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This thesis deals with robust control strategies to solve the path tracking problem
for an autonomous aerial vehicle. The UAV considered is a QuadRotor helicopter
on a small scale, which is characterized by an underactuated mechanical system,
i.e., they have fewer control inputs than degrees of freedom.

Normally, to design advanced control strategies an accuracy dynamic mo-
del of the system is necessary. Thus, in this thesis a proper dynamic model of
the QuadRotor helicopter for control design purposes is formulated, keeping in
mind a tradeoff between complexity and realism. The system is based on physical
laws to obtain a model that represents the vehicle behavior in presence of several
sources of uncertainties and to be suitable to the prototype used in this work.

Since the QuadRotor helicopter is an underactuated mechanical system, a
common way to perform path tracking of UAV’s is using cascade control strategies.
Therefore, cascade structures are proposed to control two subsystems: the rota-
tional one and the translational one. For the rotational subsystem a nonlinear state
feedback %, controller designed for mechanical systems is used, which provides



robustness in presence of exogenous disturbances, parametric uncertainties and
unmodeled dynamics. To perform the path tracking for the QuadRotor helicopter
three control techniques are used looking for a continuous performance improve-
ment. First a linear state feedback 7%, control law is applied assuring robustness
properties. To enhance the guidance of the vehicle, an integral predictive con-
troller based on the translational error model is designed given smoothness to the
path tracking. After that, to enlarge the workspace of the translational motion, a
control law based on an integral backstepping approach is performed using the
nonlinear model of the helicopter.

Taking into account the underactuated configuration of the QuadRotor heli-
copter, two nonlinear 7%, control strategies are proposed. First a control law is
designed considering only a reduced system where is composed by the controlled
degrees of freedom. This controller is applied to the helicopter in cascade with the
previous predictive controller, where the nonlinear .77, controller is in a charge of
the altitude and attitude motions, while the MPC controls the lateral and longit-
udinal movements. Other applications are also carried out using this controller,
which are based on the inverted pendulum concept.

The cascade control strategies have an inconvenient. Although in the sim-
ulation results the whole closed loop presents a stable behavior, it is needed to
be demonstrated. To avoid using cascade structures, a control strategy based on
the nonlinear 7%, technique applied to underactuated mechanical systems is per-
formed. The goal is to obtain a control law that guarantees robustness for the
path tracking problem of the QuadRotor helicopter without the necessity of cas-
cade strategies nor state space augmentation. Additionally, an approach of the
nonlinear Z, controller for mechanical systems is presented allowing to weight
different dynamics of the system.

Another issue tackled is the robustness improvement of the nonlinear #Z, con-
troller designed for mechanical systems. This control law is computed taking
into account that all uncertainties that affect the system are external disturbances.
However, this hypothesis is not very realistic. Therefore, to counterattack this
problem, a solution to robustify the nonlinear . control law is given, where an
additional control signal is computed through the saturation function technique to
cope with modeling errors.

Summarizing, this thesis presents a theoretic development of robust control
strategies to solve the path tracking problem for unmanned aerial vehicles, focus-
ing on underactuated mechanical systems.
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Esta tesis trata con estrategias de control robusto para resolver el problema de se-
guimiento de trayectorias para vehiculos aéreos auténomos (en inglés conocidos
como UAV’s - Unmanned Aerial Vehicles). El UAV considerado es un helic6p-
tero QuadRotor en escala reducida, que es caracterizado por un sistema mecanico
subactuado, es decir, posee menos entradas de control que grados de libertad.

Normalmente, para el disefio de estrategias de control avanzado se necesita
un modelo dindmico preciso del sistema. Siendo asi, en esta tesis se obtiene un
modelo dindmico adecuado del helicéptero QuadRotor con fines de disefio de con-
trol, teniendo en cuenta un equilibrio entre complejidad y realismo. El sistema se
basa en leyes fisicas para obtener un modelo que represente el comportamiento
del vehiculo en presencia de diversas fuentes de incertidumbres y que sea apro-
piado al prototipo utilizado en este trabajo.

Dado que el helicéptero QuadRotor es un sistema mecdnico subactuado, una
manera comun para realizar el seguimiento de trayectorias de UAV’s es utiliz-
ando estrategias de control en cascada. Por lo tanto, se proponen estructuras en



cascada para controlar dos subsistemas: el de rotacién y el de traslacién. Para
el subsistema de rotacién se disefia un controlador 7% no lineal con realimenta-
cién de estados para sistemas mecdnicos, que proporciona robustez en presencia
de perturbaciones exdgenas, incertidumbres paramétricas y dindmicas no mode-
ladas. Para realizar el seguimiento de trayectorias para el helicoptero QuadRotor
se utilizan tres técnicas de control buscando una continua mejoria del desempefio.
Primero se aplica una ley de control .Z, lineal con realimentacién de estados
asegurando propiedades de robustez. Para mejorar la conduccién del vehiculo,
se disefia un controlador predictivo con accién integral basado en el modelo del
error de traslacidn, que proporciona suavidad al seguimiento de trayectorias. Por
dltimo, para ampliar el espacio de trabajo de los movimientos de traslacion, se
propone una ley de control basado en una técnica de backstepping con accién in-
tegral, utilizando el modelo no lineal del helicéptero.

Teniendo en cuenta el cardcter subactuado del helicéptero QuadRotor, se pro-
ponen dos estrategias de control JZ, no lineal. Primero se disefia una ley de
control basada en un sistema reducido, donde solamente se consideran los grados
de libertad controlados. Este controlador es aplicado en una estrategia en cascada
al helicéptero con un controlador predictivo previo, donde el controlador 72, no
lineal se encarga de los movimientos de altitud y orientacién, mientras el MPC
controla los movimientos laterales y longitudinales. Este controlador se ha em-
pleado para controlar otras aplicaciones, las cuales estin basadas en el concepto
del péndulo invertido.

Las estrategias de control en cascada poseen un inconveniente: aunque en los
resultados de simulacién el sistema completo en bucle cerrado presente un com-
portamiento estable, se requiere que esto sea demostrable. Para evitar el uso de
estructuras en cascada, se desarrolla una estrategia de control basada en técnicas
de control %, no lineal aplicadas a sistemas mecdnicos subactuados. El objetivo
es obtener una ley de control que garantice robustez para el problema de segui-
miento de trayectorias del helicoptero QuadRotor sin la necesidad de estrategias
en cascada ni de espacios de estado aumentado. Adicionalmente se presenta un
enfoque del controlador .77, no lineal para sistemas mecanicos, permitiendo pon-
derar diferentes dindmicas del sistema.

Otra cuestion a ser abordada es la mejora de la robustez del controlador 572, no
lineal disefado para sistemas mecdnicos. Esta ley de control es calculada teniendo
en cuenta que todas las incertidumbres que afectan al sistema son perturbaciones
externas. Sin embargo, esta hipdtesis no es muy realista. Por lo tanto, para con-
trarestar este problema, se presenta una solucién para robustificar la ley de control
%, no lineal, donde se calcula una sefial de control adicional a través de la técnica
de funciones de saturacién para hacer frente a errores de modelado.



En resumen, esta tesis presenta un desarrollo tedrico de estrategias de con-
trol robusto para resolver el problema de seguimiento de trayectorias de vehiculos
aéreos autonomos, centrandose en sistemas mecanicos subactuados.
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tilt angle of the rotors

thrust coefficient of the rotors

drag coefficient of the propellers

distance between the rotors and the center of rotation
inertia moment of the motor around its rotation axis
angular velocity of ith rotor around its axis
acceleration due to the gravity

total mass of the helicopter

rotation body-fixed frame

frame with origin in the center of mass

inertial frame

position of the center of mass with respect to the origin of the
body-fixed frame expressed in the frame &, “r
point in the frame j expressed in the frame i

velocity of the point /p ; expressed in the frame
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V&

linear velocity of the rigid body expressed in the body-fixed
frame

linear velocity of the rigid body expressed in the inertial frame
rotation matrix that describes the orientation of the body-fixed
frame with respect to the inertial frame, i.e., YRy

rotation matrix that describes the orientation of the inertial
frame with respect to the body-frame frame, i.e., “R »
skew-symmetric matrix

absolute angular velocity vector of the helicopter expressed
in the body-fixed frame

Euler matrix expressed in the body-fixed frame

total thrust applied to the body of the helicopter

force generated by the ith rotor

translational force vector applied to the vehicle
translational control force vector applied to the vehicle
translational force vector applied to the vehicle expressed in
the inertial frame

translational external disturbance vector applied to the
system

aerodynamic forces vector

generalized forces/torques vector

Lagrangian function of the mechanical system

system kinetic energy

system potential energy

force matrix (input coupling matrix)

inertia matrix

Coriolis and centrifugal matrix

gravitational force vector

nominal matrices of the Euler-Lagrange model

parametric uncertainties of the dynamic matrices

model uncertainty vector

lower and upper bounds of the inertia matrix

upper bound of the Coriolis and centrifugal forces

upper bound of the gravitational forces

generalized coordinate vector of a mechanical system with
9= [qlv"' ,Qn]/

active generalized coordinate vector

controlled generalized coordinate vector
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gy €R™
g, R
qs € R
q, € R™

!
ag = [ay ag ay]
ar = [a, a, a,]

external generalized coordinate vector

passive generalized coordinate vector

shape generalized coordinate vector

uncontrolled generalized coordinate vector

n-dimensional configuration manifold

m-dimensional actuation space

g-dimensional disturbance space

control action vector

energy-bounded external disturbance vector

inertia matrix of the rotational subsystem

moment of inertia tensor matrix

moment of inertia about the principal axes, x, y, z

roll angle

pitch angle

yaw angle

Euler-angles vector

position of the origin of the rotation body-fixed frame of the
helicopter, expressed in the inertial frame, * &

mass density at a point p

aerodynamic force of propellers

torsion effort generated by the ith electrical motor
gyroscopic moment vector

pitching moment

rolling moment

yawing moment

control torque vector applied to the vehicle

torque vector applied to the vehicle expressed in the
body-fixed frame

torque vector applied to the vehicle expressed in the inertial
frame

control torque vector applied to the vehicle expressed in the
inertial frame

rotational external disturbance vector applied to the system
rotational external disturbance vector applied to the system
expressed in the inertial frame

aerodynamic moments vector

aerodynamic moments vector expressed in the body-fixed
frame
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d

SR vy ®

()

V(x,t)

H(x,m,t)
Hy(x,u*,d", p*,t)
L(x,u,t)

Ly

DO T

=

(x,7)

Omax(*)
F(xe)
@y

W

W3;

exogenous disturbance vector

control effort vector

cost variable of the J#, problem

attenuation level of the /7, problem

cost function (performance index)

Lyapunov function

Hamiltonian function

optimal hamiltonian

Lagrangian function

parametrized soft-constrained cost function (associated
performance index)

co-state vector

weighting matrix of the nonlinear 7%, controller

state error weighting matrix

control effort weighting matrix

function of the state vector to be controlled by the nonlinear
, controller

sampling time

maximum singular value

estimative vector of mechanical system

weighting of the speed error in the nonlinear .72, control
weighting of the position error in the nonlinear %, control
weighting of the integral of the position error in the nonlinear
, control

weighting of the control effort in the nonlinear .77, control
virtual input for the x-motion

virtual input for the y-motion

definition of the virtual direction vector

desired virtual direction vector

virtual control input vector

transfer function between the input signal @ and the output
signal z

He-norm of the transfer function Hyy,(s)

weighting matrices of the linear 772, controller

beginning of the prediction horizon

end of the prediction horizon
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Av

E(q)
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control horizon

prediction horizon

state prediction matrices

2-norm of the variable x weighted by Q, X' Ox
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weighting matrices of the backstepping controllers
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additional control signal computed through the saturation
functions method
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1.1 Motivation

The development of unmanned aerial vehicles (UAV’s) has woken up great in-
terest in the automatic control area in the last few decades. Many fields of control
and robotics, such as fusion sensors, computer vision techniques, state estimators
and control methodologies, have been exploited to improve the performance of
these kinds of systems. UAV’s have been used both in military and civil scopes,
focusing on tasks as search and rescue, building exploration, security, inspection
and aerial cinematography, as well as acrobatic maneuvers (Pallet and Ahmad,
1991). The UAV’s are most useful, mainly, when these desired tasks are executed
in dangerous and inaccessible environments.

Until recently, building a miniature and autonomous controlled aerial vehicle
was a dream of many researchers, which were limited by restrictions imposed by
the hitherto existing hardware. However, what truly enabled the successful con-
struction of autonomous aerial vehicles was the technological advances in actuat-
ors and sensors on a small scale, the so-called MicroElectroMechanical Systems
(MEMS), as well as energy storage and processing data.
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Furthermore, the development of control systems for such vehicles is not
trivial. UAV’s have a high nonlinear and time-varying behavior and they are con-
stantly affected by aerodynamic disturbances. In addition, they are usually subject
to unmodeled dynamics and parametric uncertainties. This means that linear and
monovariable classical control laws may have been a certain limitation in the as-
pect of their attraction basin, causing instability when the system is operating in
conditions far from the equilibrium. Therefore, advanced control strategies are
required to achieve good performance in autonomous flight or at least to help the
piloting of the vehicle, with high maneuverability and robustness with respect to
external disturbances.

Concerning this matter, it must be taken into account that due to the elec-
tromechanical design of aerial vehicles most of these systems are underactuated
mechanical systems (i.e., they have fewer control inputs than degrees of freedom).
Generally, the intentional electromechanical design results in a weight and cost re-
duction of the vehicle. However, underactuated systems bring a complexity and
an increased challenge to the control area. Techniques developed for fully actu-
ated robots cannot be directly applied to these kinds of mechanical systems, since
most of the underactuated systems are not fully feedback linearizable and exhibit
nonholonomic constraints (Fantoni and Lozano, 2002; Aguiar, 2002). Hence why,
nonlinear modeling techniques and modern nonlinear control theory are usually
employed to achieve autonomous flight with high performance and in specific
flight conditions such as: hovering, landing / take-off, etc (Frazzoli et al., 2000;
Isidori et al., 2003; Castillo et al., 2005b).

The objectives of a flight control system can be divided into three phases,
depending on the autonomy of the system:

o Stability Augmentation Systems - SAS: The aim of these systems is to assist
the piloting of the vehicle, where the SAS attempt to stabilize the system
with a low-level control. This avoids that the pilot acts on the system based
on its dynamic behavior. Since the vehicle is away from a certain equilib-
rium point, the dynamic behavior ceases to be intuitive to human reasoning.

o Control Augmentation Systems - CAS: These systems are in a hierarch-
ical level above the SAS. Thus, in addition to stabilizing the vehicle, these
systems must be able to provide improved responses to some references
generated by the pilot, for example, the pitch angle tracking.

e Autopilots: possess an even higher control hierarchical level. They are fully
automatic control systems that are able to exert certain types of maneuvers
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autonomously, such as take-off, landing, or hovering at a determined alti-
tude.

In the area of flight control, the most studied systems have been aircrafts and
standard helicopters (i.e., helicopters with main and tail rotors). However, in the
last years, UAV’s in the QuadRotor configuration have been highlighted in a lot
of works produced with it, which presents some advantageous features in compar-
ison with the standard helicopter one, such as:

e The QuadRotor helicopter is lifted and propelled by four rotors, which
makes it possible to reduce each individual rotor size and to maintain or
to increase the total load capacity, when compared with a helicopter with
one main rotor.

e These vehicles do not require mechanical linkages to act on propellers. This
reduces the design, maintenance and cost of the vehicle (Hoffmann et al.,
2007).

e The simplicity of the mechanical design, which provides motion control
through direct drive of the rotors by varying their speeds. In a standard
helicopter, the angular speed of the propellers is usually constant, where
the movement is controlled varying the angle of attack of the blades (cyclic
and collective). This requires transmission between the rotors, as well as
accurately mechanical devices in order to change the cited angles.

e These helicopters are an interesting vehicle for use inside buildings due to
the use of electrical motors instead of combustion ones, since they do not
pollute the air with waste combustion.

e They are based on the VTOL (Vertical Take-Off and Landing) concept and
it is usually used to develop control laws. The QuadRotor helicopter tries
to reach a stable hovering and flight using the equilibrium forces produced
by four rotors (Castillo et al., 2005b).

e The previous advantages added to its high maneuverability, allow take-offs
and landings, as well as flight in tough environment.

The main drawback of this type of UAV is that it presents a weight and energy
consumption augmentation due to the extra motors.

From the control point of view, the construction of this kind of miniature heli-
copter is far from simplifying the problem, rather the opposite happens. This is
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because the torques and forces necessary to control the system are applied not only
by aerodynamic effects, but also through the coupling effect that occurs between
the dynamics of the rotors and the helicopter body. This coupling effect is due
to the action-reaction principle originated in the acceleration and deceleration of
the propellers (these effects do not occur in the control with constant speed pro-
pellers).

Despite of the coupling effects mentioned above, the absence of input coup-
ling have some implications for the control design of the QuadRotor helicopter
dynamics. Such decoupling arises from the assumption that the QuadRotor heli-
copter is in a coplanar configuration, i.e., the four propellers are parallel to each
other, generating the force vector with elements only on the vertical axis. There-
fore, if the controlled outputs are considered as the translational position and the
yaw angle, a fully static feedback linearization of the QuadRotor helicopter mo-
del results in a singular matrix making the input-to-output decoupling be unfeas-
ible. Thus, this control technique can not be used directly (Mistler et al., 2001).
This fact jointly with the coupling between the dynamics of the rotors and the
helicopter body, and also with the model uncertainties, especially in the high
frequency range, makes the system even more complex to be controlled than a
standard helicopter, at least, when using basic control techniques.

1.2 State of the Art

Many efforts have been made to control QuadRotor-based helicopters and seve-
ral strategies have been developed to tackle with the path tracking problem for
this type of system. Generally, two types of strategies are used to perform path
tracking of the QuadRotor helicopter. On one hand, the most common struc-
tures are cascade control strategies, which use an inner control loop for the rota-
tional subsystem, or in some cases for the actuated degrees of freedom, combined
with an outer loop to control the translational movements. Control systems us-
ing this strategy can be found in Chen and Huzmezan (2003) and Bouabdallah
and Siegwart (2007). On the other hand, some control structures use an aug-
mented state-space (Mistler et al., 2001; Mokhtari et al., 2006b), where a double
integrator is considered on the thrust, the altitude control input, which generates
coupling between translational and rotational motion allowing using the feedback
linearization technique.

In Mistler et al. (2001), a nonlinear model was proposed, presenting the heli-
copter kinematics and dynamics based on the Newton-Euler formalism. The aero-
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dynamic forces and moments acting on this model were considered. To solve the
path tracking problem, it was demonstrated that the desired outputs can not be
decoupled using static feedback linearization, but it was solved using exact linear-
ization techniques and noninteracting control via dynamic feedback.

In Bouabdallah et al. (2004a), a controller based on a Lyapunov control func-
tion was designed to perform the stabilization of the rotational subsystem, and,
using the same control technique, the altitude control was implemented in cas-
cade. In Bouabdallah et al. (2004b), the equations of motion of the QuadRotor
helicopter were obtained through the Euler-Lagrange formulation, taking into ac-
count the rotor dynamics. Two control techniques were compared, a PID and a
Linear Quadratic Regulator, where a linearized model was considered to design
the PID controller. The development of the LQR was based on a time-variant mo-
del. In Castillo et al. (2005a, 2007) nonlinear controllers were designed to stabil-
ize the QuadRotor based on Lyapunov analysis and nested saturation techniques.
In Park et al. (2005) a compensation algorithm of the vehicle dynamics was used
to control the system. In Lara et al. (2006) new results to compute the robust-
ness margins of a control system for a QuadRotor helicopter using a multivariable
PID to stabilize the vehicle position was presented. In Das et al. (2009b) a two-
loop approach using input-output linearization to design a nonlinear controller
was considered with a dynamic inversion inner-loop and an internal dynamics
stabilization outer-loop. In Onkol and Efe (2009) four control approaches were
compared to solve the path tracking problem, being them: PID control scheme,
sliding model control, backstepping technique and feedback linearization.

In Mederreg et al. (2004) simulation results were presented using a backstep-
ping control approach combined with a state estimator, while in Mahony and
Hamel (2004) this technique was combined with a Lyapunov based control. In
Bouabdallah and Siegwart (2005) the model was split up into two subsystems:
the angular rotations and the linear translations. Backstepping and sliding-mode
techniques were used to control the helicopter. In several works the backstep-
ping technique was used to perform both path tracking and stabilization prob-
lems. Backstepping approaches applied to the QuadRotor helicopter are found in
Madani and Benellegue (2006a,b); Madani and Benallegue (2007); Zemalache et
al. (2007) and Guenard et al. (2008).

Although, several control strategies have been tested on the QuadRotor heli-
copter, most of them do not consider external disturbances on the six degrees
of freedom, unmodeled dynamics and parametric uncertainty on the whole mo-
del. For example, in Bouabdallah and Siegwart (2005), Castillo et al. (2005a)
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and Zemalache et al. (2007), the proposed controllers are not capable to reject
sustained disturbances and in Mistler et al. (2001) just disturbances on the trans-
lational movements were considered.

However, in the last years researchers have begun to consider these effects at
the control law design stage and, for example, robust sliding mode and backstep-
ping approaches have also been developed, as well as disturbance observers. In
Mokhtari et al. (2006b) a feedback linearization-based controller with a sliding
mode observer was designed for the QuadRotor helicopter. An adaptive observer
was added to the control system to estimate the effect of external disturbances.
In Xu and Ozgiiner (2006) a sliding mode controller was synthesized, while Xu
and Ozgiiner (2008) proposed an approach using sliding mode control for un-
deractuated mechanical systems to stabilize a QuadRotor helicopter when 30%
uncertainty is added in each parameter of the model. In Lee et al. (2009) a feed-
back linearization controller was compared with an adaptive sliding mode control
using input augmentation to deal with the underactuated properties, parametric
uncertainty and sensor noise. In Kim et al. (2010) a disturbance observer based
controller using the dynamic model was proposed for robust hovering control,
which is an internal loop compensator.

In Bouabdallah and Siegwart (2007) a backstepping approach using integral
action was used to improve the QuadRotor helicopter path tracking performance
when maintained winds disturb the whole system. In Das et al. (2009a) a back-
stepping approach was used to control the QuadRotor helicopter, by applying
backstepping on the Lagrangian form of the dynamics. Besides, neural networks
were introduced to estimate the aerodynamic components.

The use of integral action in the backstepping technique was first proposed by
Kanellakopoulos and Krein (1993). The most common way to include integral
action in this approach is to use parameter adaptation (Krstic et al., 1995). An
analysis of different techniques using integral action in the backstepping approach
was carried out by Skjetne and Fossen (2004), where another two methods that
consist in the augmentation of the system dynamic with the integral state were
presented.

In some papers the QuadRotor helicopter has also been controlled using a lin-
ear 7, controller based on linearized models. In Chen and Huzmezan (2003),
a simplified nonlinear model of the UAV movements was presented. The path
tracking problem was divided into two parts, the first one to achieve the angular
rates and vertical velocity stabilization by a 2DOF linear 7%, controller using the
loop shaping technique. The same technique was used to control the longitudinal
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and lateral velocities, the yaw angle and the height in the outer loop. In the second
part a predictive control, based on a model including the inner loops and the heli-
copter dynamics, was designed to solve the path tracking problem. In Mokhtari et
al. (2005, 2006a) a robust feedback linearization with a linear .72, controller was
applied to deal with the path tracking problem with parameter uncertainties and
external disturbances.

Additionally to the inertial control, the QuadRotor helicopter has also been
controlled through artificial visual feedback. In Altug et al. (2002), a ground cam-
era was used to estimate the helicopter position and orientation, while in Tournier
et al. (2006) the estimation of the six degrees of freedom was obtained by an em-
bedded camera on the helicopter using Moir ‘e patterns. In Altug et al. (2005) two
cameras were used to estimate the six degrees of freedom pose of the helicopter.
One of these cameras was embedded on the QuadRotor, while the other one was
locatedinestabilizar on the ground. To perform an autonomous helicopter, two
control methods were used, a backstepping controller and a model-based feed-
back linearizing controller. In Metni et al. (2005), a general mechanical dynamic
model of the UAV was considered to perform hovering flight. The helicopter po-
sition and orientation were estimated using a visual servoing technique based on
homography. By using this information, a control law designed through the back-
stepping approach forces the vehicles to track a prerecorded image sequences.
The desired trajectory was obtained through an operator who previously teach it
step by step, being compared the actual image and the desired one with a refer-
ence image through the homography matrices at each instant. The translational
position vector was determined estimating the reference depth information using
an adaptive control law.

Furthermore, there are two issues that are worth pointing out. On one hand,
most of the above control applications assume that the computed control actions
will never reach the saturation limits of the actuators, although in practice it is
possible. For instance, when the UAV is far away from its destination, the gener-
ated control signals are normally higher than the admissible values. Moreover, the
vehicles are composed of mechanical and electrical parts, which are also subject
to physical constraints.

When on-line constraints must be considered, model predictive control (MPC)
algorithms appear as an interesting choice. The objective of MPC is to compute
a future control sequence in a defined horizon in such a way that the prediction
of the plant output is driven close to the reference. This is accomplished by min-
imizing a multistage cost function with respect to the future control actions. To
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perform that, the predicted output values are computed as a function of past values
of inputs and outputs, and future control signals. Besides, an explicitly process
model is used into the cost function, obtaining an expression whose minimization
leads to the desired values. An analytical solution can be obtained for a quadratic
cost function if the model is linear and there are no constraints; otherwise an it-
erative method of optimization should be implemented (Camacho and Bordons,
1998; Mayne et al., 2000; Rawlings and Mayne, 2009).

Moreover, the MPC formulation generates (implicitly) a non-smooth (discon-
tinuous) control law. Given that trajectories are normally known and using an ap-
propriate vehicle instrumentation to inform about position, orientation and move-
ments, as well as with information from the environment where it is (e.g. using a
GPS, digital maps, etc.), the predictive controller becomes even more suitable for
this task. Apart from the fact that MPC guides the system smoothly, it presents
an enhanced autonomy and can easily be extended to multivariable systems. One
drawback, the high computational burden introduced by the MPC methodology
may make impossible to perform real applications.

On the other hand, it is quite common to assume that all states are accessible
by the controllers. Generally, it can result in difficulties for practical implementa-
tions. To avoid these practical problems, in some works state observers have been
proposed to estimate the linear speed of a QuadRotor helicopter. In Benzemrane
et al. (2007) a nonlinear adaptive estimator is proposed to improve robustness in
the velocity estimation, when only the linear acceleration, the angles and the an-
gular velocity are available for measurement. In Benzemrane et al. (2008) the
speed estimation was observed through a Kalman filtering and an adaptive ob-
server, being corroborated with exact and noisy acceleration measurements. At
the same time, there are a large variety of sensors available that provide the ne-
cessary measurements. For instance, Euler angles and angular velocities can be
obtained through Inertial Measurement Systems (IMU). Besides, if it is combined
with GPS (or differential GPS) the linear position and linear velocity can also
be measured. At this stage it is necessary to keep in mind the objectives of the
application such as, for example, if the UAV must fly in an indoor or outdoor en-
vironment, or if the GPS accuracy is admissible. Other kinds of sensors can be
also used to estimate the UAV position and attitude, like ultrasound systems in a
structured environment (Roberts et al., 2007), vision systems (Altug et al., 2002;
Metni et al., 2005; Tournier et al., 2006; Guenard et al., 2008) and 3D tracker
system (POLHEMUS) (Castillo et al., 2005a; Guisser et al., 2006).

Apart from the above, in the last few years researches on the coordination
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of multiple UAV’s using the QuadRotor helicopter configuration have generated
great interest, mainly in the robotics community. Some works in this field can
be cited, such as Hoffmann et al. (2006); Bethke et al. (2007); Michael et al.
(2010b,a).

In this thesis, the path tracking problem of a unique QuadRotor helicopter
will be addressed, where the main objective is to enhance robustness of control
strategies when the vehicle is flying in presence of external disturbances, unmo-
deled dynamics and parametric uncertainties.

1.2.1 Nonlinear /7, Control for Mechanical Systems

As it can be deduced from the presented above, many control strategies have been
applied to the QuadRotor helicopter, but most of them do not consider parametric
uncertainties nor external disturbances. However, UAV’s are constantly affected
by model uncertainties and wind gusts, which can easily destabilize the vehicle.

A proper selection to reject these disturbances is the nonlinear .77, control
theory. The first efforts to extend the %, control problem to nonlinear systems
have been made in the 1980’s. In Ball et al. (1987a,b) the nonlinear problem
for discrete-time systems was formulated and using Volterra’s Series acceptable
solutions were found. The solution for nonlinear continuous-time systems was
provided by van der Schaft in (van der Schaft, 1991) and (van der Schaft, 1992).

The aim of the %, theory is to achieve a bounded ratio between the energy of
the so-called error signals and the energy of the disturbance signals. In general, the
nonlinear approach of this theory considers a Hamilton-Jacobi partial differential
equation (HJ PDE), which replaces the Riccati equation in the case of the linear
3 control formulation. The solution of nonlinear .7 control can be obtained
through two approaches, differential game theory (Doyle et al., 1989; Basar and
Bernhard, 2008) and dissipative systems theory (van der Schaft, 2000). The main
problem in the nonlinear case is the absence of a general method to solve this HJ
PDE. Therefore, analytical solutions must be solved for each particular case.

Due to the difficult to obtain analytical solutions, some works propose numer-
ical methods allowing integrate such equations, for example, Galerkin approxim-
ations, Taylor series (Beard et al., 1997; Beard and McLain, 1998; Beard et al.,
1998; Hardt et al., 2000).

Since the main interest of this thesis is to work with mechanical systems
models obtained via Euler-Lagrange formulation, solutions of the nonlinear JZ2,
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control can be found minimizing the forces that do work on the system, as was
exposed in Johansson (1990). In this paper, the author proposed a solution for
the nonlinear .77 optimal control problem of fully actuated mechanical systems.
From this pioneering work, an enormous quantity of modifications have been done
to formulate nonlinear /%, S, and .74 / 7, controllers for mechanical systems
(Chen et al., 1994; Feng and Postlethwaite, 1994; Astolfi and Lanari, 1994; Kang,
1995; Chen et al., 1997; Postlethwaite and Bartoszewicz, 1998). In Sage et al.
(1999) a survey about robust control of robot manipulators was presented, where
a slight overview of nonlinear 7%, control applied to mechanical systems can be
found.

An explicit global parameterized solution to the state feedback .77, optimal
control problem, formulated as a min-max game, was developed in Chen et al.
(1994). This solution treats the particular case of fully actuated mechanical sys-
tems formulated via Euler-Lagrange equations by using the state tracking error
equation proposed in Johansson (1990) and dynamic properties of mechanical
systems. In the same year, Feng and Postlethwaite (1994) proposed a similar ap-
proach to the nonlinear state feedback 772, controller for robotic systems, where
the cost variable considers the coupling between the controlled variables and the
state feedback control law, which gives more degrees of freedom to the control
design. Besides, a nonlinear .72 control law with an adaptive scheme was presen-
ted to enhance robustness of the whole system.

In Ortega et al. (2005) a strategy to control fully actuated mechanical systems
considering the tracking error dynamic equation was proposed, where the integral
of the error position is added to the error vector. In such strategy a nonlinear
F% control, formulated via game theory, was applied. This strategy provides,
through an analytical solution, a time variant control law which is strongly model-
dependent and it is similar to the results obtained with the feedback linearization
procedures. Conditions to formulate the controller in the form of a nonlinear PID
were established, where the control signal can be penalized, as well as the error
signals, their integral and their derivative.

Some works using nonlinear .74, 7, and 7% / 7z, controllers have been pub-
lished in the aeronautics area. In Yang and Chen (2001) the nonlinear %, control
theory was used to design a three-dimensional missile guidance law. In Chen et
al. (2002) a tactical missiles pursuing maneuvering targets in three-dimensional
space was solved by using a nonlinear .7Z, guidance law based on a fuzzy model.
In Chen et al. (2003) an adaptive fuzzy mixed .73 / 7 lateral control of nonlinear
missile systems with uncertain disturbances was proposed. In Lépez-Martinez et



1.2 State of the Art 11

al. (2007) a laboratory twin-rotor helicopter was controlled using a nonlinear %5
controller based on a reduced order model of the propellers.

1.2.2 Underactuated Mechanical Systems

As commented above, UAV’s are typically underactuated mechanical systems,
and the QuadRotor helicopter is no different, since it has six degrees of freedom
and only four control actions, the four rotors. Underactuated mechanical systems
appear in several applications such as aerospace and undersea robots, mobile sys-
tems, flexible systems, walking, brachiating and gymnastic robots. According to
Olfati-Saber (2001), the underactuation property of underactuated systems is due
to four reasons: dynamics of the system, by design for reduction of the cost or
some practical purposes, actuator failure and imposed artificially to create com-
plex low-order nonlinear systems for the purpose of gaining insight in control of
high-order underactuated systems.

In the area of control of underactuated mechanical systems, an important con-
tribution was presented in Spong (1994), where the authors used the partial feed-
back linearization proposed by Isidori (1989) to linearize the unactuated degrees
of freedom.

Motion control of underactuated mechanical systems is frequently difficult
due to the nonholonomics constraints on the acceleration generated by the under-
actuation, which results in the impossibility to regulate all degrees of freedom of
the system at the same instant of time in a desired position. In Wichlund et al.
(1995) control properties of the dynamics of underactuated vehicles (e.g. under-
water vehicles, helicopters, airplanes, etc.) were studied. An interesting property
of these kind of systems was stated, where says that underactuated mechanical
systems with a gravitational field G(gq) where the elements of G corresponding to
the unactuated dynamics are zero, are not C' asymptotically stabilizable to a single
equilibrium. Olfati-Saber (2001) rewritten this property stating that if the potential
energy 7% (q) is independent of the external variable q,, i.e. 0% (q,,q,)/dq, =0,
then g, = 0 (i.e. g, is the gravitational term of the remaining subsystem) and the
generalized momentum p, is a conserved quantity. Therefore, the underactuated
mechanical system is not controllable or stabilizable to any equilibrium points for
initial conditions with p,(0) # 0. The fact that the unactuated system is a simple
Lagrangian system without any input forces means that the system must be con-
trolled via its potential force that is parameterized by g,. Therefore, the shape
vector g, plays the role of the control input for the dynamics of the remaining sys-
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tem. Besides, in Reyhanoglu et al. (1996, 1999) controllability and stabilizability
properties of underactuated mechanical system with second-order nonholonomic
constraints were derived. An interesting survey about underactuated mechanical
systems can be found in Spong (1998).

Position tracking of underactuated mechanical systems has been performed
in several publications using nonlinear .%, controllers. In Toussaint et al. (2000)
an underactuated ship nonlinear model was controlled through a state feedback
tracking .77, control law in presence of disturbances and noisy measurements of
states. In Siqueira and Terra (2004a) a nonlinear .72, control for underactuated
manipulators, as an extension of the one proposed by Chen et al. (1994), was
presented. The same authors performed a comparison of the nonlinear .72, con-
troller based on game theory with the one obtained through a quasi-linear para-
meter varying (LPV) representation in Siqueira and Terra (2004b), to control the
position of underactuated manipulators. In this work, an .22, Markovian control-
ler was also developed when the underactuated manipulator is subject to abrupt
changes in configuration. In Siqueira et al. (2006) nonlinear controllers obtained
via S, H#e, 7/ H optimization problems using game theory were applied to
underactuated manipulators through actuation redundancy. In He and Han (2008)
an acceleration feedback control was proposed for both fully and under actuated
nonlinear autonomous vehicles by using the 72, theory. Besides, simulations res-
ults for a helicopter trajectory tracking were presented.

1.3 Objectives

The main objective of this thesis is to contribute to the development and im-
plementation of robust control strategies to solve the path tracking problem of
autonomous aerial vehicles. The UAV to be used is a QuadRotor helicopter on a
small scale, which is characterized by an underactuated mechanical system. Fur-
thermore, the nonlinear .72, controller design for a class of underactuated mech-
anical systems is sought. Fig. 1.1 illustrates the flow chart used to develop this
doctoral thesis.

Normally, to design advanced control strategies an accurate dynamic model
of the system is necessary. Thus, the first objective formulated in this thesis is to
obtain a proper dynamic model of the QuadRotor helicopter with control design
purposes, taking in mind a tradeoff between complexity and realism. The sys-
tem will be based on physical laws to obtain a model that represents the vehicle
behavior in presence of several sources of uncertainties and to be suitable to the
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Figure 1.1: Flow chart of the thesis.

prototype used in this work.

Since the QuadRotor helicopter is an underactuated mechanical system, a
common way to perform path tracking of UAV’s is using cascade control strategies.
Therefore, cascade structures are proposed to control two subsystems: the rota-
tional and the translational. The control techniques used in each loop will be
based on both nonlinear and linear .7, theory, backstepping approach and pre-
dictive control methodology. These techniques will be combined to perform a
robust closed-loop control in presence of external disturbances, parametric uncer-
tainties and unmodeled dynamics. A smooth path tracking is also required.

However, it must be emphasized that the cascade control strategies have an
inconvenient. Although in the simulation results the whole closed loop presents a
stable behavior, it is needed to be demonstrated. To avoid using cascade structures,
a control strategy based on the nonlinear 7, technique applied to underactuated
mechanical systems will be performed. The goal is to obtain a control law that
guarantees robustness for the path tracking problem of the QuadRotor helicopter



14 1 Introduction

without the necessity of cascade strategies. Additionally, an approach of the non-
linear /%, controller for mechanical systems will be presented allowing to weight
different dynamics of the system.

Another issue to be tackled is the robustness improvement of the nonlinear
%, controller designed for mechanical systems. This control law is computed
taking into account that all uncertainties that affect the system are external dis-
turbances. However, this hypothesis is indeed not very realistic. Therefore, to
counterattack this problem, a solution to robustify the nonlinear .77, control law
will be given, where an additional control signal is computed through the satura-
tion functions technique to cope with modeling errors.

In general, this thesis presents a theoretic development of robust control strategies
to solve the path tracking problem for unmanned aerial vehicles, focusing on un-
deractuated mechanical systems.

1.4 Outline

The thesis is organized as follows:

e Chapter 2 presents the modeling of the QuadRotor helicopter. A descrip-
tion of the vehicle operation is provided, as well as static characteristics of
the motor-propeller groups. The equations of motion of a UAV are obtai-
ned through two approaches: Euler-Lagrange and Newton-Euler. Paramet-
ers of the QuadRotor unmanned aerial vehicle used in this thesis are also
provided. In this chapter some useful properties of mechanical systems are
presented.

e Chapter 3 deals with cascade control strategies to perform path tracking
of the vehicle, which highlights the pursuit of continuous performance im-
provement. In this chapter the dynamic model is divided into two sub-
systems: the rotational and the translational. Three control structures are
developed, being a state space feedback nonlinear 7%, controller in charge
for stabilizing the QuadRotor helicopter, while three techniques are applied
to track the desired trajectory. First, a linear state feedback .7, control-
ler based on the error model is computed using a synthesis method via
LMIs, which ensures robustness properties. After that, a state-space pre-
dictive controller with integral action based on the time-variant error model
is performed to follow smoothly the desired translational trajectory. The last
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translational controller used is based on an integral backstepping approach
improving robustness in presence of model uncertainties and enlarging the
workspace of the translational motion when compared with the previous
outer loop controllers. Simulation results are presented to corroborate the
good features of the proposed control strategies.

e Chapter 4 gives two novel nonlinear 7., controllers for underactuated
mechanical systems. The first controller is based on a reduced model, where
only the controlled degrees of freedom are considered. This controller is
applied in a cascade control strategy to the QuadRotor helicopter, while is
used to control the passive degrees of freedom of two vehicles based on
the inverted pendulum concept. The second controller considers the en-
tire dynamic of the underactuated mechanical systems allowing regulates
the controlled degrees of freedom while the remaining ones are stabilized.
The QuadRotor helicopter is controlled without the necessity of cascade
strategies nor state-space augmentation. Experimental results are also ob-
tained with a two-wheeled self-balanced vehicle.

o Chapter 5 deals with a robustifying method of the nonlinear .77, controller
designed for mechanical systems. A new analytical solution for the ap-
proach proposed in Ortega et al. (2005) is presented. This method is based
on saturation functions technique. Preliminary simulation results with some
of the controllers presented in Chapter 3 and Chapter 4 are carried out.

e Chapter 6 summarizes the contributions and results presented in this thesis
and suggests possible future research lines.
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CHAPTER 2

QuadRotor Helicopter Modeling
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2.1 Introduction

This chapter looks into the modeling of the QuadRotor autonomous aerial vehicle.
The equations of motion are developed based on physical laws that describe the
location of the mass center of the vehicle, using three position coordinates, and
three Euler angles to specify the orientation of the body. Two approaches are used
to obtain the dynamic equations that describe explicitly the relationship between
force and motion. First the Euler-Lagrange formulation is described. Afterwards,
an alternative description of the autonomous aerial vehicle is obtained using the
Newton-Euler formulation.

The autonomous aerial vehicle used in this thesis is a miniature helicopter in
a coplanar configuration of four rotors (QuadRotor), as illustrated in Fig. 2.1. In
this figure, the forces generated by each propeller to produce motion can be also
observed. The movement of the UAV results from changes on the lift force caused
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by adjusting the velocities of each rotor. Longitudinal motions (i.e. pitch motions)
are achieved varying the front and rear rotors velocity, which change the forces f;
and f3 (see Fig. 2.1), while lateral displacements (i.e. roll motions) are performed
through the speed variation of the right and left propellers, which vary the forces
f» and f4. Yaw movements are obtained from the difference in the counter-torque
between each pair of propellers, (f1,f3) and (f2, f1), i.e., accelerating the two
clockwise turning rotors while decelerating the counter-clockwise turning rotors,
and vice-versa. This movement is possible because the rotors 1 and 3 rotate in the
opposite direction to the rotors 2 and 4. Finally, the total thrust 7', which displaces
the helicopter in the perpendicular plane with respect to the propellers, is obtained
by the sum of the four forces generated by propellers.

f, T 7, f,

Figure 2.1: Operating diagram of the QuadRotor helicopter.

Therefore, the applied thrust, T, is given by (Castillo et al., 2005b):

T= (if) = (ibﬂ%) , 2.1
i=1 i=1

where f; is the force generated by each rotor, Q; is the angular velocity of the ith
rotor around its axis and b is the thrust coefficient of the rotors. Moreover, the
applied torque vector on the three axes is given by:

(f2—fa)l
id — (f3 —fl)l 2.2)

Ta = T,
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where [ is the distance between the rotors and the center of rotation, and 7Ty, is
the torsion effort generated by each electrical motor, considering the dynamic of
each disc of the motor as an uncoupled system in the generalized variable Q;.
The torsion effort of the motor is opposite to its aerodynamic force Ty,4g = kTQ,-Z,
where k; > 0 is a constant. Thus, by using the Newton’s second law, the torque
generated by each rotor is given by (Castillo et al., 2005b):

JRQi = —Tdrag + T™™; (23)
and keeping the total thrust constant, that is, considering ; = 0, it follows that:
T, = Tarag = ke Q7 . (2.4)

Then, the equation of the applied torques (2.2) can be rewritten as follows:

%, b (93— 3)
To, | = Ib(Q3—QF) : (2.5)
T, ke (QF +Q5 -3 - Q)

Additionally, this kind of system is a flight vehicle of lightweight structure
and, therefore, gyroscopic effects resulting from the rotation of the rigid body and
the four propellers should be included in the dynamic model (Bouabdallah et al.,
2004b). Assuming each rotor as a rigid disc rotating around its vertical axis with
an angular rate Q;, and that the rotation axis of the rotor rotates with the angular
velocity of the reference frame, the gyroscopic moments due to the change in the
orientation of the propeller plane are given by:

4
TGZ—ZJR((OX%)'Qi, (2.6)
i=1

where Jg is the inertia moment of the motor around its rotation axis, @ is the
angular velocity of the helicopter, expressed in the body-fixed frame and e3 =
[0 0 1]'." However, in this thesis the dynamic model of the system is obtai-
ned under the assumption that the vehicle is a rigid body in the space, subject to
one main force (thrust) and three torques. This simplification implies that gyro-
scopic effects caused by the propellers will be considered as disturbances for the
rotational control law.

Besides, this helicopter is an underactuated mechanical system with six de-

I'The notation prime / denotes transpose.
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grees of freedom and only four control inputs, which increases the complexity and
proposes an enormous challenge to the control area. Due to this difficulty, some
assumptions are made to compute the model for control purposes. The ground
effect is neglected and the helicopter airframe is assumed to be symmetric, which
results in a moment of inertia tensor of the center of the body-fixed frame with
just diagonal inertia terms.

Assuming these hypotheses, two approximations of the helicopter model are
presented. First, a more realistic model is obtained by using the Steiner’s parallel-
axis theorem. This model considers that the axes passing through the center of
mass are parallel to the axes of rotation of the body-fixed frame, and its origin
is displaced by a position r from the origin of the same frame. This assumption
results in a strongly-coupled dynamic model. To overcome that, a second model is
proposed, where the center of mass and the body-fixed frame origin are assumed
congruent, which leads to a decentralized dynamic model.

In what follows, the helicopter attitude is defined, which makes possible to
obtain the helicopter kinematics of the translational and rotational motions. A
brief explanation of the well-known Euler-Lagrange formulation is given, and
based on that, the helicopter equations of motion are obtained. To complete this
chapter, the equations of motion of the QuadRotor are presented by means of the
Newton-Euler procedure.

2.2 Helicopter Attitude

Since the equations of motion depend on the attitude of the mechanical system,
this section presents how to estimate the position and the orientation of the rigid
body according to an inertial reference frame.

The helicopter, as a rigid body, is characterized by a frame linked to it, and
with the origin at its center of rotation. Furthermore, assuming the center of
mass is displaced by a position r = [r, 1, r;]’ from the origin of the rotation
body-fixed frame and expressed in this frame, three perpendicular axes passing
through the center of mass and parallel to the body-fixed frame are considered
(€ = {Xc,Yc,Zc}). Let # = {Xp,¥5,Z5} be the rotation body-fixed frame, where
the Xp axis is the helicopter normal flight direction, yp is orthogonal to Xz and
negative to starboard in the horizontal plane, whereas Zp is oriented in ascend-
ant sense and orthogonal to the plane XgOyp. The inertial frame .# = {X,y,7} is
considered fixed with respect to the earth (see Fig. 2.2).
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f2

Figure 2.2: QuadRotor helicopter scheme.

To compute the coordinates of a point p rigidly attached to the frame % rel-
ative to the frame .#, with local coordinates “ p, the following equations must be
composed:

“p="Rs"p+7r, 2.7)
“p="Rs"p+"E, (2.8)

resulting in:
7p="Rz”Rs*p+” Rz7r+7&, (2.9)

where the rotation matrices “Ry and ' R4 specify the orientations of frame &
with respect to %, and of this last one with respect to the frame .#, respectively.
The vector & =€ =[x y 2z’ represents the position of the origin of the rota-
tion frame of the helicopter, expressed in the inertial frame .#. The vector “r = r,
as commented above, describes the position of the center of mass, which is located
at the origin of the frame %', with respect to the origin of the frame 4.

As frames € and 2 are parallel, the rotation matrix Ry is equal to the
identity matrix, which results in ” Rz = Ry. For the sake of notation simplicity,
both rotation matrices “ R and Ry are defined as R . Therefore, equation
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(2.9) can be written in a compact form:
“p=R,"p+’ dy, (2.10)

which describes the rigid motion between  p and ¢ p (Spong et al., 2006). The
vector from the origin of the frame .# to the origin of the frame % is given by:

Ydy =Ryr+E, (2.11)

and the vehicle orientation is given by the rotation matrix R » : #,%¢ — %, where
R s € SO(3) is an orthonormal rotation matrix.

The equation of the rigid motion (2.10) can be represented in a matrix form
through the homogeneous transformation matrix as follows:

®1><n 1

H,

- R, “dy )
’p:[ o %’]-%p, (2.12)

Where(gi):[xc ye zc 1].

The rotational transformation of a UAV or, in broad terms, of a rigid body,
can be parameterized through several methods such as: the Euler-angle repres-
entation, the quaternions representation, and the axis/angle representation (Spong
et al., 2006). From twelve independent definitions of the Euler angles is possible
to represent the relative orientation between two coordinate systems. The most
common are the x-convention (rotation around z, x, z), the y-convention (rotation
around z, y, z) and the xyz-convention (rotation around x, y, z). The last one, us-
ing intrinsic rotations, is usually found on aerospace applications, and it is named
roll, pitch and yaw representation, also known as Tait-Bryan convention, Cardano
convention, or nautical convention.

The rotation matrix can be obtained through three successive rotations around
the axes of the body-fixed frame. In this thesis, the roll, pitch and yaw angles are
used to describe the helicopter rotation in the three-dimensional Euclidean space
with respect to the body-fixed frame. Thereby, the configuration of a rigid body
rotation in the space is performed as follows (Murray et al., 1994):

1. Rotation around Zg by y: the first movement, assuming the inertial and the
body-fixed frames coincide, is given by a rotation around the 7 axis from
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the 7 axis by the yaw angle, .

X cosy siny 0 X
Vg | = | —siny cosy 0 y (2.13)
B 0 0 1 4

2. Rotation around yg by 6: the second movement is performed by a pitch
motion around the yg from the new yp axis.

X cos® 0 —sin X
Yil=1 o 1 0 A (2.14)
75 sind 0 cos6 %

3. Rotation around Xg by ¢: the third movement is a rotation that corresponds
to the roll angle, @, it is carried out around the X axis from the new Xp to
move the helicopter to the final position.

XB 1 0 0 X}
yg | =] 0 cos¢ sing Vi (2.15)
7B 0 —sing cos¢ 25

These angles are bounded as follows: roll angle, ¢, by (—7 < ¢ < 7); pitch
angle, 0, by (—m/2 < 6 < m/2); and yaw angle, y, by (-7 < y < 7).

From these three movements, the following rotation matrices that represent
the orientation of the rigid body rotating around of each axis are defined:

1 0 0 cos@ 0 —sin6
R(xg,¢)=| 0 cos¢ sing [, R(ys0)= 0 1 0 ,
0 —sin¢g cos¢ sin@ 0 cos6
cosy siny O
R(zg,y)= | —siny cosy O
0 0 1

Note that the rotations matrices R (x,¢), R(yp,0) and R(zp,y) describe rota-
tions starting from the inertial frame to the body-fixed one. Thus, the rotations
from the body-fixed frame to the inertial one are given by: R(x,¢) = R (xz,¢)’,
R(y,60) =R(y5,0) and R(z,y) = R (z5, )

The following rotation matrix from .# to 4 (it is the same one from .# to %),
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named as Direction-Cosine Matrix, is obtained by:

Ry =7 Ry, = R('x37¢) R(yB76) 'R(ZB’ II/)

1 0 0 cos@ 0 —sinf cosy siny O
Rz=|0 cos¢ sing |- 0 1 0 | —siny cosy O
0 —sing cos¢ sin@ 0 cosH 0 0 1

CyCH SyCo —-S0

Ry= | CyS0So—SyCo SwSOSo+CyCo COSp | |
CYSOCH +SySd SySOCH —CySd COCH
where C- = cos(-) and S- = sin(-).

The rotation matrix that describes the orientation of the body-fixed frame with
respect to the inertial frame . is the transpose matrix of Rz, due to its orthonor-
mality property, and is given by:

CyCo CyS0Sop—SyCop CySOCo+SySo
Ry=| SyCO SySOSp+CyCod SySOCH—-CySo | . (2.16)
—S6 cos¢ CoCo

2.3 Helicopter Kinematics

The kinematic equations of the rotational and translational movements are obtai-
ned by means of the rotation matrix (2.16) and the equation of rigid motion (2.10).

Since the frame % is attached to 4, the angular velocity of the frame % is
the same as the angular velocity of the rotation body-fixed frame. Thus, the rota-
tional kinematics can be obtained from the relationship between the rotation mat-
rix (2.16) and its time derivative with a skew-symmetric matrix, which simplifies
many of the computations involved (Craig, 1989; Spong et al., 2006).

Let R € R"*" be an orthonormal matrix, where:
RR=1,,,. 2.17)
Its time derivative is given by:

RR+RR=0,,,. (2.18)
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By defining: .
S=RR, (2.19)

from (2.18) it is obtained that:
S +8=0,.n, (2.20)

where § is a skew-symmetric matrix. Multiplying both sides of equation (2.19)
on the left by R and using the fact that RR’ = 1,,.,, produces:

R=RS. (2.21)

Therefore, the kinematic equation used to determine the helicopter rotational
motion, assuming the rotation matrix (2.16), is given by:

R,=R, S(®), (2.22)

where @ = [p ¢ r] is the absolute angular velocity vector of the rigid body
expressed in the rotation body-fixed frame (i.e., @ is the angular velocity that cor-
responds to the derivative of *' Rz, expressed in coordinates relative to the body-
fixed frame %), and S(®) (S(®)(-) = @ x -) is the following skew-symmetric
matrix:

0 —-r ¢
Sw)y=| r 0 —p|. (2.23)
-4 p 0

On the other hand, the angular velocity vector of the helicopter expressed in
the inertial frame is given by:

®O;,=R,;0. (2.24)

The relationship between the angular rates of the body-fixed frame and the
time derivative of the Euler angles can be obtained from the equation (2.22) after
some algebraic manipulations, or as follows:

p ¢ 0 0
g |=]0|+Rx¢)"| 6 |+RMORMX)"| 0],
r 0 0 173
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p 1 0 —sin@ o
g | =10 cos¢ singcosO o |, (2.25)
r 0 —sin¢g cos¢cosB 14

wheren =[¢ 6 |, and Wy is the Euler matrix.

The helicopter rotational motion is given by the angular rate components in
the three axis: the roll angular rate (p), the pitch angular rate (g), and the yaw
angular rate (r), around the Xg, ¥z and Zp axes, respectively. These rotational
velocities occur due to the torques applied on the system linked to the helicopter
structure, which are generated by external forces. These external forces define the
different moments in the three axes: rolling moment (7y, ), pitching moment (7g,),
and yawing moment (7Ty,) around the Xp, Yz and Zp axes, respectively (Esteban,
2005).

The time derivative of the Euler angles is obtained through the inverted Euler
matrix in (2.25), and can be posed by:

n=W,'o
) 1 singtan® cos¢@tan6 )4
6 |=]|0 coso —sing q |- (2.26)
/) 0 sin¢gsecO cos¢secH r

The time derivative of the Euler angles (d) .0, l/'/) is a discontinuous func-
tion. These time derivatives are different from the angular rates of the body-fixed
frame (p,q,r), which can be physically measurable, for example, by means of
gyroscopes. Generally, aerospace systems are equipped with Inertial Measure-
ment Units (IMU’s), that measure the angular rates and estimate the Euler angles
(Bouabdallah et al., 2006).

The linear velocity of a point p, that is rigidly attached to the frame € is ob-
tained through the equation (2.10), where the velocity “ p is given by the product
rule for differentiation as follows:

p=R,“p+R,p+7dy, (2.27)

where -
Ydy =Ryr+E, (2.28)

and as the point ¢ p is assumed rigidly attached to the frame %, its coordinates
relative to the frame % do not change, giving “ p = 0. Therefore, by substituting
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the equations (2.22) and (2.28) into (2.27), the linear velocity is given by:

Tp = RJS(a))%erRJS(a))rJr&

: 2.29
= R,0xp+R,0xr+§&, (229)

where R ;@ x © p is the velocity of the point p with respect to the origin of the
frame % expressed in the orientation of the frame .#, and the term @ X R sr + &
is the rate at which the center of mass is moving. From now on, the linear velocity

is defined by the simpler notation v , =7 p.

The linear velocity of the point p expressed in the frame % is obtained by:
ve=R,vy=Rzvs, (2.30)

where vy =[ug vo wol' andvy =[uc ve wel.

2.4 Euler-Lagrange Mechanical Systems

In this section, the forced Euler-Lagrange equations of mechanical systems are
presented.

Simple mechanical systems can be described by their Lagrangian, which is
the difference between the (positive semidefinite) kinetic energy and the potential
energy:

2(q.0)= 7 (0.0) -7 (@) =3 dM@a-%(a), @3

where g € Q denotes the configuration vector of the system (i.e. the set of the
so-called generalized coordinates) that belongs to an n-dimensional configura-
tion manifold @, with n being the number of degrees of freedom of the system.
A (q,q) is the system kinetic energy and 7% (q) is the potential energy, which
here is related only to conservative forces such as the gravitational one.

M(q) is the inertia matrix which is a positive definite symmetric matrix. For
a fixed value of the generalized coordinate g, let 0 < 4;(q) < ... < 4,(g) denote
the n eigenvalues of M(q). These eigenvalues are positive as a consequence of the
positive definiteness of M(q) (Spong et al., 2006). It results that:

M(q)Lyn <M(q) < Ay(q)Lyxn (2.32)

If all joints are of revolution, the inertia matrix contains only terms involving sine
and cosine functions and, hence, is bounded above and below as a function of the
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generalized coordinates. For a more conservative result, constants can be find to
provide uniform bounds in the inertia matrix, whose magnitudes can be bounded
by unity:

Amin]]-n><n S M(Q) S )Lmax]]-nxn ) (233)

with A,;;; and A, scalars. The boundedness property of the inertia matrix can
also be defined as (Lewis et al., 2004):

0 < Myin <||M(Q)|| <mpmay ¥V q€Q, (2.34)

where any induced matrix norm can be used to define the positive scalars m,y,;,
and M,y

Let bi(q) : Q — R", i = {1,...,m} be an m vectors set of the external forces
applied to the system. The Euler-Lagrange equation that describes this mechanical
system is given by:

d (0%(q,q)\ 0L(q.9)
dt( 54 )— 2 @ (2.35)

where .7 (q) € R" is the generalized force/torque vector. By substituting (2.31)
into (2.35), the following equation is obtained:

d({o (1, . Jd (1, . 0% (q)

2= ZadMm — = (=M =B(q)T'+T,

7 (aq <2f1 (q)q)> <aq (2" (q)q>>+ 74 (@T+Ty4,
where B(q) = [b1(q),...,bm(q)] € R"*™ is the input coupling matrix (also called
external force matrix), I' € U is the control action vector, being U the m-dimen-

sional actuation space, and I'y represents the total effect of the modeling errors
and energy-bounded external disturbances acting on the system.

Considering this expression, the equation of motion can be expressed by the
following form (Kelly et al., 2005):

o 19 NAC
M(q)§+M(q)q— 294 (¢M(q)q) + 9 B(q)T+Ty,
or, in a compact matrix form, as follows:
M(q)§+C(q,9)4+G(q) =B(q)T'+T,, (2.36)

where C(q,4)q is the so-called Coriolis and centrifugal force vector and G(q)
represents the gravitational force vector.
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The Coriolis and centrifugal force matrix C(q,g) is not unique, but the vector
C(q,q)q is indeed unique. For the sake of convenience, in the thesis this matrix is
obtained through the well-known Christoffel Symbols (of the first kind), c;jx(q),
defined as follows:

amy; ;. omy;j
Cijk 1= % { a(; %,Zl;l B 9q: } ’ 237
and the (k, j)th element of the matrix C(q,g) is given by:
n
cj = Y cij(q)di
- (2.38)

| 8mkj ka,- 8m,-j} .
= — + — i
,; 2 { dqi  dq; gk 1

Furthermore, the equation (2.36) can be represented by the following recursive
expression:

Y mii(@)i;i+Y Y ciin(@)digi+8(q) = € B(@T+Tq, k=1,...,n, (2.39)
j=1 i=1j=1

where ¢y is the kth standard basis in R”", g;(q) = 33/7[1(;’).

The equations (2.39) have three types of terms. The first one involves the
second derivative of the generalized coordinates. The second part involves quad-
ratic terms in the first derivative of g, where the coefficients may depend on gq.
These latter terms are further classified into those involving a product of the type
¢? and those involving a product of the type ¢;g j where i # j. Terms of the type
q? are called centrifugal, while terms of the type ¢;g; are called Coriolis terms.
The third type of terms are those involving only g but not its derivative. This third
type arises from differentiating the potential energy.

It is interesting to mention here some properties of the Coriolis and centrifugal
force vector C(q,q)q, which helps at the control design stage and to perform the
stability analysis, i.e.:

1. Property 1: C(q,q)q is quadratic in q.

2. Property 2: [|C(¢,4)q]l < s [14]*

3. Property 3: The matrix C(g, ), obtained as in (2.38), is related to the inertia
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matrix M(q) by the expression (Kelly et al., 2005):

1.
x (2M(q) —C(q,iz))x:O Vg,q9,x<€Q,

and consequently ./ (g,q) = M(q) —2C(q,4q) is a skew-symmetric matrix,
and the following expression holds:

M(q) =C(q,9)+C(q,9)".

This property states that the fictitious forces .4 (g,g)g do no work in the
mechanical system (Lewis et al., 2004).

Moreover, the gravity vector is also bounded, so that ||G(q)|| < gp-

2.4.1 Model Uncertainties

Since the equations of motion (2.36) represent the real system, the dynamic model
can be divided in nominal and uncertain parts. Thus, the system can be rewritten
as follows:

M()§+C(q,4)a+G(q) = B(q)T +8(4,4,4.T4), (2.40)

where M(q), 6'(q,q) and G(q) are the nominal matrices and vectors. The term
6(q,9,4,T ) considers the uncertainties of the model associated to an imperfect
knowledge of the physical parameters that characterize the system, modeling er-
rors, unmodeled dynamics of the actuators, sensors or structural mechanical vi-
brations, friction phenomena, electrical noise signals, computational errors and
exogenous disturbances (Vivas, 2004). Besides, this term can be represented by
additive uncertainties and partitioned into two terms as follows:

8(q’qaqard):rd+3(q7qvq)a (241)

where I'y represents the unmodeled dynamics and energy-bounded external dis-
turbances, as assumed before, while E(q,q,q) is a function of the parametric
uncertainties of the system matrices and vectors.

From the equations of motion (2.36) and (2.40), the uncertain part of the dy-
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namic model can be expressed in the following form:

AM(q) = M(q)—M(q),
AC(q.q) = C(q.4)—C(4.q),
AG(q) = G(q)-G(q),

being AM(q), AC(q,q) and AG(q) the parametric uncertainties. Thus, function
E(4,4.4) is given by:

E(¢,94.9) = AM(q)§+AC(q.4)q+AG(q). (2.42)
In what follows, the equations of motion of the QuadRotor helicopter will be

developed using the Euler-Lagrange formulation presented in this section.

2.5 Helicopter Model via Euler-Lagrange Formulation

The helicopter motion equations can be expressed by the Euler-Lagrange forma-
lism based on the kinetic and potential energy concept:

L5025 [4).

(2.43)

where Ty = Ty, +64(9,4,4,Tq,) € R represents the total rolling, pitching and
yawing moments expressed in the inertial reference frame, which join the applied
torque vector Tp, and the torques generated by the total effect of the modeling
errors of the system and external disturbances. Recalling the equation (2.41), the
uncertainty vector for the rotational motion is defined by:

811 (qvqaq"rﬂd) = Tnd +E‘n (qvqaq) ; (244)

where Ty, = ag + T, represents the external disturbances, which, in this thesis,
are assumed to be composed by the gyroscopic movements and the aerodynamic
moment vector that affect the helicopter, both expressed in .#. The aerodynamic
moment vector acting on the helicopter, ag = [ay ag ay|’, could be computed
depending of the aerodynamic coefficients, air density and squared velocity of the
helicopter with respect to the air. However, these moments are unknown in the
presence of unpredictable winds and turbulence. Besides, the gyroscopic effects



34 2 QuadRotor Helicopter Modeling

are considered also unknown, because it is assumed, at the motion control design
stage, that there are no access to the rotor speed. Consequently, these effects will
be neglected for the control design and will be considered as external disturbances.

The translational force vector fg = R S f+ 0:(9.9.9.f¢,) € R3 is also di-
vided into two parts: the first term, R j? =R A T, constitutes the applied force
to the helicopter due to the main control input 7 in the 7 axis direction’. The
second part, 8 ¢ (9,9.49.f éd)’ combines the parametric uncertainties with the ex-
ternal disturbances. For control design purposes, aerodynamic force vector, f £, =
ar = [ax a, a;]', whose components are in the X, ¥ and 7 axes respectively, are
also assumed external disturbances. This force could be computed in the same
way as in the case of aerodynamic moments.

The generalized coordinates of a rigid body evolutioning in a three-dimensio-
nal space can be written as follows:

g=[§" neR,

with &€ =[x y z]’ € R3 being the center of rotation position of the helicopter
with respect to the inertial frame ., and N = [¢ 6 ] € R3 represents the
Euler angles described in Section 2.2.

To derive the equations of motion, first the kinetic and potential energy must
be computed in terms of the generalized coordinates of the system. To start it, the
inertial, the rotation body-fixed and the center of mass frames are invoked again
(see Fig. 2.2).

First, the kinetic energy is developed considering the point p rigidly attached
to the frame ¢, with coordinates given by equation (2.10) expressed in the frame
#, and linear velocity vector also expressed in the inertial frame obtained by
equation (2.29). Thus, let J#" be the kinetic energy at point p with respect to the
frame .#, and let %" be the kinetic energy of a particle with differential mass dm
in €. The kinetic energy of the rigid body as a quadratic function of the first time
derivative of the generalized coordinates is obtained by:

At == (vs'-vy)dm, (2.45)

| =

2The notation e3 represents the vector e3 =[0 0 1]’ Thus, the therm Rfe3 denotes the third
column of the rotation matrix.
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and the squared velocity is given by:

.\ / .
v, vy = (Rya)x%)p—i—Rja)xr—k&)~(Rja)><(’”ﬂp+R,ya)><r+§>

= EE 2R, 0x pi2E R 0%
+(R,0x%p) (Ry0x“p)+2 (R0 x%p) (Ryr0xr)
+(Rs@xr) (Ry;@0xr) .

By making use of the skew-symmetric matrix (2.22) and some of the cross
product properties, the squared of the velocity is rearranged as follows:

I ./ , ./
Vj/ Vg = g é — 2& RyS(([’/p)a) — 2& RyS(r)(l)
+0' (S(“p)'S(“ p) +28(“ p)'S(r) +8(r)'S(r)) .
However, it is more suitable to write this expression in terms of the generalized
coordinates. To perform that, the vector @ is replaced by equation (2.25), which
yields:

v vy = EE2ER,SEp)Wan 28R, S(Wnn

+0'W,, (S(“p)'S(“ p)+28(“ p)'S(r)+S(r)S(r)) Wyn. ]
(2.46)

Therefore, solving the equation (2.45) with the squared velocity, the kinetic
energy of the helicopter can be computed by the following expression:

Ji/:;/vf/‘vﬂdm7
A = 5 [Eean— [ER,SCpWnam— [ERSwWyhdm

b [0Wh (S pY'S(p)+25(7 p)'S(r) + S(YS(r)) Wi dm.

By integrating the equation above, the second integral and the second term of
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the fourth integral become null, and the kinetic energy results on:

| ./ . 1., .
H = mE & —mE RyS(Wa) + 20" 7 ()N, (2.47)
or in the matrix form:
1| & / [ mllz.;3 —mR #S(r)Wy } &
H == , P > |, 2.48
2 [ n ] W, S(rYRS 7 (m) N
M(q)

where M(q) is the inertia matrix, and:
I(N)=WhpIWy. (2.49)

Assuming the helicopter as a continuous rigid body with mass density p (Cf p)
at point p located at its center of mass and displaced by a position r from the
rotation body-fixed frame, the mass of the helicopter is given by:

m—= /V p (¢ pYdxcdycdzc, (2.50)

where V denotes the volume of the body. By using this equation and the Steiner’s
parallel axis theorem, the moment of inertia tensor J is given by:

J = [(S(“p)S(“p)+S(r)S(r))dm
= [, (8(“p)'S(“ p)+S(r)'S(r)) dxcdycdzc (2.51)

= I+mS(r)'S(r),

where:
Ly Ixy I, Z%‘F)% —XcYc  —Xcic
I=\ 1Ly Ly I | = L | e Xe+ze  —zcye | dxcdycdzc, (2.52)
I, Iyz I, —XcZc —IcYc x%“")%
and
rzz—i—ry2 —Fxly — ¥yl
mS(r)S(ry=m| —rury r24+r: —rr | . (2.53)
— Iyl —7rly r%—l—rg
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To complete the Lagrangian, the potential energy term must be computed.
In the case of the helicopter, the source of potential energy is the gravity. The
potential energy of the helicopter can be computed by assuming the equation of
the rigid motion (2.10) and is given by:

w = [g7 pdm

2.54
= mg’p, (2>%)

where g is the vector of the direction of gravity expressed in the inertial frame,
which in this case g =[0 0 —g|’. Thereby, the potential energy takes the
following form:

U = mg(—rysinB +rycosOsing +r;cosOcos¢ +z) . (2.55)

Once, the kinetic and potential energy of the QuadRotor helicopter have been
computed (see (2.48) and (2.55)), the Lagrangian (2.31) of the system can be
written as follows:

Z(q,q) = H(q.9)—%(q) 2.56
= 34'M(q)g—mg"”’p. (230

By solving the derivatives required by the Euler-Lagrange equations (2.35),
the equations of motion, expressed in the form of the equation (2.40)>, results in:

M(q)§+C(q,9)4+G(q) =B(q)T+6(q,9,4,.Ta)

~— —

mll3,3 —ijS(r)Wn :| ' |: é ] " [ Cgé(q,q) Cén(q,q
~mW3S(r)R ' J(n) U] Che(9:4) Conlq.q

Hlem )= 5

I8
EPANEEo!

Tna 87’ (Qanqa Tnd)
(2.57)

where the elements of the Coriolis and centrifugal matrix can be computed by the
Christoffel symbols using the equation (2.38). The gravitational vector has the

3For the sake of notation simplicity, the matrices and vectors of the nominal system will be

presented without the argument . Throughout the thesis, where necessary to make distinction with
regard to this simplification, it will be observed.
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following form:

0
0
mg
= 2.
Gla) —mg(—rycos0cos @ +r,cosOsing) ’ (2.58)
—mg(rycos @+ rysin@sin¢ + r.sin O cos @)
- O -
while the force matrix is given by:
B (q) Ry, O3
B(q) = “en = | e . (259)
By(q) O3x1 1343

In summary, the equations of motion obtained in this section provide a strongly
coupled dynamic model. This model will be used to emulate a real QuadRotor
helicopter. In the following section this dynamic model is simplified and a de-
centralized model is achieved.

2.5.1 Simplified Equations of Motion of the Helicopter

In this section, the center of mass and the origin of the rotation body-fixed frame
2 are assumed congruent, which results in the vector r = 0.

Consequently, the kinetic energy terms combining é and 7 in the the Lag-
rangian (2.56) disappear and, thus, the Euler-Lagrange equations can be divided
into two interconnected dynamics, the translational and rotational subsystems.
These simplified equations of motion compose a decentralized dynamic model, as
it can be seen in Fig. 2.3.

Under this assumption, the equations of motion (2.57) can be rewritten as
follows:

o i | [ : ] Lo cos H :
_ [ B:(q) }[ T ]+ { 0:(9.9.4.f¢,) } 7

BTI (q) Tna 811 (qvqaq7Tnd) (2 60)

mges
+
[ 03,3 }
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External
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Figure 2.3: Dynamic system divided into two interconnected subsystems.

where, in this model, the inertia matrix of the rotational subsystem is given by
J (M) = Wy IW 5. From now on, the Coriolis and centrifugal matrix of the rota-
tional subsystem is defined by Cyy(g,4) = C(n,1).

The translational movement can be expressed by means of the state vector &
by the following equations:

3

)'c':l(cosl//sin@cosq)+sin1//sin(]))T+ &

m m

R I : S,

j = — (sinysin@cos¢ —cosysing) T + —= (2.61)

m m
1)
Z:—g+i(cos900s¢)T+£
m m

The simplified rotational equations of motion in terms of 1) can be written as
follows:

S (Mmi+C(n,n)n =1y, (2.62)
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and

with:

‘11 =

12 =

13 =

1 =

¢ =

€23 =

31 =

C3p =

€33 =

L 0 —1,:SO
0 [,C*9 +1..5°¢ (hy —Iz) CS¢CO ,
—1,S0  (Ly—I;)COSPCO 1,50 +1,,S*9C?6 +1.C>9C*0

(2.63)

€11 €12 €13
cmn)=1|cu cn 3 |,
€31 (32 (33

(Iyy — L) (6CPS¢ + 1yS?¢CO) + % (I, — Iy) WC2HCO — 11, \rCO
(L. — Ly) (WCPSOC*6 + 30COC?¢) + 5 (I, — I.) 0COS*§ — 11,,0CO
(I — Ly) (6COS¢ + 1yS?¢CO) + % (I, — I.) WC2HCO + 11, rCO
(Lz = Ly) §CHS$

—L YSOCO + I, S>9COSO + I yC?9SOCO + 1 (I, — L) §COC*
+1 (1, ~ 1,,)$CO5%¢ + L1..¢CO

(Iy — L) (WC?OSPCY + 30COC?9) + § (I — 1,) 6COS*9 — 51,6CO
(. —Ly) (6C9SPSO + 19S29CO) + 1 (I,y — L.) $C*¢CO — 11.,6CO
+1, SOCH — I, S pSOCO — I yC*9SOCH

(Iy — I;) $CPSPC?6 — I,,6S*$pCOSO — I, 6C*9pCOSO

+1,,6C6S6 .

Therefore, the simplified mathematical model that describes the helicopter
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rotational movement obtained from the Euler-Lagrange formalism is given by:
fi=/m" (zg—Cn.0)m). (2.64)

These two interconnected subsystems will be used to design all control strategies
presented in the thesis.

2.6 Helicopter Model via Newton-Euler Formulation

In this section the equations of motion of the QuadRotor helicopter are obtai-
ned via Newton-Euler formulation. This model is presented just as an alternative
approach. Besides, this approach provides a clear understanding of the forces
and torques applied to the vehicle, and from this a relationship between these
forces and torques and the generalized forces and torques obtained from the Euler-
Lagrange dynamic model are obtained. The basis theory of this formulation is
omitted. For more details see the references therein the thesis.

The dynamic equations of a rigid body subject to external forces applied to
the center of mass and expressed in the body-fixed frame can be obtained through
the Newton-Euler approach using the relations (2.22) and (2.30) as follows:

{m]l3x3 ®3X3][Vt@}+[wxmv¢@]:[fg;] (2.65)

0343 J N} oxJo T

where J € ®*3 is the moment of inertia tensor obtained by equation (2.51),
13,3 € K33 and 03,3 € R3*3 are the identity and zeros matrices, respectively.
v is the linear velocity vector and @ is the angular rate, both expressed in A.

Considering the state vector [ E vy, n o ]/, the helicopter dynamic mo-
del, assuming the center of mass at the origin of the frame %, can be rewritten
by:

é =vs,—R,0xr
mvy =Ry fz

R, =R,S(o)
JO=—-0xJO+Tx

(2.66)

where the time derivative of the linear velocity v » (see equation (2.29)) with the
center of mass at the origin of frame % (i.e. ¢ p = 0) is given by:

vy=R,0x(@xr)+R,0xr+&. (2.67)
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The forces and torques in which the helicopter is subject, f, € % and T4 €
A, consist of: its weight, the aerodynamic force and moment vectors, the gyro-
scopic effects caused by the rotors, the applied thrust, and the torques generated
by the four propellers. These forces and torques can be expressed by the following
form:

Rysfpy=—mges+Ry T+
{ sf% ge3 Rz, T +fe, (2.68)

T =Tatar+Tg—rXx (f+R,ﬂ,f§d)

where T, is the applied torque vector defined by equation (2.2), T¢ is the gyro-
scopic effect vector given by (2.6), and a, = [a, a, a,] is the aerodynamic
moment vector expressed in the body-fixed frame. Given that the aerodynamic
moments and the gyroscopic effects are assumed to be external disturbances, they
are considered as the vector T4 = a,r + Tg. In this model, the parametric uncer-
tainties are omitted.

By substituting the equations of forces and torques (2.68) into the dynamic
model (2.66), these equations can be rewritten as follows:

é =vy,—R,0xr

mvy = —mges +RJE3T+f€d

R, =R,S(o)
JO=—-0xXJO+T,+Ty3—rX (?-I-Ry/féd)

(2.69)

By replacing the linear acceleration (2.67) into the helicopter model (2.69),
and after some algebraic manipulations, the following Newton-Euler equations of
motion are obtained:

RJE3T+f€d = m&—ijrx(b—mRya)x(rxa))+mge3
Ta+Tqg = JO—mrx(rx®@)+mrxR;/E+0xJ® (2.70)
—mr X (@ X (rx ®))+mgrxR;'e;

To obtain the Newton-Euler model (2.70) using the Euler angle parameteriz-
ation and, consequently, expressed by the generalized coordinates g = [’ 1],
the equation (2.25) and its time derivative must be used together with the rela-
tion @x = (@) = R ;'R ,. These equations are obtained in an elementary way
and by direct substitution. Thus, in this thesis it will not be developed. At the
same time, it is interesting to mention here the relationship between the torques
expressed in the body-fixed frame and in the inertial reference frame, that is:
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which leads to:
!/
'tn - Wn Ta 3

a

_ /
Tnd — Wn Td,

As in the case of the helicopter model via Euler-Lagrange formulation, in this
section the simplified model is also obtained. Considering the frames %" and %
congruent, the vector r is null, and, therefore, the equations (2.69) are rewritten
as follows:

E=vs
I"l’lVf = —mge;3 +Rye3T —|—f§d 2.72)
R, = RJS((D)
Io=—-0xIo+1,+ 1,
By defining the following state vector:
{=@x vy z up vo wo ¢ 0 w p g T, (2.73)

the simplified model of the helicopter (2.72) can be presented in a state space
form:

X o= u
y = w
Z - WO
. 1 ) . ' a
g = — (cosysinOcos¢ +sinysing)-T+ —
T m
1
vy = —(sinl//sinecos(b—COSWSin¢).T+al
n m
1
Wo = —g—&-—(cochosqﬁ)-T—y%
. : - —
&= ¢ = p+gsingtan®+rcos¢tan6 (2.74)
& = gcos¢—rsing
Y = gsingsecO+rcosdsecOd
. (Iy ) — IZZ) Tap po
= X agr4+ L4
’ sy ' CAR
g = (zz xx)pr—}—ﬂ-i,-ﬂ
(1 by 1) Ly Ly
; xx — fyy Ta, Td,
e L
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The equations of motion of the QuadRotor helicopter obtained via Newton-
Euler procedure are not used to design the controllers in this thesis. However,
many researchers make use of this approach, and some of their controllers used
for results comparison have been designed by means of this model.
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2.7 System Design Parameters

This section presents the parameters of a QuadRotor helicopter that is being de-
signed in the Automation, Control and Robotic Group, Department of Systems
Engineering and Automation at the University of Seville.

The design of the QuadRotor helicopter structure is based on the illustration
presented in Fig. 2.1. The vehicle will be constituted of four brushless motors
AXI 2217/16 Gold Line, which are able to provide a maximum thrust of 12.2 N
per each motor-propeller group, assuming blades with dimension of 10” x 5”. An
Inertial Measurement Unit (IMU) MTi-G from Xsens will be used to measure
the linear accelerations, Euler angles and angular rates. An infrared sensor is
considered to estimate the altitude, while to obtain the translational displacement,
an on-board visual sensor is being implemented. These data will be treated in an
embedded computer based on the PC-104 platform, which will be in charge of
guiding the vehicle autonomously.

By previous analysis, some values of the model parameters have already been
estimated, whose will be used to carry out all the simulation results in this thesis,
and are shown in Table 2.1.

2.8 Conclusions

In this chapter the modeling of the QuadRotor helicopter has been presented. The
models developed here have been obtained taking into account the control design
purposes.

A more realistic modeling has been performed considering the center of mass
displaced of the helicopter center of rotation, which generates coupling between
the translational and rotational movements. From this coupled model, a simpli-
fied and decentralized model has been obtained, which will be used to design the
control strategies presented in this work.

The equations of motion have been computed through two approaches, the
Euler-Lagrange and the Newton-Euler formulations, allowing a wide range of
control structures to be chosen.
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Table 2.1: QuadRotor helicopter model parameters.

Parameter Description Parameter Value
Mass of the QuadRotor m 2.24 kg
helicopter

Distance between the l 0.332m
mass center and the rotors

Thrust coefficient of the rotors b 9.5¢ —6 Ns?
Drag coefficient of the rotors kz 1.7¢ — 7 Nms?
Gravitational acceleration g 9.81 m/s?
Moment of inertia around Ly 0.0363 K g.m2
the x-axis

Moment of inertia around Iy 0.0363 Kg.m?
the y-axis

Moment of inertia around Y- 0.0615 Kg.m?
the z-axis

Position of the center of mass in x Iy —0.00069 m

from the body-fixed frame
Position of the center of mass in y ry —0.0014 m
from the body-fixed frame
Position of the center of mass in z r; —0.0311 m
from the body-fixed frame
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3.1 Introduction

This chapter deals with cascade control strategies to solve the path tracking prob-
lem for the QuadRotor helicopter. By combining specific control techniques, the
continuous performance improvement of the whole closed-loop system is obtai-
ned. The development of this chapter is based on previous published works: in
Raffo et al. (2008a) a control law based on a standard backstepping approach
for translational movements and a fully actuated nonlinear 77, controller to sta-
bilize the helicopter were combined to perform path tracking in the presence of
aerodynamic moment disturbances and parametric uncertainties; in Raffo et al.
(2008b) the same nonlinear 772, controller presented in Raffo et al. (2008a) was
used to stabilize the UAV, while a predictive controller was employed to control
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the translational motion and to provide a smooth path tracking through its pre-
dictive features. However, both these strategies are only able to reject sustained
disturbances applied to the rotational motion.

Therefore, the main objective is to design controllers that provide certain re-
quired performances during the QuadRotor flight, as null tracking error and ro-
bustness in presence of sustained external disturbances affecting the six degrees
of freedom, parametric uncertainties and unmodeled dynamics. The proposed
control strategies are based on the simplified equations of motion (2.60), which
are represented by the decentralized structure of the QuadRotor helicopter in Fig.
2.3. On one hand, translational controllers are obtained based on the translational
movement given by equations (2.61), while, on the other hand, rotational control-
lers are computed based on the rotational equations of motion (2.62). The overall
scheme of the control strategies is depicted in Fig. 3.1.

Lféu T,

—

IQuadrotor Helicopter  Transiational
Subsystem

|
T

| Rotational
| Subsystem

Trajectory

Rotational Nonlinear THa
Generator T

H , Controller T

] [

Figure 3.1: The decentralized structure of the QuadRotor helicopter.

Firstly, the reference trajectory for the translational movements is provided
off-line by the Trajectory Generator block. The computation of this trajectory is
based on a virtual reference vehicle whose model is the same as the QuadRotor
simplified one for the translational motion. Thereby, starting from a desired route
for the translational movements, x,, y,, and z,, and their derivatives, the reference
control inputs 7}, u,, and u, _, are computed. The reference yaw angle is defined
separately. This trajectory is generated under the following assumptions: there
are no external disturbances acting on the virtual vehicle; and the attitude of the
virtual vehicle is assumed stabilized.
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For the inner-loop control, a nonlinear .7, controller for the rotational subsys-
tem is used to perform the QuadRotor helicopter stabilization. The angular posi-
tion and velocity are controlled in this loop, being the torques applied on the three
axis, Ty, = [Ty, T, Ty,), the manipulated variables. To obtain null steady-state
error in presence of sustained external disturbances, the integral of the angular po-
sition error is considered. Due to the cascade structure of this strategy and taking
into account the closed-loop performance achieved by the nonlinear .77, inner-
loop controller, the Euler angles can be considered as time-varying parameters on
the design of the translational controllers.

To design the controllers for the outer loop, i.e. for the translational move-
ment, three control methodologies are proposed: linear .72, control, model pre-
dictive control, and backstepping approach. The translational motion control is
performed in two stages. In the first one, the helicopter height, z, is controlled and
the total thrust, 7', is the manipulated signal. In the second stage, the reference
of pitch and roll angles (8, and ¢,, respectively) are generated through two vir-
tual inputs, computed to follow the desired xy movement. In this step, the control
variable T is used as a time-varying parameter.

The first technique discussed to design the outer-loop controller is a linear
state feedback %, controller based on the error model, in which the integral of
the translational position error into the state vector is included. The aim of com-
bining this technique with the nonlinear .77, inner-loop controller is to guarantee
robustness of the whole system in presence of sustained disturbances acting on the
six degrees of freedom of the QuadRotor helicopter, and uncertainty parameters.
To design the linear J#, controller, a synthesis methods via LMIs (Linear Matrix
Inequalities) is used. This control strategy was presented in Raffo et al. (2008c¢).

As a second outer-loop control, a model-based predictive controller (MPC) is
proposed to control the QuadRotor translational movements, using the references
provided by the trajectory generator. The main idea is to combine the advant-
ages of the predictive control methodology to follow a predefined trajectory in a
smooth way, with the capacity of the nonlinear .72, theory to cope with unknown
disturbances. To carry out these objectives, a state-space predictive controller
with integral action based on the time variant error model is used to track the ref-
erence trajectory, which is an improvement of the controller presented in Raffo
et al. (2009a). The integral action is also considered on the position error into
the state vector in order to achieve null steady-state error when sustained disturb-
ances are acting on xyz-motions. This control structure was published in Raffo et
al. (2010c).
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Lastly, an integral backstepping approach is used to design the QuadRotor
translational motion controller, which, combined with the nonlinear 7%, inner-
loop controller, are performed to reach a robust flight of the QuadRotor heli-
copter in presence of unmodeled dynamics, parametric uncertainties and sustained
disturbances on the six degrees of freedom. This control structure provides an
enlarged workspace of the translational movement when compared with other
strategies proposed in this chapter. In the translational controller design, the in-
tegral backstepping procedure is performed considering the integral term in its
second step. This controller guarantees stability and convergence of the tracking
error for a generic plant when a maintained disturbance affects the system and the
reference signal is time-varying. This cascade control strategy was presented in
Raffo et al. (2010d).

The development of these controllers is analyzed in the following sections.

3.2 Simulation Protocol

This section presents the procedure used to carry out the simulation results of the
proposed control strategies throughout the thesis. It is described at this point of
the manuscript in order to elaborate a simulation protocol that provides the same
test conditions for the controllers, allowing comparisons between them.

The proposed control strategies will be tested by simulation in order to corrob-
orate the effectiveness to solve the path tracking problem when sustained disturb-
ances affect the whole system. The performance obtained by the control strategies
will be checked considering the more accurate model (2.57) as well as satur-
ated control inputs, which emulates a real QuadRotor helicopter. As presented in
Chapter 2, this model considers that the axes of rotation of the body-fixed frame
are parallel to the axes passing through the center of mass, and its origin is dis-
placed by a position r to the center of mass, resulting in crossed inertia terms in the
moment of inertia tensor. Moreover, this assumption results in a strongly-coupled
dynamic model, with crossed terms in the inertia matrix and in the Coriolis and
centrifugal matrix between & and 17, and in the gravitational force vector. Taking
into account that the simplified model derived in Section 2.5.1 will be used just for
control synthesis purposes, structural uncertainties are present because that model
considers a moment of inertia tensor with only diagonal inertia terms.

In addition, an amount of +40% in the uncertainty of the elements of the mo-
ment of inertia tensor and the mass will also be considered to test the robustness
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provided by the control strategies with respect to parametric uncertainty. Finally,
sustained disturbances affecting all the degrees of freedom will be applied in dif-
ferent instants of time to check the disturbance rejection capability of the proposed
controllers. The values of the nominal model parameters used for simulations are
the same shown in Table 2.1.

Furthermore, simulations comparing the control structures developed in this
chapter with the one of Bouabdallah and Siegwart (2007) (IntBS) will be per-
formed in order to show the improvement obtained with the proposed strategies.
The control strategy presented in Bouabdallah and Siegwart (2007) proposes an
integral backstepping approach, which uses the integral term in the first step of
the procedure. It has been chosen for the comparison analysis because it is able to
present similar performance results, as well as to reject sustained disturbances.

Assuming that the QuadRotor helicopter needs, under ideal conditions, a
thrust value of about 7 =~ 21.97N to perform hovering flight, the following persist-
ent light gusts of wind are considered as external disturbances on the aerodynamic
forces and moments:

a, = 1IN at + = 5s,
ag = 2Nm at r = 10s,
ag = IN at t = 15s,
ag = 2Nm at r = 20s,
a, = IN at t+ = 25s,
ay = 2Nm at ¢ 30s.

Two reference trajectories will be used to evaluate the control strategies. The
first reference path used is a circle evolving in the R? Cartesian space defined by:

1cos(jn) 1s'n(jtt) 3 2008<m) ﬂ d
Xr == A ) m, Yr= 581 A )M r=5— RS r= —; raa.
2% \50) ™ T M (50) ™ * 20)™ V=g
For this trajectory, the initial conditions of the helicopter coordinates are &, =

[0 0 Omandnmy=[0 O 0.5]rad. Fig 3.2 illustrates the first reference tra-
jectory.

A second simulation collection will be carried out with a reference traject-
ory made up of a set of several kinds of stretches (see Fig. 3.3), starting from
Xr, = 0.5 m, y,, =0.0 m, z;, = 1.0 m and y,, = w/3 rad. The helicopter began
tracking this trajectory in the following initial conditions of position and orienta-
tion: Eg=[0 0.5 0.5mandny=[0 O 0.5) rad. In these simulations, res-
ults attained by the control strategies are compared with the ones achieved by the
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Figure 3.2: Circular reference path.

integral backstepping controller proposed by Bouabdallah and Siegwart (2007).
The parameters for all the control structures are synthesized to obtain a smooth
reference tracking, with a quick disturbance rejection and a small transient error.

Moreover, in order to make a quantitative comparison of the results attained
by the control strategies, some performance indexes will be computed. On one
hand, the Integral Square Error (ISE) performance indexes obtained from the sim-
ulation results are presented. On the other hand, the Integral Absolute Derivative
control signal (IADU) index will be computed for all control signals in all control
strategies. This performance index is indeed very appropriate to check the control
signals’ smoothness.

3.3 Rotational Subsystem Controllers

In this section the rotational subsystem control law to achieve robustness in the
presence of sustained disturbances, parametric and structural uncertainties is de-
veloped. The approach used to perform is based on the nonlinear 7%, theory.

The nonlinear .77, approach used in this chapter consists in an adaptation of
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Figure 3.3: Assorted reference path.

a previous work, presented in Ortega et al. (2005), formulated via game theory,
to control mechanical systems considering the tracking error dynamic equation.
This strategy provides, through an analytical solution, a time variant control law
which is strongly model-dependent and it is similar to the results obtained with
the feedback linearization procedures.

In what follows the nonlinear 7%, control theory and its formulation via game
theory for the state feedback case is presented. Finally, the nonlinear state feed-
back %, control for the rotational subsystem is developed.

The preliminary definitions about the nonlinear .77, control theory and differ-
ential game theory made in this chapter will be needed to formulate the under-
actuated nonlinear 77, controllers in Chapter 4.

3.3.1 Nonlinear .72, Control

A good choice to deal with unknown disturbances affecting a nonlinear system
is the nonlinear 77, control theory. The goal of this control theory is to achieve
a bounded ratio between the energy of the so-called error signals and the energy
of the disturbance signals. One advantage of the nonlinear %, controller when
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compared with the linear approach is related with the attraction basin, which is
enlarged by the nonlinear approach.

The solution of the nonlinear .7, control problem for nonlinear continuous
systems has been provided by van der Schaft in van der Schaft (1991) and van
der Schaft (1992), which uses the .%>-gain as an extension of the .7Z,-norm for
linear systems, as will be seen in Section 3.4.1. The definition of Z.-norm when
treated in the time domain can be interpreted as the induced 2-norm or .%>-norm
of a system, which is the relationship between the energy (2-norm) of its output
signals and the energy (2-norm) of its input ones. This definition can be used in
both nonlinear and linear systems. In a general approach, the problem leads to
a Hamilton-Jacobi (HJ) equation, which is a first order, nonlinear partial differ-
ential equation (PDE) for a function S(qy,...,q,,t) called Hamilton’s principal
function. However, the main problem in this approach is the absence of a general
method to solve this HJ PDE.

In the next section, the nonlinear 7%, problem is formulated, and its solution
using differential game theory is presented. After that, as will be seen through-
out this section, the controller design for mechanical system models using Euler-
Lagrange equations is carried out by a direct method.

3.3.1.1 Nonlinear /7, Control Theory - General Approach

Considering a nonlinear dynamic system ¥ in the following form:

x = a(xu.d,r)
Y:¢ & = h(xu,d) (3.1)
y = clxud;r)

where x € R" represents the system state vector, u € R is the control input vector,
d € R represents the exogenous disturbance vector acting on the system, y € R”
is the measurable signal vector and § € R is the cost variable associated with the
optimization problem, whose energy is a behavior index.

In this way, the nonlinear .77, control problem consists in calculating an ad-
missible controller:

K(xe,y) 1 y() — u(-),
with x; being its states, and such that the resulting closed-loop is stable and verifies

the attenuation relationship in .%5-norm between the energy of the cost vector §
and the energy of the disturbance signal vector d, i.e. in the channel d — §,
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given by:

_1 r 2 1 T 2
Jo=5 | 1§ B =57 [ ld@w)Bar <o T, (3.2)

where the level attenuation achieved is called ¥, and || (¢) |3 and ||d(¢)||3 represent
the power (instantaneous energy) supplied to the system of the cost variable vector
and of the disturbances, respectively:

IO E =) =§|c,~<r>|2, (3.3)

Id(0)13 = dYd(0) = ¥ |d:(r) . G

Thus, this is an optimization problem. The objective consists in formulat-
ing a stabilizing control law that minimizes the .Z5-gain (see Definition 3.1) of
the application of the nonlinear input-output d — &, for the worst admissible
disturbance acting on the system.

Definition 3.1 ((van der Schaft, 2000) .%-Gain). A dynamic system ¥ has %»-
gam < vy if it is dissipative with respect to the supply rate s(d,§) = 4 7 Nd())3 -
& @)|3. The Z5-gain of T is defined as y(X) = inf{y|Z has £ — gain < y}. T
is said to have £5-gain < v if there exists y* < y such that ¥ has £-gain < y*.

The relationship of the disturbance attenuation allows to catch in a simple
way the performance idea for nonlinear systems. So that, if the cost variable § is
formulated as a weighting function of the control effort # versus the tracking error,
it will determine to some extent the requirements of performance to the problem.

As the performance idea can be captured by the attenuation relation (3.2),
other point is the closed-loop stability for the 7%, control structure. Thus, the
controlled system is weakly internally stable, if for X starting in the initial state
xo and the disturbances d(t) € %5, all the signals, u(-), y(-) and {(-) as well as
x(+) converge to zero when ¢ — co. On the other hand, the closed-loop system is
internally stable, if it is weakly internally stable and additionally the controller
supports an internal representation such that its state tends to zero when ¢ — oo
(Helton and James, 1999).

The solution of nonlinear .7, control can be obtained through two approa-
ches, differential game theory (Doyle et al., 1989; Basar and Bernhard, 2008) and
dissipative systems theory (van der Schaft, 2000). However, for the sake of sim-



56 3 Cascade Control Strategies

plicity, in this thesis only the first one will be used. Furthermore, in this chapter
only the state feedback control approach will be exposed, since for the applica-
tions used in this thesis, an accessible state vector will be assumed .

Before exposing the differential game formulation to solve the nonlinear 772,
problem, in order to clarity, a brief explanation about dynamic programming will
be given.

3.3.1.2 Dynamic Programming

Firstly, to introduce the dynamic programming approach used in this thesis, the
optimal control problem must be formulated. Thus, considering an unperturbed
time-varying nonlinear system expressed as follows:

x=a(x,u,t), (3.5)

where the variables are the same as in system (3.1), the optimal control problem
can be posed as follows:

Computing the control variable u(t) that must be applied to the system (3.5)
over the time interval [ty,ts], so that in its evolution the following continuous-time
cost functional is minimized:

t
J=0(xltg)oi)+ | " L(x(t), u(t), )t (3.6)

0
where t is the independent variable, ty is the initial time and ty is the terminal
time. The terms ¢(x(tr),tr) and L(x(t),u(t),t) are the so-called terminal cost
and Lagrangian, respectively. It is also assumed an initial condition x(ty) = xg
with ty constant and ty probably variable. Of all the control signals u(t) € U that
can be applied to the system during the time interval [to,ty), there will exist a u*(t)

such that:

J(u* (1)) <J(u(r)) Vu@)eU, (3.7

where the signal u*(t) is called the optimal control signal. (Bhattacharyya et al.,
2009; Aracil and Gordillo, 2004)

In some problems it is interesting to obtain an expression that allows to com-
pute the input signal value u as a function of the states x, which is a feedback
solution and is called the optimal control law, u*(x,1).

The optimal control signal can be achieved using Pontryagin’s maximum prin-
ciple, through the variational calculus, or by solving the Hamilton-Jacobi-Bellman
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(HJB) equation, through dynamic programming (Sontag, 1998). However, in this
thesis only dynamic programming will be treated.

Therefore, dynamic programming can be used to approximate the solution of
the optimal control problem making use of the Bellman’s Principle of Optimality,
which can be summarized as follows:

Given an optimal trajectory between the initial time, ty, and an intermediate
time, t, the optimal trajectory between ty and a terminal time ty >t can be found
concatenating the initial optimal trajectory to the computed one between t and ty
for the system starting at x(t) with u(t) at time t, which are the terminal states
and control signals of the previous computed trajectory between ty and t.

Then, to perform that, the optimal cost-to-go function (also called the value
function) concept is introduced as follows:

V() =7 (1) = min {(P(x(tf),tf) + /t 7 L(x(0), u(t),t)dt} . (38

where J*(x,t) is the best possible value of the cost functional J when the system
covers the optimal trajectory from the state (x,7).

If J* is assumed continuously differentiable as a function of x and ¢, the Bell-
man’s Principle of Optimality can be applied as follows:

e Assuming that the system has an initial state xg at fy and evolutioning during
At with a control action u.

e For o+ At the state is x’.

e If from x’ the state evolves according to an optimal trajectory to the final
instant 77, the cumulative cost in this track will be J*(x', 7o + At).

o X' ~x+a(x,u,t)Ar for Ar — 0.

e The cost associated to the evolution from the state xq at #y to the end point
through x” at 7y + At is

J(x,t) = J* (¥, tg+ At) + L(x,u,t)At .

Since J*(x,r) < J'(x,t), and whereas J*(x,7) is, by hypothesis, the minimum
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with respect to the optimal trajectory, that is:
J*(x,t) = n’l(igl{./*(x/,t—i-At)+L(x,u,t)At}
ul-
= m(igl{J*(x—i—a(x,u(t),t)At,t—|—At)+L(x,u,t)At}
ul-

*

o aJ aJ*
= Illl’l(lgl {J (x,t)—l—axa(x,u,t)At—i-atAt—FL(x,u,t)At} ,

for Ar small enough, it results in:

aJ* oJ*
At = —minq — At+L At .
5 M Ill(lgl{ Ix a(x,u,t)At+L(x,u,t) t}

Besides, by assuming Ar — 0, the following expression is obtained:

aJ _ _min{%Jxa(x,u,t) +L(x,u,t)} ) (3.9)

ot u(-)

which is the so-called Hamilton-Jacobi-Bellman equation, with the boundary con-
dition J*(x,77) = ¢ (x,17) where the values of x verify ¢(x,77) = 0. This equation
can be seen as an extension of the Hamilton-Jacobi equation used in classical
mechanics.

To solve this optimization problem, two stages are necessary. First, the cost
function is minimized, which yields to:

. . [aJ*
u(x,1) —argarélurjl{axa(x,u,t)—i—L(x,u,t)} ,

or in a compact form:

. (o
u (x,t)-it(ax,x,t> i (3.10)

After that, this optimal control law is substituted in (3.9) and the following
nonlinear PDE must be solved:
aJ*  dJ*

5 —l—ga(x,n,t)—i—L(x,n,t):O. (3.11)

If there exist a differentiable smooth solution, J*, for this PDE, the optimal
control law is computed obtaining the gradient of the value function J* and sub-
stituting it in (3.10).
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Moreover, by using the Hamiltonian notation:

*

J
H(x,m,t) = Wa(x, mt)+L(x,m,t),

equation (3.11) can be rewritten as follows:

*

H t)+—=—=0
(xvﬂ:a)—’_ al 9

which is the so-called Hamilton-Jacobi (HJ) equation.

The main problem associated with the dynamic programming approach of
the optimal control is to find explicits solution to the HIB equation. There are
two research lines: one of them tries to formulate the solution using numerical
methods, while the other one tries to find explicits solution for particular systems
with a determined structure.

3.3.1.3 Nonlinear State Feedback /7, Control via Game Theory

This section presents the nonlinear state feedback .77, control law, assuming ac-
cessible states. The suboptimal nonlinear controller approach is described, where
an attenuation level Y must be assumed a priori.

The nonlinear 7, problem can be formulated through the differential game
theory, which is based on the observation that the frequency formulation of the
1, linear problem is equivalent to the min-max optimization problem in the time
domain. So that, by adopting its realization in the game theory framework as a
two-player zero-sum differential game, it can be assumed that one player manip-
ulates the control action #, whose objective is to guide the dynamic evolution of
the system minimizing a cost function, and the other player plays the role of the
disturbances acting on the system, whose goals is to maximize the performance
index. The game consists in computing the control action # that minimizes the
performance index for the worst of all possible disturbances acting on the system,
maintaining the closed-loop stability.

Therefore, by considering the disturbed nonlinear time-varying system given
by:
x=a(xu,dit), (3.12)

where the variables are the same as in system (3.1), the %, (min-max) problem is
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to compute the control input #*(¢) that minimizes the following cost functional:

Iy
J=@(x(tr),tr)+ [ L(x(t),u(t),t)dt, (3.13)
fo
where the disturbances try to maximize the following associated performance in-
dex:

Ly = SLG0).u0) - 371d0)

(3.14)
= *HC Hz—*fHd )2,

which is a so-called parametrized soft-constrained cost function (Basar and Bernhard,
2008).

The solution of this problem can be formulated through a Hamiltonian formu-
lation:
Hy(x,u,d,p,t) = Ly(x,u,d,t)+p'a(x,u,d,t), (3.15)

with p being the co-state vector . The problem has a (pure-strategy) saddle point
solution if there exist u* € U and d* € ID, such that it satisfies the so-called pair
of saddle point inequalities:

Hy(x,u",d,p,t) <Hy,(x,u*,d",p,t) <Hy(x,u,d",p,t) YuecU,declD, (3.16)

where U and ID are the domains where the control input and the disturbances are
defined, respectively, and it is verified that:

muinmdaxHy(x,u,d,p,t) = mjlxmuinHy(x,u,d,p,t).

If this saddle point exists, the optimal values for u and d are given by:

u*(t) = argmin <m§xHy(x,u,d,p,t)> ,
u

and
d (r)= argmax (rrLinHy(x,u,d,p,t)) .

It is also possible to demonstrate that whether the optimal cost function J* :
R* x R — R is continuously differentiable (see Section 3.3.1.2), so that, the
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saddle point condition can be written as follows:

aJ* i aJ*

ot (x,t) - _m‘?XH}}nHV(xau7da ox (xvt)at)
= minmaxHy(eud, 2 (x.1).0) (3.17)
- rILlnml?X VANt et 7ax ) .

*

. . g OJ
- _Hy(x7u 7d 7W(x7t)7t)7

where the pair (u*,d”) constitutes a saddle point solution of the proposed prob-
lem. This PDE is the so-called Hamilton-Jacobi-Bellman-Isaacs (HJBI) equation
(also named Hamilton-Jacobi-Isaacs equation or only Isaacs equation, in honor
of Rufus Isaacs, the first one who studies differential games and who proposed
this equation in the early 1950s), which is a generalization of the HIB PDE that
provides a sufficient condition in optimal control, as discussed in the previous
section (Basar and Bernhard, 2008).

Instead of this equality, the more general HIBI inequality is obtained by re-

__ 9

placing “=" with “<” as follows:

aJ* aJ*

j(x,t) é —m‘;lxnluinHy(x,u,d,ﬁ(x,t),t)
< —mi H d,—(x,1),t 3.18
= H%lll’lm;lx V(xauv ) ax ('xv )7 ) ( )

*

< —Hj(xu",d ,j(x,t),t).

To solve the optimization problem and to obtain the expressions of the op-
timal control u* and the worst-case disturbance d*, the equation (3.17) must be
differentiated with respect to # and d and equalized to zero, that is:

aHV('xa u7d7p7t)

- —0, (3.19)
aHV(x7u7dap7t) _
5d =0. (3.20)

Once the optimal control law and worst-case disturbances are obtained, and
assuming that the HIBI equation admits a solution, denoted J*, which is continu-
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ously differentiable in both arguments, they must be replaced in (3.17), and the
following HJ equation is obtained:
aJ* aJ* aJ* . dJ*

—(x,t)+H;,‘(x,u*(x,g,t),d*(x

> 1)=0. (3.21)

y > t), YR
dx ) dx )

Therefore, the state feedback 7%, control is reduced to compute a function
J* > 0 that satisfies the HJ equation (3.21), where H,, is the optimal Hamiltonian.
If there exists this value function, the control law:

*

u (xvj’t)’ (322)

will guarantee that the closed-loop system given by (3.12) and (3.22) will have
Z»-gain (from d to §) less than .

In what follows, the nonlinear %, controller with state feedback for affine
nonlinear systems is presented.

Affine nonlinear input-state system
Consider the following nth order affine and smooth nonlinear input-state dy-
namic system X:

x = f(xt)+g(xt)utk(x,t)d
Ly W[h(x,t)} (3.23)

u

which is affected by unknown disturbances and the involved variables are the
same as (3.1). As it has been exposed in Section 3.3.1.3, the desired performance
of the system can be defined using the cost variable £ € R with r = s+ m,
where h(x,t) € R* represents a function of the state vector to be controlled and
W € RE+mx(s+m) ig a weighting matrix. Moreover, it is assumed that: f(xg,t) =
0, h(xg,t) = 0 V¢ > 0, with sufficient conditions: xq is an equilibrium point of the
system (in the absence disturbances), and the functions f(x,¢), g(x,7), k(x,t) and
h(x,t) are smooth functions.

Therefore, if the states x are assumed to be available for measurement, then
the optimal .77, problem can be posed as follows (van der Schaft, 1992):

Theorem 3.3.1. Find the smallest value yv* > 0, such that, for any y > v* there
exists a state feedback u = u(x,t), u(xo,t) =0Vt > 0, such that the £, gain from
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d(t) to §(1) is less than or equal to ¥, that is:
r 2 ! 2
g @Bar < [ par. (324

The internal term of the integral expression on the left-hand side of inequality
(3.24) can be written as:

1801 = E0rE0 =[xy w Jww | "5

and the symmetric positive definite matrix W'W can be partitioned as follows:

0 S]‘

e (3.25)

W'WwW = [

Matrices Q and R are symmetric positive definite and the fact that W'W > O
guarantees that @ — SR™'S’ > 0, where O is the nth order zero matrix.

In this case, the associated performance index (3.14) is expressed by:

SIEOIE - 57 ()3 = Hw[’l<x>f>] z_

u(?) %72 Id(t)]3.  (3.26)

By substituting this equation in (3.15), the following expression is obtained:

Hy(x,ud,p,t) = p'(f(x.1)+g(x,0)u+k(x1)d —*YZHd 013
A5
2 u(t) 5
= p(flxt)+g(x,1)u+k(x,t)d yzd

3 hCer) Qi)+ A1) Su(x.0) + ; (1) Ruz).
(3.27)

Therefore, the nonlinear 772, problem admits a solution if there exists a smooth
differentiable function V (x,7), with V (xo,¢) = 0 for ¢ > 0, such that the following
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min-max problem is verified:

8V§Jtc,t) = —mjxmuin <g‘;(f(x7f)+g(xaf)"+k(xvt)d)+L7(x’u’t)>
B . (9V Kk yzd
= —maxmin ( = (f(x,1) +g(x,)u+k(x1)d) -5

1 1
+5 h(x,t)' Qh(x,t) + h(x,t)' Su(x,t) + 3 u(t)'Ru(t )> :
(3.28)
which is the already mentioned HIBI equation. The co-state vector p is the gradi-

ent ‘3—‘;. Under these assumptions, the solution of the nonlinear ., state feedback
problem can be formulated as follows:

d

u'(t) = argmuin <max <g‘;(f(x,t) +g(x,t)u+k(x,1)d) +Ly(x,u,t)>> ,

d*(t) = argmax <n}l1n <aa‘;(f(x,t) +g(x,t)u+k(x,t)d) +Ly(x,u,t))> .

For the particular case wherein the index (3.13) is equivalent to consider
L(x,u,t) =¢§ ’; presenting a square functional dependence in u, the min-max
problem supports a unique and explicit solution. Thus, taking the first derivat-
ives over u and d for the expression to be optimized in (3.28) and by equaling it
to zero, the saddle point is founded as follows:

aHY(xvuvdapv ) a/

% a—k x,1) —vd(r) (3.29)
aH’}’(x7u7d7p)t) a,V ! !
5 =5 g(x,t)+h(x,t)S+u(t)R=0, (3.30)
where the worst-case of the admissible disturbances is given by:
. 1 av
d (x,t) = ?k(x,t)/a, (331)

while the optimal state feedback control law is derived as follows:

u(x,t)=—R! (h(x)’s+g’(x,t)ava(:t)) : (3.32)
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As commented before, the point (d*(x,¢),u*(x,t)) is a saddle point in the
Hamiltonian function Hy(x,u,d,p,t). However, in the particular case of affine
systems, the following inequalities:

Hy(x,u".d,p,t) <Hy(x,u",d",p,t) <Hy(x,u,d",p,t) VYd,uandx, (3.33)

results more restrictive than the exposed ones in (3.16). This implies that d* may
be considered as the worst-case disturbance while #* may be considered as the
optimal control for any possible disturbance.

By substituting equations (3.31) and (3.32) in (3.28), the following HJ in-
equality is obtained (van der Schaft, 2000):
av. d'V 10V [1 av
At —f(x, 1)+ = =— | s k(x,0)k (x,1) —g(x,1)R™ g (x,1) | =—
o+ G )+ 5 5 | e () —e(e)R ) | 52
(3.34)

_%/;/g(x,t)R—lS/h(x) + %h’(x) (Q_SR—lsl) h(x) <0,

for each ¥ > \/Omax(R) > 0, where Omax stands for the maximum singular value.

Therefore, the computation of state feedback control law for nonlinear affine
input-state systems can be achieved by means of the following theorem:

Theorem 3.3.2. Let ¥ > 0 be a level attenuation value. If there exists a differ-
entiable scalar function V(x,t) > 0 that satisfies the Hamilton-Jacobi equation
(3.34), then the closed-loop system corresponding to the system (3.23) with the
control law (3.32) is stable and has £»-gain (in the channel d — §) less than or
equal to .

Proof:

Despite of this theorem is well known in the literature (see van der Schaft
(2000)), a brief explanation of it will be given in this demonstration.

By considering the HIBI equation (3.28) with the worst-case of the admissible
disturbances, d”, and the optimal feedback control law u*, (3.28) can be rewritten
as follows:

aV(x,1) N aV(x,1)
ot ox

(f(x,0) +g(x, 1) u+k(x,t)d },zd* yd* (1

+%h(x,t)’Qh(x,t) +h(x,t) Sut (1) + %u*(z)’Ru*(t) <0,
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or equivalently:

AV (x,t) N oV (x,1)
ot ox

(F(.0) gt k(x,0)d) <~ |60 3+ 57 14" O]
(3.35)

From this expression and considering V (x,7) as a Lyapunov function, the sta-
bility of the closed-loop system, given by (3.23) and (3.32), is easily demonstrated
by taking the time derivative of V (x,t) as follows:

V() = 5 |Ig 2+ 5P I O,

and, therefore, the system is uniformly bounded If there are no disturbances

acting on the system, d(¢) =0, V(x,t) = —= H E (¢ H2 < 0, which guarantees the

uniform asymptotic stability of the closed- loop system.

Moreover, this expression shows that the scalar function V' (x,7) > 0 is a stor-

age function with supply rate %}’2 d*(r Hz H ¢ (1) H; (Z5-gain), for the closed-

loop system corresponding to the system (3.23) with the control law (3.32).
]

3.3.2 Nonlinear .77, control for the rotational subsystem

In this section, the nonlinear state feedback .72, approach presented previously is
used to control Euler-Lagrange mechanical systems, which results in a known and
direct method to solve the HJ equation.

The rotational movement dynamic model (2.62), obtained from the Euler-
Lagrange formalism, is used in order to develop the nonlinear .72, controller:

J(Mi+C(n,n)n =1y,

where Ty joins the control torques and external disturbances, and is redefined as:

Tn = T, + 84 (N, 1,1, 7n,) ,

with Ty being the applied torque vector with respect to the roll, pitch and yaw
moments, and &y representing the total effect of system modeling errors and ex-
ternal disturbances.

In this section, a state-space description of the error dynamics of the Euler-
Lagrange mechanical system, focusing on the rotational equations of motion, is
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used. This representation was presented originally by Johansson (1990), and mod-
ified by Ortega (2001). As it is well known, for a mechanical system to follow a
desired trajectory it is necessary to compute the applied torques. If the position,
velocity and acceleration references of the rotational DOF are defined by n,., 9,
and 1], € R", respectively, which are provided by a trajectory generator or by an
outer-loop controller and assumed to be within the physical and kinematic limits
of the control object, it is possible to obtain their errors at each instant of time as
follows:

ﬁ':ﬁ_ﬁrv
n:n_nrv
ﬁ:n_nra

Thus, as a first step to synthesize the control law, the tracking error vector is
defined as follows:

n
= n ,
/ fdt
Note that an integral term has been included in the error vector. This term will

allow the achievement of a null steady-state error when persistent disturbances
are acting on the system (Ortega et al., 2005).

Xy (3.36)

Thereby, by using the tracking error vector (3.36) and equation (2.64), the
error dynamics of the rotational subsystem can be written in a state-space form:

xﬂ :?(xn7t)+%(n7n7ﬁraﬂr) +g(xn,l)fna +%('x'nvt>8n ) (337)
where .
B - Z(m)~'cn,n) 0 O
F(xn.1) = 1 O O |xg,
()] 1 O
-7 (7 ()i, +Cn,n)n,)
%(naﬂvﬁrﬂﬂr): 0 )
(]

g(xnat):;(xnvﬁz (D )
()
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with 1T € R™*" being the identity matrix and O € R"*" the zero matrix.

Note that there are no gravitational and frictional terms in this equation, since
the simplified rotational equations of motion, which are being used in this section,
are not affected by these forces. However, in a more generalized representation
(see Johansson (1990); Ortega (2001); Vivas (2004)), these forces compound the
function go(-).

As a second step to synthesize the control law, the following state transform-
ation is defined:

21 T T, T; ]
2=\ 20 | = Toxn = 0O 1 1 1] , (3.38)
23 O O 1 [ fdt

where Ty, T, and T3 € R™™" are arbitrary constant matrices, and T{ must be
invertible and, besides, T = p1, where p is a positive scalar.

Despite of this state-space transformation, a change of variables over the con-
trol action and disturbances must be considered. To perform that, an optimization
strategy must also be defined. Thus, as exposed in Johansson (1990), a natural
aim is to minimize the error vector with a minimum of applied torque and en-
ergy consumption. However, it makes no sense to include in the optimizing index
the components of the generalized forces that change the potential energy of the
system, as gravitational forces, since the increment of potential energy is given
by the trajectory and it cannot be changed by any control strategy (Vivas, 2004).
Besides, as a standard result from Lagrangian mechanics, the term .4 (1,1)nN
represents a workless force of the system (see property 3 in Section 2.4), being
also not necessary to consider it in the optimizing index. Therefore, a natural
choice of generalized forces and applied torques to be included in an optimization
strategy that affect the kinetic energy, Ty, are:

where:

oU

Thus, to minimize the necessary forces/torques for the worst case of all pos-
sible disturbances acting on the system, a change of variables in the control action
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and disturbances is defined as follows:

ut+d = | 7(n) %/("’f’) } [2] (3.39)

u+d = j(n)Txn—i_C(nvn)Txna

where matrix T can be partitioned as follows:

T=[T, T, T;].

By expanding this transformation, which includes the reference trajectories,
the forces and torques affecting kinetic energy and the state-space transformation
(3.38), the equation (3.37) can be rewritten as follows:

Xy = f(xn,t) +g(xn,)u+k(xy,t)d, (3.40)
- Z(m~'c(n,n) 0 0
f(xg,t)= T,' T, 1-T'Ty —1+T;(T2-T3) |Toxy,
() 1 -1
S ()
g(xq,1) =k(xq,1)=T," 0
(]

Without loss of generality, equaling equations (3.37) and (3.40), the external
disturbance vector d and the control action u are obtained by:

d=_7(mMT1 7' (n)8y, (3.41)
u=T(—F(x.)+7y,), (3.42)

With .o ~ ~
F(xe) = ZM)(#,—T{'Tof—T,'Ts)

+ C(n7n)(nr_T1_1T2ﬁ _T1_1T3fﬁdt)'

Equation (3.40) represents the dynamic equation of the system error. It is a
nonlinear matrix equation due to the time-varying matrices ¢ (1) and C(n,7),
and affine in the actuation and disturbances. Note that explicit functional depend-
ence of time in this equation is due to the implicit presence of trajectory reference,
which is time-varying. Moreover, Coriolis and centrifugal matrix, C(1, 1), must
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be obtained by using the Christoffel Symbols presented in Section 2.4, which
guarantees the skew-symmetric matrix 4 (n,9) = _#(n)—2C(n,n). This pro-
perty is very useful to demonstrate stability of the controller.

The relationship between the applied torque, Ty, , and the control input, u, is
given by equation (3.42). So that, by isolating Ty, and considering T = p1, the
following control law is obtained for the rotational subsystem:

T, = S, +Cn.a)n-T' 7(n)(T20+Ts1)
(3.43)
~Ty'C(n,M)Txy+ Ty u.

It is interesting to note that equation (3.43) adopts a similar structure of a
linearizing feedback control law with a nonlinear term in the control acceleration,
which can be expressed in a clearer manner as follows:

Tn, = j(n)n +C(n7n)na

with
A=1,-T7' 7)) (T2 +T30) —T;'CN.0)Txn+T;'u.  (3.44)

By arranging this equation, it is possible to write this control law in terms just
of the error vector and its time derivative, which is given by:

Tn, = J (MA+C,MN+Gn)—T,' (7 (M) Tin+C(n,0)Txn)+T; u.
(3.45)

However, it can be pointed out that, the previous control law might not seem
a well posed system, since it depends on accelerations of the generalized coordin-
ates. Thereby, to avoid misunderstanding, equation (3.43) will be used throughout
this section.

The control law can be split up into three different parts: the first one consists
of the first two terms of that equation, which are designed in order to compensate
the system dynamics (2.62). The second part consists of two terms including the
error vector Xy and its derivative, Xp. Assuming é n = 0, these two terms of the
control law enable perfect tracking, which means that they represent the essential
control effort needed to perform the task. Finally, the third part includes a vector
u, which represents the additional control effort needed for disturbance rejection.

Therefore, equation (3.40) considering the additional control input vector u
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is used to apply the nonlinear 7%, theoretical results presented in Section 3.3.1.3.
This additional control signal provides 7%, robustness and represents a state feed-
back. Taking into account this nonlinear equation, the nonlinear #;, control prob-
lem can be posed as follows:

“Find a control law u(t) such that the ratio between the energy of the cost
variable § = W [l (xn) w/]" and the energy of the disturbance signals d is less
than a given attenuation level y”.

Taking into account the definition of the error vector, x5, and the definition of
the cost variable, &, the following structures are considered for matrices Q and §
in (3.25):

01 Q12 QO3 S1
0=|01p @ O3 |, S=| 5
O3 QO 03 S3

As stated in Section 3.3.1.3, the solution of the HIBI equation depends on
the choice of the cost variable, §, and particularly on the selection of function
h(xn) (see (3.23)). In this section, this function is taken to be equal to the error
vector. That is, 4(xyn) = xy. Once this function has been selected, computing the
additional control effort, u, will require finding the Lyapunov function, V (xy,?),
to the HJ equation posed in the previous section (see (3.34)).

The following theorem will help to do this.

Theorem 3.3.3. Let V(xy,t) be the scalar function:

b, | S 0 0
V(xn,t)ziano g XYY )Z(;II; T oxn, (3.46)

where X, Y and Z € R"*" are constant, symmetric, and positive definite matrices
such that Z— XY 'X +2X >0, and T, is as defined in (3.38). Let T be the
matrix appearing in (3.39). If these matrices verify the following equation:

() Y X 1
Y 2X Z+2X |+Q+T'T—(S+T)R'(S+T)=0,
X Z+2X O 4
(3.47)
then, function V(xy,t) constitutes a solution to the HJBI, for a sufficiently high
value of .

Proof: The proof of this theorem is obtained following the steps presented
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in Ortega et al. (2005). |

Once the matrix T = [ Ty T, T3 | is computed by solving some Riccati
algebraic equations, by substituting V (xy,#) in (3.32), the additional control ef-
fort u* is given by

u'=—R"(S+T)xy, (3.48)
which corresponds to the .7, suboptimal control law according to .%5-gain cri-

teria, from the disturbances d to the cost variable { = W([x' u']’, for an attenu-
ation level 7y previously selected.

Finally, if the additional control effort (3.48) is replaced into (3.43) under
the assumption that d = 0, and after some manipulations, the control law can be
written as:

= S (it - s (Koi+Ken+ Ky ), G49)
where

Kp=T;"(T2+ Z(n)"'C(n,m)T1+ 7 (n)'R" (S1+T1)),
Kp=T{' (T3+_7Z(m)"'C(n,MT2+ 7 () 'R (8,+T2)), (3.50)

Ki=T{'(Z(n)"'Cn,m)T3+ 7(n)"'R' (S5+T3)) .

Taking into account that these matrices multiply the time derivative of the
position error vector, the position error vector itself and its integral, this controller
can be interpreted as a PID control law. However, its coefficients are nonlinear,
since its values depends on the positions and velocities of the degrees of freedom,
which vary with time.

A particular case can be obtained when the components of the weighting com-
pound W'W verify:

01=0"1l, Q=w’l, Q3;=w’l, R=0,1, (3.51)

01,=013=023=0, 8§ =8,=8=0.

where m;, @, and @s are scalars that weight the time derivative of the error, the
error itself and its integral, respectively, and @, weights the incremental control
actions.

In this case, the following analytical expressions for the gain matrices have
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been obtained:

02 + 20,03 _ , 1
o IO s L),
Vo +2 1
KP:%]HWJ(’?)” (C(n,m%zﬂ), (3.52)
1 1 u

K= %/(n)‘1 <C(n,n>+ a,luzﬂ)-

where the parameters @, @, @3 and w, can be tuned by a systematic procedure
keeping in mind a linear PID control action interpretation.

These expressions have an important property: they do not depend on the para-
meter y. So, an algebraic expression for computing the general optimal solution
for this particular case can be obtained.

3.4 Translational Subsystem Controllers

In this section control laws able to solve the path tracking problem by translational
movements are proposed. Linear .77, model predictive control and backstepping
techniques are used to design a control law in such way that the subsystem is
forced to track the reference trajectory.

The controllers for translational subsystem are performed in two phases. The
first one controls the height through the input 7', whereas the second one makes
use of this signal as a time variant parameter in the linear xy-motion to compute
two virtual control inputs, uy and uj.

For the controller design, the system (2.61) can be written in a state-space
form as E(1) = £ (£(1),ug (1), 85(1)), where () = [x(1) uo(t) ¥(2) vo(t) (1
wo(2)]" stands for the state-space vector of the system, where ug(¢), vo(t), and
wo(r) are the components of the linear velocity of the vehicle mass center ex-
pressed in the inertial frame (see equation. (2.29)). Variable ug () = [T (t) ux(t)
uy(t)]' is the control input vector, and 8¢ (1) = [8, () ¢, (¢) S, (¢)]' is the unknown
disturbance vector defined in Section 2.5.

From (2.61) and the new state-space vector, the system dynamic equation for
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control design purpose can be written in the following form':

_ wo(t) -
- _ vo(t)
E(r) = 1 (B().ugl0).85(1) = i1, %0 ,
Wo(l‘) 5
| —g+(cos ¢ (r)cos O(I))Tn(;) + & |
(3.53)
with:
uy(t) = cos y(t)sin O (¢) cos ¢ (¢) + sin y(t)sin o (¢) (3.54)

uy(t) = siny(t)sin 0(t) cos ¢ (¢) — cos y(t) sin o (¢) ’

Furthermore, system (3.53) shows that the movement through the x and y axes
depends on the control input 7. In fact, T is the designed total thrust magnitude
to obtain the desired linear movement, while u, and u, can be considered as the
directions of T that cause the movement through the x and y axes, respectively.

Therefore, equations (3.54) are a definition of the system to be controlled, and
through the virtual inputs, u, and u,, the necessary values of ¢ and 0 to guide the
helicopter in the xy plane could be computed. However, these values cannot be
set directly since these angles are two of the outputs of the rotational subsystem;
being the nonlinear /%, inner-loop in charge of carrying out this task. On the
other hand, assuming the error vector definition (3.36), equations (3.54) can be
written as follows:

() = cos(y) sin(8 + 6;) cos( + ¢,) +sin(y) sin(¢ +¢,) (3.55)
uy(t) £ sin(y)sin(8 + 6,) cos(§ + ¢,) — cos(y)sin(P + ¢,) '
Moreover, because of the cascade structure of the strategy proposed in this
chapter (see Fig. 3.1), and considering the closed-loop performance achieved by
the inner-loop controller, the Euler angles error can be considered at the origin
for the outer-loop controller design. Besides, it can be pointed out that the yaw
angle, v, is assumed measurable for the computation of the desired magnitudes
0, and ¢,. For this reason, the variable y, has not been considered in equation

I'The term cos ¢ (¢) cos 8() can be considered the direction of the thrust, 7, that causes altitude
motion. However, since it is not a control signal, the variable u; is not used in the model, as it
happens with the control actions u, and u,.
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(3.55). In consequence of these assumptions, the desired virtual direction vector,
u‘é = [u? u?]', to follow the path reference in the xy plane, is defined as follows:
xy
ul (1) = cos y(t)sin B,(t) cos ¢, (¢) +sin y(¢) sin ¢, (¢)
X ) : : : (3.56)
uy (1) = siny/(t) sin 6,(¢) cos ¢,(t) — cos y(t) sin ¢, (¢)

which is used to obtain the roll and pitch reference angles.

In the next sections the controllers proposed for the outer loop of the cascade
control strategy, presented in Fig. 3.1, are developed.

3.4.1 Linear 7, Control

The aim of this section is to obtain a robust path tracking, where a linear state
feedback 772, controller via LMI formulation is used to control the QuadRotor
translational movements. This controller combined with the nonlinear .7, one
for the rotational motion, presented in Section 3.3.2, will provide a robust control
strategy, which will be able to deal with sustained external disturbances affecting
the six degrees of freedom of UAV.

In what follows, a brief introduction about the linear .72, control is given,
followed by its state feedback formulation via LMIs.

3.4.1.1 Linear %, Control Theory

The diagram block, presented in Fig 3.4, can be used to describe many practice
controllers. The control design can be formulated like a .7, optimization prob-
lem. In this diagram block, P(s) is the generalized process, K (s) is the controller,
u are the control signals, y the measured variables, d the exogenous signals and §
are the cost variables.

d —» —»

P(s)

K(s) |-

Figure 3.4: General control problem formulation.
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The J#.-norm of a stable scalar transfer function Hyg (s) can be defined as
the maximum magnitude of its frequency response, i.e., the peak value of the
maximum singular value of the frequency response in the multivariable case. For
SISO (Single-Input-Single-Output) systems, Bode diagram can be used to ob-
tain the peak value of the system over all frequencies. On the other hand, for
MIMO (Multiply-Input-Multiply-Output) systems, the module idea cannot be ap-
plied and it must be substituted by the spectral norm of a transfer matrix, where
the frequency response can be obtained by the singular value decomposition ap-
proach. Thus, for SISO systems, the .7Z%-norm can be described as the maximum
peak magnitude, M), of the frequency response, which is the highest gain that the
system is able to offer to the input signal:

|Hag (5)]., = max|Hye (joo)| = M, (3.57)
and for MIMO systems:

|Hac ()], = SICJOpc'r{Hdg(ja))} : (3.58)

As commented before, the 77,-norm of a system represents the highest gain
of its frequency response and, it can also be interpreted like the highest gain in
energy terms that the system is capable of providing for the input signal. This
interpretation is quite useful and provides an alternative definition for the J7.-
norm. By the Parseval’s theorem, it holds:

40l = 5 [ DUy Dljo)a, 1E0E=5- [ 2le) Z(je)do,

where D(j®), Z(j®) are the Fourier transforms of the signals d(z) and §(z),
respectively. Since Z(jo) = Hy¢ (jo)D(jw), it yields:

IS0 = 5 [ DU - Haglo) - Hag(j) -Djo)dw

IN

2177/000 (6 {Hye(jo)})’D(jo)"-D(jo)dw (3.59)

2 o
< (swoltugio)}) 5 [ Dl)-Dlw)o.
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This expression can be written in the following form:
1€, < [[Hag ()], 4]l -

If the input signal D(jw) is properly chosen, it is possible to obtain the equal-
ity |§(0)ll, = ||Hag (s)]|. ld(2)]l,- From this relationship, it can define the ver-
sion of the .7Z%-norm in the time domain as follows (Skogestad and Postlethwaite,
2005):

d;éO Hd f)||

[Hag (s) (3.60)

The optimal JZ, control problem, in this configuration, consists in computing
the controller that minimizes the level attenuation y between the energy of the cost
variable § and the energy of the exogenous signal vector d. This optimal problem
is not solved yet, but the solution for the suboptimal problem exists (Ortega and
Rubio, 2004), where a quite common idea consists in determining numerically an
upper bound  for |[Hyg ()] using the definition (3.60), that is, a positive scalar
is looked for such that:

|Hae ()|, <7 (3.61)

However, this fact limits to deal with suboptimal controllers, since to obtain
optimal %, controllers is a hard task, and in practice, despite of these controllers
can present undesirable properties, the computation can lead to numerical prob-
lems (Sanchez-Pefia and Sznaier, 1998).

Thus, for the suboptimal 7, problem, the level attenuation y can be com-
puted as the ##-norm of the closed-loop transfer matrix from d to §, Hye (s),
looking for the minimum value through an iterative process (Ortega et al., 2006).
This problem can be solved by different manners, as, for example, via Riccati’s
equation, Hamiltonian matrix or by LMIs (Skogestad and Postlethwaite, 2005).

In what follows the suboptimal .7Z, problem is solved using LMIs.

3.4.1.2 Linear State Feedback /7, control via LMIs

Consider the following uncertain linear system:

x(t) = A( )x(1)+ By (8)u(r)+Ba(8)d (1)
L:9 6(1) = Cr(8)x(t)+Dyg (8)u(t) +Dyg (8)d (1) (3.62)
u(t) = Kx() dcA
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where x(t) € R" is the state, u(r) € R™ is the control input, d € RY is any exo-
genous input, including disturbances, measurement noise, etc., A, B, and B, are
matrices with suitable dimensions, C¢, D¢ and Dy are weighting matrices and
K is a controller gain matrix to be determined. & € R! is the parameter uncertainty
vector and A = Co{vy,...,vpa} is a polytope with known vertices v;. Matrices

A(6),B,(6),B;(8),Cr(8),Dyz (8), Dy (6) are affine functions in 8.
The closed-loop system (3.62) is given by:

s { J) 2 (ELBOI() 4 B4 a6

£(1) = (C¢(8)+D,g(8)K)x(r)+Dag(8)d ()

To perform the synthesis of a state feedback .7, controller via LMISs, the .7Z-
norm is rewritten in the following form:

0] {0130
el = o = ) Gopa <7 @99

which, as in the nonlinear case, can be expressed as follows:
/ E()E(n)dt < P / d()d(1)dr . (3.65)
0 0

For a stable exponentially system with null initial conditions, one can consider
the problem of determining a Lyapunov function V (x) = x(¢)'Px(t), where P is a
symmetric positive definite matrix, such that:

V(x)+ &) E(1)—vd(1) (3.66)

where V (x) is the time derivative of V (x) for all trajectories of the system. If
V(x) is found and satisfy the condition (3.66), then it satisfies (3.64) and therefore
(3.65). The main interest of the previous condition is that it can be expressed as a
LMI.

Thus, by using (3.66), by putting the system (3.63) in this formulation, and
through the Schur complement and some variable changes, the .#Z,-norm of the
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system (3.63) is given by the following optimization problem:

0>0,
] [A(5)0+0QA8) +BL(S)Y +Y'BE) .
oY & B;(6) —71,, * <0
C;(8)Q+Dy(8)Y Dyr(6) —1l,,
(3.67)

where * represents the terms that can be inferred by symmetry. Besides, due to
the convexity, the previous LMIs are equivalent to the 29 LMIs set:

(0>0,
[ A(v1)Q+QA(v1)'+Bu(v1)Y +Y'Bu(vy)’ * *
By(vy) —71,, * <0
, L Cr(v1)Q+Dyr(n)Y Djc(vi) —7Ly,
miny
QY .
[ A(szl)Q+QA(qu),+Bu(V241)Y+Y/Bu(V24), * *
By(vy) —Yl,, * <0
L C¢(v20)Q+Dyg (var)Y Dyg(vae) =71y,
(3.68)

obtained by (3.67) with 8 = v; for i = 1,...,29, where v; are the vertices of the
polytope A .

The previous result is summarized in the following theorem:

Theorem 3.4.1. Consider the linear system (3.62). Assuming that matrices Q =
Q', Y, with proper dimensions, and the scalar y are the solution of the optimiza-
tion problem defined in (3.68).

Thus, the system (3.63) with K =Y Q™" is asymprotically stable and the .-
norm of the closed-loop system satisfy |[Hg¢ (s)| < /7.

3.4.1.3 Linear 7, Control for the Translational Subsystem

The linear state feedback .72, controller approach presented above is designed to
control the altitude and the lateral-longitudinal motions. In the altitude control-
ler, ¢ and O angles are considered as uncertain parameters, while the xy motion
control law is computed for an uncertainty thrust, which in both controllers the
uncertain parameters are confined into polytopes with known vertices. The refer-
ence of pitch and roll angles are defined through the two virtual inputs computed
to follow the desired xy movement, whereas the yaw angle reference is given by
the trajectory generator.

The objective of this approach is to guarantee that the UAV follows a previ-
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ously defined reference trajectory minimizing the displacement error, even when
sustained disturbances are acting on the system. However, due to the fact that the
target coordinates vary in time, a virtual reference vehicle with the same Quad-
Rotor helicopter mathematical model (3.53) is defined on the desired track, that
is: .

E,(1) = f (&,(0),ug, (1) 8¢, (1)) (3.69)

uo, (t )
un () 71

Vo,
()

wo, (1)

T.(t
—g+(cosO(t)cos (1)) LA}

L m ;.
where &, (1) = [x,(¢) o, (1) yo(r) vo, (1) 2r(6) wo, (1) and wg, (1) = [Ty w, w, ] are
the reference states and the control inputs, respectively. Null external disturb-
ances, 8¢,(1) = [00 0], are assumed in the virtual reference vehicle. This virtual
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reference vehicle is used to obtain the reference control inputs for translational
movements under the assumption that the helicopter attitude has been stabilized
by the inner-loop controller. Therefore, for the case of the QuadRotor helicopter,
the reference values are given by:

T(t) =m- (3(0) +8), ug(r) = (1) =2

where the input control 7,(¢) is considered as a time-varying parameter for the
reference x and y motions.

By subtracting the virtual reference vehicle (3.69) from the system (3.53), the
proposed translational error model is given by:

E() = A(1)-E(1) + Bu(t) g (1) + Balt) - 85(1) (3.70)

where & (1) = (1) — € (1) represents the error vector, and ug (1) = ug (1) —ug,(t)
is the control input error. Matrices A(7), By (¢) and B,(¢) are the Jacobians of the
system (3.53) in relation to & (), ug (1) and 8¢(¢), respectively, computed around
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the operating point <é,(t), ug (1), Sgr(t)), and are given by:

Al O (§(1),ug (1). 85 (1)) B, I (E(1),ug(r), 8¢ (1))
2&(r) =& dug (1) £,
“e=he ug=ug
5g=0 8g=0
§ t),dg (1))
Balt) = 98¢ (1) e,
“g=re,
55:0

On the other hand, by using the error model (3.70) for the control design via
state feedback, it would not be possible to reject sustained external disturbance.
Therefore, to take it into account, the integral of the position error term has been
included in the error vector to perform an appropriate path tracking. Hence, the
following augmented error vector is considered:

C i) T [ ) —x() ]
ito (1) uo(t) — uo, (1)
[ %(@t)dt J (xe(t) = x(2))dt
¥(r) y(1) = yr(1)
xe(t) = To (1) = vo(t) — vo,(t) . (3.71)
J9()dt JO(0) = yr(r))dr
z(1) 2(t) =z (1)
Wwo(f) wo () —wo, (1)
| J2@)dr | L [ (2(t) —z(2))dr ]

Thus, the error model (3.70), considering the augmented state vector xg ()
and external disturbance vector & g(), is rewritten as follows:

k(1) = A(t) - xg (1) + Bult) - g (1) + Ba(t) - 85 (1) . (3.72)

Since the error model (3.72) does not present any coupling between the states,
it can be split up into two subsystems: the height error and the xy-motion error.
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Therefore, these two subsystems can be expressed in the following form:

)'ng(t) =A; “Xg

(1) +Bu, (1) - T(t) + By, - 8¢ (1), (3.73)

z

.X'gxy (l‘) = Xxy ‘xgxy (l) +§uxy (l‘) : ngy (l‘) +§dxy : (Séxy (l‘) , (3.74)

where matrices A, B, and B, for each subsystem are the following:

010 0 0
A;=|0 0 0|, By(8:(t))=1| LcosO(t)coso(t) |, Bs=| + |,
1 00 0 0
] ] (3.75)
01 00O0O
000O0O0O
1._|1 00000
7100001 0}’
000O0O0O
(00010 0]
(3.76)
[0 0 | [0 0]
L@y 0 L0
Buyo)=| o o | Bay=| g ol
0  ir(r) 0o 1
0 0 | 0 0 |

where 8,(r) = [¢(¢) 6(¢)]’ and 84y (t) = T(r) consist in the uncertain parameter
vector for each subsystem.

In the first step of the translational control design, the height controller is
carried out. In this application, the values of uncertain parameters are considered
inside of a compact set defined by 8,(¢) € [—60°,60°] x [—60°,60°]. Thus, the
closed-loop system from the disturbances ng(t) to the so called cost variable
§,(¢) can be written as follows:

{ ig (1) = (A + Buy(8:(1))K:) xg (1) +Ba, (1) - 8¢ (1)

3.77)
€. = <ng +Dugsz) xg (1) +Dgg B¢ (1)

with: N
T(1) = Koxg (1),
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being the resulting feedback control law, and C;z, Dugz, and Dd§z the weighting
matrices to design K.

Therefore, from the subsystem (3.73) and using the .77, control design via
state feedback for uncertain linear systems through LMIs presented in Section
3.4.1.2, the control law for the height is computed in a robust way. The gain
matrix K is given by K, =Y Q!

Once the error control signal T(t) has been computed, the control signal

T(t) =T(t)+ T,(t) can be calculated.

The value of 8,y(r) = T(r) € [10 30]Newtons has been considered for the
computing of the virtual control law of movements in the xy-plane, assuming the
nominal thrust value of 7' () = mg ~ 22Newtons . This is the value necessary to
get a hovering flight.

The matrix Ky, can be computed with the same procedure used for the height
control, which yields (Alamo et al., 2006):

Ky=YQ".
Hence, the error control signals itz (1) = [ic(t) dy(t)]" are obtained by:

ﬁéxy = xy.Xé:Xy (l‘) . (3.78)

Taking into account this control law, the virtual control inputs are computed
as follows:

ug (1) =g (1)+ug, (1) (3.79)

Thus, replacing the desired virtual input control, u‘é , with the computed control
signal (3.79), the roll and pitch reference angles, ¢, a;lyd 0, respectively, are derived
using equation (3.56). These references are used by the nonlinear .77, controller
to stabilize the rotational subsystem of the helicopter.

The next section presents some simulation results combining the linear J7,
controller designed in this section with the nonlinear .7, controller synthesized
for the rotational motion of the QuadRotor helicopter.

3.4.1.4 Simulation Results

Simulations combining the translational linear 7%, controller presented above
with the nonlinear /72, one for the rotational subsystem, discussed on Section
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3.3.2, have been performed making use of the first trajectory reference described
in Section 3.2.

The altitude and lateral-longitudinal control laws have been computed by
means of the Linear Matrix Inequalities Toolbox provided by MATLAB, with the
following values of the weighting matrices:

200 0 0
Ce,=|0 1 0|, Dyg=|05|, Dyg=| 1 |,
0 0 3 0.1 1.5
[2 0 0 0 0 0 ]
005 0 0 0 0
0 0 350 0 0
&O=19 09 0 2 0 o |
0 0 0 005 0
(0 0 0 0 0 35 |
[0 0] [0 0]
50 10
2 0 10
ug,, (8(2)) = N Cyg, (6(1) = 0 0
05 0 1
0 2 | [0 1 |

The minimum value achieved of the attenuation level for the altitude control-
ler was ¥, = 1.8060, while for the xy-motion controller was ¥, = 1.4175. The
following matrices have been obtained:

K,=[—48.1799 —46.7945 —34.7074],

—2.3144 —1.0567 —2.0393 0 0 0

K.. =
Xy 0 0 0 —2.3144 —1.0567 —2.0393 |’

The nonlinear %, controller gains were tuned with the following values: @; =
0.1, =5, w3 =9, and w, = 0.5.

Figs. 3.5 to 3.9 show the simulation results of the path tracking for the Quad-
Rotor helicopter. These results illustrate the robust performance provided by the
controllers in the case of parametric uncertainty in the inertia and mass terms,
and structural uncertainty due to the displacement of the mass center. Moreover,
the proposed control strategy was able to reject all the sustained disturbances that
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affect the whole system.

Reference
-+ Nominal Parametefs
—— Parameters +40%
5 : - = = Parameters —40%
No Integral Action

06 0.8

02 0.4

0
-0.2
05 -0.4 X [m]

Figure 3.5: Path tracking.

Figs. 3.6 and 3.7 illustrate the time evolution of the translational motion and
its error. The control strategy guided the vehicle smoothly. Moreover, the control-
lers provided null steady-state error in both translational and rotational motions.
An additional simulation collection has been presented to show the improvement
achieved with the use of the integral action in the control laws. It can be observed
that when the weight of the integral action was settled null, the control strategy
was not able to reject the sustained disturbances.

In Figs. 3.8 and 3.9 are presented the temporal response of the Euler angles
and their errors. It can be noted that the inner-loop controller controls the ro-
tational movements quickly, which guarantees the cascade strategy assumption
made before.

In this section a robust control strategy to solve the path tracking problem
for a QuadRotor helicopter has been presented. A robust control based on the
nonlinear 7%, theory has been used for the stabilization of the rotation subsys-
tem of the helicopter, while a linear Z, controller has been designed to perform
path tracking in the Euclidean space. Besides, the %, controllers robustness has
been checked under uncertainty in the mass and inertia terms and in presence of
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persistent aerodynamic forces and moments.

3.4.2 Model Predictive Control

In this section, a linear predictive controller based on the translational subsystem
model (3.53) is proposed to solve the path tracking problem for the QuadRotor
helicopter, which is used in the cascade control structure described at the begin-
ning of this chapter. As in the control strategy presented in the previous section,
the nonlinear .72, controller, presented in Section 3.3.2, is used to stabilize the
system through the rotational movements. This control strategy was presented
firstly in Raffo et al. (2008b), but in that work, the control strategy was only able
to reject sustained disturbances acting on the rotational subsystem. To improve
the performance, the integral of the translational position error has been included
into the error vector, which makes possible to consider sustained external disturb-
ances on the six degrees of freedom. This work has been published in Raffo et al.
(2010c).

The predictive control, used to perform the path tracking for the QuadRotor
helicopter, makes use of a linear state-space MPC strategy based on the error
model. As commented before, two controllers are synthesized for the translational
subsystem: one for the altitude, and other for the xy-motion.

In what follows, a brief explanation about the state space MPC method is
given and, after that, the controllers are presented.

3.4.2.1 Linear State Space Predictive Control

By considering a known reference in any future instant of the trajectory, it is
possible, by means of successive linearization along the reference trajectory, to
obtain a linear and time varying model of the system. Thus, assuming that all
states are accessible, the time varying and discrete state space model used by the
algorithm to obtain the predictions is given by:

x(k+1) =A(k)-x(k) + B(k) - u(k). (3.80)

Therefore, considering this system, the prediction horizon, N,, and the control
horizon, N, the system’s state predictions X(k + j|k)* are described as follows

2The notation (k+ j|k) means prediction in k + j with the information in .
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(Rossiter, 2003):

% = P(k|k) - x(k|k) + H(k|k) - @ , (3.81)
with
[ x(k+1]k) ] I u(k|k) T
x(k+2|k) u(k+1k)
~ A . ~ A .
X = : , U= :
x(k+ Ny — 1[k) u(k+N, —2[k)
x(k+NaJk) L u(k+N,—1[k) |

The matrices P(k|k) and H (k|k), when N, = N,,, can be written in the follow-
ing form:

[ A (klk) |
A(k|K)A (k+11k)
P(klk) £ : ,
o(k,0,2)
L ako01) ]
r B(k|k) 0 0 T
A(k+1]k) - B(k|k) B(k+1[k) 0
H(klk) 2 : : : :
a(k,1,2)-B(klk) a(k,2,2)-Bk+1]k) --- 0
| a(k,1,1)-Bklk)  a(k,2,1)-B(k+1]k) - B(k+N,—1[k) ]
where a(k, j,1) is defined by:
a(k,j,1) éNﬁlA(kJri\k) . (3.82)

i=j

When the prediction horizon is higher than the control one (N, > N,), matrix
H (k|k) € RM>>Ne must be rewritten, where the terms of the remaining columns
are added to the terms of the last column (V,-th column), that is, column terms of
N,+ 1 until N, = Nj.

These prediction equations do not consider the disturbance model in an expli-
cit form. However, an integral action can be included in the model to guarantee
null error in steady state by the following form:

u=—-KEx—%)+1r, (3.83)
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where X, and u, are, respectively, the reference values of the states and control
computed off-line, and are defined as follows:

xp(k+1k) ] i u,(k|k) i
xr(k+2|k) ur(k+1|k)
~ A . ~ A .
Xr = : , Ur= :
xr(k+ Ny — 1]k) ur(k+N, —2|k)
xr(k_'_Nz’k) i | ur(k+Nu_l|k) i

By using the prediction equation (3.81) and considering that the reference
states and the reference control signals are known, it can be ensured that the min-
imum of the following cost function, in a quadratic norm shape:

N2 ~~ . AN . Nu_l —~ . AN .
J = ZlIIx(k+J!k)—xr(k+J\k)llfg+ _ZO [k + jIk) — iy (k+ j1K) ||
j= j=

+Q (X(k+ Nalk) — X, (k+ Nalk)) .
(3.84)
is consistent with zero tracking error (Rossiter, 2003). Q and R are diagonal
positive definite weighting matrices, and € is the terminal state cost defined by:

Q(x(k+Njlk) — X, (k+ Nalk)) =

[X(k+N2|k) —%r(k+Na|k)]' S [x(k + N3 k) — X, (k + N3 |k)]

, with § > 0.
The cost function (3.84) can be optimized by the following form:

minJ = [F-%] QF %]+ [a—a,) Rl — g,
u

(3.85)
+Q (X(k+ Nalk) — X, (k+ Nalk)) .

which penalizes deviations from the steady-state value. This fact differs from
the GPC (Generalized Predictive Control) cost function, because optimizes the
distance from the inputs to the steady-state value, instead of the control input
incremental.

Asymptotic stability is guaranteed for the cost function (3.85) if the trajectory
reference is constant and no constraints are considered (see Rawlings and Mayne
(2009)). However, if the path to be followed varies on time, only asymptotic
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convergence can be guaranteed.

In the absence of constraints on the states and on the control signals, the con-
trol law can be obtained in an algebraic form, by minimizing the cost function
(3.85), which turns out to be a state feedback, given by:

u=[H Q H+R] ' [H-Q- (% —P-x(k))+R-%] . (3.86)

Due to the receding horizon property of the MPC, only u(k) is needed at each
instant k (Camacho and Bordons, 1998).

This predictive control algorithm is used in the next section to design two
controllers for the translational motion based on the discrete version of the error
model obtained in Section 3.4.1.3.

3.4.2.2 Error based State Space Predictive Controller (E-SSPC) For Path
Tracking

The objective of this approach is to obtain a linear control law that leads dynam-
ically the error between a real vehicle and a virtual reference one to zero. So that,
a linear state-space MPC strategy based on the error model is performed.

Since the aerodynamic forces are assumed as external disturbances, they are
not considered at the control design stage. Thus, by using Euler’s method (e.g.,
X(t) = W), the system (3.72) is discretized and the following model
is obtained:

xg(k+1) = A-xg (k) + B(k) - ug (k) . (3.87)
which is time-varying and linear.

As performed for the linear .72, controller, to compute the predictive control-
ler based on the error model (3.87), this system can be split up into two subsystems
taking into account that the translational dynamics depend only on the thrust, T':
the height error and the xy motions error. Thus, matrices A and B for each subsys-
tem are written in the discrete-time domain as follows:

1 At 0 0
A, =| 0 1 0 |,B (k)= XcosO(k)cos¢(k) |, (3.88)

m

Ar 0 1 0
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1 A4 0 0 0 0 0 0
0 1.0 0 0 0 STk) 0
. At 01 0 0 0] 4 0 0
w 0 00 1 a o] Bo® 0 0 , (389)
0 00 0 1 0 0 A7k
0 0 0 A O 1] 0 0 |

where At is the sampling time, which has been chosen sufficiently small to capture
all translational motion error dynamic and high enough to consider the rotational
closed-loop dynamics in steady state. As the control signal is updated only at t; =
kAt instants of time, being k the number of sample, these sequences are denoted
by the simplified form xg (k) = xg (kAt) and ug (k) = ug (kAt).

Based on this analysis, the path tracking problem for a UAV can be understood
as:

Find the control inputs in a bounded group of possible values that drive the
state variables in (3.87) from an initial position xg, 1o the origin (Sun, 2005), i.e.:

limxg =0.

t—roo

Therefore, from the height and longitudinal-lateral error models the control
laws can be designed in such a way that the system is forced to track the reference
trajectory. The first law computes the control input 7' in such a way that the
following cost function is minimized:

e 0
(3.90)

+Q (igz(k—&—szlk) — % (k+sz!k)) .

r
The height reference vectors are:

xXg, (k+1]k) —Xg (k|k)
xg, (k+2lk) —xg, (k|k)

)
(1>

Xe. (k—l—sz —1]k) —Xg, (k|k)
xg, (k+No, k) —xg_(klk)
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T, (k|k) — T, (k — k) |
T, (k+ 1k) — T(k — 1]k)

~

.,

[l

T, (k+ Ny, —2|k) — T,(k— 1]k)
| To(k+ Ny, — 1|k) — T, (k— 1]k)

The system’s state predictions (3.81), for the altitude subsystem, are computed
using the linear time-varying state-space model of the vehicle (3.87) with (3.88),
obtaining: R

}éz = P, (k|k) 'xéz(k|k)+Hz(k\k) -ﬁgz , (3.91)

where ug (k|k) =T (k) — T(k), and x¢_(k) is the height state error vector. As only
matrix B, is time-varying, matrices P, and H, can be rewritten as follows:

A
AZ
P2 : , (3.92)
Agszl)
2N,
L A22 .
A
H(k|k) =
B, (klk) 0 0 0
A, B (k|k) B,(k+1|k) 0 0
AZB,(k|k) AB,(k+1]k) B, (k+2|k) 0
AiNfl).Bz(Hk) A§N2*2>B;(k+1|k) A§N2*3)B;(k+2\k) AENZ’N“)BZ(HA./M* 1K)+ Bk, j)
(3.93)
with B (k, j) given by:
O ifN, =N,
ﬁ(ka.]) = No—N, . (3.94)
AN AR (N ) = 1) BN < N

j=1

By minimizing the equation (3.90) in the case where no constraints are con-
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sidered, the control law can be obtained by:
= -1 ~ =
ug = [H,O.H, +R;] " [H’ZQZ (xgzr - zxgz(k)> +Rzu§zr} . (3.95)

As commented before, from the computed sequence of control actions, only
ug_ (k|k) is needed at each instant k (Camacho and Bordons, 1998; Rossiter, 2003;
Rawlings and Mayne, 2009; Mayne et al., 2000). Thus, the following control
signal is applied to the helicopter: T (k) = u¢ (k|k) +T,(k).

The second control law computes the x and y motion control inputs. If the
same previous procedure is carried out using the error model (3.87) with (3.89),
the following control signal is obtained:

~

= -1 ~ =

g, = [Hiy Qoo+ Rey] '+ [Hip Qs (Rr, — Poyxe, (K)) + Roiiy, | |
(3.96)

where 'ﬁgxy(k|k) = (i (k|k) iiy(k|k)]" and, in the same way as in equation (3.79):

ug, (k) =g (klk) +ug,, (k) (3.97)
FrARE Rt o)

The reference vectors of the error states, ngy , and the error control inputs,
Eéxy , are obtained by the same way as the one of the height controller case.

Thereby, substituting the desired virtual input value from the computed one
obtained with equation (3.98), the roll and pitch reference angles, ¢, and 8, re-
spectively, are derived using equation (3.56). These references are necessary for
the helicopter inner-loop controller.

3.4.2.3 Simulation Results

As performed on Section 3.4.1.3, the nonlinear %, controller, designed to stabil-
ize the helicopter, is combined with the proposed error based state-space control-
ler. The first reference path presented in the simulation protocol is also used in
this section to corroborate the effectiveness of the control strategy.
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The E-SSPC parameters were adjusted as follows:

Ny =N, =3I,,0,= diag(2,0.8,15), R, =0.03,
Nzxy = Nuxy = IOInxy,
Qxy = diag(26,35,20,26,35,20), R, = diag(150,150).

The nonlinear .7Z, controller gains were tuned with the following values: @, =
0.1, =5, w3 =9 and w, =0.5.

Figs. 3.10 to 3.14 show the simulation results of the path tracking of this
reference trajectory. The way in which the helicopter follows the reference for
different vehicle parameters is presented in Figs. 3.10 (in the 3D space) and 3.11.

It can be seen how, starting from an initial position far from the reference,
the proposed control strategy is able to make the vehicle to follow the reference
trajectory. In addition, the vehicle trajectory in the case of no integral action
considered in the control strategy, is also presented in this figure. It can be clearly
observed that, in this last case, the vehicle leaves the trajectory of reference when
a disturbance is introduced, and it never reaches the reference again.

Reference
-~ Nominal Parametefs
6 —— Parameters +40%
- = =Parameters —40%
No Integral Action

Figure 3.10: Path tracking.
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Figure 3.11: Position (x,y,z).

Fig. 3.12 shows the translational coordinates errors. It can be seen that null
steady-state error is achieved for all coordinates, even if structural uncertainty is
considered in the vehicle. Besides, this figure also shows that a null steady-state
error is not obtained in case that no integral action is included in the controller
synthesis.

The way the inner nonlinear .77, controller makes the vehicle tracking its rota-
tional references is presented in Figs. 3.13 and 3.14. It can be observed how much
highly-coupled the system is, since each degree of freedom is affected by the dis-
turbances applied to the whole helicopter. The first figure shows how the refer-
ences generated by the (E-SSPC) translational controller, i.e. ¢, and 6,, vary in
its attainment of an appropriate performance in the translational loop. As an em-
phasis, Fig. 3.14 corroborates the fact that null steady-state error is also achieved
for the inner-loop variables, unless in the case of no integral action is considered
by the inner-loop controller.

In this section, an integral and robust nonlinear 7%, control strategy to solve
the path tracking problem for a QuadRotor helicopter has been presented. This
proposed control strategy has also been corroborated under consideration of ex-
ternal disturbances acting on all degrees of freedom, parametric and structural
uncertainties. The predictive controller used for the translational movements has
provided a good and smooth performance in the reference tracking.
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Figure 3.12: Position error (x,y,z).
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Figure 3.13: Orientation (¢, 0, y).
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Figure 3.14: Orientation error (¢, 0, y).

3.4.3 Backstepping Control Approach

In this section, a backstepping approach is presented to solve the path tracking
problem for the QuadRotor helicopter, controlling the translational motion. As
in the two translational controllers described before, the xyz-motion is divided in
the altitude and lateral-longitudinal subsystems. The second one makes use of the
control signal, T, as a time-varying parameter, which is generated by the altitude
controller. An advantageous of the controller exposed in this section when com-
pared with the linear 77, controller and the MPC is that, now, it does not depend
on the linearized error model, since it makes use of the translational subsystem
(3.53).

The control strategy combining the backstepping control, for the translational
movements, with the nonlinear .7, one, for stabilization, applied to the Quad-
Rotor helicopter, was published in Raffo et al. (2008a). However, this control
strategy was able to treat only with maintained winds affecting the stabilization
loop. But a helicopter can be subject to external disturbances like wind gusts
or, in the worst case, sustained winds in all degrees of freedom. Hence why, a
modification in the standard backstepping methodology is introduced to deal with
these kind of disturbances, where the integral action is considered. The control
strategy considering the integral action of position error in both backstepping and
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nonlinear 772, controllers was presented in Raffo et al. (2010d). As well known,
the inclusion of the integral action allows to remove constant steady-state offsets
in closed-loop, besides to enable the path tracking in presence of sustained dis-
turbances, unmodeled dynamics and parameters deviations (Skjetne and Fossen,
2004).

The use of integral action in the backstepping technique was first proposed by
Kanellakopoulos and Krein (1993). The most common way to include integral
action in this approach is to use parameter adaptation (Krstic et al., 1995). An
analysis of different techniques using integral action in the backstepping approach
was carried out by Skjetne and Fossen (2004), where another two methods that
consist in the augmentation of the system dynamic with the integral state were
presented.

In the following, the backstepping formulation is presented, which is used to
generate the altitude and lateral-longitudinal control laws.

3.4.3.1 Backstepping control with integral action for path tracking

Consider a nonlinear system given by:

{ X1 = fi(x1) +g1(x1)x2 (3.99)

Xy = fo(x1,%2) +ga(x1,%2)u+d

where x and x; are the state vectors, u is the control input vector, d is an un-
known sustained disturbance vector and the functions fi, f», g; and g, are smooth.
Moreover, g| and g, are nonsingular for all xq, x, and all variables are of the same
dimension.

First of all, the backstepping state transformation is considered:

X1 =x1—x.(1),

- - 3.100
Xy =Xy — Q(Xq,1), ( )

where @(xy,7) is a virtual control and x,(7) is a reference signal. The goal of this
approach is to solve the tracking problem lin;_,..x1 (t) = 0.

The integral term ¥ (t) = [;X2(7)d7 is considered in the second step of the
backstepping approach. As commented in Skjetne and Fossen (2004), this method
guarantees convergence for constant or time-varying reference signals, what might
not be guaranteed for a generic plant when the integral action is added in the first
step of this control design.
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Then, for the plant (3.99), the system for the first step is given by:
X1 = fi(%1 +x()) + g1 (X1 + %0 (1)) X2 + 1 (Fp +x, (1)) @(X1,1) — % (1) . (3.101)

Using the Lyapunov theorem under the consideration of Vi (xy,) is positive
definite and its time derivative is negative semidefinite, the first Lyapunov function
is chosen as:

- 1., -
Vi(Xy,t) = 5x’lxl : (3.102)
Its time derivative becomes:
Vi(X1,1) = X)X - (3.103)

The virtual control, @(xXy,7), is defined as follows:
o(x1.1) = g1(X1+x:(1)) " [ fix1 +x:(1)) — C1x1 + x:(2)], (3.104)

where C; = C} > 0.

Thus, the time derivative of the Lyapunov function can be written as:
Vi(E1,1) = % C1¥1 + X181 (X1 +x,(1) 2, (3.105)

allowing to proceed the control design, which for X, = 0 it is negative definite.

In the second step the integral action is introduced and the following system
is considered:

P = X
iz = fz(il+x,(t),322+a(}1,t))+g2(371+xr(t),322 (3.106)
+a(E1,I))u — a(il,t) +d

where (from now on the arguments of the system functions will be omitted):

Ja. oJa

(Z(:f],t) = aii_lxl W, (3107)

Er g1 [=81(—fi = C1X1 +%+(1))D 3, +x,(1))81 — D@y +x,0))/1 — Cil
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Ja  _ ~ . .
5 = g ! [(—fl —Ci1x; +xr(f))D(},+x,(t))glxr(t>

—D (G xy (1) 1 (1) + 3 (1)]

A second Lyapunov function is chosen as:
~ o~ 1 / 1~/ ~
Vz(ﬁ,xl,xz,t)zvl-l-iﬂ Kﬂﬂ—kixzxz, (3.108)

where K3 = K' > 0, and its time derivative is given by:

Vz(ﬂ,fl,il,t) = W (x1,1)+ 19/K191..9 +3C//2}2
= —XC1%1 +X101% + O KXo + X[ o + gou— &(X1,1) +d].
(3.109)
The computed control law, u, is defined as follows:
u=g,' [~fr+a,1) g% —Ke®—Coxy) , (3.110)
with C, = C) > 0.
From this control law gives:
Va(8,X1,X2,1) = —X1C1X1 —X5CoXp +Xpd . (3.111)

The control law (3.110) can be written in terms of a nonlinear PID with a
feedforward action control law as follows:

u=—Ki®—Kp[x;—x,(t)] —Kplxa — g7 ' (%:(1) — ))] + FF,  (3.112)

where:
K] = g;lKﬁ>
Kp = g'(g)+Cagy'Cy), (3.113)
KD = g2_1C27

Fr = ggl[_f2+a(ilat)]a

Altitude Control

To design the altitude controller the two last equations of the system (3.53) with
the unknown disturbance term 8¢, # 0 are considered. Besides, due to the Quad-
Rotor helicopter cascade structure (see Fig. 3.1), the Euler angles are supposed as
time-varying parameters.
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The first step considers the backstepping state transformation :

'f]z:Z_Z’"(t)?

o - (3.114)
Xzz =wo— (XZ(Xl,t) )

where the integral term is ¥,(¢) = [¢ %,(7)d7, and the virtual control, & (%)_,t),
is obtained from equation (3.104) for the altitude system as follows:

az(ilzvt) = 7clz'£1z +W0r(t) :

Then, the system based on backstepping approach for altitude control is given
by:

f]z = i22+az()212,t)
% = R S (3.115)
B, = —g+(cos$cosf)— + = — ¢ (%1,1)

m m

where the thrust 7, computed through the backstepping approach, is defined as
follows:
m

T=——|—k —(1 —z)— o o1
cos ¢ cos O [k, 02— (14 ca.01.)(z = 2) = (e1, + e2,) (wo = wo,) + g +in, ]
(3.116)

Longitudinal and lateral movement control
To compute u5 and uj the same backstepping approach is used and the following
backstepping transformation is considered:

}lxy = xlxy _xrxy (t) ) (3 117)
x2xy - x2xy - axy(xlxy7t) )

where:
_[x _ [ uo _ [ JoR(v)dr
xlxy_|:y:|7 x2xy_|:v0 :|a ﬁxy—|:f(;‘:xv2y(r)dr 9
and the virtual control, @yy(X1,,,t) = [0(X1,,2) O(X1,,1)]’, is obtained from
equation (3.104).
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Therefore, the control law is given by:

us m
|: uc :| = ? [_K"xyﬁx)’ - (]]' +szyclxy) (xlxy _xdxy) -
Y (3.118)

_(szy +CIXy) (xzxy _xdxy) +xdxy] )

where T is assumed non-zero and:

C1 0 Co. 0 kﬂ 0
Ci,=| Co=| Ks,=| > :
b { 0 «, ]’ 2o [ 0 o ]7 On { 0 ky,

Taking into account that the control virtual inputs u; and uj have been obtained
to track the path reference in the xy plane, the reference values of ¢ and 8 can be
computed by the same way used in the previous translational controllers. Thus,
by making the control virtual inputs equal to the desired values, ug, = u,‘fy, the
reference of the roll and pitch angles, ¢, and 6, respectively, are derived using

equation (3.54). These references are passed to the helicopter rotational loop.

3.4.3.2 Simulation results

The proposed control strategy, using an integral backstepping controller in cas-
cade with a nonlinear 7%, controller, has been tested by simulation in order to
corroborate the effectiveness to solve the path tracking problem when sustained
disturbances affect the whole system. Simulations have been performed again
taking into account the simulation protocol presented in Section 3.2.

For the translational motion, the parameters were adjusted as follows: ¢;, =
c1,=6,c1,=7,c, =y, =2, =3.5, kg, = kyp, =7, ky. = 12. The nonlinear 7,
controller gains were tuned with the following values: @; =0.1, @, =5, w3 =9
and w, = 0.5.

The first reference path used is a circle evolving in the > Cartesian space.

Figs. 3.15 to 3.18 show the simulation results of the path tracking for the
first reference trajectory. They illustrate how, starting from an initial position far
from the reference, the proposed control strategy is able to make the QuadRotor
helicopter follow the reference trajectory.

Figs. 3.16 and 3.17 show the translational coordinates motion. It can be
seen that null steady-state error is achieved for all coordinates, even if structural
uncertainty and different model parameter values are considered in the vehicle.
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Figure 3.17: Position error (x,y,z).

Besides, the translational controller provides to the QuadRotor helicopter a fast
and smooth recovery to the reference trajectory when external disturbances affect

it.
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Figure 3.19: Orientation error (¢, 0, y).

The behavior produced by the nonlinear .77, control law in the rotational mo-
tion is showed in Figs. 3.18 and 3.19. It can be observed how that controller
reacts when the helicopter is disturbed on the six degrees of freedom. When dis-
turbances affect the translational motion, the rotational controller counter-attack
them so quick that its damages are minimum for the inner loop. The first two
graphs show how the references generated by the integral backstepping controller
(translational motion loop), i.e, ¢, and 6,, varies in its attainment of an appropriate
performance in the translational loop. It is due to the system coupling.

In this section a robust control strategy to solve the path tracking problem for
a QuadRotor helicopter has been presented. The proposed control strategy com-
bines an integral backstepping approach to control the translational movements
with a nonlinear 7, controller designated to stabilize the helicopter. This control
structure has been designed in consideration of external disturbances, like aero-
dynamic forces and moments, acting on all degrees of freedom.

3.5 Comparative Simulation Results

This section presents comparison results between the proposed control strategies
described in this chapter, where each one will be named as follows, considering
the same order that they have appeared in the chapter: LZ%,-NL 2%, MPC-NLJZZ,
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and IntBS-NLJZ,. In addition, simulations comparing these control structures
with the one of Bouabdallah and Siegwart (2007) (IntBS) have been performed
in order to show the improvements obtained by the proposed strategies. This
work proposes an integral backstepping control strategy, which uses the integral
term in the first step of the procedure. It has been chosen for the comparison
analysis because it is able to present similar performance results, as well as to
reject sustained disturbances.

A simulation collection has been carried out with a reference trajectory made
up of a set of several kinds of stretches, as commented in Section 3.2. An amount
of +40% of uncertainty in the elements of the mass and the moment of inertia
tensor has been considered. The parameters for all control structures have been
adjusted to obtain a smooth reference tracking, with a quick disturbance rejection,
when it is possible, and a small transient error. The backstepping parameters for
the translational controller used in IntBS structure are the same of the integral
bascktepping controller presented in Section 3.4.3, while its parameters for the
rotational controller have been synthesized to produce a similar behaviour of the
nonlinear .72, rotational controller. The simulation results are depicted in Figs.
3.20 to 3.25.

3
25
2
£15 Reference
Yy o LH_-NLH_
| —MPC-NLH_
0.5 - - - INBS-NLH_
0.l IntBS

Figure 3.20: Path tracking.
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These figures show that all control strategies present a robust path tracking
when abrupt changes of references and sustained disturbances are applied on the
whole QuadRotor helicopter degrees of freedom. Despite of the faster time re-
sponse of the translational controllers of both IntBS-NL.J%, and IntBS control
strategies, it can be clearly observed in Fig. 3.22 that the translational motion
response, in the case of the IntBS, converges slower to the reference than the
proposed IntBS-NL.7Z, control strategy. As commented in Skjetne and Fossen
(2004), increasing the positive feedbacks gains ky,, c1, and ¢, will eventually give
stability and convergence, for the backstepping procedure with the integral term
in the first step, when g; (x;) is constant (see Eq. (3.99)), which is the case for the
QuadRotor helicopter model. On the other hand, both L.2%-NL.5Z, and MPC-
NLJZ, control strategies have been provide smoother translational movements.
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Figure 3.23: Orientation (¢, 0, y).

In order to make a quantitative comparison of the results attained by these four
control strategies, some performance indexes have been computed.

On one hand, the Integral Square Error (ISE) performance indexes obtained
from the simulation results are presented in Table 3.1. It can be observed that the
performance is improved by the Integral MPC/Nonlinear .77, and Integral Back-
stepping/Nonlinear 772, control strategies for all states. The difference expressed
through the ISE index between these two control strategies can be decreased by
an exhaustive adjustment of the controller parameters. These index values cor-



110 3 Cascade Control Strategies

0.5[ T T T T T T =
R S S —
& 0.5 7
g -1 .
3}

-1.5 ¢ L L it 1 I L E|
0 10 20 30 40 50 60 70 80
= 05 1
g [0 o ———— S ——
S -05; 1
2
g -1F -
¢ -15 I I I I I I I
10 20 30 40 50 60 70 80
S S S A A S
E 0 LH_-NLH
- 0.2
5 { ——MPC-NLH_|
5 ‘0-45’ - - - IntBS-NLH
1 1 1 1 1 1 ©
0 10 20 30 40 50 60 IntBS

time [s]

Figure 3.24: Orientation error(¢, 0, y).

roborate the results presented in Figs. 3.22 and 3.23. On the other hand, it can
be observed that, apart from the good performance attained with the LJZZ,-NL
€, control strategy, this control structure have presented the worst ISE index of
this comparison analysis. The performance for this control strategy can be im-
proved adjusting its control parameters. However, the linear J#, controller does
not present an intuitive adjustment of the parameters when compared with the
other ones presented in this chapter, which needs an exhaustive tuning process.

Although higher overshoots in the x and y error responses presented at the
beginning of the trajectory for the results obtained with the integral MPC-NL.JZ,
control strategy (see Fig. 3.22), the accumulated error along the path is less than
the error achieved by the L.7Z-NL .7, and IntBS control strategies.

Furthermore, the Integral Absolute Derivative control signal (IADU) index
has been computed for all control signals in the four control strategies (depicted
in Fig. 3.25). As it is well-known, the use of integral action in a controller allows
to obtain null steady-error, however, the control action turns more aggressive.
In Table 3.2, when the LJZ2,-NLJZ, control strategy is compared with the other
structures, it can be observed why this strategy has been obtained higher accu-
mulative errors along the trajectory. This strategy has presented a smooth control
signal. However, it is noted that despite of some smoother signals presented by
the others strategies, only the IntBs-NL.JZ, strategy has successfully achieved the
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Table 3.1: ISE Index Performance Analysis.

[Uniftg;fibol] L-NL#., | MPC-NL., | IntBs-NL.%Z | IntBs
X [R5 18.9776 12.5464 127508 | 25.2893
¥ [m? -] 22.0242 18.3501 14.6774 | 29.8017
Z[m?-s] 31.6255 18.1153 12.3788 | 25.3689
0 [rad®-s] 61.5304 7.6366 5.7640 | 15.7457
0 [rad?-s| 20.4235 5.4915 1.1897 2.4403
v [rad® -] 8.9350 47319 5.5054 6.8851

control objectives, where it has presented the smaller errors along of the traject-
ory and a faster response than the other ones with very smooth control signals.
Moreover, when all the proposed control strategies are compared with the IntBS
one, the IADU index values are very similar for the control input 7', but for the
rotational loop, the proposed controllers have provided smoother control signals.
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Table 3.2: IADU Index Performance Analysis.

Control
Signals LJZ,-NL, | MPC-NLJZ, | IntBS-NLJZ, | IntBS
[Unit Symbol]
T [N] 36.7681 40.2395 48.4741 51.9268
To, [N -m] 297.6354 463.0468 254.6423 1609.7
Tq, [N - m] 307.6367 431.3856 261.4491 1645.7
Ty, [N -m] 31.1399 56.9412 32.3249 56.2156

3.6 Conclusions

In this chapter three robust control strategies to solve the path tracking problem for
a QuadRotor helicopter have been proposed. All of them were designed in con-
sideration of external disturbances like aerodynamic forces and moments acting
on the six degrees of freedom of the QuadRotor helicopter.

A robust control based on nonlinear .77, theory has been developed for the
stabilization of the rotational subsystem of the helicopter, which is able to reject
sustained disturbances due to the use of the integral action in the state vector. This
controller has been combined with three translational controllers.

First, a linear %, controller has been designed to perform path tracking in the
Euclidean space, which is robust in presence of uncertainties of mass and inertia
terms. After that, a state-space predictive controller for the translational move-
ments has been proposed for the outer loop, which achieves a good and smooth
performance in the reference tracking. In both controllers, to reject sustained dis-
turbances affecting the translational motion, the integral of the position error has
been considered in the error model used by these control laws. Lastly, a transla-
tional controller has been designed by an integral backstepping procedure, using
the integral term in its second step. This controller guarantees stability and con-
vergence of the tracking error for a generic plant when a maintained disturbance
affects the system and the reference signal is time-varying. A comparison with
other integral backstepping controller using the integral term in the first step has
been provided, and it has confirmed the improvement of the approach used in this
chapter.

The robustness, the smoothness and the predictive features of the proposed
control strategies have been corroborated by simulations, where parametric and
structural uncertainties, and unmodeled dynamics, besides sustained disturbances,
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have been taken into account.

The results have presented an excellent tracking for different classes of tra-
jectories, and have illustrated the robust performance provided by the nonlinear
% inner controller in the case of parametric uncertainties in the inertia terms.
Moreover, the use of integral action in the inner and outer loop controllers has
provided the capability to deal with sustained disturbances when all degrees of
freedom are affected by this kind of perturbation in different moments of time.

Finally, to show the improvements achieved by the proposed control strategies,
a comparative analysis among the proposed ones and other recent controller has
been carried out by means of the ISE and IADU performance indexes.



114 3 Cascade Control Strategies




CHAPTER 4

Underactuated Nonlinear 7,
Control

Contents

41 Introduction ...........uiiiiieeeunnnneeens 115

4.2 Underactuated Mechanical Systems . .............. 118

4.3 Underactuated Nonlinear 77, Control of the Reduced Subsys-
L1 125
4.3.1 A Generalization Approach of the Weighting Matrices . . 131
4.3.2  Application to the QuadRotor Helicopter . . . .. .. .. 141
4.3.3 Other Applications . . . . ... ... ... .. ...... 149

4.4 Underactuated Nonlinear .7ZZ, Control of the Entire System . . 158
4.4.1 Application to the QuadRotor Helicopter . . . . ... .. 177
4.4.2 Case study: Two-Wheeled Self-Balanced Vehicle . . . . . 184

45 Conclusions. . . . . v v v vttt i it it e e 188

4.1 Introduction

In this chapter, control laws for underactuated mechanical systems are proposed,
where the main goal is to develop controllers to solve the path tracking problem
of the QuadRotor helicopter considering the overall behavior in the nonlinear J7Z,
controller design. Moreover, a control structure is presented without the neces-
sity of cascade strategies. In addition, other applications are also considered to
corroborate the effectiveness of the proposed control strategies.

Control design for underactuated mechanical systems is a big challenge in
automatic control area. Furthermore, despite the considerable effort to minimiz-
ing system errors, this problem is considerably increased due to uncertainties, that
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are usually present and may have significant effects. The sources of uncertainties
can be unmodeled dynamics, exogenous disturbances, parameter estimation errors
and noise. Thus, apart from the difficulty of controlling underactuated mechanical
systems because they have fewer control inputs than degrees of freedom, an addi-
tional question is whether the proposed control law possesses desirable rejection
properties even without assuming perfect models.

As discussed in Chapter 3, a usual approach to deal with system imperfec-
tions on the control design stage is the .72, control theory (van der Schaft, 2000),
whose aim is to achieve a bounded ratio between the energy of the cost variable
and the energy of external disturbance signals. In general, the nonlinear approach
of this theory considers a Hamilton-Jacobi partial differential equation. As com-
mented before, the main problem in this approach is the lack of a general method
to solve this HJ PDE. Hence, solutions have to be found for each particular case.
As seen in Section 3.3.1.3, by applying game theory to formulate the nonlinear
%, control, a constant gain, similar to the results obtained with feedback lin-
earization procedures, is provided by an analytical solution. An explicit global
parameterized solution to this problem, formulated as a min-max game, was de-
veloped in Chen et al. (1994) for the particular case of fully actuated mechanical
systems formulated via Euler-Lagrange equations by using the state tracking error
equation proposed in Johansson (1990). This controller was modified in Feng and
Postlethwaite (1994) given more degrees of freedom to the control design and, a
posteriori, these works were improved in Ortega et al. (2005), being this last one
discussed in Section 3.3.2.

In Siqueira and Terra (2004b) a nonlinear 7Z, control for underactuated ma-
nipulators, as an extension of the one proposed by Chen et al. (1994), was presen-
ted. Nonetheless, this result presents some important restrictions, such as the
assumption of null-average disturbances and an exact robot model. In Raffo et
al. (2007b), this controller, considering underactuated mechanical systems, was
modified taking into account the error vector with the integral term proposed in
Ortega et al. (2005), which allows to reject persistent disturbances. This controller
and its variations are a contribution of this work.

In this chapter, this controller has been applied to the QuadRotor helicopter
(Raffo et al., 2009c, 2011a), apart from others two different underactuated sys-
tems, an inverted pendulum on a cart (Raffo et al., 2007b) and a two-wheeled self-
balanced vehicle (Raffo et al., 2010a). The difference between the self-balanced
vehicle and the inverted pendulum on a cart lies in the fact that, in the first system,
the axle of the motors is at the same time the pivot axis of the pendulum, whereas
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in the second one, the pendulum goes freely around the pivot axis. These char-
acteristics results that the inverted pendulum on a cart has noninteracting input
control, while the two-wheeled vehicle has input coupling.

Since this control law design considers only the dynamics of controlled DOF
into the error state vector, the remaining ones must be assumed to have stable zero
dynamics, or they must be controlled in an outer loop. As the standard QuadRo-
tor configuration is constituted by four coplanar propellers (see Fig. 2.1), it is not
static feedback exact linearizable for the desired controlled outputs, x, y, z and y,
i.e., the translational and yaw angle positions. If the desired controlled outputs are
chosen as the Euler angles and the altitude, the problem remains in the xy-motion,
which is unstable. In the literature there are two approaches to solve these prob-
lems: on one hand, if the outputs are chosen as in the first case, it is possible to use
an augmented state vector with a double integrator of the thrust (the translational
control input). This makes that the system with the controlled outputs x, y, z and
v be realizable. Hence, the system becomes exact linearizable with a dynamic
feedback controller (for more details see Mistler et al. (2001)). On the other hand,
if the desired controlled outputs are chosen as in the second case, an outer-loop
controller is needed to ensure the stability of the whole system. This second ap-
proach is the selected one to develop some control strategies in this thesis (as can
be seen in Chapter 3, and in the first control strategy presented in this chapter,
with both outer and inner loop state vector changed, which has been published in
Raffo et al. (2009c), and in an augmented version in Raffo et al. (2010d)). The
controller proposed in this chapter considers the overall dynamic behavior in order
to control the helicopter attitude and altitude. This fact implies that translational
and rotational motion control are not considered separately, being their couplings
do not treated like external disturbances. Therefore, this approach constitutes a
clear advantage with respect to the control strategies proposed in Chapter 3.

As stated in Chen et al. (1994), the standard formulation of the nonlinear
% control for Euler-Lagrange mechanical systems used, for example, in Feng
and Postlethwaite (1994), Siqueira and Terra (2004b) and Ortega et al. (2005),
presents a limitation in the way to weigh the cost variable. For its appropriate
formulation, some weighting matrices must be considered like positive real scalars
multiplied by the identity matrix. In this work, a way to design the nonlinear .7,
control for mechanical systems is proposed, allowing to weight different dynamics
through various values, and represents another contribution of this thesis. In this
chapter, only two dynamics are considered. The procedure for weighting more
dynamics can be obtained through a natural way, but at the cost of more dynamics
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are considered, more Riccati’s equations must be solved.

Moreover, to overcome cascade control strategies for the QuadRotor heli-
copter, or an augmented state space, a nonlinear .77, controller for a class of
underactuated mechanical systems with input coupling is also proposed. This ap-
proach considers the dynamics of the non-controlled degrees of freedom (i.e. the
remaining DOF) in the cost variable allowing to maintain these coordinates stabil-
ized. More precisely, to reach this behavior, the time-derivative of their positions
is considered in the error vector, which ensures that the speed error of the remain-
ing DOF tends to zero when the positions are given by their coupling with the
controlled DOF. This controller, combined with the possibility to weight different
DOF, constitutes one of the main contribution of this thesis. This control law is
also applied to the two-wheeled self-balanced vehicle, with the same controller
structure but with a slight change in the control objective raised to the QuadRotor
helicopter.

The chapter begins presenting the underactuated mechanical control system
representation used to design the nonlinear .72, controllers, followed by their de-
velopment. Simulation and experimental results are showed for the QuadRotor
helicopter and other applications.

4.2 Underactuated Mechanical Systems

In agreement with the Euler-Lagrange mechanical system (2.40) presented in
Chapter 2:

M(q)§+C(q,9)4+G(q) =B(q)T+6(q,9,4.Ta),

it is possible to classify mechanical systems with respect to their actuation degree,
that is, the difference between the number of configuration variables, g € @, and
control inputs, I' € U, being Q the n-dimensional configuration space and U the
m-dimensional actuation space. Therefore, the following definitions are stated
(Olfati-Saber, 2001; Gémez-Stern, 2002; Acosta, 2004; Vivas, 2004):

Definition 4.1. Fully actuated mechanical systems are those systems where m =
rank(B(q)) = n, that is, B(q) is invertible. In these systems, the number of avail-
able control actions is the same than the dimension of the system configuration
space. Besides, they are feedback exact linearizable, i.e., they do not present zero
dynamics.

Definition 4.2. Underactuated mechanical systems are those systems where m =
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rank(B(q)) < n, which means that they have fewer control actions than the di-
mension of the configuration space. Thus, due to the impossibility to act in the
whole configuration space, some limitations appear with respect to the kind of
performance which is possible to reach in closed-loop. Besides, it is not possible
to apply fully feedback exact linearization of underactuated systems.

Regarding underactuated mechanical systems, in general, the dynamic equa-
tions of these kind of systems with n DOF can be partitioned into two compon-
ents: one corresponding to the uncontrolled (also called remaining) generalized
coordinates, q, € R"™, and the other to the controlled ones, q, € R". Further-
more, it is well-known that no more than m degrees of freedom can be controlled
(i.e. regulated at an operation point) at each moment by the external generalized
forces/torques (Siqueira and Terra, 2004a). Therefore, the m DOF to be con-
trolled should be grouped in the vector g, € R™, while the uncontrolled gener-
alized coordinates should be grouped in the vector g, € R" ", where n, = m
and n, = n —n.. However, the partition of underactuated systems also depends
on the system structure, being these systems as well classified by the presence
or lack of any input coupling due to the force matrix B(q), and by the actuated
or unactuated shape variables. Shape variables are those that appear in the iner-
tia matrix of a system. In the case that an underactuated system is flat (i.e. has
constant inertia matrix), shape variables are called those that appear in the force
matrix B(q). If a configuration variable ¢; does not appear in the inertia mat-
rix, i.e. dM(q)/dq; =0, it is called an external variable (Olfati-Saber, 2001).
Thus, underactuated systems can also be labeled with respect to the type of vari-
able, for example, passive-active (unactuated-actuated), shape-external and/or
controlled-stabilized. A list sorting underactuated systems can be found in Olfati-
Saber (2001).

In the passive-active configuration, for the particular case where B(q) =
[0 1,), that means the system with noninteracting input, the passive subsys-
tem can be expressed without loss of generality in the form ¥(q,q,4) = 0. This
is a highly nonlinear second-order dynamic equation and includes dynamics of
the active subsystem. In this case, q, € R, where n, = n —m, is the passive
coordinate vector and g, € R", with n, = m, is the active one. Moreover, as
commented before, the application of feedback linearization techniques to under-
actuated systems is not always direct. However, in Spong (1996) is showed that
the system for this special case can be partially linearized by an invertible change
of variable on the control. Nevertheless, after partial linearization, unactuated
subsystem still remains as a nonlinear system that is coupled with the linearized
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actuated subsystem through both the new control input and other nonlinear terms
(Olfati-Saber, 2001).

Accordingly, for the particular case where there are noninteracting inputs,
there exist three possibilities to form the vector g, (Siqueira, 2004):

1. g, contains only active DOF, when n, > n,.
2. g, contains only passive DOF, when n;, = n,.

3. g, contains both passive and active DOF, when n, < n,.

Furthermore, as in Olfati-Saber (2001), underactuated systems with noninter-
acting inputs can be classified according the shape variables: 1) with fully-actuated
shape variables, ii) with unactuated shape variables, and iii) with partially-actuated
shape variables.

Thus, assuming that the Euler-Lagrange equations of motion (2.40), again
given by:

M(q)§+C(q,9)q4+G(q) =B(q)T +6(q,9,4.Ta),

represent an underactuated mechanical system with the same vectors and matrices
defined in Section 2.4, for the suitable partition between uncontrolled and con-
trolled DOF, the system (2.40) can be written as follows:

el ey

where
6y = —(AMy(q)4.+AM,(q)q, +ACuc(q,9)q,

+Acuu(q7q)qu +AGu(q) _qu) 5
6, = —(AMc(9)§. +AM4(q)4, +ACcc(q,4)q,

+ACy (q7 Q)qu +AGC(4) - Fd:) .

The forces/torques in the controlled and uncontrolled DOF are defined by
I'. = B.(q)T € R and I', = B,(q)T € R, respectively. 8, and 8, represent
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the total effect of the parametric uncertainties (matrices expressed by Ae) and
energy-bounded external disturbances on the controlled and uncontrolled DOF,
I’y and I'y,, respectively. For the particular case where there are noninteracting
input, if the option chosen to control is 1), I'; = I'y; if the option is 2), I'; = O;
and if the option is 3), ' = [[,, O], being I, the forces/torques in the active
DOF being controlled.

Without loss of generality, if there is input coupling, regarding the partition of

matrix B(q):
M@z[ﬁﬁg], (42)

B.(q) must be an invertible m x m matrix and, from the input coupling, it follows
that B, (q) # 0 for all g (Olfati-Saber, 2001). If the controlled degrees of freedom
vector is chosen the same as the active one, it is obvious that B.(q) = B,(q) is an
invertible n, X n, matrix.

In what follows, two representations of the dynamics of underactuated mech-
anical systems are presented. In the first one, the reduced underactuated system is
used to obtain the dynamic equation of the system error for the controlled degrees
of freedom. In the second representation of the system, the entire dynamic model
is considered to obtain the equations of the system error, where both dynamics of
controlled and uncontrolled DOF are included in the tracking error vector. In this
formulation, the objective is, at least, to obtain the stabilization of the uncontrolled
DOF at an equilibrium point.

Reduced Underactuated Mechanical System

Taking into account this partition, it is possible to reduce the order of the under-
actuated system to be controlled. Therefore, from the second row of (4.1), and the
definition of I’ = B.(q)I":

Mc(9)g.+Mcu(9)4,+Ccc(9.9)4c +Ceu(q.9)4, +Ge(q) =Tc + 6., (4.3)

the controlled degrees of freedom acceleration can be isolated, yielding:
de=—M.!(q)(Cec(4,9)4: +Ge(q) ~T &), (4.4)

where T' =T — M., (q)d, — Ceu(q,4)q,,.
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By defining the tracking error vector of the controlled DOF as follows:

éc qc - qcr
Xe = QC = 9. — 4., 5 4.5)
f cht f (qc - qc‘r) dr

equation (4.4) with respect to the reference trajectory can be written in the state
space form as follows:

e = [(Xe,qust) +80(4,4:4c, de,) +8(%e: Gu )T +k(Xc,qy,1)8c,  (4.6)

with
_M;cl (q)ccc(‘17q) 0 O
f(xCaquvt): ]]' ® ® xL‘7
0] 1 O
_Mc_cl (q) (MCC(Q)%, "‘CCC(‘LQ)qc, +Ge(q))
%(qaqvqc,aqc,) = 0 )
()
M. (q)
g(xmquat)zz(xcvquvt): ® 9

where q,., g, and g, € R" are the desired trajectory of the controlled DOF, and
the corresponding velocity and acceleration, respectively. 1 is the identity matrix
and O the zero matrix, both of n.-th order. Note that an integral term has been
included in the error vector, as in (3.36). This term will allow the achievement of
a null steady-state error when persistent disturbances are acting on the controlled
subsystem.

By using the state space equations (4.6) to design a control law for the con-
trolled subsystem, the remaining ones must be assumed to have stable zero dy-
namics, or to be controlled by an outer loop controller. In the next section, a
nonlinear 772, control design will be presented for this subsystem. This control-
ler is applied to the QuadRotor helicopter in a cascade strategy, to the inverted
pendulum on a cart and to the two-wheeled self-balanced vehicle.
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Entire Underactuated Mechanical System

On the other hand, if the system to be controlled does not present a stable zero
dynamic, or because the cascade control can introduce stability problems to the
whole system, it must be guaranteed that the remaining (uncontrolled) degrees of
freedom will be stabilized. To perform that, the partitioned system (4.1) is taken
into account again, assuming that the inertia matrix presents cross terms between
the controlled and uncontrolled DOF. This system can be normalized to obtain a
block diagonal inertia matrix through the following form:

C(4.9)9+G(q) =T(q)+8, 4.7)

q+
R H [+ [ Gulart) Cutad) ][4 ]
(4.8)

+[2i:E;’§H‘Ei:E;’i%[ii:k

where the subscripts s and r denote stabilized and regulated subsystem, respect-
ively, and: B
I'(q) = Tu(q)B(q)T,

M(qg) = Tu(gM(q),
C(g.9) = Tu(9)C(q.9),

G(q) = Twul(q)G(q),

with M(q) symmetric and positive definite. This normalized system will be re-
ferred throughout the chapter as the entire underactuated mechanical system.

The normalization matrix Ty is easily obtained when only two dynamics are
considered, as follows: 1) by isolating g, in the first row of (4.1), ii) replacing it in
the second one, iii) making the same procedure with g,. in the second row of (4.1)
and, iv) substituting it in the first one, yielding:

1 _Muc(q)M;cl (9)

™= | (@M (q) 1
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To partition the mechanical system in more than two dynamics and diagonalize
the inertia matrix, the normalization matrix can be obtained following the steps:

1. Compute the inverse of the inertia matrix M~!(q).

2. From M~!(q), the matrix 7 (q) is given by:

1 . _
M (q)=diag(M '(q)).
3. By inverting M (q), the diagonalized inertia matrix is obtained, M(q).

4. Finally, the normalization matrix is computed as follows:

This system normalization will allow to weigh different dynamics through
different weighting parameters due to the diagonal structure of the inertia matrix,
as will be seen in Sections 4.3.1 and 4.4. Therefore, it will enable to consider the
time-derivative of the remaining DOF in the tracking error vector.

As the control objective, proposed here for the underactuated mechanical sys-
tem under input coupling, is to perform a reference tracking of the controlled
DOF, q,., while the remaining ones, q,, or at least their velocities are maintained
stabilized (it depends on the control objective for each system, more details are
given in Section 4.4 and its applications), the dynamics of the uncontrolled de-
grees of freedom are considered into the error vector. It leads the tracking error
vector to be defined as follows:

éu qu - qu,
q 9. — 4,
x=| . |= € . (4.9)
q. dc— qcr
IQCdt f (qc _qc,)dt

By considering the proposed error vector, equation (4.8) can be rewritten with
respect to the desired trajectory in the state space form:

x = f(x7 qu7t) +%(q7 q7qr7qr) +g(x7 qu')t)r—i_k(x?qu?t)g? (4'10)
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where
-M,, (9)Csu(q.9) —Mg(q)Csc(q.9) O O
—( l)_ _M;cl(q)cru(qvq) _M;(,'I(Q)Crc(qvq) O O
fxqut) = 0 1 o o|"
()] ()] 1 O
*M;) (q) (Msu(‘I)qu, JFCsu(QaQ)iIu, +Cs0(qaq)4c, +Gsu(q))
., _M;cl(Q)(MrC(Q)éc,"‘Cru(‘l»Q)qu,‘f'Crc(‘laiI)"Ic,+Grc(4>)
80(4;%%7%) = 0 )
0]
Mg (g9 O
_ (] M_l(q)
g(x7qu7t):k(x7qu7t): ® r(jo )
(] ()]

being q,, ¢, and g, € R" the desired trajectory and the corresponding velocity
and acceleration, respectively. Matrices 1 and O represent the identity and zero
matrices, respectively, both with proper dimensions.

In the following sections, nonlinear 7%, controllers for the reduced and entire
underactuated systems will be developed.

4.3 Underactuated Nonlinear .77, Control of the Redu-
ced Subsystem

In this section, a nonlinear J#2, controller, designed for the reduced underactuated
mechanical system to achieve robustness in presence of sustained disturbances
and parametric uncertainty, is developed. The control law is based on the error
dynamic equation of the controlled DOF (4.6). As stated before, the advantage of
this method is based on the knowledge of all underactuated system behavior at the
moment to compute the control signals, and not solely considering the remaining
behavior of the coordinates as external disturbances.

Firstly, the methodology proposed in Siqueira and Terra (2004a) is improved
in this thesis by extending the work introduced in Ortega et al. (2005) for fully
actuated mechanical systems, to underactuated ones. The proposed controller
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is able to cope with persistent disturbances acting on underactuated mechanical
systems. Furthermore, the work presented in Siqueira and Terra (2004a) develops
a strategy in which passive degrees of freedom are controlled by active ones,
with a local passive redundancy. In this way, the control strategy is applied in
two phases: first the passive coordinates are driven to the set-points via dynamic
coupling with the active ones, and then, are locked; and in the second control
phase, the active coordinates are controlled.

The objective in this section is to develop a controller where only the first
control phase is considered for the system, that is, only the controlled degrees of
freedom are guided, assuming that the uncontrolled degrees of freedom can not be
locked. Moreover, as commented at the beginning of the chapter, in order to the
whole closed-loop system be stable, it must be assumed that either the remaining
DOF have stable zero dynamics, or their dynamics must be controlled by an outer
loop controller if they are unstable.

Thus, as a previous step to synthesize the underactuated nonlinear .72, con-
troller, a state transformation similar to (3.38) is used:

21 T T, T3 4.
= Zz = To.xC == ® ]]. ]]. qc 5 (4.1 1)
23 O 0 1 [ q.dt

with Ty = p1, where p is a positive scalar and 1 € R"*" is the identity mat-
rix. As discussed in Section 3.3.2, and taking into account the assumptions about
the choice of generalized forces and torques to be included in the optimization
strategy, the following change of variables over the control action and disturb-
ances is also considered:

u+d=M.(q)Tx.+C.(q,9)Tx.. 4.12)

where T = [T] T2 T3}.

By expanding this transformation, the following state space equation is obtai-
ned:

xc — f(xc‘?quat) +g(xcaqu7t)u+k(x(:aquat)d Y (413)
7M;cl (q)ccc(qu) () 0
f(xe,qyu,t) =T," T, 1-T'Ty -1+T;'(T2—T3) | Toxc,

0] 1 -1
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M. (q)
g(xc,q,,1) = k(xc,1) :T‘j1 (D] ,
()

which represents the dynamic equation of the system error.

By comparing equations (4.13) and (4.6), results that d = p18, € R is the
external disturbance vector and u = T1(—F (x,) + ) is the additional control
effort, with:

F(xe) = Mec(q) (4, —T;'T24.~ T 'T3q,)
+Ccc(q, q) (qc, - T;1T2QC - T;1T3 chdt) + G, (q) .
Thus, the control input vector for the controlled DOF is given by:

= Mcc(Q>qc +Ccc(47q)qc +GC(Q) - TII (Mcchc +Ccchc) + Tflu-
4.14)

It can be pointed out that, despite the preceding control law might not seem a
well posed system, it will be shown afterwards that the computed forces/torques
does not rely on DOF accelerations, but on their references. In this way, the
control acceleration §,, computed in equation (4.17), will be replaced into (4.14)
which makes it a well posed equation.

Therefore, equation (4.13) considering the additional control input vector u,
which is into the standard form of the nonlinear JZ, problem, is used to apply
the nonlinear 7%, theoretical results presented in Sections 3.3.1.3 and 3.3.2. The
same procedure, used in those sections to obtain the nonlinear 772, controller for
Euler-Lagrange mechanical systems, is also applied here to compute the control
law for the controlled subsystem. Thus, this procedure has been omitted in order
to avoid unnecessary explanation.

As stated in Section 3.3.1.3, the solution of the HJ equation depends on the
choice of the cost variable, £, and particularly on the selection of function A(x,).
In this section, this function is taken to be equal to the error vector, that is, h(x;) =
X¢. Once this function has been selected, computing the additional control effort,
u, will require finding the solution to the HJ equation (3.34), which, in this case,
may depend on the remaining DOF like a time varying parameter, i.e. V (X¢,g,,,1).
This dependence on g,, occurs if some uncontrolled DOF is a shape variable and
it appears in the terms of the inertia matrix with respect to the controlled DOF,



128 4 Underactuated Nonlinear .77, Control

that is, M..(q) (see the system (4.1)). For the controller proposed in this section,
the following candidate Lyapunov function is chosen:

. Ml © O
V (Xc,qy,t) = Ex’cT; () Y X-Y |T,x, (4.15)
(0] X-Y Z+Y

where X, Y and Z € R"*" are constant, symmetric, and positive definite matrices
suchthat Z— XY 'X+2X > 0, and T, is as defined in (4.11). Besides, M. (q)is
a symmetric positive definite matrix, being %Mcc(q) —Ccc(q,q) askew-symmetric
matrix. Using this Lyapunov function, the Theorem 3.3.3 follows.

As exposed before, once matrix T is computed by solving some Riccati al-
gebraic equations, by substituting V (x,,q,,?) into the optimal state feedback ad-
ditional control effort (3.32), the additional control effort u* corresponding to the
F, optimal index ¥ is given by:

uw'=-—R"'(§+T)x. (4.16)

Finally, if the additional control effort (4.16) is replaced into (4.12) under the
assumption that d = 0, and after some manipulations, the control acceleration for
the controlled subsystem can be obtained as follows:

4e=4¢ - Kod.—Kpa.—Ki [adr. (4.17)
where
Kp = T{'(T2+M. (q)Ccc(q,9)T1+ M. (@R (S1+T1)),
Kp = T{'(T3+M_ (q)Ccc(q.4)T2+M. (R ' (S3+T2)),
K; = -T;' (M, (9)Cec(q.9)T3+ M. (@R (S5+T3)) .

A particular case can be obtained when the components of weighting com-
pound W'W verify:

ol O O ()
Q=| 0 w1 O |, S=|0 |, R=ol (4.18)
0 O ol ()
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In this case, the following analytical expressions for the gain matrices have
been obtained:

\/ ©F + 2005 B
Kp = —]]'+Mcc (q) <

1
Ccc(qa q) + 0)2]1> )

(O] m
[ 2
s 05 + 20,03 » _ 1 4.19)
Kp = aﬂﬂLTMcc(Q) Ccc(‘laQ)JraTL%]l :
;. . 1
Ky = aMcJ(q) (Ccc(‘I7q)+a)3]1>>

where the parameters @;, @, @3 and , are tuned by a systematic procedure
taking in mind a linear PID control action interpretation (see Lépez-Martinez et
al. (2007)).

Equation (4.17) gives the controlled degrees of freedom acceleration required
to track the desired reference. The forces/torques applied to the underactuated
mechanical system can be computed using this control acceleration, which does
not depend on the acceleration of the controlled DOF, but on their reference ac-
celeration as pointed out before. Thereby, if the underactuated mechanical system
has noninteracting inputs, equation (4.1), considering 8 = 0, can be written as
follows (Siqueira and Terra, 2004a):

v wto) Lo |l miad coaa ) o)

lael-1%"]

where the subscripts a and p denote active and passive, respectively. Thus, the
forces/torques in the active DOF can be obtained by isolating vector g, in the
second row of (4.20) and replacing it in the first one, as follows:

(4.20)

ra =Mo(q)21'c+Co(q,t'1)qc +E0(Qa4)qu +Go(q)7 (4-21)
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My(q) = Mac(q) —Mau(q@)M,)(9)Mpe(q),
Colq.q) = Cac(%‘])_Mau(Q)M;ul(‘I)Cpc(‘LQ):
E,(9,9) = Cau(q.4)—Mau(9)M,,;(9)Cpu(q.4),

Go(q) = Galq)—Mau(q)M,,(9)Gp(q).

On the other hand, if the underactuated mechanical system presents input
coupling, it is not suitable to use the passive/active (unactuated/actuated) nota-
tion, since all degrees of freedom are directly affected by the control input vector.
Then, for the sake of clarity, the uncontrolled/controlled nomenclature is main-
tained, and the applied force/torque vector is obtained by isolating the vector g,
in the first row of (4.1) and replacing it in the second one, as follows:

I'=B,'(q)[M,(9)d.+Co(q.9)d. +Eo(q,9)a,+Go(q)] , (4.22)

where:
B,(q) = B.(q)—Mc(q)M,,}(q)B.(q),

M, (q) = Mcc(q) — M,y (q)M;ul (q)Muc (q) )
Colg.q) = Ccc(%Q)_Mcu(Q)M;ul(Q)Cuc(‘LQ)>
Eo(qaq) = Ccu(q,q) _Mcu(q)M;ul (q)cuu(q>q) )

Go(q) = Gc(q)—Mcu(q)M,)(9)Gu(q).

The proposed control law guarantees that all equilibrium points in the con-
trolled workspace are globally asymptotically stable for the controlled subsystem
if the remaining degrees of freedom are stable or converge asymptotically to the
path to be followed. Therefore, the attraction basin in the outer-inner closed-loop
is enlarged or reduced by modifying the gains parameters.

It should be pointed out that the first step of the controller proposed in Siqueira
and Terra (2004a) can be considered as a particular case of the previous control
law, which is obtained if parameter @s is set to a null value.
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4.3.1 A Generalization Approach of the Weighting Matrices

In this section, the nonlinear .7Z%, controller presented previously will be general-
ized giving more flexibility to tune the control law, allowing to weight different
dynamics of the system. This is an improvement of nonlinear .72, controllers ap-
plied to mechanical systems when compared with the ones proposed by Chen et
al. (1994), Feng and Postlethwaite (1994), Siqueira and Terra (2004b) and Ortega
et al. (2005).

The controller developed here is based on the reduced model of the controlled
subsystem, and on the diagonalization method discussed in Section 4.2. There-
fore, consider the reduced system (4.1), which is presented again:

Mco(q)G.+Cec(9,9)q. ++Ge(q) =T + 8¢, (4.23)

and partitioned in two different dynamics by the diagonalization of the inertia
matrix M..(q). Hence, a normalized controlled subsystem can be obtained by the
same way performed with the system (4.7):

Mc(9)d.+Ccc(4,9)q. +Ge(q) =Tc(q) + e, (4.24)

with the following form:

S e |l ey can e ]
(4.25)

where:

(9)(9) = Tu(9)8:(9,4,4.Ta),

Mcc(q) = TM(q)Mcc(q) )
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and the normalization matrix T s is obtained as follows:

_ 1 _ML‘12 (q)M;z; (Q)
W@ =| M., (qM.) () 1

By redefining the tracking error of the controlled DOF, results in:

acl qcl - qcl,
écZ ch - qc2,
QCI dc1 — qcl,
xc = - = s
dc der — qc2,
Ichdl‘ f (qcl - qcl,) dt
| IQchl‘ | L f (ch _qc2,)dt |

The equation (4.6) in the state space form is rewritten as follows:

xc = f(xL’?qu?t) +%(q7q7qC,7qc,) +g(xcaqu7t)rc +k(-x(:7qu7t)86 ’

where
[ -M_'C,, -M_'C,, O O O O]
-M_C, -M_)Cp, O O O O
Flrgut) = 1 [h) O O OO x
() 1 O OOO ’
() () 1 0 0O
() () O 1 OO

_Mgzl (Mclqcl,. +Cc2|qc1, +Ct:22qc2, + GcZ

20(4.4.4,,4,) =

© 6 S O

[ _Mgll (MCIQCI,‘ + CCllqclr +Cc]2q02r + Gcl i

(4.26)

(4.27)
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(M O
M,

()

o |-

]

()

3

g(xc’qu’t) :E('xmquat) =

S 66605

being g., and g, . 4.1, and g, , and g, and §,, the desired trajectories and the
corresponding velocities and accelerations of the controlled dynamics, respect-

ively.

Therefore, from the state transformation (4.11), an augmented one is also

used:
_Zl_ [ T11 (D] T13 ()] T15 (D]
22 O Ty O Ty O Ty
= B O O 1 () 1 ()
24 oe O O O 1 () 1
25 0O O O ©0 1 ()
| Z6 | | 0 0 0O O O 1

écl
QCZ
QCI
QCZ

f qcl dt

_ _th:Zdt_

(4.28)

with T1; = p1 and Ty, = u1, being p and u positive scalars and 1 the iden-
tity matrix with suitable dimension. For this case, where two different dynamics

are considered, equation (4.12) is rewritten considering the transformation matrix

TMZ -
u+d=Ty(q) (u+d),

where, by considering the normalized system, it is given by:
ﬁ + E - HCC (Q)Txc + él:L‘(q7 4) Txc 9

21
|:uc1+dcl:|:|:Mcl 0O C.a, Ca, 2
U +de O My Co Co, 21
22

M1(T114c1+T138c1+T1sc) + Ce,(Tuder + T134c1 +T1s [ Ger)
+Ce1, (T224c2 + T244c2 + T26 [ 4c2)

Mo (T224c2 +T2ader +T2482) +  Cea(T11der +T134c1 +T1s [ Gc1)
+Ce2, (T228c2 +T24dc2 +T26 [ dc2)

(4.29)

(4.30)

4.31)
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where matrix T can be partitioned as follows:

T] 1 ()] T13 (0] Tl 5 ()
T = . 4.32
O Ty O Ty O Ty 432
Therefore, the dynamic equation of the system error (4.13) for the partitioned
controlled subsystem can be expressed in the following state space form:

Xe = f(Xe,qy,1) + 8(Xe, gy, 1)U+ k(xc, q,,1)d (4.33)
f(xcaquat):
[ -M_C., -M_C;, O O O O]
—M;z‘lccz1 -M_,C, O O O O
_ T () azz; O a3 O
T,! 1 T
0 0 Ty) O aw O ag| &
() 0] 1 0 -1 O
0 © 0 1 0 -1
(M, O ]
0O M,
_ () 0]
g(x07qu7t):k(xCaquat):Tol ® ® 9
(] ()]
- ® ® -
where: 1
a3 = 1-T| T3,
azs = —1+T(T13-Ts),
ay = 1-TyToy,
ase = —1+Ty (Toa—Ta).

By comparing equations (4.27) and (4.33), the transformed external disturb-
ance vector d and the control input u are obtained:

d=M.(q)TM., (q)8., (4.34)

u=T.(—F(x.)+T¢), (4.35)
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where:

B T11 ()]
TC_[ ()] T22:| ’

and:

F(xe,) = Mc1(q) (Ger, — T11 T13Gce1 — T T15dc1) + Ger(q)
+Ce1,(4,9) (Gea+ca, — T11 T228cr — T} T24dc2 — T1 T26 [ Gc2)
+Ce1,(4,9) (4e1, — T11 T13Ge1 — T11 T15 [ @c1) »

F(xe;) = Mc1(9) (de2, — T3y T248c2 — Ty T264c2) + Ge2(q)
+Ce2,(4,9) (Ger +dc1, — Top T11Ge1 — Toy T13801 — T3 T1s [ Gey)
+Ce2,(4:4) (42, ~ T2 T248c2 — T2y T26 [ 4c2) -

Note that from the definition of matrix T and since M, is a block diagonal
matrix, both velocities of the dynamics 1 and 2 can be weighted independently. As
mentioned before, the more dynamics are considered different, the more weight-
ing blocks of the the diagonal matrix T, form.

Therefore, the control input vector (4.14) is computed now for the normalized
controlled subsystem, and is given by:

fc = Mcc(q>q(: +6cc(qaq)qc +§c(q) - Tgl (HcchC +E‘—'0Txc) + T;lﬁ_
(4.36)

Since the controller developed in this section is a generalization of the one
presented before, the same assumptions about the cost variable § are considered
here. Thus, from the symmetric positive definite matrix W'W defined as in (3.25),
and the definition of the error vector, x,, matrices Q € RC>3n) § ¢ RBrexm)
and R € R are structured as follows:

01 Q1 Q13 Qs Q15 Qs S11 Si2
Qi O 03 Qxn Qx5 0O S21 S22
Q13 O 03 034 035 Q3 S— S31 832
Qs O QO34 Q4 Q45 Qus
Q15 Qx5 035 Qus Qs Ose Ss1 Ss2
Q16 Q26 Q36 Q46 Q956 Qs | Se1 Se2
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" [Ra O
R

where R;q € R"1 "l and Ry € R"2*"2 Note that R is chosen as a block diagonal
matrix, which will allow to weight separately the control effort in both dynamics
of controlled DOF.

Therefore, under these assumptions, the value function (4.15), V(x¢,q,,t), is
rewritten in an expanded form:

06 O O ©
606 O O ©

‘M., M
M

12

€21 22

C
1, 0} O Kiu Ki2 Ki3 Kis
V(xcaquv ) 2xc 0 ® o 112 K22 K23 K24 oxC, ( 3 )
() 0] 13 Ky K33 Ki
0O O Ky Ky K3 Ku

where M., M¢,,, M,, and M.,, form the inertia matrix of the controlled sub-
system, T, and T are the matrices defined in (4.28) and (4.32), respectively, and

K;j are constant and symmetric matrices. Furthermore, K;; > O withi=1,...,4,
such that:
[ K11 Ky |
>0,
| K21 K2 |
[ K33 K34 |
>0,
| K43 Kyg |
- - -1
Kin K2 | [ Ki3 Kis } [ K33 K3 } [ K31 K3 } -0
| K21 Koo | Ky3 Ky K4z Ky Ky Ky

If these matrices verify the following equation:

o0 O K Ky K1 +Kg3 K +Kyy

* O K1 Ky K12 +Ka3 Ky +Koy

* o« 2Ky1+2K13 2K1p+Kija+Kas K11 +2K13+ K33 K12 +K3+K14+K34 +
* ok * 2K2; +2K24 K12+ K3+ Kia+Kss K32 +2K34+ Ky

* % * * (0] (0]

* % * % * (0]

1 I
+0+ ?T’T— (S’—i—T) R (S’+T) 0,
(4.38)
function V (x.,q,,t) constitutes a solution to the HJ equation (3.34), for a suffi-

ciently high value of y. The symbol * represents terms that can be inferred by
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symmetry.

The algorithm for obtaining matrix T is the following:

1. Compute T'11, T2, T15 and T ¢ by solving the following Riccati algebraic
equations:

1 _ _
0, + ?TIHTU — ($11+Tn) Ry (S11+Tn) — SR, S, =0

(4.39)
1 _ _
Q2 =+ ?leszz — (S/22 + T22)/Rc21 (S/22 + T22) — S21Ru 1S/21 =0
(4.40)
1 ! / ' p—1 ! —1 ¢/
Qs+ ?T15T15 — (851 +T15) Ry (S51+T15) —Ss52R5 S5, =0
4.41)

1 _ _
O+ ?T/26T26 —(Sez + ths)/Rcz1 (Sez+T26) — Se1R_'S4 =0 (4.42)

2. Compute matrices K11 + K13 and K + K3 through the following equa-
tions:

Ki+Ki3+0g5+ %T,uTls — (S +Tu) R (S5, +T1s)
(4.43)
—S12R S5, =0

K2+ Koa+ Qo6 + %leszs — (S5, +T22) 'R, (Sep +T26)
(4.44)
—S21R;1] S:Sl =0

3. Compute T 13 and T 4 by solving the following Riccati algebraic equations:

2(K11+Ki3)+ Q3+ %T/BTB — (8% +T13) R} (S5, +T13)

—S3R,,) 83, =0
(4.45)
!/ _
2(K22 +K24) + Q34+ %T,24T24 — (Sia+T24) R,y (S +T24)

—SuR /Sy =0
(4.46)

Once matrix T is computed, from the optimal state feedback control law
(3.32), the additional control effort uw* corresponding to the 7%, optimal index
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Y is given by
w=-TyR "' (S+T)x.. (4.47)

Finally, if the additional control effort (4.47) is replaced into (4.30) under the
assumption that d = 0, and after some manipulations, the control acceleration can
be obtained as follows:

4. =48 — Kpedo — Kped, — Kie / Godt (4.48)

ot (Cer, T1i+R (811 +T11) —Me, M R, S15) + T Th3

€27 c2

Kpe,, = T1{M_] (Cc1,Too+ RSy —Mc,M_ R ) (S +T22))

€127 €227 2

Kpe,, = T{{M_ (Cci,T13+R| (S5, +T13) —Mc,M_'R)S%) + T 'Tis

€27 c2

Kpe,, = T{ M, (Co1,Toa+R,|'Syy —Mc,M_ R} (Sh + T24))

€127 €227 2

Kiey = TiM{ (Cor, Tis+R; (851 +T1s) — Me, M, R S55)

c1277 22" 2

Kie,, = T M| (Cc1,T26+ R, Sg1 — M ,M_ R, (S + Ta6))

€127 €227 2

Kpey, = TyyMy (Coo, T1i+R, 81— Moy M R, (S1;+T11))

¢ el

Kpey, = TyyM_) (Ce,Too +R ) (Shy +T2) —Mey M R 'Sy1) + T, Tos

ci1tel

Kpe,, = TyoMy, (Ceo, T1s+ Ry S5 — Moy M R (S5, +T13))

el

Kpe,, = ToyM_} (Co2,Toa+ R, (Syy+T2a) —Me, M R!SY) + T, T

11 el

Kic,, = TyM ) (Coo, Tis+Ryy Ssp — M, M (R} (S5 +T15))

€217 e el

Kicy, = TyyM_) (Ceo,Ta6+R,) (Sep+T26) — Moy M R_ 'S5, ) .

€217 e el

(4.49)
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Note that for the generic case, the more dynamics are considered, the more
Riccati’s equations must be solved.

As in the nonlinear JZ, controller discussed before, a particular case can also
be obtained when the elements of the weighting compound W'W verify:

(031 O O O O O
bl O O O O
0O o1 0 O O
0O O wil O O
0O 0 O o}yl O
© 0 O 0 obl|

(w1 O
R_[ 0 w32]]':|'

©Q

Il
©O6 660
©SO660S6 0O
©SO6 606 0S

In this case, matrices T11, T13, T15, T22, T4 and T ¢ can be defined as
follows:

Ty=pl, Ty=p1, Tyy=ol,
Ty =vl, Ty=pul, Tyy=AIL,

where p, B, a, v, L and A can be computed, using the Riccati’s equations presen-
ted before, as follows:

1. Compute p, v, o and A with equations (4.39), (4.40), (4.41) and (4.42),

respectively:
Y@u1 011

)
»)/2 _
_ Y0012
- T
»)/2 _
o= YWy 31
Y
2
Y=y
Y @0,2 032

2 2
Y -0,

:8.\)
—

e
E)N

e
(8]

A=
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2. Compute K11 + K3 and K53 + K4 using (4.43) and (4.44):

1 1
K11+K13=P0‘( > )

Yooy

1 1
Ky +Kpyp =—VvA < — > .

v o

3. Compute 3 and p with (4.45) and (4.46):

5 YOu1 4/ 2, + 2011 w3
\/ -0

Y024/ 03, + 201203,
u= :
\/ u2

Therefore, the analytical equations (4.49) for the gain matrices can be ex-
pressed for the particular case as follows:

\/ 03 + 2011 03 ] 1
1+M (CC11 + 211) ,
1

(O}

u

2 2
_ 1 @, D12 \/'Y—(l)ul
Kpe, = M} <c,_,12—M M1> “ = oo
. oy, @R F20n0n
Pcll -

€127 ¢ 2
1+ M C., + ! 1
o o cl cly w2l ’

u2
u

(O) \/w222 +2m1203 \/Y2 -0}

/ 2 0,10

_ |
Kpe,, = Iucll (Ct‘lz_Mcleczlza)Zz>
u

3 -1 1
Kie,, = OTHMcl (Cc11+a)2]l>7
ul
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2 2
1 wow YT O
_ -l -1 2 032
Kie,, = M, Cclz_Mclesz 2 ’
w,, /’}/2—(1)2 @, W11
u2

/a2 2
1 W, 0 Y -0,
—1 1 ul W11
KDCz] = MC2 CC21 _Mc‘lec“ 2 9
W, [v2 _ @2 Ou2012
Y ul

A/ (1)222 + 201203,

1
Kpe,, = 1+M) <c ) +11> ,
C22 02 c2 €2y w,fz
2 2 2
1 wul\/a)21+2(011(031 \/Y — W,
~1 ~1
Kpe, = Mc2 <C021 _M021Mc11 2 > —
242
w3 \/ @+ 200032 1
K = —1 M Co, +—51),
Pex 12 * 012 2 \"n o5,
2 2
K = M (Cun —M — e
Icy) 2 < 2 enMeyy w»%l) 7 > W, 012
32 -1 1
Icy 0 c2 < €2 (032 >

(4.50)
where @y, are the weighting parameters of the time-derivative of the position error
of the i-dynamics, @, are the weighting values of position error and s, are the
weighting of its integral. The weighting parameters of the additional control effort
for the i-dynamics are .

4.3.2 Application to the QuadRotor Helicopter

The control strategy used in this section is based on the idea presented in Fig. 4.1,
which is composed by an outer-inner control structure. The applied techniques
were designed to guide the vehicle in the presence of parametric and structural
uncertainties, as well as sustained disturbances, that may affect all the degrees of
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freedom of the helicopter.

—_—— —_—— e

4.0, I Undu’auual d Nonlinear #, Inner-Loop Controller I
4.0,

" A, 4.0 r ! | Quadrotor Helicopter - > Q.G
Trajectory  [—q Outer-Loop (Rl Control Passive Applied Force/Torques Underactuated » Q.. d
Generator A0 Yol Controler Acceleration Computing Computing | WCLh;K“‘I“:mem > q.d,

4.4,
L N I fea
| DE—

Figure 4.1: Nonlinear /7, control block diagram for the underactuated QuadRo-
tor helicopter with an outer-loop controller. (Thick and thin lines mean full and
partial data vectors, respectively. Dashed line means a single data)

The path to be followed in the R> Cartesian space is generated beforehand
by the Trajectory Generator block. To compute the reference trajectory, a vir-
tual reference vehicle, with the same QuadRotor mathematical model defined in
Section 2.5.1, is used. However, the trajectory is generated under the assumption
that there are no external disturbances affecting the system, and its attitude is in
steady-state. Firstly, considering that the vehicle is hovering, the desired altitude,
Zr, its time derivatives, Z,, and the desired thrust, 7}, are computed using the model
(2.61). These altitude references, jointly with the desired yaw angle, V., and its
time derivatives, /., are supplied by the Trajectory Generator block to the inner-
loop controller through a feedforward action. The yaw reference angle is defined
separately. In a second step, making use of the computed reference thrust, 7,, the
same block generates the xy reference trajectory, being these reference positions,
x, and y,, their speeds and the virtual control references, u,, and u,, (see definition
in Section 3.4.1.3), provided to the outer-loop controller.

Keeping in mind that the QuadRotor helicopter is an underactuated mechan-
ical system, the nonlinear .77, controller presented before is used in the inner-loop
control law. The synthesized controller considers the overall dynamic behavior
in order to control the helicopter attitude and altitude, where g, = [x y]' and
q.=[z ¢ 6 ] arethe uncontrolled and controlled generalized coordinates,
respectively. This fact implies that the translational and rotational motion control
are not considered separately, being that their coupling are not treated like ex-
ternal disturbances. Therefore, this approach has a clear advantage with respect
to the control strategies proposed in Chapter 3 and other ones presented in the
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literature (e.g. Bouabdallah and Siegwart (2007)). Besides, note that the chosen
controlled vector results in the case 1) where q, = q,. The force/torque vector
for the uncontrolled and controlled subsystems are defined by I', = [0 0]’ and
Fe=[T 1, 7o, Ty, respectively.

Thus, taking into account the partition of the underactuated system (4.1), the
QuadRotor dynamic equations (2.61) and (2.62) can be written in the following
form:

[ Mule) M) 1[0 ] [ Cula) Culard) ] Tau] [ Gule)]

Mcu(Q) Mcc(q) q. Ccu(an) Ccc(Qaq) d. G, (q)
| Tu+6,
| Te+6, |’
where
M mCyCO mSyCo
Ol m(CyS6So —SyCo) m(SySOSP +CwCo) |’

. —mS0 (D1><3
Ul mCeSe Oz |

[ m(CySOCH +SySp) m(SySOCH —CySo) }
M., = ’
(D3><1 ®3><1

M. [ mCOCY O3 ] ’

03«1  M(n)

Cuu = ®2><2 5 Cuc = (D2><4 ) Ccu = ®4><2 s
C. _ [ 0 O3 ]
“ <D3><1 C(nvn) ’

| —mgSe | mgCoCo
G“_[mgcequ ] ’Gc_[ 0351 ] ‘

As described above, the control law presented in this section also includes
the integral of both altitude and angular position errors in the state vector (see
equation (4.6)) in order to obtain null steady-state error in presence of sustained
disturbances. Moreover, the proposed generalization approach is implemented,
where the vector of controlled degrees of freedom, g, is divided in two dynam-
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ics, the altitude, g.; = z, and the Euler angles, g, = M. This is justified by the
rotational subsystem have a faster dynamic than the altitude one, which can be
appreciated by the magnitudes of the moment of inertia. The underactuated non-
linear ZZ, controller is split up into two parts:

1. First the controlled coordinate accelerations (4.48) required to track the de-
sired reference are computed using the nonlinear gain matrices Kp., Kp,
and Kj., given by (4.50). These matrices depend on the partitioned model
of the QuadRotor helicopter presented above;

2. In a second step, these values are considered to generate the forces and
torques applied to the QuadRotor helicopter, by substituting them in the
equation (4.21).

In the Outer-Loop Controller block, the integral predictive controller, presen-
ted in Section 3.4.2.2, is executed to determine the desired roll, ¢,, and pitch, 6,,
angles for the inner-loop controller. Thus, only the controller for the x and y mo-
tions is used (see equations (3.96) and (3.97)). This outer-loop controller provides
a smooth path tracking due to the fact that the MPC formulation allows the use of
previously known references for the control law calculation.

As the control input 7" is computed by the inner-loop controller, which has a
faster settling time than the outer one, for the outer-loop controller synthesis, this
control action is considered as a time variant parameter to the x and y motions in
(3.53). That is, between each outer-loop sampling time, the inner-loop controlled
variables are considered in steady-state.

Taking into account the cascade structure of this strategy and considering the
performance attained by the inner-loop controller, the QuadRotor helicopter is
assumed stabilized at the desired height. Therefore, for the design of the outer-
loop controller, the thrust, 7, and the Euler angles can be considered as time-
varying parameters, and in steady-state between two outer-loop sampling time.
Moreover, the attraction basin in the inner closed-loop is enlarged or reduced by
modifying the gains parameters. The estimated attraction basin can be augmented
by modifying the relation of gains between the inner-loop controller and outer-
loop one, which guarantees convergence.

Simulations have been performed in order to test the proposed control strategy
when the QuadRotor helicopter executes a path tracking. The performance obtai-
ned by this strategy have been checked considering the assumptions made in the
Simulation Protocol, in Section 3.2.
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The MPC parameters were adjusted with the same values used in Chapter 3,
while the nonlinear 7%, controller gains were tuned with the following values:
w1 = 0.8, | = 10, w31 = 15 and W, = 0.7, 1 = 0.1, Wy = 5, w3y = 9,
@,2 = 0.5 and y = 10. In addition, a simulation without considering the integral
term was performed in order to show the improvement obtained with this action
on both inner and outer-loop control. The simulation results are illustrated in Figs.
4.2t04.7.

3
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» ) | - - - Parameters —40% | |
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9 No Integral Action | §
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Figure 4.2: Path tracking.

These figures indicate an expected reference tracking performance even if
external disturbances, originated by aerodynamic forces and moments, are con-
sidered. These results illustrate the robust behavior provided by the outer-inner
control structure in the case of both parametric and structural uncertainty.

The smooth reference tracking provided by the MPC can be observed through
the time evolution of the translational position and its error showed in Figs. 4.3
and 4.4, respectively. This fact is clearly visible at the beginning of the trajectory
where the vehicle is far from the reference. This is due to the fact that the pre-
dictive controller considers the future reference in the computation of the control
signal so as to predict a path that would result in a softer displacement. Moreover,
the integral action features of the MPC controller can be easily observed in Fig.
4.4. This integral action makes it possible to obtain null error in the path tracking
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when sustained disturbances affect the xy motion of the helicopter.
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Figure 4.4: Position error (x,y,z).

An additional simulation considering the integral action weighting of the in-
ner and outer loop equal to zero is also plotted in the graphs. This simulation
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shows the deterioration in the tracking performance when this action is not taken
into account, since the inner and outer-loop controllers are not able to reject the

sustained disturbances acting on the helicopter.
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Figure 4.5: Orientation (¢, 0, y).
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Figs. 4.5 and 4.6 illustrate the Euler angles evolution. In these graphs the
Euler angles steady-state error can also be observed in the trajectory where the
integral action weighting is equal to zero. In this case, apart from the fact that the
inner loop loses performance, it is interesting to note that the outer-loop controller
tries to compensate for the lack of integral action by increasing ¢ and 6 reference
angles.
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Figure 4.7: Control actions (T, Ty, Tg, Ty).

In Fig. 4.7, the control actions computed by the proposed controllers to solve
the path tracking problem for the QuadRotor helicopter are presented.

These figures show that the control strategies present a robust path tracking
when parametric uncertainties and sustained disturbances are applied to the sys-
tem. In order to make a quantitative comparison of the results obtained by this
control strategy with the proposed one in Section 3.4.2.2, the Integral Square Er-
ror (ISE) performance indexes, presented in Table 4.1, have been computed again
from the simulation results showed in Figs. 4.2 to 4.6. Results obtained consid-
ering the QuadRotor helicopter model (2.61-2.62) with nominal parameters have
presented very similar ISE performance indexes. However, when an amount of
+40% in the uncertainty of parameters of the moment of inertia tensor and the
mass has been considered, a large improvement has been achieved with respect to
the variables controlled by the proposed nonlinear 22 controller in this section.
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This improvement, in the presence of parametric uncertainties, are due to the un-
deractuated nonlinear .7Z, robustness properties. It computes the applied control
inputs taking into account the non-controlled DOF, that is, the uncertainty on the
mass that affects the xy motion is also counterattacked by the inner-loop control-
ler. Meanwhile, with the controller proposed in the previous chapter, this effect is
only considered as an unknown external disturbance.

Table 4.1: ISE Index Performance Analysis.

(ISE Usntﬁtgsymbol] MPCxy-UACtNL % | MPC-NLZ.,
x [m? - 5] 12.8514 12.5464
y [m? - 5] 17.5974 18.3501
z [m? -5 13.4216 18.1153
o [rad?® 5] 4.8036 7.6366
0 [rad® -] 2.7511 5.4915
v [rad? - s] 4.8859 4.7319

As made in the chapter before, the Integral Absolute Derivative control signal
(IADU) index has been computed for all control signals in both control strategies.
As presented in Figs. 4.7 and 3.25, the difference between the control signals
generated by both controllers are practically unnoticed. However, through the
IADU index is possible to assess the improvement of the controller proposed in
this section, which provides smoothness to the path tracking through the control
signals. The results obtained from the simulation are presented in Table 4.2.

Table 4.2: IADU Index Performance Analysis.

Control Signals
[TADU Unit Symbol] MPCxy-UActNLJZ, | MPC-NLJZ,
T [N] 50.7787 40.2395
Tp, [N -m] 446.7466 463.0468
Tg, [N -m] 402.9134 431.3856
Ty, [N -m] 49.4207 56.9412

4.3.3 Other Applications

The nonlinear .7, controller for underactuated mechanical systems developed in
this section has also been applied to vehicles based on the inverted pendulum
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concept. This kind of vehicle is a typical case of underactuated mechanical sys-
tem, since it is usually composed by two degrees of freedom and only one control
input. Besides, the inverted pendulum on its many variations is one of the most
important benchmark in the automatic control area, which can be found through
the Furuta pendulum (Astrom and Furuta, 2000; Acosta et al., 2002), the pendu-
lum on a cart (Mazenc and Bowong, 2003; Gordillo and Aracil, 2008) and the
pendulum on a two-wheeled vehicle (Pathak et al., 2005; Madero et al., 2010).

Pendulum on a two-wheeled vehicle or two-wheeled self-balanced vehicles
have been made popular by the vehicle called Segway. Moreover, this kind of
system has attractive properties of interest for the academic field. Commercial
vehicles limit their workspace to a small area around the static upper vertical
position due to safety maneuver constraints. In order to maintain these features
even when the workspace is enlarged, robustness properties must be taken into
account at the control design stage.

As commented before, an inverted pendulum on a cart and a two-wheeled
self-balanced vehicle are used to corroborate the effectiveness of the proposed
controller. The difference between these inverted pendulum systems lies in the
fact that, in the first system, the pendulum goes freely around the pivot point,
whereas in the second one the axle of the motors is at the same time the pivot
point of the pendulum.

In what follows, simulation and experimental results are presented for these
two systems.

4.3.3.1 Inverted Pendulum on a Cart

The system considered in this section is modeled through the inverted pendu-
lum on a cart idea, that is, the pendulum is assumed goes freely around the pivot
point. The modeling has been performed focusing on the vehicle named as PPCar,
which stands for Personal Pendulum Car (Fiacchini et al., 2006). Basically, the
system consists of an inverted pendulum on a two-wheeled vehicle for human
transportation, where the pendulum is actually the person riding the vehicle. The
forward movement is caused by the rider’s inclination with respect to the equilib-
rium position. A scheme of the vehicle is depicted in Fig. 4.8.

A dynamic model of the system can be derived from Euler-Lagrange formula-
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Figure 4.8: Scheme of an inverted pendulum on a cart.

tion. For this particular system, the following nominal model has been considered:

wiemtey L8]t Lo 00 ][4

et R

where m and M are the masses of the cart and pendulum, respectively, [ is the
distance of the center of mass of the pendulum from the vehicle platform and g
is the gravity acceleration. The generalized coordinate vector is defined as g =
[x 6], where x is the displacement position and 0 is the pendulum angular
position. The control variable is the force, F, applied through the wheels. &, and
Op are the uncertainties of the system acting on x and 6, respectively.

(4.51)

Taking into account the partition for underactuated mechanical systems (4.1),
and by selecting the controlled degree of freedom as g. = 0 and the uncontrolled
one as g, = x, the relationship between the applied force, F, and the control ac-
celeration, 0, for the controlled degree of freedom on the actuated subsystem (in
the absence of disturbances), is obtained through (4.21) resulting in:

(M+m)l] . sin 2 (M+m)gsin(6)
cos(6) 6 —Misin(6)6 cos(0)

F = |Mlcos(6)— (4.52)

This expression relates the dynamics of the angular position of the pendulum
with the force applied to the cart. Although neither the variable x nor its derivat-
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ive appear in (4.52), it is important to keep in mind that, in this application, the
velocity of the vehicle, x(7), must be bounded. It means that the velocity must
be stabilized at an equilibrium point with null acceleration, i.e. X(f) = 0. This
equilibrium point will be given by the coupling between the dynamic of 6 and x
in closed-loop.

The model parameters, used in this work, has been taken from Fiacchini et al.
(2006), wherein these parameters were identified. Table 4.3 shows the nominal
parameters.

Table 4.3: PPCar model parameters.

Parameter Description Parameter  Value

Mass of the cart m 35 kg
Mass of the pendulum M 80 kg
Height of the center of mass [ 1 m
Gravity acceleration g 9.8 m/s?

Some simulation experiments on the PPCar model have been carried out to
evaluate the performance of the proposed controller. Besides, comparison results
with the nonlinear J#Z, controller developed in Siqueira et al. (2006) has also been
presented. These controllers will be referred in what follows as NL PID and NL
PD, respectively.

Simulation results have been obtained considering the reference angular pos-
ition 6, = 0°. The initial angular position of the vehicle is 6 = —10°, with null
initial angular speed and acceleration.

In order to check the performance of the controllers, an uncertainty in the para-
meter M has been considered simulating the conductor mass variation. A range
of the mass driver between 40kg and 120kg has been estimated. Additionally, in
order to introduce some disturbances to the system, a sudden variation in 6 of
15° is applied in the time interval of # = [10.10 10.15]s, as well as a persistent
external torque of —100Nm at r = 20s.

For the controller design a diagonal W'W weighting matrix has been con-
sidered, and the nonlinear .72%, gains (4.19) have been used to compute the desired
controlled degree of freedom acceleration (4.17). Table 4.4 shows the values for
the weights for the PPCar.

Fig. 4.9a and 4.9b present the simulation results obtained for different con-
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Table 4.4: Weights for the PPCar’s controller.

NLPD NLPID

Signal Weight
parameter
Speed error g, o)
Position error G, [0))
Error integral [ G,dt 3
Control effort u w,

0.5
1

0.012

0.5
1
1.5
0.012

ductor mass values, with the nonlinear JZ, controller proposed in this section
and when the parameter s is settled equal to zero. It can be observed that the
controller is robust against parametric variations, even when the integral action is
not considered. However, it can be seen that when the integral weight is settled
to zero, the controller is not able to reject persistent disturbance, since the angu-
lar position can not remain in the reference position. Besides the linear velocity
does not reach a constant value as it tends to infinity. Therefore, considering the
integral term in the error state vector, this control law rejects sustained disturb-
ances applied to the system, keeping the position error null at steady-state, and

maintaining the velocity of the cart bounded.
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(a) Angular position of the PPCar.
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Figure 4.9: Simulation results with the underactuated nonlinear .77, controller

applied to the PPCar.
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4.3.3.2 Two-Wheeled Self-Balanced Vehicle

In this section, the preceding nonlinear .72, controller, designed for the reduced
underactuated mechanical system, is applied to a real two-wheeled self-balanced
vehicle in order to achieve robustness in presence of sustained disturbances and
unmodeled dynamics. As discussed previously, the main difference between the
inverted pendulum on a cart used in the above section and the vehicle used here is
due to the coupling of the pendulum and the base of the vehicle. In this case, the
pendulum is fixed rigidly to the axle of the motors, presenting an input coupling.
Thus, the external torque applied by the motors produces effects of the same value
on wheels and pendulum but with opposite direction.

The system constituted by the vehicle consists of two parts or subsystems. On
the one hand, the two motors, the electronic control devices and other auxiliary
devices are fixed to the frame to compose the pendulum. On the other hand, the
wheels are fixed to the axle of the motors, constituting the second subsystem.
Fig. 4.10b shows a schematic diagram of the vehicle and gives an outline of the
hardware. The vehicle is composed of an aluminum framework with an inverted
T-shape, with two motors fixed on its lower section, which axles are at the same
time the ones for the two wheels. Two boxes are shown, where the electronics and
sensors needed to implement the control of the system (microcontroller board,
motor controller, wireless transmitter, batteries and Inertial Measurement Unit
(IMU)) are placed to be properly protected. The vehicle is illustrated in Fig. 4.10a.

(a) General view of the (b) Diagram of the two-wheeled vehicle.
vehicle.

Figure 4.10: Two-wheeled self-balanced vehicle description.

From Fig. 4.10b the following system variables can be defined: 6, the inclin-
ation angle or deviation between the pendulum and vertical line; 6, the angular
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rate of the pendulum; ¢, the angular position of the axle of the motors; ¢, the
respective angular rate; and 7, the torque applied by the motors. Accordingly, the
controlled and uncontrolled degrees of freedom are chosen as g, = 6 and g, = .

In order to simplify the model of the vehicle, it can be assumed the mass of
the entire pendulum set (frame, motors and other elements) to be a punctual mass
located on the center of mass of the physical pendulum. Thus, the pendulum has a
mass m separated by a distance / from the axle, where there are two wheels fixed
with radius » and mass M, .

By using the Lagrangian of the dynamical system and the Euler-Lagrange ap-
proach for non-conservative forces, the equations of motion for the system can be
written in the underactuated mechanical system representation under input coup-
ling (4.1) as follows (Madero et al., 2010):

(M, +m)r?+1, mlrcos® () . 0 —mlr@sin® (0]
mlrcos 0 mi*>+1, 6 0 0 6

L matana | = o[ 2 ]3]

where g is the gravity acceleration, k is a constant that represents the static fric-
tion of the motor and I, and I, are the inertia of the pendulum and the wheel,
respectively. Note that, in comparison with the model (4.1), a vector including the
friction forces has also been considered. The design of the control law is based
on the model of the vehicle (4.53), whose parameters have been experimentally
identified. The main parameters that characterize the model are listed in Table
4.5.

(4.53)

Table 4.5: Two-wheeled self-balanced vehicle model parameters.

Parameter Description Parameter Value

Mass of the pendulum m 3.75kg

Mass of the two wheels M, 2.75kg
Height of the center of gravity l 0.1435m

r 0.25 m
Inertia of the pendulum 1, 0.201 kg - m?
Inertia of the wheel I, 0.0421 kg - m?
k 0.00215 N-m/rad/s

Radius of the wheels

Static friction constant of the motor
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Therefore, by using the control acceleration (4.17) with the applied torque
(4.22) and considering the friction forces, the following control law is obtained:

T=B,'(q) [Ms(9)0 +Cs(q,4)0 +E,(q,4) 9+ Go(q) +Ko(q.4)] .

where:
mlrcos @ m212r% cos? 0
B =—(1l4+— M =mlPP+Ilp— ——
o) =04 Gprmy s, Mol@ =miHlp =S,
) m21%2r2 cos Osin 60 .
Co(q.9) = , Eo(q,4)=0,

(M, +m)r? +1,

mlrcos @
Go(q) mglsin @, 0(4:9) < (M, +m)r? +Ir> ¢

The designed control law has been implemented on an embedded microcon-
troller board. This board is based on a ATmegal28 microcontroller (8-bit AVR
microcontroller with 128Kb in-system programmable flash and up to 16 Mhz in-
ternal clock). The torque calculated by the control law is applied to the motors by
using two Maxon EPOS24/5 motor controller boards. Each board receives the cur-
rent value through a serial connection, and applies it to the corresponding motor.
This motor controller boards can be driven up to 120Watts. The vehicle uses two
Maxon RE30, 60W brushed motors, with a nominal voltage of 12V. These mo-
tors are equipped with encoder and planetary gearhead (reduction of 66:1), which
allows the set to provide a torque up to 4Nm. The angle of inclination and the an-
gular rate of the vehicle are obtained using the 3DM-GX1 IMU from MicroStrain.
Electronics and auxiliary elements for the vehicle are located near the axle and in
a way that the effective center of mass is lowered. During the experiments, all the
data can be reported to a PC via a bluetooth-serial connection.

Two experiments have been carried out to evaluate the performance of the
designed controller. The values of the nonlinear .77, weights, defined in (4.18),
for the two-wheeled self-balanced vehicle have been adjusted as follows:

o =25, =15, w3=180, w,=1.05.

The first experimental result has been obtained with the two-wheeled vehicle
at an initial condition of the inclination angle 6 ~ —25°, as shown in Fig. 4.11a.
This figure illustrates that the vehicle is quickly stabilized by the proposed con-
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troller around the upper vertical position. It can be observed in Fig. 4.11a small
oscillations around the equilibrium point, which is caused by the noise that affects
the measures obtained from IMU.

6 [rad/s]

8 9 10
time [s] time [s]

(a) Two-wheeled vehicle angular position, 6, (b) Motors axle angular rate, ¢, and the applied
and angular rate, 6. torque, 7.

Figure 4.11: First experimental results with the two-wheeled self-balanced
vehicle.

In a second experiment, the vehicle has been subjected to heavier conditions
to corroborate the robustness of the controller when it is under the influence of ex-
ternal disturbances. Furthermore, the vehicle has been initialized at the horizontal
position, which verifies the good features of the nonlinear controller to deal with
angular positions far away from the upper vertical position.

The obtained experimental results are presented in Figs. 4.12. As shown in
Fig. 4.12a, through the angular position graph, the nonlinear %, controller is
able to drive the two-wheeled vehicle from an initial condition about ~ —80° to
the upper vertical position with a small response time and maintain it stabilized
around the operating point. Moreover, it can be observed that the controller is able
to reject external disturbances applied to the system, keeping the angular position
and the angular rate around zero at steady-state.

Fig. 4.12b shows the temporal response of the motors axle angular rate, @,
and the applied torque, T. As can be observed in that angular rate graph, the
velocity of the motors tends to a constant value because the controller does not
consider this state as a controlled variable. However, due to the integral action, it
is possible to keep the angular rate of the motors axle constant and bounded. This
behavior can be interpreted as a disturbance caused by the driver, in the case of the
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(a) Two-wheeled vehicle angular position, 6, (b) Motors axle angular rate, ¢, and the applied
and angular rate, 9. torque, T.

Figure 4.12: Second experimental results with the two-wheeled self-balanced
vehicle.

Segway, to move forward/backward with constant speed. It can also be observed
in Fig. 4.12b the smooth input control signal, T, generated by the nonlinear 77,
controller.

4.4 Underactuated Nonlinear .74, Control of the Entire
System

This section deals with the design of a nonlinear .7, controller for a class of un-
deractuated mechanical systems with input coupling. The main difference between
this controller and the proposed in the previous section remains on the presence of
the time-derivative of the remaining degrees of freedom position in the error state
vector (see (4.9)).

As commented at the beginning of the chapter, the control objective in this sec-
tion is to regulate the controlled degrees of freedom at a desired operating point,
while the remaining ones are driven to steady state, i.e., the non-controlled DOF
are maintained stabilized (static equilibrium), or at least their velocities (mechan-
ical equilibrium). Thus, the proposed controller considers the whole dynamic of
the system into its structure, which ensures that the whole dynamic of the system
is stable in closed-loop, avoiding the use of cascade strategies, an augmented state
space nor the necessity that the remaining DOF must be stable. Furthermore, this
control law allows to achieve robustness in presence of sustained disturbances,



4.4 Underactuated Nonlinear .77, Control of the Entire System 159

unmodeled dynamics, and parametric and structural uncertainties acting on the
whole system.

This controller is obtained taking into account the diagonalization of the iner-
tia matrix allowing, as presented in Section 4.3.1, a flexibility to weigh different
dynamics of the system. The controller developed in this section constitutes one
of the main contributions of this thesis.

To design the nonlinear %, controller, the normalized system (4.8) is con-
sidered. As performed in others control design procedures presented in this thesis,
in a previous step, the following state transformation is used:

21 Ty 0 0 0 éu
lz | _4p . | O Txn Ty Ty 4.
z= s |~ Tox= 0 0 1 1 i , (4.54)
24 0 O O 1 J q.dt

with T1; = p1 and T, = v1, where p and v are positive scalars. Note that this
state transformation is a particular case of the one showed in Section 4.3.1, where
T3 and Ts are disregarded. This is due to the control constraints found when
the whole underactuated system is controlled by a centralized controller, i.e., only
m degrees of freedom can be regulated at an operation point, while the remaining
one can only be stabilized.

Apart from this state-space transformation, to minimize the necessary forces
and torques for the worst case of all possible disturbances acting on the system,
the following change of variables over the control action and disturbances is con-
sidered:

<1

utd=|[M C| 2|, (4.55)
21
(43

which, in an expanded form, is given by:
21
[ ug +dgy :| _ [ Mg, O Cu Cg 22
Urc +dre O M, C. C. 21
22

MsuTllau JrCsuTllau +Csec (TZZéc + T23éc +T24 sz:)
)

M, (Tzzfic + T237]c + T24qc) +CnT léu +Cre (T22éc + T23éc +T24 IQC)
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It can also be written in terms of the error vector and its derivative:
u+d=M(q)Tx+C(q,q9)Tx, (4.56)
where matrix T can be partitioned as follows:

T, 0 O O

T —
O Ty Ty Ty

(4.57)

and

u+d=Ty(q) (u+d). (4.58)

Equation (4.56) can be expressed in the state space form, which includes ref-
erence trajectories, forces and torques affecting kinetic energy and the state-space
transformation (4.54):

$= F(x,quot) +8(%, 4, 1B+ k(x,q,,1)d (4.59)
f(x7 qu) =
~M/Cyy —M,/Cs. 0 ()
7-1| M Cru —M;CIIC,C o 0 Tox
o ()] T;2 1- ng Tr; -1+ T£2 (T23 — T24) ’

()] ()] 1 -1

M, ©
_ 0O M
g(xﬂqwt):k(xvqu?t):Tol 0 q;c >

0] ()

which represents the dynamic equation of the system error.

As performed in the controller designed before, by comparing equations (4.10)
and (4.59), the transformed external disturbance vector d and the control input %
are obtained as follows:

5, (4.60)
), (4.61)

&.\
E\

=M(q)T.M '(q)
=T.(—F(x)+T
where:

. T11 ()
Tc—[ o Tn)
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and:

F(xe,) = Msu(9)§y, +Csu(q,9)4u, + Gsu(q)

+Csc(9.4) (Gc+ e, — T1; T22G.— T1{ T23d. — T1, T24 [ .) ,

F (xer) = Mrc(q) (40, - ngl T23ac - ngl T24qc) + Grc(Q)
+Cru(q7q) (Qu + qu, - T2_21 Tlléu)

+Crc (qaq) (Qr:, - T;zl T23qc - T;zl T24 IQC) .

Note that from the definition of matrix T, and since M is a block diagonal
matrix, both velocities of the non-controlled and controlled DOF can be weighted
independently, which is an important improvement of this control design when
compared to similar approaches found in the literature (Siqueira and Terra, 2004b;
Ortega et al., 2005). As mentioned before, the more dynamics are considered
different, the more weighting blocks of the diagonal matrix T, form.

The relationship between the transformed force/torque vector, I, and the ad-
ditional control effort, u, is given by equation (4.61). Then, by isolating T, the
following transformed control law is obtained:

T'=M(q)§+C(q.9)q+G(q)—T.' (M(q)Tx+C(q,q)Tx)+ T 'u, (4.62)

which is arranged in terms of the error vector and its time derivative.

As in the nonlinear 772, controller presented in Section 3.3.2, this control law
can also be divided into three different parts, presenting the same configuration
discussed previously.

Consider the nonlinear equation (4.59) and the following cost variable:

E=w [ h(x) ] , (4.63)

u

where, in this case, h(x) € R™ 3" represents a function of the vector of the states
to be controlled and stabilized, W € Rretmtn)xGnetntn) is g weighting matrix,
and u is the control signal without the transformation T . In this case, the nonli-
near 7%, control problem for the entire underactuated mechanical system can be
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posed as follows:

Theorem 4.4.1. Find the smallest value yv* > 0 such that for any y > y* exists an
additional control effort u = u(x,q,,t), such that the 25 gain from the disturbance
signals d to the cost variable § = W [/ (x) w']' is less than or equal to a given
attenuation level vy, that is:

T T
| 1glar <7 [ dipe (4.64
0 0

This theorem is quite similar to the one presented in Section 3.3.1.3 (see The-
orem 3.3.1). The additional control effort, u = u(x,q,,t), also depends on the
non-controlled generalized coordinates, and not only on the error vector x.

From the symmetric positive definite matrix W'W defined as in (3.25), and the
definition of the error vector, x, matrices Q € R(ut3nexmt3ne) g = R (nt3nexn)
and R € R are structured as follows:

01 Q12 Q13 Qus S11 Si2
O O 03 0o S— $21 S22 R:[ u (D]
Qi3 Q3 03 Q34 |’ S31 83 |’ O R |’
Qs O Q34 04 S Sa

where R, € R™*™ and R, € R"*". Note that R is chosen as a block diag-
onal matrix, which will allow to weight separately the control effort in both non-
controlled and controlled DOF.

As stated before, the solution of the optimization problem depends on the
choice of the cost variable, §, and particularly on the selection of function /(x). In
the same way that the previous nonlinear .77, controllers designed in this thesis,
in this section, the function h(x) is taken to be equal to the error vector, that
is, h(x) = x. Thus, taking into account the cost variable (4.63) and from the
associated performance index (3.26), shown again for the sake of clarity:

1 1 1 x
L= e- 371 = 3w = ]

2
— 7 |d|3,
, 2

the Hamiltonian of optimization is defined as follows:

OV (x,qust) IV (¥, qus1) APTAS
H = -— Ly. (4.
Y (xv qwuvd’ ax ’ aqu 7t ax X+ aququ + Y ( 65)

Therefore, the nonlinear .7Z%, problem admits a solution if there exists a value
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function V (x,g,,,t),with xo = 0 and V(xo,q,,,t) = 0 for t > 0, that satisfies the
following HJBI equation:

al = —m InlIl alv av
or T maxmin{ o Xt o dut

/
=~ mgxmin (‘;X<f<x,q,,,r>+g<x,qu,r>u+k<x,qu,r>d>

8’ 1,
a—qu - fyzd 1)+ x 'Ox +x'Su(x,t) + 3 u(t) Ru(t)>
. [V
= _m‘?'xmuln ox (f(xaqwt)+g(x7qu>t)TMu+k(x>quat)TMd)
8’ 1
8 qu— fyzd 1)+ x 'Ox +x'Su(x,t) + 3 u(t) Ru(t)

(4.66)

Under these assumptions, the solution of the nonlinear state feedback 77
problem for underactuated systems can be reformulated following the same steps
presented in Section 3.3.1.3, where:

d’ J
u*(t) = argmin <mjlx < V(x,qu,t)x+ V(x.qut) q, +Ly>> ,
u

ox aq,
fo - (V(x,q,1) . IV(X.q,1).
d (t)= argmax <mum ( e X+ 94, q,+Ly) |,

which results for the particular case, where the performance index presents a
square functional dependence in «, in an explicit solution for the min-max prob-
lem as in (3.31) and (3.32). Thus, the worst-case of the admissible disturbances
and the optimal state feedback control law are computed as follows:

* _ i / /al
d (x)quat) - ,yz TMk(xat) ox’ (467)
u(x,q,,t)=—-R"! (x’S+ T}ug’(x,t)?;) : (4.68)

By replacing equations (4.67) and (4.68) in (4.60), the following HJ equation
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is obtained:

v Vv AV . 1aV 1 o
W"‘gf(x?quvt)"‘aiququ‘f’ig |:,y2k(x7qu?t)TMTMk (x7qu7t)

v d'V _
_g(x7Quat)TMRIT;llg,(x’quvt):| Tx - Txg(x’quvt)TMR lslx

—i—%x’ (Q—SR'S)x=0,

(4.69)
for each ¥ > \/Omax (R) > 0, where Oyax stands for the maximum singular value.
Then, the computation of the control effort, #, will require to find the solution,
V(x,q,,t), to the HJ equation (4.69). Through the following theorem, a solution
is proposed:

Theorem 4.4.2. Let V(x,q,,t) be the parameterized scalar function:

M, M, () ()

M., M. 0 0
() () Y X-Y
() 0O X-Y Z+Y

1
V(x,q,.1t) = Ex’T o Tox, (4.70)

where My, Mo, Mo, and M .. form the inertia matrix of the system, and X, Y and
Z € R"*" qre constant and symmetric matrices. Besides, Y > QO and Z+Y > O
such that Z— XY 'X +2X > 0. T, is defined in (4.54) and T is the matrix
appearing in (4.62). If these matrices verify the following equation:

0 O 0 0
O O Y X 1 / / ''p—1 (¢! _
0O Y 2X Zi2X +Q+?TT—(S +T)R ' (S'+T)=0,

O X Z+2X ()
4.71)
then, function V(x,q,,t) constitutes a solution to the HJ equation (4.69), for a
sufficiently high value of 7.

Proof:

Firstly, it is necessary to show that the scalar function V (x,q,,t) is positive
definite. Thus, under the assumption that ¥ > O and Z+Y > O and through the



4.4 Underactuated Nonlinear .77, Control of the Entire System 165

Schur complement of Y, the following inequality is checked:
Z+Y-X-Y)Y '(X-Y)>0

Z-XY 'X+2X>0.
And since the inertia matrix:

Muu(q) Muc(q)

MD=| Me(q) Meclq) |

is symmetric positive definite, the theorem assumption is verified, i.e.:

) 0
M(q) 0 0

0 O Yy X-Y
O 0 X-Y Z+Y

>0.

Next, the hypothesis that the scalar function V (x,q,,¢) constitutes a solution
of Hamilton-Jacobi equation is proven. First, to verify that V(x,q,,t) is a function
of x, q,,, and ¢, M(q) must also be function of them. Thus, the inertia matrix can
be written as follows:

M(q) :M(qcaqu) :M(qc+qc,(t)7qu) :M(xvqwt)a

which is a function of the error vector, x, the uncontrolled degrees of freedom po-
sition, g,,, considered as a time varying parameter, and time, 7. The time derivative
of the inertia matrix is given by:

dM(q) _ dM(q.+4.,(1).94)
dt dt
. d'M(q)., < IM(q), | w d'M(q),
= + + ,
kgl aq(:k qck kgl aqclrc qc",c kgl aquk quk

and, as g, (t) is only a function of time, the partial derivative of M(q) with respect
to ¢ is obtained as follows:

IM(q) IM(x,q,t) <~ I'M(q),

o ot :Z

Therefore, disregarding the functional dependence, partial derivatives of V are
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solved separately in what follows, in order to verify that V is a solution to the HJ
equation (4.69).

e The partial derivative of V (x,q,,1) with respect to time is:

r oM (D) 0]
av 1., dt 0 O
%~ 27Teloo o o |7
00 O O
(4.72)
I )n: o'M () ()
_ lx’T’ k=109 et () () T x
2°7°1 O 0] (] ()] ¢
L O 0 (] ()]

e The gradient of V (x,q,,¢) with respect to the error vector, x, is given by:

0 ()
'V , M () 0
— = XT T
ax °l0 0 Y X-Y °
O O X-Y Z+Y
(4.73)
0 )
+lx’T’a—/ " 0 0 To,x
27 T %9x O 0O Y X-Y o
O O X-Y Z+Y
where: o'w dw dw dw Idw o'w
(227227 77 ) i 474
= G anaaars) ~ (00 500) @

with the zero matrices, O, in the last expression, of dimension n, + 3n, X n, + 3n..
Then, the unique term that is needed to be computed is:

IM O O M O O
dw || dg, © O 93, O O
dg. ||o0o ©0 O | ’|l0O0O O O
OO0 O O OO0 O O
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Thus, the equation (4.73) can be written as follows:

(] 0
M
o'V . (0] 0] 1
ax _xTo (D (D Y X_Y To+§[®1><nu,(D1><nc,g7®1><nc] 5
O O X-Y Z+Y
4.75)
where Q € R1¥7e; 5
w
Q :x'T; aqc T,,x.

Therefore, multiplying (4.75) by x given by (4.59) results in:

v,
ox~
()

0
0 0
. /!
=|*Telo 0 v x_v
O 0 X-Y Z+Y

M 1
TO + E [(Dlxnua (D1><nca Q:®l><nc] X

!/

— %::(ergqukd)

a'v a'v -
= — u+kd) .
Jx o (s kd)
(4.76)
Moreover, it is easy to verify that:
[©1x1,> O @011, ] - (g4 kd) =0,
and consequently, the second part of (4.76) is given by:
av, =
M () 0 M,/ (D1
() () 0O M, -
Y . -1 rc =
Tyl o 0 v xov | Tl o ¢ |(@+d)

0O O X-Y Z+Y () (0]
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TS
!
=*Tolo 0 ¥ x-¥ 8 8 Ty (utd)
0 0 Xx-Y z+y | L |
y g 8 el 4.77)
R .0
=Tolo 0 v x-v 8 8 (u+d)
0 0 X-Y z+y | * -
=xXT'u+xT'd,
with T defined in (4.57).

The first part of (4.76) is computed as follows:

'V
8xf_

() ()
() ()
0O 0O Y X-Y
0O O X-Y Z+Y

M 1
= xlT; To"‘i[@lxnu;(D1><ncaga®1><nc] f

M 0 0
=xT 0 o T,x
°l 0O 0O Y X-Y ¢
O O X-Y Z+Y
_ 0 0
T ! e 0 0 T, x
° | © T, 1-T,Tys —1+T,) (Tez3—T) °
O O 1 -1

+ [®1><nu; ®1><}’lc7g’®l><nc:|‘f

N =
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u 0 0
=xT 0 © X
°'0O 0O Y X-Y
| O O X-Y Z+Y
i () )
_ag—1
M 'C o o o
O T,) 1-T, Ty —1+T,)(Tazs—T2) °
O O 1 |

1 _
+§ [O1xn, O1xns Q,01xn.] f+[O1xnys O1xcn,, ,01xn,] - (gﬁ+kd>

(o) ()
-Cc
(o) (o)
= XT! _ _ _ T
R ) YT,, YTy Ty +X YT, (To3 —Tas) — X oX

_ X+2Z —X(1+T5, (Taa+T23))
_ 1 2\ 124 23
L 0 (X-T)Ty ~(X-Y)T5 T2 YTy (Toa+T23)~Z

1
+§ [®1><n,,) (D1><ncv Q>(Dl><nc] X

Using the property 3 presented in Section 2.4, the last expression can be writ-

ten as follows:

1. 0 )
M) 0 0
'V
f =4T o yru YT, T .. Tox

ox 2 YT, T +X YT,, (Ty3 —T2)—-X
. X+Z ~X(1+Tp; (T24+T23))

0O (X-Y)T,) a )
L ( T _(X_Y)TZ;TZS +YT221(T24+T23)—Z

1
+§ [(Dlxnua (Dlxn(,, Qa®1><nc} ‘X,

(4.78)
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with:

qu
1 1 g
5 [®1><I’lu7 ®1><nr7 anlxn(] X = 5 [(Dlxn,,a (D1><nca Qa(Dlxnc] . Zi
q.

¥ M a0 OO

Clas 1 | iZ1dg, R )
74 =5xTo | 0 o o |T*

() 0 0 (D)

e The gradient of V(x,q,,t) with respect to the non-controlled DOF, gq,, is

given by:

n o'M (D) ()]
a'v R S = dq,. O ()

9. 2Telo o o o |T*
0 O 0 O

which gives:
n o'M ] ()] ()
'V 1 - ,El 04 U ()] () T

9, = 2""lo o o o |"°"

0 0 0O O

(4.79)
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Therefore, the time derivative of equation V (x, g,,?) is obtained as follows:

av. d'v._ IV,

V = —4—x+-—
o1 + axX+ aququ
% 8’Mq O O
1, E19ga"% O O
= —XT e Tox+xXT'u+x'T
2T, | & 0 © o]Toxt¥Tu+x d
() () O O
1 0 °
7§(M7,/V) o o
T, | o YT,, ~YT;, Ty +X YT, (T23—Tas)—X Tox
- X+Z ~X(L+T5) (Taa+Ta3))
0 (X-Y)T,, —(X—Y)T T +YT;2‘(T2§4+2;"23)*23Z J
1, a/M( ) ()] ()]
—i—lx/T/ k=104, e 0 o0 Tox
¥ 1ol o ) 0O 0|°°
() () O O
ny a/M ® ®
—1-1 I kzlaqu"quk © 0 T
*elo o o0 o |TF
() () O O
M O O
= x’T’u—I—x’T’d—l—lxlT' 00 Tox
2”"°lo 00 O]°
O OO O
1 0 °
7§(M7¢/V) 0 0}
Tl o yr,) YTHTu+X YT (Ty—Ta)-X | T*
B X+Z —X(M+T5)(Toga+T23))
I O X-Y)Ty —(X-Y)Ty T2 +YT;;(T2§4+2;23)3} i
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V = XT'u+xXTd

| o) (o)

N

2 0 0

X'T, _ _ _ Tox.
T | o YT, ~YT;, Ty +X YT5) (To3—Ta)—X 0
_ X+2Z —X(1+T5, (T24+T23))
0 (X-Y)T,} _ S22
L ( T —(X—Y)Ty, T3 +YTy (Toa+T23)—-Z |

Taking into account that matrix .4 is skew-symmetric and due to the particu-
lar structure of T, the following equality is verified:

/! -
xT, O 0 O O T,x=0.
0 0O O O

Thus, substituting this expression in the preceding equation yields to:

V =xXT'u+xT'd

0 (0 0 0
0 0 0 0
Tl o yry ~YTyTo+X YTy (T ~Ta)-X | 7%
B X+2Z ~X(L+T5) (Taa+T23))
0O X-Y)T, —(X—Y)Tp T3 +YT2*2'(T2§4+T23)*Z J
0O O () ()
=XT'u+xT'd+x 8 ? 2 8 *
O X 2X+Z O
| O 0 O O O 0 0O O
! 1! / 0O O (0} ] 60 0 v X
=xTu+txTd+-x| |5 y x o|" |0 o x 2x+z ||*
O X 2X+Z O © 00 O
O 0 O 0
1,0 0 Y X
= /T’ ,T/d 7/ :
xXT'u+x +2x O Y 2X 2X+Z o
0O X 2X+Z ()

(4.80)
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By replacing the gradient of V with respect to x into (4.67) and (4.68), the
worst-case of the admissible disturbances d*, and the optimal control effort u* to
the candidate value function are obtained as follows:

1
d*=—Tx, (4.81)

I}/Z
uw'=—R"'(§+T)x, (4.82)

which are substituted into (4.80):

0O O () ()
. 1 1,/]0 O© Y X
_ _Jdprp—l (¢t L L
V=-—xTR'(S +T)x+y2xTTx+2x O v 22X 2x.zl|*
0O X 2X+Z ()
(4.83)
Applying u* and d” to the associated performance index (3.26) gives:
1 1
L,= Ex’ (Q—SRIS’+T’R1T— YZT’T> x. (4.84)

Thus, the HJ equation (4.69) is satisfied for u = u* and d = d” if:

aa‘;JrHy <x’qu7u*’d*’ 3V(;c;qu),8v(;:mt)yt> _

= P nt)y VOl g,
00 O 0

_ 1y 8;‘3 2’; zfzx ~|—Q+;2T’T—(S’+T)/R‘1(S’+T)x
0O X Z+2X O

- 0.

Thus, V (x,q,,t) is a solution to the Hamilton-Jacobi equation (4.69) for u =
u* and d = d*, which proves Theorem 4.4.2.
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The algorithm to obtain the matrix T is the following:

1. Compute Ty, T3 and T 4 by solving the following Riccati algebraic equa-
tions:

1 _ —
0+ ?T’“T“ — (St +Tu) R, (S +T11) —Si2R. 'S}, = 0,

(4.85)
1 _ _
0+ ?leszz — (S +T2) R." (Sy+T2) —SaR,'Sy =0,
(4.86)
1 / / .| ! —lg/
Q4 + ?T24T24 — (S42 + T24) Rc (S42 + T24) - S41Ru S4l =0.
4.87)

2. Compute matrix X through the following equation:

1 _ _
X+ Qo4+ WT/22T24 — (S5 +T22) R; ' (Shy +T24) — S21R, 'S4 = O.
(4.88)

3. Compute T»3 by solving the following Riccati algebraic equation:

1 _ _
2X + Q3 + ?T,23T23 — (S%z + T23)/Rc ! (Sg2 + T23) — S31Ru 1S§1 =0.
(4.89)

Once matrix T is computed and from the optimal state feedback control law
(4.82), additional control effort u* corresponding to the 7% optimal index 7 is
given by

w=-TyR'(S+T)x. (4.90)

Finally, if the additional control effort (4.90) is replaced into (4.56) under the
assumption that d = 0, and after some manipulations, the control acceleration can
be obtained as follows:

qzzz"—KDa—qu—KI/zzdt, 4.91)
with

_ | Kp,, Kb, _ | O Kp, _ | O Ky,
KD_[KDm KD,J’ KP_[‘D KP,J’ KI_[ ]
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Kp, = T Mg (CaTi1+R,'(S)y+T1)—MucM/R,'S),) .

Kp, = T M,/ (CscTon+R,'Sy —Mu MR (S +T2)) ,

K = T7IM_ ' (CseT»s+R;'Sy — M, MR (S +T

P, — 11 su( sel'23 + K, 331 ucee Re ( 32+ 23))7
_ —lag—1 “1¢ —1p—1/¢

Ky, = T My (CscTau+R,'Sy —MucM /R, (Siy+Ta4)) ,

Kp,, = TpM,!' (CnTn+R;'S);—MuM, R, (S)+Tn)),

Kp, = TyM,! (CreTn+R, (Sy+T2n)—MuMy R, 'Sy ) +T5Ta,
_ —1ag-1 —1 g . —lp-l¢/ -1

KPrc - T22Mrc (C"CT23+RL' (S32+T23) MCMMuuRu S31)+T22T24’

Ki,, = TyM.' (CrcToa+R; (Siy+T2)— MM R,'Sy) .
(4.92)
As in the nonlinear .77, controllers discussed along the thesis, a particular case
can also be obtained when the elements of the weighting compound W'W verify:

@l 0 O O )
0 w1 0 0 |
(0] 0O w1 O |'°

0O 0 0 ol

0

0O O

Q= 0O O
0O O

In this case, matrices T 11, T93, T3 and T4 can be defined as follows:
Ty=pl, Typ=vl, Trp=ul, Ty=AIL,

where p, v, i and A can be computed, using the Riccati’s equations presented
before, as follows:

1. Compute p, v and A with equations (4.85), (4.86) and (4.87), respectively:

YWysW1g
p - ')/2 — a)2 )
us
Vv YDy W1
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YWy W3¢

2. Compute X using (4.88):
1 1
x-p(L-1).
,y leC

3. Compute u with (4.89):

Therefore, the analytical equations (4.92) for the gain matrices can be ex-
pressed for the particular case as follows:

1
KD:M = Ms_ul (Csu + 0)2]]-> )

us

/a2 2
Kp, = My (Coc MM} L ) Luctlc VI~
Dsc su sc uc™ cc )
2 /22 2
;e Y — @, Wy W15

2
Wyc/ 05, +20 2 2
Ko — M (Co gt L) DV O IOy —
Psc — u sc uc cc 2 9
@ V YZ - wgc Wus W15
_ -1 -1 1 Wy D3¢ V ’}/2 - wz%s
K; = M Cse—M,:M
sc u cc 2 ) ) ?
Wy Y — @, Wy W15
1 W,y 01 72— w2,
Kp,, = M,'|(Cnu—M.M,, ) St ue
c ru cu ’
" * wl%s \V '}’2 — (J)L%S @y W1
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\/ 03+ 201005 |
KP" . 2 CM_1 <Crc+2]]-> + 6030]1,

rc
[O)P @1

uc

K, = Mr_cl <Crc+ 1211> wkﬂy
W lc
where w;; and @, are the weighting parameters of the time-derivative of the
position error of the non-controlled and controlled DOF, respectively; @,. and
s, are the weighting values of position error and its integral of the controlled
DOF, respectively; and the weighting of the additional control effort for the non-
controlled and controlled degrees of freedom are w,; and w,,.

Equation (4.91) gives the necessary acceleration of the DOF to track the ref-
erence trajectory. Therefore, the transformed forces/torques for the underactuated
mechanical system with input coupling can be computed substituting this control
acceleration in (4.7).

4.4.1 Application to the QuadRotor Helicopter

As stated at the introduction of this chapter, the objective of this section is to
synthesize a controller to perform path tracking for the QuadRotor helicopter
without the necessity of dealing with an augmented state-space, nor any cas-
cade control strategy. Therefore, the desired controlled outputs are chosen as
q. =y x y ZJ, while the remaining DOF are q, = [¢ 0]. However, as
demonstrated in Mistler et al. (2001), the helicopter dynamic model given by the
translational subsystem (2.61) and the rotational one (2.62) is not static feedback
exact linearizable. Thus, to overcome that, a change on the mechanical structure
of the QuadRotor helicopter is proposed. It is interesting to note that this mech-
anical change affect only the model used to design the controller, which is robust
enough to deal with this uncertainty with respect to the model of the QuadRotor
(2.57) used to emulate it. The mechanical change consists in tilting the rotors
toward the origin of the body-fixed frame of a certain angle o, which makes it
possible to choose the x and y positions like the controlled variables. This tilt, pro-
posed in this section, provides a certain coupling between longitudinal and lateral
motions with the roll and pitch movements, yielding the input coupling submat-
rix B.(gq) become a column full rank matrix. Thus, the proposed nonlinear /7,
controller, for the entire underactuated mechanical systems with input coupling,
can be synthesized to solve the path tracking problem of this modified QuadRotor
helicopter.
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(a) General view. (b) Lateral view.

Figure 4.13: QuadRotor helicopter scheme.

Fig. 4.13 illustrates the four propellers tilted toward the origin of the body-
fixed frame of the same angle ay. Therefore, the components of the propeller
forces projected on Xp and ¥, and the applied thrust, 7', (i.e. the propeller forces
projected on Zp) are given by:

o sin(ar) (f3— f1) sin(orr)b (Q3 — QF)
foe | £ | = siniaT) (fa—fr) | _ singaT)b (QF— Q) (4.93)
fa <Z cos(OtT)f,) (Z cos(ocﬂbQ%)
i=1 i=1

where the subscript a means applied and, as commented in Chapter 2, f; is the
force generated by the ith rotor, €; is the angular velocity of the ith rotor around
its axis and b is the thrust coefficient of the rotors.

The applied torque vector on the three body-fixed axes is given by:

i (fa = fa)lcos(ar)

T
T, = T, | = (f34— fi)lcos(ar)
" X, T cos(otr)
- - (4.94)

Ibcos(or) (Q3 —QF)
= Ibcos(or) (QF —QF)
kecos(or) (Qf + Q3 — QF — QF)
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where [ is the distance between the rotors and the center of rotation, k; > 0 is the
drag constant of the propellers, and 7y, is the torsion effort generated by each elec-
trical motor considering the dynamic of each disc of the motor as an uncoupled
system in the generalized variable Q;.

Taking into account the simplified equations of motion of the helicopter de-
scribed in Section 2.5.1, and assuming the squared of the four angular velocities
of the rotors, uy = [Q% Q% Q% Qi]’ , as the applied control signals, the dy-
namic model (2.60) is rewritten, with an appropriated reordering of the system, as
follows:

M(q)§+C(q,9)4+G(q) =B(q)T +6(q,4,4,Ta),

which yields to:

M(q)§+C(q.9)9+G(q) =B (qum +8(¢,4,4.Ta)

S e 9] L
(4.95)
| wi | Slanar |

where B »(q) is the input coupling matrix that transforms the input signals (the
squared of the angular velocities of the rotors) represented in the body-fixed frame
to the forces and torques represented in the inertial reference frame. This matrix
is obtained by the following form:

B(q)T =B s(q)upy = B(q)Bmum , (4.96)
By (q)um =
[ 0 Ibcos(ar) 0 —Ibcos(ar) |
—Ibcos( o) 0 Ibcos(ar) 0 Q2
W, © krcos(or)  —kecos(ar) kecos(ar) —kycos(or) Q3
- [ O R, ] —bsin(og) 0 bsin(ayr) 0 32
0 —bsin(ay) 0 bsin(oer) Q3
beos(or) beos(ar)  bcos(ar)  bceos(ar)

where B(q) is the force matrix and rank(B »(q)) = n, < n, being n, the number
of actuators available in the system.
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The main objective of the proposed QuadRotor helicopter control strategy is
to regulate the controlled DOF, g, = [y x y zJ/, at a desired operation point
that changes with time, i.e., to perform path tracking, while the remaining DOF,
q,=[¢ 6], are maintained stable. It is obvious that for a stable flight, it is ne-
cessary that the derivatives of the Euler angles must be null. Since the yaw angle is
one of the controlled DOF, it is regulated at a desired point with a desired velocity,
which is selected equal to zero in this case. On the other hand, since the roll and
pitch angles compose the remaining dynamics, through the proposed controller, is
only possible to stabilize it. Thus, for the QuadRotor helicopter application, g, is
null. Moreover, the same assumptions considered in previous sections to generate
the translational trajectory reference in the Trajectory Generator block are used
here. The diagram block representing this control strategy is showed in Fig. 4.14.

T T T T T T T T T T T T r
Nonlinear #, Controller for the Entire Underactuated l d
l Mechanical System l

. I . q . u Quadrotor Helicopter - » deote
Trajectory N Control Acceleration Applied Rotor Angular I M - .
G ) - C G — Velocities o Underactuated |
Jenerator l “omputing octties I Mechanical System Lo
XYoo, |

R a.9 q )

Xr7yr’zr"//r’¢r7€r — i s i s s —

sV 2ol es 86 - I~

Figure 4.14: Control strategy for the QuadRotor helicopter using the nonlinear
F, controller for the entire underactuated mechanical system.

Therefore, by considering the QuadRotor helicopter model (4.95) and the par-
titioned description of underactuated mechanical systems (4.8), the nonlinear .72,
controller, proposed in this section, is performed calculating the control accelera-
tion (4.91). By substituting that equation into (4.7), the transformed forces/torques
are computed. Thus, undoing the system transformation through the inverse of
T m(q), resulting in the forces and torques necessary to follow the desired traject-
ory, the squared velocities of the rotors can be computed as follows:

uy =B (q)* Ty(q) " 'T, (4.97)

where # means the pseudo inverse operator of a matrix.

Simulations have been carried out in order to corroborate the performance
provided by the proposed controller when the QuadRotor helicopter tracks some
trajectory. The simulations have been executed considering the procedure de-
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scribed in Section 3.2. The tilt angle of the rotors has been designed as oy = 5°.

The nonlinear %, controller gains were tuned with the following values:
=15, w.=12, . =0.5, w3, =15.0, w,;, = 1.5, @, = 0.5 and y=2.0.

3
2.5
Reference i
24 Nominal Paramete
Tl Parameters +40% |
« || —— Parameters -40%
— NOo
1 UT =0
- —.0_=10°
0.5 T

y [m] -1 -1 x m]

Figure 4.15: Path tracking.

Figs. 4.15 to 4.20 illustrate a good performance of the QuadRotor helicopter
to perform path tracking when sustained disturbances, and structural and para-
metric uncertainties are considered, which confirm the robustness provided by the
proposed controller. Fig. 4.16 shows that the controlled DOF achieve null steady
state error when aerodynamic forces and moments are acting on the whole sys-
tem; this is due to the inclusion of an integral term in the error vector. Moreover, it
can be observed in Fig. 4.18 that the remaining DOF are maintained stable, which
verify the use of their velocities in the objective vector.

Additional simulations have also been performed assuming the emulated heli-
copter with ar = 0° and oy = 10°, and also +40% of parametric uncertainty,
while for the controller design, ay = 5° has been used. It results in an uncertainty
of the input coupling matrix, which the nonlinear 7%, control law designed in
this section was able to deal with these kind of disturbances. On the other hand,
it must be noted that if the tilt angle, oy, is null, the QuadRotor helicopter mo-
del lost controllability, since its dynamics with respect to the natural choice of
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the controlled DOF, g, = [y x y zJ/, result to be differentially flat. However,
simulations considering oy = 0 have been carried out, and the proposed controller
was able to tackle with that solving the path tracking problem.

3F T T T T
T 2r Reference
ol +- Nominal Parametefs
_(1) i ; ; ; ; —— Parameters +40%
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2 ! T a,.=0°
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Figure 4.16: Position of the controlled DOF (x,y,z, ).
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Figure 4.17: Position error of the controlled DOF (x,y,z, y).
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Figure 4.18: Position and velocity of the remaining DOF (¢,0,¢,0).
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Figure 4.19: Squared Angular velocities of the rotors.

In Fig. 4.19 the squared angular velocities of the rotors are presented. They
have different values in hovering because it is considered a displacement, of a
distance r, from the origin of the body-fixed frame to the center of mass in the
emulated QuadRotor helicopter model. Moreover, Fig. 4.20 presents the applied
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Figure 4.20: Control actions (T, Ty Tg Ty).

thrust and torques to the helicopter in order to make a comparison with the control
signals generated by the others control strategies presented in this thesis. It can
be observed that the torques and force computed by the proposed control law are
smoother than the other ones, mainly the pitching and rolling moments, which are
calculated to perform the xy-motion. Again, the ISE and IADU indexes are used
to confirm the obtained results. In Tables 4.6 and 4.7 such indexes are presented.
The ISE index is computed only for the controlled DOF. It can be noticed that the
accumulative error of the controlled DOF are considerably decreased in compar-
ison with the ISE indexes obtained previously for the other control strategies. Be-
sides, this controller has provided smoother pitch and roll control torques, while
the applied yaw torque and thrust are similar or bigger in comparison with the
obtained ones by the others controllers. However, by analyzing the performance
improvement and the smoothness of the control signals, the much better perform-
ance attained by the nonlinear .77, control for the entire underactuated mechanical
systems is corroborated.

4.4.2 Case study: Two-Wheeled Self-Balanced Vehicle

In this section, the nonlinear 7%, controller considering the entire underactuated
mechanical system is used to control the two-wheeled self-balanced vehicle de-
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Table 4.6: ISE Index Performance Analysis.

States .
[Unit Symbol] Entire UActNL 7%, | IntBs-NL 7, | MPCxy-UActNL %,
x [m? 5] 5.8763 12.7508 12.8514
y [m? -] 6.4108 14.6774 17.5974
7 [m? ] 6.1900 12.3788 13.4216
v [rad? -] 4.4252 5.5054 4.8859

Table 4.7: IADU Index Performance Analysis.

C[I‘}r:lti't’oslysmlg;’(ﬁl]s Entire UActNL 7 | IntBS-NL.% | MPCxy-UACtNL %,
T [V] 80.3479 48 4741 50.7787
T, [N -m] 38.3891 254.6423 446.7466
To, [N -m] 25.8533 261.4491 402.9134
Ty, [N-m] 54.8557 32.3249 49.4207

scribed in Section 4.3.3.2. Compared with the control objective stated for the
QuadRotor helicopter, there is a slight change in the control purposes desired to
the two-wheeled vehicle. Despite that, the controller structure is maintained. The
control objective raised here is to ensure that the inclination angle of the pendu-
lum is stabilized around an equilibrium point, while the angular velocity of the
wheel, ¢, can be regulated in a desired reference value. The operation points
of the pendulum can be 6,, = nw withn =0, 1,2,.... However, only the upper
vertical position is desired. Note that, there is no interest in control the angular
position of the wheel around some of its operation point, that are infinite.

Therefore, taking into account the two-wheeled self balanced vehicle model
(4.53) and considering the same partition of this underactuated mechanical system
carried out in Section 4.3.3.2, where g, = 6 and g, = ¢, the dynamic model of the
system can be written using the diagonalized form (4.8) and adding the friction
force vector.

For this application, the weighting of the integral action will be considered
null, which is the same to consider the error vector (4.9) as follows:

4u
x=1 4, | . (4.98)
4.
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Assuming the control objective proposed for this system, it can be expressed by:

qu - qu,
X = qc
q.

Thus, the nonlinear 7, controller proposed in this section is performed by
calculating the control acceleration (4.91). By substituting that equation in (4.7),
considering the friction force vector, the transformed torques are computed. By
the definition of I'g,(q), I're(q), T'y = B,T and I'; = B, the applied torque T
can be obtained as follows:

u

_ _ 1y 1 _
t=B." (L xn.— MM My M) (Tre+ MM, Ts,) (4.99)

where it considers the computed control signal on the controlled DOF taking into
account the influence of the transformed control signal of the non-controlled DOF.
This can be interpreted like the partial feedback linearization proposed by Spong
(1996).

To corroborate the benefits of the controller proposed, two experiments have
been made with the two-wheeled self-vehicle illustrated in Fig. 4.10. The para-
meters of the vehicle are presented in Table 4.5.

The weighting parameters of the proposed nonlinear .77, have been adjusted
with the following values: @5 =1, @, =3, . =11, 3. =0, @,; = 0.6, W, =
0.8, y=1.5.

The first experimental result has been obtained with the vehicle at a static ini-
tial inclination angle 6 ~ 56°, as is shown in Figs. 4.21a and 4.21b. These results
show the capacity of the controller to stabilize the system around the equilibrium
point 6,, = 0°, with angular velocity of wheels zero. It can be observed that
the vehicle is quickly stabilized and remains around the operation point, without
causing saturation of the control signal.

In the second experiment, to confirm the good features and the robustness of
the control law, the vehicle has been initialized in a hard initial condition and has
been affected by external disturbances.

The experimental results are showed in Figs. 4.22a and 4.22b. In Fig 4.22a,
it can be observed trough the angular position graph that the proposed control-
ler is able to bring up the self-balanced vehicle from a static initial approximated
position of —65° to the upper vertical position. This is achieved in a small set-
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(a) Two-wheeled vehicle angular position, 6, (b) Motors axle angular rate, ¢, and the ap-
and angular rate, 6. plied torque, 7.

Figure 4.21: First experimental result with the two-wheeled self-balanced vehicle.

tling time, and the pendulum is maintained stabilized around the operation point.
On the other hand, external disturbances like impulses have been applied in three
different instants of time, being the controller capable to reject all of them even
when the disturbances led the angular position of the pendulum to —71° approx-
imately. After the transient caused by the disturbances, the pendulum has been
stabilized again around the upper vertical position with null angular velocity ¢ in
steady-state.

2 4 6 8 10 2 8
time [s] time [s]

(a) Two-wheeled vehicle angular position, 0, (b) Motors axle angular rate, ¢, and the ap-
and angular rate, 6. plied torque, 7.

Figure 4.22: Second experimental result with the two-wheeled self-balanced
vehicle.



188 4 Underactuated Nonlinear .77, Control

4.5 Conclusions

In this chapter, two new approaches of nonlinear %, controllers to deal with
underactuated mechanical systems have been proposed.

Firstly, an underactuated nonlinear %, control law, based on the reduced
subsystem, has been developed. This controller is an improvement of the one
proposed by Siqueira and Terra (2004b), where an integral term has been added
allowing to obtain null steady-state error when persistent disturbances are acting
on the system. The proposed controller has been applied to three different sys-
tems, the QuadRotor helicopter, the pendulum on a cart and the two-wheeled self-
balanced vehicle. It computes the applied control actions on the QuadRotor heli-
copter, and is based on the six DOF QuadRotor helicopter model that provides a
control law with knowledge of both the active degrees of freedom and the passive
ones. This feature is an advantage when compared to the most common strategy
presented in the literature, where two controllers considering separately the trans-
lational and rotational movements are designed. Besides, in this kind of strategy,
the coupling between both dynamics are addressed as a system disturbed. To solve
the path tracking problem, an outer-loop controller has been implemented which
is used as a track generator. That is, using a previously known path reference, an
MPC based on the xy motion error model is designed to generate the necessary ¢
and O reference angles. Moreover, because of the predictive controller features, a
good and smooth performance in the xy plane reference tracking is achieved.

The robust performance provided by the inner-outer control strategy has been
tested by simulation. The simulation model of the helicopter is more accurate
than the one used for control synthesis purposes, which introduces structural un-
certainty in the problem. Besides, an amount of 40% of uncertainty has been
considered in several mechanical parameters of the vehicle, and some sustained
disturbances on all the degrees of freedom have been applied during the simula-
tions. Despite these facts, an excellent tracking performance has been achieved
with the proposed control structure.

Simulation results on the PPCar model have also been presented using the
controller based on the reduced underactuated system. Several tests were car-
ried out taking into account the differences between the model used for controller
synthesis and the one implemented on the simulator. Moreover, this controller
has been implemented in a real two-wheeled self-balanced vehicle. The proposed
controller has been used to control an underactuated mechanical system under in-
put coupling. Experimental results on the two-wheeled self-balanced vehicle have
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been shown. From these results, it can be observed that the nonlinear .72, con-
troller is able to guide the vehicle from extreme initial conditions to the operating
point in a short response time with a small overshoot. Furthermore, the controller
is capable to reject external disturbances affecting the system and leads the error
to zero at steady-state.

On the other hand, a new approach of the nonlinear .7, control design for a
class of underactuated mechanical system under input coupling has been presen-
ted. To derive the proposed controller, a normalization of the equations of motion
of the system has been used, which allows to consider the dynamic of the remain-
ing DOF in the %, control design. Besides, it enables to weigh the velocity error
of the DOF through different criteria, which is an improvement of the works pro-
posed by Chen et al. (1994), Feng and Postlethwaite (1994), Siqueira and Terra
(2004b), Ortega et al. (2005) and others.

Furthermore, to apply this controller to the QuadRotor helicopter, a modified
model has been used, which adds coupling between the translational and rotational
movements. This coupling avoids the necessity to use cascade control strategies,
or to consider an augmented state vector through a double integrator. The pro-
posed controller have been corroborated by simulation results to solve the path
tracking problem for the QuadRotor helicopter, when sustained disturbances were
acting on the six degrees of freedom, and structural and parametric uncertainties
have been considered.

Finally, this second nonlinear 722, controller has also been applied to the
two-wheeled self-balanced vehicle. The proposed control law ensures the sta-
bility of the non-controlled DOF and guides the controlled ones to some equilib-
rium points. Experimental results have been carried out with this vehicle, which
showed the capacity of the controller to bring up the vehicle from extreme initial
conditions to the upper vertical position.
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5.1 Introduction

Despite the robustness of the methodology used throughout the thesis to design
nonlinear J#, control laws, its formulation is properly indicated to deal with dis-
turbance rejection, assuming a perfect knowledge of the model. This assumption
implies to include in the same term, 6(q,4,§,T'y) (see equation (2.40)), uncertain-
ties of the system associated to an imperfect knowledge of the physical parameters
that characterize the system, modeling errors, unmodeled dynamics of the actu-
ators, sensors or structural mechanical vibrations, friction phenomena, electrical
noise signals, computational errors and exogenous disturbances.

Since this hypothesis is not very realistic, to counterattack this problem, in
this chapter a solution to robustify the nonlinear .77, control law designed for
mechanical systems is presented, where an additional control signal is computed
to cope with modeling errors. This solution is based on the known method of
saturation functions. In Sage et al. (1999) a survey about robust control of robot
manipulators is presented, where different ways to implement the saturation func-
tion method based on dynamic equations of linear system’s error are discussed.
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In Spong and Vidyasagar (1989) and Spong et al. (2006) this method is used to
robustify the control technique of inverse dynamics, also known as the so-called
computed-torque-like controller, which is a particular case of the feedback lin-
earization technique. This strategy results in a linear closed-loop system when
no uncertainties are considered. The procedure used in both Spong and Vidyas-
agar (1989) and Spong et al. (2006) consists in designing a PD-like or PID-like
controller, or with a pole placement procedure, that ensures that the linear error
dynamic in closed-loop is stable, assuming no uncertainties. Thus, a matrix P is
found to be a solution of the Lyapunov equation of the closed-loop system, and
the saturation function method follows.

As stated in Lewis et al. (2004), there is a class of mechanical system con-
trollers (generally, nonlinear control laws) that are not obtained through the in-
verse dynamics technique. These controllers, including the nonlinear .72, control,
are computed based directly on the equations of motion of mechanical systems
without using the feedback linearization procedure. They are often designed tak-
ing into account the properties of mechanical systems such as those described
in Chapter 2 for Euler-Lagrange systems. However, as could be observed in the
nonlinear .72, control laws presented in Chapters 3 and 4, usually, this class of
controllers can be posed as a totally or partially feedback linearization with an ex-
ternal, nonlinear control law. This nonlinear term considers the coupling between
all the degrees of freedom.

Based on this idea, the robust inverse dynamics control with the saturation
function method is extended to nonlinear systems in Ortega et al. (2005) in order
to robustify the nonlinear state feedback 7%, controller designed for robot manip-
ulators. The authors used the same procedure presented in Spong and Vidyasagar
(1989) to obtain the additional control signal, but they have taken into account the
nonlinear gain matrices with a PID shape obtained from the solution of the HIBI
equation formulated for the nonlinear .77, problem. By the resulting controller in
a feedback linearization form with the nonlinear PID term, the nonlinear error dy-
namics in closed-loop was obtained. From this system, a Hamilton-Jacobi equa-
tion for the closed-loop stability analysis was computed. However, the authors did
not provide any analytical expression to solve this HJ equation. To overcome this,
they used a quadratic approximated solution, x'P(¢)x, of the proposed PDE. Thus,
matrix P(z) was obtained as the solution of a Lyapunov equation making use of
the successive linearization procedure of the closed-loop system. The stability of
the closed-loop system was assumed guaranteed under the Aizerman’s conjecture.

However, taking into account that the Aizerman’s conjecture is not true in
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general (Vidyasagar, 2002), in this chapter, one analytical solution to the proposed
PDE in Ortega et al. (2005) is presented.

In what follows, a brief explanation about the saturation function method ap-
plied to the inverse dynamics control is exposed, followed by its extension to
nonlinear systems. Some preliminary simulation results will be presented with
the nonlinear .77 controllers proposed throughout the thesis.

5.2 Inverse Dynamics Control with Saturation Function
Method

Consider the following dynamic model of a mechanical system obtained from the
Euler-Lagrange formulation:

M(q)§+C(q,9)q4+G(q) =B(q)T +Ty, (5.1)

where I'y are bounded external torque disturbances. Since the real dynamic of
the mechanical system cannot be known exactly, the matrices and vectors of the
system, M(q), C(q,q) and G(q), may be partitioned in a nominal part, M (q),
(A?(q,q) and a(q) and in an uncertain one, AM(q), AC(q,§) and AG(q), where:

AM(q) = M(q)—M(q),
AG(q) = G(q)-G(q).

Therefore, differences between the supposed real matrices and the estimated
ones will always exist. As presented in Spong et al. (2006), by the inverse dynam-
ics method, a control law based on the nominal model can be obtained:

T =B(q)" (M(g)v+C(g.4)q+G(a)) (52)

such is replaced into (5.1), resulting on the following dynamic equation of the
system error:

g=v+M(q) ' (AM(q)v+AC(q,9)q+AG(q)+T)
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or in a compact form:
g=v+m(q,q,v.I'q), (5.3)

where v is the control acceleration. Since 7(-) is a nonlinear function of ¢ and
v, it cannot be treated only as external disturbances. Thus, the saturation function
method can be used to generate an additional control signal considering estimated
errors of model matrices and assuming that is possible to obtain upper bounds of
such uncertainties.

By defining E(g) := M(q) 'AM(q) := M(q)'M(q) — 1, the function 7(-)
in equation (5.3) can be written as follows:

n(q7q7vvrd) = E(q)V+M(q)_l (AC(q,q)q+AG(q) +rd) ’ (5.4)

which represents an internal disturbance of the linearized error dynamics caused
by modeling uncertainties, parameter variations, external disturbances, friction
terms, and noise measurements (Lewis et al., 2004). Note that the definition of
E(q) corresponds to the multiplicative uncertainty of the matrix M(q), so that if
the estimation of this matrix was perfect (M(q) = M(q)), the value of E(q) would
be null.

Accordingly, the following assumptions are made:

® sup,~q[|g,|| < Quax < oo : this hypothesis assumes that the trajectory gen-
erator does not provide an infinity acceleration reference.

e |E(q)| :=|M(q)"'M(q)—1|| < a < 1 for some value of a. This is the
hardest condition. Consequently, the inertia of the system must be well
estimated to make o as small as possible. However, it is always possible
to find a matrix M (q) that meets this condition. As commented in Section
2.4, due to the positive definiteness of M(q), it is always possible to find
positive scalars m,,;;, and m,,,, such that:

1 1
M@ - 20, Y ge@
Mypax Mypin

Min + Mipax

Thus, by designing AAl(q) = 3

1 yields to:

—13; Mypax — Mpmin
IE(q)] == M(q) 'M(q)—1|| < "*—"2 <a<l.

Mynax + Mypin

* [AN(g,9)|:=[|AC(q,9)g+AG(q) + T4 < ¢(x,7) for some function ¢ (x,)
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bounded on time, where x is the tracking error vector defined in many cases
throughout the thesis. Hence, through the triangle inequality, and the prop-
erties of the gravitational force, Coriolis and centrifugal terms and exogen-
ous disturbances (Lewis et al., 2004), ¢ (x,#) can be defined as follows:

|AC(q,4)g+AG(q)+ T4l < [AC(q,9)q|l+[|AG(q)||+ | Tall
< YelglF+ %+

o(x1) = YlgP+v+w,

with ¥, 7, and y; nonnegative finite constants which depend on the size of
the uncertainties.

The saturation function technique provides a robust controller due to the fact
that it is designed based on uncertainty bounds rather than on the actual values
of the parameters (Lewis et al., 2004). Once the bound values are obtained, this
method proposes to use a control structure like computed torque, where through
feedback linearization attempts to linearize the estimated matrices. If the estima-
tion were perfect and if a linear external controller were used, like PD and PID,
for example, the error dynamic of the linearized system in closed-loop would be
defined as follows:

x(t) = Ax(t) = (A—BK)x(t), (5.5)

where A and B are constant matrices of the system, and K is the constant gain
matrix of a linear state feedback control law. In this case, only the matrix K is
needed to be computed to specify the error dynamic, which makes that the matrix
A has the desired eigenvalues.

However, since it is not possible to obtain a perfect estimation of the system,
through the saturation function method, the following algorithm is proposed to
compute an additional control signal Av applied to the linearized system:

1. Design an external control law as follows:
v(t) = q,(t) — Kx(t) + Av(z), (5.6)

where K is the controller matrix designed before and Av(7) is an increment
of the control signal that attenuates the effects of the estimated uncertain-
ties of the system. Thus, the control objective is to compute the additional
control law Av(r) to achieve the desired tracking performance under the
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unknown uncertainties 7.

Note that the dynamic equation of the closed-loop error obtained from the
linearized estimated matrices and the linear external controller presents the
following expression:

i=Ax+B(Av+7), (5.7

where A is Hurwitz and, by replacing (5.6) into (5.4) yields to:

n=EAv+E(4,—Kx)+M 'AN. (5.8)

Equation (5.7) shows that in the case of null uncertainty, the additional con-
trol law Av must also be null to obtain the dynamic equation of error (5.5).

. Once the dynamic equation of the system error is obtained from the pre-

vious step, where A is Hurwitz, it is assumed that it is possible to find a
continuous scalar function p(x,¢) bounded over time such that the follow-
ing inequalities are satisfied:

Izl < p(x.), (5.9)
1AV]| < p(x.1). (5.10)

Note that, from (5.9) the uncertainty of the system can be upper bounded.
In such case, function p(x,7) can be implicitly defined. Thus, taking into
account the three previously assumptions, the following is obtained:

Izl = |EAv+E(g,—Kx)+M 'AN|

< ap(x,1)+ aQyee + | K| [lx] + ——9¢ (x,7) (5.11)

Mipin

= p(x,1).

Since o < 1, by isolating p(x,¢) yields to:

1
px.1) = 7 (aQar + | K] [lx]| + = (x,1)). (5.12)

Mynin

. Therefore, by the assumption that K is chosen for the dynamic error matrix

A = (A — BK) be Hurwitz, select a symmetric, positive definite matrix Q
and find the unique symmetric, positive definite solution P of the following
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Lyapunov equation:
AP+PA+Q=0. (5.13)

4. Compute the additional control signal Av(z) as follows:

B'Px
p,t) X it |B'Px| >
Av(t) = (5.14)
t
—p(:’)B’Px if [|B'Px|| < e

where € < 1. It must be noticed to avoid the chattering effect this control
law assumes values of ||B'Px|| lower than €.

This controller guarantee uniform ultimate boundedness of § and g, and uni-
form boundedness if §(0) = §(0) = 0. See (Spong and Vidyasagar, 1989, Chapter
8) and (Lewis et al., 2004, Chapter 5) for the demonstration of this controller.

Other approaches to design the additional control signal, Ay, can also be find
in Khalil (2002); Lewis et al. (2004) and Spong et al. (2006).

5.3 Robustifying Nonlinear .77, Controller via Satura-
tion Functions

This section deals with an analytical solution for the algorithm presented in Ortega
et al. (2005), which improves the robustness of the nonlinear 7%, control design.
Although the controllers obtained by nonlinear /7, theory already possess ro-
bustness properties, they are designed based on knowledge of the system model
(nominal model) and assuming uncertainties such as external disturbances. How-
ever, as stated at the beginning of the chapter, uncertainties arise from a number
of different sources and, to increase the desired tracking performance, they must
be considered separately. Therefore, in the case of mechanical systems, the nonli-
near 7%, controller can be in charge only of external forces and torques in the %>
space, while an additional control law can be designed to cope with parametric
uncertainties and unmodeled dynamics.

The proposed idea in Ortega et al. (2005) was to extend the saturation function
method to the nonlinear 7, control law designed for fully actuated robot manip-
ulators. In this chapter, this method is also applied to the designed controllers
for underactuated mechanical systems, apart from applying it to fully actuated
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mechanical systems. Due to the similar shape of these controllers with the in-
verse dynamics control presented in Section 5.2, the same procedure to obtain the
additional control law can be carried out here. Some considerations about the sta-
bilizing controller must be taken into account since it is a nonlinear control law,
which leads to the following remarks:

Remark 5.1. The dynamic equation of the system error in the method used in
Spong et al. (2006) is a linear time-invariant system. However, in the case of the
nonlinear ¢, controllers, the dynamic equation of the system error is a time-
variant nonlinear differential equation (e.g. see equations (3.40) with the gain
matrices (3.52)).

Remark 5.2. The Lyapunov function for the nominal closed-loop system obtai-
ned with the nonlinear state feedback 7%, control law is known. Since, as demon-
strated in Theorem 3.3.2, it is the solution of the HJ equation (3.34). Besides,
uniformly asymptotically stability of the origin is guaranteed when no external
disturbances affecting the system. Therefore, for the design of the additional con-
trol law, it is more appropriate to use the procedure called Lyapunov redesign,
presented in Khalil (2002), instead of the robust inverse dynamics method presen-
ted in Spong and Vidyasagar (1989). Although both procedures result in similar
controllers, the approaches are slight different.

Nonetheless, a methodology for the nonlinear case can be proposed under the
same assumptions about the bounds on the Euler-Lagrange model made for the
method described above. This method will be presented based on the nonlinear
€, controller designed in Section 3.3.2, being maintained the same notation. The
additional control laws for the underactuated nonlinear .72, controllers developed
in Chapter 4 are derived directly.

To start, the closed-loop nonlinear dynamic equation of the system error (3.40)
obtained by applying the nonlinear .72, control law (3.48) is written as follows:

~Kp —Kp —K; Z(m!
in=| 1 O O |xp+T,' 0 d, (5.15)
o 1 O 0

where K p, Kp and K are the nonlinear gain matrices obtained by equation (3.50),
j\(n) is the nominal inertia matrix of the rotational subsystem, T, is defined in
(3.38) and xy represents the tracking error vector given by (3.36). The disturbance
signal vector d is obtained by (3.41).
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Recalling Theorem 3.3.2, for d = 0, the equilibrium (7,8, [ #) = (0,0,0) of
the closed-loop (5.15) is uniformly asymptotically stable by (3.46), and if d #
0, the origin Xy = 0 is uniformly bounded. As discussed in Chapter 4, for the
rotational subsystem, the trajectory reference needs to be constant to maintain
the QuadRotor helicopter stabilized. Thus, in the case of the bounded-energy
disturbance is d # 0, this gives the new equilibrium point (7, %, [#) = (0,0,
K;lel j\(n)_ld) if the reference is constant. Thus, performing the following
change of variable [/ = [# — K;lTl’lﬁn)*ld yields:

—Kp —Kp —K; 1
1 () () n ) (5.16)
() 1 () /1

S S S
Il

which is the same as (5.15) for d = 0. Therefore, the following theorem can be
stated:

Theorem 5.3.1. The equilibrium (R, 1, [ 7)) = (0,0,K;'T{'_7(n)~'d) of the
closed-loop dynamic equation of system error (5.15) is uniformly asymptotically
stable for any constant disturbance d by Theorem 3.3.2. That is, the nonlinear
F, controller presented in Section 3.3.2 with the integral action guarantees zero
tracking error for the rotational subsystem.

Proof: Considering the definition of the gain matrix K given in (3.50), the
equilibrium point of the closed-loop system (5.15), when d # 0, has two compon-
ents 1] and # that are clearly nulls. For the third component, [ #, it is obtained as
follows:

o~ —~

0=—T{' 7(n)"" (Cn,N)T3+R' ($3+T3)) [A+T' 7(n)"'d
=R (S4+T3)d,

with a constant reference trajectory.

Thus, through the change of variable over [ 1], the new (constant) equilibrium
point for the rotational subsystem is obtained:

<ﬁ,ﬁ,/ﬁ) — (0,0,R™" (S3+T3)d), (5.17)

which is uniformly asymptotically stable for the rotational subsystem from the
Theorem 3.3.2 [ |

Remark 5.3. The Theorem 5.3.1 holds only whether the reference trajectory and
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the disturbance are constants. Since the uncertainty term d does not depend only
on external disturbances and parametric uncertainties, for a more generalized
formulation, it is desired to assume the uniformly bounded condition of the The-
orem 3.3.2.

Thus, considering that d includes a large variety of disturbances sources, it can
be split up into two parts: the first one is compound by exogenous disturbances in
the %,-space, and the second part is due to model simplification and parametric
uncertainty. Notice that only external perturbations in the .%5-space are assumed,
being the nonlinear 7, controller in charge of them.

Taking into account that d is a transformation of the uncertainty 85 given by
(3.41), the closed-loop system (5.15) can be rewritten as follows:

—Kp —Kp —Kj ]| )|
ip=| 1 O O |t+T," 0 |(MT1 7 '(n)dy
0 1 o0 | 0
[ —Kp —Kp —K; | ﬁﬂ)fl -
- 1 O O |x+T,' () J(MT 77 (n)Ty,
0 1 0 | 0

—Kp —Kp -Ki S ()
- ]]. ® ® xn"_T;l ® d‘[
0] 1 () ()]
1
+ 0 j 1(n)En(nuﬂvﬁ7t)7
()

(5.18)
or in a compact form:

xﬂ:f(xfht)+k(xn7t)dT+B7f(n7ﬂvﬁvt>7 (519)
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where:

r(nn, 1,0 = 7' (MEq(n,n0,1,1)
= JZ'mAZmi+ 7 '(n)(AC(n,7)N +AG(n))
= EMm)ij+ 77 '(n)(AC(n,7)n +AG(7n)),

with E() == 7' (M)A 7(n):= 7~'(n) 7 (n) -1, and:

(5.20)

] :ﬁr—KDﬁ—KPﬁ—Kl/ﬁdf~

By assuming that the nonlinear 7%, control law is able to reject exogenous
disturbances included in vector d, the control design purposes here is to robustify
the closed-loop when at least the knowledge of bounds on the dynamic model are
available. Hence, the external disturbance vector d in the system (5.19) will be
assumed null, assuming it has already been treated by the stabilizing controller.
Then, an additional control law is included to the closed-loop to deal with the
parametric uncertainties and unmodeled dynamics represented by function 7(-).

Accordingly, the external control law is reformulated as in (5.6), where mat-
rix K is compound by the gain matrices (3.50), which is given for the rotational
subsystem by:

ﬁ:ﬁr_KDﬁ—KPﬁ—Kl/ﬁdl—i-Av(t). (5.21)

Thus, the dynamic equation of the closed-loop system error (5.19), withd; =
0, is rewritten as follows:

Kp —-Kp —K; 1
in=| 1 O O |xq+]| O |(Av+n), (5.22)
0 1 O 0

In the next step, to obtain the additional control law, a scalar function p (xy,?)
is computed through the expression (5.12), where the inequalities (5.9) and (5.10)
are assumed to be satisfied. Note that, from (5.9) only the model uncertainties are
bounded, which are independent of the method used.
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Since the matrix K is obtained for the nominal model, i.e., with null parametric
uncertainties, the dynamic of the error in closed-loop is uniform asymptotically
stable with the nonlinear 7, control law via state feedback when no external
disturbances affect the system (see Theorem 3.3.2). Thus, the same solution of
the HJBI equation is a candidate Lyapunov function and the following holds:

!/
IV (xq,t) n 'V (xqy,t) -f(xn,t) <0 Vay #0, (5.23)
ot 3xT’

where Xy = f(x,1) with 7 = 0.

Finally, to complete the control law (5.21), the additional term Av is computed
by the following equation:

8V(x,,, )
‘9"11 . ,aV(xn,l)
Av(t) = axn (5.24)
_p(xn7 ) av(xTh ) /av(xflat) <€
€ dxq dxq

where V (xq,1) is given by (3.46) and its gradient with respect to x5 is computed
as follows:

. Jm o 0
Wont)_Lyn | 70" 7 x2r |nelpaol,
n O X-Y Z+Y
with:
ai( n) 0O O 1 ai( n) 0O O
<7 1 - ! n
Q xpT, 0 0 O T oxy, anT 0 0 0 T oxy
(0] 0O O 0] O O
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Therefore, the term B'(dV (xy,t)/dxy) is obtained by:

- -/

1 Jm o 0
B/Wa(;mf) =0 ||T) O Y X-Y T,,x,ﬁ—%[@, Q,0/
n (D) 0 X-Y Z+Y

1 Jn O 0
=| 0 |T, 0 Y X-Y |Toxy,
()] O X-Y Z+Y

where X, Y and Z are obtained by solving some Riccati algebraic equations that
compose the expression (3.47).

For the particular case given by the weighting matrices (3.51), the following

matrices are obtained:

Ty — p1— Y0

——1, —5—= 1
V- o; V7 — o

T] = p]].:

T, = xl= 1, X = wowml,

Y = 0/0}+20 w1, Z = w/ o} +200:1 - 20,051,

The stability proof of the resulting system applying the additional control law
(5.24) can be performed through the Lyapunov second method. Thus, assuming
that the scalar function V (x5, ) > 0 satisfies the equation (5.23), its time derivative
is given by:

dV(xy,t) _ dV(xy,1) n 'V (xn,1) »
a0t dxp m

Replacing the closed-loop dynamic equation of the system error (5.22), where has
been assumed no external disturbances, i.e. d; = 0, into the time derivative of the
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Lyapunov candidate function yields to:

dvVixg,t)  9dV(xp,t) I'V(xgt)  ,
7 = T + 9%y (f(xn,t) +B(Av+m))
~ 9'V(xg,1)

where the inequality (5.23) has been used.

To ensure that the time derivative of V (xy,?) is negative, the following must

also be:
9"V (xq,t)

-B(A <0
9 (Av+m) <0,

from which the additional control signal Av can be selected:

'V (xp,t 'V (xp,t

Gn.t) gy < OV Gnt)
dxy dxy

Thus, taking into account that the norm of & is bounded by the function

p(xy,t) and assuming the worst-case, where the vectors B’ % and 7 have the

same direction, Av is selected to have opposite direction to %’:”I)

p(xq,t), that is:

B and modulus

" 'V (xy,1)
dxy
B 'V (xy,t)
dxy

Av(t) = —p(xn.1)

)

which is the expression in (5.24).

Therefore, for the closed-loop system (5.22) with the additional control law
(5.24), there exists a solution Xy (¢), with initial condition x5 (f9) = Xxp,. that is
uniformly ultimately bounded. The demonstration of this result follows the same
steps as in Spong and Vidyasagar (1989, Chapter 8).

If external disturbances are considered, by substituting the system (5.19) with
the additional control law (5.24) into the time derivative of the Lyapunov candid-
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ate function, results in:

dv(xg,t) _ 9V(xn7f)+alv(xn;l)

dt B ot d0xn -(f(xq,1) +k(xq,1)dz + B(Av+ 7))

'V (xy,t)

1 / 1 2 /

27 -B(Av+T).
Thus, if d¢ = 0 and 7 = 0, according to the Theorem 3.3.2, V(x5,7) < 0 and the
closed-loop system is uniformly asymptotically stable. If d; = 0 and 7 # 0, the
result above follows. Finally, if d; # 0 and 7 # 0, only the uniformly bounded
condition can be considered.

Notice that the previous adjustment of the nonlinear 72, controller considers
in the same vector d external disturbances and model uncertainties. After the
design of the additional control law based on the bounds of the Euler-Lagrange
model, the nonlinear 7%, controller can be tuned again to improve the perform-
ance with external disturbance rejection.

The additional control law designed in this section can also be implemented
with both reduced and entire underactuated nonlinear 7% controllers developed
in Section 4. For the controller presented in Section 4.3, only the boundaries of the
controlled degrees of freedom dynamic equation must be considered, while for the
closed-loop obtained with the underactuated nonlinear 7, controller assuming
the entire dynamic model, the bounds must be computed for the whole system.

Some simulation results with the QuadRotor helicopter will be presented in
the next section in order to show the robustness improvement of some of the non-
linear .7Z, controllers designed in this thesis.

5.4 Simulation Results

In this section simulation results have been carried out using the proposed method
based on saturation functions to improve the robustness of nonlinear 57, con-
trollers. Two control strategies have been chosen to test the benefits provided by
this method. First, the cascade control strategy presented in Section 3.4.3, which
combines the integral backstepping controller with the nonlinear .7, controller
for fully actuated mechanical systems, has been performed. The second simula-
tion collection has been executed with the nonlinear .77, controller for entire un-
deractuated mechanical systems presented in Section 4.4. Both control strategies
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have been conducted to solve the path tracking problem for the QuadRotor heli-
copter.

The second reference trajectory (Fig. 3.3) presented in the Simulation Pro-
focol has been used to analyze the robustness improvement provided by the pro-
posed method. Moreover, a quantitative comparative through the performance
indexes ISE and IADU has been performed. The same comparison conditions
used throughout the thesis have been also implemented here, where an amount
of +40% of uncertainty in the elements of the mass and the moment of inertia
tensor has been assumed. However, the QuadRotor helicopter was initially placed
in the same position of the reference trajectory. This initial condition is due to the
assumption that the nonlinear JZ, controllers have already stabilized the vehicle
on the track. Therefore, the robustness improvement provided by the additional
control law designed in this chapter can be verified when model uncertainties are
present on the system.

In what follows, the simulation comparison between some of the control strategies
presented in Chapters 3 and 4 are shown.

IntBS-NLJ7, Cascade Control Strategy

This control strategy has been synthesized with the same parameters presented in
Section 3.4.3.2, while the bounds of the rotational subsystem needed to achieve
the function p(xy,?) of the additional control signal have been designed as fol-
lows:

o Since the values of the references of the pitch and roll angles are not known
previously, the bound of the reference acceleration of the Euler angles has
been defined by observing the necessary accelerations without considering
the saturation function method in previous simulation results, which led to
the following value, Q,,,,. = 50.

e The bound of the inertia matrix uncertainty, &, has been computed numer-
ically through the error between the inertia matrix considering cross terms
and the inertia one with only the diagonal terms. This bound has been ob-
tained for different values of angles and taking into account an uncertainty
of £40% in the parameters. The computed value of this bound han been
o =0.3327.

e The design of function ¢ (x,7) is based on the bounds of the gravitational,
friction and Coriolis and centrifugal forces. As presented in Chapter 2,
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the rotational equations of motion do not present neither gravitational nor
friction terms. Thus, only the upper bound of the Coriolis and centrifugal
forces has been calculated. This bound has been achieved in a more conser-
vativeness way, assuming that the magnitudes of sin and cos functions are
bounded by 1. The value of the 7y, parameter was achieved equal to 0.18.

e The maximum and minimum bounds of the inertia matrix have been achieved
numerically, by means of the inequalities (2.34), for different values of
the Euler angles and considering the uncertainty interval into +40% of
the moment of inertia tensor terms. The values of these parameters are:
Myin = 0.0369 and my;,q, = 0.1077.

e The term || K||||x]|, in equation (5.12), that bounds the control law, has been
computed less conservative, where the norm of the nonlinear .72, control
law has been obtained computing in each sampling time of the inner loop
the following term: ||Kx||.

e The value of the parameter € has been chosen in order to avoid chattering
in the control signal. For this requirement, its value was defined as € =
2-107°.

Figs. 5.1 to 5.6 illustrate the path tracking of the QuadRotor helicopter using
the cascade control strategy IntBS-NL.JZ, with and without the the additional
control signal obtained by saturation functions.

In these figures it can be observed that both control structures present a very
similar performance. Since the saturation function method is applied to improve
the robustness of the nonlinear 7%, controller for the rotational subsystem of the
QuadRotor helicopter, through Fig. 5.5, the enhance obtained with the proposed
method is clearly appreciated. In this figure, it can be observed that the tracking
error of the rotational subsystem is reduced by using the additional control law
Av, which compensates the inexact cancellation caused by the applied nonlinear
% control law (3.49) designed assuming nominal parameters.

Thus, analyzing Fig. 5.6 and the ISE and IADU performance index tables,
it can be noticed an increase in performance, reflected by the ISE index. On
the other hand, the control effort obtained with the use of the saturation function
method is higher.
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5.4 Simulation Results

Table 5.1: ISE Index Performance Analysis.

States
[Unit Symbol] IntBs-NL.77Z, | IntBs-NL.7Z%,-SatFunc
x [m? - 5] 0.0718 0.0693
y [m? 5] 0.6811 0.6215
z [m?* -] 1.3228 1.2489
0 [rad? - s 0.1193 0.1095
0 [rad?- s 0.5840 0.5689
v [rad? - s] 0.0052 0.0003

Table 5.2: IADU Index Performance Analysis.

C[{’J’;tl’;"slys;lggloills IntBS-NL.%Z, | IntBS-NL.%.-SatFunc
TNV 24.0267 24.0244
T, [N -] 207.3646 215.4339
T, [N -] 213.7419 211.3500
Ty, [N -m] 14.4524 15.6005

Entire UActNL.Z, Cascade Control Strategy

As in the previous case, this control strategy has been adjusted with the same para-
meters used in Section 4.4.1. The bounds of the dynamic model of the QuadRotor
helicopter have been obtained following the same procedure described above:

e The upper bound of the reference acceleration is defined by analyzing the
necessary acceleration of the six degrees of freedom, which value has been
determined for the second path presented in the Simulation Protocol. The
value of the parameter Q,,,, was obtained equal to 80.

The bound of the inertia matrix uncertainty, ¢, has been computed again
numerically through the error between the inertia matrix considering cross
terms and the center of mass displaced from the center of rotation, and the
inertia matrix used to design the controller with only the diagonal terms
and the center of mass and the rotation one assumed congruent. This bound
has been obtained for different values of angles and taking into account an
uncertainty of £40% in the parameters. The computed value of this bound
han been o = 0.3442.
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e The design of function ¢(x,7) is based on the bounds of the gravitational
and Coriolis and centrifugal forces. The upper bound of the gravitational
forces has been obtained numerically, which value ¥, was calculated equal
to 30.78. The value of the parameter ¥, was achieved equal to 0.18.

e The maximum and minimum bounds of the inertia matrix have also been
achieved numerically, by means of the inequalities (2.34), for different val-
ues of the Euler angles and considering the uncertainty interval into +40%
of the mass and the moment of inertia tensor terms. The values of these
parameters are: m,;, = 1.3453 and m,,,, = 3.1423.

e The value of the parameter € has been chosen in order to avoid chattering
in the control signal, resulting, in this case, in € = 15.

The results obtained when the saturation function method has been applied
to improve the robustness of the underactuated nonlinear 7%, controller for the
entire system are presented in Figs. 5.7 to 5.12.

0-L. ‘ Reference
2 Entire UACtNLH_

m 0
y [m] >\/0//1 x [m]

Figure 5.7: Path tracking.

As it can be observed in these simulation results, the path tracking for the
QuadRotor helicopter performed by the Entire UActNL.Z, has been improved
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Figure 5.11: Squared Angular velocities of the rotors.
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Figure 5.12: Control actions (T, Ty Tg Ty).

by using the robustifying additional control law. The benefits of the saturation
function method can be observed when abrupt changes on the trajectory occur or
external disturbances affect the system. In these cases, the helicopter has been
capable to recover the reference trajectory faster than using only the nonlinear
s control law, as can be seen in Fig. 5.9. Moreover, the tracking errors of the
controlled DOF have been reduced.

To make a deeper analysis, the ISE and IADU performance indexes have been
used again, allowing to confirm the performance illustrated by the graphs. The
accumulative errors of the xyz-motion and yaw angle have been decreased con-
siderably, which justify the use of the proposed method. However, by analyzing
the IADU performance index, it can be noticed that the control effort needed by
the nonlinear %, controller with the additional control law has been increased.
This increment on the control effort is due to the fact the additional controller
uses saturation functions in its formulation, leading to a more aggressive control
signal.

Some reasons can explain the similar performances of the yaw angle and the
improved behavior of the xyz-motion, for example, since the complete dynamic
model of the helicopter considers both translational and rotational dynamics, it
must be scaled to obtain bound values with same magnitudes. This feature can be
observed by the maximum and minimum bounds obtained only for the rotational
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Table 5.3: ISE Index Performance Analysis.

States | tire UACENL /%2 | Entire UACtNL /-SatFunc
[Unit Symbol]
x [m?-s] 0.6215 0.0794
y [m? - 5] 0.9984 0.1699
z [m? -] 0.9238 0.1313
v [rad? - s 0.4259 0.4018

Table 5.4: IADU Index Performance Analysis.

Control Signals . .
. Entire UActNL .7, | Entire UActNL.JZ.-SatFunc
[Unit Symbol]
T [N] 38.4747 70.8024
Tp, [N -m] 7.2683 21.1510
Tg, [N - m] 7.8432 25.3203
Ty, [N -m] 88.0007 88.3142

inertia matrix (m,,;,, = 0.0369 and m,,,, = 0.1077) and for the complete dynamic
model (m,,;, = 1.3453 and m,,,, = 3.1423), where the mass magnitude is pre-
dominant in their computation. Besides, the desired control objective for both
dynamics is different, since the translational motion must track a varying refer-
ence trajectory, the rotational one must be stabilized at the origin. This results in
different bound values of the acceleration reference.

5.5 Conclusions

In this chapter, an analytical expression for the algorithm presented in Ortega et al.
(2005), to improve the robustness of the nonlinear .7, controller for mechanical
systems, has been proposed. The algorithm is based on the saturation function
method, which allows to separate parametric uncertainties from external disturb-
ances at the control design stage.

The proposed expression makes use of the solution of the HIBI equation
formulated for the nonlinear 7%, problem, overcoming the necessity to use a
quadratic approximated solution and the successive linearization procedure of the
closed-loop system.

Furthermore, the stability demonstration follows from the one of the nonli-
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near %, problem, which ensures the uniformly ultimately bounded condition for
the closed-loop system when only parametric uncertainties are assumed. On the
other hand, if external disturbances also affect the system the uniformly bounded
condition can be considered.

Preliminary simulation results have been presented with the nonlinear 72,
controller for fully actuated mechanical systems described in Chapter 3, and with
the nonlinear .7, controller for underactuated mechanical systems considering
the entire dynamic model proposed in Section 4.4. Both control strategies have
been applied to solve the path tracking problem for the QuadRotor helicopter.

The results obtained with both IntBS-NLJ%, and Entire UActNLJZ, control
strategies have presented a decrease of the tracking error of the controlled DOF
in presence of parametric uncertainties. Therefore, the objective of improve the
robustness of the nonlinear .72, controllers was achieved. It must be noticed that
due to the use of saturation functions in the additional control law, the control
effort in both control strategies has been increased. Moreover, to analyze the
benefits of the method, the QuadRotor helicopter has been initially placed on the
track in both simulation collections.

Despite the good results obtained in this chapter, it can be stated that to im-
prove the results achieved with the proposed nonlinear 7%, controller for under-
actuated mechanical systems, a study of the scaling of the complete dynamic mo-
del must be performed.
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6.1 Thesis contributions and conclusions

This thesis has dealt with the development of robust control strategies to solve
the path tracking problem for autonomous aerial vehicles, focusing efforts on the
QuadRotor helicopter on a small scale. Such strategies have been designed taking
into account sustained external disturbances affecting the whole system, unmode-
led dynamics, and structural and parametric uncertainties. Moreover, this kind of
UAV is an underactuated mechanical system, since it has six degrees of freedom
and only four actuators. Therefore, both cascade control structures and single con-
trollers have also been developed considering this feature to achieve the desired
performance.

Usually, an accuracy dynamic model of the system must be obtained to design
advanced control strategies, taking in mind a tradeoff between complexity and
realism. Therefore, in Chapter 2, initially, the QuadRotor helicopter operation
have been described, in which the relationship between the applied forces/torques
to the vehicle and the velocities of the four rotors have been stated. Moreover, the
rotational and translational motions, assuming a point in the space, were deduced,
which allowed to obtain the kinematic equations of a rigid body moving in a
three-dimensional space. The rotational movement has been described by means
of three successive rotations using the so-called Tayt-Bryan angles, which are also
known as the nautical angles or the ZY X Euler angles.

The dynamic equations of the helicopter based on two approaches have been
computed from the rotation matrix and kinematic equations. First, the Euler-
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Lagrange formulation have been used to obtain the equations of motion of the
QuadRotor helicopter, which consider the center of mass of the vehicle is dis-
placed from the origin of the rotation body-fixed frame by a position r. This
assumption results in a highly-coupled nonlinear dynamic model. To overcome
that, a simplified model of the QuadRotor helicopter has been deduced for control
design purposes, where the center of mass and the center of rotation were as-
sumed congruent. This simplified model results in a decentralized system allow-
ing designing controllers separately for both translational and rotational motions.
The second approach used to obtain the equations of motion of the helicopter was
based on the Newton-Euler formulation. Both complete and simplified models
have also been presented. However, this formulation has been used only to il-
lustrate the relationship between the forces/torques obtained by using the Euler
angles and their time derivative, and by using the angular rates, which allowed to
obtain the applied forces/torques to the vehicle.

Since the QuadRotor helicopter is an underactuated mechanical system, a
common way to perform path tracking of UAV’s is using cascade control strategies.
Therefore, most of the contributions of this thesis with respect to this kind of
control structure have been presented in Chapter 3, where different control tech-
niques have been used to control both the rotational and translational movements.
The controllers have been designed to attain robustness against parametric and
structural uncertainties, and to reject sustained disturbances acting on the six de-
grees of freedom of the helicopter. The contributions of Chapter 3 are summar-
ized in what follows:

e A nonlinear %, controller has been used to perform the stabilization of the
QuadRotor helicopter. This controller is able to reject sustained external
disturbances due to the inclusion of the integral action in the tracking error
vector. The control law has been designed for fully actuated mechanical
systems. Hence, the Euler angles are controlled through the applied roll,
pitch and yaw moments.

o The first translational controller has been designed using a linear state feed-
back 7 controller based on the error model, considering parametric un-
certainties. The synthesis method used was based on LMIs. The cascade
strategy, which combines this controller with the nonlinear .72, one used to
stabilize the vehicle, have allowed to reject sustained external disturbances
affecting the whole system. The translational controller has been performed
taking into account an augmented state vector, where the integral of the
translational position error was considered.
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e In a second approach, designing the translational controller, an MPC al-
gorithm has been used, while the nonlinear .72, controller for the helicopter
stabilization was maintained in the inner loop. The main reason to use the
MPC is due to its predictive features. Since the reference trajectory is usu-
ally known, the MPC can provide a smooth path tracking. The integral of
the position error has also been considered for this controller, in order to
maintain the good performance of the linear JZ, controller to reject sus-
tained disturbances that act on the translational movements.

The linear MPC algorithm used considers that the real vehicle follows a vir-
tual reference helicopter over the desired path, originating the error model,
which is discrete and time-varying.

e The third control law applied to the translational subsystem has been de-
veloped based on the backstepping technique improving robustness in pres-
ence of model uncertainties. Again, the nonlinear .7, controller for the ro-
tational subsystem has been combined in the cascade control structure with
the integral backstepping controller. This translational controller considers
the integral term in the second step of the backstepping procedure, present-
ing better results when compared with a controller that uses this term in the
first step.

e Simulation results have been carried out to corroborate the good perform-
ance of the proposed cascade control strategies for the path tracking, when
uncertainties of the mass and the moment of the inertia tensor were con-
sidered and in presence of sustained external disturbances. Comparison
results have also been performed, where the ISE and IADU indexes have
been used to make a quantitative analysis.

From the comparison analysis, it can be observed that both MPC-NL.JZZ,
and IntBs-NLJZ, control strategies have presented smaller accumulative
error along the trajectories. However, when the control effort has been ana-
lyzed by means of the IADU index, the IntBs-NL.JZ, control strategy has
presented smoother control signals. Therefore, despite all cascade control
strategies, proposed in Chapter 3, have been solved the path tracking prob-
lem, only the IntBs-NL.7Z, control structure has attained the objective to
perform the path tracking for the QuadRotor helicopter with a fast time
response and a smooth control signal.

In Chapter 4, nonlinear .77, control structures for underactuated mechanical
systems have been proposed. The contributions of this chapter are detailed as
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follows:

e Firstly, an underactuated nonlinear 7%, controller based on a reduced model
has been designed, only taking into account the controlled degrees of free-
dom. The control structure allows considering the overall behavior of the
system at the moment to compute the applied control signals. The control-
ler has been applied to three different underactuated mechanical systems. In
the case of the QuadRotor helicopter, this controller has been used to con-
trol the active degrees of freedom. Unlike the controllers used in Chapter 3,
this proposed controller uses the information of the passive DOF dynamic
to generate the control law, instead of assuming it as external disturbances.
Since the passive degrees of freedom of the QuadRotor helicopter are un-
stable, a cascade control strategy has also been performed, where the MPC
algorithm used in Chapter 3 for the xy-motion has been used to generate the
roll and pitch reference angles. Simulations results and a quantitative ana-
lysis have been performed, which has demonstrated that using the proposed
underactuated controller the accumulative error of the active DOF has been
decreased with smoother control signals.

The nonlinear %, controller using the reduced model has also been imple-
mented to control two vehicles based on the inverted pendulum concept,
where the controlled DOF have been chosen as the passive ones. Ex-
perimental results have been obtained with a two-wheeled self-balanced
vehicle.

Additionally, an approach of the nonlinear J#, controller for mechanical
systems has been proposed allowing to weight different dynamics of the
system.

e A nonlinear J%, control strategy for underactuated mechanical systems
with input coupling has been provided to avoid the use of cascade con-
trol structures and augmented state vector. This controller considers the
entire dynamic of the underactuated mechanical system allowing regulates
the controlled degrees of freedom while the remaining ones are stabilized.
Moreover, it has guaranteed robustness for the path tracking of the Quad-
Rotor helicopter without the necessity of an outer controller. The good
performance attained by this control strategy has been corroborated by sim-
ulation results, which has improved the ISE and IADU performances in-
dexes of all control input and controlled DOF. Experimental results have
also been obtained with a two-wheeled self-balanced vehicle.
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Normally, the controllers designed for mechanical system are based on nom-
inal models. However, as it is well known, these models involve both structural
and parametric uncertainties. Moreover, the nonlinear .77, controllers presented
in Chapters 3 and 4 have been developed under the assumption that all uncertain-
ties affecting the system are external disturbances. Nevertheless, this hypothesis is
not very realistic. Therefore, in Chapter 5, a solution for the algorithm presented
in Ortega et al. (2005) has been proposed to improve the robustness of the nonli-
near %, controllers designed for mechanical systems, where an additional control
signal has been computed by means of the saturation functions technique to deal
with modeling errors. Preliminary simulation results have been obtained with two
control strategies presented in the thesis to solve the path tracking problem for
the QuadRotor helicopter: the IntBS-NLJZ, and the Entire UActNL.JZ,. Both
simulation collections have presented a reduction of the tracking error of the con-
trolled DOF, corroborating the method by using the proposed solution. Despite
the good results obtained in Chapter 5, it can be stated that to improve the results
achieved with the proposed nonlinear .7, controller for underactuated mechan-
ical systems, the scaling of the complete dynamic model must be performed when
different dynamics are considered by the controller.

6.2 Future Works

In this section are described some possible directions for future researches in con-
tinuation of this work, including some already started

o Implementation of the proposed control strategies. As commented in Chapter
2, a QuadRotor helicopter is being constructed in the Automation, Control
and Robotic Group, Department of Systems Engineering and Automation at
the University of Seville. Therefore, an immediately goal is the implement-
ation of the control strategies presented in this thesis to the real vehicle.

e Guaranteed state estimation. One drawback when designing controllers
for UAV is whether all states are accessible, and if they are not, how to
estimate state vector to perform a feasible path tracking. Moreover, usually
the available sensors provide measures with bounded errors. An approach
to estimate the state vector through these inaccuracy measures is by means
of set-membership methods. For example, if the QuadRotor helicopter is
equipped with a GPS, the measurement error can be in a range of +2m, or
more, as well as to feedback the controller at least every second. However,
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the translational dynamic for this kind of vehicle can be of the order of
milliseconds. Thus, between each GPS sampling time, the translational
state vector must be estimated and guaranteed to be into a feasible set, and
after a measured data is received, it must be updated.

e Nonlinear F€, control for underactuated mechanical systems via output

feedback. Following the research line presented above, to extend the non-
linear .7, controllers for underactuated mechanical systems, presented in
Chapter 4, to the control law design via output feedback.

Study of the boundary layers to ensure stability of the cascade control
strategies. The cascade control structures presented in this thesis are com-
posed by inner and outer loop controllers, which are designed to obtain
stability for each loop separately. However, when both controllers are com-
bined no analysis has been made. By simulation results, it can be observed
that the complete closed-loop system is stable, but it must also be demon-
strated analytically. To perform this analysis, a suitable choice is the singu-
lar perturbation methods, where the outer loop is the slow dynamic, while
the inner loop is the fast one.

Consideration of the rotor’s closed-loop dynamics. Taking into account that
the QuadRotor helicopter in a small scale is powered by electrical batteries,
in the course of time the batteries are discharged. This leads to a loss of
thrust generated by the propellers, whose are not able to maintain the same
velocity required by the rotational and translational controllers. Therefore, a
rotor speed controller is required to ensure a regular performance through-
out the flight. This control system results in having to consider a third
closed-loop dynamic in the cascade control analysis. Hence, the three dy-
namics to be considered are: the translational motion (slow dynamic), the
rotational motion (fast dynamic) and the rotor speed control loop (ultra-fast
dynamic).

Visual feedback control of the QuadRotor helicopter. Implementation of
visual tracking and visual servoing techniques to estimate the position and
attitude of the helicopter, and also to perform visual feedback control. Al-
ternatively, it can be integrated both features in techniques as one proposed
by Malis and Benhimane (2005).

e Networked control system. In the case that the UAV is controlled from a

ground station, there is the possibility of losing data packages, both in send-
ing control signals and the reception of signals measured. The information
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loss caused by encoding and decoding of the transmitted signals must be
added to this problem, as well as the data transmission rate. These prob-
lems are particularly interesting to this kind of systems when considering
their unstable behavior.

o Extension of the nonlinear F¢, controllers to time-delay systems. Some of
the most common dynamic phenomena that appear in engineering applica-
tions are time-delays between the input and output variables. An emerging
research line is how to treat the time-delay systems trough the nonlinear
control theory. Recently works try to extend the predictor feedback idea to
nonlinear systems, systems modeled by partial differential equations, sys-
tems with uncertain or totally unknown time-delay in the input-output chan-
nel, etc. The approach based on PDEs or DDEs (Delay Differential Equa-
tions) generates Lyapunov-Krasovskii functionals that allow a constructive
control design and the stability analysis. Moreover, this approach based on
PDEs allows an extension of predictor feedback design to nonlinear systems
and to the robust and adaptive control of systems with unknown time-delay.

Following this research line and through the nonlinear .77, controllers de-
signed for fully and underactuated mechanical systems presented in this
thesis, one objective is to extend these controllers to time-delay systems.
Thus, the control of remote autonomous vehicles can be performed, for ex-
ample, underwater autonomous vehicles in offshore petrol exploration and
aerospace robotics.
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A.1 Motivacion

El desarrollo de vehiculos aéreos no tripulados (en inglés conocidos como UAV’s
- Unmanned Aerial Vehicles) ha despertado un gran interés en el drea de control
automatico en las dltimas décadas. Varios campos del control y de la robética,
como por ejemplo la fusién de sensores, técnicas de visién por computador, es-
timadores de estado y metodologias de control, han sido investigados para mejorar
el comportamiento de estos sistemas. Los UAV’s han sido utilizados tanto en el
dmbito militar como en el civil, centrdndose en las tareas de bisqueda y rescate,
exploracién de edificios, seguridad, inspeccién y cinematografia aérea, asi como
para maniobras acrobdticas (Pallet and Ahmad, 1991). Es de destacar, ademads,
que los UAV’s son muy utiles, sobre todo, cuando estas tareas son ejecutadas en
entornos peligrosos e inaccesibles.

Hasta hace poco tiempo, desarrollar un vehiculo aéreo en escala miniatura
y controlado de manera auténoma era un desafio para muchos investigadores,
lo cual estaba limitado por las restricciones impuestas por el hardware, hasta



228 A Introduccion

entonces existente. Lo que hizo posible la construccién exitosa de vehiculos aé-
reos autonomos fueron los avances tecnolégicos en actuadores y sensores en es-
cala reducida, los llamados MicroElectroMechanical Systems (MEMS), asi como
en el almacenamientos de energia y en el procesamiento de datos.

Por otra parte, el desarrollo de sistemas de control para este tipo de vehiculos
no es trivial. Los UAV’s tienen un comportamiento altamente no lineal y variante
en el tiempo y estdn constantemente afectados por perturbaciones aerodindmicas.
Ademads, suelen estar sujetos a dindmicas no modeladas e incertidumbres para-
métricas. Esto significa que las leyes cldsicas de control lineal y monovariables
pueden presentar una cierta limitacién con respecto a su cuenca de atraccidn, pro-
vocando inestabilidades cuando el sistema estd funcionando en condiciones le-
janas del equilibrio. Por lo tanto, son necesarias estrategias avanzadas de control
para hallar un buen desempefio durante vuelos totalmente auténomos, o por lo
menos, para ayudar el pilotaje del vehiculo, con alta maniobrabilidad y robustez
con respecto a las perturbaciones externas.

En relacién a esto, se debe tener en cuenta que, debido al disefio electromeca-
nico de los vehiculos aéreos, gran parte de estos vehiculos son sistemas mecdnicos
subactuados (esto es, poseen menos entradas de control que grados de libertad).
Generalmente, el disefio electromecanico se realiza con el fin de buscar una reduc-
cién de la masa y del coste del vehiculo. Sin embargo, los sistemas subactuados
conllevan una mayor complejidad y un desafio adicional al drea de control. Las
técnicas desarrolladas para robots totalmente actuados tampoco se pueden aplicar
directamente a este tipo de sistemas mecdnicos, ya que la mayoria de los sistemas
subactuados no son totalmente linealizables por realimentacién y presentan res-
tricciones no holénomas (Fantoni and Lozano, 2002; Aguiar, 2002). De ahi que
las técnicas de modelado no lineal y la teoria de control no lineal moderna son
normalmente empleadas para alcanzar un alto desempefio en vuelos auténomos y
en condiciones de vuelo especificas, tales como: vuelo estacionario, aterrizaje y
despegue, etc (Frazzoli et al., 2000; Isidori et al., 2003; Castillo et al., 2005b).

Los objetivos de un sistema de control de vuelo pueden clasificarse en tres
fases, en funcién de la autonomia que alcance el sistema:

o Sistemas de estabilizacion (del inglés SAS: Stability Augmentation Sys-
tems): Este tipo de sistemas persigue ayudar al pilotaje del vehiculo, es-
tabilizando el sistema con un control de bajo nivel. Asi se evita que el
piloto deba actuar en base al comportamiento dindmico de un sistema, que
una vez alejado de cierto punto de equilibrio, deja de ser intuitivo para el
razonamiento humano.
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o Sistemas de control (del inglés CAS: Control Augmentation Systems): Estos
sistemas estdn en un nivel jerdrquico superior a los SAS. Asi, ademds de es-
tabilizar al vehiculo, estos sistemas deben ser capaces de proporcionar una
respuesta con ciertas prestaciones a referencias que proporcione el piloto,
como por ejemplo, el seguimiento del angulo de cabeceo.

o Sistemas de pilotaje automdtico (del inglés Autopilots): Constituyen el nivel
de control jerdrquicamente superior. Son sistemas de control totalmente
automadticos que son capaces de realizar por si solos ciertos tipos de manio-
bras, como por ejemplo, el despegue, el aterrizaje, o vuelo estacionario a
cierta altura.

En el area de control de vuelo, los sistemas mas estudiados han sido los avi-
ones y helicopteros convencionales (es decir, helicépteros con rotores principal y
de cola). Sin embargo, en los dltimos afios, UAV’s en la configuracién QuadRotor
han destacado en una gran cantidad de trabajos producidos con ellos, los cuales
presentan algunas caracteristicas ventajosas en comparacién con el helicéptero
convencional, tales como:

e El helicéptero QuadRotor estd propulsado por cuatro rotores, lo que hace
posible reducir el tamafio de cada rotor y mantener o aumentar la capacidad
de carga total, en comparacién con la de un helicéptero con un rotor prin-
cipal.

e Estos vehiculos no requieren accionamientos mecanicos para actuar en las
hélices. Esto reduce el disefio, mantenimiento y coste del vehiculo (Hoff-
mann et al., 2007).

e La sencillez del disefio mecénico permite el control de movimiento a través
de accionamiento directo de los rotores variando sus velocidades. En un
helicéptero convencional, la velocidad de giro de las hélices suele ser cons-
tante, controlando el movimiento mediante la variacién de los dngulos de
ataque de las palas (ciclico y colectivo). Esto requiere transmisiones entre
los rotores, bien como dispositivos mecdnicos de precisién para poder variar
los mencionados dngulos.

e Estos helicopteros son interesantes para el uso en el interior de edificios
debido a la utilizacién de motores eléctricos en lugar de los de combustion,
ya que no contaminan el aire con carburantes.
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e Se basan en el concepto VTOL (en inglés Vertical Take-Off and Landing)
que normalmente se utiliza para desarrollar leyes de control. El QuadRotor
intenta lograr un vuelo estable y estacionario a través del balance de las
fuerzas producidas por los cuatro rotores (Castillo et al., 2005b).

e Las ventajas anteriores sumadas a su alta maniobrabilidad, permite despe-
gues y aterrizajes, asi como vuelo en entornos complicados.

El principal inconveniente de este tipo de UAV es que presenta un aumento de
peso y de consumo de energia debido a los motores adicionales.

Desde el punto de vista del control, 1a construccién de este tipo de helicptero
en miniatura estd lejos de simplificar el problema, mds bien sucede lo contrario.
Esto se debe a los pares y fuerzas necesarios para controlar el sistema son aplica-
dos no sélo a través de los efectos aerodindmicos, sino también a través del efecto
de acoplamiento que aparece entre la dindmica de los rotores y la del cuerpo del
helicéptero. Este efecto de acoplamiento se debe al principio de accién y reaccién
originado en la aceleracion y desaceleracion de las hélices (efecto que no sucede
en el control con velocidad de hélices constante).

A pesar de los efectos de acoplamiento mencionados anteriormente, la falta
de acoplamiento entre las entradas tiene algunas implicaciones para el disefio de
control de la dindmica del QuadRotor. Tal desacoplamiento surge de la suposicién
de que el helicoptero estd en una configuracién coplanaria, es decir, las cuatro
hélices son paralelas entre si, generando el vector de fuerza con elementos sélo en
el eje vertical. Por lo tanto, si se consideran como salidas a controlar la posicion de
traslacién y el dngulo de guifiada, una linealizacion por realimentacién estdtica de
la dindmica completa del helicéptero QuadRotor da lugar a una matriz singular
haciendo que el desacoplamiento entrada-salida sea inviable. Por lo tanto, esta
técnica de control no se puede utilizar directamente (Mistler et al., 2001). Este
hecho, unido con el acoplamiento entre las dindmicas de los rotores y el cuerpo
del helicéptero, asi como incertidumbres del modelo, especialmente en el rango
de alta frecuencia, hacen que el sistema sea incluso mds dificil de controlar que
un helicéptero convencional, al menos empleando técnicas basicas de control.

A.2 [Estado del Arte

Muchos esfuerzos han sido realizados para controlar helicépteros basados en cuatro
rotores y varias estrategias han sido desarrolladas para hacer frente al problema
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de seguimiento de trayectorias para este tipo de sistema. En general, se utilizan
dos tipos de estrategias para realizar el seguimiento de trayectorias del helicop-
tero QuadRotor. Por un lado, gran parte de las estructuras utilizan estrategias de
control en cascada, las cuales usan un bucle de control interno para el subsistema
de rotacion, o en algunos casos para los grados de libertad actuados, combinado
con un bucle de control externo para controlar los movimientos de traslacién. Sis-
temas de control que utilizan esta estrategia pueden ser encontrados en Chen and
Huzmezan (2003) y Bouabdallah and Siegwart (2007). Por otro lado, otras es-
tructuras de control usan un espacio de estados aumentado (Mistler et al., 2001;
Mokhtari et al., 2006b), donde se considera un doble integrador en el empuje, la
entrada de control de altura, que genera acoplamiento entre los movimientos de
traslacién y rotacién, permitiendo utilizar técnicas de linealizacién por realimen-
tacion.

En Mistler et al. (2001) se utiliz6 un modelo no lineal que representa tanto
la cinemética como la dindmica del vehiculo, y a través de las Leyes de New-
ton se obtuvieron las ecuaciones dindmicas para el helicéptero QuadRotor. En
este modelo se consideraron las fuerzas y momentos aerodindmicos actuantes en
el sistema. Para realizar la tarea de seguimiento de trayectorias se demostré que
no se pueden desacoplar las salidas deseadas por linealizacién por realimenta-
cidn estatica, y se propuso un controlador con desacoplamiento entrada-salida y
linealizacidn exacta por realimentacion dindmica.

En Bouabdallah et al. (2004a) se disefié un controlador basado en una funcién
de control de Lyapunov para estabilizar el subsistema de rotacién, y usando la
misma técnica de control, el control de la altura fue implementado en cascada. En
Bouabdallah et al. (2004b), se obtuvieron las ecuaciones del movimiento del he-
licéptero QuadRotor a través de la formulacién de Euler-Lagrange, considerando
ademds las dindmicas de los rotores. En este trabajo se realizé una comparacién
entre dos técnicas de control, un PID y un Regulador Cuadrético Lineal, donde se
ha considerado un modelo linealizado para disefar el controlador PID. El desar-
rollo del control LQ fue basado en un modelo variante con el tiempo. En Castillo
et al. (2005a, 2007) se han disefiado controladores no lineales para estabilizar el
QuadRotor basado en el andlisis de Lyapunov y en técnicas de saturaciones an-
idadas. En Park et al. (2005) se ha usado un algoritmo para la compensacion de
la dindmica del vehiculo para controlar el sistema. En Lara et al. (2006) se han
presentado nuevos resultados para calcular el margen de robustez del sistema de
control para un helicéptero QuadRotor utilizando un PID multivariable para es-
tabilizar la posicién del vehiculo. En Das et al. (2009b) se ha considerado una
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estrategia con dos bucles utilizando linealizacién entrada-salida para disefiar un
controlador no lineal con dindmica inversa del bucle interno y un bucle externo
para estabilizacién de la dindmica interna. En Onkol and Efe (2009) cuatro téc-
nicas de control fueron comparadas para resolver el problema de seguimiento de
trayectorias: esquema de control PID, control de modos deslizantes, backstepping
y linealizacién por realimentacion.

En Mederreg et al. (2004) se mostraron resultados de simulacién para un con-
trol basado en técnicas de backstepping combinado con un observador del estado,
mientras que en Mahony and Hamel (2004) se combind esta técnica con un control
basado en Lyapunov. En Bouabdallah and Siegwart (2005) el modelo dindmico
del helicéptero QuadRotor fue dividido en dos subsistemas: de rotacién angular
y de traslacién lineal. Se presentaron dos técnicas de control: backstepping y
modos deslizantes. En varios trabajos se ha utilizado la técnica de backstepping
para realizar tanto el seguimiento de trayectorias cuanto la estabilizacién heli-
coptero QuadRotor. Controladores backstepping aplicados al helicéptero pueden
ser encontrados en Madani and Benellegue (2006a,b); Madani and Benallegue
(2007); Zemalache et al. (2007) y Guenard et al. (2008).

Aunque varias estrategias de control han sido probadas en el helicéptero Quad-
Rotor, gran parte de ellas no considera perturbaciones externas en los seis grados
de libertad, dindmicas no modeladas e incertidumbres paramétricas en todo el mo-
delo. Por ejemplo, en Bouabdallah and Siegwart (2005), Castillo et al. (2005a) y
Zemalache et al. (2007), los controladores propuestos no son capaces de rechazar
perturbaciones mantenidas y en Mistler et al. (2001) apenas se consideran per-
turbaciones en los movimientos de traslacion.

Sin embargo, en los ultimos afios, algunos investigadores han empezado a
considerar estos efectos en la etapa de disefio de control y, por ejemplo, han
sido desarrolladas técnicas robustas de modos deslizantes y backstepping tam-
bién, ademds de como observadores de las perturbaciones. En Mokhtari et al.
(2006b) se ha disefiado un controlador basado en linealizacién por realimentacion
combinado con un observador basado en la técnica de modos deslizantes para el
helicéptero QuadRotor. Un observador adptativo se ha afiadido al sistema de con-
trol para estimar el efecto de las perturbaciones externas. En Xu and Ozgiiner
(2006), se sintetiz6 un controlador basado en modos deslizantes, mientras que Xu
and Ozgiiner (2008) propusieron un abordaje usando un controlador de modos
deslizantes para sistemas mecénicos subactuados para estabilizar un helicéptero
QuadRotor cuando se considera un 30% de incertidumbre en cada pardmetro del
modelo. En Lee et al. (2009), los resultados obtenidos con un controlador usando
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linealizacién por realimentacion fueran comparados con los obtenidos con un con-
trol de modos deslizantes adaptativo usando un vector de entrada aumentado para
hacer frente a propiedades de sistemas subactuados, incertidumbre paramétrica
y ruido de sensores. En Kim et al. (2010) se propuso un controlador basado en
observador de perturbaciéon usando el modelo dindmico para control robusto en
vuelo estacionario, que es un compensador del bucle interno.

En Bouabdallah and Siegwart (2007) se abordé la técnica backstepping util-
izando accidn integral para mejorar el desempefio del seguimiento de trayectorias
para el helicoptero QuadRotor cuando vientos mantenidos perturban todo el sis-
tema. En Das et al. (2009a), un controlador basado en la técnica backstepping fue
usado para controlar el helicoptero QuadRotor, aplicando el procedimiento del
backstepping a la forma Lagrangiana de la dindmica. Ademads, se han introducido
redes neuronales para estimar las componentes aerodindmicas.

El uso de la accién integral en la técnica de backstepping fue propuesto inicial-
mente por Kanellakopoulos and Krein (1993). La manera mds comun de incluir
la accién integral en este enfoque es usando adaptacion paramétrica (Krstic et al.,
1995). Un andlisis de diferentes técnicas usando la accién integral en el control
backstepping se llevé a cabo en Skjetne and Fossen (2004), donde se present-
aron otros dos métodos que consisten en aumentar la dindmica del sistema con la
accioén integral como un estado.

En algunos trabajos el helicéptero QuadRotor ha sido controlado usando un
controlador %, lineal basado en modelos linealizados. En Chen and Huzmezan
(2003), se present6 un modelo no lineal simplificado para el movimiento del UAV.
El problema de seguimiento de trayectorias se dividi6 en dos partes, en primer
lugar se buscé la estabilizacién de las velocidades angulares y de la velocidad
vertical a través de un controlador 77, de 2DOF utilizando la técnica de loop
shaping. La misma técnica se ha utilizado para controlar, en un bucle externo
las velocidades longitudinal y lateral, el 4ngulo de guifiada y la altura. En la
segunda parte, para resolver el problema de seguimiento de trayectorias se disefi6
un controlador predictivo basado en un modelo incluyendo los bucles internos
y el modelo del helicéptero. En Mokhtari et al. (2005, 2006a) se ha aplicado
una linealizacién por realimentacion robusta con un controlador 7%, lineal para
tratar el problema de seguimiento con incertidumbre paramétrica y perturbaciones
externas.

Adicionalmente al control inercial, el helicoptero QuadRotor ha sido también
controlado mediante realimentacién por visién artificial. En Altug et al. (2002),
se ha usado una cdmara en tierra para estimar la posicién y orientacién del heli-
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coptero, mientras en Tournier et al. (2006) se ha utilizado una cdmara montada
sobre el vehiculo utilizando patrones de Moiré para obtener una estimacion de los
seis grados de libertad. En Altug et al. (2005) se usaron dos cdmaras para estimar
los seis grados de libertad del helicéptero, una de ellas montada sobre el QuadRo-
tfor, mientras que la otra cdmara estaba localizada en el suelo. Para conseguir un
helicéptero auténomo, dos métodos de control fueron utilizados: un controlador
backstepping y un controlador con linealizacién por realimentacién. En Metni
et al. (2005), se consideré un modelo dindmico mecénico general del UAV apto
para realizar vuelos estacionarios. La estimacion de la posicion y orientacién se
realizé a través de visién utilizando una técnica de control servo visual basada
en homografia. Asi, se dedujo una ley de control basada en Backstepping que
fuerza la trayectoria a seguir a través de una secuencia de imagenes pregrabadas.
La trayectoria deseada se obtiene a través de un operador que ensefia cada paso
preliminarmente, siendo comparadas la imagen actual y la imagen deseada a una
imagen de referencia por las matrices homograficas en cada paso. Para determinar
el vector de traslacion se estima la informacién de la profundidad de referencia
usando una ley de control adaptativa.

Ademds, hay dos cuestiones que vale la pena sefialar. Por un lado, muchas de
estas aplicaciones de control asumen que los valores calculados nunca alcanzarin
los limites de saturacidon de los actuadores, aunque en la practica esto es pos-
ible. Por ejemplo, cuando el vehiculo estd muy lejos de su destino, las sefiales de
control generadas son normalmente m4s altas que las admisibles. Sin embargo,
los vehiculos estdn dotados de partes mecdnicas y electronicas, las cuales estdn
sujetas a limitaciones fisicas del sistema.

Cuando estas restricciones deben ser consideradas, los algoritmos de MPC
se presentan como una interesante eleccion. El objetivo del MPC es calcular ac-
ciones de control para un determinado horizonte de tiempo futuro, de tal manera
que la prediccion de la salida de la planta siga cerca de la referencia, minimizando
una determinada funcién de coste multiobjetivo respecto a acciones de control fu-
turo. Para hacer esto, los valores de las salidas predichas son calculadas como
una funcién de valores pasados de las entradas y salidas, y de sefiales de control
futuras, haciendo uso de un modelo explicito del proceso y sustituyéndolo en la
funcién de coste, obteniendo una expresién cuya minimizacién conduce a los va-
lores deseados. Se puede obtener una solucién analitica para una funcién de coste
cuadrdtica, si el modelo es lineal y no existen restricciones; en caso contrario
se deben usar métodos iterativos de optimizacién (Camacho and Bordons, 1998;
Mayne et al., 2000; Rawlings and Mayne, 2009).
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Ademas, la formulacién del MPC genera (implicitamente) una ley de control
no-suave (discontinua). Dado que las trayectorias son normalmente conocidas y
usando una adecuada instrumentacién en el vehiculo que informe sobre su despla-
zamiento y localizacién, o bien con informacién del entorno donde se encuentra
(usando, por ejemplo, GPS, mapas digitales, etc), el controlador predictivo se
presenta como una técnica muy apropiada para esta tarea. Ademds de conducir
el vehiculo suavemente, esta técnica permite mejorar la autonomia del mismo,
aparte de ser facilmente extendido a sistemas multivariables. Como desventaja
se puede considerar el elevado coste computacional introducido, que puede hacer
que sea imposible realizar aplicaciones reales.

Por otro lado, es bastante comin asumir que todos los estados estdn accesibles
para los controladores. En general, esto puede resultar en dificultades para las ap-
licaciones practicas. Para evitar estos problemas practicos, en algunos trabajos se
han propuesto observadores de estado para estimar la velocidad lineal del helic6p-
tero QuadRotor. En Benzemrane et al. (2007) un estimador no lineal adaptativo
fue propuesto para mejorar la robustez de la estimacion de velocidad cuando sélo
se dispone de medidas de la aceleracion lineal, de los dngulos y de la velocidad
angular. En Benzemrane et al. (2008) la estimacién de velocidad se observd a
través de un filtro de Kalman y de un observador adaptativo, siendo corroborado
con medidas de aceleracion lineal exactas y ruidosas. Al mismo tiempo, hay una
gran variedad de sensores disponibles que proporcionan las medidas necesarias.
Por ejemplo, los dngulos de Euler y las velocidades angulares pueden ser obteni-
das a través de una Unidad de Medicion Inercial (del inglés Inertial Measurement
Systems - IMU). Ademads, si esto se combina con GPS (o GPS diferencial), la
posicion lineal y velocidad lineal también pueden ser medidas. En esta etapa es
necesario tener en cuenta los objetivos de la aplicacién, como, por ejemplo, si
el UAV debe volar en interiores o al aire libre, o si la precision del GPS es ad-
misible. Otros tipos de sensores también pueden ser utilizados para estimar la
posicién y orientacién del UAV, como los sistemas de ultrasonido en un entorno
estructurado (Roberts et al., 2007), sistemas de vision (Altug et al., 2002; Metni
et al., 2005; Tournier et al., 2006; Guenard et al., 2008) y sistemas de seguimiento
3D (POLHEMUS) (Castillo et al., 2005a; Guisser et al., 2006).

Aparte de lo mencionado, las investigaciones sobre la coordinacién de mul-
tiples UAV’s usando helicépteros en la configuraciéon QuadRotor han generado
un gran interés en los ultimos afios , sobre todo en la comunidad de robdtica.
Algunos trabajos en este campo pueden ser citados, tales como Hoffmann et al.
(2006); Bethke et al. (2007); Michael et al. (2010b,a).
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En esta tesis, serd abordado el problema de seguimiento de trayectorias para
un dnico helicéptero QuadRotor, donde el objetivo principal es mejorar la ro-
bustez de las estrategias de control cuando el vehiculo estd volando en presen-
cia de perturbaciones externas, dindmicas no modeladas e incertidumbres para-
métricas.

A.2.1 Control JZ, No Lineal para Sistemas Mecanicos

Como se puede deducir de lo presentado anteriormente, muchas estrategias de
control han sido aplicadas al helicéptero QuadRotor, pero la mayoria no con-
sidera incertidumbres paramétricas ni perturbaciones externas. Sin embargo, los
UAV’s estdn constantemente afectados por incertidumbres del modelo y rdfagas
de viento, que pueden ficilmente desestabilizar el vehiculo.

Una seleccién adecuada para rechazar estas perturbaciones es la teorfa de con-
trol 7% no lineal. Los primeros esfuerzos para extender el problema de control
., a sistemas no lineales se hizo en los afios ochenta. En Ball et al. (1987a,b)
se formul6 el problema no lineal para sistemas en tiempo discreto y, utilizando
Series de Volterra, se encontraron soluciones aceptables. La solucién para siste-
mas no lineales continuos en el tiempo fue proporcionada por van der Schaft en
van der Schaft (1991) y van der Schaft (1992).

El objetivo de la teoria .77, es hallar un relacion acotada entre la energia de
las sefiales de error y la energia de las sefiales de perturbacién. En general, el
abordaje no lineal de esta teoria considera una ecuacién en derivadas parciales de
Hamilton-Jacobi (EDP HJ), que reemplaza la ecuacién de Riccati en el caso de la
formulacién de control .7, lineal. La solucién del problema de control 7, no
lineal se puede obtener a través de dos enfoques: teoria de juegos diferenciales
(Doyle et al., 1989; Basar and Bernhard, 2008) y teoria de sistemas disipativos
(van der Schaft, 2000). El principal problema en el caso no lineal es la falta de
un método general para resolver esta EDP HJ. Por lo tanto, se deben resolver
soluciones analiticas para cada caso particular.

Debido a la dificultad de obtener soluciones analiticas, algunos trabajos pro-
ponen métodos numéricos que permiten integrar tales ecuaciones, por ejemplo,
métodos de Galerkin y Series de Taylor (Beard et al., 1997; Beard and McLain,
1998; Beard et al., 1998; Hardt et al., 2000).

Dado que el interés principal de esta tesis es trabajar con modelos de sistemas
mecdnicos obtenidos a través de la formulacién de Euler-Lagrange, las soluciones
del control J#, no lineal se pueden encontrar minimizando las fuerzas que rea-
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lizan trabajo sobre el sistema, como fue expuesto en Johansson (1990). En este
articulo, el autor propuso una solucién para el problema de control 6ptimo 743
no lineal para sistemas mecdnicos totalmente actuados. A partir de este trabajo
pionero, una enorme cantidad de modificaciones han sido realizadas para formu-
lar controladores no lineales /%3, 7., y 7/ /. para sistemas mecanicos (Chen
et al., 1994; Feng and Postlethwaite, 1994; Astolfi and Lanari, 1994; Kang, 1995;
Chen et al., 1997; Postlethwaite and Bartoszewicz, 1998). En Sage et al. (1999) se
present6 un estudio de control robusto de robots manipuladores, donde se puede
encontrar un breve resumen del control .72, no lineal aplicado a sistemas mecdni-
COS.

Una solucién parametrizada global y explicita para el problema 6ptimo 7% a
través de realimentacion de estados, formulada como un juego min-max, fue de-
sarrollada en Chen et al. (1994). Esta solucion trata el caso particular de sistemas
mecdnicos totalmente actuados formulados via ecuaciones de Euler-Lagrange,
utilizando la ecuacién de estados del error de seguimiento propuesta por Johans-
son (1990) y propiedades de sistemas mecénicos. En el mismo afio, Feng and
Postlethwaite (1994) propusieran una formulacion similar al controlador .77, no
lineal con realimentacién de estados para sistemas robodticos, donde la variable de
coste considera el acoplamiento entre las variables controladas y la ley de con-
trol por realimentacién de estados, proporcionando mds grados de libertad para el
disefio de control. Ademas, se presentd una ley de control .77, no lineal con un
enfoque adaptativo para mejorar la robustez del sistema completo.

En Ortega et al. (2005) se propuso una estrategia para controlar sistemas
mecdnicos totalmente actuados considerando la ecuaciéon dindmica del error de
seguimiento, donde se agregé la integral del error de posicion al vector del er-
ror. En tal estrategia se aplica un control %, no lineal formulado via teoria de
juegos, la cual provee, a través de una solucion analitica, una ley de control vari-
ante con el tiempo que es altamente dependiente del modelo y es similar a los
resultados obtenidos con procedimientos de linealizacién por realimentacién. Se
han establecido condiciones para formular el controlador en la forma de un PID
no lineal, donde la sefal de control puede ser penalizada, asi como las sefiales del
error, sus integrales y sus derivadas.

Algunos trabajos utilizando controladores no lineales %, % y .73 / #2 han
sido publicados en el drea de la aecrondutica. En Yang and Chen (2001), se utiliz6
la teoria de control .7ZZ, no lineal para disefiar una ley de control para guiar misiles
en el espacio tridimensional. En Chen et al. (2002), maniobras de persecucion de
misiles tacticos en el espacio tridimensional fue resuelto usando una ley de control
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€., no lineal basado en un modelo borroso. In Chen et al. (2003), se propuso
un control lateral mixto .74 /7%, adaptativo borroso de sistemas de misiles no
lineales con perturbaciones desconocidas. En Lépez-Martinez et al. (2007) se ha
controlado un helicéptero de laboratorio con dos rotores usando un controlador
% no lineal basado en un modelo de orden reducido de los rotores.

A.2.2 Sistemas Mecanicos Subactuados

Como se ha comentado anteriormente, los UAV’s son sistemas mecédnicos subac-
tuados, y el helicoptero QuadRotor no es diferente, ya que cuenta con seis grados
de libertad y s6lo cuatro acciones de control, los cuatro rotores. Los sistemas
mecdnicos subactuados aparecen en varias aplicaciones, tales como robots aer-
oespaciales y subacuéticos, sistema moviles, sistema flexibles, robots caminantes,
braquiadores y gimnastas. De acuerdo con Olfati-Saber (2001), la propiedad de
subactuacién de sistemas subactuados se debe a cuatro razones: la dindmica del
sistema, el disefio para la reduccién de coste o algunos fines précticos, el fallo de
actuadores y la imposicién artificial para crear sistemas no lineales complejos de
orden reducido con el fin de ampliar el conocimiento sobre el control de sistemas
subactuados de orden superior.

En el 4rea de control de sistemas mecénicos subactuados, una importante con-
tribucion se ha presentado en Spong (1994), donde los autores usan la linealiza-
cion por realimentacion parcial propuesta por Isidori (1989) para linealizar los
grados de libertad no actuados.

El control de movimiento de sistemas mecdnicos subactuados es frecuente-
mente dificil debido a las restricciones no holénomas en la aceleracion generada
por la subactuacién, que resulta en la imposibilidad de regular todos los grados
de libertad del sistema en el mismo instante de tiempo en un posicién deseada.
En Wichlund et al. (1995) se han estudiado propiedades de control de las dindm-
icas de vehiculos subactuados (esto es, vehiculos subacuadticos, helicopteros, avi-
ones, etc). Una interesante propiedad de este tipo de sistemas fue presentada,
la cual dice que los sistemas mecédnicos subactuados con campo gravitacional
G(q) donde las componentes de G correspondientes a las dindmicas no actua-
das son nulas, no son C! asintéticamente estabilizables en un punto de equilibrio.
Olfati-Saber (2001) reescribi6 esta propiedad diciendo que si la energia potencial
7% (q) es independiente de la variable externa g,, o sea, 0% (q,,4s)/9q, = 0,
entonces g, = 0 (donde, g, es el término gravitacional del subsistema restante) y
el momento generalizado p, es una cantidad conservada. Por lo tanto, el sistema
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mecanico subactuado no es controlable o estabilizable en ningtin punto de equilib-
rio para condiciones iniciales con p,(0) # 0. El hecho de que el sistema no actu-
ado es un sistema Lagrangiano simple sin ninguna fuerza de entrada significa que
el sistema debe ser controlado a través de la fuerza potencial que es parametrizada
por g,. Por lo tanto, el vector de coordenadas moldeadas q, juega el papel de la
entrada de control para la dindmica del sistema restante. Ademads, en Reyhanoglu
et al. (1996, 1999) se derivan propiedades de controlabilidad y estabilizabilidad
de sistemas mecanicos subactuados con restricciones no holénomas de segundo
orden. Un interesante estudio sobre sistemas mecdnicos subactuados puede ser
encontrado en Spong (1998).

El seguimiento de posicién de sistemas mecdnicos subactuados se ha reali-
zado en varios trabajos utilizando controladores %5 no lineal. En Toussaint et al.
(2000) se controlé un modelo no lineal de un barco subactuado a través de una ley
de control JZ, con realimentacion de estados para seguimiento en presencia de
perturbaciones y medidas ruidosas de los estados. En Siqueira and Terra (2004a)
se presenté un control 2% no lineal para manipuladores subactuados, como una
extension del controlador propuesto por Chen et al. (1994). Los mismos autores
realizaron una comparativa de un controlador .7 no lineal basado en la teoria de
juegos con uno obtenido a través de una representacion casi-lineal con parametros
variantes (del inglés quasi-linear parameter varying - quasi-LPV) en Siqueira and
Terra (2004b), para controlar la posicién de manipuladores subactuados. En este
trabajo, ademds, se ha desarrollado un controlador .72, Markoviano para cuando
el manipulador subactuado esté sujeto a cambios bruscos en la configuracién. En
Siqueira et al. (2006) se han aplicado controladores no lineales obtenidos a través
de los problemas de optimizacion %, %, y /7 usando la teoria de jue-
gos a manipuladores subactuados a través de actuacién redundante. En He and
Han (2008) una ley de control con realimentacién de la aceleracion fue propuesta,
tanto para vehiculos auténomos totalmente actuados, como para los subactuados,
usando la teorfa J72,. Ademads, se han presentado resultados de simulacion del
seguimiento de trayectorias para un helicéptero.

A.3 Objetivos

El objetivo principal de esta tesis es contribuir para el desarrollo y aplicacion
de estrategias de control robusto para resolver el problema de seguimiento de
trayectorias para vehiculos aéreos auténomos. El UAV que serd utilizado es un
helicéptero QuadRotor en escala reducida, que se caracteriza por ser un sistema
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mecdanico subactuado. Asimismo, se busca el disefio de controladores .74, no
lineales para una clase de sistemas mecdnicos subactuados. En la Fig. A.l se
ilustra el diagrama de flujo utilizado para desarrollar esta tesis.
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Figure A.1: Diagrama de flujo de la tesis.

Normalmente, para el disefio de estrategias de control avanzado se necesita un
modelo dindmico preciso del sistema. Siendo asf, el primer objetivo planteado en
esta tesis es la obtencion de un modelo dindmico adecuado del helicoptero Quad-
Rotor con fines de disefio de control, teniendo en cuenta un equilibrio entre com-
plejidad y realismo. El sistema se basard en leyes fisicas para obtener un modelo
que represente el comportamiento del vehiculo en presencia de diversas fuentes
de incertidumbres y que sea apropiado al prototipo utilizado en este trabajo.

Dado que el helicoptero QuadRotor es un sistema mecdnico subactuado, una
manera comun para realizar el seguimiento de trayectorias de UAV’s es utilizando
estrategias de control en cascada. Por lo tanto, se proponen estructuras en cascada
para controlar dos subsistemas: el de rotacion y el de traslacion. Las técnicas de
control utilizadas en cada bucle se basaran en la teorfa de control 77, lineal y no
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lineal, en técnicas de backstepping y metodologias de control predictivo. Estas
técnicas serdn combinadas para obtener un sistema de control robusto en bucle
cerrado en presencia de perturbaciones externas, incertidumbres paramétricas y
dindmicas no modeladas. Ademds, se requiere un seguimiento de trayectorias
suave.

Sin embargo, se debe enfatizar que las estrategias de control en cascada poseen
un inconveniente. Aunque en los resultados de simulacidn, el sistema completo
en bucle cerrado presente un comportamiento estable, se requiere que esto sea
demostrable. Para evitar el uso de estructuras en cascada, se desarrollardn es-
trategias de control basadas en técnicas de control .72 no lineal aplicadas a sis-
temas mecdnicos subactuados. El objetivo es obtener una ley de control que
garantice robustez para el problema de seguimiento de trayectorias del helic6p-
tero QuadRotor sin la necesidad de estrategias en cascada. Adicionalmente, un
enfoque del controlador .7, no lineal para sistemas mecdnicos serd presentado,
permitiendo ponderar diferentes dindmicas del sistema.

Otra cuestion a ser abordada es 1la mejora de la robustez del controlador 572, no
lineal disefiado para sistemas mecénicos. Esta ley de control es calculada teniendo
en cuenta que todas las incertidumbres que afectan al sistema son perturbaciones
externas. Sin embargo, esta hipdtesis no es muy realista. Por lo tanto, para con-
traatacar este problema, serd presentada una solucién para robustificar la ley de
control 7, no lineal, donde se calculara una sefial de control adicional a través
de la técnica de funciones de saturacion para hacer frente a errores de modelado.

En general, esta tesis presenta un desarrollo tedrico de estrategias de control
robusto para resolver el problema de seguimiento de trayectorias para vehiculos
aéreos no tripulados, centradndose en sistemas mecédnicos subactuados.

A.4 Organizacion del Trabajo

Esta tesis estd organizada como sigue:

e El Capitulo 2 presenta el modelado del helicéptero QuadRotor. Se propor-
ciona una descripcién del funcionamiento del vehiculo, asi como las cara-
cteristicas estédticas de los grupos motor-hélice. Las ecuaciones del movi-
miento de un UAV son obtenidas a través de dos formulaciones: Euler-
Lagrange y Newton-Euler. Ademds, se proporcionan los pardmetros del
vehiculo aéreo no tripulado QuadRotor utilizados en esta tesis. En este
capitulo se presentan algunas propiedades ttiles de sistemas mecanicos.
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e El Capitulo 3 trata de estrategias de control en cascada para realizar el se-

guimiento de trayectorias del vehiculo, donde se destaca la busqueda de
una continua mejoria del desempefio. En este capitulo se divide el modelo
dindmico en dos subsistemas: el de rotacion y el de traslacién. El control
del subsistema de rotacion se realiza mediante un controlador .72 no lineal
a fin de estabilizar el helicéptero. Para el subsistema de translacién se han
aplicado tres técnicas para seguir la trayectoria deseada. Primero, se cal-
cula un controlador %, lineal con realimentacién de estados basado en el
modelo del error utilizando el métodos de sintesis a través de LMIs, que
asegura propiedades de robustez. Después de esto, se utiliza un controlador
predictivo en espacio de estados con accidn integral basado en el modelo
del error variante con el tiempo para seguir suavemente la trayectoria de
traslacién deseada. El dltimo controlador de traslacién utilizado se basa
en una técnica de control backstepping con accién integral para aumentar
la robustez en presencia de incertidumbres en el modelo y aumenta el es-
pacio de trabajo de los movimientos de traslacién cuando comparado con
los controladores anteriores del bucle externo. Se presentan resultados de
simulacién para corroborar las buenas caracteristicas de las estrategias de
control propuestas

El Capitulo 4 proporciona dos novedosos controladores .7 no lineales
para sistemas mecdanicos subactuados. El primer controlador se basa en un
modelo reducido, donde solamente se consideran los grados de libertad con-
trolados. Este controlador es aplicado en una estrategia en cascada al heli-
coptero QuadRotor, ademds, utilizado para controlar los grados de libertad
pasivos de dos vehiculos basados en el concepto del péndulo invertido. El
segundo controlador considera toda la dindmica del los sistemas mecénicos
subactuados, permitiendo regular los grados de libertad controlados mien-
tras los grados de libertad restantes son estabilizados. El helicéptero Quad-
Rotor es controlado sin la necesidad de estrategias en cascada ni el uso del
espacio de estados aumentado. Asimismo, resultados experimentales son
obtenidos con un vehiculo de dos ruedas auto-balanceado.

El Capitulo 5 trata con un método de robustificacion del controlador .77,
no lineal disefiado para sistemas mecdnicos. Se presenta una nueva solucién
para el algoritmo propuesto en Ortega et al. (2005). Este método se basa en
la técnica de funciones de saturacién. Resultados de simulacién son lleva-
dos a cabo con algunos de los controladores presentados en los Capitulos 3
y 4.
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e El Capitulo 6 resume las contribuciones y resultados presentados en esta

tesis y se sugieren posibles lineas de investigacién futuras.
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B.1 Aportaciones y Conclusiones de la Tesis

Esta tesis ha abordado el desarrollo de estrategias de control robusto para resolver
el problema de seguimiento de trayectorias para vehiculos aéreos auténomos,
centrandose en el helicoptero QuadRotor a pequeiia escala. Estas estrategias han
sido disefiadas teniendo en cuenta perturbaciones externas sostenidas que afectan
al sistema completo, dindmicas no modeladas, e incertidumbres estructurales y
paramétricas. Ademds, este tipo de UAV es un sistema mecénico subactuado, ya
que tiene seis grados de libertad y sdlo cuatro actuadores. Por lo tanto, se han
desarrollado también estructuras de control en cascada y controladores tinicos,
considerando esta caracteristica para conseguir el comportamiento deseado.

Normalmente, para disefiar estrategias de control avanzado es necesario obte-
ner un modelo dindmico del sistema preciso, teniendo en cuenta el compromiso
entre complejidad y realismo. De este modo, en el Capitulo 2, se ha descrito
inicialmente el funcionamiento del helicéptero QuadRotor, donde se ha expuesto
la relacion entre las fuerzas y pares aplicados al vehiculo y las velocidades de los
cuatro rotores. Ademds, se han deducido los movimientos rotacionales y trasla-
cionales, asumiendo un punto en el espacio, lo que permite obtener las ecuaciones
cinemdticas de un sélido rigido que se mueve en el espacio tridimensional. El
movimiento rotacional se describe mediante tres rotaciones sucesivas, usando los
llamados dngulos de Tayt-Bryan, los cuales son también conocidos como dngulos
nauticos o angulos de Euler ZY X .
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A partir de la matriz de rotacién y de las ecuaciones cinemadticas se han calcu-
lado las ecuaciones dindmicas del helicéptero, basadas en dos enfoques. Primero,
se ha usado la formulacién de Euler-Lagrange para obtener las ecuaciones de
movimiento del helicéptero QuadRotor, en las cuales se ha considerado que el
centro de masas del vehiculo estd desplazado del origen del sistema de coorde-
nadas de rotacién por una distancia r. Con esta suposicién se obtiene un mo-
delo dindmico no linear altamente acoplado. Para superar esto, se ha obtenido un
modelo simplificado del helicéptero QuadRotor para el disefio de controladores,
donde se asume que el centro de masas y el centro de rotacion coinciden. Este mo-
delo simplificado es un sistema descentralizado que permite separar el disefio de
controladores para los movimientos traslacionales y los rotacionales. El segundo
enfoque usado para la obtencién de las ecuaciones de movimiento del helicéptero
estd basada en la formulacién de Newton-Euler. Se han presentado también tanto
el modelo completo como el simplificado. De todas formas, esta formulacién se
ha usado sélo para ilustrar la relacién entre las fuerzas y pares obtenidas usando
los dngulos de Euler y su derivada temporal, y usando las velocidades angulares,
las cuales permiten obtener las fuerzas/pares aplicados al vehiculo.

Como el helicéptero QuadRotor es un sistema mecédnico subactuado, una
manera comun de realizar el seguimiento de trayectorias de UAV’s es usar es-
trategias de control en cascada. Asi, la mayoria de las contribuciones de esta
tesis con respecto a este tipo de estructuras de control han sido presentadas en
el Capitulo 3, donde se han usado diferentes técnicas de control para contro-
lar tanto los movimientos rotacionales como los traslacionales. Los controladores
han sido disefiados para conseguir robustez frente a incertidumbres paramétricas y
estructurales, y para rechazar perturbaciones mantenidas que actien sobre los seis
grados de libertad del helicoptero. Las contribuciones del Capitulo 3 se resumen
a continuacion:

e Para conseguir la estabilizacion del helicptero QuadRotor, se ha usado
un controlador JZ, no lineal, el cual es capaz de rechazar perturbaciones
externas mantenidas debido a que se ha incluido una accién integral en el
vector de errores de seguimiento. La ley de control se ha disefiado para
sistemas mecdnicos totalmente actuados. De ahi que los dngulos de Euler
se controlen mediante los momentos roll, pitch y yaw aplicados.

e El primer controlador traslacional se ha disefiado usando un controlador
2, lineal por realimentacién de estados, basado en el error del modelo,
donde se han considerado incertidumbres paramétricas. El método de sintesis
usado se ha basado en LMIs. La estrategia del control en cascada, combin-
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ando este controlador con el 7%, no lineal usado para estabilizar el vehiculo,
ha permitido rechazar perturbaciones externas mantenidas que afectan al
sistema completo. El controlador traslacional ha sido obtenido teniendo en
cuenta un vector de estados aumentado, donde se ha considerado la integral
del error de posicién de traslacion.

e Un segundo enfoque para disefiar el controlador traslacional ha sido usar un
algoritmo MPC, a la vez que se mantiene el controlador .77 no lineal para
la estabilizacion del helicéptero en el bucle interior. La razén principal para
el uso del MPC es que tiene caracteristicas predictivas. Como la trayectoria
de referencia es conocida normalmente, el MPC puede proporcionar un se-
guimiento suave. Para mantener el buen comportamiento del controlador
J€, lineal para el rechazo de las perturbaciones mantenidas que actian en
los movimientos traslacionales, se ha considerado la integral del error en
posicién también para este controlador.

El algoritmo MPC lineal que se usa considera que el vehiculo real sigue un
helicéptero virtual de referencia que estd sobre el camino deseado, origin-
ando el modelo del error, que es discreto y variante con el tiempo.

e La tercera ley de control aplicada al subsistema de traslacién se ha desa-
rrollado en base a la técnica de backstepping, mejorando la robustez en
presencia de incertidumbres en el modelo. De nuevo, se ha combinado el
controlador 7%, no lineal para el subsistema de rotacion, en la estructura
del control en cascada, con el controlador backstepping con accién integral.
Este controlador traslacional considera el término integral en el segundo
paso del procedimiento del backstepping, presentando asi mejores resulta-
dos que con un controlador que usa este término en el primer paso.

e Los resultados en simulacion se han realizado para corroborar el buen fun-
cionamiento de las estrategias propuestas de control en cascada para se-
guimiento de trayectorias, cuando se consideran incertidumbres en la masa
y en el momento del tensor de inercia, y en presencia de perturbaciones
externas mantenidas. Se ha realizado también una comparacion de los res-
ultados, donde se han usado los indices ISE y IADU para hacer un anélisis
cualitativo.

Del andlisis comparativo se puede observar que las estrategias de control
MPC-NLJZ, y IntBs-NLJZ, presentan menores errores acumulativos a lo
largo de las trayectorias. Sin embargo, cuando se analiza el esfuerzo de
control mediante el indice IADU, la estrategia de control IntBs-NL.7Z, ha
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presentado sefiales de control mas suaves. Ademas, a pesar de que todas las
estrategias de control en cascada propuestas en el Capitulo 3 han resuelto el
problema de seguimiento de trayectorias, sélo la estructura de control IntBs-
NLJZ, ha conseguido el objetivo de realizar el seguimiento de trayectorias
para el helicoptero QuadRotor con una respuesta rapida y una sefial de con-
trol suave.

En el Capitulo 4, se han propuesto estructuras de control 7% no lineal para

sistemas mecdnicos subactuados. Las contribuciones de este capitulo se detallan

a continuacién:

e Primero, se ha disefiado un controlador .7%, no lineal subactuado basado en

un modelo reducido, donde s6lo se han considerado los grados de libertad
controlados. La estructura de control permite considerar el comportami-
ento global del sistema en el momento para calcular las sefiales de control
aplicadas. Se ha aplicado el controlador a tres sistemas mecdnicos subac-
tuados diferentes. En el caso del helicoptero QuadRotor, este controlador
se ha usado para controlar los grados de libertad activos. Pero, a diferen-
cia de los controladores usados en el Capitulo 3, el controlador propuesto
usa la informacién de la dindmica de los GDL pasivos para generar la ley
de control, en vez de asumirlas como perturbaciones externas. Como los
grados de libertad pasivos del helicéptero QuadRotor son inestables, se ha
realizado también una estrategia de control en cascada, donde el algoritmo
MPC usado en el Capitulo 3 para el movimiento xy ha sido usado para gen-
erar los dngulos de referencia roll y pitch. Se han obtenido resultados en
simulacién y un andlisis cuantitativo, el cual ha demostrado que, usando el
controlador subactuado propuesto, el error acumulativo de los GDL activos
decrece con sefiales de control suaves.

El controlador .7 no lineal usando el modelo reducido se ha implementado
también para controlar dos vehiculos basados en el concepto del péndulo
invertido, donde se han elegido los GDL pasivos para seren controlados.
Se han obtenido resultados experimentales con un vehiculo de dos ruedas
auto-balanceado.

Adicionalmente, se ha propuesto un enfoque de un controlador .72 no li-
neal para sistemas mecdanicos, que permite ponderar dindmicas distintas del
sistema.

Para evitar el uso de estructuras de control en cascada y vectores de estado
aumentado, se ha proporcionado una estrategia de control .72 no lineal para
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sistemas mecdnicos subactuados con acoplamiento en las entradas. Este
controlador considera la dindmica completa del sistema mecédnico subac-
tuado permitiendo regular los grados de libertad controlados mientras que
los que queden son estabilizados. Ademads, se ha garantizado robustez para
el seguimiento de trayectorias del helicoptero QuadRotor sin necesidad de
un controlador externo. Por medio de resultados de simulacién, se ha cor-
roborado el buen funcionamiento de esta estrategia de control, la cual ha
mejorado los indices de comportamiento ISE y IADU para todas las entra-
das de control y GDL controlados. Se han obtenidos también resultados
experimentales con un vehiculo de dos ruedas auto-balanceado.

Normalmente, los controladores disefiados para sistemas mecanicos estin ba-
sados en modelos nominales. No obstante, como es bien sabido, estos modelos
implican incertidumbres tanto estructurales como paramétricas. Ademas, los con-
troladores 7%, no lineales presentados en los Capitulos 3 y 4 han sido desarro-
llados bajo la suposicién de que todas las incertidumbres que afectan al sistema
son perturbaciones externas. Sin embargo, esta hipétesis no es muy realista. Por
tanto, en el Capitulo 5, se ha propuesto una solucién para el algoritmo presentado
en Ortega et al. (2005) para mejorar la robustez de los controladores .72, no lin-
eales disefiados para sistemas mecanicos, donde se ha calculado una sefial de con-
trol adicional por medio de la técnica de funciones de saturacion para tratar con
errores de modelado. Se han obtenido resultados de simulacién preliminares para
dos estrategias de control presentadas en la tesis para resolver el problema de se-
guimiento de trayectorias para el helicoptero QuadRotor: IntBS-NLJZ, y Entire
UACctNL.JZ,. En ambos resultados de simulacion se ha observado una reduccién
del error de seguimiento de los GDL controlados, corroborando el método medi-
ante el uso de la solucién propuesta. A pesar de los buenos resultados obtenidos
en el Capitulo 5, para mejorar los resultados obtenidos con el controlador 72, no
lineal propuesto para sistemas mecdnicos subactuados, se debe realizar un escal-
ado del modelo dindmico cuando diferentes dindmicas son consideradas por el
controlador.

B.2 Trabajos Futuros

En esta seccién se describen algunas posibles lineas de investigaciones futuras
que contintien este trabajo, incluyendo algunas que ya se han empezado:

o Implementacion de las estrategias de control propuestas. Como se comento



252

B Conclusiones

en el Capitulo 2, se estd construyendo un helicéptero QuadRotor en el
Grupo de Automdtica, Control y Robética, Departamento de Ingenieria,
Sistemas y Automatica en la Universidad de Sevilla. Por lo tanto, un objet-
ivo inmediato es la implementacion de las estrategias de control presentadas
en esta tesis en el vehiculo real.

Estimacion garantista de estados. Un inconveniente cuando se disefian
controladores para UAV es que, o todos los estados son accesibles, o si
no, cémo estimar el vector de estado para conseguir que sea posible el se-
guimiento de trayectorias. Ademas, normalmente los sensores disponibles
proporcionan medidas con errores acotados. Un enfoque para estimar el
vector de estado con estas medidas inexactas es por medio de métodos ba-
sados en el error acotado. Por ejemplo, si el helicoptero QuadRotor esta
equipado con un GPS, el error de medida puede estar en un rango de +2m,
0 mds, ademds de realimentar el controlador cada segundo como minimo.
Asi, entre cada tiempo de muestreo del GPS, el vector de estado traslacional
debe ser estimado y garantizar que se encuentra dentro de un conjunto ad-
misible, y cuando se reciba un dato medido, se debe actualizar.

Control 3¢, no lineal para sistemas mecdnicos subactuados por medio de
realimentacion de la salida. Siguiendo la linea de investigacién presentada,
extender los controladores 7%, no lineales para sistemas mecanicos subac-
tuados, presentados en el Capitulo 4, al disefio de una ley de control por
medio de realimentacion de la salida.

Estudio de las regiones fronteras para asegurar la estabilidad de las es-
trategias del control en cascada. Las estructuras de control en cascada
presentadas en esta tesis se componen de controladores de bucle interno y
externo, los cuales se han disefiado para obtener la estabilidad de cada bucle
de forma separada. Sin embargo, no se ha hecho ningin andlisis cuando se
combinan ambos controladores. Con los resultados de las simulaciones,
se puede observar que el sistema completo en bucle cerrado es estable,
pero esto debe ser demostrado también analiticamente. Para realizar este
andlisis, una buena opcién son los métodos de perturbaciones singulares,
donde el bucle externo es de dindmica lenta, mientras que el lazo interno es
de dindmica ripida.

Consideracion de las dindmicas del bucle cerrado del rotor. Teniendo en
cuenta que el helicoptero QuadRotor en pequeiia escala funciona con bater-
fas eléctricas, con el paso del tiempo las baterias se descargan. Esto lleva



B.2 Trabajos Futuros 253

a una pérdida del empuje generado por las hélices, que no son capaces de
mantener la misma velocidad requerida por los controladores rotacionales
y traslacionales. Por lo tanto, se requiere un controlador de la velocidad
del rotor para asegurar un funcionamiento regular durante el vuelo. Este
sistema de control resulta en tener que considerar una tercera dindmica en
bucle cerrado en el analisis del control en cascada. Por lo tanto, las tres
dindmicas a considerar son: el movimiento traslacional (dindmica lenta), el
movimiento rotacional (dindmica rdpida) y el bucle de control de la velo-
cidad del rotor (dindmica ultra-rapida).

e Control por realimentacion visual del helicoptero QuadRotor. Implementa-
cion de seguimiento visual y técnicas de control servo visual para estimar la
posicion y postura del helicéptero, y para realizar un control por realimen-
tacion visual también. Alternativamente, se pueden integrar ambas carac-
teristicas en técnicas como la propuesta en Malis and Benhimane (2005).

e Control a través de red. En el caso en que el UAV se controle desde una
estacion en tierra, existe la posibilidad de perder paquetes de datos, tanto en
el envio de las sefiales de control como en la recepcion de las sefiales me-
didas. A este problema, se le afiade la pérdida de informacién causada por
la codificacion y la descodificacion de las sefiales transmitidas, asi como
la velocidad de transmision de datos. Estos problemas son particularmente
interesantes para estos tipos de sistemas teniendo en cuenta su comportami-
ento inestable.

e Extension de controladores F, no lineales a sistemas con retrasos. Al-
gunos de los fenémenos dindmicos mds comunes que aparecen en las ap-
licaciones en ingenieria son los retrasos entre las variables de entrada y las
de salida. Una linea de investigacién emergente es como tratar los siste-
mas con retrasos con la teoria de control no lineal. Recientes trabajos tratan
de extender la idea del predictor realimentado a los sistemas no lineales,
sistemas modelados por ecuaciones diferenciales parciales, sistemas con
retrasos con incertidumbre o totalmente desconocido en el canal entrada-
salida, etc. El enfoque basado en EDPs o EDRs (Ecuaciones Diferenciales
con Retraso) genera funcionales de Lyapunov-Krasovskii que permiten un
disefio de un control constructivo y el andlisis de estabilidad. Y lo que es
mds importante, este enfoque basado en EDPs permite una extensién del
disefio del predictor realimentado a sistemas no lineales y a control robusto
y adaptativo de sistemas con retrasos desconocidos.
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Siguiendo esta linea de investigacion y con el disefio de controladores 772,
no lineales, para sistemas mecdnicos completamente actuados y subactua-
dos, presentados en esta tesis, un objetivo es extender estos controladores
a los sistemas con retrasos. De este modo, se puede realizar el control de
vehiculos auténomos remotos, como vehiculos auténomos submarinos en
exploraciones de petréleo submarinas, y robdtica aeroespacial.
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