

Diagnostic Reasoning with Structural
Analysis and Constraint Programming for
Quality Improvement of Business Process

Management Systems

Diana Borrego Núñez
dianabn@us.es

Supervised by
Prof. Dr. Marı́a Teresa Gómez López

Prof. Dr. Rafael Martı́nez Gasca

Thesis Dissertation submitted to the Department of Computer Languages
and Systems of the University of Sevilla in partial fulfilment

of the requirements for the degree of Ph.D. in Computer Science.

(Thesis Dissertation)

dianabn@us.es

A Eduardo.

Acknowledgements

I would like to thank all those people who contributed in many ways to the suc-
cess of this study. It is a pleasure to thank those who made this thesis possible,
supporting and helping over the last few years.

I wish to thank, first and foremost, my advisors Marı́a Teresa Gómez López
and Rafael Martı́nez Gasca, who shared with me a lot of their expertise and re-
search insight. This thesis would not have been possible unless their continuous
support of my Ph.D study and research, for their patience, motivation, enthusiasm,
and knowledge.

I would like to show my gratitude to the Quivir Research Group members, and
especially to my little cluster, for providing a stimulating and friendly environment
in which to share and discuss ideas.

I am indebted to Los Simpáticos Investigadores for helping me get through the
difficult times, and for all the emotional support.

I cannot find words to express my gratitude to my family, who has always
stood by me and dealt with all of my absence from many family occasions with a
smile.

And last but not least, I owe my deepest gratitude to Eduardo. Thank you for
everything.

i

Agradecimientos

Me gustarı́a dedicar unas palabras de agradecimiento a toda esa gente que ha
contribuido, de muchas distintas formas, al éxito de este trabajo. Es para mı́ un
placer agradecer a quienes han hecho posible esta tesis mediante su apoyo y ayuda
durante estos últimos años.

En primer lugar, desearı́a dar las gracias a mis directores de tesis Marı́a Teresa
Gómez López y Rafael Martı́nez Gasca, quienes han compartido conmigo su pro-
fundo entendimiento y habilidad en la investigación. El desarrollo de esta tesis no
habrı́a sido posible sin su contı́nuo apoyo, paciencia, motivación, entusiasmo, y
conocimiento.

Me gustarı́a mostrar mi agradecimiento a los miembros del Grupo de Inves-
tigación Quivir, y en especial a mi pequeño cluster, por proporcionar un entorno
estimulante y cordial donde compartir y discutir nuestras ideas.

Quiero mostrar mi gratitud a Los Simpáticos Investigadores por ayudarme en
los malos momentos, y por todo el apoyo emocional.

No puedo encontrar palabras para expresar el agradecimiento a mi familia, que
siempre ha estado ahı́, y ha comprendido mis ausencias en ocasiones familiares
con una sonrisa.

Y por último, debo mi más profundo agradecimiento a Eduardo. Gracias por
todo.

iii

Abstract

Everyday more and more complex and critical processes of organizations’ ser-
vices and operations are automated by using business process management sys-
tems. Thereby, there exists a growing interest in improving the quality of these
processes in order to ensure the reachability of business goals and, consequently,
for organizations to become more competitive. To this end, in the current Thesis
Dissertation, diagnosis techniques are applied at different stages of the business
process lifecycle in order to identify and isolate functional faults both at design-
time and runtime. The main contributions presented in this dissertation are: (1)
diagnosis of the correctness of business process models which include semantic
information to describe the behaviour of the processes; (2) decision about the bet-
ter places to monitor the processes in order to diagnose possible functional faults
at runtime; and (3) diagnosis of the abnormal behaviour of activities at runtime
for correctly designed processes.

More precisely, in a first place, we propose a fully automated approach for
diagnosing correctness of semantic business process models referencing both the
control flow and data flow perspectives, in which the semantics of activities is
specified with pre and postconditions. The control flow and data flow perspec-
tives of the models are modelled in an integrated way using Artificial Intelligence
techniques, enabling the verification and diagnosis of two kinds of correctness of
complex semantic business process models in an efficient way.

Secondly, the diagnosability problem in business processes is addressed. Di-
agnosability analysis aims to determine whether observations available during the
execution of a system are sufficient to monitor and precisely locate the source
of a problem. Therefore, one of the aims of this Thesis is to determine a test-
point allocation to obtain sufficient observable data in the data flow to allow the
discrimination of faults for a later diagnosis process. This objective is formally
stated in terms of an optimization problem, and reaches a given objective function
depending on the business policy, under a set of constraints due to the availability

v

vi

of test-point resources within the domain. Three test-point allocation strategies
are proposed to ensure the best business process diagnosability.

And finally, in order to identify and isolate functional faults at runtime, this
Thesis Dissertation provides two techniques to diagnose the abnormal behaviour
of the activities by means of an analysis of the trace of process instances, depend-
ing on the information available on the model: (1) if the model counts on business
rules defining the behaviour and semantics of the process, we propose to auto-
mate the diagnosis of the abnormal executions by taking into account the involved
activities and their business compliance rules, and using these rules to determine
the activities which are not working in accordance with the contract defined in
the model; and (2) if the model does not include any semantic information, or the
available information cannot be modelled as a contract, this Thesis Dissertation
provides a proposal to diagnose faulty activities in business-to-business collabo-
rations using choreography structural analysis.

Resumen

Cada dı́a más empresas tienden a automatizar los procesos más complejos y crı́ticos
de sus servicios y operaciones mediante el uso de sistemas de gestión de procesos
de negocio. En consecuencia, existe un creciente interés en mejorar la calidad
de estos procesos, para asegurar que se alcanzan los objetivos de negocio y hacer
que las empresas sean más competitivas. Para cumplir con este objetivo, es nece-
sario detectar cuándo y porqué un proceso no cumple sus objetivos de negocio, y
que esto se haga de la forma más eficiente posible, haciendo ası́ a las empresas
competitivas. Con este fin, en la presente memoria de Tesis se aplican técnicas de
diagnosis en diferentes fases del ciclo de vida de los procesos de negocio para, de
esta forma, identificar y aislar fallos funcionales tanto en tiempo de diseño como
de ejecución de los procesos. Las principales aportaciones presentadas en la pre-
sente memoria de tesis comprenden: (1) diagnosis de la corrección del modelo de
los procesos mediante el uso de la descripción semántica de su comportamiento;
(2) decisión acerca de dónde es mejor realizar la monitorización de los procesos de
negocio para ası́ poder diagnosticar posibles errores de funcionamiento en tiempo
de ejecución; y (3) diagnosis del comportamiento incorrecto de actividades en
tiempo de ejecución para procesos correctamente diseñados.

Más concretamente, en primer lugar, se propone un enfoque totalmente au-
tomático para diagnosticar la corrección de modelos semánticos de procesos de
negocio. Dichos procesos reflejan tanto la perspectiva de flujo de control como la
de flujo de datos, en los que la semántica de las actividades se especifica mediante
el uso de pre y postcondiciones. Ambas perspectivas son modeladas de forma
integrada mediante el uso de técnicas de Inteligencia Artificial, permitiendo la
verificación y diagnosis de dos tipos de corrección de modelos complejos de pro-
cesos de negocio de manera eficiente.

En segundo lugar, se trata el problema de la diagnosticabilidad de los proce-
sos de negocio. El objetivo del análisis de la diagnosticabilidad es determinar si
las observaciones disponibles durante la ejecución de un sistema son suficientes

vii

viii

para monitorizar y localizar el origen de un problema de forma precisa. Por lo
tanto, uno de los objetivos de esta Tesis es determinar la colocación de puntos de
test para obtener los suficientes datos observables en el flujo de datos que per-
mitan la discriminación entre fallos en un proceso de diagnosis posterior. Este
objetivo se describe formalmente como un problema de optimización, para alcan-
zar una determinada función objetivo dependiendo de la polı́tica de negocio, bajo
un conjunto de restricciones derivadas de la disponibilidad de puntos de test. Se
proponen tres estrategias de colocación de puntos de test para asegurar la mejor
diagnosticabilidad de procesos de negocio.

Y por último, para identificar y aislar fallos en tiempo de ejecución, esta
memoria de Tesis proporciona dos técnicas para la diagnosis del comportamiento
operacional de las actividades a partir de los datos de entrada y salida, mediante el
análisis de las trazas de las instancias del proceso, dependiendo de la información
disponible en el modelo: (1) si el modelo cuenta con un contrato que define la
semántica del proceso, se propone la automatización de la diagnosis de las eje-
cuciones anómalas de los procesos. Esto se llevará a cabo teniendo en cuenta la
actividades participantes y sus reglas de negocio, y utilizando dichas reglas para
determinar las actividades cuyo comportamiento no es acorde al contrato definido
en el modelo; y (2) si el modelo no include ninguna información semántica, o
bien la información disponible no puede modelarse como un contrato, la pre-
sente memoria de Tesis proporciona un enfoque para diagnosticar actividades de
comportamiento incorrecto en colaboraciones entre procesos mediante el análisis
estructural de la coreografı́a.

Contents

Contents xii

List of Figures xvi

List of Tables xvii

I Preface 1

1 Introduction 3
1.1 Research Context and Motivation 3
1.2 Contributions . 7
1.3 Structure of this Dissertation . 12

II Background 15

2 Business Processes 17
2.1 Concepts . 17
2.2 Business Process Model . 19

2.2.1 Control Flow Perspective 19
2.2.2 Data-Flow Perspective 20

2.3 Background to Business Process Analysis 22
2.3.1 Verification Analysis Methods 24
2.3.2 Validation Analysis Methods 25
2.3.3 Performance Analysis Methods 26
2.3.4 Discussion . 27

ix

x CONTENTS

3 Diagnosability and Model-Based Fault Diagnosis 31
3.1 Diagnosability . 32
3.2 Model-Based Diagnosis . 35

3.2.1 FDI: Analytical Redundancy Approach 37
3.2.2 DX: Logical Diagnosis Approach 40

3.3 Distributed Diagnosis . 41
3.3.1 Decentralized Approaches 42
3.3.2 Distributed Approaches 44

4 Constraint Programming 49
4.1 Basic Concepts in CSP Modelling 50

4.1.1 Consistency . 51
4.1.2 Search Algorithms . 51
4.1.3 Constraint Optimization Problem 51
4.1.4 Integer Programming . 52

4.2 Overconstrained Constraint Satisfaction Problems 52
4.3 Business Data Constraints and CP 55

III Contribution I: Verification of Semantic Business Pro-
cess Models 59

5 Diagnosing Semantic BP Models 61
5.1 Introduction . 61

5.1.1 Motivation . 61
5.1.2 Contribution . 62
5.1.3 Illustrative Example . 64

5.2 Workflow Data Graphs . 69
5.2.1 Definitions . 69
5.2.2 Analysis of the Diagnosis Problem 71

5.3 Diagnosis of Workflow Data Graphs 75
5.3.1 Combined IP and CSP Model 76
5.3.2 Detecting Basic Data-Flow Errors 79
5.3.3 Algorithm for May-correctness 81
5.3.4 Algorithm for Must-correctness 83
5.3.5 Diagnosing the Motivating Example 84

5.4 Implementation and Empirical Evaluation 86
5.4.1 Implementation . 86

CONTENTS xi

5.4.2 Experimental Design . 89
5.4.3 Performance Results . 89

5.5 Summary . 90

IV Contribution II: Diagnosability in Business Processes 93

6 Improving the diagnosability in BP models 95
6.1 Introduction . 95

6.1.1 Motivation . 96
6.1.2 Contribution . 97
6.1.3 Illustrative Example . 98

6.2 Diagnosability of Business Processes 100
6.2.1 Definitions . 100
6.2.2 Objectives for the Improvement of the Diagnosability of

a Business Process . 101
6.3 Test-Point Allocation Methodology 103

6.3.1 Improving Diagnosability Using Constraint Programming 105
6.3.2 Objective 1: Maximization of the Number of Clusters

with the Allocation of a Fixed Number of Test Points. . . 108
6.3.3 Objective 2: Allocation of the Minimum Number of Test

Points in Order to Obtain a Fixed Number of Balanced
Clusters. 110

6.3.4 Objective 3: Minimization of the Number of Test Points
to be Allocated in Order to Obtain Clusters with a Maxi-
mum Number of Activities. 111

6.4 Implementation and Empirical Evaluation 116
6.4.1 Implementation . 116
6.4.2 Experimental Design . 118
6.4.3 Performance Results . 119

6.5 Summary . 121

V Contributions III and IV: Fault Diagnosis of Business Pro-
cesses at Runtime 123

7 Diagnosis based on Business Data Constraints 125
7.1 Introduction . 125

xii CONTENTS

7.1.1 Motivation . 126
7.1.2 Contribution . 127
7.1.3 Illustrative Example . 129

7.2 Contract-based Diagnosis of BPs 131
7.3 Diagnosis Process by using Business Data Constraints 133

7.3.1 Contract-based Diagnosis Using Reified Constraints and
Max-CSP . 135

7.3.2 Determination of MUSes for Contract-based Diagnosis . . 136
7.4 Empirical Evaluation . 138

7.4.1 Experimental Design . 138
7.4.2 Performance Results . 139

7.5 Summary . 140

8 Diagnosis based on Structural Analysis 143
8.1 Introduction . 143

8.1.1 Motivation . 144
8.1.2 Contribution . 144
8.1.3 Illustrative Example . 146

8.2 Main Concepts for the Structural Diagnosis 147
8.3 Logic and Distributed Algorithm 149

8.3.1 Determining the Compiled Orchestration Model 150
8.3.2 Propagation Phase . 153
8.3.3 Local Diagnosis Phase 157

8.4 Empirical Evaluation . 159
8.4.1 Experimental Design . 159
8.4.2 Performance Results . 160

8.5 Summary . 161

VI Conclusions and Future Work 163

9 Final Remarks 165

10 Future Work 171

Bibliography 173

List of Figures

1.1 Business process lifecycle . 4
1.2 Diagram with the contributions for the diagnosis of business pro-

cesses . 8

2.1 Main business process gateways 21

3.1 Polybox system . 37

5.1 Example of business process . 64
5.2 Example of instance subgraph (shadowed activities) 73
5.3 Diagram of the process . 75
5.4 Business process example . 78
5.5 Algorithm for checking absence of conflicts 80
5.6 Algorithm for checking may-correctness 82
5.7 Algorithm for checking must-correctness 84
5.8 Screenshot of DiagFlow indicating may-correctness 88
5.9 Screenshot of DiagFlow indicating no must-correctness 88
5.10 Performance results . 90

6.1 Motivating example . 99
6.2 Graphical representation of the approach 104
6.3 Example of hyperedge transformation 105
6.4 Motivating example with two test points 107
6.5 Business process with four levels 113
6.6 Business process with labels in the activities 113
6.7 Tree of levels . 114
6.8 Greedy recursive algorithm for the allocation of test points 115
6.9 Reduced business process . 116
6.10 Screenshots of Test-Point Allocator 117

xiii

xiv LIST OF FIGURES

6.11 Execution time for Objective 1 118
6.12 Execution time for Objective 2 119
6.13 Execution time for Objective 3 120

7.1 Example of the business process for the organization of a conference129
7.2 Contract-based diagnosis process 131
7.3 Algorithm to obtain the MUSes (I) 137
7.4 Algorithm to obtain the MUSes (II) 138

8.1 Example of Business-to-Business Collaboration 146
8.2 Phases of the diagnosis process 150
8.3 Graphical representation of a local path with three Internal Subsets 153
8.4 Paths and Internal Subsets of the Business-to-Business Collabo-

ration . 154
8.5 Algorithm executed when a local diagnoser receives information . 156
8.6 Procedure for labelling interactions as correct or incorrect 157
8.7 Procedure for propagating information 158
8.8 Signature matrix of a path of BP2 158
8.9 Graphic representation of the results 161

List of Tables

2.1 Mapping of the Business Process Analysis methods addressed . . 29

3.1 Signature matrix for single faults 39

5.1 Data input for the example in Figure 5.1 66
5.2 Data read and written on each activity 66
5.3 Activities with their pre and postconditions 67
5.4 Variables before and after the renaming 79
5.5 Activities with their pre and postconditions in SSA form 85

7.1 Data input domain for the example in Figure 7.1 129
7.2 Business data constraints for the example in Figure 7.1 130
7.3 Comparison between MUSes algorithms 140
7.4 Diagnosis results . 141

8.1 Notation for the elements in a collaboration 147
8.2 Temporal results . 161

xv

Part I

Preface

1

Chapter 1

Introduction

Nowadays, organizations are automating more complex and critical processes of
their services and operations with business processes that can be enacted using
Business Process Management Systems. Within the companies, the performing
of the activities related to those processes is carried out by the staff of the organi-
zation or by external companies, which can be helped by information systems, or
even in a fully automated way by information systems.

For an organization to reach its business goals and become more competitive,
it is important to count on high quality business processes. It becomes neces-
sary that the processes are accurate, suitable and effective, which entails they are
carried out without failures, or with the percentage of failures as low as possible.
Each process that affects a business goal is vital for the business success. Thereby,
it is crucial to provide techniques to improve the quality of the execution of the
processes, by diagnosing and isolating the possible failures that take place. This
is the aim of the current Thesis Dissertation, in order to improve overall system
functionalities by applying diagnosis techniques at different stages of the business
process lifecycle in efficient ways to detect the responsible for a malfunction.

1.1 Research Context and Motivation

The development of Information Technologies (IT) and the requirements of the
organizations have made the integration of systems become necessary (e.g. Web
Services, software applications or even business applications). These systems,
together with the participation of human resources, develop collaborative tasks
to fulfil business goals. To this end, in the last years, there is a trend toward

3

4 CHAPTER 1. INTRODUCTION

the automation of the operations performed by organizations by using business
processes. They are used to collect, organize and synchronize tasks which are
logically related and should be carried out to achieve a defined goal, even when
the goal requires interaction with other organizations. By means of the use of
business processes within the organizations, a better understanding of the opera-
tions can be achieved, but it entails pros and cons: on the one hand, they enable
the development of larger and more complex projects automating the process, and
reusing and paralleling tasks; on the other hand, they imply the use of automatic
monitoring and fault diagnosis methodologies.

Business Process Management (BPM) enables to ensure the effective and ef-
ficient design of business processes, administration, configuration, enactment and
analysis, which are phases of the business process lifecycle, usually organized in
a cyclical structure (Weske, 2007), shown in Figure 1.1.

Figure 1.1: Business process lifecycle

In the Design & Analysis phase, business processes are modelled, including
validation and verification by simulating the execution of the just designed pro-
cesses. Then, they are implemented in the Configuration phase by configuring a

1.1. RESEARCH CONTEXT AND MOTIVATION 5

process-aware information system, entailing the testing of the implementation. In
the Enactment phase, the business processes are deployed using the configured
system, and the execution of process instances takes place. Finally, in the Eval-
uation phase, the processes are monitored and analysed to evaluate and improve
business process models and their implementations.

When, during this lifecycle, a business process is enacted using a Business
Process Management System (BPMS) and a process is executed, any fault which
affects the behaviour of the process -with respect to the managed data- has neg-
ative effects on the operational activities over the organization or organizations
which are collaborating, revealing low quality of the services and products. Ex-
amples of faults could be a process that gets stuck and never finishes, or an ex-
pected goal that is not achieved. These faults can be detected by end-users or
customers which present their corresponding complaints about the accuracy of
the service, or even by monitoring systems, leading to problems such as angry
customers, damage claims, and low service levels.

Fault diagnosis aims to determine why a business process does not work as it is
expected. The diagnosis goal is to identify the reason of an unexpected behaviour,
or in other words, to identify the part or parts which fail in a business process.
Hence the fault detection and later diagnosis of business processes becomes cru-
cial, since their proper working is an essential requirement to maintain the busi-
ness processes in desirable quality and production levels. The unexpected faults
can cause undesirable stops in the processes, causing cost increase and produc-
tion decrease. Therefore, through the inclusion of automatic diagnosis techniques
in the business process lifecycle, the quality of the attained business processes is
improved by ensuring the right or agreed results or effects of business processes
with the needed degree of precision (accuracy), providing an appropriate function
for specified user objectives (suitability), which enables users to achieve specified
goals with accuracy and completeness (effectiveness) (Weske, 2007; van der Aalst
et al., 2003; Heravizadeh et al., 2009).

The different tasks which compose a business process related to important op-
erations or products of a company are often buried among other applications or
even the practices of the staff in the organization. This makes difficult to under-
stand how a process works exactly, who does what, and who is responsible for
each task. The way in which the faulty elements are isolated in the processes of
an organization indicates the level of control that the organization has on the busi-
ness. It makes possible for the organizations to identify quickly the points where
the business processes fail, or also where the human errors are often in activities

6 CHAPTER 1. INTRODUCTION

like introducing data in the information systems or designing business processes
in accordance with data inputs and outputs.

During the aforementioned lifecycle of business processes, there are different
stages where it should be considered to perform different diagnosis tasks.

In detail, after the analysis of the most appropriate strategies to reach a defined
goal, and the designing of the model of a business process to carry it out (Busi-
ness Process Modelling within the Design & Analysis phase in Figure 1.1), it is
desirable to verify the correctness of the defined model. Validation, Simulation,
Verification in Figure 1.1 is in charge of this activity. In the case the model is not
verified correct, a new redesign of the model is required.

Regarding the kind of errors that a business process model may present, two
different kinds of verifications are necessary in accordance with both perspectives
of a model:

• Verification of the control flow perspective. This perspective concerns the
topology and conditions that set the order in which the individual activities
within a business process are executed. This kind of verification of a model
entails the identification of structural errors, such as deadlocks, livelocks,
etc.

• Verification of the data flow perspective. This perspective details the flow of
data among activities subject to certain constraints that define (i) a business
contract to determine behaviour or semantics of the overall process, or (ii)
the semantics of individual activities by annotating them with pre and post-
conditions. This kind of verification of a model includes the checking of
missing or redundant data, read/write data conflicts, or even inconsistencies
in the modelling of the semantics.

Once the business process model has been verified correct, the Design & Anal-
ysis phase ends, and the corresponding business process is configured and enacted
in order to put it in operation and enable the executions of business process in-
stances (phases Configuration and Enactment in Figure 1.1).

In the case that, during the testing of an implementation (Test & Deployment
in Figure 1.1) or after the execution of a process instance (Operation in Figure
1.1), the goal to achieve by the business process is not reached, it is necessary
to perform the diagnosis of the process in order to determine the source of the
problem. This diagnosis can be focused on two possible causes of the fault: (1)
certain activity or activities within the business process are not working as they

1.2. CONTRIBUTIONS 7

were modelled; or (2) there exists some kind of inconsistency in the data inputs
introduced through some kind of human interface, service, application, etc.

Regarding the first cause, in order to identify and isolate the incorrect activity
or activities, it should be considered that the diagnosis process is based on obser-
vations, which provide information about the behaviour of the process. Depend-
ing on those observations, the business process can be diagnosed with a higher or
lower level of accuracy. If the diagnosis is based on a few observations, or even
if they are not performed at the most convenient locations in the business process,
it would be very difficult to distinguish which parts of the business process are
failing. Both the amount of observations and their locations make possible to pre-
cisely locate the source of the problem. This determines the diagnosability level
of business processes.

The success of the introduction of Business Process Management Systems in
an organization lies in the necessity of doing an appropriate integration of the
model of the processes (control flow and data flow perspectives) with the automa-
tion of these processes and the isolation of the faults that appear during the exe-
cutions (fault diagnosis).

1.2 Contributions

Fault diagnosis is a problem which has been widely analysed for several areas of
knowledge. Nevertheless, the adaptation of the existing diagnosis techniques to
business processes, and the performing of new methodologies in accordance with
the features of business process models, are researching topics of great applica-
tion and relevance which have only been deeply explored by other researchers
regarding the control flow perspective of business processes.

Those are the aims of the current Thesis Dissertation, whose main goal is
to provide automatic techniques to diagnose business processes from both the
business process model (describing expected behaviour) and the available obser-
vations (facilitating the actual behaviour). In short, our contributions entail: (1)
the verification of the correctness of semantic business process models (in terms
of the data flow perspective); (2) the improvement of the diagnosability by al-
locating test points in order to provide sufficient observations showing the actual
behaviour of business processes; and the diagnosis of activities which do not work
as they were modelled either (3) with semantics or (4) without semantics in their
models. The diagram in Figure 1.2 shows the relation between these contribu-

8 CHAPTER 1. INTRODUCTION

tions, represented as a workflow with the corresponding data inputs and outputs,
detailed in the following.

Figure 1.2: Diagram with the contributions for the diagnosis of business processes

In accordance with the stages presented in Figure 1.1, the starting point of
our contributions in Figure 1.2 is a designed business process model, counting
on both control flow and data flow perspectives, represented as data inputs of
our contributions. Likewise, these contributions are represented as tasks within
the workflow to provide certain functionalities: (1) Verification of Correctness of
Semantic Models task, to verify the correctness of business process models with
regard to the data flow perspective, in an off-line way (i.e. before the business
processes are enacted); (2) Improvement of Diagnosability task, using the veri-
fied correct models to determine the places where each business process should
be monitored in order to attain sufficient observations; (3) Quantitative Diagno-
sis based on Business Compliance Rules task, to perform run-time diagnosis of
processes which, counting on a contract to describe the behaviour within the data
flow perspective, do not work as expected; and (4) Qualitative Diagnosis based on

1.2. CONTRIBUTIONS 9

Structural Analysis task, to also diagnose processes at run-time, without contract
to describe the behaviour in this case and thereby using only structural analysis of
the topology of the processes. These contributions are detailed in the following.

Verification of Correctness of Semantic Models

As it was stated above, it is desirable to ensure the correctness of the model before
using it to configure and enact business processes during the stages of the lifecycle
(cf. Figure 1.1). To this end, our proposal counts on the Verification of Correctness
of Semantic Models contribution, which is in charge of verifying the correctness
of business process models with regard to the data flow perspective.

Control flow verification of models has been deeply explored by other re-
searchers, so that errors arisen from incorrect design of the structure of the pro-
cesses, such as livelocks and deadlocks, count on several previous works in the
literature. Therefore, this approach provides a contribution focused on the di-
agnosis of business process models with available data flow perspective. More
precisely, when the data flow perspective of the model includes annotations about
the behaviour of each single activity, it is possible to diagnose the semantics of
the model in a deeper way. Then, this Thesis Dissertation provides a fully auto-
mated approach in Chapter 5 for diagnosing two kinds of correctness of business
process models in which the semantics of the activities is specified with pre and
postconditions.

To this end, this contribution models the control flow and data flow perspec-
tives in an integrated way by using the Constraint Programming paradigm (re-
ferred to as CP in Figure 1.2).

Improvement of Diagnosability

Diagnosis techniques are based on observations about the actual behaviour of pro-
cesses in order to be able to identify and isolate the responsible for any malfunc-
tion. Therefore, it is a design-time requirement to consider that, since there is not
a single entity which has a global view of the complete data flow model, the ob-
servations available during the execution of a business process cannot be enough
to precisely locate the source of a problem. In order to avoid a low diagnosability
of business processes, the proposal in Figure 1.2 counts on the Improvement of Di-
agnosability task in charge of the diagnosability improvement. That is performed
over a business process model already verified correct and before the enactment
of the business processes. As a result, Observational Models of the processes are

10 CHAPTER 1. INTRODUCTION

attained, so that later diagnosis processes can count on observable data from the
data flow in order to get a minimal diagnosis.

As contribution in this field, Chapter 6 provides a technique to monitor busi-
ness processes in order to improve their diagnosability. This is done by carrying
out observations, not only at the outputs of the processes, but at certain interme-
diate flows by means of the allocation of test points over the input and output
variables of the activities. This fact guarantees the observability and monitoring
of the data flow at those locations during the execution of a business process in-
stance. Therefore, the optimal allocation of test points is essential, since if the test
points are not correctly allocated, the observed data may not be useful to isolate
the faults.

In order to get fully diagnosable business processes, a solution to consider
would be to allocate test points at every flow between any pair of activities of the
business processes. However, this is not an efficient solution due to several rea-
sons like the extra cost derived from the monitoring and evaluation of too many
test points, or even to confidentiality, privacy or security policies that forbid the
observation of some data flowing through the business process. Therefore, the
contribution detailed in Chapter 6 opts for selecting the test points which are nec-
essary and economically feasible -in term of test-points resources- to get an ex-
pected diagnosability level. It faces up to three independent objectives to reach,
derived from the most common requirements of the organizations, like economic
limitations, or even the optimization of the execution time of a later diagnosis
process.

Quantitative Diagnosis based on Business Compliance Rules

When business processes are built over models which include a data flow per-
spective to define business contracts, those contracts determine, by means of rules
which should be complied, the behaviour or semantics of the overall business pro-
cess, providing quantitative information about the relation among data involved in
the execution of each activity.

Faults which are caused by the no compliance of the contract have to be de-
tected after the execution of a process instance, since it is not possible to diagnose
them before the enactment and execution of the process but at run-time after a
discrepancy between the observed and expected behaviour is identified.

Therefore, the Quantitative Diagnosis based on Business Compliance Rules
task is in charge of this kind of diagnosis, detailed in Chapter 7, which presents

1.2. CONTRIBUTIONS 11

an automatic diagnosis method by applying Model-Based Diagnosis principles
(MBD in Figure 1.2) to verify the correctness of the activities by analysing the
corresponding business compliance rules and the available quantitative data. It
establishes relationships between the compliance rules and each activity (or set
of activities), that represent the contract (i.e. behaviour) that each activity should
satisfy throughout the data flow.

The contribution uses two strategies based on Constraint Programming to con-
sider the trade-off between the obtaining of the minimal diagnosis and the perfor-
mance.

Qualitative Diagnosis based on Structural Analysis

On the other hand, when business processes models, already verified correct, only
count on the control flow perspective, or even when the data flow perspective is
not modelled as a behavioural contract, it is again not possible to diagnose the
discrepancies that may occur after a process instance until they are enacted and
executed. That is, a diagnosis process can be performed if, after the execution or
testing of the business processes, an abnormal behaviour is reported by the user.
Then, some parts of the processes are not working correctly according to their
behavioural model.

To this end, the Qualitative Diagnosis based on Structural Analysis task, de-
tailed in Chapter 8, is in charge of the diagnosis of business processes based only
on the structural analysis of the control flow of the processes and the available
qualitative observations indicating if some discrepancy is identified. Due to there
is not single entity with a global view of the overall business processes, the method
in Chapter 8 uses a local Diagnoser linked to each business process involved in
the attainment of the objective to reach. The set of local diagnosers works in a
coordinate way, being the diagnosis result the activity or activities which are not
working as they were modelled. Since the diagnosis process takes place when the
business processes have already been enacted, in order to avoid long wait times,
the contribution gets a more efficient diagnosis process by performing an off-line
analysis of the structure of the processes, attaining a preprocessed model which is
the base to perform the Model-Based Diagnosis (MBD) getting an improvement
of the execution time.

12 CHAPTER 1. INTRODUCTION

1.3 Structure of this Dissertation

This Thesis Dissertation is organized as follows:

Part I: Preface. The first part consists of an introductory chapter.

1. The first chapter, Introduction, gives an overview of the main goals pur-
sued in this dissertation. In includes a brief explanation of the research
context and motivation, as well as a short presentation of the main con-
tributions, represented and related in a global diagram, and later detailed
independently.

Part II: Background. The purpose of the second part is to describe the main con-
cepts which should be known for a better understanding of the proposals
described in subsequent parts. It consists of three chapters.

2. The second chapter, Business Processes, collects the main concepts about
business process models, and presents background to business process veri-
fication, validation and performance techniques, detecting the aspects which
have not been previously considered in the literature.

3. The third chapter, called Diagnosability and Model-Based Fault Diagno-
sis, shows the most used methodologies regarding fault identification and
isolation, as well as previous works on the study of the diagnosability of
systems. Since the possibility to diagnose a system depends on the avail-
able observations after its execution, this chapter starts with a review about
the existing diagnosability analysis methodologies. Finally, main concepts
and techniques regarding diagnosis of systems with distributed information,
as in the case of business processes, are introduced.

4. The forth chapter, Constraint Programming, presents the main concepts
and definitions regarding the Constraint Programming paradigm, which is
used as the base for the implementation and automation of most of the con-
tributions provided in this dissertation.

Part III: Contribution I. Verification of Semantic Business Process Models.
This part presents the first contribution of this dissertation.

1.3. STRUCTURE OF THIS DISSERTATION 13

5. The fifth chapter, Diagnosing Correctness of Semantic Business Process
Models, presents a first fully automated contribution for the diagnosis of
the correctness of semantic business process models in which the semantics
of activities is specified with pre and postconditions. The diagnosis is per-
formed at design-time, using Constraint Programming and Integer Program-
ming techniques to compute the execution instances allowed by a business
process model, and verifying two kinds of correctness of business process
models. As a result, a tool has been implemented.

Part IV: Contribution II. Diagnosability in Business Processes. This part in-
cludes a chapter to present our contribution in the field of diagnosability
in business processes.

6. The sixth chapter, Improving the Diagnosability in Business Process Mod-
els, presents a contribution which addresses the diagnosability problem in
business processes, providing a solution based on the determination of a
test-point allocation to obtain sufficient observable data in the data flow to
allow the discrimination of faults for a later diagnosis process.

Part V: Contributions III and IV. Fault Diagnosis of Business Processes at
Runtime. This part consists of two chapters to presents two contributions
on the diagnosis of business processes at run-time, depending on the avail-
able semantic information.

7. The seventh chapter, Diagnosis of Business Processes based on Business
Data Constraints, presents a contribution which proposes an automatic di-
agnosis method for business processes whose data flow perspective of the
business process model is available. The proposed diagnosis method is
based on the comparison of the expected and observational model when
some discrepancy is identified after the execution of process instances.

8. The eighth chapter, Diagnosis of Business Processes based on Structural
Analysis, presents the last contribution of this thesis Dissertation, which
provides a solution to diagnose faulty activities in business-to-business col-
laborations in the case that it is not possible to count on semantics to define
the behaviour of the processes, or it cannot be modelled as a behavioural
contract to be automatically treated.

Part VI: Conclusions and Future Work. Finally, this part includes two chapters
to conclude the dissertation.

14 CHAPTER 1. INTRODUCTION

9. The ninth chapter, Final Remarks, summarizes the main conclusions which
were obtained during the development of this thesis.

10. And lastly, the tenth chapter, Future Work, shows some future work which
is intended to be addressed.

Part II

Background

15

Chapter 2

Business Processes

Since the current Thesis Dissertation aims to provide techniques to improve the
quality of business processes, this chapter provides background regarding busi-
ness process management. Specifically, it gives an overview of the main concepts
about business process models, and presents background to business process ver-
ification techniques.

2.1 Concepts

Nowadays, in order to attract and retain customers and business partners, organi-
zations need to provide their services by means of business processes (cf. Defini-
tion 2.1) with high and consistent quality.

Definition 2.1. A business process consists of a set of activities that are performed
in coordination in an organizational and technical environment. These activities
jointly realize a business goal (Weske, 2007).

The quality of business processes can be defined as the capacity to produce and
deliver quality products. This quality is usually measured by means of aspects
such as accuracy or security (Heravizadeh et al., 2009). Through the verification
of business process models, and the diagnosis of their incorrect behaviour at run-
time, some aspects regarding the quality of the processes, often neglected, are
considered and improved. Some of those aspects are the accuracy and suitability
of business processes, detailed in the following.

• The capability of a business process to provide the expected results with a
certain degree of precision is called the accuracy of the process. The veri-
fication and diagnosis of business processes ensures the obtaining of results

17

18 CHAPTER 2. BUSINESS PROCESSES

in accordance with the expected behaviour, guaranteeing the attainment of
the expected results.

• The suitability of a business process refers to the capacity to provide the
appropriate solution to get the specified business goals. Since those business
goals are defined in the model, the diagnosis of business processes improves
this aspects by ensuring the correspondence between the obtained results
and the expected business goals to reach.

Business processes design, automation and management tasks, included in Busi-
ness Process Management (cf. Definition 2.2) (van der Aalst et al., 2002; Jablon-
ski and Bussler, 1996), are continuously evolving in order to improve the quality
and efficiency of business processes. Business Process Management can be con-
sidered as an extension of classical Workflow Management (WFM) systems and
approaches.

Definition 2.2. Business Process Management (BPM) includes concepts, meth-
ods, and techniques to support the design, administration, configuration, enact-
ment, and analysis of business processes (Weske, 2007).

These tasks are part of the business process lifecycle (Weske, 2007) (Figure 1.1),
some of them coordinated by the use of a Business Process Management System
(cf. Definition 2.3).

Definition 2.3. A Business Process Management System (BPMS) is a generic soft-
ware system that is driven by explicit process representations to coordinate the
enactment of business processes (Weske, 2007).

By definition, business processes are performed in a single organization, which
enables their centralized control and management, known as process orchestra-
tion. Nevertheless, several orchestrations from a same or different organizations
can interact with each other, performing a business-to-business collaboration, whose
interactions is performed by sending and receiving messages. This is due to the
execution constraints between activities from different processes, which give rise
to business process choreographies (cf. Definition 2.4). In this cases, high quality
of business processes is even more difficult to attain.

Definition 2.4. A business process choreography is an interaction of a set of busi-
ness processes, by means of sending and receiving messages, with the absence of
a central agent to control the activities in the business processes involved.

2.2. BUSINESS PROCESS MODEL 19

The growing development of business processes has stirred several communities’
interest, which try to improve and facilitate the performing of the phases in the
lifecycle, above all analysing and checking the correctness of the business process
model, detailed in the next section.

2.2 Business Process Model

According to Weske (2007), a business process model can be defined as stated in
Definition 2.5.

Definition 2.5. A business process model consists of a set of activity models and
execution constraints between them.

The model of a business process should have a degree of formality in order to
clearly specify two perspectives of the processes: the control flow and the data
flow perspectives. Several approaches support the modelling of business pro-
cesses. Some examples are Petri Nets (Petri, 1962) and Statechart and Activity
Diagrams (Booch et al., 2005), which allow the modelling of the control flow per-
spective; Event Driven Process Chains (EPC) (Scheer, 2000) that enables mod-
elling of business processes conceptually; and Business Process Model and No-
tation (BPMN 2.0) (OMG, 2011), which is a standard that provides graphical
notation and is able to represent complex process semantics.
For the performing of the current Thesis Dissertation, BPMN 2.0 has been chosen
for business process modelling, since BPMN is an international standard for pro-
cess modelling accepted by the community, which is independent of any process
modelling methodology. It is specifically designed to coordinate the sequence of
the processes and the messages flowing between participants in the different activ-
ities. BPMN provides a common language to enable the communication between
processes in a clear, complete, and efficient way.

2.2.1 Control Flow Perspective

Business process models specify the activities, with their relationships, that are
performed within a single organization, or between activities of different pro-
cesses participating in a business-to-business collaboration.
The interaction between activities in different processes is just through sending
and receiving messages. However, within each single business process, the de-

20 CHAPTER 2. BUSINESS PROCESSES

cisions and branching of flows are modelled using gateways, also called control
flow patterns. Basic patterns in BPMN 2.0 are:

• Sequence pattern: This is the fundamental building block for workflow
processes. It represents a series of activities which are executed in turn one
after the other (Fig. 2.1 a)).

• Parallel split (AND-split): A single thread of execution is split into two or
more parallel branches which can execute activities concurrently (Fig. 2.1
b)).

• Synchronization (AND-join): Two or more parallel branches that converge
into a single branch. The execution of the single branch begins when all the
parallel branches have been enabled (Fig. 2.1 c)).

• Exclusive choice (XOR-split): A single branch that diverges into two or
more branches. When the execution of the activity A1 has finished, only
one of the outgoing branches is executed depending on the evaluation of a
logical expression associated with a condition of the operator (Fig. 2.1 d)).

• Simple Merge (XOR-join): Two or more branches converging into a single
branch. Each time that the execution of a branch is finished, the thread of
control is passed to the single branch (Fig. 2.1 e)).

• Multi-choice (OR-split): A single branch that diverges into two or more
branches. When the execution of the single branch has finished, the thread
of control is passed to one or more branches depending on the evaluation of
different logical expressions, one for each branch (Fig. 2.1 f)).

• Structured Synchronizing Merge (OR-join): Two or more branches con-
verging into a single branch. It is an assumption of this pattern that the
branches come from an OR-split. The single branch will be executed when
all the active branches finish their execution (Fig. 2.1 g)).

2.2.2 Data-Flow Perspective

In addition to the control flow perspective to express the structure of business
processes, one of the most important aspects in the business process model is the

2.2. BUSINESS PROCESS MODEL 21

Figure 2.1: Main business process gateways

data-flow perspective. It describes which data are consumed and produced during
the execution of a business process.
The data managed can be divided into observable data (data input and final data
output of the overall process) and data that can remain unobservable due to pri-
vacy or security policies (intermediate data input and output of each activity).
The relations between these data are expressed by means of the use of business
compliance rules in the data-flow perspective.
Business compliance rules describe both the semantics of the data managed within
business processes, and the contract describing the operational behaviour that
should be satisfied. The basics of Business Process Management Systems is the
explicit representation of business processes with their activities and the execution
constraints between them. The description of the model is often insufficient to
fully describe the behaviour of the process, and hence business compliance rules
are added to improve the capacity of process description. Many studies propose
different taxonomies to classify business compliance rules (Cetin et al., 2006; Hay
et al., 2000; Ross, 2009; Sponsor, 2008). Business compliance rules can be un-
derstood as conforming to a rule such as a specification, a policy or a standardized
procedure, that represent a natural step towards the inclusion of semantic require-
ments between business functionality and data.

22 CHAPTER 2. BUSINESS PROCESSES

The current Thesis Dissertation focuses on the use of Business Compliance Rules
(Becker et al., 2011) to describe the data semantics of a business process for the
representation of the relations between DataObject values: these we have named
Business Data Constraints. These Business Data Constraints are understood as a
subset of business compliance rules which represent the semantic relation between
the data values that are introduced, read and modified during the business process
instances. Since each organization defines its own rules from its business policies
about things such as prices, costs, employee numbers, deadlines of tasks, and so
on, it is possible to specify a different set of Business Data Constraints for each
business process.
Likewise, Business Data Constraints influence the possible executions of activi-
ties. An effective means to express them is to annotate activities within a business
process with pre and postconditions to specify the behaviour of each activity in-
dependently. They enable the specification of the effect on the data state for each
activity.

2.3 Background to Business Process Analysis

In the last years, there is a growing interest in the analysis of business processes on
the part of certain research communities. They perform Business Process Analysis
(BPA, cf. Definition 2.6) to understand the properties from the business process
model, using its results to check inconsistencies in the model in order to improve
the management and quality of business processes. It is carried out for both per-
spectives of the models.

Definition 2.6. Business Process Analysis is the activity of reviewing business
processes at different stages of their lifecycle in order to ascertain how far they
achieve the business objectives, ranging from model verification at design time to
the monitoring of processes at runtime.

According to both the stage of the business process lifecycle where the analysis
is performed, and the aspects of the business process considered in the analysis,
it is possible to classify the business process analysis methods into two types of
analysis: at design-time and at runtime. The following classification is proposed,
which is based on previous classifications which have been discussed in the liter-
ature (van der Aalst, 2007; Weske, 2007; Huang et al., 2008).

2.3. BACKGROUND TO BUSINESS PROCESS ANALYSIS 23

• During the Design & Analysis stage of the business process lifecycle (Fig-
ure 1.1), some verification analysis methods should be used to ensure the
obtaining of a correct model.

. Verification analysis methods, which entails methods to detect syntax
errors or violations in the control flow and data flow perspectives of
designed business processes. This kind of analysis methods are per-
formed at design time, in order to correct these errors, avoiding the
incorrect modelling of business processes. Examples of such errors
are (1) common control flow anomalies (deadlock, livelock, . . .); (2)
the data flow anomalies concerning, for example, read/write conflicts;
and (3) data flow anomalies regarding the incorrectness of the business
data constraints included in the model.

• After the process is designed and implemented, it is necessary to perform
other kinds of analysis during the Enactment phase, when the process is in
operation.

. Validation analysis methods, entailing semantic or logical conflicts in
the models at design time. Examples of such errors are the violation
of business compliance rules regarding execution order of the activi-
ties, and the violation of the contract describing the behaviour of the
activities in a business process.

. Performance analysis methods, which focus on the quality of service
of designed processes. It concerns the detection of errors in runtime,
such as time-efficient conflicts, or the correct allocation of resources
(both human and machine).

. Diagnosis methods, in order to determine the activity or activities
which are the cause of a malfunction when, after the execution of a
process instance, the behaviour of the business process does not cor-
respond to the expected.

In the literature, it is possible to find different proposals of process analysis meth-
ods. However, as it is detailed in the next subsections, not all the aforementioned
analysis methods count on previous contributions in the bibliography.

24 CHAPTER 2. BUSINESS PROCESSES

2.3.1 Verification Analysis Methods

The aim of verification analysis methods is to check the correctness of business
process models, concerning the detection of syntax errors or violations in control
flow and data flow perspectives. Most modelling and verification approaches in
the literature only consider the control flow perspective of business process mod-
els. These contributions typically deal with errors in the modelling of the flow,
detecting deadlocks, livelocks (infinite loops) lack of synchronization, and dan-
gling reference (Karamanolis et al., 2000; Sadiq and Orlowska, 2000; Sadiq et al.,
2004; van der Aalst et al., 2002; Eshuis and Kumar, 2010), most of them check-
ing an important correctness criterion known as the soundness property, which
guarantees proper termination of the business processes.
In detail, Sadiq and Orlowska (2000) proposes a visual verification approach by
means of graph reduction rules which allows to discover structural conflicts in
business process models.
Moreover, van der Aalst et al. (2002) and van der Aalst (2004) propose to use Petri
net-based analysis techniques to diagnose workflows, providing three main types
of diagnostics by means of the use of their proposed workflow-verification tool,
Woflan: mismatches, locking scenarios, and coverability of threads of control.
Furthermore, the contribution in Huang et al. (2008) proposes a step-by-step con-
flict detecting mechanism to support process designers in analysing structural con-
flicts regarding livelock, starvation and lack of synchronization.
The contribution by Eshuis and Kumar (2010) introduces an approach for analysing
and diagnosing workflows based on Integer Programming (IP). The diagnosis
method has been implemented in a tool called DiagFlow, which reads and di-
agnoses XPDL models.
On the other hand, besides the structural verification regarding conflicts in the
control flow perspective, when the data flow perspective is not correctly designed
within the business process model, it can cause errors or conflicts, referred to as
data-anomalies in Sun et al. (2004), classified into three types in Sun et al. (2006):

1. Missing data. It takes place when a data item is accessed before it is ini-
tialized, for four different causes: (i) a data is never assigned an initial
value; (ii) an activity which uses a data item is executed before the activity
which initializes it; (iii) the initialization and access are performed in paral-
lel branches, thereby the data item may not have been initialized when it is
read; and (iv) the data item is used but not initialized under certain workflow
routing conditions.

2.3. BACKGROUND TO BUSINESS PROCESS ANALYSIS 25

2. Redundant data. A data item that does not contribute to the production of
the final output data of the process is produced, causing inefficiency. The
main cause is that a data item is produced by an activity, but never used by
any activity executed after it in the process instance.

3. Conflicting data. There exist different versions of the same data item. It is
impossible to decide which version of the data item should be considered.

Only in the last years, researchers started considering verification of workflow
models with data flows. However, these approaches do not consider verification
of data flow errors. Sun et al. (2004, 2006) define a data flow perspective on
workflows and identify several types of errors, based on earlier work by Sadiq
et al. (2004). The workflow models are abstract: they specify variables read and
written per activity, but do not specify the effect of each activity by means of pre
and postconditions.
Weber et al. (2010) consider verification of semantic business processes, in which
activities are annotated with pre and postconditions. They detect conflicts between
pre and postconditions of parallel activities and next study the reachability and
executability of the activities, but only if the activities are conflict free. In their
contribution, pre and postconditions are considered as CNF formulas with only
boolean variables. Therefore, the approach by Weber et al. (2010) cannot ver-
ify the correctness of workflows whose activities count on pre and postconditions
involving other kinds of data. Moreover, they focus on analysing the complex-
ity of several verification tasks for semantic process models and do not focus on
diagnosis of errors.
Sidorova et al. (2011) verify correctness for a subclass of Petri nets, workflow
nets, extended with data operations. The workflow models they consider are ab-
stract and need to be refined to be executable. The verification procedure checks
whether the abstract workflow models can be refined into correct, concrete work-
flow models that have no deadlocks. The check sometimes results in a ”yes, if ...”
answer, indicating that only under certain conditions a correct refinement exists.

2.3.2 Validation Analysis Methods

Validation analysis methods aim to test if business processes behaves as expected
by detecting semantic or logical conflicts or violations of business compliance
rules.

26 CHAPTER 2. BUSINESS PROCESSES

Previous works in compliance checking of business process models can be di-
vided into two main goals: compliance by design in order to get correct business
process designs, and compliance checking based on the verification of whether
existing models were designed in accordance with the compliance rules. Exten-
sive literature research regarding business process compliance has been presented
(Sadiq et al., 2007; Namiri and Stojanovic, 2007; Ghose and Koliadis, 2007).
The contribution by Ly et al. (2009) addresses runtime compliance checking,
proposing a framework which provides formal trace-based compliance criteria for
static compliance validation and for dealing with process changes.
Awad et al. (2009) presents an approach to resolve execution order compliance
rule violation, providing a semi-automatic solution instead of leaving all decisions
in experts’ hands, considering two types of execution order compliance rules (re-
ferred to as leads to and precedes).

2.3.3 Performance Analysis Methods

Performance evaluation of business processes by means of performance analysis
methods is a real necessity of organizations that aim to achieve superior efficiency
and competitiveness. Carrying out performance analysis on existing and planned
process models offers a great way for organisations to detect flaws, bottlenecks,
and other issues within their processes and allows them to make more effective
decisions.
This kind of analysis methods focus on estimating key quantitative performance
indicators by simulating the behaviour of business processes, such as resources al-
location (human and machine) and time conflicts that violate organizational con-
straints (Huang et al., 2008).
One of the first works, (Zhao and Stohr, 1999), develops a framework for temporal
workflow management, including turnaround-time predication, time allocation,
and task prioritization.
In a related way, the contribution by (Hyun Son and Ho Kim, 2001) proposes a
schema for maximizing the number of workflow instances satisfying a predeter-
mined deadline, based on a method to determine the critical activities.
Regarding performance analysis for resource allocation, some previous works in-
tegrate scheduling tools for the enactment phase, in order to take dispatching de-
cisions as to which activity should be executed using a resource when it becomes
free.

2.3. BACKGROUND TO BUSINESS PROCESS ANALYSIS 27

Moreover, the work (Ha et al., 2006) proposes a set of process execution rules
based on individual worklists, and develops algorithms for the task assignment in
order to maximize the overall process efficiency, while taking resource capacities
into account.
Recently, the work (Tsai et al., 2010) proposes distributed server architecture for
the management of the BP workflow, and presents techniques for the dynamic
allocation of the resources.
Furthermore, (Thompson and Goodale, 2006) addresses the scheduling of a group
of employees which present different productivity considering the stochastic na-
ture of customer arrivals and replans during run-time when estimates are incorrect

2.3.4 Discussion

Upon the study of previous contributions in the literature (a significant part of
them has been aforementioned), it is concluded that, to the best of our knowledge,
some necessary aspects in Business Process Analysis have not been previously ad-
dressed by other authors so far. In detail, Table 2.1 collects the mapping relations
showing the Business Process Analysis aspects, detailed in the following:

• Verification of control flow: concerning the detection of errors in the mod-
elling of the flow, such as deadlocks, livelocks (infinite loops) lack of syn-
chronization, and dangling reference, checking the soundness property (guar-
anteeing proper termination).

• Verification of data flow: concerning the detection of data-anomalies, clas-
sified into missing data, redundant data and conflicting data.

• Verification of data flow values: concerning the detection of data flow anoma-
lies regarding inconsistencies between the data flow perspective and the do-
main (i.e. possible values) of the data. It is possible to detect when business
data constraints and/or annotations in the activities are available.

• Validation of process compliance: concerning the validation of business
process compliance by design in order to get correct business process de-
signs, and compliance checking based on the verification of whether the
control flow and data flow perspectives of a model were designed in accor-
dance with the defined business compliance rules.

28 CHAPTER 2. BUSINESS PROCESSES

• Validation of data flow values: concerning the detection at runtime of the vi-
olation of the contract -by means of business data constraints- that describes
the behaviour of the activities in a business process.

• Performance (time & resources): concerning methods focused on the qual-
ity of services of designed processes, related to errors in runtime such as
time-efficient conflicts and allocation of resources.

• Diagnosis of activities: concerning methods to determine the activity or ac-
tivities which are responsible for a malfunction, at runtime, either with data
flow perspective available to define business contracts (quantitative infor-
mation) or only counting on the control flow perspective (qualitative infor-
mation).

Table 2.1 enables to easily notice the aspects which have not been previously
considered in the literature. The verification, validation and diagnosis of those
aspects compose the aim of the current Thesis Dissertation, in order to improve
overall Business Process Management Systems functionalities by applying new
analysis methods at different stages of the business process lifecycle in efficient
ways.
In order to perform this analysis methods, a review of the existing diagnosis tech-
niques in the literature has been performed, selecting as a base for our work the
Model-based Fault Diagnosis methodologies due to the verification, validation
and diagnosis of business processes can be performed by the comparison of the
expected behaviour of the processes (the business process model) with the ob-
served behaviour (the observational model after a process instance is executed).
To this end, the techniques used in Model-Based Fault Diagnosis methodologies
can be adapted and used to detect and automatically verify, validate and diagnose
business processes. Therefore, the state of the art regarding Model-based Fault
Diagnosis is discussed in Chapter 3.
Likewise, in order to model, implement and automate the proposed diagnosis
methodologies, Constraint Programming is chosen due to its efficiency and ex-
pressiveness when it comes to modelling problems which include both topologi-
cal aspects (i.e. the control flow perspective of the business process models) and
numeric data (i.e. data and values participating in the definition of the model as
business data constraints). To this end, Chapter 4 presents the main concepts and
definitions regarding Constraint Programming.

2.3.
B

A
C

K
G

R
O

U
N

D
TO

B
U

SIN
E

SS
PR

O
C

E
SS

A
N

A
LY

SIS
29

Table
2.1:M

apping
ofthe

B
usiness

Process
A

nalysis
m

ethods
addressed

Verification Validation Performance Diagnosis
Control Data Data flow Process Data flow Time & Activities

flow flow values Compliance values Resources

Karamanolis et al. (2000) X
Sadiq and Orlowska (2000) X
van der Aalst et al. (2002) X
van der Aalst (2004) X
Huang et al. (2008) X X
Eshuis and Kumar (2010) X
Sun et al. (2004) X
Sun et al. (2006) X
Sadiq et al. (2004) X
Weber et al. (2010) X
Sidorova et al. (2011) X
Sadiq et al. (2007) X
Namiri and Stojanovic (2007) X
Ghose and Koliadis (2007) X
Ly et al. (2009) X
Awad et al. (2009) X
Zhao and Stohr (1999) X
Hyun Son and Ho Kim (2001) X
Ha et al. (2006) X
Tsai et al. (2010) X
Thompson and Goodale (2006) X

30 CHAPTER 2. BUSINESS PROCESSES

Chapter 3

Diagnosability and Model-Based
Fault Diagnosis

The current Thesis Dissertation aims to provide methods to improve the qual-
ity of business processes by determining the responsible for a malfunction, in an
automatic and efficient way. Model-based diagnosis can be used to know if the be-
haviour of a business process is correct or not, and which are the activities that are
not working correctly. It can be performed by the comparison of the expected be-
haviour of the processes (the business process model) with the observed behaviour
(the observational model after a process is executed). To this end, the techniques
used in Model-Based Diagnosis methodologies are adapted so that they can be
applied to business processes, enabling the automatic diagnosis of faults when an
error is detected after the execution of a correctly modelled business process.
The aim of fault diagnosis is to improve the reliability, security, efficiency, main-
tainability of any system. A fault diagnosis system is used to detect, isolate and
determine the location of a fault in a monitored system. Thereby, the monitoring
should be a reflect of the real behaviour of the system and the produced devia-
tions from the expected behaviour. The diagnosis enables the identification of the
parts which fail, determining why a system correctly designed does not work as
expected. The explanation of that abnormal behaviour, from a determined obser-
vation, is the main goal of the diagnosis.
Since the capacity to diagnose a system depends on the available observations,
this chapter starts with a review about the diagnosability analysis methodologies
to consider in order to decide the flows where a business process should be moni-
tored. The monitored values of the data flow compose the observational model and
make the business processes diagnosable. Then, this chapter gives an overview of

31

32CHAPTER 3. DIAGNOSABILITY AND MODEL-BASED FAULT DIAGNOSIS

Model-Based Diagnosis principles, presenting some concepts and techniques that
are used or adapted in the contributions proposed in this document. In short, since
the model of the business processes to diagnose can count on either semantic infor-
mation or only structural information, two classic techniques based on this types
of models are detailed. And finally, since the information of a business process
can be distributed in a semantic of physical way (as in business-to-business col-
laborations), main concepts and techniques regarding diagnosis of systems with
distributed information are introduced.

3.1 Diagnosability

The monitoring of a system, and later diagnosis, are based on observations, which
provide information about the behaviour of the system. For the later diagnosis
process to be successful, diagnosability analysis becomes a design-time require-
ment to diagnose in run-time. The diagnosability level of the system depends
upon the observations.
If the diagnosis is based on few observations, or if observations are not allocated
at the most convenient places, it is very difficult to distinguish which parts of the
system are failing. Both the number of observations and the location where they
are performed enable the source of the problem to be precisely located. In general,
diagnosis systems not only incorporate monitoring, but also the identification and
isolation of faults. The explanation of abnormal behaviour, from a determined
observation derived from the monitoring, is the main task of diagnosis.
The study of the diagnosability of a system corresponds with the study of whether
the system can be diagnosed based on the available observations, provided by
sensors allocated at strategic places of the system. The diagnosability determines
the number of faults that is possible to diagnose and distinguish with the available
sensors. This is a property that is crucial at some stages, for instance during the
design of the system, in order to decide the number and locations of the sensors
to place.
The approach in Console et al. (2000) presents an study of the diagnosis and
diagnosability of a system by using process algebra, more precisely Performance
Evaluation Process Algebra (PEPA), within the model-based diagnosis field. The
mentioned contribution adopts the next definition for full diagnosability:

Definition 3.1. A system is diagnosable with a given set of sensors if and only if:

3.1. DIAGNOSABILITY 33

• for any relevant combination of sensors readings there is only one minimal
candidate diagnosis; and

• all faults of the system correspond to a candidate diagnosis for some sensor
reading.

Travé-Massuyès et al. (2001) apply diagnosability and model-based allocation of
sensors. They stated that a system may be partially diagnosable, having different
levels of diagnosability, defining the discriminability of faults as follows:

Definition 3.2. A fault F1 is discriminable from another fault F2 if and only if
exists at least a sensor reading where F1 appears in some minimal diagnosis
candidate but not F2, and vice versa.

According to this definition, the diagnosability level can de determined as stated
in Definition 3.3.

Definition 3.3. The diagnosability level of a system is the quotient of the number
of faults which can be discriminated from each other, and the number of all pos-
sible faults. If the number of components of a system is called nComp, and since
only one fault per component is possible, the maximum number of possible faults
is initially 2nComp−1.

The diagnosability problem has been analysed in previous work, but, to the best
of our knowledge, it has never been adapted to business processes. Moreover,
not only is an analysis of the diagnosability required, but an improvement of the
diagnosability is also necessary. Some works in the literature are detailed in the
following bullet points:

• Some previous work regarding diagnosability analysis are performed in
Bocconi et al. (2007) and Console et al. (2000). In detail, the proposal by
Bocconi et al. (2007) presents an approach to compute diagnosability for a
decentralized framework to diagnose Web Services. It performs an incre-
mental analysis, refining the results at each step of the process, and focused
on discrete event systems.

• With regard to work related in the field of the allocation of sensors in sys-
tems composed of many components, a certain number of these systems fail
to perform the placement in accordance with the diagnosability (Madron
and Veverka, 1992; D. Maquin and Ragot, 1997; C. Commault and Agha,
2006).

34CHAPTER 3. DIAGNOSABILITY AND MODEL-BASED FAULT DIAGNOSIS

Although test-point allocation is studied in the proposal by Narendra et al.
(2008), it is not focused on diagnosability, but on the problem of continu-
ous compliance monitoring at run time in order to prevent non-compliance
against policies (security, confidentiality, and data integrity). The selection
of locations is useless from the diagnosis point of view since no diagnos-
ability criterion is taken into account.

• Other proposals allocate the sensors in order to improve diagnosability. A
selection of these studies are given in more detail below.

In Travé-Massuyès et al. (2006), an analysis of many systems is performed
in order to study their physical models. This study takes into account the
diagnosability criteria by means of a technique that allocates sensors con-
secutively.

The proposal by Spanache et al. (2004) allocates sensors according to an
economic criterion, and presents a method to obtain an optimal-cost sensor
system for a certain degree of diagnosability.

The contribution in Zhang et al. (2009) allocates test points in circuits and
physical systems using a genetic algorithm. Nevertheless, since the signal
propagation in this kind of system flows in a different way to that of the
data flow of a business process, this method is inapplicable in the context
discussed in this Thesis Dissertation.

In the contribution by Ceballos et al. (2005), a technique is proposed in
order to improve the computational complexity for the isolation of faults
within a system. The method is based on the addition of the minimal set of
sensors. A CSP (Rossi et al., 2006; Dechter, 2003) is obtained in order to
select the necessary sensors to guarantee the problem specification, and an
algorithm for the determination of the bottleneck locations of the system is
developed, in order to improve the computational complexity of the CSP.

• Finally, there are some works which uses other kind of techniques to study
or improve the diagnosability of systems.

The contribution presented by Frisk and Krysander (2007) shows an effi-
cient technique that is based on the Dulmage-Mendelsohn decomposition
introduced in Dulmage and Mendelsohn (1959). Although the constraint
models of most practical systems are under-determined before taking the
sensors into account, and over-determined afterwards, this method only ap-
plies to just-determined sets of constraints.

3.2. MODEL-BASED DIAGNOSIS 35

A method based on the study of structural matrices is presented in Yas-
sine et al. (2008), where each component of the system is represented by
a constraint. Regarding detectability and diagnosability, all subsets of con-
straints are considered (diagnosable, discriminable, and detectable). The
contribution by Yassine et al. (2010) presents a continuation of Yassine
et al. (2008), where the Dulmage-Mendelsohn decomposition (Dulmage
and Mendelsohn, 1959) together with a combinatorial algorithm are used
in the search for the optimal solution.

3.2 Model-Based Diagnosis

In the last decades, model-based diagnosis has become the most extensive re-
search area in the diagnosis field. The reasoning is carried out from a model
which represents the system to diagnose in an explicit way. A fault exists when
the observed behaviour does not correspond with the behaviour derived from the
model. This model comes from the knowledge of the system. The component
responsible for the fault is identified with a later analysis of the discrepancies.
Model-based diagnosis is based on the comparison between the available obser-
vations about the operation of a system and the predictions made from the model
of the system. The observations indicate how the system is behaving, whereas the
model expresses how should it behave during a correct execution.
When a symptom is detected, that is, a discrepancy between the observed and
expected is detected, it is deduced that at least one of the components involved in
it is not working correctly. The description of the systems, done by the models,
uses the relations between inputs and outputs. Most of the approximations for
components characterize the diagnosis of a system as a collection of minimal sets
of components that fail to explain the observed behaviour (symptoms). That is
why it is important to count on a detailed model to determine the diagnosis of a
system. With this kind of models, it is possible to diagnose quickly the main parts
of the systems.
There are two distinct and parallel research communities that work on model-
based diagnosis.

• Fault Detection and Isolation (FDI) community, which bases the founda-
tions of its solution approaches on engineering disciplines such as control
theory and statistical decision making.

36CHAPTER 3. DIAGNOSABILITY AND MODEL-BASED FAULT DIAGNOSIS

• Diagnosis (DX) community, which bases the foundations of its solution ap-
proaches on the fields of computer science and artificial intelligence.

Each community has developed its own terminology, tools, techniques, and ap-
proaches to solve diagnosis problems. In the past, these two communities have
only had a little communication between them, but since a few years ago, a grow-
ing number of researchers have tried to understand and incorporate approaches
from the parallel research fields to build better and more effective diagnostic sys-
tems (Biswas et al., 2004; Cordier et al., 2000).

The pioneer work Davis (1984) within the DX community presents an approxi-
mation that allows to perform the diagnosis of systems using their structure and
behaviour. DART Genesereth (1984) and GDE Kleer and Williams (1987) were
the first implementations for diagnosis, which use different inference ways to de-
tect the possible failures. The works of Reiter (1987) and de Kleer et al. (1992)
introduce the basic definitions and foundations of diagnosis. To explain the dis-
crepancies between the observed and the correct behaviour A general theory was
proposed, using a logical-based diagnosis process.

There are diagnostic models that use models which require the development of
fault models together with the model of normal operation. To build fault models
in a system, it is useful when the failures are well-known and easy to model, but
it also limits the diagnosis process to known failures. A revision of the approxi-
mations about the automation of the diagnosis tasks can be found in Dressler and
Struss (2003), and for a discussion about the applications of the Model-Based Di-
agnosis it can be consulted in Console and Dressler (1999). The generation of the
diagnosis based on consistency to cover dynamic systems was proposed by Heller
and Struss (2001).

Related to FDI community, Staroswiecki and Declerk (1989) and Cassar and
Staroswiecki (1997) present the formalization of the process to obtain the ARRs
(Analytical Redundancy Relation) of the system. The obtaining of the ARRs is
based on searching the overdetermined systems in which it is possible the detec-
tion and location of the faults. The FDI methodology allows an off-line analysis
of a part of the work, in contrast with the DX methodology where the work is al-
most completely on-line. Fattah and Holzbaur (1994) propose an approximation
to the FDI methodology, but using logic constraints models to solve the diagnosis
problem.

3.2. MODEL-BASED DIAGNOSIS 37

Figure 3.1: Polybox system

Example of analysis

The example that has been chosen to support the explanations is the well-known
system from Davis (1984) composed of three multipliers and two adders referred
as the polybox example (Figure 3.1).
This example is used in the rest of this chapter to clarify the explanations about
the DX and FDI methodologies.

3.2.1 FDI: Analytical Redundancy Approach

For the FDI approach, the behavioural model (BM) is derived from its structure,
which shows the connections between the components and the behaviour of each
component. For this reason, the FDI methodologies are useful when it comes to
diagnose business processes where only the control flow perspective of the model
is available.

Definition 3.4. A System Model (SM) is defined as the behavioural model (BM),
i.e., the set of relations of the model together with the observation model (OM).

For the polybox example in Figure 3.1, the system model is:

• BM : {RM1 : x = a ∗ c; RM2 : y = b ∗ d; RM3 : z = c ∗ e; RA1 : f = x+
y; RA2 : g = y+ z}

38CHAPTER 3. DIAGNOSABILITY AND MODEL-BASED FAULT DIAGNOSIS

• OM : {RSa : a = aobs; RSb : b = bobs; RSc : c = cobs; RSd : d = dobs; RSe :
e = eobs; RS f : f = fobs; RSg : g = gobs;}

Definition 3.5. A diagnosis problem is defined by a system model (SM), a set of
observations (OBS) and a set of faults (F).

For the polybox example in Figure 3.1:

• OBS = {aobs = 2; bobs = 2; cobs = 3; dobs = 3; eobs = 2; fobs = 10; gobs =

12}

• Set of simgle faults (SF): {FA1,FA2,FM1,FM2,FM3}, being F = 2SF .

Definition 3.6. The structure of a system is defined by means of a binary applica-
tion S : SM×V →{0,1}, where V = X ∪O is the set of variables and s(rel,v) = 1
iff v appears in the relation rel.

Definition 3.7. An Analytical Redundancy Relation (ARR) is a relation estab-
lished by the SM which contains only observed variabls and which can therefore
be evaluated by OBS. It is noted r = 0, where r is the residual of the ARR. For a
given OBS, the instantiation of the residual is noted by val(r,OBS), referred to as
val(r), which is equal to 0 if the observations for the ARR are satisfied.

The ARRs can be obtained from the SM by eliminating the unknown variables.
For the polybox example in Figure 3.1, the next two ARRs can be obtained:

• ARR1 : r1 = 0, where r1≡ fobs−aobs ∗ cobs−bobs ∗dobs

• ARR2 : r2 = 0, where r2≡ gobs−bobs ∗dobs− cobs ∗ eobs

Assuming sensors are fault-free, these two ARRs can be rewritten as:

• ARR1 : f − (a∗ c+b∗d) = 0

• ARR2 : g− (b∗d + c∗ e) = 0

Additional ARRs can be obtained through combination of the elementary ARRs.
In this case, subtracting ARR2 from ARR1:

• ARR3 : f −g−a∗ c+ c∗ e

3.2. MODEL-BASED DIAGNOSIS 39

ARR FA1 FA2 FM1 FM2 FM3

1 1 0 1 1 0
2 0 1 0 1 1
3 1 1 1 0 1

Table 3.1: Signature matrix for single faults

It is important to notice that the components involved in this third ARR are not a
combination of the components used in the previous ARRs.

Definition 3.8. Given a set R = {ARR1,ARR2, . . . ,ARRn} composed of n ARRs
and a set F = {F1, . . . ,Fm} with m faults, the fault signature Fj is given by the
binary vector FS j = [s1 j, ..,sn j]

T where si j is given by (ARRi,Fj)→ si j = 1 if at
least a component from Fj is involved in ARRi, and (ARRi,Fj)→ si j = 0 otherwise.

This specifies if the occurrence of the fault affects to the corresponding ARR.

Definition 3.9. Given a set R composed of n ARRs, the signature of a set of m
faults is called signature matrix.

The signature matrix for single faults (SF) for the polybox example is shown in
Table 3.1.
For multiple faults it is only necessary to add the fault combinations as columns
in the signature matrix.
The diagnosis of the FDI approach is based on the interpretation of the columns
in the signature matrix, and lies in comparing the observation signature with the
fault signature. This decision is treated as a decision-making problem.

Definition 3.10. The observation signature OS is a binary vector OS= [OS1, ..,OSn]
T

where OSi = 0 iff val(r j,OBS) = 0.

The first step (detection phase) lies in building the observation signature. For the
polybox example in Figure 3.1, the observation signature is OS = [1,0,1]T .
Then, in the second step (isolation phase) the observation signature and the fault
signature are compared. The result to this decision is to define a fault criterion.
For the polybox example:

OS = [1,0,1]T ↔ FA1 or FM1 or F{A1,M1}
In case of f = 10 and g = 10:

OS = [1,1,0]T ↔ FM2

40CHAPTER 3. DIAGNOSABILITY AND MODEL-BASED FAULT DIAGNOSIS

3.2.2 DX: Logical Diagnosis Approach

Reiter (1987) propose a logical theory for the diagnosis, known as consistency-
based diagnosis. This theory was extended and formalized later by de Kleer et al.
(1992), and can be used or adapted for the verification, validation and diagnosis of
business processes whose behaviour is modelled by means of a semantic contract
(business rules).
For the DX community, the system model is defined as follows:

Definition 3.11. A system model (SM) is composed of the pair (SD, COMPS),
where SD (system description) is a set of logic equations; and COMPS is a finite
set of components. The system description uses the predicate AB to represent
the abnormal behaviour of the system, and ¬AB(c), where c is a component, to
represent the correct behaviour of c.

For the polybox example in Figure 3.1:

• COMPS = {A1,A2,M1,M2,M3}

• SD = {ADD(x)∧¬AB(x)→ Out put(x) = Input1(x)+ Input2(x),

MULT (x)∧¬AB(x)→ Out put(x) = Input1(x)∗ Input2(x),

ADD(A1), ADD(A2), MULT (M1), MULT (M2), MULT (M3),

Out put(M1) = Input1(A1), Out put(M2) = Input2(A1),

Out put(M2) = Input1(A2), Out put(M3) = Input2(A2),

Input2(M1) = Input1(M3)}

The diagnosis problem lies in the discrepancy between the set of available obser-
vations and the correct behaviour of the system described in the model.

Definition 3.12. A set of observations OBS is a set of first order predicates.

For the polybox example:
OBS = {Input1(M1) = 2, Input2(M1) = 3, Input1(M2) = 2,

Input2(M2) = 3, Input2(M3) = 2,
Out put(A1) = 10, Out put(A2) = 12}

Definition 3.13. A diagnosis problem is represented by {SD,COMPS,OBS}, where
{SD,COMPS} is the system model and OBS is a set of observations.

3.3. DISTRIBUTED DIAGNOSIS 41

Definition 3.14. A diagnosis for {SD,COMPS,OBS} is a set of components D ⊆
COMPS, so that SD∪OBS∪{AB(c)|c∈D}∪{¬AB(c)|c∈COMPS−D} is satis-
fied. A minimal diagnosis is a diagnosis D so that ∀D ′⊂D , D ′ is not a diagnosis.

In order to attain the minimal diagnoses, Reiter (1987) propose the concept of
conflict to generate them, being that concept the base for most DX approaches.

Definition 3.15. A R-conflict for {SD,COMPS,OBS} is a set of components C =

{c1,c2, . . . ,cn} ⊆COMPS, so that SD∪OBS∪{¬AB(c) | c ∈C} is inconsistent.
A minimal R-conflict is a R-conflict which does not contains any other R-conflict.

Definition 3.16. Hitting set is a set of components which intersect the minimal
R-conflicts. The minimal hitting set is a set that includes a component from each
minimal R-conflict.

Using the concepts of minimal R-conflict and minimal hitting set, the minimal
diagnosis can be formalized as follows:

Proposition 1. D is a minimal diagnosis for {SD,COMPS,OBS} iff D is a mini-
mal hitting set in the collection of minimal R-conflicts of {SD,COMPS,OBS}.

For the polybox example in Figure 3.1, with f = 10 and g= 12, there are four min-
imal diagnoses given by the minimal hitting sets {{A1,A2,M1,M3}, {A1,M1,M2}},
which are: D1 = {A1}, D2 = {M1}, D3 = {A2,M2}, D4 = {M2,M3}.

3.3 Distributed Diagnosis

Since the information defining business process models can be distributed in a
semantic or physical way, it is necessary to introduce the main concepts in dis-
tributed diagnosis. Fault diagnosis can be classified in accordance with either
the methodology used to perform the diagnosis process, or the degree of distri-
bution of the knowledge of the system to diagnose (centralized, decentralized or
distributed diagnosis). The classification is as follows:

• Centralized diagnosis. The knowledge of the overall system is available,
since it is running on an only node.

• Decentralized diagnosis. The diagnosis uses a central coordination process
(supervisor) and a local diagnoser for each subsystem.

42CHAPTER 3. DIAGNOSABILITY AND MODEL-BASED FAULT DIAGNOSIS

• Distributed diagnosis. The model is distributed, using only a local diag-
noser for each subsystem instead of a global coordination process. Each
diagnoser communicates directly with other diagnosers, avoiding the bot-
tleneck derived from the access to the supervisor.

Currently the hardware and software systems are generally composed of a large
number of distributed subsystems (or components) that interact with the physical
world via a set of users, sensors or actuators. Examples of such systems are ad-hoc
and mesh wireless networks, cars, industrial systems, Web Services, and, such as
the case of study of this dissertation, business processes.
This is also the case of business processes, where different organizations perform
collaborations and interactions in a coordinated way. This gives rise to distributed
scenarios which need to be control and manage by means of process choreogra-
phies due to the overall system and knowledge remains distributed and unobserv-
able in a global way.
As it was aforementioned, fault diagnosis enables the determination of why as
system correctly designed does not work as it is expected. Therefore the main
objective of fault diagnosis is to identify the parts which fail in a system, for this
reason it proposes to find out the discrepancies between the observed and correct
behaviour of a system, with the added difficulty of doing the same with distributed
systems.
The first diagnosis tool could be considered as only one diagnostic agent (diag-
noser) with a model of the overall system to be diagnosed. However, the total
integration of knowledge into one model of the complex, dynamic or distributed
systems is infeasible. In some systems, the knowledge integration can proceed
from different local diagnostic processes situated in different subsystems (it is
called spatially distributed) or from different fields of expertise (it is called se-
mantically distributed) (Frohlich et al., 1997).
As it was seen at the beginning of this chapter, the distributed diagnosis can be
classified in decentralized or distributed, depending on the degree of distribution
of the diagnosers associated to the subsystems and the supervision process of
them. In the following the most important works in this field are presented, clas-
sified as decentralized or distributed approaches.

3.3.1 Decentralized Approaches

• Diagnostic reasoning should identify diagnoses, as assignments of behaviour
modes to components, for a given set of observation. A diagnostic engine

3.3. DISTRIBUTED DIAGNOSIS 43

should, in general, explore the space of candidate diagnoses and perform
discrimination among alternative candidates, possibly suggesting additional
pieces of information to be acquired to this purpose. For reasoning on global
failures of the overall service, it has been proposed (Ardissono et al., 2005)
to:

– Associate with each basic service a local diagnoser, owning a descrip-
tion of how the service is supposed to work; the role of local diag-
nosers is to provide the global diagnoser with the information needed
for identifying causes of a global failure.

– Provide a global diagnoser which is not tied to any specific service,
but is able to invoke local diagnosers and relate the information they
provide, in order to reach a diagnosis for the overall complex service.
In case the supply chain has several levels, several global diagnosers
may form a hierarchy, where a higher level global diagnoser sees the
lower level ones as local diagnosers.

Each local diagnoser interacts with its own Web Service and with the global
diagnoser. The global diagnoser interacts only with local diagnosers. It is
used for fault tolerant Web Services (Ardissono et al., 2006).

• Another decentralized approach to diagnosis has been proposed by Pencolé
and Cordier (2005). The application (telecommunication networks) is sig-
nificantly different from previous work, posing a very different problem. In
previous case, an alarm may be raised in a point that is far away from the
failure source. In their case, a failure causes a chain of alarms, the first of
which points to the failure source. However, due to the distributed nature of
the network, the order in which alarms are received is not the same in which
they are raised, thus the problem of finding the failure source.

• In Console et al. (2007) a framework for decentralized model-based diag-
nosis of complex systems is proposed. The case considered is where sub-
systems are developed independently along with their associated (or em-
bedded) software modules - in particular their diagnostic software. This
is useful in those situations where subsystems are developed (possibly by
different suppliers) without a-priori knowledge of the system in which they
will be exploited, or without making assumptions on the role they will play
in such system. A decentralized architecture is described, where subsystems

44CHAPTER 3. DIAGNOSABILITY AND MODEL-BASED FAULT DIAGNOSIS

are analysed by Local Diagnosers, coordinated by a Supervisor. Within the
framework, both the Local Diagnosers and the Supervisor can be designed
independently of each other, without any advance information on how the
subsystems will be connected (provided that they share a common mod-
elling ontology) and allowing also for runtime changes in the overall system
structure. Local diagnosers are thus loosely coupled and communicate with
the Supervisor via a standard interface, supporting independent implemen-
tations.

3.3.2 Distributed Approaches

• In Frohlich et al. (1997) an agent-based framework for the diagnosis of spa-
tially distributed systems is introduced. The motivation for such a frame-
work is the unnecessary complexity and communication overhead of cen-
tralized solutions. Consider a distributed system with n nodes, e.g. a com-
puter network consisting of n machines. When using a centralized diagnosis
system the size of the system description (i.e. number of ground formulas)
is linear in n. Diagnosis time will usually be worse than linear in n Mozetic
and Holzbauer (1993). Also all observations have to be transmitted to the
central diagnosis machine, causing a large communication overhead.

This agent-based approach decomposes a system into a set of subsystems.
Each subsystem is diagnosed by an agent which has detailed knowledge
over its subsystem and an abstract view of the neighbouring subsystems.
Most failures can be diagnosed locally within one subsystem. This de-
creases diagnosis time dramatically in large systems. In the case of the
computer network most machines in a subnet can usually fail without affect-
ing machines in other subnets. Only those computers in other subnets can
be affected which have sent messages to the faulty machine. Moreover, the
local computation of diagnoses avoids the communication overhead which
would be needed to forward all observations to the central diagnosis engine.

Failures which affect more than one subsystem are diagnosed by the agents
cooperating with each other. The cooperation process is triggered locally
by an agent, when it realizes that it can not explain the observations by a
failure in its own subsystem. The cooperation process is guided by a small
amount of topological information.

3.3. DISTRIBUTED DIAGNOSIS 45

• In Provan (2002) a new technique for diagnosing distributed systems using
a model-based approach is proposed. It is assumed that a system consisting
of a set of inter-connected components exists. Each one of the components
computes a local (component) diagnosis. It is adopted the structure-based
diagnosis framework of Darwiche (1998) for synthesizing component di-
agnoses into globally-sound diagnoses, where we obtain the structure from
the component connectivity. Unlike previous approaches that compute di-
agnoses using the system observations and a system description Darwiche
(1998) Kleer and Williams (1987), it transforms the component diagnosis
synthesis into the space of minimal diagnoses. Assuming that each compo-
nent can compute a local minimal diagnosis based only on sensors internal
to that component and knowledge only of the component system descrip-
tion, it describes an algorithm that guarantees a globally sound, complete
and minimal diagnosis for the complete system. This algorithm uses as
input the directed graph (digraph) describing the connectivity of distributed
components,with arc directionality derived from the causal relation between
the components. Given that real-world graphs of this type are either tree-
structured or can be converted to tree-structured graphs, it is proposed a
graph-based message-passing algorithm which passes diagnoses as mes-
sages and synthesizes local diagnoses into a globally minimal diagnosis in
a two-phase process. By compiling diagnoses for collections of compo-
nents (as determined by the graph’s topology), it can significantly improve
the performance of distributed embedded systems. It is shown how this ap-
proach can be used for the distributed diagnosis of systems with arbitrary
topologies by transforming such topologies into trees.

One important point to highlight is that this approach synthesizes diagnoses
computed locally, and places no restriction on the technique used to com-
pute each local diagnosis (e.g., neural network, Bayesian network, etc.),
provided that each local diagnosis is a least-cost or most-likely diagno-
sis. The synthesis approach takes this set of self-diagnosing sub-systems,
together with the connectivity of these sub-systems, to compute globally-
consistent diagnoses.

• In Roos et al. (2003) it is analysed the problem of multi-agent diagnosis
when knowledge is semantically distributed over the agents. Especially the
case that the agents’ knowledge concerning the faulty behaviour of some
components, is incorrect has been considered. A solution based on an ab-

46CHAPTER 3. DIAGNOSABILITY AND MODEL-BASED FAULT DIAGNOSIS

straction hierarchy on the fault modes is proposed in the paper, and a proto-
col for determining the global diagnoses with a minimal number of broken
components is given.

A knowledge distribution over multiple agents induces a division of a sys-
tem S into several subsystems. In the case of a semantic knowledge dis-
tribution, each agent makes diagnosis of a different aspect of the system
S.

• The contribution in Biteus et al. (2008) is a method that calculates the diag-
noses with minimal cardinality in a distributed system. A distributed system
consists of a set of agents, where an agent is a more or less independent soft-
ware entity. The diagnoses can, in distributed systems, be divided into two
different levels, global diagnoses that are diagnoses for the complete dis-
tributed system and local diagnoses that are diagnoses for a single agent.
The method designed in Biteus et al. (2008) first calculates the set of mini-
mal local diagnoses in each agent. These sets of minimal local diagnoses are
then used to calculate the set of global diagnoses with minimal cardinality.

The work in Biteus et al. (2008) was inspired by diagnosis in distributed em-
bedded systems used in automotive vehicles and especially that in a heavy-
duty vehicle from Scania. These systems typically consist of precomputed
diagnostic tests that are evaluated in the different agents, which in the auto-
motive industry correspond to electronic control units (ECUs). The results
from the diagnostic tests can be used to calculate the sets of local diag-
noses in the agents. These embedded distributed systems typically consist
of ECUs with both limited processing power and limited RAM memory.
Therefore, the method designed in Biteus et al. (2008) calculates the global
diagnoses with minimal cardinality in a cooperation between the agents,
such that the computational expensive tasks are distributed between the dif-
ferent agents.

• The approach by Roychoudhury et al. (2009) developed a systematic model-
based approach to distributing the diagnosis task by designing multiple
diagnosers that operate independently and generate globally correct diag-
noses. A model-based fault diagnosis scheme for continuous systems is
developed, where the local diagnosers are generated off-line. At runtime,
the local diagnosers operate independently to generate local diagnosis re-

3.3. DISTRIBUTED DIAGNOSIS 47

sults that are globally correct. This approach does not require a coordinator,
and there is minimal or no exchange of information among the diagnosers.

48CHAPTER 3. DIAGNOSABILITY AND MODEL-BASED FAULT DIAGNOSIS

Chapter 4

Constraint Programming

In the two previous chapters, main concepts regarding Business Process Manage-
ment and Model-based Fault Diagnosis have been introduced. Since the aim of
the current Thesis Dissertation is the application of Model-based Fault Diagnosis
techniques for the automatic diagnosis of business processes, this chapter presents
the main concepts related to the Constraint Programming paradigm, which is
used as support for the implementation and automation of the proposed diagnosis
methodologies due to its efficiency and expressiveness when it comes to mod-
elling problems which include both topological aspects and numeric data. This
is the case of business processes, where it is necessary to consider both control
flow and data flow perspectives, being necessary to count on a technique to model
business data constraints (including the numeric values of the data).
Constraint Programming is based on the resolution of Constraint Satisfaction Prob-
lems (CSPs), which are problems where an assignment of values to variables
should be found in order to satisfy a number of constraints. A large number of
problems in Artificial Intelligence and other areas of Computer Science can be
seen as special cases of Constraint Satisfaction Problems. Some examples are be-
lief maintenance, scheduling, temporal reasoning, graph problems, configuration
problems, etc.
A number of different approaches to solve these problems have been developed.
Some of them use constraint propagation to simplify the original problem. Others
use backtracking to directly search for possible solutions. Some are a combination
of these two techniques. In general, a CSP is composed of a set of variables, a
domain for each variable, and a set of constraints. Each constraint is defined over
some subset of the original set of variables and limits the combinations of values
that the variables in this subset can take. The goal is to find one assignment to the

49

50 CHAPTER 4. CONSTRAINT PROGRAMMING

variables such that the assignment satisfies all the constraints. In some problems,
the goal is to find all such assignments Kumar (1992).

4.1 Basic Concepts in CSP Modelling

Constraint Satisfaction Problems are problems that require the assignment of val-
ues to variables according to some constraints. Formally, a finite CSP is defined
as follows.

Definition 4.1. A Constraint Satisfaction Problem is defined by a triple (X, D, C),
where:

• X = {x1, . . . , xn} is a finite set of n variables.

• D = {dx1 , . . . , dxn} is a collection of finite domains related to each variable
xi. dxi is the finite set of values that can be assigned to the variable xi.

• C is a set of constraints among variables. A constraint ci is a tuple (Wi, Ri),
where Ri is a relation defined over the subset of variables Wi ⊆ X, such that
Ri ⊆ Di1× . . .×Dik. The arity of a constraint is the number of variables
which compose the constraint.

The search of solutions for a CSP is based on the instantiation concept. An assign-
ment of a variable, or instantiation, is a pair variable-value (x,a) which represents
the assignment of the value a to the variable x. An instantiation of a set of vari-
ables is a tuple of ordered pairs, where each sorted pair (x,a) assigns the value a
to the variable x. A tuple ((x1,a1), . . . , (xi,ai)) is consistent if it satisfies all the
constraints formed by variables of the tuple.
A solution to a CSP is an assignment of values to all the variables in order that
all the constraints must be satisfied. That is to say, a solution is a consistent tuple
which contains all the variables of the problem. A partial solution is a consistent
tuple which contains some of the variables of the problem. A problem is consistent
if it exists, at least, a solution, i.e., a consistent tuple.
The techniques used in constraint satisfaction depend on the kind of constraints
being considered. Often used are constraints on a finite domain, to the point that
constraint satisfaction problems are typically identified with problems based on
constraints on a finite domain. Such problems are usually solved via search, in
particular a form of backtracking or local search. Constraint propagation are other

4.1. BASIC CONCEPTS IN CSP MODELLING 51

methods used on such problems; most of them are incomplete in general, that is,
they may solve the problem or prove it unsatisfiable, but not always. Constraint
propagation methods are also used in conjunction with search to make a given
problem simpler to solve. Other considered kinds of constraints are on real or
rational numbers; solving problems on these constraints is done via variable elim-
ination or the simplex algorithm.

4.1.1 Consistency

One of the main difficulties in CSP resolution is the appearance of local incon-
sistencies. Local inconsistencies are values of the variables that cannot take part
of the solution because they do not satisfy any consistency property. Therefore if
any consistency property is forced, we can remove all the values which are incon-
sistent in regard to the property. But it can be possible that some values which are
consistent in regard to a property are inconsistent in regard to another property at
the same time. Global consistency implies that all values which can’t take part in a
solution can be removed. The constraints of a CSP generate local inconsistencies
because they are combined. If the search algorithm does not store these inconsis-
tencies, it will waste time and effort trying to carry out instantiations which have
already been tested.

4.1.2 Search Algorithms

The search techniques to find solutions to a CSP are based normally on Back-
tracking algorithms. The try to find a solution through the space of possible as-
signments of values to the variables, if it exists, or to prove that the problem has
not a solution. Because of this they are known as complete algorithm. The in-
complete algorithms do not guarantee to find a solution, but they are very used in
optimization problems since their mayor efficiency and the high cost that a com-
plete search requires. A lot of complete search algorithms have been developed.

4.1.3 Constraint Optimization Problem

There are often a lot of solutions to a CSP, but a user is interested only in some
of them, on only in a specific one. To solve this limitation some extensions
of the model have been proposed, where it is allowed to have weak constraints
(which indicate preferences, not obligation) with different semantics, such as pri-

52 CHAPTER 4. CONSTRAINT PROGRAMMING

orities, preferences, costs, or probabilities. In the Constraint Optimization Prob-
lems (COP) the aim is to find the best solution, where the preference criteria be-
tween the solutions is specified by the weak constraints and an objective function
that has to be optimized.

4.1.4 Integer Programming

In many optimization problems, the domains of the variables are limited to integer
values. This way, a problem in integer linear programming is an optimization
problem where some of the variables are limited to integer values, so that the
objective function and the constraints are linear functions of the variables.
This problems are classified in accordance with the type or number of integer
variables. When de domain of all variables of the problem are limited to integer
values, it is called pure-integer programming. If, in addition, those integer values
are limited to be 0 or 1, the problem is binary-integer. When integer and float
variables coexist in a problem, it is called mixed-integer.

4.2 Overconstrained Constraint Satisfaction Prob-
lems

When solving a Constraint Satisfaction Problem, it is necessary to assign values
to variables satisfying a set of constraints. In real applications it often happens
that problems are overconstrained and do not have any solution. In this situa-
tion, it is desirable to find the assignment that best respects the constraints under
some preference criterion. Under this view, overconstrained CSPs are optimiza-
tion problems for which branch and bound is a suitable solving strategy. The
efficiency of branch and bound-based algorithms greatly depends on the lower
bound used to detect dead ends and to avoid the exploration of large regions in the
search space. This lower bound should be both as large and as cheap to compute
as possible.
Approaches (Affane and Bennaceur, 1998; Freuder and Wallace, 1992; Wallace,
1995) for lower bound computation aggregate two main elements: (i) the global
contribution of assigned variables, and (ii) the addition of individual contribu-
tions of unassigned variables. Another approach (G. Verfaillie and Schiex, 1996)
keeps (i) but substitutes (ii) by a global contribution of unassigned variables. This

4.2. OVERCONSTRAINED CONSTRAINT SATISFACTION PROBLEMS 53

is done by the Russian Doll Search (RDS) method, which requires n successive
searches on nested sub-problems to finally solve a problem of n variables.

A discrete binary constraint satisfaction problem is defined by a finite set of vari-
ables X = {1, . . . ,n}, a set of finite domains {Di}n

i=1 and a set of binary constraints
{Ri j}. Each variable i takes values in its corresponding domain Di. A constraint
Ri j is a subset of Di×D j which only contains the allowed value pairs for vari-
ables i, j. An assignment of values to variables is complete if it includes every
variable in X , otherwise it is partial solution for a CSP is a complete assignment
satisfying every constraint. The problem is called overconstrained if such an as-
signment does not exist. It may be of interest to find a complete assignment that
best respects all constraints (Bistarelli et al., 1995; Schiex et al., 1995). The Max-
imum Constraint Satisfaction Problem (Max-CSP) can be consider (Kask, 2000;
Larrosa and Meseguer, 1999), for which the solution of an overconstrained CSP is
a complete assignment satisfying the maximal number of constraints. That is, in
a Max-CSP a number of constraints are allowed to be violated, and the quality of
a solution is measured by the number of satisfied constraints. This way, in order
to identify the constraints which need to be relaxed (or removed) to get a solution
in an overconstrained CSP, the concept of Max-CSP can be combined with reified
constraints. A reified constraint consists of a constraint associated to a boolean
variable which denotes its truth value. Therefore, by maximizing the number of
reified constraints whose truth values are equal to true, the constraints to relax will
be the rest.

Overconstrained numeric CSPs

Many practical problems require solving constraint satisfaction problems (CSPs)
with numerical constraints. A numerical CSP (NCSP), (V,C,D), is stated as a
set of variables V taking their values in domains D over the reals and subject to
a finitely many set of constraints C. In practice, the constraints can be equalities
or inequalities of arbitrary type and arity, usually expressed using arithmetic ex-
pressions. The case of NCSPs with non-isolated solutions is often encountered in
real-world engineering applications where under-constrained problems, problems
with inequalities or with universal quantifiers are ubiquitous. In practice, a set of
non-isolated solutions often expresses a spectrum of equally relevant choices, as
the possible moving areas of a mobile robot, the collision regions between objects
in mechanical assembly, or different alternatives of shapes for the components

54 CHAPTER 4. CONSTRAINT PROGRAMMING

of a kinematic chain. These alternatives need to be identified as precisely and
completely as possible.
A lot of Artificial Intelligence problems can be cast in terms of Numeric Con-
straint Satisfaction Problems (NCSPs), and a large number of systems have been
developed to compute efficiently solutions of these problems. NCSPs are more
and more often used to solve engineering problems arisen in different areas such as
qualitative reasoning, diagnosis, planning, scheduling, configuration, distributed
artificial intelligence, etc... This work focuses on problems related to engineering
field, what play a prominent role in industrial applications. Generally, these prob-
lems are formed by a set of constraints among variables whose domains are real
interval values. Usually, the numeric constraints are linear or polynomial relations
(equations or inequations).
However, not every set of numeric constraints is satisfiable. Different researchers
have proposed methods for the identification of Minimally Unsatisfiable Subsets
of Constraints (MUSes) or Conflict Sets (CS) as they are also named in over-
constrained CSPs. Determining MUSes can be very valuable in many industrial
applications, because it describes what is wrong in a NCSP instance. They repre-
sent the smallest explanations -in terms of the number of involved constraints- of
infeasibility. Indeed, when we check the consistency of a NCSP, we prefer know-
ing which constraints are contradicting one another rather than only knowing that
the whole NCSP is inconsistent.

Definition 4.2. Numeric Variable: variable of the NCSP whose domain is a real
interval value. The set of numeric variables of the problem is denoted by Xψ and
Xψ(ci) stands for the set of variables of a constraint ci.

Definition 4.3. Numeric Constraint: linear or polynomial relation (equations or
inequations) involving a finite subset of numeric variables.

Definition 4.4. Goal: predicate that denotes the users’ preferences to search why
the NCSP is overconstrained.

Definition 4.5. Numeric CSP: four-tuple psi=(X ,D,C,G) where Xψ = {x1, . . . ,xn}
is a set of variables, whose continuous domains are respectively Dψ = {d1, . . . ,dn}
(n ≥ 1), Cψ = {c1, . . . ,cm} (m ≥ 1) is a set of numeric constraints and Gψ is the
goal.

Definition 4.6. Overconstrained NCSP: NCSP with no solution caused by some
of the domains or constraints contradicting others.

4.3. BUSINESS DATA CONSTRAINTS AND CP 55

In the bibliography, different types of CSPs have been treated in order to obtain
the MUSes (Liffiton and Sakallah, 2008; Shah, 2011). They are related to Satisfi-
ability Problems (Junker, 2001; Bruni, 2003; Oh et al., 2004; Éric Grégoire et al.,
2007), Disjunctive Temporal Problem (DTP) (Moffitt and Pollack, 2005; Liffiton
and Sakallah, 2005; Mark Liffiton Michael and Pollack, 2007) and model-based
diagnosis and debugging problems (Mauss and Tatar, 2002; de la Banda et al.,
2003; Gómez-López et al., 2004; Ceballos et al., 2006). Due to the high compu-
tational complexity of these problems, the goal of most of these approaches was
to reduce the amount of satisfaction checking and subsets examined. However,
some approaches were designed to derive only some MUSes and no all MUSes of
these overconstrained CSPs.
To derive MUSes in overconstrained NCSP, we are aware of very few techni-
cal works. Irreducible Infeasible Subsets (IIS) was studied for only linear and
integer domains, but not all MUSes are obtained. These problems may contain
multiple MUSes, and all of them must be resolved by constraint relaxation be-
fore the NCSP can be solved. Also, other authors of the model-based diagnosis
community have treated the high complexity of these problems using constraint
databases (Gómez-López et al., 2004) and new concepts such as constraint clus-
ters and nodes (Ceballos et al., 2006).
In Gasca et al. (2007), a set of new derivation techniques are presented to ob-
tain efficiently MUSes of a overconstrained NCSP. These techniques improve the
complete technique in several ways depending on the structure of the constraint
network. It makes use of the powerful concept of the structural lattice of the
constraints and neighbourhood-based structural analysis to boost the efficiency of
the exhaustive algorithms. As systematic methods for solving hard combinato-
rial problems are too expensive, structural analysis offers an alternative approach
for quickly generating all MUSes. Accordingly, experimental studies of these
new techniques outperform the best exhaustive ones. They avoid to solve a high
number of NCSPs with exponential complexity, however they add some new pro-
cedures with polynomial complexity.

4.3 Business Data Constraints and Constraint Pro-
gramming

As it was aforementioned in Chapter 2, the relations between the data managed
in a business process, and even the values held by those data, are expressed by

56 CHAPTER 4. CONSTRAINT PROGRAMMING

means of business data constraints. In the current Thesis Dissertation, the business
data constraints in a business process model are modelled by using Constraint
Programming, expressed as numerical constraints whose values and variables are
defined in Natural, Float or Integer domain, according to the next grammar in
BNF:

Definition 4.7. Let v ∈ V be variable, let int val be an integer value, let nat val
be a natural value, and let f loat val be a float value. The set of constraints on V ,
denoted C(V), is generated by the following grammar in BNF:

Constraint ::= Atomic Constraint BOOL OP Constraint

| Atomic Constraint | ¬Constraint

BOOL OP ::= ∧ | ∨
Atomic Constraint ::= Function PREDICAT E Function

Function ::= v FUNCT ION Function

| v | int val | nat val | f loat val

PREDICAT E ::= < | ≤ | = | > | ≥
FUNCT ION ::= + | − | ∗ | ÷

During the diagnosis process, all the business data constraints have to be stored
and obtained in an efficient way to determine which business data constraints are
involved in the execution of the abnormal instance. As the business data con-
straints are represented by constraints, Constraint Databases (CDBs) can be used
to support and handle these rules (Gómez-López and Gasca, 2010).
When dealing with a great quantity of data, the use of a database is a manda-
tory decision. The storage of business data constraints also implies storing all
the details related to their variables, the domain of variables and data persis-
tence relationships. These types of information and business data constraints
expressed by constraints are supported by Constraint Database Management Sys-
tems (CDBMS).
CDBs were initially developed by Kanellakis et al. (1992). The basic idea behind
the CDB model is to generalize the notion of a tuple in a relational database to a
conjunction of constraints, since a tuple in relational algebra can be represented
as an equality constraint between an attribute of the database and a constant. In a
real business process, great quantity of compliance rules must be defined, hence a
repository is required in order to evaluate these rules as soon as possible.

4.3. BUSINESS DATA CONSTRAINTS AND CP 57

The CDB used in this Thesis Dissertation is based on Labelled Object-Relational
Constraint Database Architecture (LORCDB Architecture) (Gómez-López et al.,
2009).

58 CHAPTER 4. CONSTRAINT PROGRAMMING

Part III

Contribution I: Verification of
Semantic Business Process Models

59

Chapter 5

Diagnosing Correctness of Semantic
Business Process Models

5.1 Introduction

In order to model operational business processes in an accurate way, business
process models need to reference both the control flow and data flow perspectives.
Checking the correctness of such models and giving precise feedback in case of
faults is challenging due to the interplay between these difference perspectives.
This chapter presents a fully automated contribution for diagnosing correctness of
semantic business process models in which the semantics of activities is specified
with pre and postconditions that describe the expected behaviour of the activities
and corresponding to the phase Verification of Correctness of Semantic Model in
the diagram in Figure 1.2. To this end, the control flow and data flow perspectives
of a semantic business processes are modelled in an integrated way using Artificial
Intelligence techniques (Integer Programming and Constraint Programming).
The approach has been implemented in the DiagFlow tool, which reads and diag-
noses annotated XPDL models, using a constraint solver as back end. By using
this novel approach, complex semantic business process models can be verified
and diagnosed in an efficient way.

5.1.1 Motivation

For organizations it is essential to ensure the correct operation of business process
models at design time, before the business processes get enacted. An incorrect
operational business process cannot satisfy customers and fixing the faults can be

61

62 CHAPTER 5. DIAGNOSING SEMANTIC BP MODELS

very costly, certainly compared to the cost of fixing the business process model
before it is deployed. Correctness of a business process model can be verified by
exhaustively checking all possible execution instances. Detected faults should be
diagnosed, for instance by providing a fault path that shows the cause of the fault,
such that faults can be repaired in a quick and effective way.
Business process models can reference different perspectives. As it was analysed
in the state-of-the-art in Chapter 2, most business process modelling and verifi-
cation approaches only consider the control flow perspective, which is about the
order in which the individual activities of a business process are executed. An-
other relevant perspective to be considered is the data flow perspective, which
details the flow of data among activities subject to certain constraints. The data
flow perspective is important since data constraints influence the possible execu-
tions of activities and in turn, the execution of activities results in certain data
constraints being enforced.
The verification of business process models allows to determine the correctness of
business processes in terms of: a business process cannot be correct (1) if one or
more of its activities can never get executed for any possible valuation of the data
input; or (2) if there is not any possible process instance for a certain valuation of
the input data. In these cases, despite the business process model can be correct
regarding the control flow perspective, it is not correct from the perspective of the
data flow.
In order to diagnose faults in data semantics, an effective means to express data
constraints is to annotate activities in a business process model with pre and post-
conditions that specify the effect on the data state for each activity. For instance,
in the Sarbanes-Oxley Act of 2002, the internal audit department takes the lead
and works alongside business process owners for each process that has a direct
effect on the data for the financial reporting. Annotating activities inside these
processes with pre and postconditions facilitates compliance checking to ensure
that business processes are properly designed. It is an effective means to capture
such dependencies between control flow and data flow. Moreover, pre and post-
conditions can capture requirements on the data flow that any execution of the
business process has to comply with.

5.1.2 Contribution

The goal of the contribution in this chapter is to develop an approach for diag-
nosing the correctness of the relation between values in semantic business process

5.1. INTRODUCTION 63

models, containing activities whose effects are formally specified using pre and
postconditions. An activity can start if the execution of the business process model
has reached the activity and its precondition is satisfied. Upon completion, the ac-
tivity delivers data that satisfies its postcondition. An execution of the business
process can reach an activity whose precondition is not satisfied. In that case the
execution gets stuck at the activity and fails.
In order to detect these errors, we distinguish between two different notions of
correctness to diagnose such data-flow errors:

• May-correctness. A business process model is may-correct if every activity
can be reached and executed at least once, so there is an execution in which
the activity is done. The fulfilment of this correctness ensures that there is
at least one valuation of the data inputs which makes an activity executable.

• Must-correctness. A business process model is must-correct if every possi-
ble execution that reaches an activity satisfies the precondition of the activ-
ity. The fulfilment of this correctness ensures that there is no valuation of
the data inputs which makes an activity non-executable.

The diagnosis is performed at design-time, using artificial intelligence techniques
to compute the execution instances allowed by a business process model. For
diagnosis, the business process model is translated into two models: (1) an Integer
Programming model (IP model), to determine the different instances of execution
of the business process, and (2) the pre and postconditions of the activities are
modelled as constraints in a Constraint Satisfaction Problem (CSP) (Rossi et al.,
2006), following a BNF grammar in order to avoid any ambiguity.
This approach makes several contributions:

• The Workflow data graphs definition is proposed as a formalism for mod-
elling the semantics of the values for the data in the business processes with
pre and postconditions for the activities. These conditions are modelled as
constraints according to a well-defined grammar in BNF.

• Two correctness notions for workflow data graphs, may and must-correctness,
are proposed and innovative diagnosis algorithms are developed for verify-
ing may and must-correctness. The algorithms are complete: neither false
positives nor false negatives are generated. Moreover, the algorithms offer
precise diagnosis of the detected errors, indicating the execution causing the
error where the business process gets stuck.

64 CHAPTER 5. DIAGNOSING SEMANTIC BP MODELS

• The approach has been implemented in the DiagFlow tool, as an extension
of the one presented in Eshuis and Kumar (2010). The tool reads XPDL
models (WFMC, 2005) in which the semantics of activities and the corre-
sponding business process are specified using extended attributes.

The remainder of the chapter is organized as follows. Next subsection 5.1.3
presents a motivating example to illustrate the concepts of may and must-correctness
all along the contribution. Section 5.2 introduces workflow data graphs as a for-
mal model for semantic business processes and defines may and must-correctness
on workflow data graphs. Section 5.3 defines the IP and CSP formulation of a
workflow data graph. The process of diagnosis is explained, and two algorithms
for the corresponding correctness are presented. The diagnosis of the illustra-
tive example is also performed. Section 5.4.1 gives implementation details and
presents the developed tool. Section 5.4 shows experimental results. And finally,
a summary of the contribution is provided in Section 5.5.

5.1.3 Illustrative Example

This section introduces an example of a semantic business process model, shown
in Figure 5.1. This example describes the handling of a conference for an or-
ganizing committee, and it is used to illustrate the concepts of may and must-
correctness in semantic business process models. The graphical representation
BPMN 2.0 (OMG, 2011) is used to visualize business process models.

Figure 5.1: Example of business process

Figure 5.1 shows a business process that consists of nine activities (rectangles with
rounded corners) and eight gateways or control nodes (diamonds), and a start and
end event (circles). A gateway with one incoming edge and multiple outgoing

5.1. INTRODUCTION 65

edges is called a split; a gateway with multiple incoming edges and one outgoing
edge is a join. Gateways with the +-symbol are parallel gateways: all incoming
edges are required to pass the gateway, and the gateway activates all outgoing
edges. The other gateways are XOR: one incoming edge can pass the gateway
and one of the outgoing edges is activated as a result. In the figure, the activity
labels include the activity names and their abbreviations in brackets. The business
process performs the following steps:

1. The process starts with the Establishment of Conference Rate activity, in
order to begin the registration period.

2. In the activity Selection of Accepted Papers, the process of acceptance of
papers for the conference takes place. The number of final papers is deter-
mined.

3. The flow is split into two branches. In the upper one, the cost of the gala
dinner (Dinner) and the lunches (Lunch) to serve during the conference are
calculated concurrently. On the lower branch, the flow is routed accord-
ing to the money spent in the social events during the conference (Other
Expenses or Other Expenses + Social Event activities).

4. Next, the Registration of the attendees of the conference takes place.

5. And finally, the process is routed depending on the available money to spend
in the invitation of national or international guest speakers (National Guest
Speaker or International Guest Speaker activities).

The activities in the example consume and produce data during the execution of
the business process by reading and writing variables. Those variables are listed
in Table 5.1 with their corresponding domains and meanings. Table 5.2 shows
how these variables are used by the activities of the example, indicating if they
are read (rd) or written (wt).
Each activity in a business process uses two types of condition over the data flow
which must be satisfied. A precondition must be satisfied prior to execution of
the activity. If not, the business process gets stuck at the activity and fails. A
postcondition is satisfied immediately after the activity has finished. The pre and
postconditions of the activities in the example in Figure 5.1 are shown in Table
5.3. The notation is explained in the next section.

66 CHAPTER 5. DIAGNOSING SEMANTIC BP MODELS

Table 5.1: Data input for the example in Figure 5.1

Variable Domain Meaning

regFee {200..390} Conference registration fee
sponsorship {0..15000} External contributions to support the event
numPapers {50..80} Number of accepted papers
dinner {60..100} Gala dinner cost
lunch {10..30} Cost of each lunch served during the conference
others {30..185} Money for other expenses, like social events
confAtt {75..170} Number of conference attendees
guestSpeaker {0..10000} Money to spend in inviting a guest speaker

Table 5.2: Data read and written on each activity

Activities
Variables ECR SAP D L OS O R IGS NGS

regFee wt - rd rd rd rd rd rd rd
sponsorship wt - rd rd rd rd - rd rd
numPapers - wt rd rd rd rd rd - -

dinner - - wt - - - rd rd rd
lunch - - - wt - - rd rd rd
others - - - - wt wt rd rd rd

confAtt - - - - - - wt rd rd
guestSpeaker - - - - - - - wt wt

It is easy to check that the business process is correct from the control flow per-
spective: each activity can be performed and there are no deadlocks, so the pro-
cess can always complete. To assess the correctness of the example from the data
flow perspective, there are two important types of questions. Both questions test
whether the precondition of an activity a can be satisfied by considering an arbi-
trary partial execution of the business process in which a is to be executed next.
The partial execution of the business process results in a data state (assignment of
values to variables) that has to satisfy the precondition of a.

5.1. INTRODUCTION 67

Table 5.3: Activities with their pre and postconditions

Activity Precondition and Postcondition

ECR pre: true
post: true

SAP pre: true
post: true

D pre: sponsorship > 0∨numPapers > 60
post: regFee∗0.1≤ dinner∧dinner ≤ regFee∗0.35

L pre: sponsorship > 0∨numPapers > 60
post: regFee∗0.1≤ 3∗ lunch∧3∗ lunch≤ regFee∗0.35

OS pre: sponsorship > 0∨numPapers > 60
post: others≤ 0.2∗ regFee+0.05∗ sponsorship ∧

others≥ 0.05∗ regFee+0.05∗ sponsorship
O pre: sponsorship > 0∨numPapers > 60

post: others≤ 0.25∗ regFee∧others≥ 0.05∗ regFee
R pre: 3∗ lunch+dinner+others < regFee

post: numPapers∗1.8≥ con f Att
∧numPapers∗0.5≤ con f Att

NGS pre: con f Att ∗ (3∗ lunch+dinner+others)<
con f Att ∗ regFee+ sponsorship

post: guestSpeaker ≥ 0.2∗ sponsorship ∧
guestSpeaker ≤ sponsorship+0.1∗ regFee∗ con f Att

IGS pre: con f Att ∗ (3∗ lunch+dinner+others)<
con f Att ∗ regFee+ sponsorship

post: guestSpeaker ≥ 0.4∗ sponsorship ∧
guestSpeaker ≤ sponsorship

One question is whether for each activity a there exists at least one partial exe-
cution of the business process in which a can be done next and the resulting data
state satisfies the precondition of a. In that case, activity a can become enabled
and executed. Otherwise, the execution of the business process may get stuck at
a, if the current data state does not satisfy the precondition of a. If every activity
can be executed, the business process is may-correct. For the business process in

68 CHAPTER 5. DIAGNOSING SEMANTIC BP MODELS

Figure 5.1, an example would be: is it possible to have at least a valuation of the
variables that allows to invite an International Guest Speaker?

The other relevant question is whether every possible partial execution of the busi-
ness process results in a data state that satisfies the precondition of the activity to
be executed next. Phrased differently, can every possible partial execution always
be continued such that eventually the end state is reached? If the answer is pos-
itive, the business process is must-correct. For the example in Figure 5.1, is it
always possible to count on the money to invite an International Guest Speaker?

Note that must-correctness is stronger than may-correctness. It is straightforward
to check that if a business process is must-correct, it is also may-correct. May-
correctness can be used as sanity check for each activity to see whether its pre-
condition is not too strict. Must-correctness can be used to check the correctness
of the entire business process with all the activities and to avoid possible incorrect
input values that makes the process fail.

In the case of the example in Figure 5.1, the business process is may-correct
since every activity is executable. On the other hand, it is not must-correct:
for example, if the partial execution contains activities Establishment of Con-
ference Rate, Selection of Accepted Papers, Dinner, Lunch, and Other Expenses
+ Social Event then the resulting data state can assign the following values to
the variables: regFee=200, dinner=100, lunch=30, others=30. But now the ac-
tivity to be executed next, Registration, has a precondition that is false, since
3 ∗ 30+ 100+ 30 ≮ 200. Therefore, with that assignment of the variables, the
business process gets stuck at activity Registration.

Note that all activities have syntactically correct pre and postconditions, and that
the business process model has a correct control flow definition: no deadlock
occurs if the data flow (pre and postconditions) is abstracted form. The error
is caused by the interplay between the control flow, which specify that Estab-
lishment of Conference Rate, Selection of Accepted Papers, Dinner, Lunch, and
Other Expenses + Social Event are performed before Registration, and the data
flow as specified by the pre and postcondition of each activity, which determines
the possible date states just before Registration.

The error can be repaired in several ways, for instance by relaxing the precondition
of Registration, by strengthening the postconditions of Dinner, Lunch and Other
Expenses + Social Event, by rearranging the control flow, or even by reducing the
domains of the variables. So finding an error at a precondition does not necessarily
imply the precondition itself is flawed.

5.2. WORKFLOW DATA GRAPHS 69

5.2 Workflow Data Graphs

In order to analyse may and must-correctness of semantic business processes, this
contribution is based on graph-theory and Artificial Intelligence techniques. To
this end, the information regarding both control flow and data flow perspectives
of the model is collected in a data structure called workflow data graph.
In this section, workflow data graphs are formally defined, including the structural
constraints that they should satisfy. Next, the notions of data instance subgraph
and correctness for workflow data graphs are introduced. Finally, the concepts
of partial instance subgraph and border activity are presented. The definitions
extend earlier proposed definitions for the control flow perspective of business
process models (Eshuis and Kumar, 2010; Sadiq and Orlowska, 2000) by adding
data.

5.2.1 Definitions

A workflow data graph is a set of activities that is ordered to a set of procedural
rules. The effect of each activity can be specified with pre and postcondition. The
order of execution of the activities is specified by means of directed edges, with a
unique start and a unique end node.

Definition 5.1. A workflow data graph is a tuple P = (Act,V,D,C,E, pre, post)
where:

• Act is a set of activities;

• V is a set of typed variables;

• D is a set of finite domains (types), that contains for each variable v ∈ V a
finite domain Dv;

• C is a set of control nodes (gateways), partitioned into disjoints sets of
XOR splits SXOR, AND splits SAND, XOR joins JXOR, AND joins JAND, and
{start,end} where start is the unique start node and end the unique end
node. Each split in SXOR counts on condition expressions for each gate of
the gateway in order to specify the flow depending on the data;

• E ⊆ Act×Act is a set of edges which determine precedence relation;

• pre : Act→Cs(V) assigns to each activity its precondition (a constraint Cs
over variables in V);

70 CHAPTER 5. DIAGNOSING SEMANTIC BP MODELS

• post : Act →Cs(V) assigns to each activity its postcondition (a constraint
Cs over variables in V);

• wt : Act→V assigns to each activity its written variables;

Let a ∈ Act be an activity. Variables in the precondition of a, so in vars(pre(a)),
are read by a. Variables in the postcondition of a, so in vars(post(a)), are read
and/or written by a.
For an activity a, the pre and postcondition of a are expressed as numerical con-
straints, according to the grammar in Definition 4.7:
Next, each workflow data graph should satisfy the following structural constraints
on its control flow:

1. the start node has no incoming edge and one outgoing edge;

2. the end node has one incoming edge and no outgoing edge;

3. each activity has one incoming and one outgoing edge;

4. each split node has one incoming and at least two outgoing edges;

5. each join node has at least two incoming edges and one outgoing edge;

6. each node is on a path from the start to the end node (connectedness);

7. the precedence relation is acyclic.

Formalizations of these constraints are presented elsewhere (Eshuis and Kumar,
2008). The first five constraints are self-explanatory. Constraints 1 and 2 were
also included by Sadiq and Orlowska (2000). A business process having more
than one start point can be modelled by using immediately after the start node a
split node that connects to the different start points. Similarly, a business process
with more than one end point can be modelled by using a join before the end
node. The sixth constraint rules out unconnected business processes because such
workflow graphs contain unreachable parts and therefore are flawed by default.
The last constraint is also placed by other works on workflow verification (Sadiq
and Orlowska, 2000; van der Aalst et al., 2002; Touré et al., 2008). However,
workflow graphs are still sufficiently expressive to model loops that involve blocked
iteration (Sadiq and Orlowska, 2000; Weber et al., 2010). Basically, any block in
a correct workflow graph can be repeated multiple times without affecting control
flow correctness, since a block has a single point of entry and a single point of exit.

5.2. WORKFLOW DATA GRAPHS 71

Since we do not consider guard conditions (i.e. logical conditions associated to
the gateways), to verify business process models with loops a strong fairness con-
straint is required to ensure that loops are exited eventually (Eshuis and Wieringa,
2004).
In the sequel, we also use auxiliary functions inedge,outedge : N→ P (E), which
both map each node to a set of edges. For a node n, inedge(n) is the set of edges
entering n, while outedge(n) is the set of edges leaving n. Formally, inedge(n) =
{(x,y) ∈ E | y = n} and outedge(n) = {(x,y) ∈ E | x = n}. We use subscripts
to identify the different elements of inedge(n) and outedge(n). For example, if
inedge(n) = {e1,e2}, then inedge1(n) = e1 and inedge2(n) = e2.

5.2.2 Analysis of the Diagnosis Problem

In order to check the may and must-correctness of a business process, it is nec-
essary to check the executability of each activity. That executability depends on
the precondition of the activity being checked, and on the pre and postconditions
of the activities executed before it in a particular instance of the business pro-
cess. To define it formally, Sadiq and Orlowska (2000) introduce the notion of
an instance subgraph, which corresponds to a particular execution instance of a
workflow graph.
An instance subgraph represents a subset of activities that may be executed for
a particular instance of a business process. The part of the workflow graph that
covers the visited nodes is an instance subgraph, because it represents a specific
execution instance based on the workflow graph. A formal definition of instance
subgraphs is presented elsewhere (Eshuis and Kumar, 2008).
For this contribution, we introduce two types of instance subgraphs: partial and
complete. A partial instance subgraph of a workflow graph is generated by
traversing a workflow graph from the start node, using the following rules:

• if an XOR split node is visited, one of its outgoing edge is visited based on
a guard condition;

• if an AND split node is visited, then all outgoing edges are visited;

• if an XOR join node is visited, then its outgoing edge is visited only if one
of its incoming edges has been visited too, and all other incoming edges
have not been visited;

72 CHAPTER 5. DIAGNOSING SEMANTIC BP MODELS

• if an AND join node is visited, then its outgoing edge is visited only if all
its incoming edges have been visited too;

• if an activity is visited, then its outgoing edge is visited too.

A complete instance subgraph is generated by traversing a workflow graph from
the start node using the rules for partial instance subgraphs plus the additional
rule:

• if the incoming edge of an activity is visited, then the activity is visited too.

Control flow verification (Eshuis and Kumar, 2010; Sadiq and Orlowska, 2000)
only considers complete instance subgraphs. However, to verify data flows, we
also need to consider partial instance subgraphs, which contain the incoming edge
of the last activity in the instance, but not the activity itself. To check whether the
precondition of the activity is satisfied by the partial instance subgraph, we need
to identify the possible assignments of variables written by the activities in the
instance subgraph.
A data instance subgraph is an instance subgraph together with an assignment
of values to the variables in V . The assignment must be feasible according to the
postcondition of the activities visited last. To formalize this properly, we introduce
the following notion: an activity a in an instance subgraph (partial or complete)
is a border activity if there is no activity a′ in the instance subgraph such that
there is a directed path from a to a′. For the business process in Figure 5.1, the
subset of activities shadowed in Figure 5.2 ({Establishment o f Con f erence Rate,
Selection o f Accepted Papers, Dinner, Lunch, Other Expenses+Social Event})
induces a partial data instance subgraph, whose border activities are Dinner, Lunch,
and Other Expenses+Social Event. Note that due to the traversal rules the data
instance subgraph also contains the successor (control) nodes of the border activ-
ities. In a data instance subgraph, the assignment of values to variables must be
consistent with the post condition of each border activity.

Definition 5.2. A data instance subgraph of a workflow graph (Act,V,D,C,E,
pre, post) is a tuple (Act ′,V ′,D′,C′,E ′, pre′, post ′,ν) where:

• (Act ′,V ′,D′,C′,E ′, pre′, post ′) is an instance subgraph with Act ′⊆Act, V ′=
V , D′ = D, C′ ⊆ C, E ′ ⊆ E, pre′ = pre∩ (Act ′ → Cs(V)), and post ′ =
post ∩ (Act ′→Cs(V)), and

5.2. WORKFLOW DATA GRAPHS 73

Figure 5.2: Example of instance subgraph (shadowed activities)

• ν is a valuation assigning a value ν(v) to each variable v ∈ V . That value
is in its domain Dv such that for each border activity a, the valuation of
variables in var(post(a)) satisfies the postcondition post(a).

There are two types of possible error for data instance subgraphs. First, a data
instance subgraph can get stuck at an XOR or AND join. Then, it contains the
join but not the outgoing edge of the join (Eshuis and Kumar, 2010). This is
a control flow error that can be detected using existing techniques (Eshuis and
Kumar, 2010; Sadiq and Orlowska, 2000). We therefore ignore such errors for the
remainder of this chapter.
The second error is a data-flow error. Different types of data-flow errors can occur,
depending on the level of detail on which the data flow is specified. At the minimal
level, a business process model specifies for each activity which variables it reads
and writes, but the business process model contains no pre and postconditions.
Sun et al. (2006) have analysed which data-flow errors can occur in such business
process models. For the purpose of this contribution, the following two errors are
important:

• Data is missing if a variable is read by an activity, so referenced in its pre-
condition, but not written in any preceding activity.

• Data is conflicting if the same variable is written in two parallel activities.
In that case, one activity overwrites the value of the variable written earlier
by the other activity.

These data-flow errors at the basic level can cause unexpected process interrup-
tions and should therefore be avoided. In Section 5.3.2 we define an algorithm for
detecting data conflicts.

74 CHAPTER 5. DIAGNOSING SEMANTIC BP MODELS

At a more advanced level, a business process model not only contains variables
read and written by activities, but also contains pre and postconditions for activ-
ities. For such business process models, data-flow errors can occur that are not
considered by Sun et al. (2006). A precondition of an activity is violated if the
precondition is not satisfied when the activity can be executed from a control flow
point of view. In that case, the business process gets stuck and fails.
To formalize precondition violation errors, we introduce the notion of trigger.
A partial instance subgraph triggers activity a if it does not contain a but does
contain the incoming edge of a, which is unique. So the instance subgraph “stops”
just before a. In the example in Figure 5.2, the shadowed partial instance subgraph
triggers the activity Registration.
Based on the notion of trigger, we define two new notions of data-flow correctness.
First, we introduce two auxiliary notions.

Definition 5.3. An activity a is may-executable if there exists a data instance sub-
graph that triggers a and whose valuation of variables satisfies the precondition
of a.

Definition 5.4. An activity a is must-executable if every data instance subgraph
that triggers a has a valuation that satisfies the precondition of a.

Next, we define the two new notions of data-flow correctness.

Definition 5.5. A workflow data graph is may-correct if every activity is may-
executable.

Definition 5.6. A workflow data graph is must-correct if every activity is must-
executable.

In a must-correct workflow data graph, no preconditions can be violated. But a
may-correct workflow data graph might contain an activity whose precondition
can be violated. Still may-correctness is useful, as explained in Section 5.1.3:
may-correctness can be used for testing whether all activities can be executed
under certain conditions while must-correctness can be used to check absence of
precondition violations.
In the next section, we will formalize data instance subgraphs, including the valu-
ations they allow, as Constraint Satisfaction Problems. We will define algorithms
that use the IP and CSP formalizations to analyse the may and must-correctness
of workflow data graphs.

5.3. DIAGNOSIS OF WORKFLOW DATA GRAPHS 75

5.3 Diagnosis of Workflow Data Graphs: May and
Must-correctness

In this section, we explain how correctness of workflow data graphs can be di-
agnosed in a formal way. To this end, diagram in Figure 5.3 shows the method
proposed in this contribution, corresponding to the task Verification of Correctness
of Semantic Models of the diagram in Figure 1.2.

Figure 5.3: Diagram of the process

The process starts from the business process model designed by analysts, and
performs the formalization of both the control flow and data flow perspectives
by using respectively Integer Programming (IP) formulation introduced in Eshuis
and Kumar (2010), and Constraint Satisfaction Problems (CSPs) to formalize pre
and postconditions.
Then, the diagnosis of the model begins, starting with the detection of certain
basic data-flow errors, and going on with the simulation of process instances to
verify the two types of correctness over each one of them.
In the remainder of this section, we first explain the IP and CSP models, describing
also the preprocessing which is necessary to avoid conflicts among postconditions,
and detect errors in the data flow. Then, the algorithms for verifying the may and
must-correctness are detailed, ending the section with their application over the
example in Figure 5.1.

76 CHAPTER 5. DIAGNOSING SEMANTIC BP MODELS

5.3.1 Combined IP and CSP Model

We first explain the IP formulation that covers the control flow perspective of
workflow data graphs. Next we extend the IP model with constraints that model
the data flow perspective of workflow data graphs, getting a CSP model.
The selection of the Integer Programming formulation to model the control flow
perspective lies in it can be solved in a more efficient way since variables to sim-
ulate instances in the control flow only need 0-1 values in their domains.

IP formulation For every activity a ∈ Act, we need to compute an instance
subgraph that triggers a. For this, we use the IP formulation developed in Eshuis
and Kumar (2010), in which an IP variable is introduced for each node and each
edge of the workflow graph. That IP formulation models AND and XOR gateways
(splits and joins) and obviates the modelling of OR gateways for being a particular
case of the AND gateways, where no all branches have to be executed at every
process instance.
A solution to the IP formulation encodes an instance subgraph, where an IP vari-
able has value 1 if and only if the corresponding node or edge is part of the instance
subgraph. Complicating factor is that the existing IP formulation considers com-
plete instance subgraphs, that can only get stuck at (faulty) AND or XOR joins.
But an instance subgraph that triggers a is not complete.
To generate a partial instance subgraph that triggers a, we take the existing IP
formulation (Eshuis and Kumar, 2010) but replace one constraint. The existing IP
formulation uses for each a ∈ Act the constraint inedge1(a)−a = 0, which states
that if the incoming edge of a is activated, so inedge1(a) = 1, then a is activated
as well, so a = 1. To model that the incoming edge of a is activated but not a,
we replace for every a ∈ Act the constraint inedge1(a)− a = 0 in the original
IP formulation with inedge1(a) >= a. This constraint allows that the subgraph
“stops” at a (inedge1(a) = 1 and a = 0) but disallows that a is spontaneously
activated, so inedge1(a) = 0 and a = 1 is not allowed.
To generate partial instance subgraphs, as it was mentioned before, we use a
slightly modified version of the basic IP formulation. All constraints below, except
IP4, are taken from the basic IP formulation. For AND joins we use the relaxed
IP formulation (IP4) to allow for partial instance subgraphs that stop at an AND
join. In that case, one of the parallel branches synchronised by the AND join has
completed, but the other one has to complete. This behaviour is disallowed by the
basic IP formulation.

5.3. DIAGNOSIS OF WORKFLOW DATA GRAPHS 77

Definition 5.7. For a workflow data graph P = (Act,V,D,C,E, pre, post), the Re-
laxed IP formulation maximizes the value at the end node subject to the following
constraints at each node in the workflow graph. For each node and edge x of P,
so x ∈ {Act ∪C∪E}, an IP variable x is created. The constraints are:

IP0 start = 1

IP1 For n ∈ (SAND∪SXOR∪{end}): inedge1(n) - n = 0

IP1a For n ∈ Act: inedge1(n) >= n

IP2 For n ∈ (Act ∪ JAND∪ JXOR∪{start}): outedge1(n) - n = 0

IP3 For n ∈ SAND: outedge1(n) + outedge2(n) - 2n = 0

IP4 For n ∈ JAND: inedge1(n) + inedge2(n)- n ≤ 1

n ≤ inedge1(n)

n ≤ inedge2(n)

IP5 For n ∈ SXOR: outedge1(n) + outedge2(n) - n = 0

IP6 For n ∈ JXOR: inedge1(n) + inedge2(n) - n = 0

CSP formulation Constraint programming is an Artificial Intelligence tech-
nique which provides us a way to model the semantic information of a workflow
data graph.
The IP model encodes the control flow of a data instance subgraph. We now
explain how the data flow, so the pre and postconditions of the activities contained
in the data instance subgraph, are translated into constraints in a CSP. For each
activity a ∈ Act, a constraint of the form a = 1 =⇒ (pre(a)∧ post(a)) is defined.
That is, if a is part of the partial instance subgraph, then its pre and postcondition
should be satisfied. We need the conjunction stipulating that a = 1 to ensure that
the pre and postcondition are only enforced if a is activated, so a is in the instance
subgraph.
Note that the pre and postcondition constraints hold for each activity in the data
instance subgraph, not just for border activities (cf. Definition 5.2). This way,
the constraints can be easily encoded in a CSP model. However, this encoding
complicates finding a solution to the CSP model, since the postcondition of a bor-
der activity might conflict with the postcondition of an earlier executed activity, if

78 CHAPTER 5. DIAGNOSING SEMANTIC BP MODELS

both activities modify the same variable. For instance, a workflow data graph can
contain two activities A and B with postconditions i < 10 and i≥ 10 respectively.
In the execution of a real process instance, both postconditions could be satisfied
if the variable i is modified more than once, getting different values which makes
true those conditions when they are reached. However, a data instance subgraph
containing A and B can assign only one value to i, since it is considered as only
one variable (i.e. one value), so either the postcondition of A or of B is violated.
It would be necessary to count on auxiliary variables to store the different values
that each activity can be assigned during the instances. To resolve conflicts, we
put the CSP model in SSA form, explained next.

SSA form In order to resolve conflicts among postconditions, we will convert
the variables and constraints of the CSP model into Static Single Assignment
(SSA) form. The SSA form is used in compiler design as an intermediate repre-
sentation for a program (Alpern et al., 1988; Cytron et al., 1991). If the workflow
data graph is in SSA form, each variable is assigned a value by only one activity.
To turn a workflow data graph into an SSA form, each variable v is separated into
several variables vi, each of which is assigned a value by only one activity.
A review of the literature reveals a highly cited algorithm to get the variables in a
program in SSA form (Cytron et al., 1991). The algorithm computes the control
flow properties of programs, like conditions (XOR) or loops. As an example of
variables renaming, the business process in Figure 5.4 uses 4 activities which read
and/or write the variables w, x, y, and z. Table 5.4 shows the pre and postcondi-
tions before and after renaming. Note that two new constraints have been added
at activity D. They are known as Φ-functions in Cytron et al. (1991), and they
indicate which assignment to the variable y reaches the join point. That is, the
value for variable y depends on the activity which was executed (B or C).

Figure 5.4: Business process example

5.3. DIAGNOSIS OF WORKFLOW DATA GRAPHS 79

Table 5.4: Variables before and after the renaming

Activity Before SSA After SSA

A pre: true pre: true
post: x > 20 post: x1 > 20

B pre: true pre: true
post: y = x+10 post: y1 = x1+10

z = x∗2 z1 = x1∗2
C pre: x < 100 pre: x1 < 100

post: y = x+50 post: y2 = x1+50
w = y∗2 w1 = y2∗2

D B = 1⇒ y3 = y1
C = 1⇒ y3 = y2

pre: y > x pre: y3 > x1
post: x = x∗ y post: x2 = x1∗ y3

However, the SSA form and the renaming algorithm is defined for sequential pro-
grams while workflow data graphs can contain parallelism. Due to parallelism,
data-flow errors can arise. For instance, two parallel activities can assign the same
variable a value (conflicting data, cf. Section 5.2). In that case, the assignment
to the variable at a subsequent AND join may not be possible due to conflicting
constraints in the CSP model. For instance, if in Figure 5.4 the XOR nodes are re-
placed with AND nodes, both B and C write variable y. The constraints encoding
the Φ-function for the subsequent AND join are now unsatisfiable for y3.
Such data-flow errors are at a more basic level than violations of must and may
correctness, as explained in Section 5.2. Therefore, these data-flow errors need to
be detected and resolved before may and must-correctness can be diagnosed. The
next section defines an algorithm for detecting basic data-flow errors.

5.3.2 Detecting Basic Data-Flow Errors

As explained in Section 5.2, two basic data-flow errors are missing data and con-
flicting data. We next discuss how each type of data-flow error can be detected.
To identify missing data, we use the following constraint. For each activity a∈Act
that reads a variable v, there has to be an activity a1 ∈ Act such that there is a

80 CHAPTER 5. DIAGNOSING SEMANTIC BP MODELS

1: procedure DATA-FLOW-NO-CONFLICT-CHECK(Act,V,D,C,E)
2: error = f alse
3: unmarked =V
4: IP = make IP formulation for (Act ∪C,E)
5: while unmarked 6=∅ ∧ error = f alse do
6: current = a variable from unmarked
7: for a1 ∈ Act such that v ∈ wt(a1) do
8: for a2 ∈ Act such that v ∈ wt(a2) and a1 6= a2 do
9: IP1 = IP && (inedge1(a1)=1) && (a1=0) && (inedge(a2)=1) &&

(a2 = 0)
10: sol = solve IP1

11: if sol is not null then
12: Print ”Race between activities a1 and a2 for variable current”
13: error = true
14: end if
15: end for
16: end for
17: unmarked = unmarked \{ current }
18: end while
19: if error = f alse then
20: Print ”The workflow data graph is data-flow-correct”
21: end if
22: end procedure

Figure 5.5: Algorithm for checking absence of conflicts

directed path from a1 to a and a1 writes v. The presence of a directed path from
a1 to a indicates that a1 precedes a.

To identify conflicting data, we use the algorithm presented in Figure 5.5. Vari-
ables in V are processed one by one in a while-loop. The current variable being
processed is current (line 6). The algorithm iterates over all activities that write
current in a nested for-loop. For each pair of distinct activities a1 and a2, the al-
gorithm tests whether there exists a partial instance subgraph that triggers both a1

and a2. The pre and postconditions of the activities are not relevant for this check,
so the CSP formulation is not used but only the IP formulation.

The next theorem asserts the correctness of the algorithm.

5.3. DIAGNOSIS OF WORKFLOW DATA GRAPHS 81

Theorem 1. Let (Act,V,D,C,E, pre, post) be a workflow data graph, Algorithm
Data-Flow-No-Conflict-Check finds no error if and only if there is no conflicting
data.

Proof 1. In the proof, we use the following lemma: two activities are triggered by
the same instance subgraph if and only if they are in parallel. This lemma follows
immediately from the definition of instance subgraph and the definition of trigger.
=⇒ : Since algorithm Data-Flow-No-Conflict-Check finds no error, for each vari-
able there is no partial instance subgraph triggering two activities that write the
same variable. Therefore, there are no two parallel activities writing the same
variable. Therefore there is no conflicting data.
⇐: Suppose the algorithm finds an instance subgraph that triggers two activities
a1 and a2 that both write variable v∈V . Then by definition there is a data conflict.

5.3.3 Algorithm for May-correctness

To check may-correctness of a workflow data graph and provide proper feedback
in case of an incorrectness, we developed an algorithm that verifies whether each
activity a is may-executable (Figure 5.6). For each activity a, the algorithm tries to
find a data instance subgraph that triggers a and whose valuation satisfies the pre-
condition of a. The data instance subgraph that is searched for is a solution to the
combined IP and CSP model defined in Section 5.3.1 plus additional constraints
that encode that a is triggered and that the precondition of a is satisfied.
Looking at the algorithm in more detail, it begins with the IP formulation of the
workflow data graph (line 4 in Figure 5.6), which states the control flow con-
straints for data instance subgraphs. This IP formulation is combined with the
CSP formulation of the workflow (line 5), which states the pre and postcondition
constraints for the activities in data instance subgraphs. This combined IP and
CSP model is used in the sequel of the algorithm for every data instance sub-
graph. Next, the algorithm performs a loop to check if all the activities are may-
executable (line 6). The activity being processed in the loop is stored in variable
current (line 7). To test whether activity current may-executable, the combined
IP and CSP model is extended with constraints that are true if the data instance
subgraph triggers current and satisfies the precondition of current (line 8). If no
solution exists, there is no such data instance subgraph for current, so current is
not may-executable (line 10). If all activities are may-executable, the workflow
data graph is may-correct (line 17).
The next theorem asserts that the algorithm is correct.

82 CHAPTER 5. DIAGNOSING SEMANTIC BP MODELS

1: procedure MAY-CORRECTNESS-CHECK(Act,V,D,C,E, pre, post)
2: error = f alse
3: unmarked = Act
4: IP = make IP formulation for (Act,E)
5: CSP = IP + CSP formulation for (Act, pre, post)
6: while unmarked 6=∅ do
7: current = an activity from unmarked
8: CSP′ = CSP && inedge1(current) = 1 && current = 0 && pre(current)
9: sol = solve CSP′

10: if sol is null then // CSP′ is unsatisfiable
11: Print ”Activity current is not may-executable”
12: error = true
13: end if
14: unmarked = unmarked \{ current }
15: end while
16: if error = f alse then
17: Print ”The workflow graph is may-correct”
18: end if
19: end procedure

Figure 5.6: Algorithm for checking may-correctness

Theorem 2. Let (Act,V,D,C,E, pre, post) be a workflow data graph. Algorithm
May-Correctness-Check finds no error if and only if (Act,V,D,C,E, pre, post) is
may-correct.

Proof 2. =⇒ : If algorithm May-Correctness-Check finds no error, for each ac-
tivity a a data instance subgraph exists, represented by the solution to the CSP
model (line 9), that triggers a (line 8) and whose valuation, represented by the
assignment of variables to the CSP variables, satisfies the precondition pre(a) of
a (line 8). Therefore, each activity is may-executable, and therefore the workflow
data graph is may-correct.

⇐: If (Act,V,D,C,E, pre, post) is not may-correct, then there is an activity a that
is not may-executable. By Definition 5.2.2, every data instance subgraph that
triggers a can only have a valuation that violates the precondition of a. Therefore,
the CSP model (line 8) has no solution (line 10).

The performance of the algorithm is discussed in Section 5.4.

5.3. DIAGNOSIS OF WORKFLOW DATA GRAPHS 83

5.3.4 Algorithm for Must-correctness

To verify must-correctness of a workflow data graph, we developed an algorithm
(Figure 5.7) that diagnoses whether each activity in the workflow data graph is
must-executable. If an activity a is not must-executable, the algorithm provides a
counter example in the form of a data instance subgraph that triggers a and whose
valuation violates the precondition of a. If every activity is must-executable, the
workflow data graph is must-correct by definition.
First, the combined IP and CSP model is created (line 4 and line 5) as defined in
Section 5.3.1. As in algorithm May-Correctness-Check, each data instance sub-
graph is a solution to this CSP model extended with additional constraints. Next,
the algorithm performs a loop that processes each activity of the input workflow
data graph (line 6). Variable current stores the activity processed in the loop. The
algorithm extends for current the combined IP and CSP model with constraints
that state that the data instance subgraph triggers current and that the precondition
of current is violated. If a solution to this extended CSP model exists (line 10)
then there is a data instance subgraph that triggers current and whose precondition
violates current. Therefore, current is not must-executable (line 11). Otherwise,
current is must-executable and the next activity is processed. If every activity is
must-executable, the workflow data graph is must-correct (line 17).
We next prove that the algorithm is correct.

Theorem 3. Let (Act,V,D,C,E, pre, post) be a workflow data graph, Algorithm
Must-Correctness-Check finds no error if and only if (Act,V,D,C,E, pre, post) is
must-correct.

Proof 3. =⇒ : If algorithm Must-Correctness-Check finds no error, for each ac-
tivity a no data instance subgraph exists that triggers a (line 8) and whose valu-
ation, represented by the assignment of variables to the CSP variables, satisfies
the negation of the precondition pre(a) of a (line 8). Equivalently, each data
instance subgraph that triggers a has a valuation that satisfies the precondition
pre(a). Therefore, each activity is must-executable, and therefore the workflow
data graph is must-correct.
⇐: If (Act,V,D,C,E, pre, post) is not must-correct, then there is an activity a that
is not must-executable. By Definition 5.2.2, there exists a data instance subgraph
that triggers a and that has a valuation that violates the precondition pre(a) of
a. Therefore, the CSP model (line 8) has a solution and the activity is not must-
executable (line 11), so the algorithm finds an error.

84 CHAPTER 5. DIAGNOSING SEMANTIC BP MODELS

1: procedure MUST-CORRECTNESS-CHECK(Act,V,D,C,E, pre, post)
2: error = f alse
3: unmarked = Act
4: IP = make IP formulation for (Act,E)
5: CSP = IP + CSP formulation for (Act, pre, post)
6: while unmarked 6=∅ do
7: current = an activity from unmarked
8: CSP′=CSP && inedge1(current) = 1 && current = 0 && ¬pre(current)
9: sol = solve CSP′

10: if sol is not null then // CSP′ is satisfiable
11: Print ”Activity current is not must-executable”
12: error = true
13: end if
14: unmarked = unmarked \{ current }
15: end while
16: if error = f alse then
17: Print ”The workflow graph is must-correct”
18: end if
19: end procedure

Figure 5.7: Algorithm for checking must-correctness

5.3.5 Diagnosing the Motivating Example

This section presents the results of applying the algorithms to diagnose may and
must-correctness of the business process model in Figure 5.1. The business pro-
cess model has no missing and no conflicting data. As explained in Section 5.3.1,
the CSP model with the pre and postconditions for each activity needs to be in
SSA form. Table 5.5 shows the SSA form of the pre and postconditions of the
activities with the new names of the variables. Notice that for the activity R two
new constraints are introduced because the variable others has two new names
(others1 and others2) assigned in two different branches of a XOR split. These
two new constraints unify the name of the variable to others3 after the join.

Next, we verify the business process model for may-correctness by apply the algo-
rithm May-Correctness-Check on the business process model in Figure 5.1 with
the renamed variables and pre and postconditions as shown in Table 5.5. The algo-
rithm determines that the business process in Figure 5.1 is may-correct, since for
activity a with precondition pre(a) it is always possible to find at least one data

5.3. DIAGNOSIS OF WORKFLOW DATA GRAPHS 85

Table 5.5: Activities with their pre and postconditions in SSA form

Activity Precondition and Postcondition

ECR pre: true
post: true

SAP pre: true
post: true

D pre: sponsorship1 > 0∨numPapers1 > 60
post: regFee1∗0.1≤ dinner1∧dinner1≤ regFee1∗0.35

L pre: sponsorship1 > 0∨numPapers1 > 60
post: regFee1∗0.1≤ 3∗ lunch1∧3∗ lunch1≤ regFee1∗0.35

OS pre: sponsorship1 > 0∨numPapers1 > 60
post: others1≤ 0.2∗ regFee1+0.05∗ sponsorship1 ∧

others1≥ 0.05∗ regFee1+0.05∗ sponsorship1
O pre: sponsorship1 > 0∨numPapers1 > 60

post: others2≤ 0.25∗ regFee1∧others2≥ 0.05∗ regFee1
R OS = 1⇒ others3 = others1

O = 1⇒ others3 = others2
pre: 3∗ lunch1+dinner1+others3 < regFee1
post: numPapers1∗1.8≥ con f Att1

∧numPapers1∗0.5≤ con f Att1
NGS pre: con f Att1∗ (3∗ lunch1+dinner1+others3)<

con f Att1∗ regFee1+ sponsorship1
post: guestSpeaker1≥ 0.2∗ sponsorship1 ∧

guestSpeaker1≤ sponsorship1+0.1∗ regFee1∗ con f Att1
IGS pre: con f Att1∗ (3∗ lunch1+dinner1+others3)<

con f Att1∗ regFee1+ sponsorship1
post: guestSpeaker2≥ 0.4∗ sponsorship1 ∧

guestSpeaker2≤ sponsorship1

instance subgraph that triggers a and whose valuation of the variables is within
the determined finite domains listed in Table 5.1 such that pre(a) is satisfied.

We diagnose for must-correctness by applying the algorithm in Figure 5.7 to the
business process model in Figure 5.1 in SSA form. The algorithm finds for in-
stance an error when activity R is processed, since a data instance subgraph exists

86 CHAPTER 5. DIAGNOSING SEMANTIC BP MODELS

that assigns the values 200, 100, 30 and 30 to the variables regFee, dinner, lunch
and others respectively, which makes the precondition of activity R unsatisfiable.
Therefore the workflow is not must-correct.

5.4 Implementation and Empirical Evaluation

The worst-case complexity of solving CSPs is high. Therefore, this section in-
cludes implementation details and the empirical evaluation of the performance of
the developed algorithms. This way, we can asses whether in practice the time it
takes to diagnose semantic business process models with the algorithms is accept-
able.

5.4.1 Implementation

We have implemented a tool that performs the verification algorithms of the pre-
vious section by extending the tool DiagFlow (Eshuis and Kumar, 2010). The
new tool takes XPDL 1.0/2.0 models (WFMC, 2005) as input and translates them
into CSPs according to the formalization presented in this chapter. For solving
these CSPs, the tool uses the COMETT M solver by Dynadec (Dynamic Decision
Technologies, 2011). COMETT M combines the methodologies used for constraint
programming, linear and integer programming, constraint-based local search, and
dynamic stochastic combinatorial optimization and offers a comprehensive soft-
ware platform for solving complex combinatorial optimization problems.
In order to carry out our new approach, we need to define some details about
the format of the input files. The original XPDL schema does not model any
semantic information of the business process, so no pre and postconditions are
considered. Therefore we propose the following extension of the XPDL schema,
which conforms to the XPDL standard (WFMC, 2005):

1. input data of the activity (read operations)

2. output data of the activity (write operations)

3. precondition: constraint (or constraints) over the input data

4. postcondition: constraint (or constraints) over the input and output data

5.4. IMPLEMENTATION AND EMPIRICAL EVALUATION 87

In order to include these data, the XPDL input file must contain several Extende-
dAttributes to extend the XPDL node Activity (WFMC, 2005):

<xpdl:Activity ...>

...

<xpdl: ExtendedAttribute Name="InputVariables">

<variable>...</variable>

<variable>...</variable>

...

</xpdl: ExtendedAttribute>

<xpdl: ExtendedAttribute Name="OutputVariables">

<variable>...</variable>

<variable>...</variable>

...

</xpdl: ExtendedAttribute>

<xpdl: ExtendedAttribute Name="Precondition" Value="..."/>

<xpdl: ExtendedAttribute Name="Postcondition" Value="..."/>

...

</xpdl:Activity>

The variables that are referenced in the pre and postconditions of the activities
use finite domains to define the ranges of values they can take. To define those
domains in the XPDL file, it is necessary to add ExtendedAttributes within the
node WorkflowProcess:

<xpdl:WorkflowProcess ...>

...

<xpdl:ExtendedAttributes>

<xpdl:ExtendedAttribute Name="Domain">

<variable>...</variable>

<initialValue>...</initialValue>

<finalValue>...</finalValue>

</xpdl: ExtendedAttribute>

...

</xpdl:ExtendedAttributes>

...

88 CHAPTER 5. DIAGNOSING SEMANTIC BP MODELS

</xpdl:WorkflowProcess>

Figure 5.8 shows a screenshot of the DiagFlow tool after the verification of the
may-correctness of the example discussed in this chapter (Figure 5.1). According
to the pre and postconditions of its activities and the domains of the variables,
the DiagFlow tool determines it is may-correct. On the other hand, the business
process is not must-correct as can be seen in the screenshot in Figure 5.9.

Figure 5.8: Screenshot of DiagFlow indicating may-correctness

Figure 5.9: Screenshot of DiagFlow indicating no must-correctness

5.4. IMPLEMENTATION AND EMPIRICAL EVALUATION 89

5.4.2 Experimental Design

The DiagFlow tool receives XPDL files as inputs, with the extensions explained
in the previous section, and provides options to verify the different kinds of cor-
rectness.
The primary purpose of the experimental evaluation is to determine the execution
time from start to completion of a correctness checking process over workflow
data graphs with different control flows and data flows.
With the aim of performing the execution time measurements, the algorithms are
executed over different extended XPDL files, getting test cases with different num-
ber of activities, control nodes and data.
The test cases are measured using a Windows 7 machine, with an Intel Core 2
Duo processor, 1.86GHz and 2.0Gb RAM.

5.4.3 Performance Results

In this subsection, the execution time of the correctness checking algorithms is
measured.
Solving CSPs takes exponential time due to the dependency of their complexity
on the number of values each variable can take (Traxler, 2008; Dechter, 1992;
Kumar, 1992). However, in practice, since CSP solvers run very fast, this does
not limit the applicability of our approach, as we will show next.
Since both algorithms for checking may and must-correctness have a similar struc-
ture, a while-loop which processes every activity by solving a combined IP and
CSP model for the activity, they also have the same time complexity. Since the
algorithms check all the activities in the business process to find the ones which
are not may or must-executable, the performance results depend on the size of the
workflow data graph being analysed.
Figure 5.10 shows the performance results of the May-correctness-check algo-
rithm in terms of the business process size (number of activities), including the
range of the Control-flow Complexity metric (CFC, Cardoso (2005)) in brackets.
That metric is used to quantify the presence of control nodes in a workflow W,
defined as follows:

CFC(W) = ∑n∈SXOR CFCSXOR(n)+∑n∈SAND CFCSAND(n)

where CFCSXOR(n) = |outedge(n)| and CFCSAND(n) = 1. The results obtained for
the must-correctness-check algorithm are not shown since they are very similar.

90 CHAPTER 5. DIAGNOSING SEMANTIC BP MODELS

For both algorithms, the execution time scales linearly with respect to the number
of activities checked by the algorithm. Therefore, the time it takes to diagnose the
faults in even large business process models with the algorithms is acceptable.

Figure 5.10: Performance results

5.5 Summary

This chapter provides an approach for diagnosing the correctness of semantic busi-
ness process models, whose activities count on pre and postconditions to represent
their semantics. This way, we check if the execution of a business process may get
stuck at any activity due to the no satisfaction of the precondition under certain
conditions. In that case, the model of the business process is considered incor-
rect. To this end, we distinguish between two different notions of correctness to
diagnose such errors: (1) may-correctness, that is used to verify if every activity
in a business process can be executed at least once, so there is an execution in
which the activity is done; and (2) must-correctness, to check if every possible
execution of a business process that reaches an activity satisfies the precondition
of the activity.
Our contribution presents an automatic model-based diagnosis method, which is
performed at design-time by using Artificial Intelligence techniques to compute
the execution instances allowed by a business process model. This way, it is pos-
sible to determine errors in the model before the business process is enacted.
To this end, the semantic business process model has been translated into two
models: (1) an Integer Programming model (IP model), to determine the different

5.5. SUMMARY 91

instances of execution of the business process, chosen due to its efficient solving;
and (2) the pre and postconditions of the activities are modelled as constraints in
a Constraint Satisfaction Problem (CSP), following a proposed BNF grammar to
avoid any ambiguity.
The proposed diagnosis process consists of several phases. First, preprocessing is
applied to detect basic data anomalies. Then, the workflow data graph is translated
into an IP formulation that models the executable instances, and into a CSP formu-
lation that models the data states acceptably according to the pre and postcondi-
tions of the activities. The combined IP and CSP models can be efficiently solved
using Constraint Programming techniques. In case of error, feedback is provided
in the form of an error path showing where the business process gets stuck under
certain conditions over the data flow. Such feedback provides valid information
for the business process designer to fix future errors before the workflow is de-
ployed. The approach is complete, so it always generates accurate feedback in
case of an error.
The approach has been implemented by extending the DiagFlow tool Eshuis and
Kumar (2010). The tool diagnoses semantic business process models in an ex-
tended XPDL format. Therefore, an XPDL extension has been provided to store
the semantic information of each business process model, adding the data flow
with the pre and postconditions in the activities. Performance evaluation of the
tool shows that the algorithms scale well for large business process models with
data flows, despite the high worst-case complexity of solving constraints satisfac-
tion programs.

92 CHAPTER 5. DIAGNOSING SEMANTIC BP MODELS

Part IV

Contribution II: Diagnosability in
Business Processes

93

Chapter 6

Improving the Diagnosability in
Business Process Models

6.1 Introduction

A business process configured and enacted from a correct model may present ab-
normal behaviour during its execution. This is due to activities composing the
process may work incorrectly, or certain data managed throughout the data flow
are wrong. This can be derived from the expected behaviour has not to be equal
to how each activity actually works. In order to detect and diagnose these incor-
rect activities or data, it is necessary to have the possibility to observe the actual
behaviour.

Diagnosability analysis aims to determine whether observations available during
the execution of a system are sufficient to precisely locate the source of a problem.
Previous work already dealt with the diagnosability problem in other contexts,
such as circuits and systems. This chapter presents a contribution which addresses
the diagnosability problem in business processes to provide the functionality of the
task Improvement of Diagnosability in the diagram of Figure 1.2. Therefore, the
aim of this contribution is to determine a test-point allocation to monitor sufficient
observable data in the data flow to allow the discrimination of faults for a later
diagnosis process at run-time.

The objective to achieve is formally stated in terms of an optimization problem,
and reaches a given objective function depending on the business policy, under a
set of constraints due to the availability of test-point resources within the domain.
Three test-point allocation strategies are proposed to ensure the best business pro-

95

96 CHAPTER 6. IMPROVING THE DIAGNOSABILITY IN BP MODELS

cess diagnosability, and are implemented in the Test-Point Allocator tool. Experi-
mental results indicate that optimal test-point allocation yields optimal cost and a
shorter time to diagnosis.

6.1.1 Motivation

A correctly designed business process may present abnormal behaviour due to
incorrect managed data, or activities which do not operate as they were modelled.
The fault detection and later diagnosis of this abnormal behaviour of business pro-
cesses are crucial from the strategic point of view of the organizations, since their
proper working is an essential requirement, being crucial to efficiently diagnose
faults which take place at run-time in order to get competitive companies. Unex-
pected faults can provide undesirable halts in the processes, thereby causing cost
increase and production decrease. Therefore, to maintain business processes at
desirable reliability and production levels, it is necessary to develop techniques to
detect and diagnose their faults.
When a business process is executed, certain errors can be detected. The diagnosis
process is used for the isolation of those activities or sub-processes which are
responsible for any incorrect behaviour within the whole process.
The monitoring of a business process, and later diagnosis, are based on observa-
tions, which provide information about the behaviour of the process. For the later
diagnosis process to be successful, diagnosability analysis becomes a design-time
requirement. The diagnosability level of the business process depends upon the
observations. If the diagnosis is based on few observations, or if observations are
not allocated at the most convenient places, it is very difficult to distinguish which
parts of the business process are failing. Both the number of observations and the
location where they are performed enable the cause of the error to be precisely
located. In general, diagnosis systems not only incorporate identification and iso-
lation of faults, but also the monitoring. The explanation of abnormal behaviour,
from a determined observation derived from the monitoring, is the main task of
diagnosis.
Since there is no single entity which provides an overall view of the complete
data-flow model of a business process, it is desirable to improve the monitoring
of business processes to be fully aware of possible deviations from expected be-
haviour. To this end, observations can be carried out at certain intermediate flows
of business processes, and not only at the output, by means of the allocation of
test points. A test point can be allocated in the flow (sequence flow, conditional

6.1. INTRODUCTION 97

flow or default flow according to BPMN 2.0 (OMG, 2011)) in order to guarantee
the observability of the data flow at that point during the execution of a business
process instance. Previous work in the literature deals with the diagnosability
analysis problem (Console et al., 2000; Travé-Massuyès et al., 2006; Dressler and
Struss, 2003; Bocconi et al., 2007) for other scenarios, but these proposals cannot
be adapted directly to business processes since, although some of them allocate
sensors to perform observations, they try to get fully diagnosable systems, not
considering requirements like cost or time limitations.
A business process with test points is said to be diagnosable (adapted from Con-
sole et al. (2000)) if and only if:

• For any relevant combination of test-point observations, there is only one
minimal candidate diagnosis.

• Each fault of the business process corresponds to at least one candidate
diagnosis for a certain test-point observation.

The allocation of the test points is therefore a crucial task, since if the test points
are not correctly allocated, then the observational model may be rendered useless
for the isolation of faults, and hence the diagnosis process would fail to determine
the activities which are not behaving as they were modelled.

6.1.2 Contribution

The aim of this contribution is to apply techniques for the allocation of test points
in business processes in order to improve the computational efficiency of isolating
faults in the diagnosis process, thereby rendering the business process diagnos-
able.
It is possible to consider that, in order to obtain complete diagnosability, the best
solution is to allocate test points at all possible locations, but this solution presents
certain problems:

• Minimization of the number of transmissions (in this case, observations) is
very important in data-centric business processes.

• Some parts of a business process may not be observable due to confidential-
ity, privacy and security policies.

• The monitoring and evaluation of the observations require extra human re-
sources, with the consequent cost increase.

98 CHAPTER 6. IMPROVING THE DIAGNOSABILITY IN BP MODELS

Therefore, for the optimal allocation of test points, there is a trade-off between
diagnosability and the features listed above. The current contribution opts for the
selection of those test points which are necessary and economically feasible to
achieve the diagnosability level desired, and surrender one benefit to gain others.
After the allocation, the business process is divided into sets of activities with-
out intermediate observations, called clusters. In this chapter, three independent
objectives are sought depending on the requirements, which can entail economic
limitations, the achievement of a certain diagnosability level, or even the opti-
mization of the execution time of a later diagnosis process.
Each business process is described as a set of activities related by means of con-
trol structures and data exchange. This, together with the requirement for auto-
matic modelling and reasoning in the problem of allocating test points, the Con-
straint Programming paradigm is proposed since the specification of the variables
from the data flow associated to the activities (according to the Business Process
Modelling Notation (BPMN) model) can be modelled as a Constraint Satisfaction
Problem (CSP).
In this contribution, the flows between activities in the business processes are
assumed to be not faulty. Nevertheless, if the flows have to be considered as
candidates for the responsibility of any abnormal behaviour, this possibility can
easily be modelled by adding a new fictitious component per flow which would
be considered during the test-point allocation and later diagnosis processes.
This contribution has been implemented in the Test-Point Allocator tool (Borrego
et al., 2011). The tool analyses BPMN models and provides options for the allo-
cation of test points according to the three objectives previously mentioned.
The remainder of the chapter is organized as follows. Next subsection presents an
example to illustrate the concept of diagnosability in business processes. Section
6.2 defines concepts related to diagnosability and introduces the three objectives
in greater depth. Section 6.3 details the methodology used in the allocation of test
points in business processes. Section 6.4 gives implementation details and shows
experimental results. And finally, a summary of the contribution is outlined in
Section 6.5.

6.1.3 Illustrative Example

This section introduces an example of a business process called Arrival of a New
Employee, extracted from the Bonita Open Solution documentation (BOS, 2011),
shown in Figure 6.1 using BPMN 2.0 for the graphical representation.

6.1. INTRODUCTION 99

Figure 6.1: Motivating example

Figure 6.1 shows a business process that is executed when a new employee joins
the company, and entails the tasks of data notification and of preparation of the
new workspace. This process consists of twenty activities (rectangles with rounded
corners) and eight gateways or control nodes (diamonds), and a start and end event
(circles). A gateway with one incoming edge and multiple outgoing edges is called
a split; a gateway with multiple incoming edges and one outgoing edge is called a
join.

The activities in the example consume and produce data during the execution of
the business process. This flow of data between activities remains unobservable
to an external diagnoser until the execution finishes and the end event is reached.

After the execution of an instance of the business process, the observed result may
differ from the expected result. This implies that a certain activity or activities
within the process present abnormal behaviour. Taking into account that, without
the allocation of test points, it is possible to observe data only at the end of the
process, and hence the question to answer is: how can the activity or activities
which are responsible for the incorrect behaviour of the process be identified? By
counting on only the observations at the end of the process, it is impossible to

100 CHAPTER 6. IMPROVING THE DIAGNOSABILITY IN BP MODELS

isolate those activities which cause the fault since they cannot be discriminated
from the rest.
For example, if, after the execution of the process in Figure 6.1, the computer
that was prepared for the new employee does not include the expected software,
was there a mistake in the data notified in the execution of the Notify hiring man-
agement activity? Or maybe the incorrect behaviour took place at Requisition
software?
By means of the allocation of test points, we ensure a higher diagnosability of the
processes, thereby easing discrimination between activities.

6.2 Diagnosability of Business Processes

In order to ensure a degree of diagnosability of business processes, we propose
an approach based on Artificial Intelligence techniques. Before applying these
techniques, some definitions are introduced.

6.2.1 Definitions

A diagnosis of a business process, such as the one shown in Figure 6.1, can be
defined as:

Definition 6.1. A diagnosis of a business process is a particular hypothesis which
shows that the current behaviour of the process differs from its expected behaviour.
Any activity has two possible fault modes, (i) it is working correctly (ok mode),
or (ii) it is faulty (abnormal mode). Thus, the diagnosis space for the business
process initially consists of 2|Act|− 1 diagnoses (de Kleer et al., 1992), where
|Act| is the number of activities in the business process. The goal of diagnosis is
to identify and refine the set of minimal diagnoses.

The problem is that, without any monitoring of the data flow during the execution
of a business process instance, it is not possible to discriminate between the fault
modes of the activities, leading us to a business process where it is not possible to
distinguish the activity or activities responsible for the abnormal behaviour.

Definition 6.2. (Bocconi et al., 2007) Two fault modes are discriminable if their
patterns of observable values are disjoint.

Therefore, without the allocation of any test point, the data flowing between ac-
tivities remain unobservable until the end of the execution of a business process
instance, since it is only one cluster, defined formally as follows:

6.2. DIAGNOSABILITY OF BUSINESS PROCESSES 101

Definition 6.3. A set of activities C is a cluster of activities: (i) if no unobservable
information exists between any activity within the cluster with any activity outside
the cluster; and (ii) if the set of activities is minimal, then for all Q⊂C, Q is not
a cluster of activities.

The allocation of test points allow us to divide the business processes into several
clusters.

Definition 6.4. A Test point is a location within the flow of a business process
where the observability of the data flow is guaranteed.

The allocation of test points allows the diagnosability of business processes to be
improved, by monitoring the data flow to locate the source of abnormal behaviour,
in accordance with the following definitions.

Definition 6.5. Diagnosability level is the quotient of the number of (classes of)
faults which can be discriminated from each other, and the number of all possible
faults. Since the number of activities in a business process is |Act|, and since only
one fault per activity is possible, the maximum number of the possible faults is
initially 2|Act|−1.

Definition 6.6. (adapted from Console et al. (2000)) A business process is di-
agnosable with a given set of test points TP if and only if: (i) for any relevant
combination of test-point readings there is only one minimal diagnosis candidate;
and (ii) every fault of the business process belongs to a candidate diagnosis for
certain test-point readings.

6.2.2 Objectives for the Improvement of the Diagnosability of
a Business Process

The test points enable the activities of the business process to be separated into
different clusters, thereby improving the computational efficiency in the diagnosis
process and making it easier to isolate incorrect activities. This is possible since
the diagnosis of the whole business process can be performed based on the di-
agnosis of each cluster separately. Adapting the idea in Ceballos et al. (2005) to
business processes, being A the set of activities of a business process, with n activ-
ities, this set can be divided into two clusters C1 and C2, with n - m and m activities
respectively (n > m), such that C1 ∪ C2 = A. When it comes to detecting the con-
flicts, the computational complexity in either of the separate clusters is lower than

102 CHAPTER 6. IMPROVING THE DIAGNOSABILITY IN BP MODELS

in the whole business process A, since the number of possible diagnoses of C1 and
C2 is

(2n−m) + (2m) - 2 << 2n−m · 2m - 2
which is less than the computational complexity for the whole set of activities A,
2n - 1.
According to these calculations, it is possible to consider that the best solution
to the problem is the allocation of test points at every possible location in the
business process, thereby isolating each activity from the rest and obtaining a
cluster per activity. However, this solution is infeasible due to economic and/or
privacy policies:

• The test-point readings take place during the execution of an instance of a
business process. In the case of abnormal behaviour of the process, these
readings have to be monitored and evaluated by extra human resources,
since this IT service is not automated. This issue entails hiring, training
and retaining skilled personnel, with the consequent cost increase.

• Likewise, the test-point readings must be handled by a fault-diagnosis sys-
tem, which is external to the business process. Minimizing the number of
transmissions is vital in data-centric business processes. Even in the case
when the test points are attached to business process management systems
with ample power supply, the reduction in bandwidth consumption may still
be a major factor due to the wireless, multi-hop nature of communication
and short-range radios.

• Furthermore, not all the possible locations in a business process can include
a test point: (i) due to legal regulations (e.g. SOX, HIPAA) and data protec-
tion acts, some data flowing through a business process may not be observ-
able due to confidentiality, privacy and security policies; (ii) certain parts
of a business process cannot include an observational model which enables
the determination of whether the observation performed by a test point at
that location differs from the expected observation. Hence, any information
collected by the test point is useless from the diagnosis point of view.

Based on these points, the contribution presented in this chapter applies tech-
niques to minimize the number of test points allocated in a business process while
ensuring a determined diagnosability level. This brings us to the three different
objectives for consideration:

6.3. TEST-POINT ALLOCATION METHODOLOGY 103

• Objective 1: If the requirements entail cost limitations, and assuming that
the cost of allocating a test point is independent of the location within the
business process, this involves a fixed maximum number of test points to
allocate. In this case, the objective is to reach the highest possible diagnos-
ability level while obeying the economic limitation restriction. Therefore,
our approach allocates that fixed number of test points and obtains the max-
imum possible number of clusters.

• Objective 2: If the requirements aim to optimize the execution time of the
later diagnosis process, since the complexity of the diagnosis methods (Re-
iter, 1987) is exponential in terms of the number of activities, then the ob-
jective becomes the minimization of the number of test points to allocate in
order to obtain a fixed number of balanced clusters.

• Objective 3: If the requirements entail a certain diagnosability level, then
a maximum number of activities per cluster is fixed, and the objective be-
comes the minimization of the number of test points to allocate in order to
obtain that level.

6.3 Test-Point Allocation Methodology

A graphical representation of the architecture proposed for the solution of the
diagnosability problem is shown in Figure 6.2.
This contribution presents a set of steps to locate test points which improve the
diagnosability and computational efficiency of the diagnosis process:

1. Previously, business processes have already been modelled using BPMN.
The modelling of business processes using this kind of graphical represen-
tation entails the automatic generation of .bpmn files which contain this
same visual information in XML format. This information is interpreted as
input to a Test-Point Allocator to attain an optimal allocation of test points.

2. The Test-Point Allocator analyses these XML files, which contain the infor-
mation of the overall business process. Each business process in an XML
file is denoted by the label <pools>, and, within each business process,
every activity and gateway has the format:

<vertices xmi:type="bpmn:Activity" xmi:id=". . ." name=". . ."

outgoingEdges=". . ." incomingEdges=". . ." activityType=". . ." . . . />

104 CHAPTER 6. IMPROVING THE DIAGNOSABILITY IN BP MODELS

Figure 6.2: Graphical representation of the approach

3. These elements in the XML file are modelled as variables and constraints in
a Constraint Satisfaction Problem according to the topology of the business
processes. This step is laid out in detail in the following subsection.

4. Depending on which objective is to be achieved, the initial CSP is modified
to include some specific constraints and goals. Then, Constraint Program-
ming techniques are used for the allocation of test points.

5. The result is provided by showing a graphical representation of the business
processes, including a label on the flows where the test points should be
allocated.

Due to the morphological similarities between business processes and hypergraphs,
where the activities and flows could be equivalent to nodes and edges, this con-
tribution may resemble well-known hypergraph-partitioning problems (Karypis
et al., 1999; Çatalyürek and Aykanat, 1999). The fact of not considering the gate-
ways as nodes transforms those the edges whose source or target node is a split
into hyperedges that connect the previous and subsequent nodes of the split. As

6.3. TEST-POINT ALLOCATION METHODOLOGY 105

an example, in Figure 6.3, the activities and split in a) are represented as a hyper-
graph in b), where there is only one single possible location to observe the data
flow, which is the output of Node A (i.e. hyperedge ei).

Figure 6.3: Example of hyperedge transformation

Those mentioned works (Karypis et al., 1999; Çatalyürek and Aykanat, 1999) in
hypergraph partitioning are not applicable to business processes since they fail
to comply with the allocation criterion derived from the features of business pro-
cesses. That is, since the allocation of a test point in the flow of a business process
implies that the data flow at that location become observable, when a test point is
allocated in a hyperedge then all the activities connected by means of that hyper-
edge no longer share unobservable data. Hence, they could be located in different
clusters.
However, if, for example, the multilevel hypergraph-partitioning algorithm hMETIS
(presented by Karypis et al. (1999)) is applied to divide a business process into
clusters, it can be observed that the cut of a hyperedge does not separate all the
nodes connected through it, but only one node is considered in a cluster different
to the remaining nodes. For the example in Figure 6.3 b), a hyperedge cut of ei by
hMETIS divides the hypergraph into two clusters (for example, {Node A, Node B}
and {Node C}), whereas our method allocates only one test point in order to ob-
tain a cluster for each node. Therefore, to attain the same diagnosability level, the
existing hypergraph-partitioning methods need more cuts than does our approach.

6.3.1 Improving Diagnosability Using Constraint Programming

In order to automate the reasoning for the allocation of test points in accordance
with certain objectives, the Constraint Programming paradigm is chosen since it
enables the modelling of both the topology and the properties of the problem to
be solved as CSPs, even allowing the determination of the objective function to
reach.

106 CHAPTER 6. IMPROVING THE DIAGNOSABILITY IN BP MODELS

From each designed business process, an initial CSP is defined, that is enriched
with specific constraints and an objective function depending on the objective to
achieve. Hence, a Constraint Optimization Problem (COP) is attained.
In order to model the topology of the business process (i.e., the activities and flows
between them) as an initial CSP, the main variables and constraints are obtained
automatically from the business process in the .bpmn file. With nAct as the num-
ber of activities in the business process, and nFlow the number of flows between
them, the variables of the initial CSP can be defined as the following:

. clusterOfActi: set of nAct variables which represents the cluster where each
activity i is contained.

. testPoint j: set of nFlow variables to hold the test points allocated in the
flows of the business process. The possible values are Boolean: true implies
that there must be a test point in a determined flow, and f alse means that
there is no test point in a determined flow.

. nTestPoints: variable which holds the number of allocated test points.

. nClusters: variable which holds the number of obtained clusters.

Once the variables are defined, our method automatically transforms each flow in
the business process into a constraint within the CSP. This constraint establishes
that if there is no test point in the link between any two activities, then these two
activities must be in the same cluster. Likewise, this constraint is also generated
for each pair of activities connected through a gateway, since gateways do not
affect the data which flows from one activity to another, and hence two activities
connected through a gateway are in the same cluster unless a test point is allocated
in that flow.
Therefore, the initial CSP which models the business process is composed of these
variables and constraints:

Variables
clusterO f Acti, D : {0, . . . ,nAct−1}
testPoint j, D : {true, f alse}
nTestPoints, D : {0, . . . ,nFlow}
nClusters, D : {1, . . . ,nAct}
Constraint (one per flow j between each pair of activities A and B)
if(testPoint j = false)⇒ clusterO f ActA = clusterO f ActB

6.3. TEST-POINT ALLOCATION METHODOLOGY 107

Each created constraint indicates that if there is no test point allocated in the flow
between A and B, then A and B are necessarily in the same cluster. It is impossible
to state the opposite, since the existence of a test point in the flow between A and
B cannot imply that A and B are in different clusters since it is possible that these
two activities are connected through another path in the business process.
Likewise, to model a flow k where a test point cannot be allocated for reasons
explained in Section 6.2.2, it only has to be indicated that the variable testPointk
is always equal to false.
For instance, Figure 6.4 shows the business process of Figure 6.1 with two test
points allocated (nTestPoints = 2). As a result, two clusters have been attained
(nClusters = 2, with cluster 0 and cluster 1), represented in the figure by different
colours of the activities. This way, and considering the order of the activities as
{RSC,NP,PPBI,PNEP,SWL,BEF,NHM,RHS,RH,RS,SUC,REIA,CEA,RPV,
CPVA,DW,NS,BWS,FWS,WE}, the set of variables clusterO f Acti would be as
follows:

clusterO f Act = {0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,0}

Figure 6.4: Motivating example with two test points

108 CHAPTER 6. IMPROVING THE DIAGNOSABILITY IN BP MODELS

Furthermore, and due to the high computational complexity of this problem, ad-
ditional constraints are added to the initial CSP in order to prevent repeated calcu-
lation of equivalent solutions (Mears et al., 2009). For instance, if three activities
A, B, C are allocated within clusters 1, 1, and 2 respectively, then that solution
is equivalent to their allocation within clusters 2, 2 and 3, since in both solutions
A and B are allocated within the same cluster and C in a different cluster. The
inclusion of these constraints in the model of the CSP reduces the computational
complexity through its huge reduction of the search space.

Constraints
clusterO f Act1 = 0
∀i ∈ {0, . . . ,nAct−1} : clusterO f Acti ≤ max(clusterO f Act j)+1

j ∈ {1, . . . , i−1}

These additional constraints are common to all three objectives achieved by the
solution proposed in this contribution and form the initial CSP. However, each
objective needs its own additional and specific constraints and goals so that it can
be completely modelled, thereby creating a COP. The three objectives and their
corresponding configurations are given in detail in the following subsections.

6.3.2 Objective 1: Maximization of the Number of Clusters
with the Allocation of a Fixed Number of Test Points.

In order to maximize the diagnosability, the objective here becomes the maxi-
mization of the number of clusters obtained with the fixed number of test points.
Beginning with the initial CSP, it is necessary to add new constraints and the goal
to be achieved for this specific objective. This new information is also generated
and included in the initial CSP in an automatic way.
More precisely, the new information to be added is:

• The number of test points must be limited to a value t indicated by the user
or the problem specification. That is, the number of true values in the set
testPoint j have to be equal to the number of test points to be allocated. If
this value t is greater than or equal to the maximum number of existing flows
for the allocation of test points, it is not necessary to execute any algorithm,
since a test point will be allocated at each possible location of the business
process.

6.3. TEST-POINT ALLOCATION METHODOLOGY 109

• The goal is included in the CSP: taking into account that the assigned clus-
ters in clusterO f Act are consecutive integers beginning at 0, the objective
function becomes the maximization of the maximum integer in clusterO f Act,
thereby obtaining the maximum possible number of clusters.

Constraint
nTestPoints = t, t ∈ {0, . . . ,nFlow}
Goal
maximize(max(clusterO f Act))

Although the allocation of test points is an off-line process, the complexity and
execution time can be improved, especially when the business process has a large
number of activities. In order to sort out the problem of the computational com-
plexity, the greedy algorithm presented by Ceballos et al. (2005) is used as a pre-
vious step. In short, this algorithm assigns a weight to each flow in the business
process, and applies Floyd’s algorithm to find the minimal path between each pair
of activities. These minimal paths decide, through a voting mechanism, which
paths are the bottlenecks of the business process, that is, which are the most im-
portant flows for the allocation of test points.
The result obtained from the execution of the greedy algorithm is a set with the
various flows for the business process and with the determined bottlenecks. This
set is used in the selection of the collection of variables in testPoint j for the best
candidates for the allocation of test points.
On the other hand, the use of the greedy algorithm by Ceballos et al. (2005) to
allocate the test points does not guarantee the optimal solution. Therefore, we
propose using the solution provided by this greedy algorithm (that is, the number
of clusters obtained) as a bound to limit the minimum number of clusters that
the complete method based on COP must try to achieve. In this way, the new
constraint that is added to the initial CSP becomes:

Constraint
min(clusterO f Act)≥ numClustersAllocatedByGreedyMethod +1

If the complete method fails to find a solution after adding this new constraint,
then the greedy method has already provided the optimal solution. Otherwise, the
optimal solution is provided by the complete method, thereby attaining a much
shorter execution time thanks to the use of the greedy algorithm as a bound.

110 CHAPTER 6. IMPROVING THE DIAGNOSABILITY IN BP MODELS

6.3.3 Objective 2: Allocation of the Minimum Number of Test
Points in Order to Obtain a Fixed Number of Balanced
Clusters.

When the requirements of the problem aim to optimize the execution time of a
later diagnosis process, it has to be considered that the complexity of the diagnosis
methods is exponential in terms, of the size of the system to diagnose (Reiter,
1987), which in our case is the number of activities in the business process.
In order to model the COP to achieve this objective, it is necessary to include
certain new constraints in the initial CSP, as laid out in the following:

• The number of clusters to attain becomes a fixed value called numClusters.
This value is provided by the user or the problem specification.

• In order to attain balanced clusters, the number of activities per cluster is
calculated by dividing the whole number of activities in the business process
by the fixed number of clusters to obtain. We also let the user determine an
extra parameter v to allow a range of values for the number of activities per
cluster.

• The goal to be achieved is the minimization of the number of test points to
be allocated. That is, an objective function is needed in order to establish
the minimum number of values equal to true in the set testPoints.

Variables
numClusters, D : {1, . . . ,nAct}
v, D : {0, . . . ,nAct/numClusters}
Constraints
nClusters = numClusters
minNumAct = nAct/numClusters− v
maxNumAct = nAct/numClusters+1+ v
∀i ∈ {0, . . . ,nClusters−1}

minNumAct ≤ occurrences(i,clusterO f Act) ≤ maxNumAct
Goal
minimize(nTestPoints)

Thanks to these newly added constraints, the search space for the new COP is
bounded, since, for example, the domain of the variables in the set clusterO f Act
is drastically reduced.

6.3. TEST-POINT ALLOCATION METHODOLOGY 111

Therefore, this COP presents no computational problems, since it attains a con-
stant execution time, and hence no previous method is required to improve the
temporal results.

6.3.4 Objective 3: Minimization of the Number of Test Points
to be Allocated in Order to Obtain Clusters with a Max-
imum Number of Activities.

When it is necessary to achieve a determined diagnosability level, a maximum
number of activities per cluster is fixed, and the objective becomes the minimiza-
tion of the number of test points to be allocated in order to minimize costs.
In order to model this objective, it is necessary to add more information to the
initial CSP. That information is:

• Constraints to limit the number of activities belonging to each cluster to
the value maxNumAct. This value is provided by the user or the problem
specification.

• The goal to be achieved is given by an objective function which establishes
the minimization of the number of test points to be allocated.

Constraints
∀i ∈ {0, . . . ,nClusters−1}

occurrences(i,clusterO f Act) ≤ maxNumAct
Goal
minimize(nTestPoints)

Once these new constraints have been included in the model of the problem, the
CSP solver can be executed in order to find the optimal solution. However, the
computational complexity of the problem is exponential, and hence it is necessary
to add some kind of bound to reduce the search space of the variables in the COP.
In order to obtain a bound, we propose a new greedy method. This method is able
to allocate test points in the business process in linear time. The solution provided
by this new greedy algorithm may not be the optimal solution, but it provides a
very useful bound for the number of test points to be allocated. This bound is used
to drastically reduce the domain of the variables clusterO f Acti.
As an example, an application of the algorithm without any bound to the business
process in Figure 6.1 to obtain clusters with a maximum size of 5 activities, allo-
cates 6 test points. When it comes to executing the greedy algorithm, it allocates

112 CHAPTER 6. IMPROVING THE DIAGNOSABILITY IN BP MODELS

10 test points, which is obviously not an optimal solution. Nevertheless, when
these 10 test points are used as a bound for the complete algorithm, the optimal
solution (6 test points) can now be found in only a tenth of the time that would
have been spent without the bound.

Greedy Method for the Improvement of the Computational Complexity of
Objective 3.

The greedy algorithm is based on the topology of the business processes, and takes
advantage of knowledge on the different control flow patterns that are used in the
modelling of a business process. Since, in business processes, topological struc-
tures frequently exist where a set of branches that form a split are synchronized
by means of a join, it is possible to analyse the processes in great depth. The splits
and joins that appear in a business process allows us to divide it into several levels.
That is, when a single thread of execution splits into two or more branches, and
those branches later converge in a join, the activities in those branches are in an
inferior level than the activities in the main thread.
This concept is illustrated in the example in Figure 6.5, where the business process
is composed of ten activities and three AND-splits with their three corresponding
AND-joins. These splits and joins divide the business process into four levels:

• Level 1: the main level, composed of all the activities A0, A1, A2, A3, A4,
A5, A6, A7, A8 and A9.

• Level 2: composed of the activities A1, A2, A3, A4, A5, A6, A7 and A8,
which are the activities within the outer split and join.

• Level 3: where the activities A2 and A3 are included. These are the activities
within the second split and join (one of the inner splits and joins).

• Level 4: with the activities A6 and A7 (within the other split and join).

Based on this idea of levels within the business process, the greedy algorithm
consists of two steps:

i. Labelling the activities. This first step assigns a label to each activity in
order to store the level where the activity is within the business process (this
information is obtained in this step of the algorithm). This task is performed
beginning in the start event of the business process and following the direc-
tion of the flow up to the end event. During this walk through the business

6.3. TEST-POINT ALLOCATION METHODOLOGY 113

Figure 6.5: Business process with four levels

process, the activities are labelled depending on the level where they are
located. In order to do this, the splits are matched to their corresponding
joins, and the labels are assigned from upper to lower levels.

The label of the main level (this level includes the whole business process)
is the string ”1”. The labels assigned to the activities in the rest of the levels
are formed by the label of the upper level, linked at the end to a number that
will represent the new level. Continuing with the example in Figure 6.5, this
business process together with the different labels assigned to its activities
are shown in Figure 6.6.

Figure 6.6: Business process with labels in the activities

The four levels in this business process are labelled as ”1”, ”12”, ”123”,
and ”124”. At the same time as these labels are assigned, a tree with the
hierarchy of levels is built. Each node of this tree stores the label of a level
and the activities of the business process which are previous and subsequent
to that level.

For the example in Figure 6.6, the corresponding tree of levels is presented
in Figure 6.7. The information shown in a node of the tree is a level in the
business process and the previous and subsequent activities for that level.

114 CHAPTER 6. IMPROVING THE DIAGNOSABILITY IN BP MODELS

Obviously, level ”1” has no previous nor subsequent activity, since that level
represents the whole business process.

Figure 6.7: Tree of levels

ii. Allocating the test points. Using the tree of levels built in Step (i) above,
this task performs a recursive process over the levels to allocate the test
points. The algorithm in Figure 6.8 shows this recursive process in order to
clarify the execution of this task.

In detail, the algorithm is executed beginning in the level which is the root of
the tree of levels. The algorithm traverses the levels recursively, allocating
test points from lower to upper levels. The allocation of test points takes
place in currentLevel if:

• currentLevel includes more activities than the permitted amount per
cluster, and (i) it is a leaf of the tree (lines 4 and 5) or (ii) the test
points have already been allocated on its children (lines 15 and 16).

• currentLevel includes the same number of activities as the maximum
permitted per cluster (line 19).

The most important statements, with the marks (1), (2), and (3) in the algo-
rithm, are explained in the following.

(1) Allocating test points in the input and outputs of a level: when it comes
to the allocation of test points in a level, the aim is to isolate the activ-
ities of that level from the rest of the activities in the business process.
Therefore, this statement entails the action of allocating test points af-
ter the previous activity and before the subsequent activity of the level.

6.3. TEST-POINT ALLOCATION METHODOLOGY 115

1: procedure GREEDYMETHOD(String currentLevel)
2: if there are more activities in currentLevel than the permitted activities per cluster

then
3: if currentLevel is a leaf of the tree of levels then
4: (1) allocate test points in the input and outputs of currentLevel
5: (2) allocate test points in the activities of currentLevel
6: else
7: for all children c of currentLevel in the tree do
8: recursive call: run this algorithm over activities in level c
9: if any test point is allocated in level c then

10: (3) reduction of the business process
11: else
12: //activities in c will be taken into account in the upper level
13: end if
14: end for
15: (1) allocate test points in the input and outputs of currentLevel
16: (2) allocate test points in the activities of currentLevel
17: end if
18: else if the number of activities in currentLevel is equal to the maximum activities

per cluster then
19: (1) allocate test points in the input and outputs of currentLevel
20: else
21: //activities in currentLevel will be taken into account in the upper level
22: end if
23: end procedure

Figure 6.8: Greedy recursive algorithm for the allocation of test points

For example, if test points must be allocated in the business process in
Figure 6.6 and the maximum number of activities per cluster is four,
then the recursive algorithm begins in level ”1” (root of the tree in Fig-
ure 6.7) that contains ten activities (the whole business process). Since
this level contains too many activities and it is not a leaf in the tree,
the algorithm moves forward to the only child in the tree: level ”12”.
The number of activities in this level (eight activities) is also larger
than the maximum per cluster, and hence this level must be studied
independently of the rest of the activities in the business process and
must be isolated. To this end, three test points are allocated: one in
the input of the level (output of A0) and two in the outputs of the level
(outputs of A4 and A8).

116 CHAPTER 6. IMPROVING THE DIAGNOSABILITY IN BP MODELS

Figure 6.9: Reduced business process

(2) Allocating test points in the activities of a level: either because the
level is a leaf or because it has already been isolated. This statement
entails the action of allocating test points in the activities of a level
using the complete search for the corresponding CSP, as explained at
the beginning of this Subsection (6.3.4).

(3) Reduction of the business process: once the test points have been al-
located in a level, this level can be considered as a black box in upper
levels. Therefore the business process is effectively reduced in the
allocation of test points over the whole business process since the ac-
tivities of that level are not taken into account.

For example, supposing that, in the business process in Figure 6.6, the
level ”124” has been isolated and the test points have already been
allocated on this level. This level can therefore be replaced by a black
box delimited by test points, as shown in Figure 6.9.

6.4 Implementation and Empirical Evaluation

In this section, the diagnosability level obtained is discussed and the execution
time results of our experimental evaluation of the three objectives detailed in Sec-
tion 6.3 are presented.

6.4.1 Implementation

The Test-Point Allocator tool is implemented, which carries out the allocation of
test points in business processes and provides options in accordance with the three
objectives detailed in this chapter. The tool takes BPMN 2.0 models (OMG, 2011)
as input and translates them into CSPs in accordance with the process presented
in this chapter. In order to solve these CSPs, the tool uses the ILOG JSolverT M

6.4. IMPLEMENTATION AND EMPIRICAL EVALUATION 117

(IBM, 2003). The results are visualized on the screen using the Graphviz/dot
library (Graphviz/Dot, 2011).

Figure 6.10: Screenshots of Test-Point Allocator

118 CHAPTER 6. IMPROVING THE DIAGNOSABILITY IN BP MODELS

Figure 6.10 shows screenshots of the Test-Point Allocator tool: the initial form to
upload the input file and choose the options and objective; and the result obtained
for one of the tested examples for the process in Figure 6.1. The various colours
of the activities indicate the cluster where they are located.

6.4.2 Experimental Design

Further to the diagnosability-level analysis, another purpose of the experimental
evaluation is to determine the execution time from start to completion of a test-
point allocation process.
With the aim of performing the execution-time measurements, our algorithms are
executed over a set of randomly generated test cases obtained by using the Process

Figure 6.11: Execution time for Objective 1

6.4. IMPLEMENTATION AND EMPIRICAL EVALUATION 119

Log Generator (PLG, (Burattin and Sperduti, 2010)). This mechanism enables the
generation of realistic business processes in accordance with certain specific user-
defined parameters.
In order to take the measurements, the test cases are composed of business pro-
cesses, each with a different number of activities and flows, and several topologies
are used.
The test cases are measured using a PC with CPU Intel Xeon 2,4GHz - 8GB RAM.

6.4.3 Performance Results

The worst-case complexity for the solution of COPs is high. Solving COPs takes
exponential time due to the dependency of their complexity on the number of
values each variable can take (Dechter, 1992; Traxler, 2008). It is therefore logical
to empirically evaluate the performance of the developed methods. In order to
assess whether, in practise, the time it takes to allocate test points is acceptable.
Hence, in this subsection, the execution times for Objectives 1 and 3 are measured,
where the execution time of the complete and greedy methods are compared.
Figure 6.11 a) shows the execution time necessary for the complete algorithm to
reach Objective 1. This execution time can be compared with the performance
measurement shown in Figure 6.11 b), which corresponds to the execution using
the greedy method. It is possible to notice a minor increase in the execution time
when there is a greater number of activities in the business processes. On compar-

Figure 6.12: Execution time for Objective 2

120 CHAPTER 6. IMPROVING THE DIAGNOSABILITY IN BP MODELS

ing the results, it is observed that the execution of the complete CSP algorithm,
without the bound provided by the greedy method, takes three times as long as it
would with this bound.
Likewise, Figure 6.12 shows the performance measurement for Objective 2.
And finally, the difference between the execution time for the complete method
and that for the greedy method in the solution for Objective 3 can be observed
in Figure 6.13. It is possible to notice the difference between the increase in the
execution time for the complete method and the temporal complexity when the
greedy algorithm is used for the establishment of a bound in the number of test
points.

Figure 6.13: Execution time for Objective 3

6.5. SUMMARY 121

6.5 Summary

This chapter provides a technique to improve the diagnosability of business pro-
cesses. This is performed by the allocation of test points to guarantee the observ-
ability of the data flow at certain parts of the processes, and getting a division of
the original business process into several clusters of activities, facilitating the later
isolation of possible faults.
To this end, the business processes are modelled by using the Constraint Program-
ming paradigm, which enables to fully automate the allocation of test points in an
efficient manner.
The allocation of test points is carried out in accordance with three objectives
which have been selected in terms of the most common time and cost requirements
on behalf of the users, considering both the enhancement of the diagnosability of
the business processes and the improvement of the computational complexity of
the allocation and the later diagnosis process.
As a result, the Test-Point Allocator tool, available on the Internet, is able to al-
locate test points in business processes modelled in BPMN 2.0, providing options
to select and configure the objective to achieve.

122 CHAPTER 6. IMPROVING THE DIAGNOSABILITY IN BP MODELS

Part V

Contributions III and IV: Fault
Diagnosis of Business Processes at

Runtime

123

Chapter 7

Diagnosis of Business Processes
based on Business Data Constraints

7.1 Introduction

In accordance with the ideas previously stated in the introduction of the current
Thesis Dissertation, although the business process model used to configure and
enact a business process is verified correct, the process may not behave correctly
at run-time since the activities cannot be working as expected. The faults detected
during or after the execution of process instances are derived from the goals which
have not been reached due to some activity or activities which are not behaving
correctly. Then, it becomes necessary to diagnose the activities by analysing pro-
cess instances in order to determine which activity is not working as it was mod-
elled.

In the case of the data flow perspective of the business process model available,
including the description of the company policies as business data constraints in a
contract, this contract can be used to automatically diagnose the behaviour of the
activities at run-time. To this end, this chapter presents a contribution which pro-
poses an automatic diagnosis method for this kind of malfunction, providing the
functionality of the task Quantitative Diagnosis based on Business Compliance
Rules of the diagram presented in Figure 1.2.

The proposed method is inspired in the classic point of view of model-based
diagnosis that compares the expected behaviour (model) with the observations
(model-based diagnosis). The discrepancies detected will be used in the diagnosis
process. Not all the activities in a business process participate in every single exe-

125

126CHAPTER 7. DIAGNOSIS BASED ON BUSINESS DATA CONSTRAINTS

cution, due to there are gateways that enable the execution of several branches for
a varied number of times, since it is a runtime process only the activities involved
in the executed instance should be considered for the diagnosis.
This contribution provides two automatic solutions which consider the trade-off
between the obtaining of the minimal diagnosis and the performance. Both solu-
tions find out the minimal diagnosis, with some differences: (1) the first solution,
based on te use of reified constraints and Max-CSPs, only provides one solution
to the diagnosis problem, and is better in terms of performance when it comes to
find single faults; and (2) the second solution, based on the obtaining of Minimal
Unsatisfiable Subsets, provides all solutions to the diagnosis problem, reaching
first the solutions with multiple faults.

7.1.1 Motivation

The data flow perspective of a business process model can be described by means
of business compliance rules, which define the company behaviour and policies,
so that they work as the contract or semantic behaviour of business processes. As
it was aforementioned in the background to business processes is Chapter 2, a
subset of the business compliance rules are the business data constraints, which
represent the semantic relation between the data values that are introduced, read
and modified during the business process instances.
Since each organization defines its own policies about things such as prices, costs,
numbers of employee, deadlines of tasks and so on, it is possible to specify a dif-
ferent set of business data constraints for each business process, even for different
activities within the same business process.
The organizations must comply with an increasing number of internal and external
regulations that are generally assured through regular audits and reviews. Due to
continuously changing market conditions, an automatic approach to compliance
management is desirable. There are some mechanisms to check whether business
processes are compliant with the rules, but the key point is how we can specify
the business processes model including business data constraints (i.e. relations
between data, and values) in an easy way.
It is considered that the business process contract consists of the following:

• The data model that includes the business data constraints for these data;

• A business process model which, in this case, is a BPMN 2.0 diagram
(OMG, 2011).

7.1. INTRODUCTION 127

After a business process is modelled and verified, it gets enacted. During this
phase of the lifecycle, the activities executed in each process instance transform
the data of the business objects by introducing, reading or writing values, thereby
being necessary to check whether the compliance rules are satisfiable after that
data transformation. In the negative case, an abnormal behaviour is detected re-
garding the non-compliance of the rules defined in the model. Therefore, it be-
comes necessary to precisely locate the activity or activities which are not work-
ing as they were modelled. They are responsible for a malfunction and should be
identified.

7.1.2 Contribution

The current chapter presents a solution based on the description of the activities’
behaviour with business data constraints as contracts. Extensive literature research
regarding business process compliance has been presented (Sadiq et al., 2007;
Namiri and Stojanovic, 2007; Ghose and Koliadis, 2007). However, the main
question arising in this contribution is whether it is possible to infer when or where
an error has occurred with respect to the business policies and procedures in terms
of the data-flow values. This suggests an adaptation of the typical fault model-
based diagnosis approach to business process diagnosis, which is what is pursued
in this chapter.
Business compliance rules contain business knowledge that describes the policies
and procedures related to business processes. Business rules represent a natural
step in the application of computer technology aimed at enhancing productivity
in the workplace. The adoption of business rules adds another tier to systems that
automate business processes. Compared to traditional systems, this approach has
the following major advantages, as analysed in a greater depth by Weber et al.
(2009): it lowers the cost incurred in the modification of business logic; it short-
ens development time; rules are externalized and easily shared among multiple
applications; changes can be made faster and with less risk.
This contribution focuses on the use of business data constraints to describe the
data semantics of a business process for the representation of the relations between
data values. These business data constraints can be used for describing both the
behaviour of each activity of the process independently (pre and postconditions)
and the behaviour of the overall process in a global way. Both kind of rules can be
associated to determined activities in terms of the data they manage. Therefore,
one of our objectives is to establish the possible transformations of real-world

128CHAPTER 7. DIAGNOSIS BASED ON BUSINESS DATA CONSTRAINTS

concepts to constraints and to automate the process of diagnosis, representing as
constraints the business data constraints associated to the different activities.
These constraints are linear or polynomial equations or inequations over data-flow
variables, related by a boolean combination (and/or), according to the grammar
defined in Definition 4.7.
According to one of the business rules taxonomies, current business rules are clas-
sified into integrity rules, derivation rules, reaction rules, production rules and
transformation rules. This contribution focuses on the production rules, whose
representation is the if Condition then Consequence format, and are used to val-
idate the contract of the business process, where Condition represents the con-
straint to validate and Consequence the evaluation of the compliance rule. By
using constraints, the information is represented at a more abstract level, since lan-
guages based on constraints include and improve all the capacity of representation
of current rules engines, such us Drools, Fair Isaac Blaze Advisor, ILOG JRules
and Jess. Likewise, representing the business data constraints as constraints we
can get the automation of the contract-based diagnosis process.
By using business data constraints and Artificial Intelligence techniques oriented
towards diagnosis, it is possible to describe the contract of the process to validate
the correctness and determine any incorrect activities. In the business process
area, the diagnosis process has two conditions that render the task of diagno-
sis more complicated: (a) Depending on the process instance and the input data,
certain activities will work towards obtaining the objective of the process. This
implies that in the diagnosis process, it is necessary to know which activities have
participated. (b) A branch loop is a possible scenario, where a set of activities
are executed several times, thereby the different executions of the loop have to be
taken into account. Both strategies proposed in this chapter, based on Max-CSPs
and MUSes respectively, take into account these depicted problems when it comes
to perform the model-based fault diagnosis of incorrect activities.
The remainder of the chapter is organized as follows. Next subsection presents the
specification of an illustrative example of business process and business data con-
straints that is used all along the chapter to describe the diagnosis process. Section
7.2 gives an overview to the fault diagnosis method proposed, based on business
data constraints. Section 7.3 contains the main part of the contribution, describing
the two proposed strategies, and including an improved algorithm based on mini-
mal unsatisfiable subsets to find any incorrect activities by taking into account the
executed activities and the possible loops. Section 7.4 presents the experimental
results, and Section 7.5 concludes the chapter by summarizing the main concepts.

7.1. INTRODUCTION 129

7.1.3 Illustrative Example

In order to illustrate the model-based fault diagnosis method presented in this
chapter, the example about the handling of a conference, already detailed in Chap-
ter 5, is used (shown again in Figure 7.1). The example is supposed to be already
verified may and must-correct. However, some faults may be detected after its
enactment and execution. Besides the data already mentioned as managed by this
process, certain new variables are needed, all of them collected in Table 7.1

Figure 7.1: Example of the business process for the organization of a conference

Table 7.1: Data input domain for the example in Figure 7.1

Variable Domain Meaning

totalCost {25000..70000} Total cost of the overall conference
totalExpenses {25000..70000} Total expenses of the overall conference
costPerAtt {120..375} Cost per conference attendee
regFee {200..390} Conference registration fee
sponsorship {0..15000} External contributions to support the event
numPapers {50..80} Number of accepted papers
dinner {60..100} Gala dinner cost
lunch {10..30} Cost of each lunch
others {30..185} Money for other expenses, like social events
confAtt {75..170} Number of conference attendees
guestSpeaker {0..10000} Money to spend in inviting a guest speaker

The semantics of the business process in the example is modelled as a contract
whose business data constraints are detailed in Table 7.2 below.

130CHAPTER 7. DIAGNOSIS BASED ON BUSINESS DATA CONSTRAINTS

Table 7.2: Business data constraints for the example in Figure 7.1

Business data constraints

totalCost ≤ totalExpenses
totalCost ≥ totalExpenses∗0.8
totalCost = con f Att ∗ costPerAtt +guestSpeaker
totalExpenses = con f Att ∗ regFee+ sponsorship
regFee∗0.1≤ dinner
dinner ≤ regFee∗0.35
regFee∗0.1≤ 3∗ lunch
3∗ lunch≤ regFee∗0.35
con f Att ≤ 75⇒ others≤ 0.2∗ regFee+0.05∗ sponsorship
con f Att ≤ 75⇒ others≥ 0.05∗ regFee+0.05∗ sponsorship
con f Att > 75⇒ others≤ 0.25∗ regFee
con f Att > 75⇒ others≥ 0.05∗ regFee
costPerAtt = 3∗ lunch+dinner+others
numPapers∗1.8≥ con f Att
numPapers∗0.5≤ con f Att
sponsorship≤ 2000⇒ guestSpeaker ≥ 0.2∗ sponsorship
sponsorship≤ 2000⇒ guestSpeaker ≤ sponsorship+0.1∗ regFee∗ con f Att
sponsorship > 2000⇒ guestSpeaker ≥ 0.4∗ sponsorship
sponsorship > 2000⇒ guestSpeaker ≤ sponsorship

During the handling of the conference, some activities of the business process are
executed, but it is possible that some of them are working incorrectly according
to the main goals of the conference committee, for instance ”Do not spend more
money than obtained with registrations and sponsorships; and a high participant
satisfaction degree with the conference organization”.

It is possible that, after an enactment of the process, and due to the values as-
signed to some variables during the execution of certain activities, the business
data constraints are not satisfied. For each instance, a diagnosis process must be
performed to find out which activity or activities are not working as it was mod-
elled and therefore expected.

7.2. CONTRACT-BASED DIAGNOSIS OF BPS 131

7.2 Contract-based Diagnosis of Business Processes

Figure 7.2: Contract-based diagnosis process

In classic model-based diagnosis, in order to determine which component is work-
ing incorrectly, it is necessary to compare the model of the system with the ob-
servable variables. In the business process area, details of the model may be un-
available due to company privacy, although the policy of the companies and what
business rules should be satisfied by the data flow must be known. This allows
the user to diagnose possible faulty activities and to understand why a particular
instance of the business process is not working. However, determining the root
cause of a failure is an even greater challenge, since the topology of the business
process and the involved activities for each instance must all be taken into account.
Along these lines, we propose a diagnosis process based on the analysis of busi-
ness output data and business data constraints to diagnose a business process in-
stance. The model of the business process and the diagnosis is based on these
rules represented by constraints, referred to as business data constraints.
Figure 7.2 gives an overview of the proposed diagnosis method. The process
starts from the business process model together with the business data constraints
(and their associations with the activities) defined by analysts, and performs the
diagnosis process every time a discrepancy is detected after the execution of a
process instance.

132CHAPTER 7. DIAGNOSIS BASED ON BUSINESS DATA CONSTRAINTS

The business data constraints are checked against the logical states that can be tra-
versed by the process. A naive way of checking compliance is hence to enumerate
all those states. Clearly, given that the number of states is (in general) exponential
to the size of the process, such an approach is undesirable.
When a business process model using business data constraints is enacted, some
inconsistencies can be identified. In order to determine these inconsistencies,
three types of information about the business process instance are necessary:

• Business data constraints that should be satisfied during the execution of the
business process instance, and the activities associated to them.

• The activities that have participated in the process instance, since the various
conditions associated to the control flow operators can determine separate
execution paths.

• The values of the variables of the data flow that participate in the business
data constraints. The variables of the data flow are those which can be
instantiated during the execution of the process.

With this information, the diagnosis process is composed of three steps:

i. Selection of the business data constraints which are related to the process
instance in accordance with the log file (Compliance Constraint/Activity
Mapping).

ii. Detection of whether the business process has worked correctly during this
instance.

iii. If an inconsistency is detected, the diagnosis process is used to determine
the activity or activities which are responsible for the non-compliance. This
step is carried out by building a Constraint Satisfaction Problem (CSP) with
the involved business data constraints and the data-flow instance.

In order to perform the aforementioned determination of inconsistencies and the
later diagnosis, the business data constraints and the data flow are mapped into
a CSP. This way, the diagnosis task can be performed by using two proposals of
diagnosis techniques, as explained in Section 7.3.

7.3. DIAGNOSIS PROCESS BY USING BUSINESS DATA CONSTRAINTS133

7.3 Diagnosis Process by using Business Data Con-
straints

The previous section presents the proposed diagnosis method composed of several
steps. The diagnosis method to attain the objective of this contribution, deploys
two strategies in order to provide two different diagnosis solutions, both of which
are based on the Constraint Programming paradigm, since it enables to model
the business data constraints as constraints in accordance with the grammar in
Definition 4.7.
Due to the different control flow patterns that form the structure of a business pro-
cess, it is necessary to take the instance that has been executed into account in
order to determine the constraints that will compose the final CSP to be solved,
in the same way as for the input data introduced during the execution of the pro-
cess. That is, the information about the input data and the activities that have been
executed are of interest since they define which business data constraints are re-
lated to that instance and whether these constraints are satisfiable for the data-flow
values in that instance of the process.
Therefore, the diagnosis module in Figure 7.2 receives the activities that have been
executed in order to build the correct CSP. The kinds of control flow patterns that
influence that execution trace are:

• Parallel Split (AND). Since all branches are executed, if the execution of
the business process reaches this structure, then all the activities, and con-
sequently all their related business data constraints, should be taken into
account in the diagnosis process.

• Multi-choice (OR/XOR). The CSP to solve should be composed of only
the business data constraints associated to the activities in the executed
branches.

• Loop. This structure enables a group of activities of the business process to
be executed at least once depending on a logical condition. With regard to
the incorporation of business data constraints into our CSP, and depending
on the kind of tasks performed by the activities within the loop, two different
cases can come up: (1) when only the most recent execution of the activities
in the loop should be considered, since previous executions only performed
tasks that are later cancelled or deleted by the final execution; (2) when all
the executions of the loop must be taken into account in the building of the

134CHAPTER 7. DIAGNOSIS BASED ON BUSINESS DATA CONSTRAINTS

CSP, since all the executions of the activities perform relevant actions with
the input data.

In the first case, the business data constraints and observed data incorporated
to the CSP are those related to the activities executed in the last iteration of
the loop.

In the second case, the constraints derived from the business data constraints
of the activities in the loop must be repeated in the CSP as many times as
they are executed. In order to differentiate between the input data intro-
duced in each iteration of the loop, the variables instantiated though the
input data are renamed so that they have different names for each iteration
of the loop, both as variables in the CSP and as variables in the different
repeated constraints.

Once the constraints of the CSP are determined, based on the execution trace of
the business process, then the diagnosis can be performed with either of these two
proposed solutions:

• Diagnosis using reified constraints and Max-CSP. This proposal takes
the relation between each business data constraints and one or more activ-
ities of the business process into account. Each business data constraint is
transformed into a reified constraint, giving rise to an overconstrained Con-
straint Satisfaction Problem. Due to not existing any solution, there is an
error. Using the reified constraints to build a Max-CSP, we try to minimize
the number of unsatisfied constraints, finding the minimal sets of faulty ac-
tivities. It performs a top-down strategy that provides better results when
the diagnosis results are single faults.

• Diagnosis based on the attainment of the MUSes. The idea of this pro-
posal is to find the Minimal Unsatisfiable Subsets of constraints (MUSes,
(de la Banda et al., 2003)) in order to find what is wrong in an overcon-
strained CSP instance. By finding these subsets, and calculating their min-
imal hitting sets, the activities responsible for rendering the business data
constraints of the business process inconsistent can be identified (Reiter,
1987). This proposal obtains the minimal diagnosis of the activities by
means of a bottom-up strategy that first reaches the solutions with multi-
ple faults.

Both proposals for diagnosis are given in greater detail in following subsections.

7.3. DIAGNOSIS PROCESS BY USING BUSINESS DATA CONSTRAINTS135

7.3.1 Contract-based Diagnosis Using Reified Constraints and
Max-CSP

As mentioned above, each business data constraints is associated to the activities
related to the participating variables. This association is performed in an auto-
matic way, since it is only necessary to determine the variables related to each
activity in order to be able to relate business data constraints and activities.

This proposal builds reified constraints based on each business data constraints.
A reified constraint consists of a constraint and a variable which denotes its truth
value. This way, starting from a CSP composed of the business data constraints,
it is necessary to add new variables to this CSP. They are boolean variables, one
for each business data constraints, which are used to build reified constraints,
associating each constraint to a boolean through an equality.

Applying this idea to the example in Figure 7.1 gives rise to 19 new boolean
variables, one for each constraint (C1,C2,C3, . . .). The compliance constraints
are related to these boolean variables, forming reified constraints as, for example:

C1 == (totalCost <= totalExpenses)

C2 == (totalCost >= totalExpenses∗0.8)

Then, the objective function is added to the Max-CSP to be solved. Its aim is
to maximize the number of activities which are not responsible for the unsatis-
factibility of the CSP. That is, the objective function maximizes the number of
boolean variables instantiated to true.

Once this maximization is performed, it is necessary to know the activities respon-
sible for the inconsistency. To this end, we take the sets of activities related to the
constraints whose associated boolean variable has been instantiated to false, and
find out the minimal collection of activities which cover all those sets. According
to diagnosis theory, the best way to find that activity or activities is by calculat-
ing the hitting sets and minimal hitting sets, which provide us with the minimal
diagnosis for a business process instance.

As an example, for the reified constraints of the example in Section 7.1.3, if the
organizing committee of the conference receives less money that expected from
the sponsors, and the CSP is solved, the activities instantiated to false are ECR
and IGS. It means that the lack of money must be solved increasing the conference
rate, or decreasing the expenses of the invitation of the international guest speaker.

136CHAPTER 7. DIAGNOSIS BASED ON BUSINESS DATA CONSTRAINTS

7.3.2 Determination of MUSes for Contract-based Diagnosis

This solution is based on the attainment of all the MUSes, which represent the
most succinct explanations, in terms of the number of involved constraints, of
infeasibility. Indeed, when we check the consistency of a CSP, it is preferable to
know which constraints are contradicting one another rather than only knowing
that the CSP as a whole is inconsistent.
Due to the computational complexity of the attainment of all MUSes, some exist-
ing approaches were designed to derive only some of the MUSes and not all of the
MUSes of an overconstrained CSP. Our proposal is based on an improvement in
Gasca et al. (2007), which is grounded in structural analysis in order to determine
all the MUSes efficiently. In that paper, several techniques are presented, which
improve the complete technique in several ways depending on the structure of the
constraint network. These techniques make use of the powerful concept of the
structural lattice of the constraints and neighbourhood-based structural analysis to
boost the efficiency of the exhaustive algorithms. Since systematic methods for
solving hard combinatorial problems are too computational expensive, structural
analysis offers an alternative approach for fast generation of all MUSes. Accord-
ingly, experimental studies of these new techniques outperform the best exhaus-
tive techniques since they avoid the necessity of solving a high number of CSPs
with exponential complexity. However they do add certain new procedures with
polynomial complexity.
In the case of this contribution, two techniques are applied so that their computa-
tional complexity can be compared:

• Exhaustive technique. It attains the MUSes in accordance with the process
described in Algorithm 7.3. It uses th queue Q (line 3) to initially store
the inconsistent constraints. The process uses this queue to exhaustively
check the satisfactibility of every possible combination of constraints. In
the case a subset of constraints is proved unsatisfiable (checked in line 10),
it is stored in the list MUS (line 13).

• Variable-Based Neighbourhood technique. It uses the knowledge about
the Variable-Based Neighbourhood explained in Gasca et al. (2007). To this
end, this technique relates business data constraints as neighbours if they
share certain Non-Observable Variables, which are those variables whose
values remain unknown until the end of the execution of the process since
they are not determined by the role of the pool.

7.3. DIAGNOSIS PROCESS BY USING BUSINESS DATA CONSTRAINTS137

1: procedure OBTAINMUSES1(Constraints C)
2: //Being C the business data constraints that present the inconsistency:
3: Q := Queue initialized with each constraint in C
4: MUS := List that will contain the MUSes, initialized to empty
5: while Q is not empty do
6: {ci . . .c j} := Q.poll() //retry and remove the head of Q
7: for ck ∈ {c j+1 . . .cn} do
8: if NOT ∃SubSet1...n−1

{ci...c j}∪ ck ∈MUS then
9: // being n the cardinality of {ci . . .c j}

10: if {ci . . .c j}∪ ck is a satisfiable CSP then
11: Q.add({ci . . .c j}∪ ck)

12: else
13: MUS.add({ci . . .c j}∪ ck)

14: end if
15: end if
16: end for
17: end while
18: end procedure

Figure 7.3: Algorithm to obtain the MUSes (I)

Algorithm 7.4 shows the details of this process, with is similar to the process
described in Algorithm 7.3, but with the difference of the generation of
neighbours to propagate the search of MUSes (line 8).

As an improvement upon the technique presented in Gasca et al. (2007)
when it comes to calculate the neighbours of a set of business data con-
straints, not all the neighbours are generated: an order is established be-
tween the constraints, so that only those neighbours that are subsequent to
all the constraints in the set are generated. In this way we succeed in gen-
erating only new neighbours, thereby avoiding the repeated study of the
satisfiability of the same collection of constraints.

Once all MUSes have been obtained, each MUS is then associated to the activities
related to the constraints that it contains. That is, for every MUS obtained, we
count on a set of activities related to that MUS, in such a way that the activity or
activities responsible for the unexpected behaviour is contained in those groups.
As in the technique based on reified constraints, the minimal hitting sets are used
to find out that activities. Again, the calculation of these minimal hitting sets of
activities provides us with the minimal diagnosis for a business process instance.

138CHAPTER 7. DIAGNOSIS BASED ON BUSINESS DATA CONSTRAINTS

1: procedure OBTAINMUSES2(Constraints C)
2: //Being C the business data constraints that present the inconsistency:
3: Q := Queue initialized with each constraint in C.
4: //The data structure selected determines the search strategy.
5: MUS := List that will contain the MUSes, initialized to empty
6: while Q is not empty do
7: {ci . . .c j} := Q.poll() //choose an element of Q
8: neighbours := expand({ci . . .c j})
9: //generate neighbours according to the Variable-Based Neighbourhood

10: for all ck ∈ neighbours do
11: if {ci . . .c j}∪ ck is a satisfiable CSP then
12: Q.add({ci . . .c j}∪ ck)

13: else
14: MUS.add({ci . . .c j}∪ ck)

15: end if
16: end for
17: end while
18: end procedure

Figure 7.4: Algorithm to obtain the MUSes (II)

7.4 Empirical Evaluation

As stated in previous chapter, due to the exponential complexity of solving the
worst-case of a CSP, this section shows the empirical evaluation of the perfor-
mance of the proposed solutions to asses that the execution time is acceptable in
practise.

7.4.1 Experimental Design

In order to perform the empirical evaluation, certain tests have been performed
using different test cases of business processes with different number of business
data constraints.
Those tests are developed from satisfiable solutions of the obtained CSPs, and
changing some input data in order to cause inconsistencies. For instance, for the
example in Figure 7.1, the inconsistencies generated are:

• Test case 1: Establishing a very low quantity of accepted papers (numPapers
= 10).

7.4. EMPIRICAL EVALUATION 139

• Test case 2: With only 60 participants (confAtt = 60).

• Test case 3: Not receiving much money from the sponsors, and spending
too much money in inviting an international speaker (sponsorship = 2001,
guestSpeaker = 4250).

The test cases are measured using a Windows 7 machine, with an Intel Core 2
Duo processor, 1.86GHz and 2.0Gb RAM.

7.4.2 Performance Results

In this subsection, the results obtained in both proposals are presented. To this
end, and due to the temporal complexity of the diagnosis using reified constraints
is negligible (always lower than 1 millisecond), only the temporal complexity of
both algorithms for obtaining the MUSes in Subsection 7.3.2 are compared. More-
over, the minimal diagnosis results obtained by the two techniques are presented.
Both techniques to calculate the MUSes obtain the same diagnosis results, and do
not present any false positive. Therefore, Table 7.3 presents only the computa-
tional complexity comparison. The table shows the average time spent by each
technique for each test case and the iterations performed (that is, the number of
subsets whose satisfactibility is checked). It is possible to notice that the exhaus-
tive technique spends rather more time than the Variable-Based Neighbourhood
technique. The reason for this is that the exhaustive technique tries to find the
MUSes by checking all the possible subsets of constraints, whereas the Variable-
Based Neighbourhood technique is confined to the subsets formed by neighbours.
Table 7.4 shows the different diagnoses obtained from the different techniques,
using the different test cases detailed before for the example of business process
shown in Figure 7.1.
As mentioned above, both techniques find out the minimal diagnosis. Regard-
ing the differences in the temporal complexities, it is due to the search strategy
followed by each technique. On the one hand, the technique based on reified
constraints is better when it comes to find single faults. On the other hand, the
technique based on the attainment of the MUSes performs a search tree that first
reaches the solutions with multiple faults. Therefore, the technique to use must be
selected depending on the kinds of faults (single or multiple) that use to appear in
the process to diagnose.

140CHAPTER 7. DIAGNOSIS BASED ON BUSINESS DATA CONSTRAINTS

Table 7.3: Comparison between MUSes algorithms

#business Exhaustive Variable-Based
data technique Neighbourhood

constraints technique
time (ms) iter. time (ms) iter.

9 2,588,891 502 12,547 15
9 1,031,110 256 15,437 24
9 1,004,750 256 12,953 15
9 336,000 129 63,844 16
9 114,265 67 48,235 16
9 114,703 67 46,531 12

11 3,354,115 951 32,313 37
11 426,234 131 10,109 16
11 742,188 157 17,438 22
13 2,326,453 514 15,156 21
13 3,004,571 725 21,063 31

7.5 Summary

This chapter provides a method to diagnose business processes whose models
are correct but present abnormal behaviour after their execution. These busi-
ness processes count on a contract represented by constraints to describe the be-
haviour/semantics of their activities, being the main question arising this contri-
bution whether it is possible to infer what or where a failure has occurred with
respect to the business policies and procedures in terms of the data-flow values.

To this end, an adaptation of the typical fault model-based diagnosis approach to
business process diagnosis have been developed in this chapter. The diagnosis
process has been fully automated by representing as constraints the business data
constraints of the processes to diagnose. Those constraints are defined following
a grammar to avoid ambiguities.

Likewise, a diagnosis method has been proposed, which performs the automatic
diagnosis after detecting the non-compliance of the rules at run-time. The di-
agnosis process has evidence about the data flow and activities executed in each
business process instance, so that only those activities are considered during the

7.5. SUMMARY 141

Table 7.4: Diagnosis results

test case Minimal Diagnosis
1 Selection of Accepted Papers
2 Registration
3 International Guest Speaker

diagnosis process. The diagnosis process is able to both detect and diagnose the
inconsistencies in the execution.
To deal with this diagnosis problem, two different strategies have been proposed:
(1) use of reified constrains and Max-CSPs to relate each business data constraint
to the set of activities whose execution affects to its satisfactibility; and (2) the at-
tainment of minimal unsatisfiable subsets of business data constraints to search for
the minimal set of activities which make the contract inconsistent. Both strategies
obtains the minimal diagnosis of the processes in an efficient way.

142CHAPTER 7. DIAGNOSIS BASED ON BUSINESS DATA CONSTRAINTS

Chapter 8

Diagnosis of Business Processes
based on Structural Analysis

8.1 Introduction

As it was aforementioned in the introduction to the current Thesis Dissertation, it
is not always possible to count on semantics to define the behaviour of a business
process, since the data flow perspective and the behaviour represented by means
of business data constraints are not always available, or it cannot be modelled as
numeric data constraints to be automatically treated.
Although business processes are configured and enacted from a model that is ver-
ified correct, certain errors may occur at run-time during their execution, being
desirable to determine which activity or activities are not working as they were
modelled. This diagnosis is even more difficult when different processes interact
and perform a business-to-business collaboration.
In order to determine the activities whose behaviour is incorrect, it would be nec-
essary to resort to the structural analysis of the collaborations, since the functional
dependencies between activities make possible to infer the activity or activities
which are responsible for a malfunction. In order to perform this analysis, and
since there is no data flow perspective of the model available to compare between
the expected and observed values of the data, it is necessary to count on a sig-
nature matrix (coming from complaints of users on customers) with qualitative
information indicating the achievement of the business goals.
Business-to-business collaborations are quite complex, and any failure might have
an immediate effect on the operational business of the involved companies. To

143

144 CHAPTER 8. DIAGNOSIS BASED ON STRUCTURAL ANALYSIS

deal with this problem, this chapter presents a contribution to diagnose faulty
activities in business-to-business collaborations, based on FDI techniques. The
approach provides the functionality of the task Qualitative Diagnosis based on
Structural Analysis on the diagram in Figure 1.2 by using only structural analy-
sis of the choreographies when no other kind of semantics of the processes are
available to perform any automatic diagnostic reasoning.

8.1.1 Motivation

When business processes which take part in a business-to-business collaboration
are enacted, any failure in the overall collaboration could have important nega-
tive effects on the operational activities over the companies that are collaborating.
In these cases, the customers may present complaints over the accuracy if their
requests are not satisfied.
The fault management procedures in business-to-business collaboration require
that the faults are diagnosed and localized as precisely and efficiently as possible
to ensure proper corrective actions. Thereby, when the faults occur at run-time, it
is even more desirable to automatically detect system malfunctions and diagnose
in a timely and efficient manner to reduce the impact of the faults on the utility
of business-to-business collaborations. In the types of systems proposed in this
chapter, where the detection of incorrect behaviours is only based on the analy-
sis of the information provided by the oracle, the main problem arises when the
diagnosis has to be performed without a model to compare.
If the models of the processes in the collaboration are verified correct, the detected
faults are necessarily caused by an activity or a set of activities which are not
working as it was specified in its model. Moreover, when those models do not
count on any data flow perspective due to the semantics is not available or it cannot
be modelled as business data constraints, the diagnosis process may only be based
on the control flow perspective of the business-to-business collaboration, and the
data provided by the oracle.

8.1.2 Contribution

Since there is no semantic information available, or the one that is available cannot
be modelled as a contract, and besides the global structural information of the
overall choreography of a business-to-business collaboration is distributed, our
contribution proposes to perform the diagnosis by using a set of local diagnosers,

8.1. INTRODUCTION 145

each one associated to a business process in the collaboration and counting on
partial knowledge of the overall model of the choreography, i.e., the part of the
model which corresponds to the business process it is associated to.
Therefore, the diagnosis of this kind of collaborations should be necessarily per-
formed via structural analysis of their topologies. This way, the dependencies
between the business processes, their activities, and the attainment of the business
goals are studied in order to determine the source of an abnormal behaviour of the
processes.
The problem of finding all diagnoses (i.e. all faulty activities that explain an ab-
normal behaviour) is costly in terms of execution time. In order to improve the
performance of the distributed diagnosis, the model of each business process is
simplified by each diagnoser in a previously compiled model, attained off-line,
getting a diagnosis method to isolate the activity or activities which are not work-
ing as they were modelled, in two phases:

• As the model does not change for the different instances, a preprocessing
step can be done to discover the structural dependencies between the ac-
tivities. Then, during the first phase, which is performed off-line, a pre-
compiled model of each business process is built by each local diagnoser by
analysing the structure of each process and the external collaborations with
other processes (by means of messages).

• Then, if an abnormal behaviour is detected by receiving a complaint, the
second phase is carried out on-line, where the diagnosis is performed over
the pre-compiled model to determine and isolate the faulty activities whose
incorrect behaviour explains the incorrect results of the overall collabora-
tion.

An innovation of our contribution is that it does not require a complete computa-
tional treatment of all business process instances to know which activities are not
working correctly, but it only uses the trace of the instance which finished with
abnormal results.
To describe those diagnosis tasks mentioned above, the remainder of this chapter
is organized as follows. Next subsection presents an example to illustrate the diag-
nosis process along the chapter. Section 8.2 defines concepts related to business-
to-business collaborations and structural analysis. Section 8.3 details the method-
ology used in the diagnosis process, detailing its phases and algorithms. Section

146 CHAPTER 8. DIAGNOSIS BASED ON STRUCTURAL ANALYSIS

8.4 gives implementation details about the proposed algorithms and shows exper-
imental results. And finally, a summary of the contribution is outlined in Section
8.5.

8.1.3 Illustrative Example

In order to explain our contribution, the example adapted from Weske (2007),
shown in Figure 8.1, is used. It depicts a business-to-business collaboration con-
sisting of four business processes from different organizations, (BP1, BP2, BP3
and BP4).

Figure 8.1: Example of Business-to-Business Collaboration

Although the models of the business processes in a collaboration are not available
in a global way, in the example, the graphical representation of the four business
processes are shown together to clarify the interactions between them. Those
different business processes with their respective information are:

• BP1 (Buyer), with the start event {s1} and {e1, e2, e3, e6, e7} as message
flows (i.e. interactions with the other business processes).

• BP2 (Reseller), with {e1, e2, e3, e4, e5} as message flows.

• BP3 (Payment Service Provider), with {e4, e6} as message flows.

8.2. MAIN CONCEPTS FOR THE STRUCTURAL DIAGNOSIS 147

• BP4 (Manufacturer), with {e5, e7} as message flows.

As can be seen in Figure 8.1, the control flow perspective of the model of this
business-to-business collaboration is available. However, the data flow perspec-
tive cannot be represented through numeric constraints (hence, through business
data constraints), so that the only available information from this perspective
comes from the oracle indicating if the outputs of the overall collaboration (repre-
sented by the end events {o1, o2, o3, o4} in the example) are correct or incorrect
(qualitative information).
Regarding the control flow perspective, the flows between the activities within
each business process remain unobservable from the outside but are only known
within the own process internally.
Each business process does not know how the rest business processes in the chore-
ography are formed, only knows from and towards what business processes has to
receive or send messages.

8.2 Main Concepts for the Structural Diagnosis of
Business-to-Business Collaborations

In order to clarify the explanations along this chapter, we use the following nota-
tion in Table 8.1 with regard to the elements which participate in a business-to-
business collaboration.

Table 8.1: Notation for the elements in a collaboration

Notation Description

BPi, i ∈ {1..n} Every one of the n business processes in a collaboration
{s1, . . . ,sq} Start events in the collaboration
{o1, . . . ,or} End events in the collaboration, which inform about the

correctness of each output
{e1, . . . ,ep} Message flows between different processes, called

external interactions
{i1, . . . , im} Sequence, conditional and default flows between activities

within each business process, called internal interactions

It is considered that business-to-business collaboration design ensures that the
participant business processes are compatible to interact successfully according

148 CHAPTER 8. DIAGNOSIS BASED ON STRUCTURAL ANALYSIS

to the overall collaboration. In our case, since the model is considered correct,
this implies:

• No erroneous interaction between the business processes in the collabora-
tion.

• The messages that can be sent by a participant business process correspond
to messages that other business processes in the collaboration can receive
(structural compatibility).

• The partner business processes involved in a collaboration need to agree on
their interactions to avoid deadlock and livelock. Then, as was aforemen-
tioned, in this phase we suppose a correct model.

With these assumptions, and considering that there is no entity with a global view
of the overall collaboration, the key idea of this contribution for diagnosing faults
in business-to-business collaborations is to provide each business process with a
local diagnoser. Those local diagnosers are in charge of the diagnosis performance
for its associated business process, having knowledge of its orchestration model
(its internal interactions) and counting on the Business Process Interaction Model
(BPIM).

Definition 8.1. Diagnoseri: Diagnoser associated to the i-th business process in
the collaboration (BPi) that can perform local diagnosis tasks and send, receive
and process information with other diagnosers.

Definition 8.2. Business Process Interaction Model (BPIM) of a business process
BPi in a business-to-business collaboration represents the external interactions of
BPi with the rest business processes in the collaboration. The BPIM is known by
the Diagnoseri.

In order to get a more efficient diagnosis of faulty activities, each local diagnoser
is able to attain a Compiled Orchestration Model (COM) of its associated business
process in an off-line way. This way, the intermediate calculations of the diagnosis
process can be performed only once for the overall collaboration, avoiding the
repetition of these calculations for every instance. The COM is defined as follows.

Definition 8.3. Compiled Orchestration Model (COM) of a business process BPi

in a business-to-business collaboration is a simplified representation of the control
flow perspective of the model of BPi.

8.3. LOGIC AND DISTRIBUTED ALGORITHM 149

Our main contribution to diagnose business-to-business collaborations is based
on this off-line COM obtained by using structural analysis. The COM is used
to perform all the diagnosis tasks, getting a better computational efficiency. This
equivalent model represents the relations among the activities of a business pro-
cess and their external interactions, so that the diagnosis can be performed without
any information about the internal interactions in a global way.

8.3 Logic and Distributed Algorithm

The diagnosis method proposed in this contribution is depicted in the diagram in
Figure 8.2, where the steps of the process are detailed. First, after the business
process analysts have modelled the business processes participating in the collab-
oration, and those models are verified correct, the Diagnoser associated to each
business process performs the first phase, which is an off-line processing to attain
the COMs, containing only one step called (1) Determining the COMs. This phase
is performed only once, since after the COMs have been built, they are used in all
subsequent diagnosis.
Then, the collaboration can be enacted and executed. If some abnormal behaviour
is detected after the execution of a single process instance, the second phase of
the diagnosis process is carried out in an on-line way, in order to propagate infor-
mation and perform local diagnosis respectively, containing two steps called (2)
Propagation Phase and (3) Local Diagnosis Phase in Figure 8.2.
As a result, the activities responsible for the abnormal behaviour of the collabora-
tion are determined.
Therefore, the complete diagnosis process is composed of three steps, detailed in
the following:

• Off-line analysis, performed only once from a verified correct model of the
business-to-business collaboration.

– (1) Determining the COMs: In each business process BPi involved
in the process, an off-line orchestration analysis is executed by the
Diagnoseri. The result of this step is the COM for each business pro-
cess, which is an equivalent model used in the next steps to improve
the temporal efficiency of the diagnosis process.

• On-line process, performed if a discrepancy between the observed and ex-
pected results is detected and the users or customers complaint about it.

150 CHAPTER 8. DIAGNOSIS BASED ON STRUCTURAL ANALYSIS

Figure 8.2: Phases of the diagnosis process

– (2) Propagation phase: After the Diagnoseri receives information
about a discrepancy detected at some observable point (either at the
end events or by some test point reading), an internal algorithm is run
in order to decide which flows could be correct or incorrect. As a
result of this algorithm, each Diagnoseri sends outgoing information
to the Diagnosers associated to the business processes which inter-
act with BPi informing about the incorrect behaviour detected. This
information traverses the Diagnosers in the opposite direction of the
flow during a normal execution of the collaboration. That is, from end
events to start events.

– (3) Local diagnosis phase: Depending on the received information,
each Diagnoser has to decide if the local diagnosis of its associated
business process is necessary.

These steps of the diagnosis process are detailed in the next subsections.

8.3.1 Determining the Compiled Orchestration Model

In order to obtain the COM of the business-to-business collaboration, a orches-
tration analysis takes place. Each Diagnoseri must analyse the structure of the
control flow of BPi, in such a way that it has to determine the different paths
(i.e. cluster of activities) that may be executed considering every possible process
instances.
Thereby, within a business process, those different paths are determined by:

8.3. LOGIC AND DISTRIBUTED ALGORITHM 151

• Considering a business process as a graph, where the activities represent the
nodes, and the different interactions between them the edges, the different
connected components of the graph give rise to different paths.

• If, within a connected component of the graph, exists an XOR-split with n
options, it gives rise to n paths, since n options of an XOR or OR imply n
different possible execution paths for the workflow.

Once the paths of the business processes are calculated, the way to know if an
activity is working correctly is by analysing its inputs, outputs or other activities
related to it by external or internal interactions. Within each path, there exist
internal subsets (IS). The idea of an IS is to collect a set of activities where the
external and internal interactions between them relate more than one activity in
the IS, to derive the diagnosis using orchestration analysis. In order to clarify this
idea, new notations are used:

External(Ai j) are the external interactions which are inputs or outputs of the
activity Ai j.

Internal(Ai j) are the internal interactions which are inputs or outputs of the
activity Ai j.

Definition 8.4. Internal Subset (IS) for a path in a business process BPi is a set
of activities, where for each one of its activities Ai j:

∀ v | v ∈ Input(Ai j): v ∈ {s1, . . ., sq}
∨ (v ∈ Internal(Ai j) ∧ ∃ Aik 6= Ai j | Aik ∈ IS | v ∈ Output(Aik))
∨ (v ∈ External(Ai j) ∧ ∃ Aik 6= Ai j | Aik ∈ IS | v ∈ Output(Aik))
∨ (v ∈ External(Ai j) ∧ v ∈ External(A jk) | A jk ∈ BP j 6= BPi)

(i.e. the input v of Ai j should be: (1) start event; (2) an internal ((3) ex-
ternal) interaction with another activity in the same IS; or (4) an external
interaction with an activity from a different business process)

∀ v | v ∈ Out put(Ai j): v ∈ {o1, . . ., or}
∨ (v ∈ Internal(Ai j) ∧ ∃ Aik 6= Ai j | Aik ∈ IS | v ∈ Input(Aik)) ∨ (v ∈
External(Ai j))

(i.e. the output v of Ai j should be: (1) end event; (2) internal interaction
with another activity in the same IS; or (3) external interaction with any
other activity)

152 CHAPTER 8. DIAGNOSIS BASED ON STRUCTURAL ANALYSIS

and for the set of activities that form each internal subset IS:

∀ v | v ∈ Input(IS): v ∈ Input(Ai j) ∧ Ai j ∈ IS ∧ (v ∈ {s1, . . ., sq} ∨ v ∈
External(Ai j))

(i.e. the input of an IS is the input v of an activity Ai j in the IS, being v a
start event or an external interaction of Ai j)

∀ v | v ∈ Out put(IS): v ∈ Output(Ai j) ∧ Ai j ∈ IS
∧ (v ∈ {o1, . . ., or} ∨ (v ∈ External(Ai j) ∧ 6∃ Aik 6= Ai j | Aik ∈ IS ∧ v ∈
External(Aik)))

(i.e. the output of an IS is the output v of an activity Ai j in the IS, being v an
end event or an external interactikon between Ai j and Aik, also in this same
IS)

For the example in Figure 8.2, the different paths calculated by the Diagnosers
are:

• Diagnoser1: {A11, A12, A13, A18} and {A11, A12, A13, A14, A15, A16,
A17}

• Diagnoser2: {A21, A22, A25}, {A21, A23, A25}, {A21, A24, A25} and
{A26, A27}

• Diagnoser3: {A31, A32, A33}

• Diagnoser4: {A41, A42, A44} and {A41, A43, A44}

As an example, the activities {A26, A27} form a path with three internal subsets
as it is shown in Figure 8.3. This path (like every path in a collaboration) works as
a black box for the rest of Diagnosers, and its activities can be connected to other
paths through external interactions.
In general, the paths and ISs calculated by the Diagnosers give rise to the COMs
of the collaboration, as it is shown in Figure 8.4 for our example. This COM,
customized for the diagnosis process, is built off-line, and is used to perform the
next diagnosis phases in an efficient way.
Once the COM has been obtained and stored, the collaboration can be enacted and
executed.

8.3. LOGIC AND DISTRIBUTED ALGORITHM 153

Figure 8.3: Graphical representation of a local path with three Internal Subsets

8.3.2 Propagation Phase

A business-to-business collaboration depends on the users or customers, who are
able to determine the discrepancies between the observed and expected behaviour,
detecting possible faults.
Once the collaboration has been enacted, if some discrepancies are detected after
the execution of a process instance, each Diagnoser receives information about the
end events of the collaboration where the discrepancies occurred (incorrect end
events) and the end events where no anomaly were detected (correct end events).
It must be taken into account that the presence of XOR-splits and OR-splits in
the business processes causes that not all the end events have to be reached at
every process instance, since an XOR implies the execution of only one path out
of several branches, so that the end events located in no selected paths are not
reached during that execution.
In the case all reached end events are correct, no propagation is necessary, since
all the activities are working correctly. In the case at least one discrepancy has
been detected, the propagation phase starts in order to determine which activities
are responsible for the fault. To this end, each Diagnoseri knows the path that
was executed in BPi during the execution of the process instance. For example,
BP2 in the example has three different paths depending on the XOR gateway be-
cause it determines the activity that was executed (A22, A23 or A24) and hence it
determines which path should be considered in the propagation phase.
In order to explain the next steps of the diagnosis process, these new definitions
have to be introduced:

Definition 8.5. Possible Incorrect Interaction (PII): It is an external interaction
related to an incorrect end event of the collaboration. An interaction is related to
an end event if when the interaction changes, the end event also changes.

Definition 8.6. Correct Interaction (CI): It is an external interaction related to a
correct end event. If an interaction is related to a correct end event and an incor-
rect end event simultaneously, the interaction is defined as a Correct Interaction,

154 CHAPTER 8. DIAGNOSIS BASED ON STRUCTURAL ANALYSIS

Figure 8.4: Paths and Internal Subsets of the Business-to-Business Collaboration

since we suppose that the effects on two incorrect activities cannot be compen-
sated to generate a correct end event.

Depending on the end events, it is possible to know if the overall collaboration is
working correctly. In order to know which activities are failing, the BPIM is used
to infer which interactions are incorrect. For example, for the local path shown
in Figure 8.3, suppose e5 is a PII and o3 a correct end event. It means that the
activity A27 is failing, but it is not possible because if the end event o3 is correct,
the activity A27 would be working correctly. It means that the external interaction
e5 considered as a PII actually is not an incorrect interaction. If an interaction is
correct all the activities associated to the IS of this interaction are correct. A PII
becomes an Incorrect Interaction (II) if it is related to at least one activity that is
not a correct activity. This idea is described in the following definition:

Definition 8.7. Incorrect Interaction (II): Given the set External(ISi) that includes
the output interactions of ISi, e is an II if it is a PII and ∃ Akl ∈ ISi | ∀ IS j :
j ∈ 1 . . .n ∧ i 6= j not ∃ e’ : e’ is a CI ∧ e’ ∈ External(IS j) ∧ Akl ∈ IS j

8.3. LOGIC AND DISTRIBUTED ALGORITHM 155

Therefore, according to the previous definition, the definition of CI is reinforced
with this new concept, since a CI is also a message that is not an Incorrect Inter-
action.
On this phase of the process, some information is exchanged between the Diag-
nosers in order to get to the point where all of them are aware of the CIs and
PIIs in the collaboration, so that the knowledge has been propagated. These Di-
agnosers are able to infer what external interactions are CIs or IIs according to
Definition 8.7, and to send this information to the business processes to which
they are linked through their inputs. To this end, the message traffic flows in the
opposite direction to the normal flow of execution of the process instances.
This information shared by the Diagnosers are composed of the following fields:

• Correct interactions field: the external interactions labelled as CIs by the
Diagnoser of the business process source of the information.

• Incorrect interactions field: the external interactions labelled as PIIs by
the Diagnoser of the business process source of the information.

• Source field: indicates the source of the information. It may be: (1) a neigh-
bour Diagnoser; or (2) users or customers which performed a complaint to
prompt the beginning of the diagnosis process.

In order to proceed with the propagation, each Diagnoser needs to receive the
information about all the outputs of a path, or at least about some correct end
event, before inferring whether the external interactions of that path are CIs or
IIs. Therefore, the propagation takes place as the information of the outputs of the
paths is known by the Diagnosers. This is not a linear process since several busi-
ness processes may have paths with a dependency between them. For instance,
if a business process BPa has the paths Px and Py, and another business process
BPb has the path Pz, it is possible that Px depends on Pz, and Pz depends on Py. In
this example, to carry out the propagation, Diagnosera waits for the information
about the outputs of Px to propagate to Pz. In the same way, Diagnoserb will prop-
agate from Pz to Py when it has the information about Pz. So, both Diagnosers
interchange information in both directions.
The procedures in the algorithms in Figures 8.5, 8.6 and 8.7 describe the behaviour
of a Diagnoser after receiving information about correct or incorrect end events.
For instance, for the example in Figure 8.2, if o1 is correct and o3, o4 are incorrect
the propagated information is as follows:

156 CHAPTER 8. DIAGNOSIS BASED ON STRUCTURAL ANALYSIS

1: procedure RECEIVEINTERACTIONINFORMATION(XOK , XKO, BPi)
2: label as CIs the external interactions which are in XOK

3: for each external interaction e in XKO do
4: if e is not labelled as CI then
5: label e as PII
6: end if
7: end for
8: if the Diagnoser has received the incoming information about all the outputs of
9: the path P, and P is on the executed instance then

10: checkInteractions(P)
11: propagateInformation(P)
12: else
13: for each external interaction e in XOK , being ISe the IS whose output is e, do
14: store the inputs of ISe in an (initially empty) set X ′OK
15: label as CI every external interaction e′ related to IS′e so that IS′e ⊂ ISe

16: store the inputs of IS′e in X ′OK
17: end for
18: send the Information(X ′OK , - , this) to the Diagnosers that are related to this
19: BP by means of the set on interactions in X ′OK (only if this information has
20: not been sent before to those Diagnosers)
21: wait for the rest of incoming information
22: end if
23: end procedure

Figure 8.5: Algorithm executed when a local diagnoser receives information

• The user sends complaints to Diagnoser1, Diagnoser2 and Diagnoser3 in-
dicating that o1 is correct and o3, o4 are incorrect end events.

• Diagnoser1 labels o1, e1 and e2 as CIs and propagates to Diagnoser2,
Diagnoser3 and Diagnoser4 that e3, e6 and e7 are correct respectively.

• Diagnoser2 labels o3 as PII and, since it has received that e3 is correct,
labels it as CI and propagates that e1 is correct.

• Diagnoser3 has received that o4 is incorrect and e6 is correct, so that it
labels e6 as CI and propagates that e4 is possibly incorrect to Diagnoser2.

• Diagnoser4 has received that e7 is correct, so that it labels it as CI and
propagates e5 as correct to Diagnoser2.

8.3. LOGIC AND DISTRIBUTED ALGORITHM 157

1: procedure CHECKINTERACTION(Path P)
2: /*Definition 8.7*/
3: for each interaction e labelled as a PII do
4: if ISi ∈ P and Akl is an activity of ISi and it does not exist another IS j that
5: contains Akl with a message e′ labelled as a CI and e′ is different from e
6: and e′ belongs to Out put(IS j) then
7: label e as an II
8: else
9: label e as a CI

10: end if
11: end for
12: for each output interaction e labelled as II do
13: label as PII the interactions which are inputs of the ISs where e is an output
14: end for
15: end procedure

Figure 8.6: Procedure for labelling interactions as correct or incorrect

• The process continues until all Diagnosers have propagated all the know-
ledge about the inputs of all their paths, so that the local diagnosis phase
can start.

8.3.3 Local Diagnosis Phase

Using the information collected from the previous step, the local diagnosis is per-
formed by the Diagnosers whose external interactions are labelled as II.
The local diagnosis process also has off-line and on-line phases:

• To build a signature matrix: With the information obtained from the COM,
a signature matrix is created. This matrix relates each external interaction
and end events of each business process with the activities of the ISs where
these interactions participate. The matrix has as rows as number of inter-
actions and as columns as number of activities. This process is performed
only once, storing pre-compiled information. The construction of the ma-
trix is an adaptation of the algorithm presented in Ceballos et al. (2007) for
business processes. An example is shown in Figure 8.8(a) that represents
the signature matrix for one of the paths of BP2 in the example.

• When the IIs are known, only the part of the matrix related to the possible
incorrect activities is analysed. It means that only the rows of the IIs and

158 CHAPTER 8. DIAGNOSIS BASED ON STRUCTURAL ANALYSIS

1: procedure PROPAGATEINFORMATION(Path P)
2: for all BPi related to P by the set of interactions X do
3: if there exists a subset of interactions Xi which are inputs of P and outputs
4: of BPi and are labelled as PIIs then
5: send the information (X−Xi, Xi, this) to Diagnoseri

6: else
7: send the information (X , - , this) to Diagnoseri (only if this information
8: has not been sent before to the Diagnoseri)
9: end if

10: end for
11: end procedure

Figure 8.7: Procedure for propagating information

Figure 8.8: Signature matrix of a path of BP2

the activities not related to any CI participate in the local diagnosis. With
this subset of relations among interactions, end events and activities, the
set of activities which are not working correctly must be found. According
to diagnosis theory, the best way to do that is by calculating the minimal
hitting sets.

Figure 8.8(b) shows the part of the signature matrix of the path analysed to
perform the local diagnosis if e4 is CI and e5, o3 are IIs.

Finally, the minimal hitting sets are the diagnosis of the business processes.
For the example in Figure 8.8(b) there is a minimal hitting set, which is
{A27}.

The local diagnosis can be improved storing all the final diagnoses according to
the IIs. That is, if an II has already been analysed, the diagnosis will be very
efficient. Each Diagnoser counts on a local list where it stores the fault signature
from the local diagnosis executed until that moment, so that when a Diagnoser
has to diagnose its activities after a new execution, previously it checks whether it
has already performed the same diagnosis before.
Each element of the lists contains two fields with the next information:

i. External interactions labelled as IIs.

8.4. EMPIRICAL EVALUATION 159

ii. Activities which can fail according to the IIs detected.

Local diagnosis results depend on the subset of external interactions which are
IIs, since two different analysis with the same set of IIs obtain the same minimal
hitting sets of activities. Using a local list to store previous results enables a faster
process of diagnosis, because of the re-utilization of the information obtained so
that it is not necessary to carry out the same analysis twice.
Finally, the global diagnosis Dg can be seen as the union of all local diagnoses: Dg

= D1 ∪ D2 ∪ ... ∪ Dn, being n the number of business processes in the business-
to-business collaboration.

8.4 Empirical Evaluation

The execution complexity of diagnosing collaborations between business pro-
cesses is a problem of distributed nature, which entails achieving coherence or
consistency among the local diagnosers that take part in the communications dur-
ing the propagation phase. Thereby, to reduce this complexity, our solution pro-
poses the elaboration of a previously compiled model.
Therefore, we wish to empirically evaluate the performance of the developed diag-
nosis method, so that we can ensure it takes acceptable time to diagnose business-
to-business collaborations.

8.4.1 Experimental Design

This section shows the temporal results of performing several tests to the algo-
rithm previously explained. This tests have been carried out over business-to-
business collaborations generated randomly (by using the Process Log Generator
tool (PLG), detailed in Burattin and Sperduti (2010)), which count on different
number of business processes (from 4 to 10 processes per collaboration). The
tests were performed both with pre-compiled and without pre-compiled model.
The aim of these tests is the comparison between the execution time necessary
to perform the diagnosis with and without the previous analysis that obtains the
pre-compiled model. For this reason, we measure the execution time spent by the
algorithms in performing the diagnosis process for business-to-business collab-
orations composed by different number of business processes, specifically from
4 to 10. This execution time is measured in milliseconds since the discrepancy
between observed and expected behaviour is detected, until the obtaining of the

160 CHAPTER 8. DIAGNOSIS BASED ON STRUCTURAL ANALYSIS

local diagnosis indicating the activities responsible for the abnormal working of
the collaboration.
For each different number of business processes (4 to 10), 10 collaboration of
processes have been generated, and 100 random messages have been sent to each
one. Therefore, 70 different processes have been diagnosed 100 times. These tests
have been executed in several computers with similar characteristics: Intel Core2
1,86GHz processor, and 2GB RAM memory.

8.4.2 Performance Results

In this subsection, the execution time of the diagnosis process is measured and
presented in Table 8.2, whose content is organized as follows:

• Each row shows the measured times divided into the number of business
processes (BPs) that compose the different randomly generated collabora-
tions.

• The columns present the differences between pre-compiled and not pre-
compiled model, appearing as data the average time (AV) spent by the diag-
nosis process for processes of a determined size, and the average time spent
in the tests performed to the collaboration that has had the best time (AVmin)
and the worse time (AVmax) in the diagnosis process. The last column shows
the delay of the no pre-compiled execution with respect to the pre-compiled
one.

• The delay in the last column shows the extra time spent by the diagnosis
process without pre-compiled model. Specifically, this time is spent in the
analysis necessary to obtain the equivalent structure used in the diagnosis
process, since whether the pre-compiled model is not used, this analysis
must be performed each time that a discrepancy is detected.

In order to facilitate the visualization, Figure 8.9 shows a graphic representation
of the results. Two different lines appear representing the diagnosis processes with
and without pre-compiled model.
It is possible to see the delay that a no pre-compiled model causes in the diagnosis
process. Likewise, it is appreciable that the greater number of business processes
interact in the collaboration, the more time saved by the diagnosis process by
means of calculating the pre-compiled model off-line. The improvement that is
get for a scenario may be more or less significant than the one represented in

8.5. SUMMARY 161

Table 8.2: Temporal results

number Pre-compiled Model No Pre-compiled Model
o f BPs AV AVmin AVmax AV AVmin AVmax delay

4 102.83 68.60 142.28 170.02 138.31 207.02 67.19
5 178.97 166.98 192.25 270.41 233.43 319.59 91.44
6 193.11 171.20 213.59 306.53 253.53 468.48 113.42
7 257.05 203.86 313.29 384.82 319.93 467.79 127.77
8 302.79 291.77 313.17 445.68 427.96 455.15 142.89
9 314.31 270.27 344.38 482.77 412.70 524.63 168.46

10 407.25 253.69 465.30 605.44 552.67 646.98 198.19

Figure 8.9: Graphic representation of the results

Figure 8.9 That depends on the structural complexity degree of the collaborations
to diagnose. Nevertheless, the execution time is always improved to a greater or
lesser degree.

8.5 Summary

This chapter provides a method to diagnose business-to-business collaborations
at runtime only using structural analysis. The diagnosis process starts from the
assumption that model of the collaboration, which only counts on control flow
perspective, has already been verified correct. Therefore, the faults to diagnose

162 CHAPTER 8. DIAGNOSIS BASED ON STRUCTURAL ANALYSIS

are those which appears after the execution of a process instance due to an activity
(or a set of them) is not working as it was modelled.
Due to there is no entity with a global knowledge about the overall model of
the collaboration, our contribution uses a set of local diagnosers, one per busi-
ness process in the choreography, which know the local model of their associated
processes. Moreover, those diagnosers count on the Business Process Interaction
Model in order to manage the interaction between the different business processes.
In order to improve the computational complexity, which is costly in terms of
execution time, the local diagnosers analyse the model of the local processes to
attain an auxiliary compiled model (COM), in an off-line way. This model is the
base for the rest of the diagnosis process, since it is use for both propagation and
local diagnosis tasks.
As a result, our contribution can diagnose the set of activities which are responsi-
ble for a malfunction in a business-to-business collaboration (1) without needing
an entity with global knowledge of the overall collaboration; and (2), although the
information regarding the model of collaborations is distributed, our solution gets
satisfactory results in a very accurate and efficient way due to the COM attained
off-line and the reusing of previously obtained diagnosis results.

Part VI

Conclusions and Future Work

163

Chapter 9

Final Remarks

Since companies need to ensure the quality of their processes to become more
competitive, the current Thesis Dissertation proposes the adaptation of fault di-
agnosis techniques, widely analysed for other areas of knowledge, to business
processes, performing new methodologies in accordance with the features of this
kind of processes.
In order to facilitate a quick identification of the activities where the processes
fail, either at early stages to isolate faults in the model, or at run-time when the
faults determine a wrong behaviour of the processes during their execution, we
provide different proposals to improve the quality of the processes by automat-
ically applying diagnosis techniques at different stages of the business process
lifecycle.
To this end, both perspectives of the model have been considered, since both of
them are necessary to describe the behaviour of business processes, taking into
account that the data flow perspective is not always available or modelled as a
contract.
In this way, the current Thesis Dissertation verifies the correctness of business
process models which count on Business Data Constraints to describe the data
semantics of a business process for the representation of the relations between
data values. These Business Data Constraints are understood as a subset of busi-
ness compliance rules which represent the semantic relation between the data val-
ues that are introduced, read and modified during the business process instances.
Therefore, their analysis has been used to locate faults in the modelling of the
behaviour of the activities from the data flow point of view.
Likewise, since some diagnosis methods applied in this Thesis Dissertation are
based on Model-based Diagnosis techniques, it is necessary to count on an ob-

165

166 CHAPTER 9. FINAL REMARKS

servational model which is able to provide with sufficient observations the actual
behaviour of business processes. This makes possible the comparison between ob-
served and expected behaviour, getting a more precise diagnosis. Therefore, also
a contribution to improve the diagnosability by determining the locations where
the observations should be performed has been proposed.
In order to carry out all these diagnosis tasks, we propose their insertion between
the basic stages of the business process lifecycle, giving rise to a framework in-
cluding four modules to provide diagnosis functionalities in the four contributions
presented in this Thesis Dissertation:

• In detail, with reference to the diagnosis of the model, Chapter 5 presents a
contribution to diagnose semantic business process models as regards the
data flow perspective. To that end, we have proposed workflow data graphs
as formalization of semantic business process models together with two cor-
rectness notions, may and must-correctness, that can be verified for work-
flow data graphs. Workflow data graphs model semantic business process
by including pre and postconditions for the activities to describe their indi-
vidual behaviours. This contribution also proposes two correctness notions
for semantic business process models, called may and must-correctness, and
presents a diagnosis approach for their verification, which consists of sev-
eral phases.

First, preprocessing is applied to detect basic data anomalies. Then, the
workflow data graph is translated into an IP formulation that models the ex-
ecutable instances, and into a CSP formulation that models the data states
acceptable according to the pre and postconditions of the activities. The
combined IP and CSP model can be efficiently solved using Constraint Pro-
gramming techniques. In case of an error, feedback is provided in the form
of an error path showing where the workflow gets stuck under certain con-
ditions over the data flow. Such feedback provides valid information for
the business process designer to fix future errors before the workflow is de-
ployed. The approach is complete, so it always generates accurate feedback
in case of an error.

The implementation of the approach has been performed by extending the
DiagFlow tool (Eshuis and Kumar, 2010) initially conceived to verify only
the control flow perspective. The tool diagnoses business process models
in an extended XPDL format. The XPDL extension is needed to store the
semantic information of each business process, including the information

167

about the data flow by adding pre and postconditions in the activities. Per-
formance evaluation of the tool shows that the algorithms scale well for
large workflow models with data flows, despite the high worst-case com-
plexity of solving constraints satisfaction programs.

• As regards the attainment of sufficient observations in the observational
model, Chapter 6 presents a contribution to improve the diagnosability
in business process models. The proposal allocates test points to make
certain parts of the data flow observable, by dividing the overall business
process into clusters of activities to facilitate the isolation of the activity or
activities which are responsible for future abnormal behaviour.

In order to perform the allocation of test points, the business processes are
modelled as Constraint Satisfaction Problems so that the problem can be
efficiently solved using Constraint Programming techniques.

This contribution presents three different objectives to be achieved, which
depend on the requirements of the user or the problem specification. They
consider both the enhancement of the business processes diagnosability and
the improvement of the computational complexity of isolating faults in a
later diagnosis process.

On the topic of allocating test points in business processes in order to im-
prove their diagnosability, to the best of our knowledge, only our proposals
(Borrego et al., 2010b,c) have been published. Likewise, the approach has
been implemented in the Test-Point Allocator tool (Borrego et al., 2011).
The tool allocates test points in business processes designed using BPMN
2.0, in accordance with the three selected objectives.

• Regarding the diagnosis at run-time of business processes which count on
data flow perspective modelled as contracts describing the behaviour, Chap-
ter 7 provides a contribution to diagnose business processes based on busi-
ness data constraints. The contribution presents a method to diagnose
business process instances in terms of a set of business data constraints and
for input and output data.

To this end, the diagnosis method in the contribution takes into account the
different gateways which influence in the execution trace of every instance,
so that, during the diagnosis process, it only considers the activities involved
on the trace of the business process instance where the fault was detected.

168 CHAPTER 9. FINAL REMARKS

In order to perform the diagnosis, the business data constraints are described
and modelled as Constraint Satisfaction Problems to also use well-known
solvers to get a solution efficiently. Two types of techniques based on con-
straint programming are herein defined for the attainment of the minimal
diagnosis in an efficient way: (1) modelling of the problem by using of rei-
fied constraints to get a more efficient solution in terms of execution time;
and (2) determination of Minimal Unsatisfiable Subsets of constraints to
ensure the obtaining of the minimal diagnoses.

This contribution has been previously addressed in Borrego et al. (2010a,d).

• Finally, a forth contribution is proposed to provide a method to diagnose
business processes whose data flow perspective is not available or even its
semantics cannot be modelled as contracts. Thereby, Chapter 8 presents a
solution to diagnose business processes by means of structural analysis
of the control flow perspective, based on Model-based diagnosis principles.

The contribution details a method to perform the diagnosis of business-to-
business collaborations. To this end, we propose to associate a local di-
agnoser to each process in the collaboration, which count on a Business
Process Interaction Model (BPIM) to manage the communications between
processes. Moreover, in order to get a more efficient diagnosis, the BPIM
and the control flow perspective on the business process model are analysed
off-line to obtain the Compiled Orchestration Model (COM), which is an
auxiliary structure used in the diagnosis process so that the execution time
needed to perform the global diagnosis is improved.

During the diagnosis process, the local diagnosers work with public and
private information (external and internal interactions), and the diagnosis
process is performed without needing to know neither all the information
exchanged between the activities nor the overall business process model.
By means of the use of previously compiled knowledge, a high temporal
efficiency is obtained, since the preparation of the Compiled Orchestration
Model (COM) is performed off-line and used at different stages of the pro-
cess.

This proposal of fault diagnosis of business-to-business collaborations is
an innovative solution to the diagnosis of business processes without the
availability of the data flow perspective, although it does not find the global

169

minimal diagnosis, since the set of activities found as a solution is not a
global minimal hitting set (Borrego et al., 2008b,a, 2009).

In short, the current Thesis Dissertation provides diagnosis methods which come
to reinforce the business process lifecycle with new policies to get high-quality
business processes. The proposals offer solutions to different possible scenarios
at different stages of the business processes development, always considering the
efficiency as an important factor to attain, developing their evaluations through
performance measurements to test their validity in terms of the accuracy of their
results and execution times.

170 CHAPTER 9. FINAL REMARKS

Chapter 10

Future Work

The current Thesis Dissertation presents four contributions to facilitate the iden-
tification of causes which produce abnormal behaviours in business processes.
Those research works can be extended to include aspects which have not been
explored before, or even to provide new functionalities.
In the first instance, regarding the verification of semantic business process mod-
els, the contribution provided in Chapter 5 is intended to be extended with the next
ideas:

• To provide the business analysts with additional feedback in case of a viola-
tion, in order to make easier the job of fixing the problem which causes the
incorrectness of the model. To this end, it would be interesting to perform
an analysis of the pre and postconditions of the activities involved in a pro-
cess instance whose simulation has been verified incorrect, as well as the
domains of the involved data, in order to accurately indicate the points to be
checked to fix the problem. It entails the use of techniques to minimize the
number of preconditions, postconditions and/or data whose incorrect mod-
elling can explain the incorrectness of the overall business process model.

• To consider the conditions in the gateways in order to simulate instances of
the business processes. This way, the valuations of data also influence in the
selection of branches which compose an instance, which would no longer be
based only on the topology of the business processes. As a result, it is also
possible to determine if there is any branch which would never be reached
according to the conditions of the gateways, due to the set of gate conditions
which should be satisfied to reach a branch may become overconstrained.

171

172 CHAPTER 10. FUTURE WORK

Related to the improvement of the diagnosability of business processes (cf. Chap-
ter 6), there are certain extensions regarding to the criterion for allocating test
points which are intended to be achieved:

• Allocation of test points in accordance with the reliability of each activ-
ity, so that the test points should be mostly allocated in flows where there
are more unreliable activities. To this end, it is necessary the definition of
heuristics to determine the reliability level of an activity in a business pro-
cess, considering factors such as information about the percentage of faults
presented by each activity in previous executions of the process.

• Allocation of test points in accordance with the diagnosability of each ac-
tivity in an independent way. That is, it is easier to identify the fault in an
activity whose behaviour is accurately modelled by means of pre and post-
conditions, than to determine the incorrect behaviour of an activity without
that kind of model. Therefore, it would be more useful to perform obser-
vations of the data managed by the later activity in order to count on more
information for the diagnosis process.

• Since, the diagnosability level of a business process is directly related to
the ability to discriminate between faults when they occur, several metrics
can be used in order to perform a comparison of the diagnosability level of a
business process before and after the allocation of test points, such as simply
the number of activities per cluster of the longest chain of activities that can
be executed in a process instance without any observation of the data flow
between these activities. However, since the allocation of test points aims to
facilitate a later diagnosis process, it is necessary the definition of a metric
to obtain the number of fault modes which cannot be discriminated in the
worst case, in order to obtain the largest set of activities whose instances of
abnormal behaviour are detected by a certain set of the allocated test points.

Consequently, the combination of the goals pursued in the three different objec-
tives presented in the contribution in Chapter 6 with these two new ideas described
above gives rise to multi-objective problems, which would also be faced up as fu-
ture work.
Regarding the diagnosis of business processes at run-time, the contributions in
Chapters 7 and 8 are also intended to be extended by considering the information
derived from the execution of several instances to perform the respective diag-
nosis processes. In this way, the feedback provided after the diagnosis could be

173

even more accurate to help business analysts to determine the exact cause of the
incorrect behaviour. In detail:

• In the case of the contribution for the diagnosis based on compliance rules
(cf. Chapter 7), it is intended to adapt the proposed methodology to perform
the diagnosis of business processes before the instance is still in execution.
The idea is to observe the data flow at the locations where the test points
are allocated, and use these data to determine that the process instance in
progress will finish its execution presenting some kind of inconsistency be-
tween the compliance rules and the managed data.

• Also, regarding the presented contribution in diagnosis based on structural
analysis in Chapter 8, the combination of information from different in-
stances can help provide a minimal diagnosis by enabling to discard some
parts as possible responsible of the detected faults.

And finally, although each contribution has been implemented and tested inde-
pendently, two of them even counting on their own tools, it would be desirable
to develop a global framework supported by a tool including the functionality
provided by each contribution. This way, the tool would complement business
process management systems by providing them with capabilities to reinforce
the basic business process lifecycle, adding verification and diagnosis at differ-
ent stages.

174 CHAPTER 10. FUTURE WORK

Bibliography

Affane, M. S., Bennaceur, H., 1998. A weighted arc consistency technique for
max-csp. In: Proc. of the 13th ECAI. pp. 209–213.

Alpern, B., Wegman, M. N., Zadeck, F. K., 1988. Detecting equality of variables
in programs. In: Proceedings of the 15th ACM SIGPLAN-SIGACT symposium
on Principles of programming languages. San Diego, California, pp. 1–11.

Ardissono, L., Console, L., Goy, A., Petrone, G., Picardi, C., Segnan, M., Dupre,
D., 2005. Enhancing web services with diagnostic capabilities. In: Web Ser-
vices, 2005. ECOWS 2005. Third IEEE European Conference on. IEEE, pp.
10–pp.

Ardissono, L., Furnari, R., Goy, A., Petrone, G., Segnan, M., 2006. Fault tolerant
web service orchestration by means of diagnosis. In: EWSA. pp. 2–16.

Awad, A., Smirnov, S., Weske, M., 2009. Towards resolving compliance viola-
tions in business process models. GRCIS. CEUR-WS. org.

Becker, J., Ahrendt, C., Coners, A., Wei, B., Winkelmann, A., 2011. Modeling and
analysis of business process compliance. In: Nttgens, M., Gadatsch, A., Kautz,
K., Schirmer, I., Blinn, N. (Eds.), Governance and Sustainability in Information
Systems. Vol. 366 of IFIP Publications. Springer, pp. 259–269.

Bistarelli, S., Montanari, U., Rossi, F., 1995. Constraint solving over semirings.
In: Mellish, C. (Ed.), IJCAI’95: Proceedings International Joint Conference on
Artificial Intelligence. Montreal.

Biswas, G., Cordier, M.-O., Lunze, J., Trave-Massuyes, L., Staroswiecki, M.,
2004. Diagnosis of complex systems: Bridging the methodologies of the fdi and
dx communities. Systems, Man, and Cybernetics, Part B, IEEE Transactions on
34 (5), 2159–2162.

175

176 BIBLIOGRAPHY

Biteus, J., Nyberg, M., Frisk, E., 2008. An algorithm for computing the diagnoses
with minimal cardinality in a distributed system. Engineering Applications of
Artificial Intelligence 21, 269–276.

Bocconi, S., Picardi, C., Pucel, X., Dupré, D. T., Travé-Massuyès, L., 2007.
Model-based diagnosability analysis for web services. In: AI*IA’07. pp. 24–
35.

Booch, G., Rumbaugh, J., Jacobson, I., 2005. Unified Modeling Language User
Guide, The (Addison-Wesley Object Technology Series). Addison-Wesley Pro-
fessional.

Borrego, D., Gasca, R. M., Gómez-López, M. T., Barba, I., 2009. Choreography
analysis for diagnosing faulty activities in business-to-business collaboration.
In: 20th International Workshop on Principles of Diagnosis. DX-09. Stock-
holm, Sweden, pp. 171–178.

Borrego, D., Gasca, R. M., Gómez-López, M. T., Parody, L., 2010a. Contract-
based diagnosis for business process instances using business compliance rules.
In: Proceedings of the 21st International Workshop on Principles of Diagnosis.
(DX-10). pp. 169–176.

Borrego, D., Gómez-López, M. T., Gasca, R. M., 2008a. Diagnosing distributed
systems using only structural and qualitative information. International Trans-
actions on Systems Science and Applications (to appear).

Borrego, D., Gómez-López, M. T., Gasca, R. M., 2011. Test-point allocator tool.
In: http://www.lsi.us.es/∼quivir/index.php/Main/Downloads.

Borrego, D., Gómez-López, M. T., Gasca, R. M., Barba, I., 2008b. Diagnosing
business processes execution using choreography analysis. In: XIII Jornadas
de Ingenierı́a del Software y Bases de Datos (JISBD 2008). pp. 13–24.

Borrego, D., Gómez-López, M. T., Gasca, R. M., Ceballos, R., 2010b. Deter-
mination of an optimal test points allocation for business process analysis.
In: IEEE/Ifip Network Operations and Management Symposium Workshops.
Workshop on Business Driven It Management. IEEE Communications Society,
pp. 159–160.

BIBLIOGRAPHY 177

Borrego, D., Gómez-López, M. T., Gasca, R. M., Ceballos, R., 2010c. Improving
the diagnosability of business process management systems using test points.
In: 6th Workshop on Business Process Intelligence (BPI 2010).

Borrego, D., Gómez-López, M. T., Gasca, R. M., Parody, L., 2010d. Diagnosis de
errores en la gestión de procesos software con programación con restricciones.
In: X Jornadas de Ingenierı́a del Software y Bases de Datos (JISBD 2010). pp.
23–34.

BOS, 2011. Bonita open solution. In: http://www.bonitasoft.org. Bonita-
Soft.

Bruni, R., 2003. Approximating minimal unsatisfiable subformulae by means of
adaptive core search. Discrete Appl. Math. 130 (2), 85–100.

Burattin, A., Sperduti, A., 2010. Plg: a framework for the generation of business
process models and their execution logs. In: In Proceedings of the 6th Interna-
tional Workshop on Business Process Intelligence (BPI 2010). Stevens Institute
of Technology; Hoboken, New Jersey, USA.

C. Commault, J.-M. D., Agha, S. Y., 2006. Structural analysis for the sensor lo-
cation problem in fault detection and isolation. In: Proceedings of the IFAC
Symposium SAFEPROCESS’ 2006. Beijing, China, pp. CD–ROM.

Cardoso, J., july 2005. Evaluating the process control-flow complexity measure.
In: Web Services, 2005. ICWS 2005. Proceedings. 2005 IEEE International
Conference. Vol. 2. pp. xxxiii–856.

Cassar, J., Staroswiecki, M., 1997. A structural approach for the design of failure
detection and identification systems. IFAC-IFIP-IMACS Conf. on Control of
Industrial Processes, Belfort, France.

Çatalyürek, V., Aykanat, C., 1999. Hypergraph-partitioning-based decomposition
for parallel sparse-matrix vector multiplication. IEEE Transactions on Parallel
and Distributed Systems 10 (7), 673–693, cited By (since 1996): 103.

Ceballos, R., Cejudo, V., Gasca, R. M., Valle, C. D., 2005. A topological-based
method for allocating sensors by using csp techniques. In: CAEPIA. Vol. 4177
of Lecture Notes in Computer Science. Springer, pp. 62–68.

178 BIBLIOGRAPHY

Ceballos, R., Gómez-López, M. T., Gasca, R. M., del Valle, C., 2006. Integración
de técnicas basadas en modelos para la determinación de la diagnosis mı́nima de
un sistema. In: Inteligencia Artificial. Revista Iberoamericana de Inteligencia
Artificial No. 31. pp. 41–51.

Ceballos, R., Gómez-López, M. T., Gasca, R. M., del Valle, C., 2007. A compiled
model for faults diagnosis based on different techniques. AI Communications
20 (1), 7–16.

Cetin, S., Altintas, N., Solmaz, R., 2006. Business rules segregation for dynamic
process management with an aspect-oriented framework. In: Eder, J., Dust-
dar, S. (Eds.), Business Process Management Workshops. Vol. 4103 of Lecture
Notes in Computer Science. Springer Berlin / Heidelberg, pp. 193–204.

Console, L., Dressler, O., 1999. Model-based diagnosis in the real world: Lessons
learned and challenges remaining. In: IJCAI ’99: Proceedings of the Sixteenth
International Joint Conference on Artificial Intelligence. Morgan Kaufmann
Publishers Inc., San Francisco, CA, USA, pp. 1393–1400.

Console, L., Picardi, C., Dupré, D. T., 2007. A framework for decentralized qual-
itative model-based diagnosis. In: IJCAI 2007. pp. 286–291.

Console, L., Picardi, C., Ribaudo, M., 2000. Diagnosis and diagnosability anal-
ysis using process algebra. In: In Proc. 11th Int. Workshop on Principles of
Diagnosis (DX).

Cordier, M.-O., Dague, P., Dumas, M., Lévy, F., Montmain, J., Staroswiecki,
M., Travé-Massuyès, L., 2000. A comparative analysis of ai and control theory
approaches to model-based diagnosis. In: ECAI. pp. 136–140.

Cytron, R., Ferrante, J., Rosen, B. K., Wegman, M. N., Zadeck, F. K., 1991.
Efficiently computing static single assignment form and the control dependence
graph. ACM Transactions on Programming Languages and Systems 13, 451–
490.

D. Maquin, M. L., Ragot, J., 1997. Fault detection and isolation and sensor net-
work design. European Journal of Automation 31 (2), 393–406.

Darwiche, A., 1998. Model-based diagnosis using structured system descriptions.
Journal of Artificial Intelligence Research 8, 165–222.

BIBLIOGRAPHY 179

Davis, R., 1984. Diagnostic reasoning based on structure and behavior. In Artifi-
cial Intelligence 24, 347–410.

de Kleer, J., Mackworth, A. K., Reiter, R., 1992. Characterizing diagnoses and
systems. Artif. Intell. 56 (2-3), 197–222.

de la Banda, M. J. G., Stuckey, P. J., Wazny, J., 2003. Finding all minimal unsatis-
fiable subsets. In: PPDP ’03: Proceedings of the 5th ACM SIGPLAN interna-
tional conference on Principles and practice of declaritive programming. ACM,
pp. 32–43.

Dechter, R., 1992. Constraint networks. Encyclopedia of Artificial Intelligence,
Second Edition, 276–285.

Dechter, R. (Ed.), 2003. Constraint Processing. Morgan Kaufmann Publisher.

Dressler, O., Struss, P., 2003. A toolbox integrating model-based diagnosability
analysis and automated generation of diagnostics. In: the 14th International
Workshop on Principles of Diagnosis (DX03). Washington, D.C., USA, pp.
99–104.

Dulmage, A. L., Mendelsohn, N. S., 1959. A structure theory of bi-partite graphs
of finite exterior extension. Transactions of the Royal Society of Canada 53 (3),
1–13.

Dynamic Decision Technologies, 2011. Dynadec web page.
URL http://dynadec.com/

Éric Grégoire, Mazure, B., Piette, C., 2007. Local-search extraction of muses.
Constraints 12 (3), 325–344.

Eshuis, R., Kumar, A., 2008. An integer programming based approach for diag-
nosing workflows. Tech. rep., Beta Working Paper Series, WP 264, Eindhoven
University of Technology.

Eshuis, R., Kumar, A., August 2010. An integer programming based approach for
verification and diagnosis of workflows. Data Knowl. Eng. 69, 816–835.

Eshuis, R., Wieringa, R., July 2004. Tool support for verifying uml activity dia-
grams. IEEE Transactions on Software Engineering 30 (7), 437–447.

http://dynadec.com/

180 BIBLIOGRAPHY

Fattah, Y. E., Holzbaur, C., 1994. A clp approach to detection and identifica-
tion of control system component failures. In: Proceedings of the Workshop
on Qualitative and Quantitative Approaches to Mode-Based Diagnosis, Second
International Conference on Intelligent Systems Engineering. pp. 97–107.

Freuder, E., Wallace, R., 1992. Partial constraint satisfaction. Artificial Intelli-
gence (58), 21–70.

Frisk, E., Krysander, M., 2007. Sensor placement for maximum fault isolability.

Frohlich, P., de Almeida Mora, I., Nejdl, W., Schroeder, M., 1997. Diagnostic
agents for distributed systems. In: ModelAge Workshop. pp. 173–186.

G. Verfaillie, M. L., Schiex, T., 1996. Russian doll search. In: Proc. of the 13th
AAAI. pp. 181–187.

Gasca, R. M., Valle, C., Gómez-López, M. T., Ceballos, R., 2007. Nmus: Struc-
tural analysis for improving the derivation of all muses in overconstrained nu-
meric csps, 160–169.

Genesereth, M. R., 1984. The use of design descriptions in automated diagnosis.
Artif. Intell. 24 (1-3), 411–436.

Ghose, A., Koliadis, G., 2007. Auditing business process compliance. In: ICSOC
’07: Proceedings of the 5th international conference on Service-Oriented Com-
puting. Springer-Verlag, Berlin, Heidelberg, pp. 169–180.

Gómez-López, M. T., Ceballos, R., Gasca, R. M., Del Valle, C., 2009. Developing
a labelled object-relational constraint database architecture for the projection
operator. Data Knowl. Eng. 68 (1), 146–172.

Gómez-López, M. T., Ceballos, R., Gasca, R. M., Valle, C. D., 2004. Constraint
databases technology for polynomial models diagnosis. In: 15th International
Workshop on Principles of Diagnosis. pp. 215–220.

Gómez-López, M. T., Gasca, R. M., 2010. Run-time monitoring and auditing for
business processes data using contraints. In: 6th Workshop on Business Process
Intelligence (BPI 2010).

Graphviz/Dot, 2011. In: http://www.graphviz.org.

BIBLIOGRAPHY 181

Ha, B., Bae, J., Park, Y., Kang, S., 2006. Development of process execution rules
for workload balancing on agents. Data & Knowledge Engineering 56 (1), 64–
84.

Hay, D., Healy, K. A., Hall, J., Bachman, C., Breal, J., Funk, J., Healy, J.,
Mcbride, D., Mckee, R., Moriarty, T., et al., 2000. Defining business rules.
what are they really? the business rules group. Business, 4–5.

Heller, U., Struss, P., 2001. G+de - the generalized diagnosis engine. In: DX-2001,
12th International Workshop on Principles of Diagnosis. pp. 79–86.

Heravizadeh, M., Mendling, J., Rosemann, M., 2009. Dimensions of business pro-
cesses quality (qobp). In: Business Process Management Workshops. Springer,
pp. 80–91.

Huang, S.-M., Chu, Y.-T., Li, S.-H., Yen, D. C., 2008. Enhancing conflict detect-
ing mechanism for web services composition: A business process flow model
transformation approach. Inf. Softw. Technol. 50 (11), 1069–1087.

Hyun Son, J., Ho Kim, M., 2001. Improving the performance of time-constrained
workflow processing. Journal of Systems and Software 58 (3), 211–219.

IBM, 2003. JSolver 2.1, Reference manual, unpublished.

Jablonski, S., Bussler, C., 1996. Workflow management - modeling concepts, ar-
chitecture and implementation. International Thomson.

Junker, U., August 2001. Quickxplain: Conflict detection for arbitrary constraint
propagation algorithms. In: IJCAI’01 Workshop on Modelling and Solving
problems with constraints (CONS-1). Seattle, WA, USA.

Kanellakis, P. C., Kuper, G. M., Revesz, P. Z., 1992. Constraint query languages.

Karamanolis, C., Giannakopoulou, D., Magee, J., Wheater, S. M., 2000. Model
checking of workflow schemas. In: Proceedings of IEEE EDOC 2000. pp. 170–
179.

Karypis, G., Aggarwal, R., Kumar, V., Shekhar, S., 1999. Multilevel hypergraph
partitioning: applications in vlsi domain. Ieee Transactions On Very Large
Scale Integration Vlsi Systems 7 (1), 69–79.

182 BIBLIOGRAPHY

Kask, K., 2000. New search heuristics for max-csp. Principles and Practice of
Constraint Programming–CP 2000, 262–277.

Kleer, J. D., Williams, B., 1987. Diagnosing multiple faults. Art. Int.

Kumar, V., 1992. Algorithms for constraint satisfaction problems: A survey. AI
Magazine 13 (1), 32–44.

Larrosa, J., Meseguer, P., 1999. Partition-based lower bound for max-csp. In: Prin-
ciples and Practice of Constraint Programming–CP99. Springer, pp. 303–315.

Liffiton, M., Sakallah, K., 2008. Algorithms for computing minimal unsatisfiable
subsets of constraints. Journal of Automated Reasoning 40 (1), 1–33.

Liffiton, M. H., Sakallah, K. A., 2005. On finding all minimally unsatisfiable
subformulas. In: In International Conference on Theory and Applications of
Satisfiability Testing (SAT’05). pp. 173–186.

Ly, L., Rinderle-Ma, S., Göser, K., Dadam, P., 2009. On enabling integrated pro-
cess compliance with semantic constraints in process management systems. In-
formation Systems Frontiers 1, 25.

Madron, F., Veverka, V., 1992. Optimal selection of measuring points in complex
plants by linear models 38 (2), 227–236.

Mark Liffiton Michael, M. D. M., Pollack, M. E., 2007. Identifying conflicts in
overconstrained temporal problems.

Mauss, J., Tatar, M., 2002. Computing minimal conflicts for rich constraint lan-
guages.

Mears, C., Garcia De La Banda, M., Wallace, M., 2009. On implementing sym-
metry detection. Constraints 14 (4), 443–477.

Moffitt, M. D., Pollack, M. E., 2005. Applying local search to disjunctive temporal
problems. In: IJCAI. pp. 242–247.

Mozetic, I., Holzbauer, C., 1993. Controlling the complexity in model–based di-
agnosis.

Namiri, K., Stojanovic, N., 2007. A semantic-based approach for compliance
management of internal controls in business processes. In: CAiSE Forum.

BIBLIOGRAPHY 183

Narendra, N., Varshney, V., Nagar, S., Vasa, M., Bhamidipaty, A., 2008. Optimal
control point selection for continuous business process compliance monitoring.
In: Service Operations and Logistics, and Informatics, 2008. IEEE/SOLI 2008.
IEEE International Conference on. Vol. 2. IEEE, pp. 2536–2541.

Oh, Y., Mneimneh, M. N., Andraus, Z. S., Sakallah, K. A., Markov, I. L., 2004.
Amuse: a minimally-unsatisfiable subformula extractor. In: DAC ’04: Proceed-
ings of the 41st annual conference on Design automation. ACM, New York, NY,
USA, pp. 518–523.

OMG, 2011. Object Management Group, Business Process Model and Notation
(BPMN) Version 2.0. OMG Standard.

Pencolé, Y., Cordier, M.-O., 2005. A formal framework for the decentralised di-
agnosis of large scale discrete event systems and its application to telecommu-
nication networks. Artificial Intelligence 164 1-2, 121–170.

Petri, C. A., 1962. Kommunikation mit automaten. Ph.D. thesis, Universitt Ham-
burg.

Provan, G., 2002. A model-based diagnosis framework for distributed system. In:
13th International Workshop on Principles of Diagnosis. pp. 16–24.

Reiter, R., 1987. A theory of diagnosis from first principles. Artificial Intelligence
32 (1), 57–95.

Roos, N., ten Teije, A., Witteveen, C., 2003. Multi-agent diagnosis with semanti-
cally distributed knowledge. In: Proceedings of the Belgium-Netherlands Arti-
ficial Intelligence Conference (BNAIC).

Ross, R. G., 2009. What is a business rule? practicable business rules. Business.

Rossi, F., van Beek, P., Walsh, T. (Eds.), 2006. Handbook of Constraint Program-
ming. Elsevier.

Roychoudhury, I., Biswas, G., Koutsoukos, X., 2009. Designing distributed diag-
nosers for complex continuous systems. Automation Science and Engineering,
IEEE Transactions on 6 (2), 277–290.

Sadiq, S. W., Governatori, G., Namiri, K., 2007. Modeling control objectives for
business process compliance. In: BPM. pp. 149–164.

184 BIBLIOGRAPHY

Sadiq, S. W., Orlowska, M. E., Sadiq, W., Foulger, C., 2004. Data flow and valida-
tion in workflow modelling. In: Schewe, K.-D., Williams, H. E. (Eds.), ADC.
Vol. 27 of CRPIT. Australian Computer Society, pp. 207–214.

Sadiq, W., Orlowska, M. E., 2000. Analyzing process models using graph reduc-
tion techniques. Information Systems 25, 117–134.

Scheer, A., 2000. ARIS–business process modeling. Springer Verlag.

Schiex, T., Fargier, H., Verfaillie, G., 1995. Valued constraint satisfaction prob-
lems: Hard and easy problems. In: Mellish, C. (Ed.), IJCAI’95: Proceedings
International Joint Conference on Artificial Intelligence. Montreal.

Shah, I., 2011. Direct algorithms for finding minimal unsatisfiable subsets in over-
constrained csps. International Journal on Artificial Intelligence Tools 20 (1),
53.

Sidorova, N., Stahl, C., Trcka, N., 2011. Soundness verification for conceptual
workflow nets with data: Early detection of errors with the most precision pos-
sible. Information Systems 36 (7), 1026–1043.

Spanache, S., Escobet, T., Travé-Massuyès, L., 2004. Sensor placement optimisa-
tion using genetic algorithms. In: Proceedings of the15th International Work-
shop on Principles of Diagnosis, DX-04. pp. 179–183.

Sponsor, N., 2008. Business rules and business processes. Information Systems
Journal 1 (10), 20–24.

Staroswiecki, M., Declerk, P., 1989. Analytical redundancy in non linear intercon-
nected systems by means of structural analysis. In: IFAC Advanced Information
Processing in Automatic Control (AIPAC-89). pp. 51–55.

Sun, S. X., Zhao, J. L., Nunamaker, J. F., Sheng, O. R. L., 2006. Formulating the
data-flow perspective for business process management. Information Systems
Research 17 (4), 374–391.

Sun, S. X., Zhao, J. L., Sheng, O. R. L., 2004. Data flow modeling and verifica-
tion in business process management. In: AMCIS. Association for Information
Systems.

Thompson, G., Goodale, J., 2006. Variable employee productivity in workforce
scheduling. European journal of operational research 170 (2), 376–390.

BIBLIOGRAPHY 185

Touré, F., Baı̈na, K., Benali, K., 2008. An efficient algorithm for workflow graph
structural verification. In: Proceedings of the OTM 2008 Confederated Inter-
national Conferences, CoopIS, DOA, GADA, IS, and ODBASE 2008. Part I
on On the Move to Meaningful Internet Systems:. OTM ’08. Springer-Verlag,
Berlin, Heidelberg, pp. 392–408.

Travé-Massuyès, L., Escobet, T., Milne, R., 2001. Model-based diagnosability
and sensor placement application to a frame 6 gas turbine subsystem. In: Pro-
ceedings of the 17th international joint conference on Artificial intelligence -
Volume 1. Morgan Kaufmann Publishers Inc., San Francisco, CA, USA, pp.
551–556.

Travé-Massuyès, L., Escobet, T., Olive, X., 2006. Diagnosability analysis based
on component-supported analytical redundancy relations. IEEE Transactions
on Systems, Man, and Cybernetics, Part A 36 (6), 1146–1160.

Traxler, P., 2008. The time complexity of constraint satisfaction. In: Proceedings
of the 3rd international conference on Parameterized and exact computation.
IWPEC’08. Springer-Verlag, Berlin, Heidelberg, pp. 190–201.

Tsai, C., Huang, K., Wang, F., Chen, C., 2010. A distributed server architecture
supporting dynamic resource provisioning for bpm-oriented workflow manage-
ment systems. Journal of Systems and Software 83 (8), 1538–1552.

van der Aalst, W., 2004. Business process management demystified: A tutorial on
models, systems and standards for workflow management. Lectures on Concur-
rency and Petri Nets, 21–58.

van der Aalst, W., Hirnschhall, A., Verbeek, H. M. W., 2002. An alternative way to
analyze workflow graphs. In: Proceedings of the 14th International Conference
on Advanced Information Systems Engineering (CAiSE’02), volume 2348 of
Lecture Notes in Computer Science. Springer-Verlag, pp. 535–552.

van der Aalst, W. M. P., 2007. Challenges in business process analysis. In: Filipe,
J., Cordeiro, J., Cardoso, J. (Eds.), ICEIS (Selected Papers). Vol. 12 of Lecture
Notes in Business Information Processing. Springer, pp. 27–42.

van der Aalst, W. M. P., ter Hofstede, A. H. M., Weske, M., 2003. Business process
management: A survey. In: van der Aalst, W. M. P., ter Hofstede, A. H. M.,
Weske, M. (Eds.), Business Process Management. Vol. 2678 of Lecture Notes
in Computer Science. Springer, pp. 1–12.

186 BIBLIOGRAPHY

Wallace, R. J., 1995. Directed arc consistency preprocessing. In: Constraint Pro-
cessing, Selected Papers. Springer-Verlag, London, UK, pp. 121–137.

Weber, B., Sadiq, S. W., Reichert, M., 2009. Beyond rigidity - dynamic process
lifecycle support. Computer Science - R&D 23 (2), 47–65.

Weber, I., Hoffmann, J., Mendling, J., 2010. Beyond soundness: on the verifica-
tion of semantic business process models. Distributed and Parallel Databases
27 (3), 271–343.

Weske, M., 2007. Business process management. concepts, languages, architec-
tures. Springer.

WFMC, 2005. Workflow management coalition workflow standard: Process def-
inition interface – xml process definition language. Tech. Rep. WFMC-TC-
1025, Workflow Management Coalition.

Yassine, A. A., Ploix, S., Flaus, J.-M., 2008. A method for sensor placement
taking into account diagnosability criteria. Applied Mathematics and Computer
Science 18 (4), 497–512.

Yassine, A. A., Rosich, A., Ploix, S., 2010. An optimal sensor placement algo-
rithm taking into account diagnosability specifications. International Confer-
ence on Automation, Quality and Testing, Robotics 2, 1–6.

Zhang, Y., Chen, X., Liu, G., Qiu, J., Yang, S., 2009. Optimal test points selection
based on multi-objective genetic algorithm. In: Testing and Diagnosis, 2009.
ICTD 2009. IEEE Circuits and Systems International Conference on. IEEE,
pp. 1–4.

Zhao, J., Stohr, E., 1999. Temporal workflow management in a claim handling
system. ACM SIGSOFT Software Engineering Notes 24 (2), 187–195.

	Contents
	List of Figures
	List of Tables
	I Preface
	Introduction
	Research Context and Motivation
	Contributions
	Structure of this Dissertation

	II Background
	Business Processes
	Concepts
	Business Process Model
	Control Flow Perspective
	Data-Flow Perspective

	Background to Business Process Analysis
	Verification Analysis Methods
	Validation Analysis Methods
	Performance Analysis Methods
	Discussion

	Diagnosability and Model-Based Fault Diagnosis
	Diagnosability
	Model-Based Diagnosis
	FDI: Analytical Redundancy Approach
	DX: Logical Diagnosis Approach

	Distributed Diagnosis
	Decentralized Approaches
	Distributed Approaches

	Constraint Programming
	Basic Concepts in CSP Modelling
	Consistency
	Search Algorithms
	Constraint Optimization Problem
	Integer Programming

	Overconstrained Constraint Satisfaction Problems
	Business Data Constraints and CP

	III Contribution I: Verification of Semantic Business Process Models
	Diagnosing Semantic BP Models
	Introduction
	Motivation
	Contribution
	Illustrative Example

	Workflow Data Graphs
	Definitions
	Analysis of the Diagnosis Problem

	Diagnosis of Workflow Data Graphs
	Combined IP and CSP Model
	Detecting Basic Data-Flow Errors
	Algorithm for May-correctness
	Algorithm for Must-correctness
	Diagnosing the Motivating Example

	Implementation and Empirical Evaluation
	Implementation
	Experimental Design
	Performance Results

	Summary

	IV Contribution II: Diagnosability in Business Processes
	Improving the diagnosability in BP models
	Introduction
	Motivation
	Contribution
	Illustrative Example

	Diagnosability of Business Processes
	Definitions
	Objectives for the Improvement of the Diagnosability of a Business Process

	Test-Point Allocation Methodology
	Improving Diagnosability Using Constraint Programming
	Objective 1: Maximization of the Number of Clusters with the Allocation of a Fixed Number of Test Points.
	Objective 2: Allocation of the Minimum Number of Test Points in Order to Obtain a Fixed Number of Balanced Clusters.
	Objective 3: Minimization of the Number of Test Points to be Allocated in Order to Obtain Clusters with a Maximum Number of Activities.

	Implementation and Empirical Evaluation
	Implementation
	Experimental Design
	Performance Results

	Summary

	V Contributions III and IV: Fault Diagnosis of Business Processes at Runtime
	Diagnosis based on Business Data Constraints
	Introduction
	Motivation
	Contribution
	Illustrative Example

	Contract-based Diagnosis of BPs
	Diagnosis Process by using Business Data Constraints
	Contract-based Diagnosis Using Reified Constraints and Max-CSP
	Determination of MUSes for Contract-based Diagnosis

	Empirical Evaluation
	Experimental Design
	Performance Results

	Summary

	Diagnosis based on Structural Analysis
	Introduction
	Motivation
	Contribution
	Illustrative Example

	Main Concepts for the Structural Diagnosis
	Logic and Distributed Algorithm
	Determining the Compiled Orchestration Model
	Propagation Phase
	Local Diagnosis Phase

	Empirical Evaluation
	Experimental Design
	Performance Results

	Summary

	VI Conclusions and Future Work
	Final Remarks
	Future Work
	Bibliography

