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Abstract

The aim of this Thesis is to develop computer vision-based techniques for localizing

an unmanned aerial vehicle (UAV) by means of an on-board camera. Only natural

landmarks provided by a feature tracking algorithm will be considered, without the

help of visual beacons or landmarks with known positions.

The first technique proposed in this Thesis is a monocular visual odometer which

could be used as a backup system when the accuracy of GPS is reduced to critical

levels. The goal is the development of artificial vision techniques for the computation

of the relative translation and rotation from the images gathered by a camera attached

to the UAV. The analysis of the problem takes into account the stochastic nature of

the estimation and practical implementation issues.

Homographies will be used as formal representation of motion between consecutive

images when the imaged scene in the camera can be assumed to be planar. The

experimental results presented in this Thesis show that this assumption holds when

the UAV flies at a relatively high altitude, and proposes mechanisms to extend its

validity to pseudo-planar scenes.

Approaches to reduce the impact of cumulative errors in position estimation are

also proposed. The Thesis describes methods to build on-line mosaics and use them

as a consistent description of the UAV environment. This representation helps to

quantify and correct the drift in the position estimation by comparing the currently

estimated position to the one which can be computed from the mosaic. In addition,

a new stochastic framework is proposed for online mosaic building to extend these

corrections to the whole mosaic; this mosaic representation allows to recompute the

relative position of the images when the UAV visits previously registered areas.
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The visual odometer is also integrated in a simultaneous localization and mapping

(SLAM) scheme in order to provide localization capabilities when the mosaic building

process cannot be carried out. Novel prediction and landmark initialization for SLAM

in UAVs are presented.

The Thesis is supported by an extensive experimental work where the proposed

algorithms have been tested and validated using real UAVs.
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B.7 Resumen del Caṕıtulo 5 . . . . . . . . . . . . . . . . . . . . . . . . . 116
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Chapter 1

Introduction

This Chapter introduces the Thesis motivation, objectives and scope. Current work

on visual based localization are described and linked to the proposed approach.

1.1 Motivation

Outdoor robotics applications in natural environments usually require higher mobility

than the motion capabilities provided by existing ground robotic vehicles. In fact,

in spite of the progress in the development of unmanned ground vehicles along the

last 20 years, navigating in unstructured natural environments still poses significant

challenges. The existing ground vehicles have inherent limitations to reach the desired

locations in many applications. The characteristics of the terrain and the presence

of obstacles, together with the requirement of fast response, may represent a major

drawback to the use of any ground locomotion system. Thus, in many cases, the use

of aerial vehicles is the only effective way to reach the target to get information or to

deploy instrumentation.

Unmanned aerial vehicles (UAVs) are suitable for many robotic systems because

they are not affected by the above mentioned limitations of ground vehicles.

In the last ten years UAVs have improved their autonomy both in energy and

information processing. Significant achievements have been obtained in autonomous

positioning and tracking. These improvements are based on modern satellite-based
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2 Introduction

position technologies, inertial navigation systems, communication and control tech-

nologies, and image processing. Furthermore, new sensing and processing capabilities

have been implemented on-board the UAVs. Thus, today we can consider some UAVs

as intelligent robotic systems integrating perception, learning, real-time control, sit-

uation assessment, reasoning, decision-making and planning capabilities for evolving

and operating in complex environments.

In most cases, UAVs use the Global Position System (GPS) to determine their

position. As pointed out in the Volpe Report (Volpe, 2001), the accuracy of this esti-

mation directly depends on the number of satellites used to compute the position and

the quality of the signals received by the device; radio effects like multi-path prop-

agation could cause the degradation in the estimation. In addition, radio frequency

interferences with coexisting devices like cellular phone, television broadcasting or, in

general, VHF communications, could make the position estimation unfeasible.

These problems are well known in robotics. Thus, odometry (estimation of the

relative position with respect to a starting point by means of local sensors located

in the wheels of the robot, usually by measuring velocity and orientation) is com-

monly used in terrestrial robots as a backup positioning system or in sensor data

fusion approaches. This local estimation allows temporally managing GPS faults or

degradations. However, the lack of odometry systems in most aerial vehicles can lead

to catastrophic consequences under GPS errors; incoherent control actions could be

commanded to the UAV, leading to crash and the loss of valuable hardware.

If small UAVs are considered, their low payload represents a hard restriction on

the variety of devices to be used for odometry. Sensors like 3D or 2D laser scan-

ners are too heavy and have an important dependence to the UAV distance to the

ground. Although there exist small devices for depth sensing, their range is usually

shorter than fifteen meters. Stereo vision systems have been successfully applied to

low/medium size UAVs due to its low weight and versatility, but the rigid distance

between the two cameras limits the useful altitude range.

Monocular vision seems to offer a good solution in terms of weight, accuracy

and scalability. However, although several approaches have been presented, mainly

based on the existence of visual beacons placed in known positions, the use of natural
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landmarks for this purpose is very challenging and has been barely addressed by the

research community.

This Thesis proposes a monocular visual odometer and vision-based localization

methods to act as backup systems when the accuracy of GPS is reduced to criti-

cal levels. The objective is the development of computer vision techniques for the

computation of the relative translation and rotation, and for the localization of the

vehicle based on the images gathered by a camera on-board the UAV. The analysis of

the problem takes into account the stochastic nature of the estimation and practical

implementation issues.

1.2 Related work

First researches on vision applied to UAV position estimation starts in the nineties at

the Carnegie-Mellon Univerisity (CMU). In (Amidi et al., 1998), it is described a vi-

sual based odometer that allowed to lock the UAV to ground objects and sense relative

helicopter position and velocity in real time by means of stereo vision. The same vi-

sual tracking techniques, combined with inertial sensors, were applied to autonomous

take off, following a prescribed trajectory and landing. The CMU autonomous he-

licopter also demonstrated autonomous tracking capabilities of moving objects by

using only on-board specialized hardware.

Stereo vision has also been used in the GTMax helicopter at Georgia Tech (John-

son and Schrage, 2003) where the VISTA system (VISual Thread Awareness) is de-

signed for real time obstacle detection and avoidance using a small commercial stereo

vision device. The approach, detailed in (Byrne et al., 2006), combines the existing

real time stereo system with a global segmentation step to increase robustness to

matching errors, resulting in a practical obstacle detection system.

Vision systems have been actively used for autonomous landing in targets. The

BEAR project at Berkeley is a good example. In this project vision-based pose

estimation of unmanned helicopters relative to a planar landing target and vision-

based landing of an aerial vehicle on a moving deck have been researched (Shakernia

et al., 2002; Vidal et al., 2002). A technique based on multiple view geometry of the
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same plane, in this case the planar target, is used to compute the real motion of the

UAV with respect to the target.

Computer vision is also used for safe landing in the AVATAR project. Thus, in

(Garcia-Pardo et al., 2001), a strategy and an algorithm relying on image processing

techniques to search the ground for a safe landing spot is presented. Vision-based

techniques for landing on a helipad of known shape are presented in (Saripalli et al.,

2003; Saripalli and Sukhatme, 2003), where the case of landing on a slow moving

helipad is also considered.

Simultaneous Localization and Mapping (SLAM) techniques are closely related

to the position estimation problem. Although vision-based SLAM has been widely

used in ground robots and has demonstrated its feasibility for consistent perception

of the environment and position of the robot, only a few applications have been

implemented on UAVs. The researches carried out in the LAAS laboratory in France

and the Centre for Autonomous Systems in Australia can be highlighted. The first of

them has developed an stereo vision system designed for the KARMA blimp (Lacroix

et al., 2002; Hygounenc et al., 2004) where interest point matching and Kalman

filtering techniques are used for simultaneous localization and mapping with very

good results. However, this approach is not suitable for helicopters, as the baseline

of the stereo rig that can be carried is small, and therefore it limits the height at

which the UAV can fly. UAV simultaneous localisation and map building with vision

using a delta fixed wing platform is also presented in (Kim and Sukkarieh, 2004) at the

Centre for Autonomous Systems. Artificial landmarks of known size are used in order

to simplify the landmark identification problem. The known size of the landmarks

allows to use the cameras as a passive range/bearing/elevation sensor.

The use of an omnidirectional camera for helicopter control has been considered

in (Hrabar and Sukhatme, 2003). The camera is used to maintain the helicopter in

the centroid of a set of artificial targets. The processed images are directly used to

command the helicopter. The paper shows the feasibility of the procedure, but no

actual control is tested. Omnidirectional vision is also used in (Demonceaux et al.,

2006) to estimate the attitude of an UAV. The method detects the horizon line by

means of image processing and computes the attitude from its apparent motion.
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Although the technique seems to be reliable, the authors do not compare the results

with any ground truth, and the accuracy of the method cannot be measured.

In the work of (Mej́ıas et al., 2006), vision is used to track features of build-

ings. Image features and GPS measurements are combined together to keep the UAV

aligned with the selected features. Although visual servoing has been widely used

in indoor robotics, as in (Pari et al., 2006) where it is applied to the tracking of a

3DOF joint system, the application to aerial robotics is still scarce. Thus, Control

design and stability analysis of image-based controllers for aerial robots are presented

in (Mahony and Hamel, 2005), while (Proctor et al., 2006) presents recent work on

vision-based control of a fixed wing aircraft.

Finally, localization techniques based on monocular imagery and online mosaicking

have been proposed for AUVs (autonomous underwater vehicles) in (Garcia et al.,

2001) and (Garcia et al., 2002). Although the environment is clearly different, the

limitations are similar. The method uses an online built mosaic as environment

representation and the relations between images to compute the translation of the

robot. However, only the position of the images are considered, and the motion

computation problem is barely described.

1.3 Thesis scope and layout

The aim of the Thesis is to develop computer vision-based techniques for localizing

an UAV by means of an attached camera. Only the natural landmarks provided by

a feature tracking algorithm will be considered, so visual beacons or landmarks with

known positions are discarded. The algorithms will be developed in the framework

of the Projective Geometry which has demonstrated to be a powerful tool for repre-

senting the image projection geometry and many others problems like stereo vision

(Faugeras and Luong, 2001), image back-projection, multiple view geometry (Hartley

and Zisserman, 2004) or camera calibration (Zhang, 1999).

In this sense, the Thesis firstly addresses in Chapter 2 an introduction to Projective

Geometry and, more specifically, to Homography computation. Homography will be

used as formal representation of motion between consecutive images when the imaged
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scene in the camera can be assumed to lay in a plane. The experimental results

presented in this document will show how this assumption holds when the UAV flies

at relatively high altitude. The algorithm for Homography computation has been

tested and validated with thousands of images captured by different UAVs flying at

different altitudes, from fifteen to one hundred and fifty meters. This algorithm was

briefly described in (Ollero et al., 2004) and it is similar to the approach presented by

Bosch in (Bosch et al., 2006). The technique has been successfully tested during the

COMETS project (Ollero et al., 2005) for on-line compensation of the induced motion

in the images by UAVs vibrations in (Merino et al., 2006a), and for fire detection and

monitoring in (Martinez et al., 2006). The Chapter deals also with the computation

of the covariance matrix associated to the estimated homography. This information is

used all along the Thesis to propagate errors and to know how accurate the estimated

homography is.

Chapter 3 details a method that allows to compute the real camera motion by

means of the estimated homography; a homography based odometer. The Chapter

extends the work presented in (Caballero et al., 2005), probably one of the first ap-

plications of Homography to the UAV motion estimation using natural landmarks.

Although the theoretical background was introduced at the beginning of the eighties

by Tsai (Tsai et al., 1982), the Chapter particularizes the method to UAVs and pro-

vides a study about the uncertainties associated to the estimated motion. Real images

and telemetry gathered by an UAV are used to validate the algorithm. Experimental

results show the presence of accumulative errors, typical in odometric approaches,

that make the position estimation diverge through time.

Chapter 4 presents a new approach to reduce the impact of the accumulative

errors in position estimation by means of online mosaicking. The Chapter describes

the method to build a mosaic given the image-to-image homographies. The mosaic is

used to create a consistent view of the environment of the UAV and hence, to detect

the drift in position estimation by using the mosaic as a resource. This technique,

presented in (Caballero et al., 2006) and used together with the position estimation

in (Merino et al., 2006b), is specially suitable for monitoring and surveillance tasks in
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which the UAV will repeatedly cover the same area. The Chapter shows experimental

results where the benefits with respect to the odometric approach are evident.

However, the static nature of the mosaic built with the approach of Chapter 4

makes impossible its improvement once it is built, even when new accurate informa-

tion is available. This issue is addressed in Chapter 5, and a new stochastic framework

for mosaic building is proposed. The Chapter shows how the covariance matrix of

the Homography can be used to establish stochastic relations among the images that

compose the mosaic in such a way that when an area is revisited by the UAV, the

mosaic can be updated by using the close-loop information. In addition, Chapter 5

proposes a new approach for homography computation based on a hierarchy of models

that allows to compute the Homography when the UAV flies at low/medium altitude.

Chapter 5 extends the work presented in (Caballero et al., 2007) and provides more

experimental results that validate the algorithm.

Chapters 4 and 5 consider that the UAV flies in such a way that a mosaic can

be computed and then used to refine the localization. The main constraints of this

method are the associated to the mosaic building process. In general, the accuracy of

the mosaic-based localization technique is small when the camera on the UAV does not

point perpendicularly to the scene. In addition, the UAV must fly at approximately

the same altitude in order to guarantee the mosaic coherence. Chapter 6 extends the

localization to a more general problem by applying SLAM (simultaneous localization

and mapping) techniques in order to provide localization capabilities when the mosaic

building process can be carried out.

Finally, Chapter 7 summarizes the contributions of the Thesis and describes future

work and research activities related to the UAV localization by means of monocular

vision.

1.4 Main contributions

This Thesis presents several contributions in the Field of unmanned aerial vehicles. It

includes the implementation of an odometry-based system for UAVs using monocular

imagery and natural landmarks. The method is robust and can be easily implemented
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to provide real-time UAV position estimation. The experimental results presented in

the Thesis show the feasibility of the approach and demonstrate that it can be used

as an effective backup of GPS.

The homography-based motion estimation has many applications to UAVs, par-

ticularly to helicopters. Frequent manoeuvres like hovering, take-off and landing,

could be safer if the autonomous system is aided with relative positioning based on

local perception, and it does not only rely on GPS.

The second contribution of this Thesis is the development of a mosaic-based lo-

calization for UAVs. The method allows to reduce the existing accumulated drift

in pure odometry-based localization algorithms. Similar approaches have been pro-

posed for underwater vehicles, but the work presented in this Thesis significantly

extends the state of the art by including full homography correction estimations, and

a novel stochastic method for on-line mosaic building that allows taking into account

improvements not only in the position estimation, but also in the mosaic building

procedure. Although the proposed mosaic building approach is applied on-line, the

technique can also be used off-line to build super-resolution mosaic images for envi-

ronment representation, geographical information systems (GIS) or other commercial

purposes.

Finally, some contributions to the SLAM (Simultaneous Localization And Map-

ping) problem are presented. The homography-based odometer is integrated into a

SLAM scheme as the main prediction hypothesis. In addition, a novel landmark ini-

tialization, based on the use of the normal vector to the scene plane, is described and

used to reduce the landmark uncertainty in depth. The complete approach allows

to construct a full vision-based monocular SLAM for UAVs. The implementation of

these techniques is scarce in the bibliography.

1.5 Thesis framework

This Thesis has been mainly developed in the Robotics, Vision and Control Research

Team at the University of Seville, in the framework of several national and inter-

national research projects related with UAVs. The support of these projects was
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fundamental, in the sense that they provided aerial robots where to test part of the

algorithms presented in this Thesis. They can be summarized as follows:

• COMETS project (IST-2001-34304). Funded by the European Commission.

This project is currently finished. The main objective was to design and im-

plement a distributed control system for cooperative detection and monitoring

using heterogeneous Unmanned Aerial Vehicles (UAVs). Particularly, two heli-

copters and an airship were included. In order to achieve this general objective,

the project designed and implemented a new control architecture, developed new

control techniques, and integrated distributed sensing techniques and real-time

image processing capabilities. COMETS demonstrated the proposed system

and architecture in forest fire applications.

• AEROSENS project (DPI-2005-02293). Funded by the Spanish Government.

The project aims at the development of a system based on the use of aerial

and ground robots and sensor networks for cooperative perception. The sys-

tem is based on the joint application of Aerial Robotics and the technology of

Wireless Sensor Networks. Several autonomous and teleoperated vehicles are

used including an helicopter and an airplane developed from the adaptation

for autonomous operation of a radio controlled comercial airplane. The heli-

copter manoeuvrability and hovering capability allow reaching locations with

constrained accessibility, collecting information and communicating with the

on-ground sensors.

• SADCOM project (TEP-2005-375). Funded by Junta de Andalućıa (Spain).

This project aims at the development of distributed and autonomous systems

technologies for the preservation of natural environments. The application of

wireless sensor networks and autonomous vehicle technologies for wildlife mon-

itoring and forest fire fighting. Thus, the project considers the use of wireless

sensor networks, ground robots and aerial robots for sensing environmental vari-

ables.
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• AWARE project (IST-2006-33579). Funded by the European Commission. The

general objective of the project is the design, development and experimenta-

tion of a platform providing the middleware and the functionalities required for

the cooperation among autonomous helicopters and a ground sensor-actuator

wireless network, including mobile nodes carried by people and vehicles. The

platform enables the operation in sites with difficult access and without com-

munication infrastructure. Then, the project considers the self-deploying of the

network by means of autonomous helicopters with the ability to transport and

deploy loads (communication equipment and nodes of the ground network).

In addition, the Thesis was partially developed in the Laboratoire d’Analyse et

d’Architecture des Systèmes in Toulouse (Francia) during a six months stay. Part of

the stochastic representations showed in the Thesis were developed during this stay.



Chapter 2

Robust homography estimation

As stated in Chapter 1, in this thesis the homography will be used as a basic tool for

estimating the motion that an UAV undergoes by using monocular image sequences.

Although the homography model only holds when the imaged scene is planar or

pseudo-planar, a very common situation when the UAV flies at high altitude, this

Chapter will propose methods to extend the applicability of the homography to non-

planar scenes in order to be able to perform motion estimation at medium or even

low UAV altitude.

The homography will model the motion of a set of interest points between two

images. This feature tracking is out of the scope of this thesis; and the existence of a

functionality able to extract and match image features will be assumed. Particularly,

the algorithm and implementation described in (Ollero et al., 2004) will be used.

Thus, this Chapter describes an algorithm to estimate the homography that relates

two images of the same pseudo-planar scene. The covariance matrix will be used as

a metric for measuring the accuracy of the estimation.

Firstly, the projective geometry fundamentals will be described in order to easily

understand the homography estimation process. Then, the homography and covari-

ance matrix estimation are detailed.

11



12 Robust homography estimation

2.1 Matrix representation and conventions

A set of conventions will be used for the matrix and vector representation all along

the Thesis document. This conventions help to better understand the equations:

• Matrix will be represented by capital bold letters such as M, H or Q.

• Vector will be represented by lower case bold letters such as v or x

• By default, any vector is a column vector.

• Any scalar variable will be represented by normal italic letters such as k or j.

2.2 Projective geometry overview

2.2.1 Definitions

A projective transformation can be defined as an invertible application of P2 in P2

that applies lines into lines. This transformation are usually called homography or

projectivity.

Some basic properties of the homography are the following:

• Any homography can be represented as a linear and invertible transformation

in homogeneous coordinates. Inversely, any transformation of this nature can

be considered as a homography.

• A homography between two planes is a linear transformation between three-

dimensional homogeneous vectors x̃, represented by the 3×3 H matrix such as

x̃′ = Hx̃.

• Given the homogeneous nature of the homography H, it can be multiplied by

an arbitrary constant k 6=0 and represent the same transformation. This means

that the matrix H is constrained by eight independent parameters and a scale

factor.

Depending on the kind of transformation, the projective transformations have

different properties. Here, a subset of important transformations are detailed.
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2.2.2 Isometry

Isometries are R2 plane transformations that preserve the Euclidean distance. An

isometry is represented by the following matrix:




x′

y′

1


 =




ε cos θ − sin θ tx

ε sin θ cos θ ty

0 0 1







x

y

1


 (2.1)

Where ε = ±1. If ε = 1 then the isometry preserves orientation and it is an Euclidean

transformation. If ε = −1, the isometry will invert the plane orientation.

The most important isometries are the Euclidean transformations. Thus, they

can be decomposed as:

x̃′ = HEx̃ =

[
R t

0T 1

]
x̃ (2.2)

Where R is a 2×2 rotation matrix (so RTR = RRT = I), t is a translation vector

composed by two elements and 0 is a null vector composed by two elements.

An Euclidean transformation between planes have three degrees of freedom, one

for the rotation and two for the translation. Given that each match provides two con-

straints in the transformation, only two matches are needed to estimate the Euclidean

transformation between two planes.

2.2.3 Similarity

A similarity is an Isometry joint to an isotropic scale. If the Isometry is an Euclidean

transformation, the Similarity can be decomposed as follows:




x′

y′

1


 =




s cos θ −s sin θ tx

s sin θ s cos θ ty

0 0 1







x

y

1


 (2.3)
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By rearranging the equation:

x̃′ = HSx̃ =

[
sR t

0T 1

]
x̃ (2.4)

Where s represents the scale factor.

Similarities preserve the shape of the transformed plane. They have four degrees

of freedom and hence can be computed by using two matches between planes.

2.2.4 Affinity

An Affine transformation or Affinity is defined as a non-singular linear transformation

followed by a translation. The matrix representation of the Affinity is the following:




x′

y′

1


 =




a11 a12 tx

a21 a22 ty

0 0 1







x

y

1


 (2.5)

By rearranging the equation:

x̃′ = HAx̃ =

[
A t

0T 1

]
x̃ (2.6)

Where A a 2×2 non-singular matrix.

An Affine transformation in the plane has six degrees of freedom due to the four

elements of the matrix A. Thus, computing the Affinity that relates two planes

requires at least three matches. These two new degrees of freedom allow to introduce

plane distortions that preserve parallelism (see Fig. 2.1)
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Figure 2.1: Typical Affine transformation

2.2.5 Projectivity

Projectivities generalize projective transformations. They can be expressed in the

following matrix notation:

x̃′ = HPx̃ =

[
A t

vT v

]
x̃

v = [v1, v2]
T

(2.7)

The matrix has nine elements but only eight are independent. Although it is usual

to fix the scale factor as v = 1, it is not always correct because the scale factor could

be zero for a valid homography. The Projectivity can be calculated if four matches

are computed between the planes.

It can be seen how the main different between Projectivity and Affinity is the

vector v = [v1, v2]
T . In the Affinity this vector is fixed and equal to [0, 0]T but in the

Projectivity is determines the non-linear behavior in the non-homogeneous space.

The more important invariant in projectivities is the cross relation among four

aligned points that can be defined as:

RC(x1,x2,x3,x4) =
|x1 x2||x3 x4|
|x1 x3||x2 x4| (2.8)
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A Projectivity can be decomposed in several transformations (Isometry, Affinity

and Projectivity respectively) as follows:

H = HSHAHP =

[
sR t

0T 1

][
sK t

0T 1

][
sI t

vT v

]
=

[
sA t

vT v

]
(2.9)

Where A is a non-singular matrix defined by A = sRK + tvT and K is an upper-

triangular matrix normalized such as det(K) = 1. This decomposition is valid if v 6=0

and unique if s is positive.

2.3 Homography estimation

Given a set of matches between two images, this section will deal with the estimation

of the homography that better fits their apparent motion. However, the features could

experiment variations in theirs position caused not only by the camera motion. For

instance, features associated to mobile objects or areas where the planar assumption

does not hold.

Thus, the first step in the homography estimation will be to filter the set of matches

in order to detect and eliminate erroneous matches. In this sense, algorithms like Least

Median of Squares (LMedS) (Rousseeuw and Leroy, 1987) or Random Sample Con-

sensus (RANSAC) (Fischler and Bolles, 1981) have demonstrated very good results

in model fitting. Both are randomized algorithms and have similar performance but,

for the particular problem of homography fitting, LMedS has achieved slightly better

results.

A M-Estimator (Zhang, 1995) will be applied over the set of filtered data to finally

estimate the homography matrix. This second step allows precise estimation while

detecting potentially erroneous or bad constrained matches at the same time.

2.3.1 Outlier rejection based on LMedS

Given a data set of n elements, the objective is to estimate the model that best fit to

them. This model will be a projectivity or homography, that is, a 3×3 matrix defined
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up to a scale factor. For simplicity and without loss of generality, the scale factor will

be fixed such us h33 = 1, then:




h11 h12 h13

h21 h22 h23

h31 h32 1


 (2.10)

Given a data set ξ composed by n elements and a model to fit ζ, any element

of ξ that does not fit the proposed model ζ will be named outlier. In the case that

ξ is composed by n matches between two images and the model is the homography,

outliers can be identified as:

• The match is erroneous, it means, the tracking algorithm makes an error and

generates a false match. This kind of matches are really important because may

increase the mean error of the fitted model if they are included in the estimation

• The match is correct but it doesn’t fit the model. The homography assumes

that the motion between two images can be modeled as a plane to plane trans-

formation. This assumption will not hold when the scene is not planar and when

there are mobile objects. These matches might introduce serious distortions in

the estimated model, so it is important to remove them from the data set.

The Least Median of Squares method estimates the model by solving the following

non-linear minimization problem:

min med
i

(r2
i ) (2.11)

Thus, it will compute the minimum median of the squared residues applied to the

whole data set. The value of the minimum median can be computed by searching

the best homography estimation in the data set, however the computational cost of

evaluating all possible data combinations could be extremely high. In this cases,

randomized methods usually provide a good compromise between accuracy and com-

putational cost.



18 Robust homography estimation

In (Zhang, 1995) a randomized method is proposed to solve the minimization

process. Given a set of n matches ci and taking into account (2.11), the LMedS

algorithm can be described as follows:

1. First, a Montecarlo-like algorithm is used to randomly select m subsets of p

elements, where m will depend on the outlier detection likelihood and p is the

smallest subset to compute the model.

2. For each of the m subsets, indexed by j, the best fit homography matrix Hj is

computed

3. For each Hj, the median of the squared residues, Mj, with respect the matches

is computed.

Mj = med
i=1...n

(r2
i (Hj, ci)) (2.12)

Several techniques can be used to compute the value of ri. In this case, the

Euclidean distance between the computed position with the homography Hj

and the match ci will be used.

4. Finally, the smallest Mj is chosen from the data set. This minimum will be

called M

M = min
j=1...m

Mj (2.13)

The number of subsets, m, has to be carefully determined in order to ensure low

computation load and good model estimation. Thus, assuming that there exists a

percentage E of outliers in the set of matches, the likelihood of having at least one of

the m subsets without outliers is:

Pb = 1− (1− (1− E)p)m (2.14)

The value of Pb must be close to one, so:

m =
1− Pb

1− (1− E)p
(2.15)
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Figure 2.2: Bucketing example

Then, this equation allows to compute the number m of subsets to detect a percentage

E of outliers with probability Pb in a data set of n elements.

As pointed out in (Rousseeuw and Leroy, 1987), LMedS has a poor efficiency in

presence of Gaussian noise. The efficiency of a method is defined as the ratio between

the lowest achievable variance for the estimated parameters and the actual variance

provided by the given method. To compensate for this deficiency, a weighted least

squares procedure is carried out. The robust standard deviation estimate is given by:

σ = 1.4826

(
1 +

5

n− p

)√
M (2.16)

The value of σ can be used to define a threshold: every datum for which the residue

r2
i is greater than 2.5σ2 is considered as outlier, and a right datum otherwise.

LMedS usually presents problems due to local minima fitting when the data set

is sparse. To avoid this, in (Zhang, 1995) a bucketing approach is used to spatially

divide the data set as shown in Fig. 2.2. Each bucket is associated to the set of

data that falls into and empty buckets are excluded. Finally, p buckets are randomly

selected; each of them will provide one of the p matches, randomly chosen among

those associated to it. It is clear that the number of buckets is a key issue that

depends on the model to be fitted
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Implementation

The implementation is slightly different than the above algorithm due to the inclusion

of some heuristic rules in the outlier rejection policy. Thus, the LMedS algorithm

won’t be applied to the overall data set, but to a specific subset. The improvement

consists of remembering through time the outlier condition, that is, if a match was

considered as an outlier in the last homography computation then it will probably be

an outlier in the present computation. In addition, new matches won’t be considered

in LMedS because there is no available information to know if the match is reliable.

Therefore, matches will be classified in three possible categories:

• Erroneous matches. The matches that the feature tracking system marks as

erroneous.

• Suitable matches for LMedS. They are features correctly matched that were not

considered as outliers in previous computations.

• Suitable matches for M-Estimator. These matches are correct but they were

outliers in the previous computation, or they are new matches.

The classification is depicted in Fig. 2.3, where the whole homography computation

processing is summarized. It can be seen how some matches are used for the compu-

tation of LMedS, others are directly included in the outlier rejection process and the

rest are classified as non-valid matches.

The model to be fitted in the LMedS procedure will be a full homography matrix,

so four matches will be necessary at least to allow the computation, and p = 4

in the the LMedS implementation. To define the number of buckets, the following

considerations have to be taken into account:

• Collinearity: If three or more of the four matches are collinear, then the system

of equations is ill-posed and can’t be solved.

• Matches very close together: This situation generates a correct homography

computation, but only the local transformation is described by the resultant

homography. The residue will be small for matches close to the ones used to
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Figure 2.3: Homography computation diagram

Figure 2.4: Bucketing adopted for the LMedS implementation

compute the homography, but quite big for spatially far away matches. As a

result, spatially far matches can be erroneously considered as outliers.

The solution adopted for the image bucketing is illustrated in Fig. 2.4. The image

has been divided into eight areas of the same size, because matches must be as sparse

as possible for a good homography estimation. This configuration allows to select

eight consecutive matches from highly different image areas and, in general, avoids

the selection of p matches close to each other. The criteria for bucket selection will

be a random uniform variable from one to eight, and for match selection inside each

bucket a random uniform variable from one to the number of matches in the bucket.

This procedure guarantees random match selection.
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2.3.2 Robust estimation based on M-Estimator

The M-Estimator (“M” for“maximum likelihood-type”) method (Huber, 1981) is

nowadays widely used for robust model fitting. The standard least-squares method

tries to minimize
∑

i r
2
i (where ri is the residual of the ith datum), which is unstable

if there are outliers present in the data. The effect of outlaying data in the mini-

mization process is so strong that the parameters thus estimated are distorted. The

M-Estimator tries to reduce this effect by replacing the squared residual r2
i by another

function of the residuals:

min
∑

i

ρ(ri) (2.17)

Where ρ(x) is a symmetric, positive-definite function with a unique minimum at

zero, and is chosen to be less increasing than square. Instead of solving directly this

problem, an iterated reweighted least-squares is implemented.

Thus, let p = [p1, ..., pn]T be the parameter vector to be estimated. The M-

Estimator of p based on the function ρ(ri) is the vector p which is the solution of the

following set of m equations:

∑
i

ψ(ri)
∂ri

∂pj

= 0, for j = 1, ..., n (2.18)

Where the derivative ψ(x) = dρ(x)/dx is called the influence function. If the weight

function is defined as:

w(x) =
ψ(x)

x
(2.19)

Then (2.18) becomes:

∑
i

w(ri)ri
∂ri

∂pj

= 0, for j = 1, ..., n (2.20)

This is exactly the system of equations that is obtained if the following iterated

reweighted least-squares problem is solved:

min
∑

i

w(rk−1
i )r2

i (2.21)
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type ρ(x) ψ(x) w(x)
L1 |x| sgn(x) 1

|x|
L2

x2

2
x 1

L1 − L2 2(
√

1 + x2/2− 1) x√
1+x2/2

1√
1+x2/2

Lp
|x|v
v

sgn(x)|x|v−1 |x|v−2

Fair c2
(
|x|
c
− log

(
1 + |x|

c

))
x

1+|x|/c
1

1+|x|/c

Cauchy c2

2
log (1 + (x/c)2) x

1+(x/c)2
1

1+(x/c)2

Table 2.1: Example of weight functions for the M-Estimator

Where the superscript k indicates the iteration number. The weight w(rk−1
i ) should

be recomputed after each iteration in order to be used in the next iteration. Several

weight functions could be used depending on the data set and the model to be fitted,

Table 2.1 summarizes some usual functions.

It is important to remark that the M-Estimator is not specially suitable for solving

systems of equations with local minimums. This problem is easily solved by starting

the iterations with a solution sufficiently close the global minima. The actual imple-

mentation of the homography computation pre-filters the data set and provides an

initial solution by means of the LMedS algorithm, so it is expected a good behavior

in the M-Estimator.

Implementation

The following equation defines the selected weighting function for the M-Estimator:

ω(x) =
1

1 + |x|/c (2.22)

The growth of the error x for the ith equation implies a reduction in the weight w(x).

This weight multiplies the ith equation of the system, the greater the error is, the

smaller its influence on the complete system of equations.

Given the iterative nature of the algorithm, it is necessary to define an end-

condition. The condition selected for this implementation is based not only on the
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evolution of the estimated parameters but also on the evolution of the weights. Thus,

the two following conditions must be met:

• The sum of the absolute variation of the estimated homography parameters

with respect to the previous computation is lower than 10−3.

Given the homography computed in the current iteration Hj and the homog-

raphy computed in the previous iteration Hj−1 whose elements will be denoted

as hi
j and hi

j−1 from i = 1 to i = 8 (remember h9
j = h9

j−1 = 1), the following

condition holds:

kh =
8∑

i=1

abs(hi
j − hi

j+1) < 10−3 (2.23)

• The sum of the absolute variation of the computed weights with respect to the

computed in the previous iteration is lower than 10−2.

Given a system of n equation, wi
j is defined as the weight associated to equation

i at iteration j. The following condition holds:

kw =
n∑

i=1

abs(wi
j − wi

j+1) < 10−2 (2.24)

In addition, it could be possible that the data set generates an inconsistent system of

equations. In such case the above end-conditions couldn’t be satisfied and the algo-

rithm would never stop iterating. This problem is addressed by including a maximum

number of iterations that, for this implementation, has been fixed to fifteen.

2.4 Homographies and uncertainties

Once the homography is computed, it is necessary to obtain a measure of the estima-

tion accuracy. In this approach, the covariance matrix is used for this purpose. By

rearranging the homography matrix into the following vector:

h =
[
h11 h11 . . . h33

]T

(2.25)
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The covariance is represented by a 9 × 9 matrix with the variance of these variables

in the diagonal and the cross-variances in the upper and lower triangles.

In (Hartley and Zisserman, 2004) it is proposed a method to compute the covari-

ance matrix of this estimation. Thus, given a set of n matches:

Sm = {{m1,m
′
1}, {m2,m

′
2}, ...{mn,m

′
n}}

mi =

[
xi

yi

]
,m′

i =

[
x′i
y′i

]
(2.26)

the method can be summarized in the following 3 steps:

1. Obtain the Jacobian J of the transformation from m to m′ with respect to the

9 parameters of the homography h, evaluated at the estimated homography

by the previous procedure. This Jacobian is a 2n × 9 matrix derived from the

homographic relation between the n matches:

x′i = (h00xi + h01yi + h02)/(h20xi + h21yi + h22)

y′i = (h10xi + h11yi + h12)/(h20xi + h21yi + h22)
(2.27)

2. Compute the covariance of the error for each match used to compute the homog-

raphy (this is a 2x2 matrix denoted by Cmi
). Assuming that the errors in the

matches are uncorrelated, the diagonal matrix is created with the contribution

of each match:

Cm = diag(Cm1 ,Cm2 , . . . ,Cmn) (2.28)

3. Once J and Cm are known, compute the homography covariance as:

Ch = (JTCm
−1J)−1 (2.29)

The unknown parameters in this algorithm are the error covariance for each match

(Cmi
).

A rather straightforward approach could be to calculate the variance of the residue

between m′
i and m̂′

i = Hmi (the estimation of the match by means of the computed
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Figure 2.5: Image bucketing carried out to improve the covariance estimation.

homography) and use it as error covariance for all the matches, so it is assumed that

the error is approximately the same in the whole image. This method works well

when the estimated homography is accurate, but usually fails when the estimation is

poor, because the error may not be uniform.

To improve the calculation of the covariances, a bucketing technique is proposed.

The key idea is to divide the image in several sections (see figure 2.5) and compute

the variance of the residue separately in each area. The bucketing pattern takes into

account the properties of the homographic transformations. In this way, each Cmi
is

the variance of the residue computed in the area to which the match i belongs.

2.5 Conclusions

The Chapter summarizes the Projective Geometry theory and describes a method to

compute the homography matrix from a set of matches in a robust manner. Several

practical issues are considered in this algorithm. The homography will be used in

next Chapters as basic tool for real camera motion computation.

Although no experimental results are explicitly shown in this Chapter, this method

has been used in all experiments carried out in the next four chapters and it has

been successfully tested during the COMETS project (Ollero et al., 2005) for on-line

compensation of the induced motion in the images by UAVs vibrations (Merino et al.,

2006a).



Chapter 3

Homography-based odometry for

UAVs

This chapter proposes a monocular visual odometer to act as a backup system when

the accuracy of GPS is reduced to critical levels. The technique makes use of the

homography computed between two consecutive images to estimate the real motion

that the camera undergoes and, hence, the UAV. The technique avoids explicit 3D

reconstruction, which allows to reduce the computational load and UAV payload given

the baseline limitations.

The chapter is structured as follows. Firstly, the Chapter is introduced. Then,

the geometry associated to multiple views of the same plane is detailed. Later, the

fundamentals of the relative motion computation based on homographies and the

algorithm is described. Finally some experimental results and discussions are shown.

3.1 Introduction

Related work on visual odometry for UAVs has been previously described in Chap-

ter 1. Summarizing, monocular vision has been barely used for odometry by the

research community. Most approaches rely on stereo vision for relative motion com-

putation such as (Amidi et al., 1998), (Byrne et al., 2006) or (Lacroix et al., 2002),

27
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while monocular vision is actively used for landing or take-off in planar targets as in

(Shakernia et al., 2002), (Saripalli et al., 2003) or (Saripalli and Sukhatme, 2003).

The technique that will be presented in this chapter is based in monocular vision

to avoid the restrictions that the base-line of a stereo vision system imposes when the

UAV flies at medium/hight altitude.

No beacons or known landmarks will be used to localize the robot, only the image

to image homography and the distance to the ground will be used to extract the real

motion that the camera undergoes.

The homography will be computed from a set of matches between both images.

The general purpose feature tracking algorithm described in (Ollero et al., 2004)

provides these matches. Then, it is assumed that the scene has sufficient texture to

allow tracking.

3.2 Geometry of two views of the same plane

Consider the position and orientation of two cameras in the world coordinate frame

as shown in Fig. 3.1. Given the two projections m1 ∈ R2 and m2 ∈ R2 of a fixed

point P ∈ R3 belonging to a plane Π, this section will detail the geometric relations

induced in the two views of the same plane Π.

Without loss of generality, it will be considered that the world coordinate frame is

fixed to the camera one; that is, the translation with respect the origin is t1 = [0, 0, 0]T

and the orientation is defined by the unit rotation matrix R1 = I. Thus, if the

Euclidean distance from the camera one to the plane Π is d1 and the normal plane

is defined by n1:

Π : d1 − nT
1




x

y

z


 (3.1)

If the calibration matrix A1 of the camera one is known, m1 can be back-projected

into a straight line that crosses the origin with the direction v1, given by:
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Figure 3.1: Geometry of two views of the same plane

v1 = A−1
1 m̃1 (3.2)

Where m̃1 = [λvT
1 , λ]T denotes the homogeneous representation of v1 when λ 6= 0.

Then, knowing that P is the intersection of the back-projection of m1 and Π:

d1 − nT
1 A−1

1 m̃1 = 0 (3.3)

Rearranging the equation:

A−1
1 m̃1 = d1n1 (3.4)

Thus, if the relative position and orientation of the two cameras, and both camera

calibrations A1 and A2 are known, it is possible to relate the back-projection of m1

and m2 by:

v2 = R12(v1 − t2) (3.5)
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Where R12 is the rotation matrix that transforms the orientation of camera one into

the orientation of camera two and t2 is the translation of camera two with respect

to camera one expressed in the coordinate frame of camera one (see Fig. 3.1). By

rearranging terms we get:

v2 = R12

(
I− t2v

T
1

|v1|2
)

v1 (3.6)

Taking into account equation (3.4) and replacing v1 and v2 by their value:

m̃2 = A2R12

(
I− t2n

T
1

d1

)
A−1

1 m̃1 (3.7)

Therefore, it is possible to link the projection of set of points {P0,P1, ...Pn} in

two different cameras if the set lays in a plane. In fact, for this particular case, the

transformation between the features m1 and m2 is a plane-to-plane homography, so:

m̃2 = H12m̃1 (3.8)

Thus, if the cameras are viewing the same planar scene and we are able to compute the

homography that relates the two views by using the techniques described in Chapter

2, it could be possible to extract the rotation, normal and translation between the

cameras:

H12 = A2R12

(
I− t2n

T
1

d1

)
A−1

1 (3.9)

However, given the bearing only nature of the camera, the translation will be

defined up to the scale factor 1/d1. To completely recover the motion it will be

necessary to measure the distance from camera one to plane Π. This information can

be easily recovered by means of different methods such as range sensor, barometric

sensor or even the GPS last reliable altitude measure.

Finally, notice that the problem can be reformulated as a single camera whose

position and orientation change throughout time. In this case the calibration matrix

is the same for both views, so A1 = A2. Thus, given a set of matches between two
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sequenced images and a planar scene, the induced homography combined with a range

sensor can be used to compute the real motion that the camera undergoes.

3.3 Rotation, translation and plane normal com-

putation

This section will deal with the computation of the rotation, translation and plane

normal included in the homography that relates two views of the same planar scene.

A solution based on the singular value decomposition (SVN) of the homography will

be used.

3.3.1 Homography decomposition

Consider a single camera that moves throughout time, the homography H12 that re-

lates the first and the second view of the same planar scene and the camera calibration

matrix A. According to equation (3.9), the uncalibrated homography is defined as:

Hu
12 = A−1H12A = R12

(
I− t2n

T
1

d1

)
(3.10)

Hu
12 can be decomposed into singular values and then be rewritten as Hu

12 =

UDVT , where U and V are 3×3 rotation matrices and D = diag(λ1, λ2, λ3) a diag-

onal matrix whose elements satisfy that λ2
1, λ

2
2, λ

2
3 are the eigenvalues of Hu

12(H
u
12)

T .

The columns of U and V will be denoted as u1,u2,u3 and v1,v2,v3 respectively.

Once U, V and D have been conveniently ordered such us λ1 > λ2 > λ3, the

values of the diagonal matrix D can be used to distinguish three types of movements

carried out by the camera (Tsai et al., 1982):

• The three singular values of Hu
12 are equal, so λ1 = λ2 = λ3. It occurs when the

motion consist of rotation around an axis through the origin only, i.e., t2 = 0.

The rotation matrix is unique and can be computed as:

R2 =
1

λ1

Hu
12 (3.11)
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In this case there is not sufficient information to estimate the plane normal n1.

• The multiplicity of the singular values of Hu
12 is two, for example λ1 = λ2 6= λ3.

Then, the solution for motion and geometrical parameters is unique up to a

common scale factor for the translation parameters:

R2 = 1
λ1

H−
(

λ3

λ1
− s

)
u3v

T
3

t2 = 1
w

(
λ3

λ1
− s

)
u3

n1 = wv3

(3.12)

Where s = det(U)det(V) and w is a scale factor.

• The three singular values of Hu
12 are different, i.e., λ1 6= λ2 6= λ3. In this case

two possible solutions for rotation, translation and plane normal exist and can

be computed as:

R2 = U




α 0 β

0 1 0

−sβ 0 sα


VT

t2 = 1
w

(
−βu1 +

(
λ3

λ2
− sα

)
u3

)

n1 = w(δv1 + v3)

(3.13)

Where:

δ = ±
√

λ2
1 − λ2

2

λ2
2 − λ2

3

α =
λ1 + sλ3δ

2

λ2(1 + δ2)

β = ±
√

1− α2

s = det(U)det(V)

Each solution must accomplish that sgn(β) = −sgn(δ).
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The presence on noise in both feature tracking and homography estimation always

leads to different singular values for Hu
12 and the third of the previous cases becomes

the dominant in real conditions. For the third case, a robust algorithm is presented

in (Triggs, 1998). This method has been implemented and tested, and the results will

be shown in Section 3.4.

However, two possible solutions {R1
2, t

1
2,n

1
1} and {R2

2, t
2
2,n

2
1} will be obtained, so

an additional step will be needed in order to identify the correct solution. For this

purpose the next section proposes a method based on the uniqueness of the plane

normal.

3.3.2 Correct solution disambiguation

In (Shakernia et al., 2002) a method to compute the correct solution based on the

uniqueness of the normal n is proposed; that is, the variation of the normal plane

from a correct solution to the next one should be smooth given that the plane will

be approximately the same when images are captured at a sufficient high rate. Thus,

given the set of possible normals:

Sn = {n1
1,n

2
1,n

1
2,n

2
2,n

1
3,n

2
3, ...} (3.14)

where the superindex denotes the two possible normal solutions and the subindex

is the image number sequence. This method defines an empirical threshold ε, and

considers as the correct solution the normal n1
1 or n2

1 that allows to find a sequence

of normals that meets:

‖n1,2
1 − n1,2

i ‖ ≤ ε ∀i > 1 (3.15)

where ε must be carefully tuned to guarantee a proper algorithm operation. If the

value of ε is too high then both solutions can meet the constraint and it is not possible

to detect the correct one. On the other hand, if ε is too low then no solution would

be valid.
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Algorithm 1 Unique normal computation

1: for i = 1 to 2 do
2: Compute the distances among ni

1 and the rest of normals of Sn.
3: εi = 0.5
4: solution = check uniqueness(εi,Sn)
5: while solution 6= UNIQUE do
6: if solution = MULTIPLE then
7: εi = εi − 0.1
8: else
9: εi = εi + 0.1

10: end if
11: solution = check uniqueness(εi,Sn)
12: end while
13: end for

In the following, a more reliable method to detect the correct solution is proposed.

If n1
1 and n2

1 were correct, there would be two set of solutions, Sn1 and Sn2 . The

uniqueness of the normal leads to the following constraints:

‖n1
1 − ni

j‖ ≤ ε1 ∀ni
j ∈ Sn1 (3.16)

‖n2
1 − ni

j‖ ≤ ε2 ∀ni
j ∈ Sn2 (3.17)

where ε1 and ε2 are the minimal values that guarantee an unique solution for equa-

tions (3.16) and (3.17) respectively. The pairs {Sn1 , ε1} and {Sn2 , ε2} are computed

separately by means of the Algorithm 1. Then, the correct solution is chosen between

both options as the one that achieves the minimum ε.

3.3.3 An estimation of the uncertainties

This section deals with the computation of the uncertainties committed to the esti-

mated rotation, translation and plane normal given the covariance matrix associated

to the homography (computed using the method detailed in section 2.4).

The proposed method will compute the Jacobian of the complete process to obtain

a first order approximation of the rotation, translation and plane normal covariance
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matrices. Particularly, once the uncalibrated homography has been decomposed into

its singular values, the previous section showed how the computation of the cam-

era motion is simple, so this section will focus in the computation of the Jacobian

associated to the singular value decomposition process.

Thus, given the uncalibrated homography Hu
12, it can be decomposed as follows:

Hu
12 =




h00 h01 h02

h10 h11 h12

h20 h21 h22


 = UDVT =

2∑
i=0

(
λiuiv

T
i

)
(3.18)

The goal is to compute ∂U
∂hij

, ∂V
∂hij

and ∂D
∂hij

for all the hij of the matrix Hu
12.

Taking the derivative of equation (3.18) with respect to hij yields the following

expression:

∂Hu
12

∂hij

=
∂U

∂hij

DVT + U
∂D

∂hij

VT + UD
∂VT

∂hij

(3.19)

Clearly, ∀(k, l) 6= (i, j), ∂hkl

∂hij
= 0 while

∂hij

∂hij
= 1. Since U is an orthogonal matrix:

UTU = I ⇒ ∂UT

∂hij

U + UT ∂U

∂hij

= Ωij
U

T
+ Ωij

U = 0 (3.20)

Where Ωij
U is defined by

Ωij
U = UT ∂U

∂hij

(3.21)

It is clear that Ωij
U is an antisymmetric matrix.

Similarly, an antisymmetric matrix Ωij
V can be defined for V as:

Ωij
V =

∂VT

∂hij

V (3.22)

By multiplying (3.19) by UT and V from left and right respectively, and using

(3.21) and (3.22), the following relation is obtained:

UT ∂Hu
12

∂hij

V = Ωij
UD +

∂D

∂hij

+ DΩij
V (3.23)
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Since Ωij
U and Ωij

V are antisymmetric matrices, all their diagonal elements are equal

to zero. Recalling that D is a diagonal matrix, it is easy to see that the diagonal

elements of Ωij
UD and DΩij

V are also zero. Thus:

∂λk

∂hij

= uikvjk (3.24)

Taking into account the antisymmetric property, the elements of the matrices Ωij
U and

Ωij
V can be computed by solving a set of 2x2 linear systems, which are derived from

the off-diagonal elements of the matrices in (3.23):

dlΩ
ij
U kl + dkΩ

ij
V kl = uikvjl

dkΩ
ij
U kl + dlΩ

ij
V kl = −uilvjk

}
(3.25)

Where the index ranges are k = 0...2 and l = i + 1...2. Note that, since the dk are

positive numbers, this system has a unique solution provided that dk 6= dl. Assuming

for the moment that ∀(k, l), dk 6= dl, the 3 parameters defining the non-zero elements

of Ωij
U and Ωij

V can be easily recovered by solving the 3 corresponding 2x2 linear

systems.

Once Ωij
U and Ωij

V have been computed, the partial derivatives are obtained as

follows:

∂U

∂hij

= UΩij
U (3.26)

∂V

∂hij

= −VΩij
V (3.27)

Taking into account the (3.24), (3.26) and (3.27) and the covariance matrix corre-

sponding to the homography it is possible to compute the covariance matrix associated

to U, V and D. Further details and demonstrations can be found in (Papadopoulo

and Lourakis, 2000).

Finally, the Jacobians of the linear algebra used to extract the rotation, translation

and normal are easily computed and combined with these covariances to compute the

final covariances matrix.
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(a) (b)

Figure 3.2: HERO helicopter.

3.4 Experimental results

This section will show some experimental results in which the homography-based

visual odometer is applied to monocular image sequences gathered by a real UAV,

the HERO helicopter. The results presented here have been validated using the

navigation sensors on board the UAV.

The visual odometer algorithm (feature tracking, robust homography computation

and homography decomposition) has been programmed in C++ code and run in a

Intel Centrino Duo Laptop at 10Hz with 320x240 images.

Next paragraphs will introduce the HERO helicopter and the experiments carried

out. Then, two experiments will be detailed, a short image sequence and a longer one

with a sharp movement.

3.4.1 The HERO helicopter

HERO is an aerial robotic platform designed for research on UAV control, navigation

and perception, see Fig. 3.2. It has been developed by the “Robotics, Vision and

Control Research Group” at the University of Seville during the CROMAT project,

funded by the Spanish Government.

HERO is equipped with accurate sensors to measure position and orientation,

cameras and a PC-104 to allow processing on board. The sensors and processing is
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Figure 3.3: Hardware and sensor architecture in HERO helicopter

distributed as shown in Fig. 3.3. Basically, a DSP is used as data acquisition system

and low level controller (position and orientation), the PC-104 runs the rest of tasks

such us perception, communications or navigation. All the data gathered by the DSP

are exported to the PC-104 through a serial line and published for the rest of the

processes.

All the sensor data have been logged together with the images in order to avoid

inconsistency among different sensor data. The position is estimated with a Novatel

DGPS with 2cm accuracy and updated at 5Hz while the IMU provide orientation

at 50Hz with accuracy os 0.2 degrees. In the experiments show in next sections, the

camera was oriented forty-five degrees with respect to the helicopter horizontal.

3.4.2 A short experiment

In this experiment the UAV softly moved from the starting point to the right and

then went back approximately to the initial position. It is a sequence composed by

250 images, or approximately 25 seconds of flight. The estimated position by using

the visual odometer is shown in Fig. 3.4. The figure presents the DGPS position

estimation and the errors committed by the odometer. It can be seen that the errors

in X, Y and Z axis are shorter than 2 meters. In addition, the estimated standard

deviation is coherent in three axis.
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It is important to notice that the odometry is computed taking into account the

estimated translation and rotation so it accumulates both errors.

Figure 3.5 shows the evolution of the estimated orientation by using the odometer

and the helicopter IMU. The orientation has been represented in quaternions such as

q = [qx, qy, qz, qw]T with norm one, where v = [qx, qy, qz]
T is the rotation vector and

qw is the rotation angle (see Appendix A). It can be seen in Fig. 3.5 that the error in

the orientation estimation are small and the standard deviation is overall consistent

except for qz where is slightly subestimated.

3.4.3 A longer experiment

The experiment were performed in the same conditions as the above one. The se-

quence is composed by 650 images, or approximately 65 seconds of flight. Here, a

sharp movement is made around the image samples 400 as shown in Fig. 3.7(c) and

Fig. 3.7(e) due to an error in the UAV control loop.

The estimated position by using the visual odometer is shown in Fig. 3.6. The fig-

ure presents the DGPS position estimation and the errors associated to the odometer.

It can be seen how the errors grow with the image samples. The errors corresponding

to each estimation is added to the previous ones and make the position estimation

diverge through time. It can be seen how the estimation of the standard deviation is

coherent with the evolution of the error.

Figure 3.7 shows the evolution of the estimated orientation by using the odometer

and the helicopter IMU expressed in quaternions. It can be seen in Fig. 3.7 how

the errors in the estimated orientation are small but, again, the estimated standard

deviation for qz is subestimated. Possibly, the linear approximation in the Jacobian

is inaccurate. To avoid this problem a second order approximation for the covariance

matrix could be implemented using the iterative method proposed in (Julier and

Uhlmann, 1997).
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3.5 Conclusions

This chapter presents a method for UAV position estimation based on monocular

image processing which can be considered as a visual odometer. The method is robust

and could be easily implemented to provide real-time position information of the UAV.

The experimental results show the feasibility of the approach and demonstrate that

it can be used as an effective backup of GPS.

However, the accumulative error intrinsic to the odometry estimation make the

position diverge through time. If a consistent view of the environment could be built,

the odometry error could be compensated and thus the applicability of the technique

would increase. Next Chapter will deal with this issue.
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Figure 3.4: Left: Position estimation using vision based technique (green dashed line)
and DGPS estimation (red solid line). Right: Error of the vision based odometry
(green solid line) and estimated standard deviation (blue dashed line).
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Figure 3.5: Left: Estimated orientation by using vision based technique (green dashed
line) and IMU estimation (red solid line). The orientation is represented in quater-
nion. Right: Errors in the vision based estimation (green solid line) and estimated
standard deviation (blue dashed line).
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Figure 3.6: Left: Position estimation using vision based technique (green dashed line)
and DGPS estimation (red solid line). Right: Error of the vision based odometry
(green solid line) and estimated standard deviation (blue dashed line).
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Figure 3.7: Left: Estimated orientation by using vision based technique (green dashed
line) and IMU estimation (red solid line). The orientation is represented in quater-
nion. Right: Errors in the vision based estimation (green solid line) and estimated
standard deviation (blue dashed line).



Chapter 4

UAV localization based on online

mosaicking

It has been shown how the odometry based on homographies could be a good estima-

tion of the motion that a UAV undergoes when it flies at medium/high altitude, but

accumulative errors in the estimation can make the position diverge. This Chapter

proposes a method based on online-built mosaics to correct the drift associated to

the homography based motion estimation algorithm.

Mosaics allow using not only the current image but also previously recorded infor-

mation for localization. A mosaic can be built from monocular sequences of images

gathered by the UAV by using the homographic relation induced by the planar ter-

rain. It will store all the information gathered by the camera and will define the

mapping relationship between images and the planar ground. Thus, when a previ-

ously visited part of the scene falls into the field of view of the vehicle, the image

could be matched with the mosaic to detect and decrease the accumulated drift.

The Chapter is organized as follows: Section 4.1 presents related works and an

overview of the technique for online mosaicking. Sections 4.2, 4.3 and 4.4 describe the

technique used for mosaic building. Finally, Section 4.5 applies the mosaic to refine

the motion estimation algorithm described in Chapter 3 and shows some experimental

results.

45
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4.1 Introduction

A mosaic can be defined as an artificial picture of a scene. This picture is composed

by an ordered set of images of smaller size than the mosaic. The images can be

significantly rotated and translated with respect to the reference frame, in this case

the first image.

Mosaics are built on top of tools that allow to compute the relative displacement

among all the images and then properly locate the images to create the whole picture.

In general, the process can be divided in three steps:

Local and global alignment This step computes the apparent motion between the

current image and the previous one. This motion is modeled and then composed

with the previous ones in order to align the current image to the reference frame.

Global alignment error reduction The second step is carried out in order to de-

crease the positioning error of the images inside the mosaic. While the first step

computes the relative motion without any consideration about the positioning

in the mosaic or previous error in the computation of the relative motion, this

stage tries to detect inconsistency between the position estimated using the

composition of the relative motions and the position of the image in the mo-

saic built until now. If an inconsistence is detected, it will be modeled and

compensated.

Mosaic updating Finally, this step integrates the images into the mosaic.

Some methods have been proposed for computing the relative displacement among

images by using inertial sensors like IMU and GPS such as the techniques presented

in (Schultz et al., 2002; Rzhanov et al., 2001). These methods usually introduce small

errors in the global alignment of the images but need image processing for a good

local alignment. Although these techniques are robust, there exist a growing interest

in computing these relations only from image processing. This way, the estimated

relations among the images of the mosaic are independent of the UAV inertial sensors

and could be later used for sensor reliability or to refine the localization.
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The main drawback of the image processing-based mosaics is the accumulated

error introduced in the global alignment of the images. Recently, new iterative meth-

ods have been used to minimize these errors via topology inference, like (Hsu et al.,

2002; Shum and Szeliski, 1998). A topological network is built with the images and

then used to reduce the errors in the alignment among all the images in a minimiza-

tion process. The method offers good results for batch processing but their iterative

nature leads to processing time problems in online implementations.

The proposed approach tries to detect global alignment errors each time a new

image is introduced in the mosaic. The method is low accurate when comparing to

topological-based approaches, but allows an online implementation.

A similar approach has been proposed for autonomous underwater vehicles (AUV)

in (Garcia et al., 2001). The underlying concept is the same: to use a mosaic as

environment representation of a vehicle when it moves at relative high altitude with

respect to the ground because, in this case, the scene can be fairly approximated by a

plane. However, the image apparent motion only considers affine homographies and

there is no a global alignment error reduction.

Figure 4.1 depicts the proposed method for online mosaicking. By using the in-

formation given by an interest point matching algorithm (Ferruz and Ollero, 2000;

Ollero et al., 2004), the local alignment between consecutive images can be obtained.

The local transformation is modeled by a homography, computed from the matches

by using a robust outlier rejection procedure. By composing consecutive homogra-

phies, the current image can be transformed into a global frame, in which the mosaic

is built. However, if the transformed frame overlaps the current mosaic, the common

information will be used to refine this global alignment. Finally, this global transfor-

mation is used to compute the motion between the current camera position and the

initial one.

4.2 Local and global alignment

The goal of this stage is to compute the relative motion between two consecutive

images, and then, the transformation that aligns the current image with the reference
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Figure 4.1: Overview of the method.

frame. First, the apparent image motion between consecutive images is extracted

by means of a point-like feature matching function that provides a set of matches

between the previous image and the current one. This image motion is modeled by

a homography matrix using the techniques described in Chapter 2. The model holds

when the camera undergoes a pure rotation or when the scene is planar, which is a

good approximation when an UAV flies at high altitude.

Given the linear nature of the homographic transformations in homogeneous coor-

dinates, it is possible to express the image motion from image n to the reference frame

k, Hkn, as a composition of the relative motion between the intermediate images. If

TI is a sequence of n images of a planar scene:

TI = {I0, I1, I2..., In} (4.1)

and the n− 1 homography matrixes that relate these images are known:

H01,H12,H23...,H(n−1)n (4.2)
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Figure 4.2: Piece of mosaic with global alignment errors (ellipses)

then, the transformation from image n to k will be defined by:

Hkn =
n−1∏

i=k

Hi(i+1) (4.3)

Thus, it is possible to compose the complete motion between whatever image of the

sequence and the reference frame by means of the relative motion computation. In

the rest of the Chapter, the first image (image 0) of the sequence will be considered

as reference frame.

The main drawback of this method is the accumulative positioning error of the

images inside the mosaic. The homography estimation involves outlier rejection, least

squares and robust model estimation over a set of matching candidates. Although

by using the techniques presented in Chapter 2 the residual error of the computed

homography is usually small, equation (4.3) leads to error accumulation. In addition,

if the number of outliers is too high (due to matching errors, independent object

motion or parallax effect) or the number of matches between images is small (blurred

images or small image overlap) the residual error can be considerable.

Figure 4.2 shows a piece of mosaic which reflects the effects of the accumulative

errors in the homography estimation. The errors are more evident when the mosaic

is composed by images taken in large loops, and the accumulated registration errors

generate visible inconsistences in the global image alignment.
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Figure 4.3: Global alignment errors due to accumulative misregistration. The red
square denotes the correct position inside the mosaic. The green square marks the
position computed by using local alignment

4.3 Global alignment error reduction

The idea behind the proposed approach is to use the information stored in the mosaic

to refine the global transformation from the current image to the common frame

(transformation that will be used later to estimate the motion of the vehicle).

Thus, consider that at time i, the global alignment estimation procedure provides a

homography that relates the current image Ii to the mosaic computed in the previous

step Mi−1. This homography is a noisy estimation that will be denoted as Ĥ0i. The

actual transformation will then be H0i (assuming I0 is the reference frame).

Due to the accumulative drift at time i, the warped image Iw
i = H0i(Ii) will be

misaligned with respect to its correct position within the mosaic (see Fig. 4.3). If

this alignment error is modeled by a full homography matrix called He
i , then:

H0i = He
iĤ0i (4.4)
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The homography He
i can be estimated by matching the warped image Iw

i and the

portion of the mosaic Mi−1 where Iw
i should be placed. This matrix will encapsulate

all alignment errors from frame 0 to i. Combining (4.3) and (4.4), the final alignment

expression that aligns the image Ii to the mosaic Mi−1 is given by:

H0i = He
i

i∏
j=0

Hj(j+1) (4.5)

The alignment error reduction is carried out only when the UAV visits zones

already stored in the mosaic and He
i will be computed if the estimated overlap between

the image and the mosaic is greater than 50% of the image total size. Also, the number

of correct matches between the warped image and the mosaic are considered; if this

number is below a threshold, the correction will not be used because in such a case

the estimation is too poor to be incorporated into the mosaic.

The drift-compensated relation of (4.5) will be used to compute the motion from

the current camera position to the position at the first frame using the procedure

detailed in Chapter 3. Thus, the drift in the estimated motion will be decreased if

the UAV flies over areas that were previously registered, and it will avoid a continuous

growth of the error.

4.4 Mosaic updating

Finally each pixel of frame i is transformed using the computed homography and

inserted into the mosaic. The values of the pixels are interpolated using the closest

pixel approximation. Other interpolation techniques like bilinear or trilinear were

tested but worse results were obtained because these algorithms do not take into

account the existing information in the mosaic.

Special care is necessary in the image insertion process in order to increase the mo-

saic coherence. In outdoors scenarios, the illumination of the images usually changes

drastically, mainly due to the camera auto-exposure function. Thus, it is necessary

to equalize the illumination of the images introduced in the mosaic. Once the image

is warped, it is possible to compare the pixel values between the mosaic Mi−1 and
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(a) (b)

Figure 4.4: Illumination correction. (a) segment of mosaic without illumination cor-
rection. (b) segment of mosaic with illumination correction

the image Iw
i . Given the set of overlapped pixels ζi and the size of the set |ζi|, the

illumination correction factor for the image i is defined as:

µi =
∑

x(Mi−1(x)−Iw
i (x))/2

|ζi| , ∀x ∈ ζi (4.6)

This factor is an estimation of the illumination error average in the overlapped area.

It is important not to use saturated pixels (minimum or maximum gray levels) in the

computation of µi in order to increase the accuracy of the average. This value µi is

added to the pixel values of the warped image Iw
i , which is finally introduced in the

mosaic. An example of the illumination correction is presented in Fig. 4.4 where a

section of mosaic is shown with and without correction.

Finally, Fig. 4.5 and Fig. 4.6 show two 3300×3500 mosaics built with more

that 500 images captured by the autonomous blimp KARMA, developed by LAAS

(Laboratoire d’Architecture et d’Analyse des Systèmes) at Toulouse (Hygounenc

et al., 2004), during the COMETS project general experiments (Ollero et al., 2005).

KARMA flew at approximately 150m of altitude in these experiments. The mosaic

computation of Fig. 4.6 involved all the techniques above described: local alignment,

global alignment error reduction and illumination error correction, while in the mo-

saic of Fig. 4.5 no corrections were applied. The differences on the illumination can

be seen.
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Figure 4.5: Lousa Airfield (Portugal). 3300×3500 mosaic without global alignment
correction



54 UAV localization based on online mosaicking

Figure 4.6: Lousa Airfield (Portugal). 3300×3500 mosaic composed by more than
500 aerial images, with global alignment and color correction
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4.5 Results on motion estimation refinement

The above techniques have been tested using the autonomous blimp KARMA. The

images gathered in these tests where used to build the mosaic of Fig. 4.6.

The homography-based odometry algorithm has been applied to these images, and

the results compared to those obtained with the same algorithm improved with the

mosaic-based global error correction. Besides, the sensors carried by KARMA (GPS,

IMU and altimeter) were used to validate the estimated position from the proposed

algorithms.

The experiments were carried out in an AMD Athlon XP 2200+ computer with

1GByte of RAM memory. The algorithm ran at 1 fps for full resolution images

(1024x768).

Figure 4.7 shows the results of motion estimation without mosaic-based correction

versus the GPS measurement. In this experiment the first 140 images employed to

build the mosaic of Fig. 4.6 were used. It can be seen that although the errors are ini-

tially small, they eventually drift. The accumulative registration error is particularly

evident in Fig. 4.7(b).

Figure 4.8(a) shows the same plots by using the mosaic to improve the position

estimation. In this case it can be seen how the positioning error at the end of the

trajectory is smaller than the estimated without mosaic building. The positioning

error reduction can be more easily seen in Fig. 4.8(b) where the XY trajectory is

plotted. Fig. 4.9 shows the 3D trajectory estimation. This raw estimation could

be further smoothed with a low-pass filter in order to be used for motion control

purposes.

Finally, Fig. 4.10 shows the errors on the estimated translation with respect the

GPS in meters. It can be seen that, by using the mosaic correction, the error does not

follow the accumulative drifting behavior associated to the single homography based

motion computation.
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Figure 4.7: Experiments at Lousa Airfield (Portugal). The GPS translation is shown
by the dashed line. The solid line is the estimated position by using the multi-
view planar motion algorithm without mosaic improvement. (a): Translation in the
X (Easting), Y (Northing) and Z (Altitude) axis per image (axis in meters). (b):
Translation in the X-Y plane.
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Figure 4.8: Experiments at Lousa Airfield (Portugal). The GPS translation is shown
by the dashed line. The solid line is the estimated position by using the multi-view
planar motion algorithm with the mosaic-based improvement. (a): Translation in
the X (Easting), Y (Northing) and Z (altitude) axis per image (axis in meters). (b):
Translation in the X-Y plane.
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Figure 4.9: Experiments at Lousa Airfield (Portugal). 3D view of the UAV trajectory.
The dashed line is the GPS translation. The solid line is the estimated position using
planar motion with mosaic building improvement.
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4.6 Conclusions

The Chapter shows a procedure for UAV position estimation from monocular image

sequences. The technique can be used for planar scenes, and requires a sensor to

obtain the initial distance from the camera to the plane. The planar assumption

usually holds when an UAV is flying at high altitude. The global error correction

through mosaicking allows to reduce the drift on the estimation. The procedure can

be implemented using low-cost and low-weight hardware, and can be a good solution

for aerial vehicles.

The method can also be used with helicopters for the application of building wall

inspection, in order to estimate the relative displacement of the vehicle respect to the

wall as detailed in (Caballero et al., 2005), and also to generate, at the same time,

high resolution images that can be used for the detection of structural damage in

buildings or thermal leakage, if infrared images are used.

The mosaic can be potentially costly in terms of memory, but the amount of the

needed storage capacity can be bounded by using a fixed resolution, which implies a

limited level of detail for the mosaic. In practice, a limited resolution leads to restrict

the applicability of the method to an interval of altitudes over the terrain; otherwise

the changes of scale would not be acceptable to match the images and the mosaic.

An adaptive multi-scale version of the mosaic could then be used.

However, the computed mosaic is a static picture in which the corrections cannot

affect already covered areas. It means that the accuracy of the different areas of the

mosaic will be fixed once the images are introduced, even if the global alignment

procedure provides better positioning. If the relations among the images are flexible,

then the corrections could be introduced and the mosaic improved.



Chapter 5

A stochastic framework for mosaic

building

This Chapter presents a probabilistic framework where uncertainties can be consid-

ered in the mosaic building process. The homography combined with its covariance

matrix are used to link the images of the mosaic. Moreover, the Chapter describes

how, when a loop is present in the sequence of images, the accumulated drift can be

compensated and propagated to the rest of the mosaic. The proposed method im-

proves the mosaic building process and hence the mosaic-based localization described

in Chapter 4.

5.1 Introduction

Knowledge about the environment is a critical issue for autonomous operations. In

general, the environment representation depends on the kind of sensors used to esti-

mate it and the tasks and circumstances in which the vehicle will be involved. This

Chapter addresses the environment representation problem for aerial vehicles and its

estimation by means of monocular imagery.

In the case of an aerial robot that is not affected by obstacles at the flight altitude,

geo-referenced mosaics can be sufficient as environment model for certain tasks. A

59
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mosaic is built by aligning to a common frame a set of images gathered while the

aerial vehicles is moving.

If the scene is planar (which is, in general, a valid approximation when the ratio

between the distance to the scene and the ground elevation is high), a set of matches

between two views can be used to estimate a homographic model for the apparent

image motion. This model can be composed with the estimated motion of the rest

of images in order to build the mosaic. Moreover, Chapter 4 showed that the motion

of the aerial vehicle can be derived from the alignment of its images with the mosaic

for a planar scene.

However, the approach contains small image motion inaccuracies that lead to

an erroneous estimation of the mosaic and, as a result, to a drift in the estimated

position of the robot when large areas are covered. This problem is solved in (Garcia

et al., 2002) by means an online mosaicking architecture that allows to improve the

alignment of the central pixel of the images within the mosaic when loops are detected.

The technique works well but it is a waste of information because, in our case, there

exist a full covariance matrix of the homography that can be used to propagate the

error information through the mosaic.

This Chapter proposes a new technique in which a complete homography and its

associated full covariance matrix are used to represent the alignment of the images

in the mosaic. It draws an accurate model that considers the uncertainties in the

local relations between the images that compose the mosaic. The proposed mosaic

architecture allows the detection of loops and hence the reduction of the image drift

which is present in this kind of methods. Furthermore, the uncertainty reduction in

the local image alignment can be propagated to the rest of the mosaic thanks to the

full covariance matrix computation.

The Chapter describes the steps needed to introduce uncertainties in the mosaic

building procedure by means of the Kalman filter. Firstly, an overview of the approach

is presented. Then, the estimation of the local relations among images is outlined.

Finally, the proposed Kalman filter for stochastic mosaicking is detailed and some

experimental results are shown.



5.2 Technique overview 61

5.2 Technique overview

The motivation of this work are the results presented in Chapter 4, where monocular

imagery is used to compute the real motion that a camera attached to an aerial robot

undergoes. The odometer presented there is based on the fact that it is possible to

obtain the motion of a calibrated camera, up to a scale factor, from the homographic

models that relate several images of a planar scene. The local homographies between

consecutive images can be composed to obtain the global motion of the vehicle, but

the local errors lead to a progressive drift in the estimated location of the vehicle.

Furthermore, the mosaic can be used to decrease the accumulative errors associated

to the odometry. However, the construction of the mosaic itself is affected by errors,

which are not considered.

In the approach proposed in this Chapter, the mosaic building technique is im-

proved at two levels:

• A new approach is presented for the homography computation in pseudo-planar

scenes where the planar assumption may not hold. A homography model relax-

ation is imposed in order to guarantee the computation. The covariance matrix

associated to the homography will store the accuracy information and then be

transferred to the mosaic.

• The covariances of the estimated homographies are used in a new mosaic build-

ing architecture. When a zone of the mosaic is revisited, a procedure is used

to decrease the accumulated drift. A full covariance matrix that considers the

correlation among the estimated homographies in the loop is computed, and

the stochastic information is employed to propagate the correction to all the

images involved (see Fig. 5.1).

5.3 Hierarchical homography computation

The technique proposed to build the mosaics is based on the one presented in Chapter

4. A careful analysis points out two factors that may reduce the applicability of the
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(a) (b)

Figure 5.1: Basic procedure: (a) when a part of the mosaic is revisited, (b) the drift
is corrected and the correction propagated. Although only the covariances on the
position are shown (which are used to determine potential loops), the full covariance
matrix for all homographies is maintained.

technique, mainly when the UAV flies at altitudes of the same order of other elements

on the ground (buildings, trees, etc):

• In 3D scenes, the parallax effect will increase, and the planarity assumption

may not hold. The result is a dramatic growth of the number of outliers and

even the divergence of the M-Estimator.

• Depending on the frame-rate and the vehicle motion, the overlap between images

in the sequence is sometimes reduced. This generates a non-uniform distribution

of the features along the images.

The goal of this section will be to increase the reliability of the homography compu-

tation in order to face flights at medium/low altitude.

The above problems are related, in the sense that both generate an ill-posed

system of equations for the computation of the homography. If the matches are not

uniformly distributed over the images, there may exist multiple solutions; and if the

parallax effect is significant, there may exist multiple planes (whose transformation

should be described by multiple homographies).
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A classical solution to improve the results is to introduce additional constraints to

reduce the number of degrees of freedom of the system of equations. In the proposed

solution, this is accomplished through a hierarchy of homographic models (see Fig.

5.2), in which the complexity of the model to be fitted is decreased whenever the

system of equations is ill-constrained.

Therefore, depending on the quality of the available data, the constraints used to

compute the homography are different. An estimation of this accuracy will be given

by the covariance matrix of the computed parameters. If this stochastic information

is available, it can be used to define the accuracy of the image alignment inside the

mosaic.

5.3.1 Implementation

The following paragraphs presents the way to progressively reduce the complexity of

the homographic model and the laws that govern the transitions among the hierarchy.

From Chapter 2, it can be seen that any non-singular invertible 3x3 matrix can

be considered as a homography:

H =




h00 h01 h02

h10 h11 h12

h20 h21 h22


 (5.1)

A complete homography has 8 degrees of freedom (as it is defined up to a scale factor).

The degrees of freedom can be decreased by fixing some of the parameters of the 3x3

matrix. The models used are the defined by Hartley in (Hartley and Zisserman, 2004):

Euclidean, Affine and Complete Homographic models, which have 4, 6 and 8 degrees

of freedom respectively (see figure 5.2).

The percentage of successful matches obtained by the point tracker is used to have

an estimation about the level of the hierarchy where the homography computation

should start. These percentage thresholds were obtained empirically by processing

hundreds of aerial images. Each level involves the following different steps:
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Figure 5.2: Levels in the proposed hierarchical homography computation. Accuracy
increases with the complexity of the model.

• Complete homography. This model is used if more than the 65% of the matches

are successfully tracked. Least median of squares (LMedS) is used for outlier

rejection and a M-Estimator to compute the final result. It is the method

proposed in Chapter 2 to compute the homography.

• Affine homography. If the percentage of success in the tracking step is between

40% and 65%, LMedS is not used, given the reduction in the number of matches.

A relaxed M-Estimator (soft penalization) is carried out to compute the model.

• Euclidean homography. If the percentage is below 40%, the set of data is too

noisy and small to apply non-linear minimizations. The model is computed by

using just least-squares.

In addition, it is necessary a rule to know when the current level is not constrained

enough and the algorithm has to decrease the model complexity. The M-Estimator

used in the complete and affine computations is used for this purpose. Thus, if it

diverges, the level in the hierarchy has to be changed to the next one. It is considered

that the M-Estimator diverges if it reaches the maximum number of iterations.
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5.3.2 Experimental results

This section shows some results of the proposed technique in real conditions. The

algorithm was applied to a long image sequence captured at relatively low altitude,

and the computed homographies were used to align each new image with a mosaic.

This experiment tries to visually demonstrate the coherence of the homographies

computed by using the proposed technique but not to build an accurate mosaic.

Figure 5.3 shows the mosaic built with more than 400 images taken by KARMA.

The scenario is a parking at LAAS, and the distance from the blimp to the ground

is 27 meters. The low altitude makes evident the parallax effect; some trees are 15

meters high.

The technique described in Chapter 4 was applied to this image sequence but the

parallax effect made impossible the homography computation during the processing

and only a small portion of the mosaic was computed. Figure 5.4 shows that the

scene is not planar and confirms the feasibility of the algorithm. On the other hand,

the mosaic could be computed by using the hierarchical computation described in

this Chapter.

The image sequence used to build the mosaic (figure 5.3) was processed at a rate

of 2 images per second with resolution of 1024x768. The final mosaic has a 4300x2400

effective resolution.

5.4 Stochastic mosaicking

The goal of this section is to improve the environment model by attaching stochastic

information to the mosaic. This information will be used to improve the positions

of the images within the mosaic when a close-loop is detected. In this approach, the

mosaic is represented by a database of images and associated data; the mosaic is no

longer a static image, but a set of images linked by stochastic relations.

Thus, when a close-loop is detected the relations among the images involved in the

loop are updated according to the accuracy of the measurement and the estimation
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Figure 5.3: Mosaic of “le petit parking” at LAAS (Toulouse). Images taken at 27
meter over ground. Images taken by KARMA
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(a) (b)

Figure 5.4: Two images extracted from the sequence used to build the mosaic of figure
5.3. It is clear that not all the features can be considered to lay in the same plane.

of the position of each image. A minimization process based on a Kalman Filter is

used to optimize the estimation of the inter-image relations.

It is well known that the Kalman Filter (Kalman, 1960) is a set of mathemati-

cal equations that provides efficient computational means to estimate the state of a

process, in a way that minimizes the mean of the squared error, when the system

dynamics are linear and existing noise follows a Gaussian distribution. The filter is

very powerful in several aspects: it support estimation of past, present, and even

future states, and it can do so even when the precise nature of the modelled system

is unknown.

The filter allows to analyze time-varying physical systems in the presence of noise.

The system is modelled by a state vector x that has entries for each of the relevant

variables. The knowledge about the expected state is stored in the state transition

function f .

The filter allows a continuous and efficient estimation of x, incorporating the

information provided by any measurement z composed by a set of accesible variables

whose dependence on the state x is known. The current state estimation is stored in

the vector x̂ and its uncertainties are encapsulated in the covariance matrix P. If the

dependence of both f and measurement function h on x is linear, and the statistical

distribution of noise is Gaussian, then the estimation of x by the filter is optimal.
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Given the linear system:

x(k) = Ax(k − 1) + Bu(k − 1) + w(k − 1) (5.2)

z(k) = Hx(k − 1) + n(k) (5.3)

The Kalman filter proposes the following equations to predict the new state and its

covariance matrix:

x̂−(k) = Ax̂(k − 1) + Bu(k − 1) (5.4)

P̂−(k) = AP(k − 1)AT + Q (5.5)

The new measurement z is considered by means of:

K(k) = P−(k)HT(HP−(k)HT + R)−1 (5.6)

x̂(k) = x̂−(k) + K(k)(z(k)−Hx̂−(k)) (5.7)

P(k) = (I−K(k)H)P−(k) (5.8)

Where Q and R are the covariance matrices associated to the process noise and

measurement noise respectively.

The Extended Kalman Filter makes use of the linearized system of equations

to provide the same functionality when the system dynamics are not linear. More

information and further details on Kalman filtering can be found in (Welch and

Bishop, 1995).

5.4.1 Closing the loop

Each time a new image is gathered by the cameras of the UAV, the homography that

relates it with the previous one is computed, as well as its covariance. The position of

the image inside the mosaic is obtained by multiplying the current homography by all

the previous homographies until the reference frame is reached, as presented in Chap-

ter 4. Then, the image is introduced in the database with the following information:
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homography with respect to the previous image, composed homography to reference

frame, covariance matrix of each homography and other positioning information.

The loop-closing is computed by detecting the crossover of the current image with

one or more images of the database. For this purpose, the estimated position (and its

covariance) of the central pixel of each image in the mosaic is stored in the database.

The crossover detection consists of finding one image whose Mahalanobis distance

(Mahalanobis, 1936) to its central pixel is within a certain empirical range.

Once the crossover is detected, a feature matching procedure is launched to com-

pute the alignment between both images. In the general case, the task of matching

images taken from very different points of view is difficult and computationally costly.

Even if a good estimation of the translation between images is available, the tracking

algorithm (Ollero et al., 2004) cannot deal with a rotation higher that 45 degrees, as

the features used are not affine invariant.

If a pseudo-planar scene is considered, the matching complexity can be drastically

reduced. An initial estimation of the location (a complete homography) of the image

inside the mosaic is available, so this estimation can be used as a searching seed for the

feature matching procedure. At time i the homography that aligns the current image

Ii to the mosaic is Ĥ0i. If a crossover with image Ij, whose estimated position inside

the mosaic is given by Ĥ0j, is detected, the initial estimation of the transformation

from Ii to Ij is defined by:

Ĥji =
i∏

k=j+1

Ĥ(k−1)k (5.9)

If the estimation error for each homography were zero, the alignment of Iw
i (the result

of warping Ii according to Ĥji) with respect to Ij would be perfect, but inaccuracies

in the estimated homographies lead to unavoidable alignment errors.

However, computing matches between the warped image Iw
i and Ij is an easier

task. From this data it is possible to obtain the homography He
ji that describes the

drift between both images and then obtain the correct alignment:

Hji = ĤjiH
e
ji (5.10)
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It is clear that, by using this method, the matching algorithm does not have to

deal with the complete motion between both images, but only with the accumulated

errors. Then, it will reduce the complexity of the matching algorithm needed and will

improve the alignment results.

In addition, using normalized correlation allows to deal with the illumination

problems that appear in close loops when images are taken at different time of day.

Erroneous matches associated to different causes like shadows and parallax are later

removed by the outlier detection and robust estimation performed in the homography

computation.

5.4.2 Updating the mosaic after a loop-closing

As stated before, when a loop-closing is detected, a measurement about the alignment

between the current image Ii and the crossover Ij is given by the system. This measure

is a homography Hji and its covariance matrix Chji
. The problem now is how to

update the relations among the images from Ij to Ii under the following constraint:

Hji =
i∏

k=j+1

Ĥ(k−1)k (5.11)

For this purpose, a minimization process based on the Extended Kalman Filter

is launched each time a loop-closing is detected. This filter re-estimates the relations

among the images involved in the loop, taking into account the uncertainty of the

loop-closing and the stochastic information stored in the database. This procedure is

summarized if Fig. 5.5. Next sections will detail the structure and dynamics of the

filter.

Notation

For this section, the following vector will be considered as the vector representation

of the homography matrix H:

h =
[
h00 h01 . . . h22

]T

(5.12)
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Figure 5.5: Stochastic mosaicking schema

The Ch covariance matrix is then represented by a 9 × 9 matrix with the variance

of these variables in the diagonal and the cross-variances in the upper and lower

triangles.

In the following, the symbol “·” stands for the product of two homographic vectors

which result is expressed as a vector too. Thus, the operation h1 · h2 is equivalent to

express as vector the result of the algebraic product H1H2

The state vector

It is assumed that a close-loop is detected between Ij and Ii, with n + 1 images

involved, and the transformation that aligns both crossover images is Hji with co-

variance Chji
. For simplicity, it can be assumed that j = 1 and i = n + 1.

The a priori state vector will be composed by the n transformations that align

the n images (I2, ..., In+1) with I1, thus:

x− = [x1,x2, ...,xn]T = [h12,x1 · h23, ...,xn−1 · hn(n+1)]
T (5.13)

where xi and hij are the vector representation of the homography matrices Xi and

Hij , as shown in equation (5.12).
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Figure 5.6: Generation of the a priori covariance matrix of the state vector

It is easy to see that the state (5.13) is obtained by recursively applying equation

(5.9): x1 is the product at k = j + 1 = 2, x2 is the product at k = j + 2 = 3 that can

be written in function of x1 and so on.

Prediction stage

The calculation of the a priori state vector and its a priori covariance matrix P− is

done in an incremental fashion for the n states using the following prediction equation:

xi = xi−1 · hi(i+1) (5.14)

It is easy to compute the Jacobian of this expression with respect to the state

vector (matrix A) and with respect to the variables of hi(i+1) (matrix W). A will be

used to generate the corresponding rows and columns of the matrix P− (see figure

5.6) and, with W, to compute the covariance matrix of xi by means of:

Cxi
= ACxi−1

AT + WChi(i+1)
WT (5.15)

The structure of the covariance matrix shows how every homography is fully cor-

related to the previous ones in the loop.
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Updating stage

The previously described state vector is arranged in order to minimize the number

of operations needed to update it with the measurement (H1(n+1),Ch1(n+1)
). Thus,

the state xn of x− represents the transformation from the current image n + 1 to

the loop reference frame 1, so h1(n+1) = xn. This fact is described in the following

measurement equation:

h1(n+1) = Fx =
[
09x(9n), I9x9

]
x (5.16)

It is easy to update the state vector and its covariance matrix following the classic

Extended Kalman Filter equations. This simple measurement function F will signifi-

cantly reduce the computation needed to obtain the gain K and, later, the a posteriori

covariance matrix P.

Particular attention is required for the state vector updating:

x = x− + K(h1(n+1) − Fx−) (5.17)

The homographies are defined up to scale factor; thus, a homography multiplied by

a constant k represents exactly the same transformation, although its components

are different to those of the original matrix. To implement the substraction of ho-

mographies in (5.17) it is necessary to perform a normalization of the scale factor.

The proposed solution is to set the determinant of both homographies to 1 before

computing the state vector.

Finally, the relations among the images involved in the loop are updated with the

measurement but they are expressed in the local coordinate frame of the loop (the

first image of the loop, I1, is the reference frame) and have to be transformed into

the mosaic system reference. From equation (5.14):

Hi(i+1) = (Xi−1)
−1Xi (5.18)

and the covariances can be derived from the Jacobian of this expression.
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5.5 Results of vision-based localization experiments

This section shows some experiments to demonstrate the correct operation of the

proposed algorithm. The framework of the experiments is the position computation

by means of monocular imagery. The position of the vehicle is estimated by means of

the algorithm described in Chapter 3 and the inputs are the homographies computed

with the proposed stochastic mosaicking.

The images were taken by KARMA during one experiment in the parking at

LAAS. The sequence is composed by two hundred images. Figure 5.7 shows the

mosaic built with the images and the computed homographies.

More that 15 short loops (less than 20 images involved) and one large loop (more

than 100 images) were closed during the experiment. In figure 5.8 the image based

X, Y, Z and XY position estimation and GPS position measurement are displayed.

Notice the sudden left turn in the vision based estimation at coordinates (31, -50)

in the XY estimation, it is automatically carried out when the plane induced by the

floor (the ground truth) becomes the scene dominant plane again.

Figure 5.8 also shows the evolution of the errors associated to the position esti-

mation. The error is calculated as the Euclidean distance between the GPS and the

estimated position at each image sample. It can be seen that the error is moderate:

the maximum value in the XY plane is 3 meters and the mean is 1.76 meters.

5.6 Conclusions

Mosaics can be a convenient environment representation for UAV tasks, such as moni-

toring events, identification of changes and others. The Chapter presents an approach

for building mosaics based on planar homographies. A hierarchical homography com-

putation increases the robustness of the approach, allowing to deal with quasi-planar

scenes.

An important aspect of the Chapter is the inclusion of uncertainty measures in the

mosaic. The mosaic is no longer a static picture, but a collection of relations among

images. Although the alignment errors will grow over time, they can be partially reset
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Figure 5.7: Mosaic of “le grand parking” at LAAS (Toulouse). KARMA was flying
at 22 meter over the ground.
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Figure 5.8: Position estimation experiment with mosaic computation. Left: Image
based position estimation (dashed line) and GPS position measurement (solid line).
Right: Image based position estimation error with respect the GPS measurement
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when part of the mosaic is revisited. Moreover, the correction can be propagated to

the rest of the mosaic by considering the relations among images.

UAV position estimation is an interesting potential application of the proposed

approach. It is possible to determine the motion of a calibrated camera from plane-

induced homographies by means of the method proposed in Chapter 3. Furthermore,

the proposed technique allows to reduce the accumulative drift in the position esti-

mation when the UAV flies over previously visited areas.

The main drawback of the approach are the storage requirements. Not only the

images of the mosaic should be stored (although this number can be controlled, de-

pending on the degree of overlap), but also the state augments along the sequence

of images. The current state of the technology allows to solve the image storage by

means of solid state hard disks which support high capacity at really low weight.

However, this approach cannot deal in real-time with the computation needed to

update the mosaic in very large loops. In this sense, new techniques based on the

downsampling of the homographic relations between images and the use of Sequential

Map Joining (Tardos et al., 2002) will be researched.



78 A stochastic framework for mosaic building



Chapter 6

Application of Homography-based

odometry to the SLAM problem

This Chapter extends localization techniques to a more general problem by applying

SLAM (Simultaneous Localization And Mapping) techniques. This allows to reduce

the inherent constraints associated to the method presented in Chapter 5, particularly

in altitude and camera orientation.

6.1 Introduction and related work

Chapters 4 and 5 consider that the UAV flies in such a way that a mosaic can be

computed and then used to refine localization. The main constraints of this method

are associated to the mosaic building process. Sometimes, mosaics cannot be com-

puted due to oblique camera orientations or significant variations in the altitude of

the UAV.

This Chapter proposes a SLAM-based technique to generalize the problem of

localization. The Chapter addresses the situations in which a mosaic cannot be built

and another localization technique is required. The approach consists of applying the

Homography-based odometry as prediction stage of a SLAM algorithm.

Simultaneous localization and mapping (SLAM) is a technique used to build a

map within an unknown environment while at the same time estimating the current

79
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position and pose of the robot. It is mainly characterized by the use of a stochastic

framework to represent the relationship among the map and the position of the robot.

Early researches in SLAM were presented in (Smith and Cheeseman, 1987), where

the use of indirect and noisy measures to estimate the robot pose and its uncertainty

is discussed.

First SLAM implementations were based on Extended Kalman filtering (EKF)

and only one type of sensor, (Leonard and Durrant-Whyte, 1991; Betge-Brezetz

et al., 1996; Betke and Gurvits, 1997; Feder et al., 1999). The iterative nature of

the EKF allows on-line estimation of both localization and mapping in a structured

manner; at the same time, it permits easy incorporation of noise, expressed as co-

variance matrixes. However, the EKF linearizations, that can lead to inconsistent

estimations when the system equations are strongly non-linear, combined with the

need of faster SLAM implementations, pushed the robotics community to research on

new techniques to solve the SLAM problem. Thus, the use of Particle Filtering for

the factorization of the posterior function in the FastSLAM (Montemerlo et al., 2002)

and FastSlam2.0 (Montemerlo et al., 2003) allowed significant improvements in the

computation. The Information Filter (the Kalman Filter dual) has recently received

more attention due to its applicability in feature-based SLAM (Thrun et al., 2004).

In this form, map posteriors are dominated by a small number of links that tie to-

gether nearby features in the map. This characteristic can be exploited to significantly

decrease the computation load of the update equations.

This Chapter considers a particular case of SLAM problem, called bearing-only

SLAM or boSLAM in which bearing only sensors are used, a camera in this case. As

stated in (Vidal-Calleja et al., 2007), the boSLAM is a partially observable problem,

so the depth of the landmarks cannot be directly estimated. This entails a difficult

landmark initialization problem which has been tackled with two basic approaches:

delayed and undelayed initialization. In delayed initialization, landmarks are not

included in the SLAM system in the first observation, but after that the angular

baseline in between has grown large enough to ensure a good triangulation. This

method has the advantage of using well conditioned landmarks, but the SLAM sys-

tem cannot take advantage of the landmark until its localization is well conditioned.
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Several approaches have been proposed in this area such as (Davison, 2003) where a

Particle Filter is used to initialize the landmark depth, or (Deans and Hebert, 2000)

where non-linear optimization is used instead of mean and covariance matrix.

On the other hand, undelayed approaches introduce the landmark in the SLAM

system with the first observation, but some considerations have to be taken into

account due to the fact that the landmarks are usually bad conditioned in depth,

and then may appear problems of SLAM filter divergence. Most existing approaches

are based on multiple hypotheses, where a Gaussian Mixture is used for landmark

initialization in a Kalman Filter, as in (Kwok and Dissanayake, 2004). Recent re-

search (Montiel et al., 2006) proposes the inverse depth parametrization in a single-

hypothesis approach for landmark initialization with promising results.

The technique presented in this Chapter proposes a new undelayed feature initial-

ization that takes advantage of the scene normal plane estimation computed in the

Homography-based odometry detailed in Chapter 3. Indeed, the technique cannot

be considered as boSLAM because a range sensor is used, combined with the normal

vector to the plane, to initialize the landmark depth. The approach is based on an

EKF that simultaneously estimates the pose of the robot (six degrees of freedom)

and the map. The use of the estimated rotation and translation provided by the

odometer as the main motion hypothesis in the prediction stage of the EKF is an-

other contribution made by this approach. Complex non-linear models are normally

used to estimate vehicle dynamics, due to the lack of odometers in UAVs. This leads

to poor prediction hypotheses, in terms of accuracy, and then a significant reduction

of the filter efficiency. In (Kim and Sukkarieh, 2004) a solution based on merging

model-based estimation and inertial measurements from local sensors (IMUs) is pro-

posed, resulting in an accuracy growth. The integration of the IMU in the presented

approach will be also considered in order to improve the position estimation.

The Chapter is organized as follows. First, a short overview of the SLAM problem

is presented. Then, the full EKF-based approach is described, including landmark

initialization. Finally some experimental results and conclusions are shown.
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6.2 SLAM overview

The SLAM problem can be formulated as a probabilistic Markov chain process. The

robot’s pose at time t will be denoted as pt. Poses evolve according to a probabilistic

law, often referred as motion model p(pt|ut,pt−1), where pt is a probabilistic function

of the robot control ut and the previous pose pt−1.

The robot environment consists of N motionless landmarks. Each of them is char-

acterized by its location in space, denoted as yn for n = 1, ..., N . These landmarks will

be detected by the sensors onboard the robot and used to represent the environment.

The measurement at time t will be denoted as zt and will provide a set of es-

timations about the position of the landmarks. Sensor measurements are governed

by a probabilistic law, often refereed as the measurement model p(zt|pt,y), where

y = y1, ...,yN is the set of landmarks.

Thus, most generally, SLAM is the problem of determining the localization of all

the landmarks y and robot pose pt from measurements zt = z1, ..., zt and control

actions ut = u1, ...,ut. In probabilistic terms, this is expressed by the posterior

p(pt,y|zt,ut), where the superscript t is used to refer to a set of variables from time

1 to time t.

6.3 Filter design and implementation

As stated before, the proposed SLAM system is based on Extended Kalman filtering.

The approach is a state of the art filter that takes advantage of the Homography-based

odometry for both prediction stage and landmark initialization.

In Chapter 5 a loop-closing detection method based on feature matching among

images of the data-base is proposed. However, this method can be used in the pre-

sented SLAM approach, because it is needed a technique for landmark data associa-

tion. This procedure will not be addressed in this Chapter, and is considered to be

out of the scope of the Thesis.
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6.3.1 The state vector and covariance matrix

The robot pose pt is comprised by the position and orientation of the vehicle at time

t, so:

pt = [dt,qt]
T = [x, y, z, qx, qy, qz, qw]T (6.1)

Where dt expresses the translation to the World origin encoded using cartesian rep-

resentation at time t, and qt is the unitary quaternion that aligns the robot to the

World reference frame at time t. Using quaternions increases (in one) the number of

parameters for the orientation with respect to Euler angles, but simplifies the algebra

and hence, the error propagation. However, the quaternion normalization has to be

taken into account after the prediction and update stages.

Landmarks will be represented by its cartesian position in 3D space:

yn = [x, y, z]T (6.2)

Thus, the state vector xt is composed by the robot pose pt and the set of current

landmarks y = y1, ...,yn so:

xt = [pT
t ,yT

1 , ...,yT
n ]T (6.3)

6.3.2 Prediction stage

Given the pose at time t − 1, the odometer provides the translation with respect to

the previous position (expressed in the t− 1 frame) and the rotation that transforms

the previous orientation into the new one (expressed in the t frame). Taking into

account the quaternions algebra (see Appendix A), the state vector at time t can be

computed as:

dt = dt−1 + qt−1 ⊗ ḋu ⊗ q−1
t−1 (6.4)

qt = q−1
u ⊗ qt−1 (6.5)
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where du and qu represent the estimated translation and rotation from the odometer,

and ⊗ denotes quaternion multiplication (see Appendix A). Notice that prediction

does not affect the landmark position because they are assumed to be motionless.

Computing the odometry requires to carry out the image processing between

consecutive images detailed in Chapter 3: feature tracking, homography estimation

and, finally, odometry. The estimated translation and rotation covariance matrices

are used to compute the a priori process covariance matrix.

6.3.3 Updating stage

From the whole set of features used in the prediction stage to compute the homogra-

phy, a small subset (about ten) is selected to act as landmarks. The features associ-

ated to the landmarks are taken apart and not used for the homography estimation in

order to eliminate correlations among prediction and updating. For each new image,

the new position of this set of features will be given by the feature tracking algorithm;

this information will be used as measurement at time t, zt.

If the prediction stage was correct, the projection of the landmark into the camera

would fit with the estimated position position of the feature given by the tracking

algorithm. From the state vector, the camera is at the position dt with orientation qt.

Thus, if the landmark yn = [x, y, z] corresponds with the image feature mn = [u, v],

and the scheme of Fig. 6.1 is considered:

m̃n = A(q−1
t ⊗ (ẏn − ḋt)⊗ qt) (6.6)

where A is the camera calibration matrix and m̃n = [ũ, ṽ, h], so the feature position

is computed as mn = [ũ/h, ṽ/h].

This measurement equation is applied to all the features correctly tracked from the

previous image to the current one. The data association problem is solved by means of

the feature matching algorithm. When the feature tracking algorithm loses a feature,

it is automatically removed from the SLAM filter and the new feature, provided by

the tracker, initialized. If the corresponding landmarks are well conditioned, the

measurement equation constraints the current position and orientation of the UAV.
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Figure 6.1: Projection of a landmark into the camera.

6.3.4 Filter and landmarks initialization

The filter state vector will be initialized to a given position and orientation. This

information can be provided by external devices such as GPS and IMU, and the

process covariance matrix to the corresponding error information. The position can be

also initialized to zero, so the first position is assumed as origin and the corresponding

covariances are zero too.

For the landmark initialization a more sophisticated method is proposed. When

a new image feature is selected for being a landmark in the filter, it is necessary to

compute its real position in the World frame. Due to the bearing only nature of the

camera, the back-projection of the feature is given by a ray defined by the camera

focal point and the landmark image. The proposed technique will take advantage of

knowing the normal to the scene plane and the distance from the UAV to the ground.

With this information the ground can be approximated by a plane and the landmark

position as the intersection of the back-projection ray with this plane, as shown in

Fig. 6.2.

Assuming that the World frame is aligned with the camera frame, the back-

projection of the feature mn = [u, v] will be the ray r defined by:

r : λA−1m̃n (6.7)
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� ��
Figure 6.2: Landmark initialization representation

Where λ is an unknown variable, A is the camera calibration matrix and m̃n =

[u, v, 1]. In addition, the odometer provides an estimation of the normal to the scene

plane at time t denoted as nt. Given the distance to the plane distt, the plane Π is

defined as:

Π : distt − nT
t




x

y

z


 (6.8)

Then, the landmark position will be computed as the intersection of the ray r with

the plane Π. If (6.7) and (6.8) are merged, the value of λ can be easily computed as:

λ = (nT
t A−1m̃n)−1distt (6.9)

and the landmark can be computed as:

yn = (nT
t A−1m̃n)−1disttA

−1m̃n (6.10)

But this landmark is expressed in the camera coordinate frame. The UAV current

position dt and orientation qt are finally used to express the landmark in the World

frame:

yn = dt + qt ⊗ ((nT
t A−1m̃n)−1disttA

−1m̃n)⊗ q−1
t (6.11)
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There is a strong dependence of this approach on the planarity of the scene. The

more planar the scene is, the better the plane approximation, leading to smaller

noise in the plane normal estimation. Thus, the landmark is very well conditioned.

However, when the scene is barely approximated by a plane, the errors in the plane

normal increase and the landmark estimation worsens.

6.4 Experimental results

6.4.1 Homography-based approach

To test the proposed approach, the HERO helicopter (introduced in Chapter 3) has

been used. The image sequence was gathered at 15 meters of altitude with respect

to the ground and with the camera pointed 45 degrees with respect to the helicopter

horizontal. Mosaic-based localization cannot be carried out because the camera is

not perpendicular to the ground.

The image sequence is composed by 600 samples captured at 10Hz, so the test

took 1 minute. The SLAM filter was initialized with the IMU information for the

orientation. It is important to remark that no close-loop was carried out during the

experiment, although there are some loops present in the UAV trajectory, because it

is out of the Thesis scope. It means that the result can be improved if a reliable data

association algorithm is used for detecting and associating landmarks in the filter.

The complete size of the trajectory is about 90 meters long.

The results of the experiment are shown in Fig. 6.3, where the XY trajectory is

plotted together with the XY estimation. More details are shown in Fig. 6.4, where

the estimation in each axis and the errors are plotted. It can be seen how the uncer-

tainty estimation is coherent with the errors. However, the position slowly diverges

through time due to the absence of large loop closing. The instant orientation is not

plotted because it is inherently taken into account in the computation of position.
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Figure 6.3: XY position estimation using the SLAM approach (green dashed line)
and DGPS estimation (red solid line).

6.4.2 Inertial measurement unit (IMU) data inclusion

If the measures of the IMU are incorporated into the SLAM approach, the errors

introduced by the orientation estimation can be reset, and then the localization can

be partially improved. This can be easily carried out in the estimation stage of the

EKF where, instead of incorporating a relative rotation, the complete orientation is

provided.

This approach has been tested with the same data set. Fig. 6.5 shows the estima-

tion compared to the DGPS measurement. It can be seen that the errors in Z and Y

are significantly smaller while in X are slightly smaller with respect to the approach

without considering the IMU. The XY estimation is plotted in Fig. 6.6.

6.5 Conclusions

The Chapter proposes a SLAM technique to provide localization when the mosaic-

based technique cannot be performed. An Extended Kalman filter based SLAM is

successfully used to compute the localization and mapping.

Two basic contributions to the SLAM with UAVs are proposed. First, the use of

a vision based odometry as main motion hypothesis for the prediction stage of the

Kalman filter and, second, a new landmark initialization technique that exploits the
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Figure 6.4: Left: Position estimation using the SLAM approach (green dashed line)
and DGPS estimation (red solid line). Right: Error of the SLAM approach (green
solid line) and estimated standard deviation (blue dashed line).
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Figure 6.5: Left: Position estimation using the SLAM approach with IMU corrections
(green dashed line) and DGPS estimation (red solid line). Right: Error of the SLAM
approach with IMU corrections (green solid line) and estimated standard deviation
(blue dashed line).
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Figure 6.6: XY position estimation using the SLAM approach with IMU corrections
(green dashed line) and DGPS estimation (red solid line).

benefits of estimating the normal to the scene plane. Both techniques are implemented

and validated with a real UAV.

Although no large loops are closed in the experiments, the estimated position and

covariance are coherent, so the result could be improved if a reliable data association

algorithm is used for detecting and associating landmarks in the filter.
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Chapter 7

Conclusions and future

developments

This Chapter presents the Thesis conclusions and future developments. A summary

of the main contributions of the Thesis and an analysis of the achieved objectives

are firstly described. Then, future research activities that could extend the work

presented in this document are detailed.

7.1 Summary of contributions

The aim of this Thesis is the development of algorithms for self-localization of an un-

manned aerial vehicle using monocular image sequences. Monocular vision is a good

solution because it offers low weight, and good accuracy and scalability. However,

the scale ambiguity in monocular vision needs to be addressed. For this purpose, this

Thesis uses an altitude initial estimation that can be obtained by means of differ-

ent methods such as range sensor, GPS last reliable altitude measure or barometric

sensor.

An important aspect of this Thesis is the use of natural landmarks instead of

beacons or visual references with known positions. A general-purpose feature tracking

has been used for this purpose. Although natural landmarks increase the applicability
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of the proposed techniques, they also increase the complexity of the problem to be

solved. In fact, outlier rejection is needed to avoid distortions.

Projective Geometry is the background theory of the proposed methods. Ho-

mographic transformations have been used to model the apparent motion between

sequenced images and as a basic tool for most of the techniques proposed in this The-

sis. A robust technique for homography computation has been described and used all

along the experiments presented in the Thesis with good results. The study of the

uncertainties associated to this estimation has also been addressed. In addition, the

homography estimation method has been extended with a hierarchical method that

allows the computation of the homographic model in pseudo-planar scenes.

The Thesis has proposed a visual odometry system for UAVs based on monocular

imagery and a range sensor. The homography decomposition was used to extract

the real camera motion and the normal vector to the scene plane. The experimental

results with real UAVs showed the feasibility of the approach, at least with images

taken from 15 to 150 meters, and fast, up to 10Hz with 320x240 resolution images.

The Thesis proposes a localization method based on online mosaikcing has been

proposed to reduce the odometry errors. The mosaic has demonstrated to be a good

representation of the environment of an UAV flying at relatively high altitude.

In addition, a new technique for mosaic building that takes into account the

stochastic nature of the relations among the component images has been proposed.

This technique allows to extend the use of the mosaic-based localization to lower

altitudes, where the parallax effect introduces significant distortion in the mosaic,

and takes advantage of the loop-closing present when the UAV visits areas previously

inserted in the mosaic to better estimate the relations among component images.

Mosaic-based localization is very suitable when the UAV carries out monitoring or

surveillance tasks, because in many applications the UAV is expected to repeatedly

visit the same areas. The stochastic framework allows to improve the mosaic estima-

tion each time a loop is closed and, indirectly, improve the mosaic-based localization.

However, mosaic-based localization cannot be performed when the distance to the

ground severely changes or the camera orientation is significantly oblique with respect

to the ground. For more general situations, a SLAM technique based on Extended
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Kalman filtering has been proposed. The homography-based odometry is used in

this technique to make reliable motion hypothesis. A new landmark initialization

technique that exploits the benefits of estimating the normal vector to the scene

plane has also been proposed.

7.2 Future developments

7.2.1 Vision-based UAV control application

The first objective of the author in the near future is to apply the odometry and

localization techniques proposed in this Thesis to close the position control loop in

UAVs. These algorithms will be used to estimate the motion of the HERO helicopter

in several situations such as hovering, landing or take-off.

These applications will provide positioning information without the use of special

positioning devices, which is very important in disaster scenarios where a fast system

deploy is required and the GPS may not be suitable.

7.2.2 Simultaneous tracking and homography computation

Another research goal will be to reduce the computation load needed for the real

camera motion estimation. Although the algorithm presented in Chapter 3 works

well, feature tracking and homography computation algorithms are needed to later

compute the motion from the homographies. If a simultaneous computation of the

homography and the feature tracking were possible, the computation load could be

significantly reduced.

The homography models feature motion from the previous image to the current

one. If a well distributed set of matches, four at least, were provided by a feature

tracking algorithm, a homography could be computed. Although the estimated ho-

mography is inaccurate when it is computed with only a few matches, it probably

describes most of the transformation among the images. Thus, this homography can

be used to determine the searching areas for a subset of new features. Once these new

features are matched, they can be used to re-estimate the homography, this time with
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more information. The growth in the number of matches will increase the accuracy of

the estimated homography and then, reduce the searching area for new features. This

process can be repeated until the tracking of all the features has been performed.

Moreover, if the identity (3.9) is considered, the homography can be replaced with

an expression that is function of the translation, rotation and plane normal. As a

result, a simultaneous feature tracking and real camera motion could be carried out

in a easy iterative method.

7.2.3 Wall inspection

An interesting application of the homography-based odometry is the relative position

estimation with respect to a wall. The GPS estimation is usually inaccurate when

the UAV flies close to buildings. The homography-based odometry could be valuable

tool to perform approach maneuvers, or for data interpretation and processing.

The homography-based odometer is able to obtain the relative orientation of the

scene plane with respect to the camera. This information can be used to control

the helicopter in order to obtain a perpendicular view of the walls of the inspected

building. Given an initial estimation of the distance to the wall, it is also possible to

obtain UAV position with respect to the plane each time a new image is received.

Moreover, the knowledge of normal vector to the plane can be used to generate

virtual orthogonal views of the inspected building. The orthogonal view can be an

important tool when it is necessary to recognize geometric features, because variations

in the camera orientation may create significant distortion.

7.2.4 Navigation based on geo-referenced mosaics

The application of mosaic-based localization described in Chapter 4 with geo-referenced

mosaic will be researched. The idea is to use pre-computed mosaics with localization

references in order to estimate the position of the UAV.

The images gathered by the camera onboard the vehicle are matched with the

mosaic to compute their exact location. Then, if the mosaic is geo-referenced, the

relation with the mosaic can be used to estimate the real position of the UAV. This
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application is really interesting when the UAV performs monitoring or survey tasks

in which the vehicle will move over the same area all the time.
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Appendix A

Quaternions

A.1 Definition

Quaternions are a non-commutative extension of complex numbers. They were first

described by the Irish mathematician Sir William Rowan Hamilton in 1843 and ap-

plied to mechanics in three-dimensional space. At first, quaternions were regarded as

pathological, because they disobeyed the commutative law. Although they have been

superseded in most applications by vectors, they still find uses in both theoretical

and applied mathematics, in particular for calculations involving three-dimensional

rotations, such as in 3D computer graphics.

As Hamilton pointed out in 1833, the addition symbol used in the Cartesian

representation of a complex number a + ib is somewhat misleading, since a real and

purely imaginary number cannot be directly added together arithmetically. A more

suitable representation might be as an ordered pair of real numbers [a, b]T together

with a set of manipulation rules that define how to perform operations like addition

and multiplication of these pairs.

It seems natural, then, to speculate whether there might be some form of extended

number system whose numbers may be interpreted as points in three-dimensional

space, with a corresponding representation as number triples.
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The simplest such extension would seem to be numbers of the form a + ib + jc ≡
[a, b, c]T where i and j are distinct, independent square roots of −1. Hamilton at-

tempted to define operations on these triples that were analogous to those on complex

numbers. Addition and subtraction are naturally implemented as component-wise op-

erations on the three real numbers. Multiplication, however, presented a problem.

In three dimensions it is needed two parameters to specify the direction of the axis

for a rotation, a third to specify the angle of rotation, and yet another to determine a

scaling for the length. Thus, it would be needed to specify four parameters and will

be represented by a four dimensional vector such as:

w + xi + yj + zk ≡ [x, y, z, w]T ≡ [v, w]T (A.1)

Where v is a vector expressed in the ijk basis.

A.2 Quaternion algebra

Given the following quaternions:

a ≡ aw + axi + ayj + azk ≡ [av, aw]T ≡ [ax, ay, az, aw]T (A.2)

b ≡ bw + bxi + byj + bzk ≡ [bv, bw]T ≡ [bx, by, bz, bw]T (A.3)

A.2.1 Basis multiplication

The set of equations:

i2 = j2 = k2 = ijk = −1 (A.4)

is the fundamental formula for quaternion multiplicative identities, summarized in

the following multiplication table of basis quaternions:

ij = k, ji = −k

jk = i, kj = −i

ki = j, ik = −j

(A.5)
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A.2.2 Addition

Addition is the simple map of the addition operator over each element in the quater-

nions:

a + b ≡ [ax + bx, ay + by, az + bz, aw + bw]T (A.6)

A.2.3 Substraction

Addition is the simple map of the substraction operator over each element in the

quaternions:

a− b ≡ [ax − bx, ay − by, az − bz, aw − bw]T (A.7)

A.2.4 Multiplication

The multiplication is the exception in the quaternion algebra and is normally denoted

by the symbol ⊗. It is computed as follows:

c = a⊗ b = awbw − avbv + awbv + bwav + av × bv (A.8)

Or, in an optimized way:

cx = awbx + axbw + aybz − azby (A.9)

cy = awby − axbz + aybw + azbx (A.10)

cz = awbz + axby − aybx + azbw (A.11)

cw = awbw − axbx − ayby − azbz (A.12)

Notice that the multiplication is not commutative, so in general a⊗ b 6= b⊗ a

A.2.5 Inverse (Conjugation)

The quaternion conjugate corresponds to the negation of each of the elements that

would have a spatial representation, which are the elements in the i basis, the j basis

and the k basis.
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The usual symbol for the conjugation of the quaternion a is a∗. Thus, the conju-

gate can be written as:

a∗ ≡ aw − axi− ayj − azk ≡ [−av, w]T ≡ [−ax,−ay,−az, aw]T (A.13)

If the quaternion represents a rotation, its conjugate expresses the inverse rotation.

It is the reason that the conjugate is usually refereed as inverse and denoted as a−1

A.3 Quaternion conversion

This section details the steps to convert from quaternion to rotation matrix represen-

tation and vice versa.

A.3.1 Quaternion to rotation matrix

The rotation matrix R corresponding to the quaternion q = [qx, qy, qz, qw]T can be

computed as follows:

R = (q2
w − q̌T q̌)I3 + 2q̌q̌T − 2qwQ (A.14)

With I3 the 3× 3 identity matrix, and

q̌ =




qx

qy

qz


 , Q =




0 −qz qy

qz 0 −qx

−qy qx 0


 (A.15)

A.3.2 Rotation matrix to quaternion

Given the rotation matrix R:

R =




r11 r12 r13

r21 r22 r23

r31 r32 r33


 (A.16)
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Algorithm 2 Rotation matrix to quaternion conversion
T = 1 + r11 + r22 + r33

2: if T > 0.00000001 then
k = 2

√
T

4: qx = (r23 − r32)/k
qy = (r31 − r13)/k

6: qz = (r12 − r21)/k
qw = 0.25k

8: else if r11 > r22 AND r11 > r33 then
k = 2

√
1.0 + r11 − r22 − r33

10: qx = 0.25k
qy = (r12 + r21)/k

12: qz = (r31 + r13)/k
qw = (r23 − r32)/k

14: else if r22 > r33 then
k = 2

√
1.0 + r22 − r11 − r33

16: qx = (r12 + r21)/k
qy = 0.25k

18: qz = (r23 + r32)/k
qw = (r31 − r13)/k

20: else
k = 2

√
1.0 + r33 − r11 − r22

22: qx = (r31 + r13)/k
qy = (r23 + r32)/k

24: qz = 0.25k
qw = (r12 − r21)/k

26: end if

Algorithm 2 shows the pseudocode to optimally compute the corresponding quater-

nion q = [qx, qy, qz, qw]T .

A.4 Rotation of a vector

Quaternions can be used to rotate a vector. Thus, given a 3D vector v and a rotation

expressed as a quaternion q, the rotated vector r is computed as follows:

r = q⊗ v̇ ⊗ q−1 (A.17)
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Where v̇ = [v, 0]T and the quaternion has norm one. This can easily be realized and

is most faster than the transformation using a rotation matrix.

It is important to remember that successive rotations R1 and R2 are combined as

R3 = R2R1 but quaternions have inverse ordering of multiplication when compared

to rotation matrix multiplication and hence q3 = q1 ⊗ q2.



Appendix B

Breve resumen de la Tesis

B.1 Motivaciones

Las aplicaciones de robots en exteriores requieren de una mayor movilidad que la

provista por la mayor parte de los veh́ıculos terrestres. De hecho, a pesar de los

numerosos adelantos tecnológicos producidos en los últimos 20 años en los veh́ıculos

autónomos terrestres, la navegación en entornos desconocidos aún supone grandes

retos.

Los veh́ıculos autónomos aéreos o UAVs (acrónimo inglés) son una buena op-

ción como sistema robótico debido a que no están afectados por estas limitaciones.

Además, los últimos adelantos tecnológicos han permitido incrementar las capacida-

des de autonomı́a de estos veh́ıculos, tanto en procesamiento a bordo, como en tiempo

de vuelo. Aśı, hoy en d́ıa existen UAVs en los que se llevan a cabo tareas automáticas

de percepción del entorno, estimación de la posición, navegación reactiva o desarrollo

de tareas complejas en entornos desconocidos.

En la mayoŕıa de los casos, los UAVs utilizan el Sistema de Posicionamiento Global

(GPS en inglés) para la estimación de la posición del veh́ıculo. Sin embargo, como

apunta el informe Volpe (Volpe, 2001), dicha estimación no está exenta de errores.

Los sistemas GPS dependen en gran medida del número de satélites utilizados para el

cálculo de la posición y de la calidad de la señal recibida en el dispositivo. Aśı, efectos
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radioeléctricos como el multi-camino o la polarización de la antena pueden generar

una reducción importante en la calidad de la estimación.

Estos problemas ocasionales en la estimación de la posición han sido tradicional-

mente resueltos mediante el uso de la odometŕıa del robot. Ésta consiste en calcular

la posición relativa del robot con respecto a un punto de partida mediante sensores

locales colocados en las ruedas, normalmente velocidad y orientación. Si un sistema de

odometŕıa está presente en el robot, éste puede ser utilizado como sistema de posicio-

namiento de respaldo cuando la precisión en las estimaciones del GPS se reduce hasta

niveles cŕıticos. Por desgracia, los veh́ıculos aéreos suelen carecer de odometŕıa debi-

do fundamentalmente a la falta de un sensor que permita estimar el desplazamiento

relativo del veh́ıculo con respecto al suelo. Aśı, el estudio en técnicas de odometŕıa

para UAV resulta de especial interés.

En el caso concreto de pequeños UAVs, su baja capacidad de carga impone se-

rias restricciones en cuanto a los tipos de sensores que pueden ser utilizados para

la odometŕıa. Los sensores basados en laser 2D o 3D son muy pesados y tienen una

importante dependencia con la distancia hasta el suelo. Los dispositivos que permiten

calcular la profundidad, aunque existen en tamaño pequeño, suelen tener un rango

de actuación muy corto, normalmente entre los 15 o 20 metros. La visión estéreo,

que se ha utilizado con buenos resultados en veh́ıculos aéreos dado su bajo peso y

versatilidad, tiene como inconveniente que la distancia entre cámaras impone duras

restricciones en el rango de alturas de vuelo.

Descartadas las anteriores opciones, los sistemas de visión monoculares parecen

ser la mejor solución en términos de peso, precisión y escalabilidad. Sin embargo,

a pesar de haber sido presentados diversos métodos basados en balizas visuales con

posiciones conocidas, el estudio basado en marcas naturales sigue siendo un gran reto

apenas tratado por la comunidad cient́ıfica.

Esta Tesis propone un sistema de visión monocular para el cálculo de la odometŕıa

y sistemas de localización basados en visión, que actúen como respaldo frente a po-

sibles errores del GPS. Aśı, se utilizarán técnicas de visión artificial basada en las
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imágenes tomadas por una cámara montada en el UAV para el cálculo de la rota-

ción y la traslación relativa, y para la localización del veh́ıculo. Este análisis tendrá en

cuenta el carácter estocástico de las estimaciones y diversas consideraciones prácticas.

B.2 Antecedentes

Las primeras investigaciones en visión aplicada a la estimación de la posición de

UAVs fueron llevadas a cabo en la Universidad Carnegie-Mellon (CMU). En (Amidi

et al., 1998), Amidi describe un sistema de odometŕıa basado en visión que permit́ıa

seguir objetivos terrestres y percibir el desplazamiento y velocidad relativas del UAV

mediante visión estereoscópica. Las mismas técnicas de seguimiento visual junto con

sensores inerciales, fueron utilizadas para el seguimiento de una trayectoria, aterrizaje

y despegue. El helicóptero autónomo del CMU demostró también sus capacidades para

el seguimiento de objetivos móviles mediante el uso de una electrónica especialmente

diseñada alojada en el veh́ıculo.

La visión estereoscópica se utiliza también en el helicóptero GTMax de la univer-

sidad Georgia Tech (Johnson and Schrage, 2003) donde el sistema VISTA es usado

para le detección y evitación de obstáculos en tiempo real utilizando un pequeño

sistema estereoscópico comercial. El método, descrito en (Byrne et al., 2006), combi-

na visión estéreo con una fase de segmentación global para incrementar la robustez

ante correspondencias erróneas, dando lugar a un práctico sistema de evitación de

obstáculos.

Los sistemas basados en visión también han sido muy utilizados para el aterrizaje

de veh́ıculos autónomos. El proyecto BEAR de la Universidad de Berkeley es un buen

ejemplo, aśı, en (Shakernia et al., 2002; Vidal et al., 2002) se detalla la estimación

de posición basado en visión para veh́ıculos aéreos relativos a un objetivo plano y el

aterrizaje. Se usa un método basado en la geometŕıa de múltiples vistas de la misma

escena plana para calcular el movimiento del UAV con respecto el objeto plano.

En (Garcia-Pardo et al., 2001) se describe un algoritmo para el aterrizaje basado en

la búsqueda de áreas planas mediante procesamiento de imágenes. Métodos basados

en visión para el aterrizaje en pista con caracteŕısticas conocidas se describen en
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(Saripalli et al., 2003; Saripalli and Sukhatme, 2003), donde también se considera el

aterrizaje en una plataforma que se mueve lentamente.

Los métodos que consideran la localización y mapeo simultáneo (SLAM) están

muy relacionados con el problema de la localización. Aunque el SLAM basado en

visión ha sido profundamente estudiado para el caso de veh́ıculos terrestres y ha de-

mostrado una gran utilidad para la percepción del entorno y estimación consistente

de la posición del robot, pocas han sido las aplicaciones en veh́ıculos aéreos. Cabe

mencionar las investigaciones realizadas por el laboratorio LAAS en Francia y por el

Centre for Autonomous System en Australia. Aśı, LAAS ha desarrollado un sistema

estéreo para el dirigible KARMA (Lacroix et al., 2002; Hygounenc et al., 2004) donde

utilizan algoritmos para el seguimiento de correspondencias entre imágenes y filtros de

Kalman para la localización y mapeo simultaneo, con muy buenos resultados. Sin em-

bargo, este método no es adecuado para helicópteros debido a que la distancia máxima

entre cámaras es reducida y por tanto solo podŕıa ser utilizada a baja altura. También

se utiliza SLAM con visión en la plataforma de ala fija Delta en los trabajos desarro-

llados por Kim y Sukkarieh (Kim and Sukkarieh, 2004) en el Centre for Autonomous

Systems. Se distribuye un conjunto de puntos de referencia artificiales y de tamaño

fijo en el suelo con la idea de ser fácilmente detectados y localizados por el hardware

a bordo del veh́ıculo, dando lugar a un sensor de distancia/orientación/elevación.

El uso de cámaras omnidireccionales para el control del veh́ıculos aéreos se ha con-

siderado en (Hrabar and Sukhatme, 2003). La cámara se utiliza para hacer permane-

cer el helicóptero en el centroide de un conjunto de referencias visuales artificiales. El

art́ıculo muestra la viabilidad del método, pero no se detallan pruebas con el algoritmo

de control. Cámaras omnidireccionales han sido utilizadas también en (Demonceaux

et al., 2006) para estimar orientación del UAV. El método se basa en separar me-

diante procesamiento digital de imágenes la ĺınea del horizonte. A pesar de parecer

una técnica robusta, los autores no comparan los resultados con ninguna referencia

de orientación y por tanto no es posible evaluar la precisión de la estimación.

Algoritmos de visión artificial son utilizados para el seguimiento de rasgos de

edificios en el trabajo presentado en (Mej́ıas et al., 2006). Estos rasgos junto con las
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medidas de GPS son utilizados para mantener el UAV alineado con un conjunto de

rasgos seleccionados.

Finalmente, en (Garcia et al., 2002) se han propuesto algoritmos para la localiza-

ción de veh́ıculos autónomos submarinos o AUVs (acrónimo Inglés) basada en visión

monocular y construcción de mosaicos. A pesar de ser un entorno completamente

diferente, las limitaciones son parecidas a las presentes en los UAVs. El método uti-

liza mosaicos construidos en ĺınea para crear un modelo plano del fondo submarino

y utilizar aśı las relaciones entre imágenes para calcular la traslación del veh́ıculo. El

concepto es original y de gran aplicabilidad, pero el sistema solo permite calcular la

traslación del veh́ıculo.

B.3 Objetivos de la Tesis

El principal objetivo de esta Tesis es el desarrollo de técnicas de visión artificial para

localizar un UAV por medio de las imágenes tomadas por una cámara montada en el

mismo. Es importante señalar que se utilizarán las caracteŕısticas naturales del en-

torno para este propósito, en lugar de balizas visuales con posiciones conocidas. Los

algoritmos tanto de odometŕıa como de localización del UAV están fundamentados

en la teoŕıa de Geometŕıa Proyectiva. Ésta ha sido utilizada con mucho éxito para

expresar el proceso de proyección de imágenes en la cámara y en numerosos proble-

mas relacionados con la visión por computador tales como la visión estereoscópica

(Faugeras and Luong, 2001), proyección inversa de imágenes, geometŕıa de múltiples

vistas de la misma escena (Hartley and Zisserman, 2004) o calibración de cámaras

(Zhang, 1999).

En este sentido, la Tesis primero lleva a cabo una introducción a la Geometŕıa

Proyectiva y, más concretamente, al cálculo de homograf́ıas en el Caṕıtulo 2. La

Homograf́ıa se utilizará como representación formal del movimiento entre dos imáge-

nes consecutivas cuando la escena visualizada puede ser aproximada por un plano.

Los resultados experimentales presentados en este documento demostrarán que dicha

aproximación es válida cuando el UAV vuela relativamente alto y se propondrán me-

canismos para extender dicha aproximación a altitudes medias. El algoritmo para el
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cálculo de homograf́ıas se ha probado con miles de imágenes tomadas por diferentes

UAVs y a diferentes alturas, desde quince a ciento cincuenta metros. Este algoritmo

se describió brevemente en (Ollero et al., 2004) y es parecido al método propuesto por

Bosch en (Bosch et al., 2006). Esta técnica se ha probado con buenos resultados du-

rante los experimentos generales del proyecto COMETS (Ollero et al., 2005) para la

compensación del movimiento en las imágenes tomadas por los UAVs (Merino et al.,

2006a). El caṕıtulo también describe el cálculo de la matriz de covarianza asociada a

la homograf́ıa estimada. Esta información será cŕıtica a lo largo de la Tesis para poder

propagar y estimar los errores en aquellos procesos en los se utilice la homograf́ıa.

El Caṕıtulo 3 detalla un método que permite estimar el movimiento real que se

produce en una cámara por medio del análisis de la homograf́ıa que relaciona imáge-

nes consecutivas. El Caṕıtulo extiende el trabajo presentado en (Caballero et al.,

2005), donde se presenta una de las primeras aplicaciones de la homograf́ıas para la

estimación del movimiento de un UAV. A pesar de que el trasfondo teórico del méto-

do fue desarrollado durante la década de los ochenta por Tsai (Tsai et al., 1982), la

particularización del método al entorno de UAVs y el estudio de las incertidumbres

de las estimaciones suponen grandes avances. Imágenes y telemetŕıa de UAVs reales

se utilizan en este Caṕıtulo para poder validar el algoritmo. Los resultados experi-

mentales muestran que, a pesar de generar buenas estimaciones, se produce un efecto

acumulativo del error en la estimación de la posición del UAV, que acaba por hacer

diverger la estimación.

El Caṕıtulo 4 presenta una nueva técnica para reducir el impacto de la acumula-

ción del error en la estimación de la posición. El Caṕıtulo describe un método para

construir mosaicos en ĺınea a partir de las homograf́ıas que relacionan imágenes conse-

cutivas. El mosaico se utiliza para poder construir un modelo del entorno consistente

y, de este modo, ser capaz de detectar derivas en la estimación de la posición. Es-

ta técnica, presentada por primera vez en (Caballero et al., 2006) y junto con la

estimación de posición del Caṕıtulo 3 en (Merino et al., 2006b), es especialmente

adecuada para llevar a cabo tareas de monitorización y vigilancia, donde el UAV pa-

sará repetidamente por encima de las mismas áreas. El Caṕıtulo muestra resultados
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experimentales donde se hacen evidentes los beneficios de la localización basada en

mosaico frente a la aproximación odométrica.

Sin embargo, la naturaleza estática del mosaico construido utilizando el méto-

do descrito en el Caṕıtulo 4 hace imposible la actualización del mosaico cuando el

UAV visita zonas ya registradas. El Capitulo 5 trata con este problema, propone un

nuevo marco estocástico donde la matriz de covarianza que relaciona dos imágenes

consecutivas se utiliza para poder modelar y propagar los errores relacionados con

el posicionamiento de la imágenes. De esta manera, cuando el UAV visite una zona

anteriormente introducida en el mosaico, la información del cierre del bucle puede

ser utilizada para refinar el posicionamiento entre imágenes. Además, el Caṕıtulo 5

propone un nuevo método para el cálculo de la homograf́ıa, basada en una jerarqúıa

de modelos proyectivos, que permite extender su cálculo a secuencias de imágenes to-

madas a media/baja altura. El Caṕıtulo 5 detalla el trabajo presentado en (Caballero

et al., 2007) y aporta nuevos resultados experimentales.

Los Caṕıtulos 4 y 5 consideran que el vuelo llevado a cabo por el UAV es tal

que permite construir un mosaico a la vez que se mueve, este mosaico es utilizado

para modelar el entorno para aśı reducir los errores en la localización. Las mayores

restricciones de este algoritmo son las relacionadas con la posición de la cámara y la

altura del UAV: la cámara debe estar lo más perpendicular posible a la escena y la

altura debe permanecer aproximadamente constante para garantizar la coherencia del

mosaico. El Caṕıtulo 6 considera este problema y lo resuelve mediante la aplicación

de técnicas clásicas de SLAM. El Caṕıtulo también considera el uso de sensores de

medida inercial para reducir los errores de orientación y aśı mejorar la estimación de

la localización.

Finalmente, el Caṕıtulo 7 resume las contribuciones de la Tesis y describe los si-

guiente pasos a llevar a cabo por el autor en cuanto a localización basada en secuencias

de imágenes monoculares se refiere.
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B.4 Resumen del Caṕıtulo 2

Este caṕıtulo describe brevemente la herramienta matemática que se utiliza a lo largo

de toda la Tesis, la Geometŕıa Proyectiva (Hartley and Zisserman, 2004; Faugeras and

Luong, 2001). En particular, se introduce la notación a utilizar y las transformaciones

proyectivas del plano. Estas transformaciones permitirán modelar las distorsiones

geométricas producidas en un plano cuando se toma una imagen de éste con una

cámara de perspectiva.

Además se detalla el proceso de estimación de la matriz de homograf́ıa, la cual per-

mite relacionar dos imágenes tomadas de una misma escena plana. Dicha estimación

se basa en la información aportada por la posición de un conjunto de correspondencias

entre ambas imágenes.

En la estimación de la homograf́ıa es necesario, en primer lugar, filtrar los datos

de las posiciones de las correspondencias de modo que se puedan eliminar errores de

seguimiento o correspondencias asociadas a elementos no planos. Posteriormente, se

aplican técnicas numéricas para la obtención de la matriz que mejor se ajuste a los

datos.

Para poder filtrar los datos de entrada se aplica el algoritmo de la mı́nima mediana

de los mı́nimos cuadrados (LMedS) (Rousseeuw and Leroy, 1987). Este algoritmo

permite obtener la desviación t́ıpica de los datos, con la que se establece una cota

máxima de error que permite la detección de datos incorrectos.

El cálculo definitivo de la matriz de homograf́ıa se hace mediante un algoritmo de

M-Estimaciones (Huber, 1981), que sirve para establecer con gran precisión el valor

de la matriz de homograf́ıa a partir de los valores ya filtrados. Este algoritmo también

permite detectar errores en el espacio de datos de las correspondencias.

B.5 Resumen del Caṕıtulo 3

Los veh́ıculos aéreos no tripulados (UAV) suelen usar solo el GPS para obtener una

medida fiable de la posición en la que se encuentran. Esto puede ser un importante

problema ya que la precisión del GPS depende directamente del número de satélites
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utilizados para la estimación de la medida. Si la visibilidad es baja la estimación de

la posición puede contener importantes errores.

Con intención de tener un sistema de posicionamiento robusto, este Caṕıtulo pre-

senta un conjunto de herramientas que permitan dotar al UAV de un sistema de

posicionamiento mı́nimo cuando el error de GPS se ve incrementado por encima de

ciertas cotas. Se implementa una odometŕıa basada en sistemas de medida locales,

fundamentalmente en visión monocular.

En este caṕıtulo se describe un método basado en visión que permitirá la estima-

ción del movimiento real de una cámara utilizando diferentes vistas de una escena

plana. En caṕıtulos anteriores se ha mostrado cómo es posible obtener el movimiento

de la cámara en el sistema de referencia ṕıxel cuando la escena es casi plana mediante

el uso de homograf́ıas, sin necesidad de realizar una reconstrucción 3D.

En (Faugeras and Luong, 2001) se establece que la homograf́ıa que relaciona dos

imágenes tomadas de la misma escena desde diferentes puntos de vista puede ser

expresada como sigue:

H12 = A·R2·(I− wt2·nt)·A−1 (B.1)

Donde A es una matriz 3x3 que contiene los parámetros de calibración intŕınsecos de

la cámara, t2 es la posición de la segunda vista de la escena tomada en el sistema de

referencia de la primera, n es un vector unitario normal al plano de la escena en el

sistema de referencia de la primera vista (con sentido hacia fuera de la cámara), w

es la inversa de la distancia de la primera vista hasta el plano de la escena y R2 es

la rotación que transforma el sistema de coordenadas de la primera vista en el de la

segunda.

En (Tsai et al., 1982) se muestra que, si la cámara está calibrada (la matriz A

es conocida), entonces es posible obtener dos soluciones de R2, t2, y n2 a partir de

H12, salvo un factor de escala. Si un tercer punto de vista es considerado, junto con

su homograf́ıa H13 respecto a la primera vista, es posible obtener una solución única

gracias a que la normal al plano debe ser única ((Shakernia et al., 2002)), es decir, en

teoŕıa n = n2 = n3... = ni.



114 Breve resumen de la Tesis

Si se utiliza un sistema de medida independiente, tal como un sensor de distancias,

se podŕıa conocer el factor de escala sin más que calcular la distancia entre el primer

punto de vista y el plano (1/w). Este sensor puede ser un simple laser o un sensor de

ultrasonidos, en general sensores de bajo coste y poco peso.

El Caṕıtulo describe un método para el cálculo de la matriz de covarianzas de

la rotación, traslación y normal al plano estimadas. Dicha matriz de covarianzas se

utiliza como ı́ndice para medir la bonanza de la estimación.

A pesar de que la estimación de la traslación y rotación utilizando este método es

bastante robusta y precisa, la acumulación de un alto número de estimaciones para

localizar el veh́ıculo con respecto a la posición inicial genera la acumulación de error

en la localización y, por tanto, la divergencia de la posición a lo largo del tiempo.

B.6 Resumen del Caṕıtulo 4

Un mosaico es una imagen que reproduce una escena continua de gran tamaño forma-

da a partir varias imágenes, de menor resolución, de la misma. Las imágenes usadas

para construir el mosaico pueden estar sometidas a rotaciones y traslaciones impor-

tantes respecto al marco de referencia, la primera imagen.

Una posible aplicación de la percepción en los veh́ıculos aéreos es la generación de

mosaicos de alta resolución. Estos mosaicos pueden ser creados con múltiples propósi-

tos tales como la generación de imágenes de alta resolución, marcos de referencia para

veh́ıculos terrestres o incluso para mejorar los sistemas de posicionamiento del veh́ıcu-

lo que lo construye u otros.

Resulta de especial interés el poder generar estos mosaicos sin más información

que la dada por las imágenes tomadas por la cámara del veh́ıculo, ya que, en este

caso, toda la información aportada por el mosaico puede ser utilizada como un sensor

de posicionamiento con determinadas restricciones.

El método que se presenta en este caṕıtulo hará uso del sistema de establecimiento

y seguimiento de correspondencias detallado en (Ollero et al., 2004) y de la matriz de

homograf́ıa para el cálculo del movimiento entre dos imágenes consecutivas presen-

tado en el Caṕıtulo 3. Como principal caracteŕıstica se puede señalar que el método
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propuesto genera el mosaico a partir de la primera pasada, por tanto, si se ve más

de una vez una determinada escena, en el mosaico solo aparecerán las imágenes co-

rrespondientes a la primera vez que se visualizó. La razón de esta forma de proceder

es que se simplifica el proceso de generación del mosaico, además de aumentar la

exactitud del posicionamiento de las imágenes en el mismo.

El método propuesto está estructurado en torno a dos pasos de seguimiento de

correspondencias por cada una de las imágenes tomadas por el sistema de percepción

del veh́ıculo. El primero de estos pasos se denomina fase de estimación del movimiento

relativo y consiste en calcular el movimiento producido entre dos imágenes consecu-

tivas. El fin de esta fase es descomponer el movimiento de una imagen en suma de

pequeños movimientos independientes unos de otros.

El segundo paso de seguimiento de correspondencias está destinado a corregir

el error global de posicionamiento de las imágenes dentro del mosaico. Mediante el

primer paso se calcula el movimiento producido en una imagen sin tener en cuenta los

errores de estimación de movimiento previos ni el mosaico en śı mismo. En esta fase se

pretende detectar las diferencias de posición entre la calculada usando el movimiento

relativo y la posición dentro del mosaico construido hasta el momento. Conocida la

diferencia, se aplicará un factor de corrección al posicionamiento de la imagen en el

mosaico.

Durante ambas fases serán necesarias funciones que permitan aplicar las trans-

formaciones calculadas sobre las imágenes. Una primera función permitirá aplicar

transformaciones sobre imágenes aplicando la técnica del pixel más parecido que se

verá en secciones sucesivas. Una segunda función permitirá transformar las imágenes

para introducirlas dentro del mosaico, esta función se encargará de ecualizar la imagen

introducida dentro del mosaico para que no se produzcan cambios severos de ilumi-

nación a lo largo del mismo. Al mismo tiempo, esta última función se encargará de

introducir datos en el mosaico solo en las partes no visitadas del mismo, ya que el

mosaico es de una sola pasada.

La aplicación de esta técnica sobre el conjunto de imágenes capturadas por el

UAV permite una mejora en la localización, debido, fundamentalmente, al aumento

de la coherencia de las homograf́ıas entre imágenes. El Caṕıtulo muestra resultados
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experimentales en localización que mejoran considerablemente la estimación respecto

a la odometŕıa.

B.7 Resumen del Caṕıtulo 5

El método presentado en el Caṕıtulo 4 es robusto y permite limitar los errores en

la localización del veh́ıculo. Sin embargo, una vez que el mosaico ha sido construido

con las imágenes capturadas por el UAV, no es posible actualizarlo dado que éste no

posee ninguna información relacionada con la precisión de la estimación.

El presente Caṕıtulo describe un método que permite crear mosaicos en ĺınea de

manera consistente, teniendo en cuenta el carácter estocástico de las relaciones entre

imágenes. De esta manera, el mosaico deja de ser una imagen estática y se convierte

en una base de datos de imágenes relacionadas unas con otras.

Este nuevo método para crear mosaicos, permite actualizar la posición de las

imágenes componentes cuando nueva información sobre el posicionamiento de éstas

es obtenida. Esto ocurre cuando el UAV visita una zona que ya ha registrado y

cierra un bucle de posición. El bucle aporta una homograf́ıa que relaciona la imagen

actualmente capturada con una de la imágenes presente en la base de datos. Dicha

homograf́ıa encapsula los posibles errores de posicionamiento entre imágenes ocurridos

a lo largo del bucle.

La homograf́ıa obtenida del cierre de un bucle es utilizada en un proceso de mini-

mización, basado en filtrado de Kalman, que permite propagar los errores acumulados

en esa homograf́ıa hacia atrás en las imágenes de bucle. Como consecuencia se pro-

duce un reajuste de las imágenes del mosaico acorde a la información aportada. El

caṕıtulo describe los pasos necesarios para llevar a cabo la minimización basada en

filtrado de Kalman y presenta resultados de localización.

Un aspecto tratado en este Caṕıtulo es el cálculo de la matriz de homograf́ıa

cuando el veh́ıculo vuela a media/baja altura. Esto resulta fundamental debido a que

la presencia de objetos tridimensionales en la escena aumenta conforme la altura al

suelo disminuye. Para solucionar este problema, el Caṕıtulo propone una jerarqúıa de
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modelos proyectivos que se va relajando en función de variables como el número de

correspondencias entre imágenes o el número de correspondencias incorrectas.

B.8 Resumen del Caṕıtulo 6

Este Caṕıtulo extiende el proceso de localización utilizando secuencias de imágenes

monoculares a una situación más general, en la cual es posible que no se pueda llevar

a cabo la construcción del mosaico. Las razones que dificultan dicha construcción

pueden ser varias, en general, si la cámara está orientada de forma no perpendicular

al suelo o el UAV cambia de altura con gran frecuencia, el mosaico generado puede

llegar a ser incoherente.

Para generalizar el problema de la localización, se propone un método basado

en técnicas de SLAM. Concretamente, se implementa un SLAM basado en filtro

extendido de Kalman (EKF) aplicado a secuencias de imágenes monoculares. La

idea fundamental es aprovechar la información dada por la odometŕıa basada en

homograf́ıa para generar buenas hipótesis en la fase predictiva del filtro.

Las caracteŕısticas naturales del entorno son utilizadas como puntos de referencia

a seguir a lo largo de la secuencia de imágenes. La posición 3D de dichas marcas

es estimada en el interior del filtro y utilizada para restringir el espacio de posibles

movimientos del UAV.

Una de las principales aportaciones de este Caṕıtulo es la inicialización de la posi-

ción de los puntos de referencia en el filtro de Kalman. Dado que la visión monocular

solo aporta información de la escena en ángulo, pero no profundidad, la estimación

de los puntos de referencia en 3D es un problema complejo. Para solucionarlo, el

caṕıtulo propone el uso del vector normal al plano de la escena y el sensor de ran-

go, para aśı restringir la distancia a la que se encuentra el punto. Esta inicialización

permite una rápida convergencia hacia la posición 3D, lo cual redunda en un mejor

comportamiento del filtro.
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B.9 Contribuciones de la Tesis

El objetivo de esta Tesis es el desarrollo de algoritmos de visión artificial para la

localización de veh́ıculos autónomos aéreos utilizando secuencias de imágenes mono-

culares. La visión monocular es una buena solución debido a que ofrece escalabilidad

y precisión, unidos a un bajo peso. Sin embargo, la incertidumbre en la escala de las

medidas tomadas por la cámara deber ser resuelta. Para este fin, la Tesis ha utili-

zado un sensor de rango que mide la distancia del veh́ıculo a la escena con buenos

resultados.

Un aspecto importante de la Tesis es el uso de rasgos naturales del entorno en

lugar de balizas o referencia visuales con posiciones conocidas. En su lugar, se utiliza

un algoritmo genérico de establecimiento y seguimiento de correspondencias entre

imágenes. Aunque los rasgos naturales incrementan el nivel de aplicabilidad de los

métodos propuestos en la tesis, también incrementan la complejidad del problema

a ser resuelto. Aśı, se hace necesaria la implementación de algoritmos que detecten

outliers y sistemas que garanticen una estimación robusta.

La Geometŕıa Proyectiva es la teoŕıa de fondo de la mayoŕıa de los métodos pro-

puestos. Las transformaciones homográficas se han usado para modelar el movimiento

aparente entre imágenes consecutivas y como herramienta básica en muchos de los

métodos propuestos. La Tesis describe un método robusto para la estimación de ho-

mograf́ıas, método usado en todos los experimentos presentados con muy buenos

resultados. El estudio de las incertidumbres asociadas a dicha estimación también

se ha tratado en la Tesis. Además, el método de estimación de homograf́ıas se ha

extendido a escenas pseudo-planas mediante el desarrollo de un sistema jerarquizado

de estimación.

La Tesis ha propuesto un sistema de odometŕıa visual para UAVs basado en se-

cuencias de imágenes monoculares y un sensor de rango. La descomposición de la

homograf́ıa se ha utilizado para extraer el movimiento real del UAV y una estimación

del vector normal al plano de la escena. Los resultados experimentales con UAVs

reales muestran la viabilidad de la técnica, al menos con imágenes tomadas de 15 a

150 metros, y su eficiencia, hasta 10Hz con imágenes de resolución 320x240.



B.9 Contribuciones de la Tesis 119

El problema de la localización también se trata en esta Tesis. Se ha propuesto una

técnica basada en la construcción de mosaicos en ĺınea para reducir el error acumulati-

vo presente en la odometŕıa. Este método ha demostrado funcionar convenientemente

cuando el UAV vuela a gran altura.

Además, se ha descrito una nueva técnica para la construcción de mosaicos que

tiene en cuenta el carácter estocástico de las relaciones entre las imágenes componentes

del mosaico. Esta técnica permite extender el uso de la localización basada en mosaicos

a altitudes más bajas, donde el efecto de paralaje introduce distorsiones importantes,

y aprovecha la información aportada por los cierres de bucle en posición para mejorar

la estimación de las relaciones entre las imágenes que componen el mosaico.

La localización basada en mosaicos es especialmente adecuada para llevar a cabo

tareas de monitorización o vigilancia con el UAV, debido a que se espera que el UAV

visite repetidamente las mismas áreas. El marco estocástico permite mejorar, tanto

las posiciones relativas de las imágenes cada vez que se cierra un bucle en posición,

como la estimación de la localización.

Sin embargo, la localización basada en mosaicos no puede ser llevada a cabo

cuando la distancia hasta el suelo cambia con frecuencia o la orientación de la cámara

es significativamente oblicua con respecto al plano del suelo. Un método de SLAM

basado en filtrado de Kalman se ha propuesto para abordar estas situaciones. La

localización basada en homograf́ıa se utiliza para generar hipótesis de movimiento

precisas. Además, se utiliza una nueva inicialización de puntos de referencia en el

filtro de Kalman que aprovecha la estimación del vector normal al plano de la escena,

permitiendo una buena convergencia hacia la posición real del punto de referencia y,

por tanto, mejorando la convergencia del filtro completo.
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B.10 Desarrollos futuros

B.10.1 Control del UAV basado en visión monocular

El primer objetivo del autor es aplicar en tiempo-real las técnicas de odometŕıa y

localización propuestas en esta Tesis. Estas técnicas se utilizarán para estimar el mo-

vimiento del helicóptero HERO en diversas situaciones tales como hovering, aterrizaje

o despegue.

Estas aplicaciones aportarán información de posición sin el uso de dispositivos

especiales de posicionamiento, lo cual es muy importante en escenarios donde han

ocurrido desastres, de cualquier ı́ndole, debido a la necesidad de realizar un despliegue

rápido y a que el GPS puede no estar disponible

B.10.2 Cálculo simultaneo de homograf́ıa y tracking

La reducción de la carga computacional necesaria para estimar el movimiento del

UAV es otro objetivo del autor. Aunque el algoritmo presentado en el Caṕıtulo 3

funciona correctamente, es necesario llevar a cabo seguimiento de correspondencias

y cálculo de homograf́ıa antes de calcular el movimiento. Estos cálculos se podŕıan

ver reducidos si la información de la homograf́ıa se pudiera utilizar para el cálculo de

correspondencias y viceversa, es decir si se pudiera llevar a cabo un cálculo simultáneo

de las correspondencias y de la homograf́ıa.

La homograf́ıa modela las correspondencias entre dos imágenes tomadas de la mis-

ma escena plana. Si un conjunto de correspondencias bien distribuidas por la imagen,

al menos cuatro, fuesen proporcionadas por el algoritmo de seguimiento, se podŕıa

estimar una homograf́ıa. Aunque dicha estimación seŕıa poco precisa debido al redu-

cido número de correspondencias, probablemente aportaŕıa una buena aproximación

a la solución. Aśı, esta homograf́ıa podŕıa ser utilizada para determinar las áreas de

búsqueda para un subconjunto de nuevas correspondencias y, una vez calculadas, ser

utilizadas para re-estimar la homograf́ıa. Cuantas más correspondencias se utilicen

para re-estimar la homograf́ıa, mejor será el resultado y más precisas serán las áreas
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de búsqueda de correspondencias, lo cual conduce a una reducción en los tiempos de

cómputo.

Además, si se tiene en cuenta la identidad (3.9), la homograf́ıa puede ser reem-

plazada por una expresión que es función de la traslación, la rotación y la normal al

plano. Esto daŕıa lugar a un método iterativo sencillo para el cálculo simultáneo del

seguimiento de correspondencias y del movimiento real del veh́ıculo.

B.10.3 Inspección de edificios

La estimación relativa de posición con respecto a una pared es una aplicación in-

teresante de la odometŕıa basada en homograf́ıa. La estimación del GPS suele ser

imprecisa cuando el UAV vuela cerca de edificios. La odometŕıa basada en homo-

graf́ıa puede ser una importante herramienta para llevar a cabo maniobras cercanas

a edificios o interpretar datos procedentes de paredes.

Aśı, la odometŕıa basada en homograf́ıa es capaz de obtener la orientación relativa

de la cámara con respecto a la pared. Esta información puede ser utilizada para

controlar el helicóptero con el fin de obtener una visión perpendicular de la pared

inspeccionada. Dada la distancia inicial entre la cámara y la pared, el algoritmo

también puede ser capaz de recuperar la distancia a la pared cada vez que se reciba

una imagen.

Este algoritmo puede ser utilizado incluso para generar vistas ortogonales virtuales

de la pared inspeccionada, dado que se estima el vector normal al plano. La vista

ortogonal puede llegar a ser una herramienta muy importante cuando es necesario

reconocer caracteŕısticas geométricas de la vista.

B.10.4 Navegación basada en mosaicos geo-referenciados

Se investigará el uso de mosaicos geo-referenciados en la localización basada en mosai-

cos descrita en el Caṕıtulo 4. La idea básica es usar mosaicos, previamente calculados

y con referencias geográficas, para lograr una localización global del veh́ıculo.
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Las imágenes capturadas por la cámara montada en el veh́ıculo serán comparadas

con el mosaico para calcular su posición exacta. Después, si el mosaico está geo-

referenciado, la relación de la imagen con el mosaico puede ser utilizada para calcular

la posición real del UAV. Esta aplicación es realmente interesante cuando el UAV se

desplaza siempre por la misma zona.
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