ spl : SPL • pVariability spl =
numberOfProducts spl

2#variants spl − 1

6.3.12 Filter

A Filter of an SPL S over a set of features Fi and a set of features Fe is the
set of products of S that includes the features on Fi and excludes the features
on Fe. This can be defined in Z by means of the following function:
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filter : SPL × F Feature × F Feature → F Product

∀ spl : SPL ; fi, fe : F Feature; p : F Product •
filter( spl, fi, fe ) = p ⇔

p ⊆ products spl ∧

∀ s : fi • s ∈ p ∧

∀ t : fe • t �∈ p

6.3.13 Commonality factor

The commonality factor of a feature is a number that measures how fre-
quently the feature occurs in the different products of an SPL. It ranges from
0 to 1, e.g. the core features of an SPL have 1 as commonality factor likewise a
dead feature has a commonality factor of 0.

commonality : SPL × Feature → R

∀ spl : SPL ; f : Feature •
commonality( spl, f ) =

# filter( spl, f , ∅ )
numberOfProducts spl

6.3.14 Optimization

This operation takes as input a feature model and an objective function and
returns the best product according to the criterion established by the function.
First, we define what an objective function is and then a function to sort the
solutions according to the objective function.

An objective function is a function that takes as input a product and returns
a real value determining how well the product is adapted to that function.

Objective : Product → R

Thus, a sort function is defined as a function that takes as input an SPL
and an objective function and returns a sequence of products ordered by the
criteria of the objective function.

sortProducts : SPL × Objective → seq Product

∀ spl : SPL ; o : Objective; p : seq Product •
sortProducts( spl, o ) = p ⇔

#p = #products spl ∧
ran p = products spl∧
∀ i : 1 . . #p − 1 • Objective p(i) ≤ Objective p(i + 1)
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6.3.15 Dead features detection

Due to the different operators that can be used in feature models, it is pos-
sible to find so–called dead features. A dead feature is a feature that does not
appear in any product of the SPL in despite of being part of the set of features
of the SPL. This can be expressed in Z by means of the following function:

deadFeatures : SPL → F Feature

∀ spl : SPL •
deadFeatures spl = {f : spl.features | ∀ p : products spl • f �∈ p}

6.4 Formal definition of attributed features

An extended feature model is a model that includes more information
other than features and features relationships, e.g. the attributes of a feature.
We can redefine the type Feature in order to include features attributes. How-
ever, it is important to underline that we redefine it at the abstract foundation
layer so that it does not influence in the way that the characteristic model is
defined.

To specify attributed features using Z we redefine the type Feature. We
define a feature as a Z schema. To do so, we define first some given sets. Fea-
tureName is the given set of possible names for features. It is out of the scope
of this specification to define the regular expression to specify valid names for
features. Same way, AttributeName is a given set of names of attributes, Value
is a given set of possible values and Type is a finite set of values.

[FeatureName] [Given set for feature names]
[AttributeName] [Given set for attributed names]
[Value] [Given set for values]
Type == F Value [Definition of Type as a set of values]

Using the former definitions we can write an schema to specify features.
A feature consists of a name; a function attributes that maps an AttributeName
to a Type. The attribute name has a value when the feature is selected (aValue)
and a default value in the case the feature is not selected (dValue). We have to
assure by means of an assertion that aValue and dValue are in the domain of
the attribute.
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Feature
name : FeatureName
attributes : AttributeName → Type
aValue : AttributeName → Value
dValue : AttributeName → Value

dom attributes = dom aValue = dom dValue ∧
∀ a : AttributeName | a ∈ dom attributes • aValue a ∈ attributes a ∧
∀ a : AttributeName | a ∈ dom attributes • dValue a ∈ attributes a

If the definition of feature is changed as above, then the definition of SPL
has to be changed as well. We have to include an additional assertion in which
it is assured that there are not two features with the same name.

SPL
model : Model
features : F1 Feature

featuresIn model = features ∧
∀ f1, f2 : features •

f1 �= f2 ⇒ f1.name �= f2.name

Note that this restriction of not allowing to have two features with the same
name can be controversial. For instance, it seems to be an error to have the
same name for any direct child of a feature (e.g. there can not be two features
called A as optional and mandatory features of the same feature P). However,
it could be possible, although in most cases confusing, to have two features
with the same name that have different parents. However, this depends on
the characteristic model layer, so this restriction can be bound also at the char-
acteristic model layer.

6.5 Summary

In this chapter, we have presented the four layers of our framework. In
addition, we have provided a rigorous definition of the abstract foundation
layer of FAMA in which we have specified some operations of analysis on
software product lines using Z at an abstract level without being coupled to
any characteristic model. This, as we will see in next chapter, provides a way
of reusing semantics.
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Chapter 7

Using feature models as
characteristic models

The whole of science is nothing more
than a refinement of everyday thinking

Albert Einstein, 1879–1955
Physicists

T he characteristic model layer of FAMA is presented in this chapter. We first
provide semantics to feature models in Section §7.2 showing some examples in

Section §7.3. In Section §7.4, we provide semantics to cross-tree constraints exten-
sions to feature models. In Section §7.5 and Section §7.6, we argue that the semantics
for operations and attributed features can be reused in this layer. We finally summarise
the chapter and our main contributions in Section §7.7.



88 Chapter 7. Using feature models as characteristic models

7.1 Introduction

In Chapter §6, we described the abstract foundation layer of our frame-
work meanwhile in this Chapter we describe the characteristic model layer.
The main difference between these two layers is that in the former we do not
specify how the possible configurations of an SPL are defined. In this chapter
we use feature models as characteristic models of SPLs. We provide semantics
to feature models that allow us to define rigorously how possible configura-
tions of an SPL can be expressed. It is important to remark that there are dif-
ferent feature model notations and semantics as described by Schobbens et al.
[86]. We have selected to define semantics for basic feature models using the
most popular relationships as described in Section §2.2. If other feature model
notation is used, then some of the relations defined in this layer would have
to be changed.

7.2 Characteristic model layer

Although the characteristic model of an SPL could be defined in different
forms, the most widely used is the so–called feature model [65]. In a feature
model, features are hierarchically organized in and–or–like trees, considering
non–leaf nodes as compound features. See figure §7.1 for a widely used ex-
ample that we have already described in Section §2.5.1.

Cruise

Car

Body EngineTransmission

GasolineElectricAutomatic Manual

choose1 1+

Figure 7.1: A sample feature model.

The abstract Z model of an SPL described in the previous Chapter can be
enhanced in order to use feature models as the language for expressing SPL
characteristic models. In order to do so, we have to redefine three main ele-
ments of the abstract foundation layer. The given set Model will now define
the abstract syntax of feature models. The featuresIn function has to be defined
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according to this new syntax. Finally the relation isInstanceOf will determine
if a product is an instance of a characteristic model. These three elements are
the ones that has to be redefined if other semantics wants to be used to define
models.

We redefine Model as a the following Z free type, which represents the ab-
stract syntax of feature models. Notice that mandatory and optional features are
allowed only as children of and compound features, thus simplifying seman-
tics.

Definition 7.1

Model ::= and〈〈Feature × F1 AndChildModel〉〉
| or〈〈Feature × F1 Model〉〉
| xor〈〈Feature × F1 Model〉〉
| leaf 〈〈Feature〉〉

AndChildModel ::= mandatory〈〈Model〉〉
| optional〈〈Model〉〉

In this abstract syntax, compound features represented as and, or and xor
models must have a non-empty set of children models. The auxiliary function
modelOf , that transforms an AndChildModel into a Model, is also defined in
order to simplify further definitions:

modelOf : AndChildModel → Model

∀m : Model •
modelOf mandatory(m) = m ∧

modelOf optional(m) = m

Feature models are structurally trees, which implies that a feature cannot
appear more than once in the model. In order to make this restriction explicit,
the submodel function must be defined. This function returns all the models
with a given feature as parent.
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submodel : (Model × Feature) → F Model

∀ms : F Model; mas : F AndChildModel; f1, f2 : Feature •
f1= f2 ⇒

submodel( and(f1, mas), f2 ) = { and(f1, mas) }

∧ submodel( or(f1, ms), f2 ) = { or(f1, ma) }

∧ submodel( xor(f1, ms), f2 ) = { xor(f1, ma) }

∧ submodel( leaf (f1), f2 ) = { leaf (f1) }

∀ms : F Model; mas : F AndChildModel; f1, f2 : Feature •
f1�= f2 ⇒

submodel( and(f1, mas), f2 ) = ∪{ma : mas • submodel( modelOf ma, f2 ) }

∧ submodel( or(f1, ms), f2 ) = ∪{m : ms • submodel( m, f2 ) }

∧ submodel( xor(f1, ms), f2 ) = ∪{m : ms • submodel( m, f2 ) }

∧ submodel( leaf (f1), f2 ) = ∅

In a consistent feature model, all sets of models returned by this function
should be either empty or one–element–only sets so that a feature can only ap-
pears once in a feature model. To ensure this in our specification we define the
following assertion that has to hold in which we express that for all models
the cardinal of the set of submodels for every feature has to be less than or
equal to one.

∀m : Model; f : Feature • #submodel(m, f ) ≤ 1

Once we have redefined the Model type, the second important part of the
specification that has to be defined is the featuresIn relation. We distinguish
between compound and leaf features denoting κ–features the set of compound
features and λ–features the set of leaf features. The featureIn function takes
a model and returns the set of features that are in the model. The total set
of features is the union of κ–features and λ–features. We may remark that
although the definition of this function is a bit complicated, the concept is very
simple. We have decided to present the definition of this function in order to
make our specification complete.
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featuresIn : Model → F Feature
λ-featuresIn : Model → F Feature
κ-featuresIn : Model → F Feature

∀m : Model •
featuresIn m = λ-featuresIn m ∪ κ-featuresIn m

∀ fs : F Feature; f : Feature;
ms : F Model; m : Model;
mas : F AndChildModel; ma : AndChildModel; •
κ-featuresIn and(f , mas) = { f } ∪

∪{ ma : mas • κ-featuresIn(modelOf ma) }

∧ κ-featuresIn or(f , ms) = { f } ∪ ∪{ m : ms • κ-featuresIn m }

∧ κ-featuresIn xor(f , ms) = { f } ∪ ∪{ m : ms • κ-featuresIn m }

∧ κ-featuresIn leaf (f ) = ∅

∧ λ-featuresIn and(f , mas) =

∪{ ma : mas • λ-featuresIn(modelOf ma) }

∧ λ-featuresIn or(f , ms) = ∪{ m : ms • λ-featuresIn m }

∧ λ-featuresIn xor(f , ms) = ∪{ m : ms • λ-featuresIn m }

∧ λ-featuresIn leaf (f ) = { f }

Now that we have defined the featuresIn function, the final important par
of the specification that we have to define is the isInstanceOf relation. Notice
also the introduction of the auxiliary relation isInstanceOfa for the specification
of instances of models of and compound features. The isInstanceOf relation
determines if a product belongs to a model, i.e. a product is an instance of
a given feature model. A product is instance of a model if the features of
the product are a subset of the features in the model and it is consistent with
the relationships of the feature model. For instance, if a feature model has a
feature A as mandatory, any product has to have this feature, otherwise, it will
not be an instance of the feature model.

Let us specify using Z the isInstanceOf relation. In order to do this specifi-
cation clearer, we have introduced some comments that are explaining subse-
quently.
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isInstanceOf : Product ↔ Model
isInstanceOfa : Product ↔ AndChildModel

∀ p : Product; f , c : Feature;
ms : F Model; m : Model;
mas : F AndChildModel; ma : AndChildModel •
p isInstanceOf and(f , mas) [1]

⇔ f ∈ p ∧ ∀ma : mas • p isInstanceOfa ma

∧ p isInstanceOf or(f , ms) ⇔ [2]
f ∈ p ∧ ∃m : ms• p isInstanceOf m

∧ ∀ c : roots(ms) • c �∈ p ⇒ ¬(p isInstanceOf m)

∧ c ∈ p ⇒ p isInstanceOf m
∧ p isInstanceOf xor(f , ms) ⇔ [3]

f ∈ p ∧ ∃1 m : ms• p isInstanceOf m
∧ ∀ c : roots(ms) • c �∈ p ⇒ ¬(p isInstanceOf m)

∧ c ∈ p ⇒ p isInstanceOf m
∧ p isInstanceOf leaf (f ) ⇔ f ∈ p [4]
∧ p isInstanceOfa mandatory(m) ⇔ p isInstanceOf m [5]
∧ p isInstanceOfa optional(m) ⇔ [6]

root(m) �∈ p ⇒ ∀ f : featuresIn(m) • f �∈ p
∧ root(m) ∈ p ⇒ p isInstanceOf m

[1] A model is instance of an and model iff the parent of the model (f ) is in the
product (p), and p is instance of all its children.

[2] A model is instance of an or model iff the parent of the model (f ) is in the
product (p), and there exists at least one child model (m) so that p is instance
of m. Because p can be instance of more than one child, we have to ensure that
if the root feature of a given child model (c) is in the model, then p has to be
instance of that model. Same way, if the root feature of a given child model
is not in the model, then p is not instance of the model. The roots function is
defined afterwards.

[3] A model is instance of an xor model iff the parent of the model (f ) is in the
product (p), and there exist only one child model (m) so that p is instance of m.
Similarly than before, it is also necessary to ensure that if the root feature of a
given child model (c) is in the model, then p has to be instance of that model
and if the root feature of a given child model is not in the model, then p is not
instance of the model.

[4] A product is instance of a leaf feature iff the feature is in the product.
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[5] A product (p) is instance of a mandatory AndChildModel iff p is instance of
the model that is inside the AndChildModel (see Definition §7.1, page 89).

[6] For a product (p) to be instance of an optional AndChildModel either the root
of the model is not in p, and therefore, none of the features that are in the
model can be in p or the root of the model is in p, and therefore, p has to be
instance of the model that is inside the AndChildModel.

We have used two auxiliary functions that from a set of Models returns
a set with the root of the models to simplify definitions. These functions are
specified in Z as follows:

roots : F Model → F Feature

∀ms : F Model; f : Feature; fs : F Feature •
roots(ms) = fs ⇔ ∀m : ms; f : root(m) • f ∈ fs

root : Model → Feature

∀m : Model; ms : F Model; f : Feature; sacm : F AndChildModel •
root leaf (f ) = f
∧ root and(f , sacm) = f
∧ root or(f , ms) = f
∧ root xor(f , ms) = f

Depending on the context a product can be specified using leaf features
or also compound features. Notice that in the proposed semantics, products
must include not only λ–features but also κ–features. If another semantic is
desired the instanceOf relation should be redefined. Model Z free defines the
structure that is allowed when building a feature model meanwhile, featuresIn
relation defines the semantics of the relationships defined in the Model type.

7.3 Some examples

The model in figure §7.1 can be expressed in the feature model abstract
syntax of Definition §7.1 as the following:

and(Car,{mandatory(leaf (Body)),
mandatory(xor(Transmission, {leaf (Automatic), leaf (Manual)})),
mandatory(or(Engine, {leaf (Electric), leaf (Gasoline)})),
optional(leaf (Cruise))
})
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Let m be feature model in figure §7.1, the following expressions are exam-
ples of use of the previous defined relations and functions:

featuresIn m =
{ Car, Body, Transmission, Automatic, Manual, Engine, Electric, Gasoline, Cruise }

λ-featuresIn m = { Body, Automatic, Manual, Electric, Gasoline, Cruise }

κ-featuresIn m = { Car, Transmission, Engine }

{Car, Body, Transmission, Automatic, Engine, Electric } instanceOf m is true

{Car, Body, Transmission, Automatic, Manual, Engine, Electric } instanceOf m is false
[because Automatic and Manual can not be at the same time]

{Car, Body, Transmission, Manual, Engine, Electric, Gasoline, Cruise } instanceOf m is true

products m = {

{ Car, Body, Transmission, Automatic, Engine, Electric },

{ Car, Body, Transmission, Manual, Engine, Electric },

{ Car, Body, Transmission, Automatic, Engine, Gasoline },

{ Car, Body, Transmission, Manual, Engine, Gasoline },

{ Car, Body, Transmission, Automatic, Engine, Electric, Gasoline },

{ Car, Body, Transmission, Manual, Engine, Electric, Gasoline },

{ Car, Body, Transmission, Automatic, Engine, Electric, Cruise },

{ Car, Body, Transmission, Manual, Engine, Electric, Cruise },

{ Car, Body, Transmission, Automatic, Engine, Gasoline, Cruise },

{ Car, Body, Transmission, Manual, Engine, Gasoline, Cruise },

{ Car, Body, Transmission, Automatic, Engine, Electric, Gasoline, Cruise },

{ Car, Body, Transmission, Manual, Engine, Electric, Gasoline, Cruise }

}

#products m = 12

7.4 Cross–tree constraints extensions

Although widely used, feature models as described in previous Sections
present a limited expressiveness. Since feature models were first proposed
some extensions were introduced. Two of the most usual are the so-called re-
quires and excludes relationships (see Section §2.2, page 27). In order to include
such extensions in this layer model, it is necessary to define and redefine some
functions and relations.

First of all, we have to define an extended model with cross–tree constraints
as the type (Modelχ). A model is extended with cross–tree constraints when
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it is a feature model plus a set of extensions, i.e. requires or excludes relation-
ships between feature well–formed–formulas (WFFs). Feature WFF are logical
formulas involving features such us Automatic, Manual ∧ Gasoline or ¬ Cruise.

Feature WFFs can be used in extensions for expressing conditions like if a
car has automatic transmission and it is electrically powered, it cannot have cruise
control, that would be textually depicted as:

Automatic ∧ Electric excludes Cruise

and in the proposed abstract syntax as:

excludes(andφ(idφ(Automatic), idφ(Electric)), idφ(Cruise))

The new definitions are the following:

Modelχ == Model × F Extension

Extension ::= requires〈〈WFFφ × WFFφ 〉〉
| excludes〈〈WFFφ × WFFφ 〉〉

WFFφ ::= andφ〈〈WFFφ × WFFφ 〉〉
| orφ〈〈WFFφ × WFFφ 〉〉
| notφ〈〈WFFφ〉〉
| idφ〈〈Feature〉〉

7.4.1 Cross–tree constraints semantics

Once cross-tree constraints extensions of feature models are defined, it is
necessary to define their semantics. In order to do so, the instanceOf relation
for extended models (instanceOfχ) must be defined. Notice that the auxiliary
relations instanceOfφ and instanceOfω define the semantics of the extensions
and feature WFFs respectively, which cannot be defined on their own but al-
ways in the context of the model they belong to. In this case, the isInstanceOfχ
relation determines if a product is an instance of a model with cross-tree con-
straints extensions. A product is an instance of these type of models if it is an
instance of the tree–like model and all the extensions.

isInstanceOfχ : Product ↔ Modelχ
∀ p : Product; m : Model; xs : F Extension •

p isInstanceOfχ (m, xs) ⇔ p isInstanceOf m ∧

∀ x : xs • p isInstanceOfφ (m, x)
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isInstanceOfφ : Product ↔ (Model × Extension)

∀ p : Product; m : Model; wff1, wff2 : WFFφ •
p isInstanceOfφ (m, requires(wff1, wff2) ) ⇔

p isInstanceOfω (m, wff1) ⇒ p isInstanceOfω (m, wff2)

∧ p isInstanceOfφ (m, excludes(wff1, wff2) ) ⇔

p isInstanceOfω (m, wff1) ⇒ ¬ p isInstanceOfω (m, wff2)

isInstanceOfω : Product ↔ (Model × WFFφ)

∀ p : Product; m : Model; wff1, wff2 : WFFφ; f : Feature •
p isInstanceOfω (m, andφ(wff1, wff2) ) ⇔

p isInstanceOfω (m, wff1) ∧ p isInstanceOfω (m, wff2)

∧ p isInstanceOfω (m, orφ(wff1, wff2) ) ⇔

p isInstanceOfω (m, wff1) ∨ p isInstanceOfω (m, wff2)

∧ p isInstanceOfω (m, notφ(wff1) ) ⇔

¬ p isInstanceOfω (m, wff1)

∧ p isInstanceOfω (m, idφ(f ) ) ⇔

p isInstanceOf (µ m : submodel(m, f ))

In the definition of the isInstanceOfω function, the last expression uses a
Z definite description over the set returned by the submodel function. A definite
description, as defined in [107], is an expression that denotes the unique object
in a set that satisfies a given predicate (none, i.e. true in our case).

7.5 Operations over feature models

All the definitions of this Chapter allow to reuse all the operations defined
over software product lines in Chapter §6 so that the formal definitions of
those operations remain valid for the characteristic model layer. This allows
us to open the door to other semantics of feature models or other type of char-
acteristic models of SPLs. If another type of characteristic model wants to be
introduced we have to redefine only the type Model as well as the featuresIn
function and isInstanceOf relation which simplify the reuse of semantics.
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7.6 Feature models with attributes

Another proposed extension of feature models is the inclusion of feature
attributes [23]. We already defined attributed features in Section §6.4 (page
84). Therefore, a feature model extended with attributes is a feature model
as described in this chapter but taking the definition of attributed feature de-
scribed in Section §6.4. This again provides a flexible way of reusing semantics
because the definition of attributed features does not depend whether feature
models are used or not as characteristic models.

It is important to note that we define feature attributes, domains and a way
of assigning values, however, we do not couple with attributes relationships.
Trying to define a language for defining attributes relationships would be a
work enough for another dissertation as the one by Ruiz-Cortés [85].

7.7 Summary

In this chapter, we have provided semantics to basic feature models using
Z. Due to the level of abstraction of the abstract foundation layer of FAMA, in
this layer, we have showed how it is possible to reuse semantics for operations
of analysis on feature models.

We have published part of these results in some papers, namely: we pre-
sented some operations of analysis on feature models in our seminal paper in
the CAiSE conference [23] that was based on preliminary work in [16] and [22].
Later, we improved and extended [23] and we got a regular paper accepted in
[24]. However, we did not provide formal semantics to feature model as we
have in this chapter.
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Chapter 8

Using constraint programming to
analyse feature models

That’s the operative thing right now.

Keith Williams, 1958–
British architect

A fter the abstract foundation and characteristic model layer of FAMA de-
scribed in previous chapters, in this chapter we describe the operational par-

adigm layer of. In this layer, we provide a translation from feature models semantics
to CSP semantics. However, CSP semantics are not related to any CSP solver imple-
mentation. This chapter is structured as follows: In Section §8.1 we provide a brief
introduction to the chapter, then in Section §8.2, we describe the main idea of how
to translate a feature model into a CSP; in Section §8.3 we extend the definitions of
CSPs of Chapter §4 in order to define the constraints we need to represent feature
models as CSPs and then we define some functions to transform a feature model into a
CSP. In Section §8.4, we define a function to translate feature models with cross–tree
constraints into a CSP. Later, in Section §8.5, we redefine some operations of analysis
using CSP semantics. In Section §8.6, we demonstrate that determining if a feature
model is void is an NP–complete problem. Finally, we summarise the chapter and our
main contributions in Section §8.7
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8.1 Introduction

In this Chapter we describe the operational paradigm layer of our frame-
work. The definitions on this layer depend on the model defined in the char-
acteristic model layer. In this layer, we provide close–to–implementation se-
mantics of feature models translating a feature model into a CSP. However, it
is important to remark that we use a generic form of CSPs without being cou-
pled to any concrete CSP implementation. In Chapter §9 we provide specific
translation for specific solvers.

8.2 Feature models as CSPs

Feature models can be represented as CSPs. Recognizing this connection
it is possible to use off-the–shelf CSP solvers to automatically analyse feature
models. We first informally describe the general mapping between a feature
model and a CSP and in next Sections we rigorously define this translation.

The mapping of a feature model into a CSP has the following general form:
i) the features make up the set of variables, ii) the domain of each variable is
the same: {true, false} (or {0, 1} depending on type of the variables allowed by
the solver) and iii) every relationship of the feature model becomes a con-
straint among its features. The constraints can be expressed in the following
way:

• Mandatory relationship: Let P be the parent and C the child in a mandatory
relationship , then the equivalent constraint is: P ⇔ C

• Optional relationship: Let P be the parent and C the child in an optional
relationship, then the equivalent constraint is: C ⇒ P

• Or relationship: Let P be the parent in an or relationship and Fi | i ∈
[1 . . .n] the set of children, then the equivalent constraint is: F1 ∨ F2 ∨

. . . Fn ⇔ P.

• Alternative relationship: Let P be the parent of an alternative relationship
and Fi | i ∈ [1 . . .n] the set of children, then the equivalent constraint is:
(F1 ⇔ (¬F2 ∧ . . . ∧ ¬Fn ∧ P))∧ (F2 ⇔ (¬F1 ∧ ¬F3 . . . ∧ ¬Fn ∧ P))∧
(Fn ⇔ (¬F1 ∧ . . . ∧ ¬Fn−1 ∧ P))
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• Requires relationship: Let A be the feature that requires B, then the equiv-
alent constraint is: A ⇒ B

• Excludes relationship: Let A be the feature that excludes B, then the equiv-
alent constraint is: ¬(A ∧ B).
It is important to notice that in the requires and excludes relationships it
is possible to find well–formed–formulas (WFFs) in the right and left sides
of the operation and not only features. An expression as the following is
allowed (see Section §7.4, page 94):

Automatic ∧ Electric excludes Cruise

In this case, A and B would represent the WFF itself following these rules:

• and operator: Let A and B two WFF in an and operator of a WFF, then the
equivalent constraint is: A ∧ B

• or operator: Let A and B two WFF in an or operator of a WFF, then the
equivalent constraint is: A ∨ B

• not operator: Let A a WFF in a not operator of a WFF, then the equivalent
constraint is: ¬A

8.3 Rigorous specification

In this Section we provide a rigorous specification of the translation of a
feature model into a CSP. We first revise the general definitions of CSP that
we provided in Section §4.2 (page 57) and then we define some functions to
transform a feature model into a CSP.

8.3.1 Preliminaries

To formally describe the necessary translation of a feature model into a CSP
in Z, we should first specify the semantics of the language used to define CSPs.
Specifying all the constraints allowed in common CSP solvers would require
a large specification or even infinite, since most of the solvers allow you to de-
fine your own constraints and then we should specify the semantics of these
new constraints. However, in order to provide a more rigorous description of
the translation of a feature model into a CSP, we provide a specification of a
CSP language that we use to specify feature models as CSPs. We give seman-
tics for that language which make our specification more rigorous. This is a
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general abstract language of CSPs for feature models in the sense that it de-
fines generic semantics not being specific for any real solver. These constraints
can be implemented in a real solver as we describe in next Chapter.

A general specification of CSPs was presented in Section §4.2. Some as-
pects remained open in that specification because some functions depend on
the type of constraints that can be used. Now, we redefine some of the de-
finitions to completely specify semantics of the language of constraints that
we need to express a feature model as a CSP. Concretely, we have to redefine
the VarName and Value types as well as the Constraint type; the satisfiesc and
variablesIn function and the function addc to add new constraints to a CSP.

First, we define that the possible names of variables of a CSP are equivalent
to the possible names for features. We also define that the possible values for
variables are true and false. A value of true for a variable (i.e. a feature) means
that the corresponding feature is present in the product, on the contrary, a
value of false for a variable means that the corresponding feature is not in the
product. After that, to make the specification more readable, we remember
Definition §4.2 (page 58):

[VarName] == [FeatureName]
[Value] == {true, false}

CSP
variables : F1 VarName
varDecl : VarName �→ Domain
constraint : Constraint

dom varDecl = variables
variablesIn constraint ⊆ variables

We have also to redefine the type Constraint. We define a Z free type, which
represents the abstract syntax of the language of constraints that we use to
translate a feature model into a CSP.

Constraint ::= and〈〈Constraint × Constraint〉〉
| or〈〈Constraint × Constraint〉〉
| not〈〈Constraint〉〉
| implies〈〈Constraint × Constraint〉〉
| biconditional〈〈Constraint × Constraint〉〉
| atMostOne〈〈F1 VarName〉〉
| atLeastOne〈〈F1 VarName〉〉
| id〈〈VarName〉〉
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We ought to redefine definition §4.1 (variablesIn function, page 58) accord-
ing to the former definition of Constraint in order to define which are the vari-
ables that are in a Constraint:

variablesIn : Constraint → F VarName

∀ c1, c2 : Constraint; v : VarName; vs : F VarName •
variablesIn and(c1, c2) = variablesIn(c1) ∪ variablesIn(c2)

∧ variablesIn or(c1, c2) = variablesIn(c1) ∪ variablesIn(c2)

∧ variablesIn not(c1) = variablesIn(c1)

∧ variablesIn implies(c1, c2) = variablesIn(c1) ∪ variablesIn(c2)

∧ variablesIn biconditional(c1, c2) = variablesIn(c1) ∪ variablesIn(c2)

∧ variablesIn atLeastOne(vs) = vs
∧ variablesIn atMostOne(vs) = vs
∧ variablesIn id(v) = v

Let us remember Definition §4.3 (page 59) that defined an assignment as a
function that maps a variable name to a value:

Assignment : VarName �→ Value

Now, we have to define the satisfiesc function since its definition was empty
(see Definition §4.4, page 59) according to the constraints allowed by the Z free
type Constraint. This function provides semantics to the former abstract syntax
of the constraint language in the sense that defines when a constraint satisfies
an assignment.

satisfiesc : Assignment ↔ Constraint

∀ a : Assignment; c1, c2 : Constraint;
vs : F VarName; v : VarName •

a satisfies (and(c1, c2)) ⇔ a satisfies c1 ∧ a satisfies c2

∧ a satisfies (or(c1, c2)) ⇔ a satisfies c1 ∨ a satisfies c2

∧ a satisfies (not(c1)) ⇔ ¬(a satisfies c1)

∧ a satisfies (implies(c1, c2)) ⇔ a satisfies (or(not(c1), c2))

∧ a satisfies (biconditional(c1, c2)) ⇔

a satisfies (and(implies(c1, c2), implies(c2, c1)))

∧ a satisfies (atMostOne(vs)) ⇔ ∃1 v : vs • a(v) = true
∧ a satisfies (atLeastOne(vs)) ⇔ ∃ v : vs • a(v) = true
∧ a satisfies (id(v)) ⇔ a(v) = true
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Another important operation that we defined over CSPs is the possibil-
ity of adding new constraints to the CSP. We did not define this function in
the general definition of CSPs because it depends on how constraints are ex-
pressed. Adding a constraint to a CSP will keep the same set of variables,
the same domain for those variables and the constraint of the CSP will be the
conjunction of the constraints to be added and the constraint of the CSP.

addc : CSP × F1 Constraint → CSP

∀ csp, cspr : CSP; cs : F1 Constraint; c : Constraint •
addc(csp, cs) = cspr ⇔

cspr.variables = csp.variables ∧

dom cspr.varDecl = dom csp.varDecl ∧

ran cspr.varDecl = ran csp.varDecl ∧

cspr.constraint = conjunction({ csp.constraint} ∪ cs)

The conjunction of a set of constraints is a new constraint where each con-
straint is logically related by the and operator.

conjunction : F1 Constraint → Constraint

∀ cs : F1 Constraint; c : Constraint •
conjunction({ c} ) = c
∧ conjunction({ c} ∪ cs) = and(c, conjuction(cs))

8.3.2 Characteristic model translation

The general form of the mapping from a feature model into the generic
CSP that we have defined in previous Section is the one presented in Figure
§8.1.

Following, we describe more rigorously this mapping. The first step in
the process of translating a feature model into a CSP is to define the set of
variables of the CSP. We define a variable in the CSP for each feature in the
feature model. For specifying this using Z we first define a function that from
an SPL returns a set of variable names.

cspVariables : SPL → F VarName

∀ spl : SPL; vars : F VarName •
cspVariables spl = vars ⇔

∀ f : spl.features • f .name ∈ vars

Thereafter, we have to define the constraints that represent the relation-
ships of the feature model. In our formal specification we define a function
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that from a Model is able to return a set of constraints. Before doing this, we
define different functions for the different elements of a model. For each type
of relationship a different constraint is provided.

First, we define a function for mandatory relationships that from the parent
and child of a mandatory relationship returns the corresponding constraint.

mConstraint : Feature × Feature → F Constraint

∀ p, c : Feature •
mConstraint(p, c) = {biconditional(id(p.name), id(c.name))}

Second, we define a function for optional relationships that from the parent
and child of an optional relationship returns the corresponding constraint.

optConstraint : Feature × Feature → F Constraint

∀ p, c : Feature •
optConstraint(p, c) = {implies(id(c.name), id(p.name))}

Thereafter, we define a function for or relationships that from the parent
and children of an or relationship returns the corresponding constraints. We
use an auxiliary function names that from a set of features returns the corre-
sponding set of feature names.

names : F Feature → F FeatureName

∀ fs : F Feature; f : Feature; ns : F FeatureName; n : FeatureName •
names(fs) = ns ⇔ ∀ f : fs; n : f .name • n ∈ ns

orConstraint : Feature × F1 Feature → F Constraint

∀ p : Feature; children : F Feature; cs : F Constraint •
orConstraint(p, children) =

{biconditional(id(p.name), atLeastOne(names children)}

Now, we define a function for alternative relationships that from the par-
ent and children of an alternative relationship returns the corresponding con-
straints.

xorConstraint : Feature × F1 Feature → F Constraint

∀ p : Feature; children : F Feature; cs : F Constraint •
xorConstraint(p, children) =

{biconditional(id(p.name), atMostOne(names children)}
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The former definitions of functions are the basis of the translation because
the corresponding constraint for each relationship is determined. These trans-
lations corresponds to the mapping presented in Figure §8.1. Now, we rig-
orously define the mapping from a feature model to a CSP based on these
definitions.

A feature model was defined as a Z free type (see Section §7.1, page 89).
It had some relationships and an AndChildModel (other Z free type). There-
fore, we have to define first a function that from a feature (the parent) and an
AndChildModel returns a set of Constraints

acmConstraint : Feature × AndChildModel → F Constraint

∀ f : Feature; am : AndChildModel; c : Constraint; m : Model •
acmConstraint(f , mandatory(m)) =

mConstraint(f , root(m)) ∪ cspConstraint(m)

∧ acmConstraint(f , optional(m)) =
optConstraint(f , root(m)) ∪ cspConstraint(m)

We can now, define a function that from a Model returns a set of constraints
corresponding to the relationships of the model.

cspConstraint : Model → F Constraint

∀ f : Feature; sacm : F AndChildModel; cs : F Constraint; sm : F Model •
cspConstraint(leaf (f )) = ∅
∧ cspConstraint(and(f , sacm)) = cs ⇔

∀ acm : sacm; c : acmConstraint(f , acm) • c ⊆ cs ∧

∧ cspConstraint(or(f , sm)) = cs ⇔

∀m : sm; c : cspConstraint(m); csor : orConstraint(f , roots(sm)) •
c ⊆ cs ∧ csor ⊆ cs

∧ cspConstraint(xor(f , sm)) = cs ⇔

∀m : sm; c : cspConstraint(m); csxor : xorConstraint(f , roots(sm)) •
c ⊆ cs ∧ csxor ⊆ cs

A CSP was defined as a Z schema that had a declaration of a constraint. We
assumed that the constraint was the logical conjunction of all the constraints
of the CSP. Therefore, the previously defined function is needed to later make
the conjunction of the resulting constraints.

We can finally define the mapping of an SPL into a CSP where: the set of
variables is the set of features. The domain of the variables is true and false.
The constraint of the model is the conjunction of the model plus and additional
constraint that forces the root to be in all the products.
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cspMapping : SPL → CSP

∀ spl : SPL; csp : CSP; v : VarName •
cspMapping spl = csp ⇔

csp.constraint =
conjunction(cspConstraint(spl.model) ∪ id(root(spl.model).name))

csp.variables = cspVariables spl
csp.varDecl(v) = { true, false}

8.3.3 An example of the translation

For example, let us take the model of Figure §2.7 (page 33) that is expressed
in the feature model abstract syntax as the following:

and(Car,{mandatory(leaf (Body)),
mandatory(xor(Transmision, {leaf (Automatic), leaf (Manual)})),
mandatory(or(Engine, {leaf (Electric), leaf (Gasoline)})),
optional(leaf (Cruise))
})

The set of constraints (ψ) of the CSP resulting of the previously described
algorithm using the abstract syntax of constraints would be as follows:

ψ = {id(Car),
biconditional(id(Car), id(Body)),
biconditional(id(Car), id(Transmission)),
biconditional(id(Transmission), atMostOne({Automatic, Manual)),
biconditional(id(Car), id(Engine)),
biconditional(id(Engine), atLeastOne({Electric, Gasoline)),
implies(id(Cruise), id(Car)),
}

8.4 Translation of cross–tree constraint extensions

As portrayed in Section §7.4 (page 94), feature model extensions allow to
define cross–tree constraints to avoid some feature combinations. The lan-
guage for extensions was described by means of Z free types as follows:

Modelχ == Model × F Extension
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Extension ::= requires〈〈WFFφ × WFFφ 〉〉
| excludes〈〈WFFφ × WFFφ 〉〉

WFFφ ::= andφ〈〈WFFφ × WFFφ 〉〉
| orφ〈〈WFFφ × WFFφ 〉〉
| notφ〈〈WFFφ〉〉
| idφ〈〈Feature〉〉

We have already defined the translation for a Model, now we have to define
the translation for Extension. We define it by means of the Z functions that
from a well–formed formula (WFF) returns a set of constraints (wffConstraint)
and other that from an extension returns the corresponding set of constraints
(extensionConstraint).

wffConstraint : WFFφ → Constraint

∀wff1, wff2 : WFFφ; c : Constraint; f : Feature •
wffConstraint(andφ(wff1, wff2)) =

and(wffConstraint(wff1), wffConstraint(wff2))
∧ wffConstraint(orφ(wff1, wff2)) =

or(wffConstraint(wff1), wffConstraint(wff2))
∧ wffConstraint(notφ(wff1)) = not(wffConstraint(wff1))
∧ wffConstraint(idφ(f )) = id(f .name)

extensionConstraint : Extension → Constraint

∀wff1, wff2 : WFFφ; e : Extension; c : Constraint •
extensionConstraint(requires(wff1, wff2)) =

implies(wffConstraint(wff1), wffConstraint(wff2))
extensionConstraint(excludes(wff1, wff2)) =

implies(wffConstraint(wff1), not(wffConstraint(wff2)))

Now we can define a function to translate a feature model with cross–tree
constraint extensions (Modelx) into a CSP. We use a new Z function for that:

cspConstraintχ : Modelχ → F Constraint

∀m : Model; xs : F Extension; cs : F Constraint; •
cspConstraintχ((m, xs)) = cs ⇔ cspConstraint(m) ⊆ cs ∧

∀ x : xs • extensionConstraint(x) ∈ cs
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8.5 Analysis using constraint programming

Once a feature model is translated into a CSP we can use CSP primitives
to analyse feature models. Thereafter, we review the operations defined in
Chapter §6 and see how they can be solved using CSP primitives. Let ψFM be
the CSP resulting from the translation of a feature model FM.

8.5.1 Determining if a product is valid for an FM

A product is a valid configuration of a feature model if its corresponding
assignment is a solution of ψFM. We use an auxiliary function that returns
the corresponding Assignment of a Product. An assignment that represents a
products is a function whose domain is the set of variables of the SPL and
the values for those variables are mapped to true if the feature appears in the
product or false if the feature does not appear in the product. This is defined
by means of the following Z function:

cspAssignment : Product × SPL → Assignment

∀ p : Product; a : Assignment; spl : SPL; f : Feature •
cspAssignment p= a ⇔

dom a = spl.features ∧

∀ f : Feature | f ∈ p • a(f .name) = true ∧

∀ f : Feature | f ∈ spl.features \ p • a(f .name) = false

We redefine the semantics of this function by means of the definitions of
CSPs. Thus, a product is valid for an SPL using CSPs iff the corresponding
assignment of the product is a solution of the CSP.

isValidFor : Product ↔ SPL

∀ p : Product; spl : SPL •
p isValidFor spl ⇔

cspAssignment(p, spl) isSolutionOf (cspMapping spl)

8.5.2 Void feature model

A void feature model is a feature model that does not represent any prod-
uct, i.e. the number of products of the feature model is equals to zero. Using
CSP definitions we can define that a feature model is void if there is not any
assignment that is a solution for the corresponding CSP.
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isVoid : P SPL

∀ spl : SPL • isVoid spl ⇔

�a : Assignment • a isSolutionOf (cspMapping spl)

8.5.3 All possible products

All possible products of an SPL can be defined as all possible solutions of
ψFM. To express this, we have to map the set of all solutions of a CSP into
the set of all possible products of an SPL. First, we define a function that from
an assignment returns its equivalent product. The equivalent product of an
assignment is the set of features where the value of the variable is equals to
true.

toProduct : Assignment → Product

∀ a : Assignment; p : Product; f : Feature •
toProduct a = p ⇔ ∀ f : dom a • f ∈ p ⇔ a(f ) = true;

Then, the function to obtain all the possible products of an SPL using CSP
definitions is defined in Z as follows.

products : SPL → F Product

∀ spl : SPL; ps : F Product; a : Assignment •
products spl = ps ⇔ ∀ a : solutions(cspMapping SPL) • toProduct a ∈ ps;

8.5.4 Filter

A filter of an SPL S over a set of features Fi and a set of features Fe is the set
of products of S that include the features on Fi and excludes the features on Fe.
In terms of CSPs that means that the we have to add some constraints to ψFM.
These constraint corresponds to the inclusion of features Fi and the exclusion
of features Fe. This can be defined in Z using a function filter that from an SPL,
a set of features to be included and a set of features to be excluded returns a
set of products. This set of products corresponds to the solutions of ψFM when
the corresponding constraints of exclusion and inclusion of features are added
to ψFM. We also use in our Z specification two auxiliary functions includef and
excludef to retrieve the constraints of inclusion and exclusion of features.
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filter : SPL × F Feature × F Feature → F Product

∀ spl : SPL ; fi, fe : F Feature; ps : F Product; a : Assignment; csp : CSP •
filter( spl, fi, fe ) = ps ⇔

∀ a : solutions(addc(cspMapping SPL, includef(fi) ∪ excludef(fe))) •
toProduct a ∈ ps

includef : F Feature → F Constraint

∀ fs : F1 Feature; c : Constraint •
includef (∅) = ∅ ∧

includef (f ) = id(f .name) ∧

includef (f ∪ fs) = id(f .name) ∪ includef (fs)

excludef : F Feature → F Constraint

∀ fs : F1 Feature; c : Constraint •
excludef(∅) = ∅ ∧

excludef(f ) = not(id(f .name)) ∧

excludef(f ∪ fs) = not(id(f .name)) ∪ excludef (fs)

8.5.5 Optimization

We redefine now the sort function of products to perform this function
using CSP operations. A sort function was defined as a function that takes
as input an SPL and an objective function and returns a sequence of products
ordered by the criteria of the objective function.

sortProducts : SPL × Objective → seq Product

∀ spl : SPL ; o : Objective; •
sortProducts( spl, o ) = toProducts(sortSolutions(cspMapping(spl), o))

We use an auxiliary function toProducts that from a sequence of assign-
ments (the solutions of the sortSolutions function of CSPs) returns a sequence
of products.

toProducts : seq Assignment → seq Product

∀ a : seq Assignment ; p : seq Product;
toProducts( a ) = p ⇔

#p = #a ∧
ran p = ran a∧
∀ i : 1 . . #a • p(i) = toProduct(a(i))
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8.5.6 Operations that do not need redefinition

The definition of the following functions remain the same because for their
definition one or more of the formed definitions that we redefine in this Chap-
ter were used:

• SPL total equivalence (see Section §6.3.4).

• SPL partial equivalence (see Section §6.3.5).

• Core features (see Section §6.3.6).

• Variants features (see Section §6.3.7).

• Number of products (see Section §6.3.8).

• Total Variability (see Section §6.3.10).

• Partial Variability (see Section §6.3.11).

• Commonality Factor (see Section §6.3.13).

• Dead Features (see Section §6.3.15).

It is important to note that even if the former operations can be performed
using previous defined operations using CSP primitives, some of this opera-
tions would be of a high order of complexity if CSP solvers are used to per-
form them. However, there can be ad–hoc algorithms to perform some of the
operations that scale better.

8.6 Computational complexity

In this Section we show that, in general, determining if a feature model is
void is an NP-complete problem. Since we are using constraint satisfaction
problems to represent feature models, it is natural to show this using CSPs.

We first show that any binary CSP can be represented as a feature model.
Suppose the CSP P has n variables, x1, x2, ..., xn. For the sake of simplicity,
we assume that all domains are the same: {v1, v2, ...vm}. We represent this by
a feature model with a root feature P representing the problem P. It has n
children, X1, X2, ..., Xn, corresponding to the n variables; each of these features
is mandatory (we must assign a value to every variable).
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The feature Xi has m children corresponding to the m values in its domain,
which we label Vi1, Vi2, ..., Vim, so that each feature in the model has a distinct
name. Exactly one of these features must be selected, so we use an alternative
relationship. The ‘value’ features are the leaves of the feature model.

The constraints of the CSP forbid pairs of variable-value assignments: if the
pair of assignments xi = vk and xj = vl is forbidden by the binary constraint be-
tween xi and xj, we add an exclusion dependency between the corresponding
features Vik and Vjl.

Since binary CSPs are in general NP-complete [72], feature models must
also be NP-complete. However, note that the feature model constructed to
represent a binary CSP is unlike those that arise in practice, and in particular
has far more dependencies than we would expect.

P

X1

..

V11 V12 V1n

..

X2

V21 V22 V2n

..

Xn

Vn1 Vn2 Vnm

..

Figure 8.2: Feature model of a CSP with a constraint x1 �= x2.

8.7 Summary

In this chapter we have presented the operational paradigm layer of FAMA.
We have showed how it is possible to translate a feature model into a CSP. We
have first presented a rigorous definition of CSPs using Z, later we have de-
fined the translation of both feature models and its extension in terms of previ-
ously defined CSPs. We have redefined some operations of analysis using the
semantics of CSPs and finally demonstrated some theoretical consequences
about complexity.
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We have published part of these results in some papers, namely: we pre-
sented some operations of analysis on feature models in a regular paper in
the CAiSE conference [23] that was based on preliminary work [16, 22]. Later,
we improved and extended [23] and we got a regular paper accepted in The
Seventeenth International Conference on Software Engineering and Knowl-
edge Engineering [24]. In all these papers we proposed the use of constraint
programming to analyse feature models.
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Chapter 9

Implementing our framework

An idealist is someone who implements ideas

David Benavides, 1976–

T he implementation layer of FAMA is presented in this chapter. We provide the
translation of feature models into concrete CSP solvers. First, the translation

into general CSP solvers is described in Section §9.2; In Section §9.3 we provide a
translation from feature models into CNF, the basic input of a SAT solver. In Section
§9.4, the rules for translating a feature model into a BDD structure is presented.
Later, in Section §9.5 some performance test are described comparing BDD, SAT and
general CSP solvers. We finally summarise the chapter and our main contributions
in Section §9.6.
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9.1 Introduction

In this Chapter, we describe the implementation layer of our framework.
In this layer, we provide a real implementation of the operational paradigm
described in Chapter §8. The main difference is that in the operational para-
digm layer we translated a feature model into an abstract CSP, i.e. a CSP that
was not coupled to any real implementation. The intention of this Chapter is
to provide a translation from the abstract CSP to real CSP solvers. As a proof
of concepts we use three different type of CSP solvers: general, SAT and BDD
solvers. JaCoP and Choco are the general CSP solvers meanwhile SAT4j is
used as SAT solver and JavaBDD as BDD solver.

9.2 Translation into general CSP solvers

There are several commercial general CSP solvers. One of the major com-
mercial vendors is ILOG that has two versions of CSP Solvers in C++ and
Java †1. Because it is a commercial solution, we declined to use ILOG solvers
licenses in our proof of concepts implementation. In contrast, we selected Ja-
CoP solver [70] because it offers a free license for academic purposes and it
was offered by members of the Cork Constraint Computation Centre in order
to test our approach. Very similar to this solver is the Choco Constraint Sys-
tem †2. Choco is an open source CSP solver written in Java. We also translated
a feature model into a problem to this solver. We selected this solver because
it seems to be one of the most popular within the research community. Both
solvers have similar characteristic in terms of the variables and constraints
allowed, therefore the implementation of our mapping was done in a straight-
forward manner. For JaCoP we used FDV variables (FDV stands for Finite
Domain Variables) for representing feature variables, while IntVar variables
were used in the Choco implementation for this purpose.

The rules for translating feature models into the JaCoP solver are listed in
Figure §9.1. The final representation of the feature model is the conjunction
of the translated relationships following the rules of Figure §9.1 plus an ad-
ditional constraint selecting the root which is included in all products. The
column “Generic CSP” corresponds to the abstract language we specified in
Chapter §8. For the sake of simplicity we do not present the mapping to the
Choco solvers since it is very similar.

†1www.ilog.com
†2http://choco-solver.net
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Figure 9.1: Mapping from feature models to JaCoP solver.
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JaCoP works with finite domain variables so we decided to model every
features as a FDV variable with a domain { 0, 1} . A solution of the CSP would
be a product configuration. A value of 1 in the solution of the CSP represents
that the feature appears in the product, and a 0 value means that the features
does not appear in that product configuration. The constraints used in JaCoP
are:

• XeqY(a,b):is an equality constraint. It constraints the value of variable a
to be equal to the values of variable b.

• XgtY(a,b): constraints the value of variable a to be greater than the val-
ues of variable b.

• IfThen(c,t): if the constraint c is satisfied, then the constraint t has to
be satisfied too.

• IfThenElse(c,t,e): if the constraint c is satisfied, then the constraint t
has to be satisfied too, otherwise, the constraint e has to be satisfied.

• in(e,d): The expression e has to be in the domain d.

9.3 Translation into SAT solvers

As presented in Section §4.3.1 (pag. 62), a propositional formula is an ex-
pression consisting of a set of boolean variables (literals) connected by logic
operators (¬, ∧, ∨, →, ↔). The propositional satisfiability problem (SAT) con-
sists of deciding whether a given propositional formula is satisfiable, that is, if
logical values can be assigned to its variables in a way that makes the formula
true.

A SAT solver allows to analyse propositional formulas. We used SAT4j †3,
an open source SAT solver written in Java. Most of SAT solvers uses a standard
CNF (Conjunctive Normal Form) file as input. In our proof of concepts, we
translated a feature model into a CNF and wrote a file to serve as input to the
solver.

The rules for translating feature models into CNF formulas are listed in
Figure §9.2. For the sake of simplicity the CNF file is not presented but the
propositional formulas in CNF form to be generated. The final representation
of the feature model is the conjunction of the translated relationships follow-
ing the rules of Figure §9.2 plus an additional constraint selecting the root
which is included in all products.

†3www.sat4j.org
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Figure 9.2: Mapping from feature models to SAT solvers.
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9.4 Translation into BDD solvers

As presented in Section §4.3.2 (pag. 63), a BDD is a data structure used to
represent boolean functions. It is a rooted, directed, acyclic graph composed
by a group of decision nodes and two terminal nodes called 0–terminal and
1–terminal. Each node in the graph represents a variable in a boolean func-
tion and has two child nodes representing an assignment of the variable to 0
and 1. All paths from the root to the 1–terminal represents the variable as-
signments for which the represented boolean function is true meanwhile all
paths to the 0–terminal represents the variable assignments for which the rep-
resented boolean function is false.

A BDD solver allows to analyse boolean functions. We used JavaBDD †4,
an open source BDD solver written in Java. It uses a type of variables called
BDD to represent nodes in the BDD and it is possible to relate these variables
with most used logical connectors (and, or, implies and so on). In our proof
of concepts, we translated a feature model into a boolean function and used
JavaBDD solver to analyse the corresponding feature model.

The rules for translating feature models into a BDD structure are listed in
Figure §9.3, §9.4 and §9.5. In each table the propositional formula and the
corresponding BDD is represented. It is important to remark some aspects of
the figures. First, the final propositional formula of a given feature model is
the conjunction of the translated relationships following the rules of Figure
§9.3, §9.4 and §9.5 plus an additional constraint selecting the root which is in-
cluded in all products. This will lead to have a BDD structure that is not trivial
to construct from the partial BDD structures. What we have done is to build
the whole propositional formula and then transform it into a BDD structure
using JavaBDD package. On the other hand, the BDD structure resulting from
translating the mandatory, or and alternative relationships has more nodes than
features in the corresponding figure.

†4http://javabdd.sourceforge.net
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9.5 Performance comparison

When we first implemented our mapping, we found that there were some
operations that did not scale when the number of features in the feature model
grew. Therefore, we decided to set up some performance comparisons. Firstly,
we compared two general CSP solvers. Afterwards, we compared one of these
general CSP solvers with SAT and BDD solvers. Following, we present the
results of this comparison.

9.5.1 General CSP solvers comparison

JaCoP and Choco solvers were compared in terms of performance. With
the following test we intended to show which general CSP solver provides
the best performance in the automated analyses of feature models. In addi-
tion, we studied the robustness and the areas of vulnerability of each solver. In
order to evaluate both solvers we used five feature models (we call them test
cases). Three of them represent small and medium size real systems, mean-
while the larger two were generated randomly for this test. After formulating
each one as a CSP in both platforms, we proceeded with the execution. Table
§9.1 summarises the characteristics of the feature models used. Feature Model
1 is a simple feature model representing a home integration system. It was
presented in [23]. Feature Model 2 is the one of Figure §2.8 (pag. 34) which
represents a collaborative web based system. Feature Model 3 is a medium
size feature model of a flight booking system based on the work done by
Díaz et al.[50, 51]. Finally, we generated two larger feature models randomly
(Feature Models 4 and 5) with a double aim: representing more complex sys-
tems with a greater number of features and dependencies, and evaluating the
solvers performance in more difficult situations. We considered it was nec-
essary to compare the performance with small, medium and larger feature
models in order to evaluate solver performance results in different situations.

The process for generating a feature model randomly is based on a recur-
sive method that has four input parameters: height levels, maximum number
of children relationships for a node, maximum number of elements in a set
relationship and number of dependencies. Firstly, features and their relation-
ships are generated using random values. Secondly, cross-tree constraints are
created by taking pairs of features randomly and establishing a random de-
pendency (requires or excludes) between them. We made sure not to generate
misconceptions (e.g. a child depends on a parent).

For these test cases two operations were performed: i) finding one con-
figuration that would satisfy all the constraints, i.e., a product and ii) finding
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Feature Model N. of Features N. of Dep
1 15 0
2 14 2
3 26 0
4 40 14
5 52 28

Table 9.1: Feature models used to test general CSP solvers.

the total number of configurations of a given feature model. The first is the
simplest operation while the second is the most difficult one in terms of per-
formance because it is necessary to retrieve all possible combinations.

The comparison focused on the data obtained from several executions in
order to avoid as much exogenous interferences as possible. In every test case,
the total number of executions to calculate the average time was ten. The data
extracted from the tests was:

• Number of features in the first solution obtained by each solver.

• Average execution time to obtain one solution (measured in millisec-
onds).

• Total number of solutions, that is, the potential number of products rep-
resented by the feature model.

• Average execution time to obtain the number of solutions (measured in
milliseconds).

In order to evaluate the implementation, we measured its performance and
effectiveness. We implemented the solution using Java 1.5.0 04. We ran the
tests on a WINDOWS XP PROFESSIONAL machine equipped with a 3.2Ghz
Intel Pentium IV microprocessor and 1024 MB of DDR 166Mhz RAM memory.
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The Results

The performance comparison revealed some interesting results (see Fig-
ures §9.6, §9.7 and §9.8). The first evidence we should mention is that JaCoP
was on average 54% faster than Choco in finding one solution. It is impor-
tant to observe that our approach was feasible in these test cases because the
necessary time to obtain a response is really low (35 milliseconds in the worst
case).

JACOP CHOCO JACOP CHOCO
1 7 9,9 18,8 32 37,5 45,5
2 8 9,4 22,7 68 64,4 81,3
3 13 12 24 512 225,6 265,3
4 19 20,2 34,9 34560 5619 2203,3
5 19 24,4 35,8 61440 15390,8 4817,6

JACOP / CHOCO
Time one Sol. Time all Sol.Experiment Features in 

Sol.
Nº Solutions

Figure 9.6: Results of JaCoP and Choco solvers comparison.
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Figure 9.7: Comparing JaCoP and Choco getting one solution.

However, while JaCoP was much faster than Choco in finding the total
number of solutions in small CSPs, JaCoP seems to be noticeably slower than
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Figure 9.8: Comparing JaCoP and Choco getting the number of solutions.

Choco in the big ones (see Figure §9.8). This curious result probably de-
pends on how each solver was used to obtain the number of solutions. Choco
has a simple method to know the number of solutions of a concrete problem
(Solver.getNbSolutions()), while JaCoP implementation needed to find all
the solutions first and count them afterwards. This simple variation implies a
very important difference in performance. For instance, in test case 5, JaCoP
needed to create 61440 ArrayLists and fill all of them with all the solutions
which produces a great time loss. On the other hand, Choco did not have this
weakness because, although Choco does actually find all solutions, its method
to find the number of solutions only returned five of them to avoid memory
deficit problems. If the user wants to obtain the other solutions he only has
to make a simple iteration and take them one by one. In the three smaller test
cases, JaCoP was faster than Choco so we presume that this trend would con-
tinue if JaCoP optimized this aspect. In test 5, we performed a comparison to
find and return all the solutions in both solvers, that is, not only to find the
number of solutions but the solutions themselves. The result was decisive:
Choco required over a minute to perform this task, proving to be slower than
JaCoP in this situation.

Although memory usage was not a relevant data in our tests we noticed
that in general Choco uses more memory than JaCoP; however there is not a
remarkable difference between both solvers.

Finally, we identified some interesting characteristic in both solvers. Firstly,
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JaCoP allows the user to obtain easily from executions more interesting in-
formation than Choco such as the number of backtracks of a search or the
number of decisions taken to find a solution. In second place, we found a
worrying bug when working with big problems in Choco. In most cases,
executions of CSPs representing big feature models generated an exception
(choco.bool.BinConjunction) which imposes an important limitation to Choco
and limited us in the number of features of the feature models for the test
cases.

9.5.2 Multisolver comparison

In this Section we present the results of another comparison we performed.
We focused on a performance comparison of three different type of solvers
working with CSP, SAT and BDD in order to test how these representations
can influence in the automated analysis of feature models. The comparison
results were obtained from the execution of a number of feature models trans-
lated into CSP, BDD and SAT in three solvers presented previously: JaCoP
(general CSP solver), JavaBDD (BDD solver) and Sat4j (SAT solver).

N. of Features N. of instances % of Cross-tree
constraints

Total N. of test
cases

[50-100) 50 [0%-25%] 931
[100-150) 50 [0%-25%] 1566
[150-200) 50 [0%-25%] 2276
[200-300] 50 [0%-25%] 2582

Table 9.2: Instances generated for multisolver comparison.

We used four groups of 50 randomly generated feature models. Each group
included feature models with a number of features in a specific range ([50-
100), [100-150), [150-200) and [200-300)) with a double aim: test the perfor-
mance of small, medium and larger instances and working out averages from
the results in order to avoid as much exogenous interferences as possible.

After formulating each feature model as a CSP, BDD and SAT, we pro-
ceeded with the execution. Each feature model was executed several times
increasing the number of cross–tree constraints from 0 up to 25% of the num-
ber of features in the feature model in step of 1%. Notice that there is actually a
bigger number of different test cases generated from every base feature model.
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Column “Total N. of test cases” of Table §9.2 presents the total number of test
cases in every range.

We increased the number of cross–tree constraints in order to know how
these constraints influenced in the performance. Cross-tree constraints were
added randomly as well, but checking that the same feature could not appear
in more than one cross–tree constraint and that a feature can not have a cross–
tree constraint with any of its ancestors. Averages were obtained from every
test case in each range with the same percentage of cross–tree constraints. Ta-
ble §9.2 summarises the characteristics of the comparison.

For the comparison two operations were performed: i) finding out if a
model is void, i.e., it has at least one solution and ii) finding the total number of
products of a given feature model. The first one is the simplest operation while
the second is the hardest one in terms of performance because it is necessary
to work out the total number of possible combinations. The data extracted
from the tests were:

• Average memory used by the logic representation of the feature model
(measured in Kilobytes)

• Average execution time to find one solution (measured in milliseconds).

• Total number of solutions, i.e. the potential number of products repre-
sented in the feature model.

• Average execution time to obtain the number of solutions (measured in
milliseconds).

In order to evaluate the implementation, we measured its performance
and effectiveness. We implemented the solution using Java 1.5.0 04. We ran
our tests on a WINDOWS XP PROFESSIONAL SP2 machine equipped with a
3Ghz Intel Pentium IV microprocessor and 512 MB of DDR RAM memory.

The Results

The performances comparison revealed some interesting results. The first
evidence was that JavaBDD is on average 96% faster than JaCoP and 75%
faster than Sat4j finding one solution, i.e. determining if a feature model is
void. However, JavaBDD revealed a memory usage on average 928% higher
than JaCoP and 1672% higher than Sat4j. On the other hand, although JaCoP
and Sat4j showed a similar memory usage, SAT representation showed better
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results in both aspects, memory and especially in time. The performance of
the solvers was similar in the four groups of test cases. Figures §9.9 and §9.10
presents the results for the group of feature models with a number of features
between 100 and 150.
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Figure 9.9: Memory usage of SAT, BDD and CSP solvers.
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Figure 9.10: Average time to get one solution of SAT, BDD and CSP Solvers.

In fact, Figure §9.9 can be confusing in the sense that in the worst case the
memory usage is insignificant (in the order of 2 Mb) but this behaviour seems
to be exponential with the number of features and dependencies (cross–tree
constraints). For instance, in the range of (200-300) features, we found some
cases where the memory used by the solver was around 300 Mb. We think that
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in bigger feature models (e.g. 1000 features) this can be even a bigger problem.
What Figure §9.9 tries to stress is the difference in the use of memory of the
three solvers.

The results obtained from finding the total number of products of a given
feature model showed a great superiority of JavaBDD. While JaCoP and Sat4j
were computationally incapable of performing that operation in a reasonable
time in most of the cases, JavaBDD lasted 5312 ms to work out the 7.77 × 1034

solutions of the worst case.

Finally, we found some unexpected results or outliers in the data obtained
from the tests with JaCoP and JavaBDD. On the one hand, JaCoP presented in
a few consecutive executions a huge number of backtracks and consequently a
great time penalty. On the other hand, JavaBDD revealed in a few tests a huge
memory usage which seemed to increase exponentially with the number of
dependencies. We are investigating the possible causes of these behaviours
[20].

9.5.3 Discussion

The great superiority of JavaBDD on finding the total number of solutions
is because for calculating the number of solutions, in general, CSP and SAT
solvers have to retrieve all the solutions (which is a #P-complete problem [80])
meanwhile BDD solvers use efficient graph algorithms to calculate the total
number of solutions without the need of calculating all the solutions. The
huge memory usage of BDD solvers depends on the variable ordering for rep-
resenting the BDD. The size of BDDs can be reduced with a good variable
ordering, however, calculating the best variable ordering is a known NP-hard
problem [35].

To the best of our knowledge, feature attributes such as time, cost, versions
of module, and so on, can easily expressed using CSP solvers. By contrast, we
are not aware of any result that allows to easily express feature attributes in a
BDD or SAT representation, and hence BDD and SAT solvers cannot be used
to find the best product for a feature model that maximises or minimizes some
objective.

As a result of the test, we claim that there is not an optimum representation
for all the possible operations that can be performed on feature models. There-
fore we propose a multisolver implementation of the implementation layer of
FAMA.
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9.6 Summary

In this chapter, we have described a proof of concepts implementation of
FAMA. This is the implementation layer of FAMA. We have described the
solvers we used in the implementation; later we have provided a mapping
from abstract CSP defined in previous chapter to these concrete solvers. We
have also showed two performance test we accomplished. We concluded that
there is not an optimal representation for all operations so we propose the use
of a multisolver approach to profit the best of every solver.

We have published part of these results in some papers, namely: we pre-
sented the translation of feature models into CSPs in [16, 22–24]. We presented
the results of the tests with two CSP solvers in [27] and the test case with three
type of solvers in [26].
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Chapter 10

Conclusions and future work

My interest is in the future because
I am going to spend the rest of my life there

Charles F. Kettering, 1876–1958
Engineer

10.1 Conclusions

In this dissertation we have shown that:

A framework based on rigorous definitions, with a high level of abstraction,
supporting attributed features and supporting the use of different solvers can
provide practical means of analysing software product lines in general and
feature models in particular.

Software product lines are a consequence of the mass customization eco-
nomical paradigm shift. Feature models are models used to represent all pos-
sible products of software product lines in a compact representation. They
were proposed back in 1990 and are recognized by some authors as one of the
most important contributions in the field of software product line engineering.
The automated analysis of software product lines deals with the computer–
aided extraction of information from a software product line. The automated
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analysis of software product lines in general and feature models in particular
is a key task in a software product line approach and is an ongoing research
area. The importance of the automated analysis of feature models resides in
the fact that this analysis is done without the participation of other software
artefacts like code, documents and so on, i.e. the analysis is done at a very
high level of abstraction allowing to detect errors or properties in a very early
stage of development.

However, current proposals for the automated analysis of software prod-
uct lines present some problems. They lack abstraction, in the sense that they
are only focussed on a special case of feature models. They lack formal seman-
tics, which can lead to misinterpretations. They do not support the analysis of
feature models taking into account feature attributes and finally, they do not
support more than one type of solver in the implementation of the analysis.

Our goal in this thesis has been to devise a new framework called FAMA to
overcome the aforementioned problems. FAMA is a four–layers framework.
It is abstract, it supports the analysis of extended feature models, it is rigor-
ously defined and finally it support multiple solvers in the implementation
layer. FAMA can be extended to support more operations of analysis, it can be
extended to support other models than feature models and can be extended
to support other solvers.

10.2 Discussion, limitations and extensions

Paraphrasing Shakespeare in The Merchant of Venice it would be fair to say
that “All that glitters is not gold”. Following, we discuss some of the main
decisions we have made in this dissertation highlighting its main limitations
and possible extensions.

• Is a formal language suitable for specifying a framework for the analysis of fea-
ture models? We have used a formal specification language such as Z
for the specification of our framework. This has brought us important
benefits in terms of rigour and clarity in the specification, which was
the goal we pursued. However, using formal languages sometimes has
some drawbacks too. On the one hand, the common view is that formal
mathematical notations are out of reach of common software engineers.
This can be a negative factor in submitting our proposal to a broader
audience. On the other hand, we appeal to Bowen and Hinchey’s “Ten
commandments for formal methods” [33] to agree that for using formal
methods “Tho shalt have a formal methods guru on call” which is not always



10.2. Discussion, limitations and extensions 139

easy. For instance, in the development of the FAMA Eclipse plug–in (see
Appendix §A), we have not thoroughly used the rigorous definitions of
the specification presented in this dissertation so that the tool is not an
accurate reflection of the rigours specification. The reason is that devel-
opers of the prototype did not understand formal methods as well as
UML models and metamodels.

Conclusion: if we went back to the beginning and we had to decide
whether to use a formal language or not, we would once again de-
cide to use it for our dissertation.

Extension: Revise our tool in an iterative process to completely match
with our specification or change the specification if needed accord-
ing to tool needs.

• Are feature attributes completely contemplated in FAMA? Although we have
claimed the need of including attributes and relationships among at-
tributes in feature models, in our rigorous framework we have only spec-
ified attributes of features as attribute–value pairs. We have not specified
the type of possible relationships among attributes and how these rela-
tionships can influence in the analysis operations. For instance, if we
have a relationship like “X requires Y.attribute > Z” then, the number of
possible products of the feature model can be reduced and the number
of products operation would need to be revised among others.

Extension: Including attribute relationships in FAMA and studying the
possible revision on the operations.

• Are all operations contemplated in FAMA? Although we have listed some
operations in Chapter §3, we did not deal with modification operations.
Extending FAMA to support modification operations over feature mod-
els to confront staged configuration processes is also something that has
to be studied. In this context, features would not have only two states
(selected, deselected) but several (selected, deselected, decided, unde-
cided and so on) which may make the specification somewhat more com-
plicated.

Extension: Extending FAMA with modification operations.

• Are CSPs the best operational support? We have chosen constraint pro-
gramming (based on CSPs) as the operational paradigm. These allowed
us to have a higher level of abstraction in the specification since it is
always possible to translate any CSP into a propositional—based speci-
fication [32]. The language of CSP solvers is often more succinct than the
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one of propositional–based solvers (BDD or SAT). In addition, it is be-
lieved in the constraint programming community (although not proved
yet in general) that CSP solvers can be better than propositional–based
solvers for non-boolean problems. However, having chosen this para-
digm has some limitations. On the one hand, it reduces our analysis ca-
pabilities in terms of ontological or fuzzy relations. On the other hand, it
is well–known that CSPs are in general NP–complete problems. We have
proved that determining iff a feature model is void is an NP–complete
problem as well. However, we have neither made a complete computa-
tional complexity study of the operations of analysis, nor performed an
empirical feasibility study in large–scale real software product lines. Fi-
nally, in our proof of concept, we have only introduced discrete domains
for attributes such as integers or sets.

Conclusion: At the time of writing, constraint programming paradigm
seems to be the most appropriate operational paradigm for the analy-
sis of feature models.

Extensions:

� Extending FAMA with description logic reasoners for ontological
analyses and fuzzy logic reasoners for fuzzy analyses.

� Performing computational complexity and feasibility studies of FAMA
operations.

� Extending FAMA implementation to continuous domains.

10.3 Other future work

The results in this dissertation can be seen as the conclusion of a first lap.
However, there is still a long way to go. There are many issues that remain
open or to be improved. Following, we revise some of the topics of our contri-
butions (see Section §1.2.1 on page 8) to motivate some other possible future
work.

• Tool support. FAMA Eclipse plug–in is a tool that is already functional but
there is still a large amount of work to be done in this area. On the one
hand, Are boxes and lines the best way of representing feature models?
There is an interest in the community concerning these topics [1]. On the
other hand, is FAMA–EP itself a software product line? FAMA can be
seen as a software product line itself.
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Future work:

� Studying visualization of feature models.
� Feature refactoring of FAMA to set up a software product line

of product lines analysis tools.

• Survey and research agenda. The state of the art and research agenda has
to be reviewed from time to time in order to summarize the progress in
the area. In addition, more rigorous surveys are still missing and this is
a field that we plan to explore as well.

Future work: Revise the state of the art and the challenges ahead on the
analysis of feature models.

• Web services and software product lines (WS-SPL). Gathering web service
development and software product lines is not a trivial problem and
there are still plenty of open issues in this area. This is already being
studied in Sergio Segura’s research work and is one of the main topics
of WEBFACTORIES, the research project in which we are currently in-
volved.

Future work: Studying how FAMA can be used in real developments in
conjunction to feature oriented programming approaches using its
automated analysis capabilities in the production of software prod-
uct lines based on web services.

• Industrial experiences. We have tried to apply in our research work an
action research method [7, 17, 21] in which, instead of inventing new
problems, we try to extract them from industry and provide valid solu-
tions. We have some tasks in WEBFACTORIES to bridge this gap. In
addition, Jorge Müller and Manuel Nieto’s research work will deal with
these issues.

Future work: Applying our ideas in real settings to obtain feedback, and
find for more problems to be solved.

• Error analysis. We have pioneered the use of theory of diagnosis for er-
ror analysis in feature models. This is something that is being already
studied in Pablo Trinidad’s thesis that follows up our work on this dis-
sertation.

Future work: Consolidating theory of diagnosis for error analysis of fea-
ture models.
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• MDD and transformation of feature models. Just as feature models can be
analysed, they can be also transformed. We have no results in this field
yet but we believe that this is an open research area that has to be in-
vestigated to leverage automated analysis of feature models. This is also
something that is being studied in the frame of WEBFACTORIES.

Future work: Mapping feature selections in a feature model into other
development artifacts (requirements, architecture, processes, code
modules, test cases, documentation, etc.) and verifying that other
program representations are consistent with their feature model.

10.4 A last phrase to conclude

As a final conclusion, we would like to paraphrase the Greek philosopher
Socrates saying that:

After years of hard work, we know nothing except the fact of our ignorance.
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Appendix A

FAMA Eclipse plug–in

A picture is worth a thousand words.
An interface is worth a thousand pictures.

Ben Shneiderman, 1947–
Usamerican computer scientist.

T he automated analysis of feature models is recognized as one of the key chal-
lenges for automated software development in the context of software product

lines. However, after years of research only a few ad-hoc proposals have been presented
in such area and the tool support demanded by the software product lines community
is still insufficient. In previous chapters we showed how the selection of a logic rep-
resentation and a solver to handle analysis on feature models can have a remarkable
impact in the performance of the analysis process. In this chapter we present a first
implementation of FAMA as an Eclipse plug–in that integrates some of the most com-
monly used logic representations and solvers proposed in the literature. To the best of
our knowledge, FAMA Eclipse plug–in is the first tool integrating different solvers for
the automated analyses of feature models.

This chapter is structured as follows: in Section §A.1 we introduce the chapter;
Section §A.2 provides with a general overview of FAMA Eclipse plug-in. In Section
§A.3, we describe the main components of the FAMA–EP architecture. A summary
of some related tools is introduced in Section §A.4. Finally we summarize our conclu-
sions and describe our future work in Section §A.5.
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A.1 Introduction

As we have described during this dissertation, feature modelling is a com-
mon mechanism for expressing a set of products of a software product lines
in terms of features in a single model being a feature an increment in product
functionality.

We have showed all along this dissertation that the automated analysis
of feature models is recognized in the literature as an important challenge in
software product line research [9, 11].

The automated analyses of feature models is usually performed in two
steps: i) The feature model is translated into a certain logic representation
ii) off-the-shelf solvers are used to extract information from the result of the
previous translation such as the number of possible products of the feature
model, all the products following a criteria, finding the minimum cost config-
uration, etc [25] (see Section §6.3, page 78). We have introduced how the use
of different solvers [27] and logic representations [26] can have an important
effect in the time and memory performance of the analysis process (see Chap-
ter §9). We also showed that there is not an optimum logic representation and
solver for all the operations that can be performed on feature models.

In this appendix, we present a first prototype implementation of FAMA
Eclipse Plug–in (FAMA–EP). FAMA–EP is an extensible framework for the au-
tomated analysis of feature models. FAMA–EP can be configured to select
automatically in execution time the most efficient of the available solvers ac-
cording to the operation requested by the user. The current implementation
of FAMA–EP integrates three of the most promising logic representations pro-
posed in the area of the automated analysis of feature models: CSP, SAT and
BDD, but more solvers can be added if needed.

A.2 FAMA–EP general overview

FAMA–EP has been implemented as a tool for the edition and analysis
of feature models. FAMA–EP supports cardinality-based feature modelling
(that includes traditional feature models, e.g FODA, Feature–RSEB, and so
on), export/import of feature models from XML and XMI (XML Metadata
Interchange) and analysis operations on feature models. In order to make our
tool multiplatform and easy to access, we implemented FAMA–EP as a plug–
in for the Eclipse Platform†1 (see Figure §A.1).

†1www.eclipse.org
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Figure A.1: Screenshot of the FAMA–EP.

FAMA–EP offers two main functionalities: visual model edition/creation
and automated model analysis. Once the user has created or imported (from
XML/XMI) a feature model, the analysis capability can be used. Most of
the operation identified on feature models [25] are being currently imple-
mented. At the moment of writing this chapter the operations fully supported
by FAMA–EP are:

• Finding out if a feature model is void, i.e. it exists at least one product
satisfying all the constraints.

• Finding the total number of possible products of a feature model (num-
ber of products).

• List all the possible products of a feature model (list of products).

• Calculate the commonality of a feature.

FAMA–EP integrates different solvers in order to combine the best of all of
them in terms of performance. The actual version of the framework integrates
JaCoP as general CSP solver, SAT4J as SAT solver and JavaBDD as BDD solver
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to perform the analysis tasks. However, an unlimited number of new analysis
operations and solvers could be added.

One of the advantages of FAMA–EP is the ability to select automatically, in
execution time, the most efficient solver according to the operation requested
by the user. Therefore, if the user asks for the number of possible combina-
tions of features of a feature model the framework will select automatically
the BDD solver to get it (the most efficient known approach for this operation
in terms of performance). The automated selection of a solver is based on the
value of some configuration parameters establishing the priority between the
available solvers for each operation. The values of these parameters were set
according to the results from the performance test of the solvers integrated in
the framework that was presented in previous chapters. However, it is also
possible to configure this values for each operation by the user (see Figure
§A.2).

Figure A.2: Preferences page of the FAMA–EP.

A.3 The FAMA Architecture

FAMA–EP is divided in two main components: the analysis engine and the
visual editor. To interact with the automated analysis framework, an user inter-
face has been implemented as an extensible Eclipse plug-in. The user interface
consists of two customized tree views: the modeling view (Figure §A.3) that al-
lows the visual edition of feature models, and the analysis view (Figure §A.4).

The analysis engine is responsible for performing the analysis operations
requested by the users, and the visual editor offers a graphical user interface for
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Figure A.3: Modeling view of the FAMA–EP.

feature modelling and interacts with the analysis engine. The communication
between such modules is minimum in order to reduce the coupling among
them. In fact, the analysis engine can be used as an off-the-shelf tool for the
integration of automated analysis of feature models in other tools. Next we
show in detail the structure of each module separately.

A.3.1 The analysis engine

Figure §A.5 shows the UML component diagram of the FAMA analysis
engine.

The analysis engine relies on the concept of questions. An analysis opera-
tion is carried out by a question that is asked by the central component of the
architecture which is the QuestionTrader. For each operation that the engine
supports, a question interface is defined.

On the other hand, for each logical paradigm at least one solver is used
to implement it. Each solver (called reasoner) implements the SolverReasoner
interface and uses an off–the shelf solver to provide the analysis functionality.
A solver can implement as much operations as desired from the operations
available in QuestionTrader.

Among the responsibilities of QuestionTrader we find:
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Figure A.4: Analysis view of the FAMA–EP.

Visual Editor Solver

FeatureModel

QuestionTrader

IQuestionTrader

INumberOfProductsQuestion

ICommonalityQuestion

IValidQuestion

...

IDeadFeaturesQuestion

IExplanationQuestion

IVoidFMQuestion

IWrongCardsQuestion

IFalseOptionalQuestion

IFeatureModel

SolverReasoner

IQuestionAbstractFactory

INumberOfProductsQuestion

ICommonalityQuestion

IValidQuestion

...

IDeadFeaturesQuestion

IExplanationQuestion

IVoidFMQuestion

IWrongCardsQuestion

IFalseOptionalQuestion

IPerformanceResult

IReasoner

QuestionSolverFactory

SolverNumberOfProductsQuestion

SolverCommonalityQuestion

SolverValidQuestion

...

SolverDeadFeaturesQuestion

SolverExplanationQuestion

SolverVoidFMQuestion

SolverWrongCardsQuestion

SolverFalseOptionalQuestion

IPerformanceResult SolverResult SolverReasoner

Analysis Engine

IFeatureModel

Figure A.5: UML component diagram of the FAMA Analysis Engine.
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• Containing and registering all the available reasoners, i.e. giving support
to multiple paradigms.

• Knowing about the questions that are supported and which reasoners
are able to answer them. It allows to extend the functionality by adding
new questions.

• Selecting the reasoner that performs better to answer a question that is
performed by the user.

• Measuring the performance a reasoner gives when answering a ques-
tion.

• Reporting to a solver the changes on the feature model.

QuestionTrader component concentrates the main responsibilities of the mod-
ule and new solvers and questions can be added easily by implementing the
interfaces provided and registering them on this component. It eases the us-
age of multiple paradigms to the user, as only the operation to perform on a
feature model must be pointed as a question and QuestionTrader will automat-
ically select a reasoner and will answer the question.

A.3.2 The visual editor

The graphical user interface of FAMA is provided by a customized and
extended visual editor (Figure §A.6) implemented using the Eclipse Model-
ing Framework (EMF)†2. EMF is a modeling framework and code generation
facility for building tools based on a structured data model. In our case, the
data model is the feature model metamodel that has been used for the analysis
engine with some extensions to support data that is needed for edition. The
data model is described in XMI, being EMF able to automatically generate a
default visual editor that contains three components:

• ExtendedFM component: a set of classes that represent the elements in the
feature model.

• EditableFM component: a set of adapter classes that enable models edition
interacting with ExtendedFM component.

• Editor component: a basic user interface to edit the feature model.

†2http://www.eclipse.org/emf
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Figure A.6: UML component diagram of the FAMA Visual Editor.

The functionalities provided by the visual editor except those regarding to
feature modeling that are implemented in the editor component, are described
as actions. The actions are grouped in different components according to the
functionality they provide. Currently we have defined three action compo-
nents:

• Analysis actions: Actions involving analysis operations on feature mod-
els. They interact with the analysis engine by means of the interfaces
provided by the QuestionTrader component.

• Data exchange actions: actions to export/import the feature models into
XML or XMI files so they can be stored or restored later. They can be
used to interoperate with other applications.

• Error handling actions: actions to implement error analysis (this compo-
nent is under development).

A.4 Similar tools

The Feature Model Plugin†3 (FMP) [48] has also been implemented as an
Eclipse plug–in. It supports cardinality-based feature modelling, specializa-
tion of feature diagrams and configuration based on feature diagrams. FMP
uses a BDD solver to work out the number of possible combination of fea-
tures in a feature model. It also supports the use of filters. FMP is becoming

†3http://gp.uwaterloo.ca/fmp/
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a mature tool with interesting extensions but it does not have the analysis of
feature models between its main goals. It does not support attributed feature
models and do not include more than one solver for the analysis.

XFeature†4 [37] is an XML-based feature modelling tool also implemented
as an Eclipse plug–in. XFeature supports the modelling of product families
and applications instantiated from them. This tool does not support the auto-
mated analysis of feature models.

CaptainFeature†5 is a feature modelling tool using the FODA notation to
render feature diagrams. It also includes an integrated configurator to spe-
cialize the created feature diagrams. CaptainFeature does not support the au-
tomated analysis of feature models.

Requiline†6 [100] is defined as a requirement engineering tool for the effi-
cient management of software product lines. From the edition of a group of
features and requirements Requiline derives product configurations. It also
includes a consistency checker and an query and XML interface. Apart from
the consistency checking, RequiLine does not perform any of the others analy-
sis operation identified on feature models [25].

Pure::Variants†7 is a commercial tool supporting feature modelling and con-
figuration. Current version does not support cardinalities. Pure::Variants sup-
ports basic analysis operations through a Prolog-based constraint solver.

The AHEAD Tool Suite†8 (ATS) [10] is a set of tools for product-line develop-
ment that support feature modularizations and their compositions. AHEAD
can perform certain analysis operations on feature models by means of SAT
solvers [9]. It does not include feature models attributes in the analysis. Fea-
ture models are saved as grammars and no XML representation is provided.

Table §A.1 summarizes the exposed proposals.

A.5 Summary

In this chapter we introduced the first prototype implementation of FAMA–
EP. We introduced the logic representations currently used in the framework

†4www.pnp-software.com/XFeature/
†5https://sourceforge.net/projects/captainfeature/
†6www-lufgi3.informatik.rwth-aachen.de/TOOLS/requiline
†7www.pure-systems.com
†8www.cs.utexas.edu/users/schwartz/ATS.html
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Maturity + + + + + + ∼

Table A.1: Summary of existing tools.

and we exposed some of the most relevant design and implementation de-
tails. Finally, we compared our proposal with some other feature modelling
tools and we concluded that this is the first tool integrating different solvers to
optimize the analysis of feature models. Although FAMA is not a mature tool
yet, its promising capabilities of extensibility, interoperability and integration
make it a tool to take into account in the future.

Several challenges remain for our future work. The integration of new
solvers and new analysis operations are currently in process. We are also
studying licenses issues in order to release our tool. We really trust that formal
semantics [86, 87] are needed for the verification of our framework and we are
working on that direction too.
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Mathematical notes

†1

B.1 Z Notation

The Z formal specification language is based on set theory and first-order
predicate calculus [63]. It extends the use of these languages by allowing an
additional mathematical type known as the schema type. Z schemas have two
parts: the upper declarative part, which declares variables and their types, and
the lower predicate part, which relates and constraints those variables. The
type of any schema can be considered as the Cartesian product of its variables,
without any notion of order, but constrained by the predicates. Modularity is
facilitated in Z by allowing schemas to be included within other schemas. We
can select a variable of a schema instance by writing schemaInstance.var.

To introduce a type in which we wish to abstract away from the actual
elements of the type, we use the notion of a given set. For instance, we write
[VarName] to represent the set of all possible variable names. If we wish to
state that a variable ranges over some finite set of values or an ordered pair of
values we write x : F Feature and x : Feature × Feature, respectively.

A summary of the notation used in this dissertation is presented in Table
§B.1. For a more complete treatment of the Z language, the reader is referred
to one of the numerous texts such as [107].

†1This chapter is partially inspired by [4, 5]
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Declarations
a : A Declarations
A == B A is an alias for B
Logic
p ∧ q Logical conjunction
p ∨ q Logical disjunction
¬p Logical negation
p ⇒ q Logical conditional
p ⇔ q Logical biconditional
Quantification
∀ x : A | q(x) • p(x) Universal quantification. Equivalent to the

following: ∀ x • x ∈ A ∧ q(x) ⇒ p(x)

∃ x : A | q(x) • p(x) Existential quantification. Equivalent to the
following: ∃ x • x ∈ A ∧ q(x) ∧ p(x)

∃1 x : A | q(x) • p(x) Unique existential quantification
Sets
x ∈ A Set membership
∅ Empty set
A ⊆ B Set inclusion
{x, y, . . .} Set of elements
(x, y) Ordered pair
A × B Cartesian product
P A Powerset of A
F A Finite powerset of A
{ x : A | q(x) • e(x)} The set { e(x) | x ∈ A ∧ q(x)}
A ∩ B Set intersection
A ∪ B Set union
A \ B Set difference
∩A Generalised or distributive intersection
∪A Generalised or distributive union
#A Cardinal of set A
Relations and Functions
A → B Total function
A �→ B Partial function
dom f , ran f Domain and range of a function f

Table B.1: Summary of the notation used in this dissertation.
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Acronyms

BDD. Binary Decision Diagram.

CNF. Conjunctive Normal Form.

CSP. Constraint Satisfaction Problem.

FAMA. FeAture Model Analyser

FM. Feature Model

EMF. Eclipse Modeling Framework.

SAT. Satisfiability Problem.

SPL. Software Product Line.

OMG. Object Management Group.

RACER. Renamed ABox and Concept Expression Reasoner.

UML. Unified Model Language.

XML. eXtensible Mark–up Language.

XMI. XML Metadata Interchange.
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