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Abstract

Model Predictive Control (MPC) has undergone a great development in the last few
decades and has become one of the most popular advanced control techniques in the
research community and industry. The success of MPC is the result of several factors,
amongst the most important ones are the intuitive formulation of the control problem,
the possibility to control a great variety of processes, the consideration of constraints
and, at least in the case of linear MPC, the easy implementation of the control law.
Another advantage for the use in industrial applications is the possibility to use models
which can be obtained easily from the considered process, e.g. step or impulse response
models.

Even though virtually all processes of practical importance exhibit some degree
of nonlinear behavior, the grand majority of MPC techniques have been developed for
linear systems. The application of linear MPC to strongly nonlinear dynamic processes
can result in a deficient control performance due to plant/model mismatch. In order
to obtain a better control performance, the use of Nonlinear Model Predictive Control
(NMPC) should be considered. Another problem in process control is the influence of
exogenous disturbances or system uncertainties which can destabilize the closed-loop
system under certain conditions or, at least, result in an insufficient control perfor-
mance. Here, Min-Max Model Predictive Control (MMMPC) offers the possibility
to prevent this undesired effect and to obtain a more robust control performance by
explicitly considering uncertainties and disturbances in the used prediction model.

Unfortunately, both NMPC and MMMPC exhibit some mayor drawbacks for their
use in industry. In the case of NMPC, the difficulty to obtain suitable models of
the considered process and the required solution of a possibly non-convex optimization
problem have to be mentioned. On the other side, the main drawback of MMMPC is the
computational burden to compute the control signal, with a computational complexity
growing exponentially with the considered prediction horizon. Besides, both control
strategies considerably complicate the study of theoretical issues as stability, robustness
and optimality. The mentioned problems account for the seldom use of NMPC and



MMMPC in industry where only a few applications have been reported, even when
there is evidence that these control techniques usually improve the control performance.

This thesis addresses the study and development of novel MPC techniques based on
nonlinear and uncertain models, i.e. the general framework of this thesis covers NMPC
and MMMPC. Particular attention has been paid to the applicability of the developed
control strategies, based on the idea to reduce the gap between industrial practice and
academic research. On the theoretical side, stability issues played an important role
in the design of new MPC strategies, including the specification of the necessary and
sufficient conditions to obtain closed-loop stability.

The main focus in the development of MPC has been on nonlinear discrete-time
Volterra series models and their use in receding horizon control strategies. Based on
second order Volterra series models, a computationally efficient iterative algorithm to
solve the optimization problem of an unconstrained NMPC strategy has been enhanced
to include constraints and a weighting of the control effort. Furthermore, a novel ap-
proach based on the convexification of the possibly non-convex optimization problem
of NMPC based on second order Volterra series models has been developed. This ap-
proach determines a convex hull of the optimization problem and enables the possibility
of global minimization.

In addition, discrete-time uncertain linear models have been considered within the
framework of robust control as a previous step to an MMMPC based on Volterra
series models. Here, the robust stability of a linear MMMPC strategy based on a
nonlinear upper bound of the worst case has been proven. Under consideration of
additive and persistent disturbances in a second order Volterra series model, a novel
nonlinear MMMPC strategy has been developed. An explicit formulation of the worst
case cost has been obtained and, as a consequence, the min-max optimization problem
is reduced to a mere minimization problem.

Finally, the developed control strategies have been implemented and the practical
applicability has been validated in experiments with different benchmark systems. The
obtained results showed that the proposed NMPC and MMMPC strategies have an
improved control performance in comparison to linear MPC. The successful application
of the different control strategies joins the small number of NMPC and MMMPC
applications reported in specialized literature.



Resumen

El control predictivo basado en modelo (MPC, del inglés Model Predictive Control)
ha experimentado un gran desarrollo en las últimas décadas y se ha convertido en
una de las técnicas de control avanzado más populares en la comunidad científica y
la industria. Varios factores contribuyen al éxito de MPC, entre los más importantes,
la formulación intuitiva del problema de control, la posibilidad de controlar una gran
variedad de procesos, la consideración de restricciones y, al menos en el caso de MPC
lineal, la fácil implementación de la ley de control. La posibilidad de utilizar modelos
que se pueden obtener fácilmente del proceso considerado, p.ej. modelos de respuesta
ante impulso o escalón, representa otra ventaja de MPC, especialmente en aplicaciones
industriales.

Prácticamente todos los procesos dinámicos de importancia industrial exhiben cierto
comportamiento no lineal. Sin embargo, la gran mayoría de técnicas de MPC han
sido desarrolladas para sistemas lineales. La aplicación de MPC lineal a procesos
con dinámica fuertemente no lineal puede resultar en un rendimiento de control defi-
ciente, debido a la discrepancia entre el sistema y el modelo. Con el fin de obtener un
mejor rendimiento de control, se puede considerar el uso de control predictivo no lineal
(NMPC, del inglés Nonlinear Model Predictive Control). Otro problema en el control
de procesos es la influencia de perturbaciones exógenas o incertidumbres que pueden
desestabilizar el sistema en bucle cerrado en ciertas ocasiones o, al menos, resultar en
un rendimiento de control insuficiente. El control predictivo mín-máx (MMMPC, del
inglés Min-Max Model Predictive Control), basado en un modelo que considera explíci-
tamente incertidumbres y perturbaciones, da la oportunidad de prevenir este efecto no
deseado y obtener un control más robusto.

Desafortunadamente, tanto el NMPC como el MMMPC tienen algunos inconve-
nientes para su uso en la industria. En el caso de NMPC hay que mencionar la difi-
cultad de obtener modelos apropiados del proceso considerado y la solución necesaria
de un problema de optimización posiblemente no convexo. Por otro lado, el principal
inconveniente de MMMPC es la carga computacional, resultado del cálculo de la señal



de control, que crece exponencialmente con el horizonte de predicción. Además, ambas
estrategias de control complican considerablemente el estudio de cuestiones teóricas
como estabilidad, robustez y optimalidad. A pesar de que hay evidencia de que es-
tas estrategias habitualmente mejoran el rendimiento de control, el uso de NMPC y
MMMPC en la industria es muy escaso y se reduce a unas pocas aplicaciones debido a
los problemas anteriormente mencionados.

Esta tesis aborda el estudio y el desarrollo de novedosas técnicas de MPC basado
en modelos no lineales e inciertos, es decir, el marco general cubre el NMPC y el
MMMPC. En el desarrollo se ha prestado especial atención a la aplicabilidad de las
estrategias de control, con la idea de reducir la brecha entre la práctica industrial y la
investigación académica. En el lado teórico, el tema de estabilidad juega un importante
papel e incluye la especificación de las condiciones necesarias y suficientes para obtener
estabilidad en bucle cerrado.

El objetivo principal es el desarrollo de nuevas estrategias de MPC basado en los
modelos de Volterra en tiempo discreto y su posible uso en estrategias de control de
horizonte deslizante. El punto de partida ha sido un algoritmo iterativo y computa-
cionalmente eficiente, usado para resolver el problema de optimización de una estrategia
de NMPC basado en modelos de Volterra de segundo orden. Se ha mejorado esta es-
trategia con la consideración de restricciones y la ponderación del esfuerzo de control.
Por otra parte, para el NMPC basado en modelos de Volterra de segundo orden se ha
desarrollado un novedoso enfoque basado en la convexificación del problema inicial y
posiblemente no convexo. Este enfoque determina una envoltura convexa del problema
de optimización y da la posibilidad de una minimización global.

Además, se han considerado modelos inciertos lineales dentro del marco del con-
trol robusto como paso previo al desarrollo de una estrategia de MMMPC basado en
modelos de Volterra. En este caso, se ha demostrado la estabilidad robusta de una
estrategia de MMMPC lineal basado en una cota superior no lineal del peor caso. Con
el fin de conseguir un control más robusto, se ha desarrollado una novedosa estrategia
de MMMPC no lineal basado en modelos de Volterra de segundo orden con pertur-
baciones aditivas y persistentes. Debido al carácter no autorregresivo del modelo, se
ha obtenido una formulación explícita del coste del peor caso y, en consecuencia, el
problema de optimización mín-máx se reduce a un mero problema de minimización.

Por último, se han implementado las estrategias de control desarrolladas y se ha
validado la aplicabilidad práctica en experimentos con diferentes sistemas usados como
banco de pruebas. En comparación con un MPC lineal, las diferentes estrategias de
NMPC y MMMPC mostraron un rendimiento de control superior y dieron mejores
resultados. El empleo exitoso de las diferentes estrategias se une al bajo número de
aplicaciones del NMPC y el MMMPC existentes en la literatura especializada.
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Glossary

Notation

A boldface upper case letters denote operators mapping input to output.

A(·) italic upper case letters denote polynomials.

A italic upper case letters denote matrices.

a boldface italic lower case letters denote vectors.

a italic lower case letters denote scalars.

a(·) boldface lower case letters denote functions generating a column vector.

a(·) lower case letters denote functions generating a scalar.

Symbols

q−1 backward shift operator

a∗ optimal value of a

af feasible value of a

‖a‖2Q aTQa

‖a‖∞ infinity norm of a

‖a‖1 1-norm of a

ã approximated value of a

aT transpose of a

a(j) value of a in the j-th iteration

â expected value of a

â(k + i|k) expected value of a(k + i) with available information at instant k

vert{A} set of vertices of A

trace(A) trace of the matrix A

A[j] j-th row of the matrix A

A[jk] element jk of the matrix A

ix



x GLOSSARY

In identity matrix in R
n×n

I identity matrix of appropriate dimensions

0m×n matrix in R
m×n with all entries equal to zero

0 matrix of appropriate dimensions with all entries equal to zero

Variables

A system matrix

bc vector of the set of constraints

B input matrix

B matrix to calculate quadratic terms of Volterra series prediction model

c constant vector of Volterra series prediction model

d estimation error

d vector containing the estimation error

D matrix of linear model to include influence of disturbance

e error

f(u) vector of Volterra series prediction model with future-future

and future-past cross terms in u

g vector of Volterra series prediction model with past-past terms in up

G matrix of Volterra series prediction model to include influence of u

h0 constant offset of Volterra series model

h1 linear term parameter of Volterra series model

h2 nonlinear term parameter of Volterra series model

H matrix of Volterra series prediction model to include influence of up

J(·) cost function (performance index)

K feedback matrix

Lc matrix of the set of constraints

Lu transformation matrix

N prediction horizon

Nt truncation order

Nu control horizon

Q weighting matrix

r reference signal

r reference trajectory

R weighting matrix

tc computation time



GLOSSARY xi

tm sampling time

u input signal

ur steady-state input signal

u future input sequence

ul vector with first element corresponding to last applied control signal,

other entries equal to zero

up vector of past input values

ur vector containing the steady-state input signal

u0 initial input sequence

∆u input increment

∆u sequence of control increments

∆u0 initial input increment sequence

v control input in semi-feedback case

W matrix of Volterra series prediction model to include

influence of disturbance

y system output

y output prediction along the prediction horizon

λ weighting factor for the control effort

θ disturbance

θ disturbance sequence

Acronyms

ARMAX Autoregressive Moving Average Model with Exogenous Inputs

CARIMA Controlled Autoregressive Integrated Moving Average
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Chapter 1

Introduction

1.1 Motivation

Many modern control techniques are based on mathematical models which approxi-
mate the dynamic evolution of the system to be controlled. The mathematical model
is used by the controller to compute the control action satisfying a certain criterion.
Consequently, the quality of the mathematical model used to approximate the system
dynamics has a decisive influence on the control performance. In Model Predictive
Control (MPC) the computation of the control action is based on the evolution of the
system predicted by means of the mathematical model. Nowadays, MPC represents
one of the most common advanced control techniques applied to industrial processes
[23, 75]. The widespread employment of MPC techniques is the result of several fac-
tors, amongst others the intuitive formulation of the control problem, the possibility
to control a great variety of processes, the consideration of constraints in the compu-
tation of the input signal and, in the case of MPC based on linear models, the easy
implementation of the resulting control law. Another advantage is the possibility to
use mathematical models which can be obtained easily from the process, e.g. step re-
sponse models in Dynamic Matrix Control (DMC) [31] or impulse response models in
Model Predictive Heuristic Control1 (MPHC) [111, 112]. Different studies [104, 130, 13]
showed that MPC represents one of most commonly used advanced control techniques
and underline the popularity of MPC in industry.

Virtually all dynamic processes of practical importance exhibit some degree of non-
linear behavior [97]. Nevertheless, the grand majority of control techniques has been

1The Model Predictive Heuristic Control is also known as Model Algorithmic Control (MAC).

1
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developed for systems with linear dynamics. The linear control techniques usually
perform well when the considered process only possesses a weak nonlinear dynamic.
Besides, process control in the neighborhood of a nominal operating point results in
many cases in a good control performance. The predominant use of linear control tech-
niques is a consequence of the oftentimes good results and the easy implementation of
these techniques. Furthermore, linear models can be obtained with common control
engineering methods, e.g. step or impulse response (which can be used in DMC or
MAC, respectively) of a system in a certain operating point or employment of well
known linear identification methods to obtain a transfer function from experimental
data. Additionally, for linear control techniques a large variety of theoretical results is
available, discussing themes as stability, optimality and robustness [23, 75, 85, 88].

However, in many cases the performance of a linear controller applied to a nonli-
near dynamic process is not very efficient. This poor control performance is usually a
consequence of strong nonlinearities in the regarded process, especially when a variable
operating point is used. With a linear model determined for a certain operating point,
the used model is not capable to approximate the process with sufficient quality in a
wider range of operation. Besides, some processes exhibit strong nonlinearities even
in the vicinity of an operating point and have a negative effect on the behavior of the
closed-loop system. The disregard of the nonlinear dynamics of a process frequently
results in an unacceptable control performance and, in the worst case, to a destabiliza-
tion of the controlled system. Furthermore, it has to be mentioned that some processes
are operated continuously in a transient mode, e.g. batch processes which are never in
steady-state operation, or experience operating modes far away from steady state at
least during some periods, e.g. startup and shutdown. In the mentioned cases, with the
objective of a better control performance, the use of control techniques based on non-
linear models should be considered. However, from the idea of using nonlinear models
in process control several new questions arise. One of the most important issues when
dealing with nonlinear models for control purposes is the choice of a suitable model
structure. This election not only defines implicitly the capability to approximate the
process nonlinearities, i.e. not all model structures are suitable to approximate cer-
tain nonlinearities, but also influences in a high degree the control technique used to
compute the control action.

Naturally, the main advantage of nonlinear models with respect to linear models
is the possibility to deal with the nonlinear dynamics of the process. For the appro-
ximation of nonlinear dynamics, the user can choose from a huge variety of different
nonlinear models. It has to be emphasized that nonlinear models do not represent a
homogenous group and cannot be classified as easy as linear models. The difference be-
tween two nonlinear models can be bigger than the difference between a nonlinear and
a linear model. Furthermore, many nonlinear models for control purposes are much
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more difficult to obtain than linear models (e.g. step or impulse response models),
either from input/output data correlation or with first principles considering mass and
energy conservation laws [23]. Another problem when dealing with nonlinear models
is the possible identification of non-existent dynamics and noise characteristics as a
consequence of an over-parametrization or a higher degree of freedom of the chosen
nonlinear model structure. Additionally, the interpretation and understanding of non-
linear models is frequently more difficult than in the case of linear models and often
requires a profound knowledge of the regarded process.

The basic concept of MPC offers the possibility to use nonlinear models to predict
the future evolution of the system. Hence, MPC in combination with nonlinear models,
called Nonlinear Model Predictive Control (NMPC), can be employed to compute the
control action. Although the idea behind MPC does not exclude nonlinear models, the
use of this kind of models entails several problems. From a practical point of view,
the consideration of nonlinear models in a quadratic cost function leads to a possibly
non-convex optimization problem with several minimums. While linear MPC requires
in every sampling period the solution of a convex problem, usually carried out with
Quadratic Programming (QP), NMPC requires (at least a partial) solution with the
help of nonlinear programming (NLP) [17]. The difficulty of the optimization problem
results in an important increase in the computation time, limiting the use of NMPC
in many cases to slow processes or the consideration of small horizons. Besides, from
a more theoretical viewpoint, the possible non-convexity of the optimization problem
considerably complicates the study of stability and robustness. Furthermore, as already
mentioned, nonlinear models can differ in a high degree between each other, requiring
frequently custom-tailored approaches both for the solution of the problem and for the
study of the theoretical aspects. The mentioned problems account for the seldom use
of NMPC in industry where only a few NMPC applications have been reported, includ-
ing the areas of refining, chemicals, polymers as well as air and gas processing [104].
The computational burden, resulting from non-convex optimization problems with the
possibility of several minimums, converts the application of NMPC to a difficult task
with many unresolved issues as stability, robustness and others.

The changeover from linear to nonlinear models allows to approximate processes in
a wider range of operation and to consider a richer dynamic behavior of the system. But
even with complex nonlinear models it is difficult to capture the complex dynamics of a
process. Furthermore, both linear and nonlinear models ignore the possible influence of
unmodeled disturbances on the future evolution of the system. Even though stability
of MPC or NMPC can be proven, the existence of uncertainties or disturbances can
destabilize the closed-loop system under certain conditions or, at least, result in an
insufficient control performance [23, 118]. In order to prevent this effect, uncertainties
or disturbances can be considered explicitly in the formulation of the model used to
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predict the future evolution of the system, being parameter uncertainties and bounded
exogenous disturbances two of the most common descriptions used to account for model
uncertainty [133]. However, the use of an uncertain model for prediction purposes does
not result in an unique future trajectory, but in the generation of a family of trajectories.
A key issue when dealing with uncertain models, both linear and nonlinear, is the choice
of a suitable realization of the uncertainty or disturbance. This choice has to assure
that the dynamics of the process can be approximated sufficiently well by the chosen
uncertain model structure, otherwise none of the predictions will correspond to the
future evolution of the system.

Analogously to the nonlinear models, a wide range of uncertain models can be
considered in MPC to predict the evolution of the considered process. However, the
extension of MPC to compute the input action based on the future system evolution
predicted by an uncertain model is not trivial and leads both to computational and
theoretical difficulties. In the case of bounded uncertainties the resulting family of
trajectories is also bounded. This bound represents the worst case with respect to
the uncertainty and the minimization of the associated cost by a suitable choice of
the input action results in a more robust control. The minimization of the worst case
cost in order to compute the control action is known as Min-Max Model Predictive
Control (MMMPC) [25]. The main drawback of this approach is the computational
burden that takes to compute the control signal, with a computational complexity
growing exponentially with the considered prediction horizon. As a result, the number
of applications of MMMPC is very small, even when there is evidence that the min-
max approach usually performs better than standard MPC in processes with uncertain
dynamics. On the theoretical side, the considered uncertainty complicates the study
of stability, representing a field with many open issues.

This thesis addresses the study and development of novel MPC techniques based
on nonlinear and uncertain models, i.e. the general framework covers both NMPC
and MMMPC. Due to the above mentioned problems when employing nonlinear or
uncertain models, particular attention will be paid to the applicability of the resulting
MPC techniques. On the more theoretical side, stability issues will play an important
role in the design of new MPC techniques. The concurrent achievement of stability
and applicability is a challenging task since in many cases the necessary conditions
to assure stability counteract applicability. In the case of MMMPC, the main focus
will be on the reduction of the computational burden associated to the maximization
problem, i.e. the determination of the worst case, in order to allow the use of longer
prediction horizons. For the design of NMPC techniques, the attention will be on the
solution of a possibly non-convex cost function.
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It is clear that the election of a certain model structure has a decisive effect on
the later development of novel MPC strategies. In this thesis, the principally used
model structure is a discrete-time nonlinear Volterra series model [132], with a special
emphasis on the second order type. The decision to use Volterra series models for the
approximation of complex system dynamics lies in the particular model structure which
represents the natural extension of a linear convolution model with the nonlinearity
considered in an additive term. This structure, facilitating the separation of linear
and nonlinear terms, can be exploited in the development of MPC techniques based on
Volterra series models. The second model, a linear model in state-space representation,
is one of the most common models used in control engineering. Although this model
has not the ability to approximate nonlinear dynamics, the explicit consideration of
uncertainties can be used to achieve a good control performance in presence of process
nonlinearities and disturbances. The use of the mentioned linear model in this thesis
can be considered as a necessary approach to extend the concept of MMMPC to MPC
based on Volterra series models.

1.2 State of the art

Volterra series models are used in a wide range of areas to approximate the dynam-
ics of nonlinear processes, amongst others in biomedical applications [58, 78, 87, 10],
acoustics [128, 60], electronics [110, 136] and process control [38, 4, 35], but especially
in signal processing for nonlinear filter design [94, 56]. An extensive bibliographic list
on nonlinear system identification in signal processing, including Volterra series mod-
els, can be found in [42]. The interest to use Volterra series models to approximate
the nonlinear dynamic behavior in the different areas has several reasons, probably the
most important ones are:

• Volterra series models, although being nonlinear models, are linear in the pa-
rameters. As a consequence, parameter estimation for Volterra series models can
be carried out with identification techniques usually used for linear models, e.g.
least squares methods.

• The parameters of Volterra series models can be estimated from experimental
input-output data and hence, a deep knowledge of the process to be approximated
is not required.

• Volterra series models can be used to model a great variety of different nonlinear
dynamics, e.g. non-minimum-phase systems.
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Besides the above mentioned reasons, Volterra series models have some characte-
ristics especially interesting for control purposes:

• Volterra series models are the logical extension of finite impulse response (FIR)
models which have been used widely in linear MPC. Being a generalization of
FIR models, Volterra series models show a similar qualitative behavior.

• The nonlinearity of Volterra series models is considered in an additional term.
This particular structure allows the separation of linear and nonlinear terms and
can be exploited in the design of control techniques.

One of the main drawbacks of Volterra series models is the elevated number of
parameters to describe the nonlinear dynamics of a process which results in the re-
quirement of large data sets for identification purposes. Another important issue is the
impossibility to use Volterra series models to approximate unstable processes, limiting
their use to the approximation of stable systems.

It is obvious that the mentioned reasons convert Volterra series models in a good
candidate for the development of NMPC techniques. The flexibility of this model type
allows the modeling of dynamic processes in a wide range of different areas without
the necessity of a deep understanding of the regarded system [120, 38]. A large class
of nonlinear system models are covered by Volterra series models including bilinear
models which have under certain conditions equivalent Volterra model representations
[70]. It has been shown in [20] that Volterra series model can be used to approximate
arbitrarily well any stable system with fading memory characteristics where a better
approximation requires higher degree models with longer memory sequences. In prac-
tice, a trade-off between the number of parameters and the quality of approximation
has to be found.

The parameters of Volterra series models are frequently identified with experimental
input-output data from the process to be approximated. For a proper identification,
[96] propose Pseudo-Random Multilevel Sequences (PRMS) which sufficiently excite
the regarded process in order to obtain suitable data. In [101] input-sequences for the
separate identification of linear and nonlinear term parameters are presented. These
input sequences are supposed to be plant-friendly as they possess a reduced number
of transitions. A constrained multisine input signal is proposed in [113], leading to
suitable data for identification purposes in an acceptable time period while keeping the
variation in both input and output signals within user-defined constraints.

In [52, 71] the identification of autoregressive models with a reduced number of
model parameters has been proposed. Then, the Volterra series model parameters can
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be computed from the identified autoregressive model. Another approach is the reduc-
tion of the parametric complexity by using orthonormal basis functions like Laguerre
[24] and Kautz functions [32] or generalized orthonormal basis functions [124, 92]. In
[70], using Nonlinear Internal Model Control (NIMC), the closed-loop performance is
related to the open-loop modeling error. Based on this relation, an optimization method
is proposed which allows a control relevant reduction of a Volterra series model.

1.2.1 NMPC based on Volterra series models

Although Volterra series models can be used to approximate a wide range of different
systems, only a few research articles on NMPC strategies based on Volterra series
models have been published. Analogously and in consequence to the scarce research
on NMPC using Volterra series models, only a small number of practical applications
have been reported.

With respect to the use of Volterra series models in NMPC, [37, 77] proposed a
computationally efficient optimization method to calculate the input sequence. The
unconstrained optimization is carried out by means of an iterative algorithm based
on the separation of the linear and the nonlinear term of a second order Volterra
series model. The control strategy consists of a conventional linear controller extended
by an auxiliary loop to include the nonlinear dynamics in the optimization process.
The NMPC strategy is validated in [37] by means of simulation case studies with a
polymerization reaction in a continuous stirred tank reactor (CSTR) and an isothermal
reaction based on van de Vusse kinetics. The capability of the proposed NMPC strategy
to control Multiple-Input Multiple-Output (MIMO) systems has been shown in [77]
with the simulation of a multivariable CSTR. The mentioned NMPC strategy can
be considered as a starting point in this thesis for the development of novel NMPC
techniques based on Volterra series models. The iterative optimization approach has
been modified in [51] to consider autoregressive Volterra series models for the prediction
of the future evolution of the system. The modified NMPC was applied in a simulation
case study to a Single-Input Single-Output (SISO) two-level tank system and showed
the viability of the modified control strategy.

In [50] two similar suboptimal NMPC strategies for second order Volterra series
models have been presented. Here, the first strategy is based on the assumption of
constant increments in the input signal over the entire control horizon, i.e. the resulting
input sequence has a constant slope. The second strategy is a stair-like control where
the input signal is assumed to be constant along the control horizon. In both NMPC
strategies, depending only on one sole decision variable (constant slope or constant
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input signal), the possibly non-convex optimization problem is converted to a forth
order polynomial. The resulting one-dimensional optimization problem, which can still
be non-convex, can be easily minimized with respect to the decision variable. The
cost function is then evaluated for all values of the decision variable associated to non-
complex minimums and the value of the decision variable corresponding to the global
minimum of the cost is chosen. The reduced optimization problem allows to compute
analytically the value of the decision variable which minimizes the cost and, as a
consequence, results in a very fast computation of the input sequence. Independently
from the chosen optimization method, analytical or numerical, input constraints can
be included in the minimization of the cost.

In [36, 35] the unconstrained NMPC proposed in [37, 77] was extended to consider
the weighting of the control effort in the cost function. The inclusion of a control effort
weighting does not change the computational complexity of the optimization problem
and, as a consequence, does not change the efficiency of the iterative optimization. The
problem of convexity of the optimization problem under consideration of a weighting
of the control effort was studied in [35]. It was shown that convexity of the optimiza-
tion problem can be assured by a suitable choice of the weighting factor leading to
a guaranteed convergence of the iterative algorithm. Furthermore, [35] compares the
control performance of the proposed NMPC for processes with dead time when the
dead time is considered implicitly in the Volterra series model or a separate dead time
compensator is used.

The NMPC for second order Volterra series models [37, 77] was generalized in [66]
for its use in combination with higher order Volterra series models. Analogously to
the original optimization approach, the optimization problem is solved by an iterative
optimization algorithm based on the separation of the linear and nonlinear terms. In
difference to the original NMPC strategy [37, 77] where the second order term of the
Volterra series model is considered in the auxiliary loop, [66] proposes to include also
third and higher order terms in the auxiliary loop. The NMPC strategy was validated
in a case study of a nonlinear polymerization process identified by a third order Volterra
series models. A comparison with a linear MPC and an NMPC strategy based on a
second order Volterra series models showed that the use of a higher order Volterra series
improves the control performance when highly nonlinear processes are considered.

Recently, [4] applied an NMPC strategy based on a second order Volterra series
model to a detailed simulation model of a crude oil processing facility. The considered
process is a MIMO system with 2 inputs and 4 outputs, i.e. the process represents
a thin or underactuated system, and exhibits a strong coupling between the different
states. The applied NMPC did not achieve a stabilization of the 4 states in the given
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references due to the complexity of the considered process and the interconnection
of the states. In a second step, only a subsystem with 2 inputs and 2 outputs was
considered. The applied NMPC strategy based on second order Volterra series mod-
els stabilized the system in the given references in setpoint tracking and disturbance
rejection simulations. A traditional PI control applied to the same system failed to
adequately handle the coupling of the system states and obtained unacceptable results
with important oscillations in the inputs and outputs.

With respect to the stability of NMPC strategies it is important to have in mind
that Volterra models represent a generalization of FIR models and can be considered as
stable fading memory systems. For MPC based on linear FIR models, several authors
have proven closed-loop stability, amongst others [41, 135, 91]. Based on the finite
memory of Volterra series models, [85] proposes to use a terminal equality constraint
to ensure stability. Other publications, such as [82, 86, 33] point out that general
stability of NMPC strategies can be proven under certain conditions using Lyapunov
functions. In spite of the mentioned propositions, stability of NMPC based on Volterra
series models is an open field with few results.

1.2.2 Min-max MPC

Even with complex mathematical models it is difficult to capture the dynamics of a
physical process. The possible model mismatch and external disturbances lead to a
deficient prediction of the future evolution of the considered system. In order to ob-
tain a more robust control performance, uncertain models can be used in an MMMPC
framework, initially proposed by [134]. Different MMMPC strategies can be found,
based on the predicted open-loop or closed-loop evolution of the system. The open-
loop MMMPC strategy minimizes the worst case without a feedback of the computed
predictions [25, 5]. The imposed constraints have to be satisfied for all possible trajec-
tories of the evolution of the system, resulting in a considerably conservative control
performance. The complexity of the resulting optimization problem depends exponen-
tially on the used prediction horizon, i.e. on the length of the considered disturbance
vector, and represents an NP-hard problem [73]. The open-loop approach was one of
the first MPC strategies based on a min-max formulation of the optimization problem.

The conservativeness of the control law can be reduced using a closed-loop formula-
tion of the MMMPC strategy, proposed in [123]. In the closed-loop approach the consi-
dered problem is minimized under explicit consideration of a feedback of the predicted
evolution of the system [85]. The feedback approach results in an infinite dimensional
optimization problem and is obviously far more complex than the optimization pro-
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blem corresponding to the open-loop MMMPC. Generally, the input sequence is very
difficult to compute and only a few algorithms for linear systems can be found [89, 43].
The high computational burden limits the application of the closed-loop MMMPC
strategy to simple processes or low prediction horizons. Note that in this thesis only
the open-loop MMMPC strategy will be considered.

Recently it was shown that the open-loop MMMPC control law based on linear
models is piecewise affine when a 1-norm based criterion [14, 55] is used in the cost
function. Analogously, [106] proved piecewise affinity for quadratic objective functions.
This property enables the possibility to build explicit forms of the control law with a
reduced complexity [90]. Another common approach is the use of an upper bound of
the worst case cost instead of computing it explicitly. The solution to the optimization
problem can then be computed by means of Linear Matrix Inequalities [59, 74]. In
the case of upper bounds, the difference between the exact solution and the computed
upper bound augments the conservativeness of the resulting control law.

For feedback MMMPC, the optimization problem based on convex costs and con-
straints can be casted as a finite dimensional convex optimization problem [34]. In the
special case of a quadratic cost the optimization problem results in a Quadratically
Constrained Quadratic Program (QCQP). For the sake of completeness tube-based ro-
bust MPC, which allows the computation of the control signal by solving a standard
QP problem in every sampling period, has to be mentioned [83, 84, 69]. The concept of
tubes was introduced in [16] and is based on the idea of a sequence of sets where every
set can be reached from the previous one. Tube-based MPC can be used for robust
constraint fulfillment both for linear [27] and nonlinear systems [79, 22].

In [81] sufficient conditions have been presented to design an asymptotically sta-
bilizing MMMPC in case of state-dependent uncertainties which disappear when the
system reaches its equilibrium. In the case of persistent uncertainties, Input-to-State
Stability (ISS) is a suitable framework for the analysis of the stabilizing properties of
MPC [126, 54]. The sufficient conditions for stability of uncertain systems controlled
by MMMPC for a general class of bounded uncertainties are presented in [68]. In
[62] under consideration of the a priori sufficient conditions for robust stability, a new
approach for the design of closed-loop MMMPC schemes for nonlinear systems with
guaranteed ISS is presented. Currently, a considerable research effort is devoted to the
stability analysis of discrete uncertain systems. For an overview on robust stability
issues the reader is referred to [67].
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1.3 Objectives

The main objective of this thesis is to contribute to the development of novel non-
linear and robust MPC strategies. The main focus will be on discrete-time Volterra
series models and their possible use in receding horizon control strategies. In addition,
discrete-time uncertain linear models will be considered within the framework of robust
MPC as a previous step to an MMMPC based on Volterra series models. Particular
attention in the design of new control strategies will be paid to practical applicability,
related to the computational burden, and stability issues.

In spite of the importance of nonlinear processes in the industry, robust and nonli-
near MPC strategies are rarely used in industrial applications. Furthermore, in the area
of advanced MPC techniques a significant gap between the academic research and the
industrial practice can be observed. One of the objectives of this thesis is the develop-
ment of novel MPC techniques which fulfill the requirements of industrial applications.
An important reason for the scarce success in the industrial practice can be found in
the difficulty to obtain suitable prediction models. Therefore, the models considered
in this thesis are easily obtainable from experimental input-output data, a common
practice in industry. In the case of Volterra series models, being the logical extension
of linear convolution models, the parameters can be identified with linear identification
techniques. In the case of uncertain linear models, uncertainties have been considered
as a persistent bounded additive term where the bound can be obtained directly from
the comparison of the system output and the predicted output.

Another problem when applying advanced MPC techniques is the computational
complexity of the resulting optimization problem. In the case of NMPC, the computa-
tion of the input action requires the solution of a possibly non-convex problem. Here,
the particular structure of Volterra series models, i.e. the separability of linear and
nonlinear terms, can be exploited to find computationally efficient algorithms to solve
the optimization problem. In MMMPC, the numerical complexity lies in the compu-
tation of the worst case and growths exponentially with the prediction horizon. With
the practical applicability in mind, new approaches for the determination of the worst
case will be studied. Furthermore, the new control strategies should allow an easy
implementation and, as a consequence, facilitate their use in industrial applications.

Naturally, stability is a fundamental issue in the design of new MPC techniques.
For the practical implementation of MPC techniques, stability is especially relevant
when disturbances are considered explicitly. Both for MMMPC and NMPC, the study
and proof of stability will be an important objective in this thesis.
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Summarizing the above mentioned objectives, this thesis will cover the following
themes:

• Development of novel NMPC and MMMPC strategies based on Volterra series
models and uncertain linear models

• Study of the stabilizing properties of the control strategies and formulation of
the necessary conditions to achieve stability

• Implementation of the different MPC strategies and application to nonlinear in-
dustrial processes

1.4 Thesis overview

The thesis is organized as follows:

• Chapter 2 gives a general introduction to Volterra series models with an emphasis
on non-autoregressive discrete-time second order Volterra series models and their
use in MPC. The parameter identification from empirical data is explained and
the transformation from an autoregressive to a non-autoregressive representation
is shown. For the second order Volterra series model a prediction model for
its use in MPC is presented. Then, the usually quadratic cost function of MPC
strategies is given and the general optimization problem for MPC based on second
order Volterra series models is defined. The last section presents the state-space
representation of Volterra series models, important with a view to the necessary
stability proofs.

• Chapter 3 gives a detailed description of different benchmark systems used in this
thesis for the application of MPC strategies. The benchmarks systems include a
pilot plant, a fuel cell and a greenhouse and represent processes with nonlinear
dynamics. The nonlinear process dynamics are approximated by second order
Volterra series models for their posterior use in MPC strategies. The model
parameters are identified from input-output data obtained in experiments.

• Chapter 4 deals with iterative algorithms to solve the optimization problem of
an NMPC based on second order Volterra series models. Starting with a basic
unconstrained formulation of the iterative algorithm, different modifications are
introduced in the cost function and the iterative algorithm in order to consider
constraints and a weighting of the control effort. In a second step, some changes
will be introduced in the constrained iterative algorithm to guarantee stability.
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The constrained iterative algorithms are applied to different benchmark systems
and the control performance is illustrated by experimental results.

• In Chapter 5 a convexification approach for NMPC problems based on second
order Volterra series models is presented. The presented approach allows the
global minimization of the optimization problem under consideration of a suit-
able weighting of the control effort. After some changes in the convexification
approach stability of the resulting NMPC strategy is assured. The practical
applicability of the developed NMPC strategy is verified in experiments with a
benchmark system.

• Chapter 6 presents two MMMPC strategies for uncertain linear systems. The first
strategy uses a nonlinear upper bound of the worst case and reduces considerably
the computational complexity of the optimization problem. In the case of the
second strategy, a close approximation of the solution of the min-max problem is
computed using a QP problem. Both control strategies have a considerably lower
computational burden than the original optimization problem and stability can
be proven. Finally, the MMMPC strategies are applied to a benchmark system
and the obtained results are presented.

• In Chapter 7 an MMMPC strategy based on second order Volterra series models
with additive and persistent uncertainty is given. It is shown that the non-
autoregressive character of the used model allows the explicit formulation of the
worst case. The computational burden to compute a new input sequence is
much lower as the min-max optimization problem degenerates to a minimization
problem. Introducing some changes in the cost function stability of the MMMPC
strategy is proven. The MMMPC strategies based on second order Volterra
series models are implemented and applied to a benchmark system. The control
performance is illustrated by experimental results.

• Chapter 8 summarizes the contributions and results presented in this thesis and
gives possible directions for future research activities.

• The Appendix A gives a detailed definition of the used prediction model based
on a second order Volterra series model as well as other mathematical definitions
used throughout this thesis. In the Appendix B the Spanish translations of the
Chapters 1 and 8 can be found.
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Chapter 2

Volterra series models

The current chapter gives a short introduction to Volterra series models with an em-
phasis on non-autoregressive discrete-time second order Volterra series models. The
different aspects of approximating nonlinear dynamic systems by Volterra series models
and their use in MPC strategies will be discussed.

In the first place the basic definitions of general Volterra series models are given
and some important subclasses of these models will be presented. Starting with the
continuous-time Volterra model, both autoregressive and non-autoregressive discrete-
time Volterra series models will be defined. After the definition of the Volterra se-
ries model the identification of the model parameters will be presented, including the
choice of an input signal sequence for obtaining suitable input-output data for identi-
fication purposes as well as the least squares method for parameter estimation. Fur-
thermore, the transformation of Volterra series models from an autoregressive to a
non-autoregressive form will be given. The third section defines in detail the nonlinear
prediction model based on a second order Volterra series. Then, after a short expla-
nation of the general idea of MPC and the definition of a quadratic cost function, a
description of the general optimization problem resulting from MPC based on second
order Volterra series models will be given. Furthermore, the state-space formulation of
second order Volterra series models, necessary for the stability analysis of the later pre-
sented NMPC strategies, will be presented. Finally, the advantages and disadvantages
of Volterra series models and their use in MPC will be summarized.

It has to be mentioned that this chapter is not thought to give an general overview
about models, identification and MPC strategies, but to describe the Volterra series
models and the identification techniques used in this document as well as the definition

17
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of the optimization problem resulting from the combination of quadratic cost functions
and prediction models based on second order Volterra models.

2.1 Model definitions

One of the main questions when representing a dynamic system by a mathematical
model is the posterior usage of the model. In control engineering disciplines mainly
two concepts can be distinguished: modeling for simulation and modeling for control.
Although both concepts are based on a mathematical abstraction of the system, mod-
els for simulation and for control show large differences, especially in its complexity.
Models for simulation purposes are generally characterized by a high accuracy, leading
to an elevated complexity and nonlinearity. Examples for highly complex simulation
models are the ones used for generating weather forecasts, simulating nuclear processes
or earthquakes.

On the other side, models for control purposes are usually less complex and accurate
and in many cases linear. This is due to the fact that the model will be used directly
to compute the control action to be applied to the system. In MPC, a sequence of
future control actions is calculated with the mentioned model. With commonly used
quadratic cost functions, the computation of the control action gives rise to different
optimization problems and, as a consequence, to different methods to resolve these
problems, especially in the case of nonlinear models. Therefore, basic MPC techniques
commonly use simple representations to model the dynamic behavior of the system to
control, e.g. autoregressive moving average model with exogenous inputs (ARMAX)
[72] in Generalized Predictive Control (GPC) [28], finite impulse response (FIR) [72]
model in Model Predictive Heuristic Control (MPHC) [112] and step response model
in Dynamic Matrix Control (DMC) [31]. For a general overview of MPC strategies see
[104, 23].

The input-output relationship of a causal single-input single-output (SISO) system
is a mapping of the past input values to the present output of the system [26]. This
relationship can be expressed for a Linear Time-Invariant (LTI) system by a convolution
integral [132, 26]:

y(t) =

∞∫

0

h1(τ) u(t− τ) dτ (2.1)

where the input signal u(t) is related to the output y(t) and the system dynamics are
determined by the impulse response h1(t). With this representation the output y(t)
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can can be viewed as a function of the input history for all τ ≤ t [38]. For nonlinear
time-invariant SISO systems the relation between the input u(t) and the output y(t)
can be expressed as a series of multiple convolution integrals [132, 26]:

y(t) =

∞∑

n=0

∞∫

0

n
· · ·

∞∫

0

hn(τ1, . . . , τn) u(t− τ1) · · ·u(t− τn) dτ1 · · ·dτn (2.2)

being hn(τ1, . . . , τn) the n-th order Volterra kernel. Without loss of generality, the
Volterra kernels can be assumed to have a symmetric character [26]. An n-th order
Volterra kernel is symmetric satisfying the condition:

hn(t1, . . . , tn) = hn(tπ(1), . . . , tπ(n)) (2.3)

where π(·) denotes any permutation of the integers 1, . . . , n [120]. Note that the kernel
h0 denotes a constant offset of the continuous Volterra series model. With all kernels
of second or higher order equal to zero, i.e hn(·) = 0 ∀n ≥ 2 the model (2.2) is reduced
to an impulse response model for a linear system. With the higher order terms, (2.2)
represents a logical extension of a linear convolution model with the nonlinearity being
an additional and additive term.

The discrete-time Volterra series model is defined analogously to the continuous time
SISO (2.2) models. With the convolution integrals replaced by discrete convolution
sums the discrete-time SISO Volterra series model is defined as [38]:

y(k) = h0 +
∞∑

n=1

∞∑

i1=0

n
· · ·

∞∑

in=0

hn(i1, . . . , in)u(k − i1) · · ·u(k − in) (2.4)

where h0 is the model offset, h1 are the linear term parameters and hn ∀n ≥ 2 repre-
sents the nonlinear term parameters. It has been shown in [20] that any stable fading
memory system can be approximated arbitrarily well by finite Volterra series models
with a sufficiently high order. Truncating the infinite terms of the model (2.4) leads to
the following definition of discrete-time finite Volterra series models:

y(k) = h0 +
m∑

n=1

N1∑

i1=0

n
· · ·

Nn∑

in=0

hn(i1, . . . , in)u(k − i1) · · ·u(k − in) (2.5)

where m denotes the order of the model. Note that the lower limits of the sums can be
changed from 0 to 1 in (2.4) without loss of generality for causal systems. As the input
value u(k) has no immediate effect on the output y(k), the Volterra kernels satisfy:

hn(i1, . . . , in) = 0 if i1 = 0 ∨ i2 = 0 ∨ . . . ∨ in = 0 ∀ n = 1, . . . , m (2.6)

As a consequence, these parameters can be neglected allowing the mentioned change in
the lower limit of the sums. In the specialized literature, both notations with a lower
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bound of summation of 0 [38, 98, 50] and 1 [38, 70, 36] can be found. Analogously to the
continuous case and without loss of generality, the Volterra kernels can be considered
symmetric satisfying the condition:

hn(i1, . . . , in) = hn(iπ(1), . . . , iπ(n)) (2.7)

Furthermore, due to the commutativity of scalar multiplication the statement:

u(k − i1) · · · u(k − in) = u(k − iπ(1)) · · · u(k − iπ(n)) (2.8)

holds. After changing the lower limits of the sums from 0 to 1 in (2.5) and under con-
sideration of symmetry (2.7) and commutativity (2.8) the discrete-time finite Volterra
series model can be written in the following triangular form:

y(k) = h0 +

m∑

n=1

N1∑

i1=1

N2∑

i2=i1

n
· · ·

Nn∑

in=in−1

htrn (i1, . . . , in)u(k − i1) · · ·u(k − in) (2.9)

with m being the order of the model. The coefficients htrn (·) of the triangular form
can be determined from the coefficients hn(·) of the non-triangular model (2.5). With
respect to the calculation of the output y(k) or for control purposes, the Volterra
kernels can be modified without loss of generality to be upper triangular matrices.
Nevertheless, the use of the triangular form of a Volterra series model has a positive
effect on the later described parameter identification process due to the lower number
of parameters to be identified.

As already mentioned before, in the case of models for control purposes the idea is
to use less complex models than the ones used for simulation. In order to calculate the
control action in a reasonable time, the complexity of the model has to be appropriate
to compute the control signal within the current sampling period. With an increasing
computational effort to calculate the input signal with higher order Volterra series
models, in many cases the used model is limited to second order Volterra series models
[38, 70, 98, 36, 50]. Analogously, for the design of new control approaches only second
order Volterra series models are used in this document1:

y(k) = h0 +

N1∑

i=1

h1(i)u(k − i) +

N2∑

i=1

N2∑

j=i

h2(i, j)u(k − i)u(k − j) (2.10)

The second order Volterra series model for multiple-input single-output (MISO) sys-
tems is defined in an analogy to the single-input single-output (SISO) model given in

1Note that through the entire document exclusively the triangular form of the Volterra kernels will

be used. Hence, for the sake of simplicity of the notation the superscript tr to denote the triangular

form has been neglected.
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(2.10). With two or more inputs the Volterra series model containing only self kernels
is given by:

y(k) = h0 +
m∑

n=1

N1,n∑

i=1

h1,n(i)un(k − i) +
m∑

n=1

N2,n∑

i=1

N2,n∑

j=i

h2,n(i, j)un(k − i)un(k − j) (2.11)

The definition of the model using exclusively self-kernels means that each input is
multiplied only with itself and no cross terms multiplying different inputs are considered
(cross-kernels) ([26]). In addition, the autoregressive form of Volterra series models
considers the last output values in the computation of the new output value. The
SISO case for autoregressive second order Volterra series models is defined by:

y(k) = har0 +

Nar
y∑

i=1

hary (i)y(k − i) +

Nar
1∑

i=1

har1 (i)u(k − i)+

Nar
2∑

i=1

Nar
2∑

j=i

har2 (i, j)u(k − i)u(k − j)

(2.12)

Analogously, autoregressive MISO second order Volterra series models can be written
as:

y(k) = har0 +

Nar
y∑

i=1

hary (i)y(k − i) +
m∑

n=1

Nar
1,n∑

i=1

har1,n(i)un(k − i)+

m∑

n=1

Nar
2,n∑

i=1

Nar
2,n∑

j=i

har2,n(i, j)un(k − i)un(k − j)

(2.13)

It has to be mentioned that in this document only the SISO (2.10) and MISO type
(2.11) of non-autoregressive second order Volterra series models are considered for
control purposes. Bilinear and autoregressive Volterra series models have not been
considered as their use in MPC leads to several computational optimization problems
and requires a reduction of the computational complexity as done in [50, 52]. In
spite of the problems in the optimization process of model based predictive control,
autoregressive Volterra series models can be a good choice for the identification of
the dynamics of a given system. An identified autoregressive Volterra series model
can be transformed easily to a non-autoregressive form in the case of open-loop stable
processes. For the transformation from the autoregressive to the non-autoregressive
form see Section 2.2.1. For further information on the different types of Volterra
series models the reader is referred to [132, 38, 120]. In the following sections the
denomination Volterra series model will be used as a synonym for the discrete-time non-
autoregressive form of Volterra series models. When addressing the autoregressive form
of Volterra series model, the autoregressive character of the model will be mentioned
explicitly.
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g(·) H(z)
u y
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g(·)H(z)
u y
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Figure 2.1: Block-oriented Volterra series models, a) Hammerstein model, b) Wiener model.

2.1.1 Important subclasses of Volterra series models

The class of non-autoregressive Volterra series models contains several subclasses, the
most noteworthy are the diagonal Volterra series models, the Hammerstein and the
Wiener models [38]. In the following paragraphs the mentioned subclasses will be
explained in general and their second order description will be given.

One of the most important subclasses of Volterra series models are the diagonal
ones. This type of model is characterized by non-zero parameters on the main diagonals
of the Volterra kernels and zero valued parameters on the off-diagonals. Hence, the
general Volterra series model (2.9) with all off-diagonal parameters equal to 0 can be
written as:

y(k) = h0 +
m∑

n=1

Nn∑

i=1

hn(i, n. . ., i)u(k − i)n (2.14)

It is clear from the definition of the off-diagonal elements and also from the diagonal
Volterra series model (2.14) that the number of parameters is reduced with respect
to the general model (2.9). In the case of a second order model (2.10), the diagonal
Volterra series model is defined by:

y(k) = h0 +

N1∑

i=1

h1(i)u(k − i) +

N2∑

i=1

h2(i, i)u(k − i)2 (2.15)

Another important subclass of Volterra series models are the Hammerstein models,
one of the simplest and most popular members of the family of block-oriented models
[38]. The Hammerstein model consists of a single static nonlinearity g(·) in series with
a linear dynamic model defined by a transfer function H(z), see Fig 2.1. For the general
case, the output of the Hammerstein model is defined by:

y(k) = h0 +

m∑

n=1

j
∑

i=1

γnh1(i)u(k − i)n (2.16)

It can be seen that the Hammerstein model uses the same parameters h(i) for the
first and higher order terms where the factor γn is used to scale the parameters used
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in the different terms. Furthermore it can be observed that the given Hammerstein
model (2.16) itself is a subclass of the diagonal Volterra series model given in 2.14. The
second order Hammerstein model, based on (2.16), can be written as:

y(k) = h0 +

N1∑

i=1

h(i)u(k − i) + γ

N1∑

i=1

h(i)u(k − i)2 (2.17)

The Wiener model, also from the family of the block-oriented models, is another
important and extensively used subclass of the general Volterra series model. Consist-
ing of a linear dynamic model H(z) and a single static nonlinearity connected in series
(see Fig. 2.1), the Wiener model can be regarded as the dual of the Hammerstein
model [38]. The general definition for a n-th order Wiener model is given by:

y(k) = h0 +

m∑

n=1

j
∑

i1=1

j
∑

i2=i1

n
· · ·

j
∑

in=in−1

γnh(i1) · · ·h(in)u(k − i1) · · ·u(k − in) (2.18)

From the definition of the Wiener model it can be seen that the higher order parameters
are products of the parameters h(i), scaled only by the factor γn. Hence, with (2.10)
the second order Wiener model can be written as:

y(k) = h0 +

N1∑

i=1

h(i)u(k − i) + γ

N1∑

i=1

N1∑

j=i

h(i)h(j)u(k − i)u(k − j) (2.19)

Being the diagonal Volterra series model, the Hammerstein and the Wiener model
subclasses of the general Volterra series models, the mentioned models can be used
within the same model predictive control framework as the general Volterra series
models. A schematic overview of the mentioned subclasses of Volterra series models is
given in Fig. 2.2. It has to be mentioned that one of the major disadvantages of Volterra
series models, analogously to step and impulse response models, is the high number of
model parameters. Especially for higher order systems the parameter number grows
rapidly with an increasing truncation order. To model higher order systems, in many
cases one of the above mentioned subclasses of Volterra series models is used instead
of the general Volterra series model. The subclasses of diagonal Volterra series models,
Hammerstein and Wiener models are characterized by a slower increase of the model
parameters in function of the model order and the used truncation order. The number
of parameters for the second order Volterra series model and its subclasses is given in
Tab. 2.1 for an unique truncation order N1 = N2 = Nt. Fig. 2.3 compares the number
of model parameters for different truncation orders. For details on the mentioned
subclasses of Volterra series models see [38].
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Volterra series model

diagonal Volterra
series model

Hammerstein

Wiener
model

model

Figure 2.2: Schematic overview of some important subclasses of Volterra series models.

Model Number of parameters

Volterra series model 1+Nt+
(Nt+1)Nt

2

diagonal Volterra series model 1+Nt+Nt

Hammerstein model 1+Nt+1

Wiener model 1+Nt+1

Table 2.1: Number of model parameters of the second order Volterra series model and its

subclasses for an unique truncation order N1 = N2 = Nt.
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Figure 2.3: Graphical representation of the number of model parameters for second order

Volterra series models and its subclasses as a function of the truncation order N1 = N2 = Nt.

In some cases the use of one of the mentioned subclasses is not desired as these
models have a reduced ability to describe the dynamic behavior of a system. In order
to reduce the number of parameters for the general Volterra series model, different
truncation orders for the first and the second order term parameters can be used. In
many cases a very short truncation order for the second order term improves consider-
ably the quality of adjustment with respect to a linear system, without the necessity
to use the same truncation order as for the linear part of the model.

2.2 Model parameter identification

System identification in its broadest sense means to obtain information of a given
system from measured data and to build a dynamical model based on the gathered
information. In the case of Volterra series models, identification refers to the determi-
nation of the model parameters of the Volterra kernels from suitable input-output. For
Volterra series models, being a typical black box model, the identification correlates
the applied input signal and the measured output signal and determines the numeri-
cal values of the parameters, see the general scheme for model parameter identification
based on input-output data in Fig. 2.4. In the specialized literature many identification
methods can be found, e.g. the simplex method, maximum likelihood estimation [72],
instrumental variable methods [125] or neural network identification [6], but probably
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Figure 2.4: Diagram of the identification based on input-output data.

the most used one is the least squares method minimizing the quadratic error between
the modeled output and the measured output of the system. Although second or higher
order Volterra series models are nonlinear, these models are linear in the parameters.
This attribute, perhaps one of the main advantages of nonlinear Volterra series models,
allows the use of identification techniques generally used for linear models. This sec-
tion describes the input signal used in this document to obtain suitable input-output
data and the least squares method to identify the model parameters. Furthermore, the
transformation from the autoregressive Volterra series model to the non-autoregressive
form will be explained.

A very important role in model parameter identification plays the choice of the input
signal sequence in order to get adequate input-output data. A common input signal
to gather input-output data for linear model parameter identification is the pseudo

random binary sequence (PRBS), a deterministic signal with white noise properties
[72]. The PRBS is characterized by only two different signal values with changing
period lengths where the lengths of the periods are not random, but generated by
shift registers. Analogously, for the parameter identification of a nonlinear model a
pseudo random multilevel sequence (PRMS) can be used. In PRMS, the signal switches
deterministically between a finite number of levels. It has been shown in [95] that an
(n + 1)-level PRMS sufficiently excites a system to be identified by an n-th order
Volterra series model. Therefore, in order to obtain suitable input-output for the
identification of a second order Volterra series model, PRMS with 3 different levels
have been used as input sequences in this document, see Fig. 2.5. For details on the
exact definition of PRMS the reader is referred to [94, 95], for other possible input
sequences, e.g. Gaussian white noise and sine-power sequences, see [38, 120].

As already mentioned, Volterra series models are linear in the parameters allowing
the use of well known linear identification techniques. Exploiting the linear character of
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Figure 2.5: Diagram of a pseudo random multilevel sequence (PRMS) with 3 levels, suitable

to identify a second order Volterra series model.

the parameters, in this document the least squares estimation method has been used
for the parameter identification of the Volterra kernels. With suitable input-output
data obtained in experiments from a process, denoting u(k) the input signal and y(k)

the output signal, the system can be represented generally as a Volterra series model
(2.5) in the following way:

y(k) = h0 + h1(1)u(k − 1) + . . .+ h1(N1)u(k −N1) +

h2(1, 1)u(k − 1)2 + . . .+ h2(N2, N2)u(k −N2)
2 + . . . (2.20)

With the two following vectors, one containing the unknown model parameters

θ = [h0 h1(1) . . . h1(N1) h2(1, 1) . . . h2(N2, N2) . . .]
T (2.21)

and the other one the input data used by the model

ϕ(k) =
[
1 u(k − 1) . . . u(k −N1) u(k − 1)2 . . . u(k −N2)

2 . . .
]T

(2.22)

the system output (2.20) for the current sampling period k can be written as:

y(k) = ϕ(k)Tθ (2.23)

Usually the system is not perfectly deterministic but shows some noise in the measure-
ment y(k). Therefore (2.23) is extended to include an additional term ε(k). With the
residual ε(k) considering noise the system output (2.23) becomes:

y(k) = ϕ(k)Tθ + ε(k) (2.24)

The term ϕ(k)Tθ can be considered as the prediction ŷ(k|k − 1) for the output y(k)
made at k − 1. Thus, the error between the model and the system can be defined:

ε(k) = y(k)−ϕ(k)Tθ (2.25)
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The least squares optimization criterion gives rise to the following problem where the
sum of quadratic errors has to be minimized over the set of input-output data:

J(θ) =
M∑

i=0

ε(k + i)2 =
M∑

i=0

(y(k + i)− ϕ(k + i)Tθ)2 (2.26)

In order to write the optimization problem in matricial form, the vector Υk containing
the system output measurements and Ψk denoting the matrix containing the vectors
ϕ(·) are defined:

Υk = [y(k) y(k + 1) . . . y(k +M)] (2.27)

Ψk =
[
ϕ(k)T ϕ(k + 1)T . . . ϕ(k +M)T

]
(2.28)

With (2.27)-(2.28) the sum of quadratic errors can be written as:

J(θ) = (Υk −Ψkθ)
T (Υk −Ψkθ) (2.29)

Finally, by means of the derivative of (2.29) the vector of model parameters becomes:

θ∗ =
(
ΨT

kΨk

)−1
ΨT

kΥk (2.30)

For a more exhaustive analysis of the least squares method and different identification
methods see [119, 72, 52].

It has to be mentioned that the high number of parameters of Volterra series models
requires a large set of input-output data to carry out an appropriate identification. As
already described in section 2.2, for many systems a reduction of the number of model
parameters is possible, allowing smaller data sets to be used during the identification
process. Another problem of the high number of parameters in the identification process
using the least squares method is the one leading frequently to a singular or nearly
singular to be inverted (2.30). The singular matrix is usually the result of a bad
conditioned identification problem, avoidable through reformulation of the problem
with less parameters to be identified.

Besides the parameter estimation from input-output data of the process to be iden-
tified, more systematic methods exist to model the system behavior using directly the
equations describing the system dynamic. That is, the parameters of the Volterra se-
ries model are derived from another mathematical model, usually a detailed prediction
model based on first principles as mass and energy balances. As already explained
in section 2.1, these models usually show an elevated complexity in order to fit well
the system dynamics, but are difficult to use for control purposes. The analytical pa-
rameter estimation can be carried out by means of a Taylor series expansion of the
original model with consecutive Carleman linearization [120, 80]. The reader is re-
ferred to [38, 35] for details on the described analytic method to determine the model
parameters of a Volterra series model.
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2.2.1 Transformation from autoregressive to non-autoregres-

sive form

In this section the transformation of autoregressive Volterra series models (2.12) to
the non-autoregressive representation (2.10) will be described. In general, autoregres-
sive Volterra series models obtain a similar model fit with less parameters than non-
autoregressive Volterra series models. Nevertheless, the linear and nonlinear terms of
autoregressive Volterra series models can not be separated and the use of this kind of
model in MPC results in more complex optimization problems. The transformation is
especially interesting when only a small input-output data set for the parameter iden-
tification is available. After the transformation to a non-autoregressive representation,
the model can be used in the later presented control strategies.

The autoregressive discrete-time second order Volterra series model (2.12) can be
written in the following form similar to a transfer function model with a constant offset
and an additive and additional nonlinear term [52, 45]:

A(q−1)y(k) = har0 +B1(q
−1)u(k) +B2(q

−1
1 , q−1

2 )u(k)2 (2.31)

where q−1, q−1
1 , q−1

2 denote backward shift operators and the polynomials A(q−1),
B1(q

−1) and B2(q
−1
1 , q−1

2 ) are given by:

A(q−1) = 1− hary (1)q−1 − . . .− hary (Ny)q
−Ny

B1(q
−1) = har1 (1)q−1 + . . .+ har1 (N1)q

−N1

B2(q
−1
1 , q−1

2 ) =

N2∑

i=1

N2∑

j=i

har2 (i, j)q−i
1 q

−j
2

har2 (i, j)q−i
1 q

−j
2 u(k)2 = har2 (i, j)u(k − i)u(k − j)

(2.32)

The constant coefficient h0 of the non-autoregressive Volterra series model (2.10)
can be defined as a division of har0 and A(1), where A(1) denotes the substitution of
the backward shift operator by q−1 = 1. With

A(1) = 1−

Ny∑

i=1

hary (i) (2.33)

the offset h0 is defined as:

h0 =
har0
A(1)

(2.34)
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The linear term parameters of the non-autoregressive Volterra series model can be
obtained directly by polynomial long division of B1(q

−1) and A(q−1):

har1 (1)q−1 + . . .+ har1 (Nar
1 )q−Nar

1

A(q−1)
= h1(1)q

−1 + . . .+ h1(N1)q
−N1 + ν1 (2.35)

where ν1 denotes the remainder of the linear term. For the calculation of the parameters
h2(i, j) the polynomial A(q−1) has to be substituted by A(q−1

1 , q−1
2 ), necessary due to

the quadratic character of B2(q
−1
1 , q−1

2 ). With the new polynomial defined by:

A(q−1
1 , q−1

2 ) = 1− hary (1)q−1
1 q−1

2 − . . .− hary (Ny)q
−Ny

1 q
−Ny

2 (2.36)

the quadratic term parameters h2(i, j) are calculated, analogously to the linear term
parameters, by polynomial long division of B2(q

−1
1 , q−1

2 ) and A(q−1
1 , q−1

2 ). Then, with
B2(q

−1
1 , q−1

2 ) being a triangular matrix, the division is carried out for each non-zero
diagonal of B2(q

−1
1 , q−1

2 ) in the following form:

har2 (1, 1)q−1
1 q−1

2 +. . .+har2 (Nar
2 , N

ar
2 )q

−Nar
2

1 q
−Nar

2
2

A(q−1
1 , q−1

2 )
=

h2(1, 1)q
−1
1 q−1

2 +. . .+h2(N2, N2)q
−N2
1 q−N2

2 +ν2(1)

har2 (1, 2)q−1
1 q−1

2 +. . .+har2 (Nar
2 − 1, Nar

2 )q
−Nar

2 +1
1 q

−Nar
2 +1

2

A(q−1
1 , q−1

2 )
· q−1

2 =

(
h2(1, 2)q

−1
1 q−1

2 +. . .+h2(N2 − 1, N2)q
−N2+1
1 q−N2+1

2

)
· q−1

2 +ν2(2)

...

har2 (1, Nar
2 )q−1

1 q−1
2

A(q−1)
· q

−Nar
2 +1

2 =

(

h2(1, N
ar
2 )q−1

1 q−1
2 +. . .+h2(ξ, N2)q

−ξ
1 q−ξ

2

)

· q
−Nar

2 +1
2 +ν2(N

ar
2 )

(2.37)

with ξ = N2 −Nar
2 + 1.

Note that increasing the truncation orders N1 and N2 reduces the remainders ν1 and
ν2(i) for i = 1, . . . , Nar

2 of the polynomial long divisions and leads to a better appro-
ximation. With N1 → ∞ and N2 → ∞ a perfect approximation of the autoregressive
Volterra series model by the non-autoregressive Volterra series model is reached, i.e.
ν1 → 0 and ν2(i) → 0 for i = 1, . . . , Nar

2 .
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2.3 Prediction model

One of the most important elements of a model-based predictive control algorithm is
the used prediction model to estimate the future behavior of the system in function
of the applied control signal. The following paragraphs give a detailed definition of
the prediction model for the discrete-time second-order Volterra series model shown in
section 2.1.

With the second order Volterra series model (2.10) the system output can be pre-
dicted easily with:

ŷ(k + 1|k) = h0 + h1(1) u(k|k) + . . .+ h1(N1) u(k −N1 + 1)+

h2(1, 1) u(k|k)
2 + h2(1, 2) u(k|k) u(k− 1) + . . .+

h2(N2, N2) u(k −N2 + 1)2
(2.38)

where ŷ(k + 1|k) denotes the output prediction made at k for k + 1 and u(k|k) is the
current control signal applied to the system. Usually the identified model is only an
approximation of the real system and shows some model mismatch when the model
does not capture the entire dynamic behavior of the system. As a consequence of
the model mismatch it is recommendable to include an additional term in the output
prediction containing the current estimation error. The estimation error in k is defined
as the difference between the measured output y(k) and the output prediction ŷ(k|k−1)

made at k − 1 for k:

d(k) = y(k)− ŷ(k|k − 1) (2.39)

In order to obtain a simple expression for the prediction model and without loss of
generality the variable Nt will be used as a common truncation order for the linear and
nonlinear terms with Nt = max(N1, N2). In the case of N1 > N2, i.e. Nt = N1, the
missing second order term parameters are defined as h2(i, j) = 0 ∀ i > N2 ∀ j > N2. In
the opposite case, i.e. N2 > N1 and therefore Nt = N2, the linear term parameters are
defined as h1(i) = 0 ∀ i > N1. Adding the prediction error and changing the notation
for the truncation order, the one step ahead output prediction based on a second order
Volterra series model becomes:

ŷ(k + 1|k) = h0 + h1(1) u(k|k) + . . .+ h1(Nt) u(k −Nt + 1)+

h2(1, 1) u(k|k)
2 + h2(1, 2) u(k|k) u(k− 1) + . . .+

h2(Nt, Nt) u(k −Nt + 1)2 + d(k)

(2.40)

Analogously, the predictions ŷ(k+2|k), . . . , ŷ(k+N |k) with N denoting the prediction
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horizon are defined as:

ŷ(k + 2|k) = h0 + h1(1) u(k + 1|k) + . . .+ h1(Nt) u(k −Nt + 2)+

h2(1, 1) u(k + 1|k)2 + h2(1, 2) u(k + 1|k) u(k|k) + . . .+

h2(Nt, Nt) u(k −Nt + 2)2 + d(k)
...

ŷ(k +N |k) = h0 + h1(1) u(k +N − 1|k) + . . .+ h1(Nt) u(k +N −Nt)+

h2(1, 1) u(k+N−1|k)2 + h2(1, 2) u(k+N−1|k) u(k+N−2|k)+

. . .+ h2(Nt, Nt) u(k +N −Nt)
2 + d(k)

(2.41)

Note that in the expressions for the predictions ŷ(k+2|k), . . . , ŷ(k+N |k) the estimation
error d(k) for the current sampling period has been used. Without any knowledge about
the future prediction error, the current prediction error d(k) is used in the predictions
ŷ(k + 2|k), . . . , ŷ(k +N |k).

A common technique in model-based predictive control is the use of a control hori-
zon, defining the number of future control actions, i.e. the length of the input sequence,
to be calculated. This means that the control action is calculated only for the given
control horizon Nu and not for the entire prediction horizon N with Nu ≤ N . Once the
control horizon is reached it is assumed that the control signal is constant. Therefore,
after reaching the control horizon, the input signal is defined as [23]:

u(k + i|k) = u(k +Nu − 1|k) ∀ Nu ≤ i ≤ N − 1 (2.42)

It is clear from the above defined predictions ŷ(k+1|k), . . . , ŷ(k+N |k) that the input
signal has not to be defined beyond the prediction horizon as the predictions are not
based upon the input signals u(k + i|k) for i > N − 1.

Finally, with all predictions ŷ(k+i|k) with i = 1, . . . , N defined along the prediction
horizon N , the future behavior of the system modeled by a second order Volterra series
model can be written in matricial form [37, 38]:

ŷ = Gu+ c + f(u) (2.43)

which can be considered as a natural extension of the models used in the most common
predictive control strategies based on linear convolution models, e.g. Model Predictive
Heuristic Control (MPHC) [111, 112]. The vector ŷ ∈ R

N is the vector of the predicted
system output along the prediction horizon and u ∈ R

Nu denotes the future input
sequence over the control horizon. The term Gu with G ∈ R

N×Nu represents the linear
part depending on the future input sequence. The term c ∈ R

N includes all variables
not depending on the future input sequence and the vector f(u) ∈ R

N contains the
future-future and future-past cross terms depending on the input sequence u. The
constant term c ∈ R

N is defined as [37, 38]:

c = Hup + g + h0 + d (2.44)
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where up ∈ R
Nt denotes the past input values applied to the system. The term Hup

with H ∈ R
N×Nt represents the linear part depending on the past input values. The

vector d ∈ R
N with d = [d(k), . . . , d(k)]T contains the current estimation error, i.e.

the error between the measured output and the predicted system output. The past-past
cross terms depending on up are considered in g ∈ R

N and the constant offset h0 of
the Volterra series model (2.10) is considered in h0 ∈ R

N with h0 = [h0, . . . , h0]
T . The

detailed definitions of all the vectors and matrices used in the prediction model (2.43)-
(2.44) are given in the Appendix A.1. With the complete definition of the prediction
model (2.43)-(2.44) based on a second order Volterra series model (2.10), the future
evolution of the model output can be predicted for a given prediction horizon N and
control horizon Nu and a known input sequence u.

Note that f(u) is a nonlinear function depending on the input signal and, as a con-
sequence, the prediction model (2.43)-(2.44) is nonlinear. As the nonlinear component
is additive, the prediction model can be seen as the logical nonlinear extension of the
prediction models based upon finite impulse response (FIR) or step response models.
The problems resulting from the nonlinear prediction model will be discussed in section
2.5.

2.4 Objective function for MPC

In general terms, model-based predictive control is based on the computation of an
input sequence that makes the controlled system to follow a given reference. The
input sequence, which can have different forms for the model based predictive control
algorithms in literature [23], is calculated minimizing an objective function based on
the identified model.

Model-based predictive controllers, see Fig. 2.6, can be characterized by the follow-
ing strategy [23]:

1. In every sampling period k the future output values are predicted over the
prediction horizon using the prediction model. The predicted output values
ŷ(k + i|k) ∀ i = 1, . . . , N depend on the future input signals u(k + i|k) ∀ i =

0, . . . Nu − 1 to be calculated and the values already known at k, i.e. the input
signals applied in the previous sampling periods and the measured output values
up to the current sampling period.

2. The future input signals are calculated by optimizing a given objective function
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k−1 k k+1 k+2 k+i k+N. . .. . .

u(k−1)

y(k−1)
y(k)

u(k|k)

u(k+i|k)

ŷ(k+i|k)

Figure 2.6: General model-based predictive control strategy [23].

in order to keep the error between the predicted output and a given reference
(desired output value) as small as possible. In model-based predictive control the
objective function is usually a quadratic cost function of the errors between the
predicted output and the reference over the entire prediction horizon. Depending
on the control objectives, the mentioned cost function can include a weighting of
the control effort, obtaining this way a smoother control behavior. Furthermore,
depending on the used control law, the optimization can include input and output
constraints, restricting the input signals and the system output to determined sets
of permitted values.

3. From the input sequence u(k+i|k) ∀ i = 0, . . . Nu−1 only the first element u(k|k)
is applied in a receding horizon strategy to the controlled system. The remaining
elements are not applied to the system because in the next sampling period k+1

new data of the system have been collected (y(k + 1)) and the optimization of
step 1 and 2 is repeated with the updated information. In the following sampling
period k+1 the input signal u(k+1|k+1) is calculated and applied to the system.
Note that u(k + 1|k+ 1) has not necessarily the same value as u(k+ 1|k) due to
model mismatch or a suboptimal calculation of the input signal.

The above described strategy can be implemented as shown in the schematic dia-
gram in Fig. 2.7. A model of the system is used to predict the future output based
on the past input and output values as well as on the input sequence to be calculated.



Chapter 2. Volterra series models 35

Model

Optimization

Cost
function

Past inputs
and outputs Predicted

outputs

Reference
trajectory

Future
errors

Future
inputs

Constraints

+

–

Figure 2.7: Schematic diagram of a model-based predictive control.

This input sequence is computed by a numerical solver2 minimizing the cost function.
If constraints have been defined, the computation of the input sequence is carried out
under consideration of possible input and output constraints. The fact that the opti-
mization routine uses the system model to calculate the future input sequence makes
the prediction model one of the most important components of a model-based predic-
tive control strategy. Another decisive factor is the choice of the objective function,
also called cost function or performance index, allowing to adjust the controller to the
desired behavior.

The cost function J(u) to be minimized by a model-based predictive control strategy
is usually given by the quadratic function [75, 23]3:

J(u) =
N∑

i=1

δ(i) (ŷ(k + i|k)− r(k + i))2 +
Nu−1∑

i=0

λ(i)∆u(k + i|k)2 (2.45)

being r(k + i) the reference i steps ahead. The quadratic error between the predicted
output ŷ(k+ i|k) and the desired reference value r(k+ i) is weighted by the parameter
δ(j). The control effort ∆u(k+i|k) is penalized with the weighting factor λ(j). The cost
function considers the output error over the entire prediction horizon and the control
effort along the control horizon. The weighting factors must satisfy the conditions
δ(i) ≥ 0 for i = 1, . . . , N and λ(i) ≥ 0 for i = 0, . . . , Nu − 1.

2In unconstrained linear MPC, e.g. Model Algorithmic Control or Dynamic Matrix Control, an

explicit solution to the minimization problem can be found.
3Note that the given performance index is suitable only for SISO models. For the cost function

based on models with several inputs or outputs, the reader is referred to [23]
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In this work, two special cases of the general cost function (2.45) have been used.
The first one assumes δ(i) = 1 for i = 1, . . . , N and λ(i) = 0 for i = 0, . . . , Nu − 1,
resulting in the following expression:

J(u) =

N∑

i=1

(ŷ(k + i|k)− r(k + i))2

= (ŷ − r)T (ŷ − r) (2.46)

where r ∈ R
N denotes the reference trajectory. An exact definition of the reference

trajectory vector r is given in the Appendix A.2. The minimization of this cost function
usually results in an aggressive control behavior as the control effort is not considered.
For the second cost function the assumption δ(i) = 1 for i = 1, . . . , N and λ(i) = λ

for i = 0, . . . , Nu−1 with λ > 0 has been made. Thus, the cost function considering a
constant penalization of the control effort over the entire control horizon can be written
as:

J(u) =

N∑

i=1

(ŷ(k + i|k)− r(k + i))2 +

Nu−1∑

i=0

λ∆u(k + i|k)2

= (ŷ − r)T (ŷ − r) + λ∆uT∆u (2.47)

with ∆u ∈ R
Nu representing the future input increment sequence. For the definition

of ∆u ∈ R
Nu see the Appendix A.2.

2.5 MPC using Volterra series models

In order to calculate an input sequence for the system, the prediction model (2.43)-
(2.44) based on a second order Volterra series model is used in the cost functions defined
in section 2.4. The following paragraphs show the quadratic cost functions for second
order Volterra series and the encountered problems. Furthermore, the input sequence
to be calculated will be defined in a theoretical manner.

Using the prediction model (2.43)-(2.44) in combination with the cost function J(u)
(2.46) without considering a penalization of the control effort, the performance index
can be written as:

J(u) = (Gu+ c+ f(u)− r)T (Gu+ c + f(u)− r) (2.48)

In order to include a penalization of the control effort, the prediction model (2.43)-
(2.44) based on the second order Volterra series model can be used in the cost function
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(2.47). The resulting performance index

J(u,∆u) = (Gu+ c+ f(u)− r)T (Gu+ c + f(u)− r) + λ∆uT∆u (2.49)

is a function of the input sequence u and the input increments ∆u. For optimization
purposes, the cost function should depend only on u or only on ∆u. In this thesis, the
cost function depending only on u has been chosen4. Therefore, the term containing
the penalization of the control effort is transformed to depend on u instead of ∆u. In
a general way, the control increments ∆u can be written as:

∆u =








1 0 0 0

−1 1 0 0
...

. . . . . .
...

0 0 −1 1








︸ ︷︷ ︸

Lu

·








u(k|k)

u(k + 1|k)
...

u(k+Nu−1|k)








︸ ︷︷ ︸

u

−








u(k − 1)

0
...
0








︸ ︷︷ ︸

ul

= Luu− ul (2.50)

where the column vector ul ∈ RNu contains the last applied control signal u(k − 1)

as first element and zeros as other elements. With (2.50) the term containing the
penalization of the control effort can be written as:

λ∆uT∆u = λuTLT
uLuu

T − 2λuT
l Luu+ λuT

l ul (2.51)

Finally, using the transformed penalization term (2.51) the cost function (2.49) can be
expressed exclusively as a function of u:

J(u) = (Gu+ c + f(u)− r)T (Gu+ c+ f(u)− r) +

λuTLT
uLuu

T − 2λuT
l Luu+ λuT

l ul (2.52)

With the cost function defined for the second order Volterra series model, the input
sequence can be calculated by minimizing the cost function without penalization of
the control effort (2.48) or by minimizing the cost function considering a weighting
function for the control effort (2.52):

u∗ = arg min
u

J(u) (2.53)

s.t. q(u) ≤ bc

where the input and output constraints are considered by the expression q(u) ≤ bc

with q(u) : RNu 7→ R
nc and bc ∈ R

nc being nc the number of constraints. In the case

4Naturally, both forms are valid for MPC strategies. Nevertheless, the transformation of the cost

function to depend only ∆u is more complex as the nonlinear term f(u) in (2.49) has to be rewritten

as a function of ∆u.
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of output constraints, the function q(u) is nonlinear due to the nonlinear prediction
model. If only linear constraints are used, i.e. output constraints are not considered,
(2.53) can be rewritten as:

u∗ = arg min
u

J(u) (2.54)

s.t. Lcu ≤ bc

The use of the prediction model (2.43)-(2.44) based on a second order Volterra
series model (2.10) in model-based predictive control with a quadratic cost function
from section 2.4 results in a fourth order polynomial depending on the input sequence
u. These polynomials are not necessarily convex in u and lead in the non-convex case
to optimization problems due to several minimums of the cost function. One of the
possibilities is the computation of the input sequence with numerical techniques, but
without guarantee to globally minimize the cost function and, as a consequence, to
obtain the optimal input sequence. Furthermore, the numerical optimization normally
leads to a high computational effort and gives rise to control problems for fast processes.
Another way to calculate the input sequence is the exploitation of convex optimization
methods, i.e. transforming the non-convex problem to a convex one [21].

2.6 Volterra series models in state space

Generally, non-autoregressive discrete-time Volterra series models as the ones presented
in Section 2.1 can be described in discrete state-space representation. The state-space
representation has a special importance for the later given stability proofs for the
different model-based predictive control strategies. In the following paragraphs the
discrete state-space representation for second order Volterra series models (2.10) will
be given.

In a first step, the past input values u(k − i) with i = 1, · · · , Nt of the non-
autoregressive second order Volterra series model (2.10) can be viewed as system states,
e.g. the model states are defined by:

xi(k) = u(k − i) for i = 1, . . . , Nt (2.55)

where xi(k) is the i-th element of the state vector x(k) ∈ R
Nt . It can be seen easily
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that the definition of the states (2.55) can be rewritten in the form:

x1(k) = u(k − 1)

x2(k) = x1(k − 1)

x3(k) = x2(k − 1)
...

...
...

xNt
(k) = xNt−1(k − 1)

(2.56)

where the first state xi(k) represents the last applied input signal and the remaining
states depend on the states from the previous instant. With the states xi(k) for i =
1, . . . , Nt the model output of the second order Volterra series model (2.10) can be
expressed by:

y(k) = f(x(k)) =

Nt∑

i=1

h1(i) xi(k) +

Nt∑

i=1

Nt∑

j=i

h2(i, j) xi(k) xj(k) (2.57)

Note the similarity of (2.57) and (2.10) where the past input values u(k − i) for
i = 1, . . . , Nt have been substituted by the previously defined states xi(k) for i =

1, . . . , Nt. Now it can be seen easily that (2.10) can be expressed as a nonlinear state
space model defined by:

x(k + 1) = Ax(k) +Bu(k)

y(k) = f(x(k))
(2.58)

where the state matrix A ∈ R
Nt×Nt and the input matrix B ∈ R

Nt are given by (2.56)
as:

A =












0 0 . . . 0 0 0

1 0 . . . 0 0 0

0 1 . . . 0 0 0
...

...
. . .

...
...

...
0 0 . . . 1 0 0

0 0 . . . 0 1 0












, B =












1

0

0
...
0

0












(2.59)

Note that the constant offset h0 given in the second order Volterra series model (2.10)
has been removed in the state-space representation (2.58) by means of a linear transfor-
mation y̌(k) = y(k)−h0. For the sake of simplicity of the notation and without loss of
generality the output of the state space model without considering the offset has been
denoted y(k). For first order Volterra series models, i.e. finite impulse response models,
the output can be defined as y(k) = CTx(k). Then, the output matrix contains the
model parameters C = [h1(1) h1(2) . . . h1(Nt)].

It is clear that the second order Volterra series model in state space representation
(2.58) can be used in control strategies to predict the future output evolution for a
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given input. Based directly on (2.58), a prediction model can be defined as:

x(k + i+ 1|k) = Ax(k + i|k) +Bu(k + i|k)

y(k + i|k) = f(x(k + i|k))
(2.60)

where x(k + i + 1|k) represents the state vector for k + i + 1 predicted at k and
x(k|k) = x(k) denotes the initial state for the prediction. The prediction model of a
second order Volterra series model in state-space representation (2.60) considering the
estimation error as a result of model mismatch can be written as:

x(k + i+ 1|k) = Ax(k + i|k) +Bu(k + i|k)

y(k + i|k) = f(x(k + i|k)) + d(k)
(2.61)

2.7 Conclusions of the chapter

In this chapter the basic structure of Volterra series models has been presented, with
a special emphasis on the second order type used frequently in this document. Be-
ing linear in the parameters, the identification of the parameters of a Volterra series
model can be carried out easily with the least squares method using input-output data
from the process to be modeled. In order to obtain appropriate input-output data
for identification the pseudo random multilevel sequence, a signal with white-noise-like
properties which sufficiently excites the system, has been presented. For the second or-
der Volterra series model a prediction model for posterior use in model-based predictive
control has been defined. Furthermore, the cost functions with and without penaliza-
tion of the control effort were presented. Based on these cost functions, the general
optimization problem of model predictive control based on a second order Volterra
series model was defined. Finally, it was shown that second order Volterra models can
be expressed easily in state-space representation which is necessary for the stability
analysis of model-based predictive control strategies.

As mentioned in section 2.1, Volterra series models can approximate arbitrarily
well any fading memory system. This property allows the modeling of a wide range
of stable processes by Volterra series models, but eliminates the possibility to model
unstable systems. One of the major advantages of Volterra series models is the linearity
in the model parameters which allows the usage of linear parameter identification
techniques for nonlinear Volterra series model. A possible drawback is the high number
of parameters of the used model requiring large sets of data for the identification
process. If only a small data set is available, an autoregressive Volterra series model
with a reduced number of parameters can be identified. If necessary, autoregressive
Volterra series can be easily transformed to a non-autoregressive form and used in MPC
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strategies based on non-autoregressive Volterra series models. Furthermore, second
order Volterra series models in combination with the usually quadratic cost functions
of model-based predictive control lead to possibly non-convex forth order polynomials,
representing an optimization problem when computing the future input sequence.





Chapter 3

Benchmark systems

This chapter gives a detailed description of the real processes used as benchmark sys-
tems for the application of different model-based predictive control strategies. For their
use in model-based control strategies the plants will be approximated by second order
Volterra series models and the model parameters will be identified from input-output
data obtained from experiments with the different processes.

The main benchmark system used in this document is a lab-scale pilot plant em-
ulating an exothermic chemical reaction in continuous operation. In a first step a
short introduction to the operating mode of the laboratory process will be given and
a simulation model based on first principles will be presented. Finally, for control pur-
poses the nonlinear temperature dynamics of the pilot plant will be approximated by
a second order Volterra series model. The second benchmark is a commercial proton
exchange membrane fuel cell, characterized by the fast dynamic of the electrochemical
reaction. Analogously to the pilot plant, a description of the process and the oxygen
consumption will be given. After defining the control objective, a Volterra series model
of the fuel cell dynamics will be identified. The third benchmark system is an experi-
mental greenhouse which requires a regulated inside temperature to ensure correct crop
growth. The greenhouse dynamics will be approximated by a second order Volterra
series model under consideration of several disturbances which influence the mentioned
temperature in the greenhouse. The chosen benchmark systems are representative
for a wide range of processes with different time scales and degrees of nonlinearity and
therefore show that the results of this thesis have a good applicability to real processes.

The main focus of this chapter lies on the approximation of the benchmarks systems’
dynamics by second order Volterra series models. For the three benchmark systems,

43
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the dynamics of the variable to be controlled will be identified from experimental input-
output data by means of the least squares estimation method.

3.1 Pilot plant

One of the benchmark systems used to apply different model-based predictive control
strategies is a lab-scale pilot plant which allows the simulation of processes with vari-
ables commonly found in industrial processes as temperatures and flow rates. The
system is equipped with different sensors for measurement and several actuators for
process control. In this document the mentioned pilot plant is used to emulate an
exothermic chemical reaction based on temperature changes. With the help of a math-
ematical model the emulation of the chemical reaction is carried out.

The plant is located in the laboratory of the Department of Systems Engineering
and Automation (University of Seville) and has been studied before by several authors
[129, 29, 30] and used as a benchmark for control purposes [108, 107, 99, 100]. The
following sections explain the operating modes of the pilot plant and give a description
of the control and monitoring system. Afterwards, the mathematical model of the
exothermic chemical reaction will be given and the used method for emulation will be
explained. Finally, the identification of the process’ dynamics by means of a second
order Volterra series model will be shown.

3.1.1 Process description

The pilot plant shown in Fig. 3.1 emulates a continuous stirred tank reactor (CSTR)
and contains several means to cool or to heat the fluid in the reactor. The main
elements of the system are the tank reactor, an electric resistance, a cooling jacket, a
valve to manipulate the flow rate through the cooling jacket as well as a water tank.
The general plant structure with the mentioned elements is given in the schematic
diagram in Fig. 3.2.

The pilot plant is operated with water, both in the reactor and the cooling jacket.
The reactor has a capacity of approximately 25 l and is equipped with an electric
resistance in its interior. The electric resistance has a maximum power of 14.4 kW and
can be used to supply caloric energy to the water in the tank. On the other hand
the cooling jacket is used to reduce the caloric energy of the tank reactor. The heat
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Figure 3.1: Pilot plant used to study different model-based predictive control strategies.

dissipation can be regulated by the aperture v8 of the valve manipulating the flow
rate Fj through the cooling jacket (see Fig. 3.2). The cooling fluid, water, circulating
through the cooling jacket is taken from a tank with a capacity of 1m3. After circulating
through the jacket the cooling fluid returns to the tank. To maintain the temperature
of the cold water in a certain interval the tank has an auxiliary cooler controlled by a
thermostat which maintains the temperature TT2 between 18 oC and 19 oC.

The sensors and actuators of the plant are connected to a Schneider M340 pro-
grammable automation controller (PAC). The M340 is connected by Ethernet to a
personal computer that runs the Unity Pro software package. The control algorithms
proposed in the following chapters have been implemented directly in Matlab/Simulink
and the communication with Unity Pro is done using the OPC protocol (OLE for Pro-
cess Control). Hence, both the Unity Pro environment and the controller implemented
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Figure 3.2: Diagram of the pilot plant with its main elements.

in Matlab/Simulink run on the same personal computer based on a Pentium 4 processor
with 3GHz using Windows XP as operating system.

3.1.2 Emulation of a chemical reaction

The pilot plant (see Fig. 3.1) is used to emulate an exothermic chemical reaction as in
[121]. For the emulation, the energy generated by the chemical reaction is calculated
with a mathematical model of the reaction and supplied by the electric resistance.
The use of a resistance to emulate an exothermic reaction has the advantage that no
chemical reaction takes place in the reactor, which allows a safer and cheaper use of
the process, while real industrial instrumentation and equipment are used.

The emulated chemical reaction considered in this documents represents a refine-
ment process where a reactant A is transformed to a substance B generating caloric
energy. The reaction is generally defined by A → B and was used previously in [63]
and [44]. The reactant is supplied to the reactor by the emulated feed Ff,in to keep
the chemical reaction active. Before entering the reactor, the feed passes through a
heat exchanger in order to reduce the temperature difference between the feed and the
reactor content. The emulated outflow Ff,out is used to keep the volume of the reactor
content constant. As a consequence, as feed and outflow have the same flow rate and
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Figure 3.3: Diagram of the CSTR emulated by the pilot plant showing the emulated feed

Ff,in and outflow Ff,out.

nearly the same temperature, the two flows hardly provoke temperature changes in
the interior of the reactor. Figure 3.3 shows the diagram of the pilot plant with the
emulated feed Ff,in and outflow Ff,out.

Considering identical flow rates for the feed and the outflow, i.e Ff = Ff,in = Ff,out,
the reactor volume V and mass M are constant. The temperature changes of the
reactor content can then be defined as [63, 44]:

dT

dt
= −

Fj

V
(Tj,out − Tj,in) +

(−∆H) · V

MCp

k0 e
−E/(RT )C2

A (3.1)

where the first term models the heat dissipation by the cooling jacket and the second
term denotes the generated heat by the exothermic chemical reaction. The variables
Fj , Tj,in y Tj,out represent the flow rate through the cooling jacket and the temperature
of the cooling fluid entering and leaving the cooling jacket, respectively. CA is the
concentration of the reactant in the reactor content. It has been assumed that the feed
neither supplies nor removes caloric energy from the reactor as the feed passes through
a heat exchanger and enters the reactor nearly with the temperature of the reactor
content. The reactant concentration CA in the plant reactor is calculated by [63, 44]:

dCA

dt
=
Ff

V
(CA,in − CA)− k0 e

−E/(RT )C2
A (3.2)
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Parameter Value Unit

k0 1.2650 · 1017 l
mol·s

Cp 4.18 kJ
K·kg

∆H −105.57 kJ
mol

E/R 13550 K

Variable Value Unit

V 25 l

M 25 kg

CA,in 1.2 mol
l

Ff 0.05 l
s

Tj,in 291.15 K

Table 3.1: Model parameters and constant variables of the emulated exothermic chemical

reaction.

where the first term represents changes in the reactant concentration due to the feed
and the outflow. The second term considers the reduction of the concentration as
a result of the reactant consumption by the chemical reaction. CA,in denotes the
reactant concentration in the feed. The model parameters and the variables used with
constant values are shown in Table 3.1. Figure 3.4 shows the temperature T and
the concentration CA of the reactor in steady state as a function of the flow rate Fj

through the cooling jacket calculated with the mathematical model (3.1)-(3.2). For
the emulation of the exothermic process the electric resistance supplying caloric energy
to the reactor is used. Therefore the concentration CA is calculated with (3.2) using
the measured tank temperature T . With the calculated concentration CA and the
measured temperature T the temperature gradient (3.1) can be calculated. Hence,
with the known parameters for the reactor mass (M) and the specific heat capacity
of water (Cp) the necessary power to obtain the calculated temperature gradient is
defined as:

P = CpM
dT

dt
(3.3)

Finally, the electric resistance operated with the necessary power P provides the caloric
energy that is supplied to the reactor in order to emulate the chemical reaction. Hence,
the chemical reaction can be emulated simulating the differential equations (3.1)-(3.2)
and supplying the reaction heat (3.3) by means of the electric resistance.

In order to emphasize the nonlinear character of the process the empirical model
for the heat exchange in the cooling jacket and the static nonlinearity relating the flow
rate Fj with the valve opening v8 will be given. The heat exchange in the cooling jacket
due to the temperature difference is given by the following experimental model [45]:

Fj · (Tj,out−Tj,in) =
T−α

β
(1−e−γFj) (3.4)

with α = 291.13K, β = 19.15 s/l and γ = 26.14 s/l. Furthermore, the relationship
between the flow rate Fj through the cooling jacket and the valve opening v8 is identified



Chapter 3. Benchmark systems 49

Fj

[
l

min

]

Fj

[
l

min

]

T
[o
C
]

C
A

[
m
o
l

l

]

0.1

0.2

0.3

0.4

30

40

50

60

70

80

90

0
1

1

2

2

3

3

4

4

5

5

6

6

7

7

8

8

Figure 3.4: Temperature T and concentration CA of the reactor in steady state as a function

of the flow rate Fj through the cooling jacket calculated with the equations of the temperature

(3.1) and the concentration (3.2).

from experimental data and can be approximated by:

Fj = δ0 + δ1v8 + δ2v
2
8 + δ3v

3
8 + δ4v

4
8 + δ0v

5
8 (3.5)

with δ0 = 4.84 ·10−4, δ1 = 3.43 ·10−4, δ2 = 2.69 ·10−4, δ3 = 1.29 ·10−5, δ4 = −1.46 ·10−8

and δ5 = −6.36 · 10−10. Note that (3.4) and (3.5) have not been used to emulate the
chemical reaction, but can be used for a simulation of the entire process. The nonlinear
static relation between the opening v8 and the flow rate Fj , based on (3.5), is shown
in Fig. 3.5.

The chemical reaction is nonlinear in the dynamics of the temperature and the
concentration due to the exponential function and the quadratic terms of the concen-
tration in the model equations (3.1) and (3.2). The relation between the opening of
the valve v8 and the flow rate Fj through the cooling jacket, given in (3.5), adds some
static nonlinearity to the model. Furthermore, the heat exchanger also shows a static
nonlinear behavior, converting the process (3.1)-(3.5) in a highly nonlinear system.
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Figure 3.5: Static relation between the flow rate Fj and the opening of valve v8.
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Figure 3.6: Block diagram of the considered model of the pilot plant with the model input

(valve opening v8) and output (temperature T ).

3.1.3 Identification of a Volterra series model

For control purposes the pilot plant emulating the exothermic chemical reaction will
be approximated by a second order Volterra series model with the valve opening v8
being the model input and the temperature T being the output (see Fig. 3.6). The
identification requires, as already mentioned in Section 2.2, adequate experimental
input-output data for the parameter estimation. Therefore a pseudo random multilevel
sequence has been applied to the valve v8 of the plant in order to obtain the necessary
data. As showen by [94, 95] the parameter estimation for a second order Volterra
series model requires an input sequence with at least 3 different levels. For the pilot
plant emulating an exothermic chemical reaction a PRMS with input sequence values
of v8 = {40, 60, 80}% and periods between 20 and 60 minutes has been chosen. The
resulting output of the system, the temperature T , varies between 38 oC and 79 oC,
covering a large interval of possible operating points, see Fig. 3.7.

With the obtained experimental input-output data the parameter identification was
carried out by means of the least squares estimation method. During the identification
process different sampling times and truncation orders for the chosen model were tested.
Finally a sampling time of ts = 60 s was chosen and the truncation orders of N1 =

60 and N2 = 30 were determined. In order to reduce the number of parameters
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Figure 3.7: Experimental data set with temperature T , aperture of the valve v8 and emulated

concentration CA used for the identification of a Volterra series model of the pilot plant with

an exothermic chemical reaction.

to be identified, a diagonal second order Volterra series model has been chosen to
approximate the process dynamics. The use of a general, non-diagonal second order
Volterra series model would require a larger data set for the parameter identification.
The finally identified linear and nonlinear term parameters are shown in Fig. 3.8. It
can be observed that both the linear and nonlinear term parameters tend to 0 along
their truncation orders and, as a consequence, support the chosen values for N1 and
N2.

In order to validate the identified second order Volterra series model another ex-
perimental data set (see Fig. 3.9) obtained from the process was used. During the
experiment step-like changes in the input signal were applied to the process. For the
input sequence the same levels as for the PRMS (see Fig. 3.7) have been used, i.e.
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Figure 3.8: Identified parameters h1 and h2 for the diagonal second order Volterra series

model approximating the pilot plant emulating an exothermic chemical reaction.

v8 = {40, 60, 80}%. In contrast to the first experiment, the time between two changes
in the input value was set to a constant value of 69 minutes. It can be observed that
the second experiment covers the same temperature interval like the first experiment
as a result of the identical input values. A comparison of the measured process output
and the output of the identified model can be seen in Fig. 3.10, both for the identifica-
tion and the validation. For the identification the model shows a good fit with a small
error for high output values. It can be observed that the identified model is a good
approximation of the nonlinear process dynamics capable to reproduce the nonlinear
gain and the dynamic behavior of the pilot plant emulating a chemical reaction. With
respect to the data set used for validation, the identified model shows its ability to
approximate the given process with the same error for high output values as already
seen in the identification. In general terms, the validation underlines the goodness of
the identified model and approves the chosen sampling time ts and truncation orders
N1 and N2.

The quality of the identification and the validation was checked by means of the
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Figure 3.9: Experimental data set with temperature T , aperture of the valve v8 and emulated

concentration CA used for the validation of the identified Volterra series model of the pilot

plant with an exothermic chemical reaction.

Mean Square Error (MSE) defined by:

ε =

M∑

k=1

(y(k)− ŷ(k))2

M
(3.6)

where y(k) denotes the measured process output, ŷ(k) is the simulated model output
and M is the size of the data set, i.e. number of used samples. The obtained MSE for
the identification was εid = 1.304 whereas the MSE for the validation was εval = 1.425.
With the identified and validated model the static relation between input and output,
i.e. the model output for a constant input signal, can be obtained. The static output
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Figure 3.10: Comparison of the measured process output (solid line) and the output of the

identified second order Volterra series model (dashed line) both for the identification and the

validation.

for the used second order diagonal Volterra series model can be calculated by:

ŷstat = h0 + ustat ·

N1∑

i=1

h1(i) + u2stat ·

N2∑

i=1

h2(i, i) (3.7)

The static characteristic for the interval of input values used during the two experi-
ments, i.e v8 = {40, 80}%, is given in Fig. 3.11. It can be observed that static output
ranges from approximately 37 oC to 79 oC, corresponding to the values encountered in
the experimental results. Finally, the reasonable shape of the parameters (see Fig. 3.8),
the graphical results of the identification and validation (see 3.10) as well as the mean
square errors for the identification and validation show the goodness of the identified
model and emphasize the capability of the chosen model to approximate the nonlinear
dynamics of the pilot plant emulating an exothermic chemical process.



Chapter 3. Benchmark systems 55

T
[o
C
]

v8 [%]

40

40

60

60

70

70

80

80

50

50

Figure 3.11: Static characteristic of the identified second order Volterra series model as a

function of the input value.

3.2 Fuel cell

The second system used as a benchmark for control purposes is a fuel cell (Ballard’s
Nexa Power Module [11]), the first commercially available fuel cell module (see Fig.
3.12). Fuel cells are electrochemical devices that generate electric energy from reactants
continually, this while fuel and oxidant are provided. Although they were invented more
than a century ago, they have received a great deal of attention in the last decades
as good candidates for clean electricity generation both in stationary and automotive
applications. There are many unresolved issues regarding materials, manufacturing
and maintenance, automatic control being one of the most important ones. There are
many types of fuel cells, this section being focussed on a Polymer Electrolyte Membrane
(PEM) fuel cell, which runs at low temperature and shows fast dynamical response,
high power density, small size, low corrosion and high efficiency, which makes it suitable
for mobile applications [114, 127]. It is clear that good performance of these devices is
closely related to the kind of control that is used, so a study of new control alternatives
is justified.

The used fuel cell module can be considered as a benchmark system since it is
widely used by many research groups and it is representative of state-of-the-art PEM
technology. The mentioned fuel cell module is located in the laboratory of the De-
partment of Systems Engineering and Automation (University of Seville) and has been
used by several researchers to test different control strategies [8, 109, 40]. The following
sections give a general description of the fuel cell system and the oxygen excess ratio
as controlled variable and show the identification of the process dynamics by means of
a second order Volterra series model.
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Figure 3.12: The Ballard Nexa Power Module [11] used for control purposes.

3.2.1 Process description

The fuel cell system used in this document is a commercial PEM fuel cell using hydrogen
and oxygen from ambient air as fuel and oxidation medium, respectively. The hydrogen,
stored in a tank, enters the stack on the anode side with a constant pressure. On the
other side, the compressor aspirates environmental air and supplies it to the stack on
the cathode side (see Fig. 3.13). In the anode the hydrogen dissociates into protons
and electrons of which the protons are conducted through the membrane towards the
cathode. Due to the electric isolation of the membrane the electrons cannot pass
through the membrane and are forced through an external circuit generating electric
energy. In the cathode, the oxygen molecules, the electrons and the protons react and
form water as a residual [103]:

O2 + 4H+ + 4e− ⇒ 2H2O (3.8)

Hydrogen and oxygen must be continuously supplied to the fuel cell in order to
maintain the electrochemical reaction. The main control variable in the used PEM
fuel cell power system is the air flow which is supplied by a compressor. Hydrogen
is fed through a fast opening valve to track a desired ratio of the air flow. The ratio
between the oxygen consumed due to the electrochemical reaction and the oxygen
flow generated by the compressor is denoted as oxygen excess ratio (for details on the
oxygen excess ratio see Section 3.2.2). This ratio must fulfil the stoichiometric relation
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Figure 3.13: General scheme of the fuel cell containing the stack and the auxiliary compo-

nents.

required to produce the demanded current, otherwise a phenomenon called oxygen
starvation occurs. This phenomenon implies a fast stack degradation and low power
generation, and the only way to finish it is by stopping the reactants flow and the
current demand [18]. Different studies are reported about this undesired phenomenon,
and in the literature controlling the oxygen excess ratio is proposed in order to prevent
it [102, 131]. The fast system dynamics are a challenge in fuel cell control as they
require the development of control strategies with low computational complexities in
order to calculate a new input signal within one sampling period.

The used fuel cell stack is composed of 46 cells connected in series with a voltage
of 26V at rated power and a rated current of 46A. The air supply is auto-humidified
before reaching the cells and the fuel cell stack is air-cooled by an integrated small fan
[11]. The hydrogen feeding is carried out in dead-end mode, i.e. with a closed anode
outlet, supplying hydrogen at the exact rate at which it is consumed [12]. The anode-
cathode pressure ratio is controlled to avoid membrane stress or damage, and therefore
the hydrogen and oxygen mass flows are correlated. In order to simulate a variable
current demand the fuel cell is connected to a load bank (see Fig. 3.14). Furthermore
a real-time system is used for the data acquisition and for control purposes.

3.2.2 Oxygen excess ratio

Performance and safety issues of fuel cells are closely related to the regulation of the
oxygen excess ratio λO2, defined as the ratio between the oxygen WO2,ca,in entering the
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Figure 3.14: Experimental setup including the fuel cell, the load bank and the real-time

system.

cathode and the oxygen WO2,reacted reacting in the fuel cell stack. The oxygen excess
ratio λO2 is considered a performance variable of the system and its regulation is an
important issue since this parameter has a decisive influence on the safety and longevity
of the fuel cell.

The oxygen excess ratio has been defined in [103] as:

λO2 =
WO2,ca,in

WO2,reacted
(3.9)

where the oxygen consumption rate WO2,reacted is proportional to the stack current Ist
and given by [61]:

WO2,reacted =MO2

nIst
4F

(3.10)

with n the number of cells of the used fuel cell stack, MO2 the molar mass of oxygen
and F the Faraday constant. The oxygen mass flow rate WO2,ca,in entering the cathode
channel depends on the mass flow rate of dry air Wa,ca,in at the cathode inlet:

WO2,ca,in = xO2,ca,inWa,ca,in (3.11)

The oxygen mass fraction xO2,ca,in can be calculated by:

xO2,ca,in =
yO2,ca,inMO2

yO2,ca,inMO2 + (1− yO2,ca,in)MN2

(3.12)
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where MN2 denotes the molar mass of nitrogen and yO2,ca,in represents the oxygen mole
fraction. The mass flow rate of dry air at the cathode inlet is defined as:

Wa,ca,in =
1

1 + ωca,in

Wca,in (3.13)

with the humidity ratio:

ωca,in =
Mv

Ma,ca,in

pv,ca,in
pa,ca,in

(3.14)

being Mv the molar mass of vapor and Ma,ca,in the molar mass of air at the cathode
inlet. The molar mass Ma,ca,in is defined generally by:

Ma,ca,in = yO2,ca,inMO2 + (1− yO2,ca,in)MN2 (3.15)

The vapor pressure pv,ca,in and the dry air pressure pa,ca,in used to calculate the humidity
ratio ωca,in are defined as:

pv,ca,in = φca,inpsat(Tca,in) (3.16)

pa,ca,in = pca,in − pv,ca,in (3.17)

with φca,in denoting the relative humidity of air at the cathode inlet. psat(Tca,in) and
pca,in represent the vapor saturation pressure for the temperature Tca,in and the pressure
at the cathode inlet, respectively.

With the sensor voltage Vca,in, measuring the air speed at the cathode inlet, the air
flow rate Wca,in used in (3.13) can be calculated by [45]:

Wca,in = ψ1Vca,in + ψ2Vca,in
2 + ψ3Vca,in

3 (3.18)

with ψ1 = 2.654, ψ2 = 1.481 and ψ3 = 1.862. For the cathode inlet pressure pca,in a
simplified model was used due to the impossibility to measure the pressure directly.
This model, developed in [45], expresses the pressure pca,in as a function of the air flow
rate Wca,in at the cathode inlet and the stack current Ist:

pca,in = ϕ1 + ϕ2Wca,in + ϕ3Ist (3.19)

with ϕ1 = 1.0033, ϕ2 = 2.1 · 10−4 and ϕ3 = −475.7 · 10−6. Furthermore it is assumed
that the relative humidity of the air at the cathode inlet is φca,in = 1 and that the
temperature Tca,in = 298.15K corresponds to the one of ambient air. In order to
calculate the oxygen excess ratio the values of Ist and Vca,in are required. Therefore
these two values will be measured by sensors with the help of a real-time system (see
section 3.2.3). Then, with (3.9)-(3.19), the assumptions about the relative humidity
φca,in and temperature Tca,in as well as the measurements Ist and Vca,in, the oxygen
excess ratio λO2 can be easily calculated. The parameters used to calculate the oxygen
excess ratio λO2 (3.9) are given in Table 3.2.



60 3.2. Fuel cell

Parameter Value Unit

n 46 −

F 96485 C
mol

MO2 32 g
mol

MN2 28 g
mol

Parameters Value Unit

Mv 18 g
mol

yO2,ca,in 0.21 −

Tca,in 298.15 K

ϕca,in 1 −

Table 3.2: Model parameters used to calculate the oxygen excess ratio λO2 (3.9) [103].

As already mentioned, the objective of the control strategy is the regulation of the
oxygen excess ratio (3.9) which depends on the oxygen consumption rate WO2,reacted

and the oxygen mass flow rate WO2,ca,in. It is clear that the oxygen consumption rate
WO2,reacted (3.10) cannot be influenced as it depends only on the constants MO2 , n and
F and the measurable, but not manipulable, disturbance Ist. As a consequence, the
regulation of the oxygen excess ratio λO2 has to be carried out by manipulating the
oxygen mass flow rate WO2,ca,in (3.11). The mass flow rate WO2,ca,in is a function of the
mass flow rate of dry air Wa,ca,in (3.13) which itself is a function of the air flow rate
Wca,in at the cathode inlet. It is clear that the air flow rate Wca,in depends directly
on the velocity of the compressor and, as a consequence, on the voltage Vcm applied
to the compressor motor. Hence, the oxygen mass flow rate WO2,ca,in (3.11) can be
manipulated by means of the compressor motor voltage Vcm. Therefore the compressor
motor voltage Vcm will be used as input signal in order to regulate the oxygen excess
ratio λO2.

The oxygen starvation phenomenon occurs when the oxygen partial pressure falls
below a critical level at any location at the cathode [102]. Tests showed that the oxygen
starvation phenomenon can cause damages to the electro-catalyst of the fuel cell, as
well as reducing its performance [131]. To avoid this phenomenon, the oxygen excess
ratio always has to satisfy λO2 > 1. For safety reasons [102] propose to regulate the
oxygen excess ratio to λO2 = 2. This value contains some security margin in order to
reduce the probability of starvation and simultaneously provides a good performance.
A variable profile for the oxygen excess ratio is proposed in [9], leading to a high
efficiency for each value of the load. In this case deviations from the desired value
imply lower efficiency, and negative deviations increase the starvation phenomenon
probability. Apart from avoiding the oxygen starvation phenomenon the air supply
control for a fuel cell should maximize the net output power. The net output power
Pnet can be defined generally as the difference between the power generated by the fuel
cell stack PFCS and the power Paux used by the compressor, air fan and other auxiliary
equipment, i.e Pnet = PFCS − Paux. For the determination of a suitable oxygen excess
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Figure 3.15: Net power of the fuel cell module in steady state for different values of the

stack current Ist and the oxygen excess ratio λO2 .

ratio several experiments have been carried out in order to generate a map relating
the net output power Pnet and the oxygen excess ratio λO2 for different stack currents,
see Fig. 3.15. In the results it can be observed that the net output power increases
for a constant stack current with an increasing oxygen excess ratio until reaching its
maximum. Once reached the maximum a further increase of the oxygen excess ratio
has a negligible effect on the net output power. For higher values of the oxygen excess
ratio the fuel cell is operated in a more efficient region of the electrochemical reaction.
However, higher values of the oxygen excess ratio also lead to significant auxiliary loads
and reduce the net output power. As a trade-off between a high net output power and
a sufficiently big safety margin a regulation of the oxygen excess ratio to a value of
λrefO2

= 4 has been chosen as control objective.

3.2.3 Real-time environment

For control, monitoring and measurement, a real-time system based on the embedded
computer standard PC/104 (see Fig. 3.16) has been used. The communication with
the fuel cell module is enabled by two Advantech PCM-3718HO multifunction cards,
each one offering 16 analog inputs and 1 analog output. For computational purposes
an Advantech PCM-3370 CPU (central processing unit) card, based on a 650MHz

Pentium III processor with 256MB memory, has been used. The three cards, all in the
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Figure 3.16: The embedded computer based on the PC/104 standard used for control,

monitoring and measurement purposes.

PC/104 form factor, are interconnected by a PCI (peripheral component interconnect)
bus. The real-time system has been used in the configuration shown in Fig. 3.17 with
4 analog inputs and 2 analog outputs. The inputs of the real-time system represent
the measurements of the stack voltage Vst, the stack current Ist, the sensor voltage
Vca,in at the cathode inlet and the load current Iload. The stack voltage Vst, the stack
current Ist and the sensor voltage Vca,in are measured with sensors already placed by
the fuel cell manufacturer whereas the load current Iload, considered as a disturbance,
is measured with a sensor at the electronic load bank. One of the analog outputs of
the real-time system corresponds to the compressor motor voltage Vcm, considered as
the input signal for the fuel cell control. Note that in the original configuration of the
fuel cell module the air supply is controlled by the manufacturer’s built-in controller.
In this thesis the built-in controller is overridden, as done in [46], in order to validate
the later presented control strategies in experiments. The second analog output of the
real-time system is the voltage Vlb of the load bank which allows the simulation of
predefined profiles for the load current Iload.

The data acquisition, signal processing and fuel cell control with the real-time sys-
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Figure 3.17: Used configuration with the information flows (dashed lines for analog inputs

and dash-dotted lines for analog outputs) of the real-time system as well as the load current

(solid line) demanded by the load bank.

tem has been implemented as a Simulink model. This Simulink model includes the
computation of the oxygen excess ratio λO2 (see section 3.2.2) as well as the later pre-
sented control strategies to calculate the input signal (compressor motor voltage Vcm).
For its use on the on the embedded computer the Simulink model has to be com-
piled with the Real-Time Workshop toolbox. The compiled Simulink model already
includes a basic operating system and can be used directly on the real-time system
without necessity to use an external operating system. The real-time system allows
to use a sampling time in the order of a few milliseconds, depending mainly on the
computational complexity of the implemented controller.

Note that the fuel cell module delivered by the manufacturer includes its own soft-
ware for measuring and collecting data of internal states over a serial port. The men-
tioned software gives access to a wide range of measurements, but with a relatively
high sampling time of 200ms. Furthermore, the measured data from Ballard’s soft-
ware package can be written in a file, but they cannot be accessed in real-time for
further purposes.

3.2.4 Identification of a Volterra series model

The mathematical model (3.9)-(3.19) cannot be employed directly as a prediction model
but it can be used to define a general structure of an adequate prediction model. With



64 3.2. Fuel cell

(3.9)-(3.17) the calculation of the oxygen excess ratio λO2 can be expressed in short
form as:

λO2 =
Wca,in

Ist
· θ(pca,in, Tca,in, φca,in, n, F, yO2,ca,in, MO2 , MN2 , Mv) (3.20)

consisting of a division of the air flow rate Wca,in at the cathode inlet and the stack
current Ist and an additional function containing the remaining variables and parame-
ters. The additional function θ(·) depends on the pressure pca,in, the temperature Tca,in,
the relative humidity φca,in, the number n of cells of the fuel cell stack, the Faraday
constant F , the oxygen mole fraction yO2,ca,in and the molar masses MO2 , MN2 and Mv

of oxygen, nitrogen and vapor, respectively. The air flow rate Wca,in depends mainly
on the applied compressor motor voltage Vcm as already mentioned in section 3.2.2.
Due to the inertia of the mechanical components of the compressor and its motor the
air flow rate Wca,in not only depends on the current value of the compressor motor
voltage but also on the compressor motor voltage applied in previous instants, i.e. the
air flow rate Wca,in has a dynamic behavior with respect to the applied compressor
motor voltage Vcm. In contrast, the stack current Ist, considered as a disturbance, has
an immediate effect on the oxygen excess ratio λO2.

With the input signal u (compressor motor voltage Vcm), the disturbance w (stack
current Ist) and the output y (oxygen excess ratio λO2) the second order Volterra series
model:

y(k) = y0 +
1

w(k)

(
N1∑

i=1

h1(i) u(k − i) +

N2∑

i=1

N2∑

j=i

h2(i, j)u(k − i)u(k − j)

)

(3.21)

will be used to approximate (3.20). It can be seen that the chosen model structure
considers, analogously to (3.20), the immediate effect of the disturbance on the output.
Furthermore, with the last N1 respectively N2 elements of the applied input signal as
well as the quadratic term in (3.21) a nonlinear dynamic behavior of the oxygen excess
ratio with respect to the compressor motor voltage has been considered.

After the definition of the model structure (3.21) several experiments with the fuel
cell module were carried out in order to obtain suitable data for the identification of
the model parameters. During the open loop experiments changes in the stack current
and the compressor motor voltage were applied, see Fig. 3.19. The stack currents
and the compressor motor voltages were chosen so that the resulting oxygen excess
ratio lies in an interval of λO2 = [3, 7.2], containing the control objective defined in
section 3.2.2. In order to obtain suitable data for the parameter identification a pseudo
random binary sequence (PRBS) was chosen for the stack current and the compressor
motor voltage. As can be seen in Fig. 3.19 a PRBS for the compressor motor voltage
was applied to the system while the stack current was held constant during 20 seconds
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Figure 3.18: Block diagram of the considered model of the fuel cell with the model input

(compressor motor voltage Vcm), disturbance (stack current Ist) and output (oxygen excess

ratio λO2).

before changing to a different current stack level. Afterwards, the compressor motor
voltage was held constant during 20 seconds before changing to a new value while a
PRBS was used for the stack current.

As the chosen Volterra series model (3.21) is linear in the parameters the identifi-
cation was carried out with the least squares method using the obtained experimental
data shown in Fig. 3.19. During the identification process it was observed that the
differently delayed second order cross terms (h2(i, j) for i 6= j) had little influence on
the model dynamics. Therefore, only the equally delayed cross terms were considered
in the chosen model (3.21) and the number of parameters to be identified was reduced
considerably. Finally, the model was identified with a sampling time of ts = 5ms and
a truncation order of N1 = N2 = Nt = 16, i.e the second order Volterra series relating
the stack current and the compressor motor voltage with the oxygen excess ratio can
be written as:

y(k) = y0 +
1

w(k)

(
16∑

i=1

h1(i) u(k − i) + h2(i, i)u(k − i)2

)

(3.22)

The model offset was identified with y0 = 0.072 and the parameters h1(i) and h2(i, i)
for i = 1, . . . , 16 are shown in Fig. 3.20. With a truncation order of Nt = 16 and
the sampling time ts = 5ms the compressor motor voltage Vcm influences the oxygen
excess ratio λO2 over an interval of 80 milliseconds. Fig. 3.21 shows a comparison of
the oxygen excess ratio λO2 and the output of the identified model (3.22) at different
operation points. It can be seen from the figure that the oxygen excess ratio λO2

adopts instantaneously a new value after a change in the stack current Ist whereas a
variation in the compressor motor voltage Vcm shows a dynamic adoption of a new
value for the oxygen excess ratio λO2. The reaction to changes in the stack current Ist
and the compressor motor voltage Vcm justifies the chosen model structure. Note that
the disturbance in the chosen model structure (3.22) can be considered as a nonlinear
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Figure 3.19: Experimental results of the fuel cell used for the model identification. Top:

oxygen excess ratio λO2 , middle: stack current Ist, bottom: compressor motor voltage Vcm.

scaling with feedforward effect. As a consequence of this scaling the matrices G and
H of the prediction model (2.43)-(2.44) and the matrix B used to compute the vectors
f (A.9) and g (A.15) have to be modified. For details on the necessary modifications
see the Appendix A.3.

The identified model was validated with a second set of experimental data obtained
from the fuel cell module. The used set was generated in an open loop experiment
with a PRBS in the compressor motor voltage Vcm while the stack current Ist was held
constant and with a PRBS in the stack current Ist for a constant compressor motor
voltage Vcm. The levels for the compressor motor voltage Vcm and the stack current
Ist were different with respect to the experiment used for the parameter identification
and resulted in an oxygen excess ratio of λO2 = [2.7, 8]. A comparison between the
measured oxygen excess ratio λO2 and the output y of the identified model (3.22) can
be seen in Fig. 3.22 for some operation points. The results of the validation show that



Chapter 3. Benchmark systems 67

h
1
(i
)
[−

]
h
2
(i
,i
)
[−

]

i [−]

i [−]

−0.2

−0.1

0

0

0
0

0.1

0.2

1

2

2

2

3

4

4

6

6

8

8

10

10

12

12

14

14

16

16

Figure 3.20: Identified parameters h1(i) and h2(i, i) for i = 1, . . . , 16 for the chosen second

order Volterra series model (3.22).

the identified model approximates the dynamical behavior of the system without an
offset in steady state. Both the model identification as well as the validation justify the
use of only one element of the stack current Ist in (3.22). Furthermore, the truncation
order of Nt = 16 is long enough to model the dynamics related to the compressor
motor voltage Vcm. Finally, the mean square error (3.6) between model output and
measured value during identification and validation of the prediction model (3.22) for
different operation points was calculated and can be seen in Tab. 3.3. The good fit of
the predicted model output in Fig. 3.21 and Fig. 3.22 as well as the computed mean
square errors for the identification and validation justify the use of the identified model
(3.22).

3.3 Greenhouse

Crop growth is mainly influenced by surrounding environmental climatic variables and
by the amount of water and fertilizers supplied by irrigation. The proper handling of
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Figure 3.21: Results of the model identification. Top: oxygen excess ratio λO2 (solid line)

and output of the identified model (3.22) (dash-dotted line), middle: compressor motor voltage

Vcm, bottom: stack current Ist.

these variables allows the control of crop growth. Therefore, greenhouses are ideal for
cultivation as they constitute closed environments in which climatic and fertirrigation
variables can be controlled to allow an optimal growth and development of the crop. A
greenhouse, representing a light-transmissive construction, augments the temperature
in the interior as a consequence of the greenhouse effect and protects from external
weather conditions as well as plagues and diseases. Greenhouses are primarily used
for agricultural production, but also for research projects as the inside climate can be
controlled.

The experimental greenhouse used in this document is located in Las Palmerillas
Experimental Station (El Ejido, Almería, Spain) and has been extensively used by
different researchers, both for modeling [115, 116, 49] and control application [15, 7,
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Figure 3.22: Results of the model validation. Top: oxygen excess ratio λO2 (solid line) and

output of the identified model (3.22) (dash-dotted line), middle: compressor motor voltage

Vcm, bottom: stack current Ist.

117]. In the following sections a description of the used greenhouse and the data
acquisition system will be given and the approximation of the dynamic behavior of the
greenhouse using a second order Volterra series model will be shown.

3.3.1 Process description

The used greenhouse is an experimental system equipped with sensors and actuators
for data acquisition and control purposes (see Fig. 3.23). It is a typical “parral” (flat
symmetric roof) greenhouse of this zone with a soil surface of 876m2and a height of
4.4m. The greenhouse is oriented in East-West direction and the covering material is a
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Oxygen excess ratio Identification Validation

MSE, overall 0.0848 0.1084

MSE, λO2 < 3.5 0.0673 0.1261

MSE, 3.5 ≤ λO2 ≤ 5.5 0.0793 0.0789

MSE, λO2 > 5.5 0.1096 0.2452

Table 3.3: Mean square error between model output and measured value during identification

and validation of the prediction model (3.22) for different operation points.

200µm thick polyethylene film. Its structure is constructed with cross-sectioned type-I
rows whose posts are installed in concrete shoes each 2 meters with an inclination of
65 o, with the upper bound united by horizontal cross-sectioned type-L elements. The
sidewalls are formed by cables and vertical bars fixed to the ground and united to
the horizontal elements. The upper ends of the vertical bars and inclined posts are
connected to tightened cables which are part of a 2m× 2m mesh. The upper part of
the greenhouse is supported by vertical posts with distributed concrete shoes with a
distance of 8m× 2m between each other.

In the central part of the cover, between the posts placed every 8m, a small de-
pression or valley can be found. In these valleys the height of the tightened wires is
reduced by the vertical bars fixed to the ground every 2m. The peak altitude of each
section, formed between the posts, is 4.4m and the height from the ground to the
valley is about 3.6m [117]. The cover material is a 0.18mm thick thermal polyethylene
film placed between two meshes of galvanized wire united to the previously mentioned
tightened wires. The sidewalls and roof windows are protected by a fine mesh and a
plastic foil in order to avoid the entrance of insects into the greenhouse.

The natural ventilation system consists of roof and lateral windows (see Fig. 3.24).
The lateral windows are placed in the North and South side of the greenhouse and can
be opened with the help of an electric motor. Opening the lateral windows, the plastic
foil of the windows is rolled up on an axis connected to the electric motor. The roof
windows, also governed by an electric motor, open towards the West with a maximum
angle of 45 o. Note that the experimental greenhouse also possesses a heating as well as
a artificial irrigation and fertilization system. As the irrigation and fertilization system
and the heating have not been used in this work, only the natural ventilation system is
described. For a more exhaustive description of the experimental greenhouse see [117].

The experimental greenhouse is equipped with a data acquisition system to collect
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Figure 3.23: Exterior view of the used experimental greenhouse and photos of the control

and monitoring system as well as some of the installed sensors in the interior of the greenhouse.

measurements from the sensors installed in the interior and exterior of the green-
house. The data acquisition system is based on an industrial Ethernet using Compact
FieldPoints (National Instruments) which satisfy the standards for automatization in
production environments. During the development of the control system, particular
attention has been paid to the devices to be installed due to the specific climate con-
ditions in greenhouses which include relative humidities close to the saturation and
high temperatures. The industrial specifications of Compact FieldPoints guarantee a
correct operation for temperatures over 70 oC. The modular structure of systems based
on Compact FieldPoints allows an easy integration of the devices in the software pack-
age LabView (National Instruments) and facilitates the measurement and control of
industrial processes.

In the exterior of the greenhouse the following variables are measured: air tem-
perature, relative humidity, global radiation, photosynthetically active radiation, rain
detection, wind speed and direction as well as temperature in the outer face of the
greenhouse cover. The sensors to measure the cover temperature are located on the
East side (two sensors) and the West side (two sensors) of the greenhouse, the rest of
the sensors are located above the greenhouse (see upper left photo in Fig. 3.23). In
the greenhouse the following variables are measured where the numbers in parentheses
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Figure 3.24: View on the lateral (left) and roof (right) windows of the experimental green-

house.

Figure 3.25: View on the lateral (left) and roof (right) windows of the experimental green-

house.

indicate the number of used sensors for the corresponding variables: ambient temper-
ature (2), relative humidity (2), ground temperature in a depth of 1 cm and 40 cm (1
for each depth), temperature of foil covering the ground (2), temperature of the inner
greenhouse cover (4), temperature of plant leafs (4), photosynthetically active radiation
(1), global radiation (1), carbon dioxide concentration (1) and wind speed (1). The
sensors for the ambient temperature, relative humidity and carbon dioxide are located
to 2.5m above the ground, whereas the photosynthetically active radiation and global
radiation are measured in a height of 3.5m. The sensor of the wind speed is installed
in a height of 2.8m. The sensors for the cover temperature are collocated in the east
and west sidewalls. Fig. 3.25 shows some of the sensors installed in the interior of
the greenhouse. The data acquisition is carried out with an uniform sampling time of
ts = 1min for all sensors. The data acquisition is carried out with a control and mon-
itoring system implemented in the LabView environment and running on a personal
computer. The different climate control strategies are implemented in Matlab, giving
rise to a great flexibility in the design of control techniques.
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The main purpose to use a greenhouse in agricultural production is the climate
control in order to optimize the ambient conditions for crop growth and yield. Besides
the temperature and the relative humidity in the greenhouse, many other factors as the
radiation and the concentration of carbon dioxide influence directly or indirectly the
crop growth. In mild climates as the one in the greenhouse location (South-East Spain),
the greatest problem in greenhouse climate control is cooling. For economical reasons
the used standard tool is the natural ventilation, manipulable by the aperture of the roof
and lateral windows. During daytime, the ventilation allows a natural cooling of the
greenhouse interior in order to avoid harmful temperatures for the crop. At night, the
windows are used to ensure a greenhouse temperature above the exterior temperature.
With the windows partially or completely closed during the night, the relative humidity
in the greenhouse rises towards the morning hours. As a high humidity elevates the
risk of plant diseases and parasites, a good ventilation has to be ensured during the
morning hours. Hence, the principal control objective is the temperature regulation
with a short interval of good ventilation during the morning in order to reduce the
relative humidity in the greenhouse.

3.3.2 Identification of a Volterra series model

As already mentioned the main objective is the regulation of the greenhouse temper-
ature in order to achieve suitable climate conditions for crop growth. In many cases,
especially in areas with hot summers and mild winters, the temperature regulation is
carried out by natural ventilation, which itself can be manipulated through the aper-
ture of the lateral and roof windows of the greenhouse. Although detailed physical
greenhouse models can be found in the literature [19, 57, 117], these models cannot
be used as control-oriented models in predictive control strategies due to its high com-
plexity. As a consequence, a prediction model relating the aperture of the windows
and the main disturbances with the greenhouse temperature has to be developed.

Generally, greenhouse temperature modeling is a challenging task due to its nonli-
near dynamic behavior with respect to changes in the aperture of the windows. Further-
more, the greenhouse temperature is strongly influenced by the external environmental
conditions (e.g. solar radiation and outside temperature) which can be considered as
measurable disturbances. Due to the possibility to consider nonlinear dynamics and
to include disturbances, a second order Volterra series model has been chosen for the
general model structure. From different studies [47, 45] it is known that the greenhouse
temperature is mainly influenced by the aperture of the roof and lateral windows, the
outside temperature, the outside wind speed, the soil surface temperature and the out-
side global radiation. As a consequence, the main variables considered for modeling
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Figure 3.26: Block diagram of the considered model of the greenhouse with the model input

(aperture of the roof and lateral windows alat,rf ), disturbances (outside temperature Pt,e,

outside wind speed Pws,e, soil surface temperature Pt,ss, outside global solar radiation Psol,e)

and output (greenhouse temperature Xt,a).

purposes are (see Fig. 3.26)1:

• Output: greenhouse temperature Xt,a

• Input: aperture of the roof and lateral windows alat,rf

• Disturbances: outside temperature Pt,e, outside wind speed Pws,e, soil surface
temperature Pt,ss, outside global solar radiation Psol,e

Defining the input as u = alat,rf , the output as y = Xt,a and the disturbances as
w1 = Pt,e, w2 = Pws,e, w3 = Psol,e and w4 = Pt,ss the second order Volterra series model
(2.11) considering 1 input and 4 measurable disturbances can be written as:

y(k) = h0 +
N1∑

i=1

h1(i)u(k − i) +
N2∑

i=1

N2∑

j=i

h2(i, j)u(k − i)un(k − j)

+
m∑

n=1

N1,n∑

i=1

h1,n(i)wn(k − i) +
m∑

n=1

N2,n∑

i=1

N2,n∑

j=i

h2,n(i, j)wn(k − i)wn(k − j)

(3.23)
It has to be mentioned that during the identification process additional inputs were
tested, e.g. the product alat,rfPws,e. However, no large improvements in the parameter
identification stage were detected when using these additional inputs while the number
of parameters did increase. Moreover, the inclusion of these modulated variables will
complicate the use of MPC strategies as the products of system input and disturbances
lead to a more complex optimization problem.

1The Leaf Area Index is another variable affecting the greenhouse dynamics. However, the dynam-

ics of this variable is quite slower in comparison to the considered variables and, as a consequence,

has not been included in the greenhouse model.
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Figure 3.27: Data set used for the parameter identification with the output Xt,a (greenhouse

temperature), the input alat,rf (aperture of the roof and lateral windows) and the disturbances

Pt,e (outside temperature), Pws,e (outside wind speed), Pt,ss (soil surface temperature) and

Psol,e (outside global solar radiation).

In order to identify the parameters of the Volterra model of the greenhouse tem-
perature, experimental data of autumn (from August to February) and spring (from
March to June) seasons from 2007 and 2008 have been used. Fig. 3.27 shows an in-
terval of 10 days with the input, the output and the considered disturbances used in
the identification. A second set of experimental data of a long season from September
2008 to June 2009 have been used for validation purposes (see Fig. 3.28 for a set of 10
days used in the model validation). It can be seen that the used sets for identification
and validation have rich input signals, necessary for the identification of a second order
Volterra series model. The sampling time for both sets was 1 minute and the data of
the wind speed and the global solar radiation were filtered through a first order filter
with a time constant of 5 minutes before using them for calibration purposes.
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Figure 3.28: Data set used for the model validation with the output Xt,a (greenhouse

temperature), the input alat,rf (aperture of the roof and lateral windows) and the disturbances

Pt,e (outside temperature), Pws,e (outside wind speed), Pt,ss (soil surface temperature) and

Psol,e (outside global solar radiation).

One of the initial problems in the model identification was to select the truncation
orders for the input and the disturbances influencing the greenhouse inside temperature.
Due to this reason, in a first step a least squares identification with long truncation
orders for all considered variables was carried. As the greenhouse is a fading memory
system the parameters tend to zero along the horizon and the truncation orders were
reduced in the case of parameters being zero or nearly zero. The used sampling time
for the model was ts = 1min and the finally chosen truncation orders for the input and
the different disturbances are given in Tab. 3.4.

In a second step, as many parameters identified with the least squares method
had noisy profiles, constraints in the parameters have been included using Sequential
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Variable 1st order 2nd order
alat,rf 20 10

Pt,e 1 1

Pws,e 2 2

Psol,e 5 0

Pt,ss 10 0

Table 3.4: Used truncation orders for the input and the different disturbances in the second

order Volterra series model approximating the nonlinear dynamics of the considered green-

house.

Quadratic Programming. The constraints were chosen on the basis of the results ob-
tained in the identification with the least squares method. For the aperture of the roof
and lateral ventilations the constraints

h1(i+ 1) < h1(i) for i = 1, . . . , 3

h1(i+ 1) ≥ h1(i) for i = 4, . . . , 19

h1(i) ≤ 0 for i = 1, . . . , 20

(3.24)

and

h2(i+ 1, i+ 1) ≤ h2(i, i) for i = 1, . . . , 9

h2(i, j + 1) ≤ h2(i, j) for i = 1, . . . , 9, j = i, . . . , 9

h2(i, j) ≥ 0 for i = 1, . . . , 10, j = 1, . . . , 10,

(3.25)

were imposed in the linear term and nonlinear term parameters. For the solar radiation,
the following linear term parameters were used:

h1,3(i+ 1) ≤ h1,3(i) for i = 1, . . . , 4

h1,3(i) ≥ 0 for i = 1, . . . , 5
(3.26)

In an analogous way, the constraints

h1,4(i+ 1) ≤ h1,4(i) for i = 1, . . . , 9

h1,4(i) ≥ 0 for i = 1, . . . , 10
(3.27)

were considered in the linear term parameters of the soil surface temperature.

With the constraints in the parameters a second order Volterra series model of the
greenhouse temperature was identified. A comparison of the greenhouse temperature
and the output of the identified model is given in Fig. 3.29, both for the identification
process and the validation. As can be seen in the results, the model output shows
a good match with the measured greenhouse temperature, both for the identification
and the validation data set. The mean square error (3.6) for the identification and
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Figure 3.29: Identification (top) and validation results (bottom). Comparison of the exper-

imental data (solid line) and the output of the identified second order Volterra series model

(dashed line).

validation was εid = 0.933 and εval = 0.988, representing good values for a model of
the given characteristics. The identified linear term parameters of the aperture of the
lateral and roof ventilations alat,rf , outside global solar radiation Psol,e and soil surface
temperature Pt,ss are shown in Fig. 3.30, while the second order term parameters of
the aperture of the lateral and roof ventilations alat,rf are shown in Fig. 3.31. It can
be seen that the linear and nonlinear term parameters identified under consideration
of the constraints (3.24)-(3.27) show a coherent and reasonable shape.

3.4 Conclusions of the chapter

In this chapter three benchmark systems used in this document for the application of
model-based predictive control strategies have been presented. The system dynamics of
the different processes have been approximated by second order Volterra series models.
For the parameter identification experimentally obtained input-output data have been
used and the parameters have been estimated by means of the least squares method.

For the first system, a pilot plant emulating an exothermic chemical reaction, the
identified Volterra series model relates the opening of a valve with the temperature in
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tilations alat,rf (top), solar radiation Psol,e (bottom left) and soil surface temperature Pt,ss
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the reactor. This system possesses rather slow dynamics and can be considered as a
SISO system. The second system used for benchmark purposes is a commercial fuel
cell, characterized by a very fast dynamic behavior. The oxygen excess ratio has been
modeled by a second order Volterra series model considering the compressor motor volt-
age as input variable. Due to the strong nonlinear influence of the current demanded
by an external load, the model parameters are scaled by the load current. The identi-
fied model can be considered as a SISO model with a feedforward effect based on the
scaling of the parameters. The third benchmark system presented in this chapter is an
experimental greenhouse used for crop growth under suitable environmental conditions.
Although the greenhouse can be considered as a system with only 1 input (windows
aperture) several disturbances have a strong influence on the output (greenhouse in-
side temperature). Therefore the greenhouse temperature has been approximated by a
second order Volterra series model considering 1 input and 4 measurable disturbances.

These systems cover a wide range of processes, with varying time scales (from
milliseconds to minutes) and different nonlinearities. The consideration of disturbances
and multiple inputs make them appropriate to validate the control strategies presented
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in the following chapters.



Chapter 4

Iterative optimization algorithms

This chapter shows the idea of iterative optimization methods for NMPC strategies
based on second order Volterra series models. The unconstrained optimization method,
originally published in [37, 77, 38], can be considered in this document as a general
starting point for the development of new MPC strategies based on Volterra series
models.

In the first place, the general idea of iterative optimization for models which can be
separated in a linear and a nonlinear part will be explained. Based on the inversion of
the linear part of the model, the unconstrained iterative control strategy [37, 77, 38]
minimizes a quadratic cost function based on a second order Volterra series model.
Afterwards, the original iterative control strategy will be extended to consider linear
input constraints and a weighting of the control effort during the optimization process.
Finally some changes will be introduced in the constrained iterative optimization to
guarantee stability. The proposed control strategies based on the constrained opti-
mization and the constrained optimization with guaranteed stability will be applied to
the benchmark systems and the behavior of the control strategies will be illustrated by
experimental results.

4.1 General idea of iterative optimization

One of the main problems when dealing with nonlinear models in MPC is the optimiza-
tion of the cost function in order to compute a new input signal. In linear unconstrained
MPC strategies, the inversion of the model allows to determine the optimal new input

81
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sequence, e.g. in Generalized Predictive Control (GPC) [28] and Dynamic Matrix Con-
trol (DMC) [31]. Unfortunately, in NMPC the simple inversion of the model is in the
majority of the cases not possible and different approaches for the optimization have
to be used. The general idea of the iterative optimization is based on the separability
of the linear and nonlinear terms of Volterra series models.

Consider the model P̂ approximating a system denoted P. Hence, the predicted
output can generally be written as:

ŷ = P̂[u] (4.1)

where P̂ is an operator mapping the input signal u to the predicted output ŷ. If the
model P̂ is not a perfect approximation of the system P, the estimation error can be
defined as the difference between the system output y and the predicted output ŷ:

d = y − ŷ (4.2)

As a direct consequence, the predicted output ŷ can be written as system output y
minus the estimation error d:

ŷ = y − d (4.3)

Now, substituting in (4.1) the predicted output ŷ by (4.3), the system output can be
expressed as:

y = P̂[u] + d (4.4)

Then, substituting the system output y by the desired reference r and inverting the
operator P̂, the necessary input u for the given reference r under consideration of the
estimation error d is defined by:

u = P̂−1[r − d] (4.5)

The input u (4.5) can be used to control the system represented by the operator
P as shown in Fig. 4.1. Note that the inverse P̂−1 may not exist, especially for
badly conditioned or nonlinear models. Furthermore, the direct inversion of the model
(4.5) does not allow to consider constraints or a weighting of the control effort in the
computation of the input.

Consider now a nonlinear model represented by the operator P̂ and separable in
a linear operator P̂l and a nonlinear operator P̂nl as in the case of a second order
Volterra series model. Hence, the nonlinear operator P̂ can be expressed as:

P̂ = P̂l + P̂nl (4.6)

Analogously to (4.1), the output prediction for the model based on the nonlinear ope-
rator P̂ can be written with (4.6) as:

ŷ =
(

P̂l + P̂nl

)

[u] (4.7)
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Figure 4.1: Schematic diagram of the control strategy based on the inversion of the operator

P̂ defined in (4.5).

Using the definition of the predicted output based on the system output and the esti-
mation error as given in (4.3), the output prediction (4.7) can be expressed as:

y =
(

P̂l + P̂nl

)

[u] + d (4.8)

As already mentioned, the inverse of the operator P̂ = P̂l + P̂nl may not exist. There-
fore, under the assumption that the linear operator P̂l can be inverted, the nonlinear
operator P̂ is rewritten as:

P̂ = P̂l

(

I + P̂−1
l P̂nl

)

(4.9)

where I denotes the identity matrix. Then, the inversion of the operator P̂ (4.9) can
be carried out by:

P̂−1 =
(

I + P̂−1
l P̂nl

)−1

P̂−1
l (4.10)

where the nonlinear operator P̂nl is not inverted explicitly. With P̂−1 having the
characteristic form of a closed-loop system, the inversion of P̂ can be represented as
shown in Fig. 4.2. Now, using the inversion (4.10) in (4.7) and substituting the system
output y by the desired reference r, the necessary output for a given reference can be
defined as:

u =
(

I + P̂−1
l P̂nl

)−1

P̂−1
l [r − d] (4.11)

The inversion of the nonlinear operator P̂ can be easily implemented in the form
shown in Fig. 4.2. Note that the computation of the input u is based on a closed-loop
concept and, as a consequence, represents an iterative optimization approach. With
the original nonlinear system, given by the operator P, the entire control strategy can
be represented by Fig. 4.3. It can be seen that in the first place the input value
ξ = r − d for the controller is computed. With this value the controller calculates the
control input u by inversion of the mathematical model. The control input is applied
to the system and to the mathematical model. The output y of the system is measured
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Figure 4.3: Schematic diagram of a possible control strategy based on the inversion of the

nonlinear operator P̂ (4.10).

and the model output ŷ can be calculated. The difference d of these two outputs, the
measured (y) and the predicted (ŷ), is used to calculate the input value ξ = r − d for
the controller.

Note that the theoretical development of the control strategy presented in this
section considers only a control and prediction horizon of 1. For longer horizons the
development is carried out in an analogous way. The resulting controller calculates the
input sequence u of future input values from the vector ξ defined by

ξ = r − d (4.12)

where r = [r, , . . . , r]T with r ∈ R
N denotes the reference trajectory, d = [d, , . . . , d]T

with d ∈ R
N represents the vector of the estimation error and N is the prediction

horizon. From this input sequence only the first value will be applied to the system
and the mathematical model. Now, with the measured (y) and predicted (ŷ) output,
the one step ahead prediction error d can be calculated. Finally, the vector ξ for
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the controller is calculated with the vector d and the vector of the desired reference
trajectory r.

The following sections explain in a detailed manner the optimization based on
the shown iterative approach. In a first step, the original algorithm [77, 38], based
on an unconstrained optimization without penalization of the control effort, will be
presented. The original approach will be modified to consider linear input constraints
and a weighting of the control effort. Afterwards, some changes will be introduced in
the control strategy based on the iterative constrained optimization approach in order
to guarantee stability.

4.2 Unconstrained optimization

With the iterative optimization approach from Section 4.1 the nonlinear prediction
model (2.43)-(2.44) based on a second order Volterra series can be used in MPC where
the input sequence is computed by minimizing a cost function. Without considering
constraints, the optimization problem (compare (2.53) and (2.54)) is defined as:

u∗ = arg min
u

J(u) (4.13)

Without penalizing the control effort, the quadratic performance based on a second
order Volterra series model (2.43)-(2.44) can be expressed as1:

J(u) = (ŷ − r)T (ŷ − r)

= (Gu+ c + f(u)− r)T (Gu+ c+ f(u)− r)
(4.14)

The optimal input sequence can be obtained by minimizing the cost function (4.14).
It is clear from the nonlinearity of the used prediction model that the inversion of
the entire model, a common technique in linear MPC, is not possible. Therefore the
computation of the input sequence is carried out by means of an iterative approach,
similar to the one presented in Section 4.1. This approach exploits the fact that a
Volterra series model can be separated in its linear and nonlinear parts. It can be
seen from Fig. 4.3 that with the iterative optimization approach a new input sequence
is calculated by inversion of the linear operator. As the optimization is carried out
in a closed-loop like manner, the nonlinear part is computed using the input sequence
calculated by inversion of the linear part of the model. Denoting the new input sequence
u(i), the nonlinear term has been computed with the input sequence u(i−1) calculated in

1In order to give a complete vision of the used technique and to increase the readability of the

current section, the definition of the performance index (2.48) is repeated in this section.
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the previous iteration. Then, the cost function (4.14) to be minimized can be rewritten
as:

J(u(i)) =
(
Gu(i) + c+ f(u(i−1))− r

)T (
Gu(i) + c+ f(u(i−1))− r

)
(4.15)

Now, the performance index is a convex quadratic function in u(i) and its minimum
can be easily obtained by means of its derivative in u(i). With the derivative defined
as

∂J(u(i))

∂u(i)
= 2GTGu(i) + 2GT

(
c+ f(u(i−1))− r

)
(4.16)

the cost function is minimized when the condition

∂J(u(i))

∂u(i)
= 0 (4.17)

is satisfied. Resolving (4.16) the input sequence for the i-th iteration can be calculated
easily as:

u(i) =
(
GTG

)−1
GT
(
r − c− f(u(i−1))

)
(4.18)

With the input sequence u(i) obtained by solving (4.18) the nonlinear part of the model
f(u(i)) can be computed. Based on this nonlinear term, the new input sequence u(i+1)

can be calculated. Finally, (4.18) is repetitively solved until some convergence criterion
is met, e.g. the difference between the computed input sequences u(i) and u(i−1) falls
below a predefined level.

4.2.1 Unconstrained control law

The unconstrained iterative optimization (4.18) of a quadratic cost function in combi-
nation with a prediction model based on a second order Volterra series model can be
implemented in the following way [77, 38]:

• Step 1: Define i = 0 and u(0) = u0

• Step 2: Set i = i+ 1 and calculate f(u(i−1))

• Step 3: Compute u(i) solving the unconstrained optimization problem

u(i) =
(
GTG

)−1
GT
(
r − c− f(u(i−1))

)

• Step 4: Check the final accuracy

Nu−1∑

j=0

∣
∣u(i)(k + j|k)− u(i−1)(k + j|k)

∣
∣ < δ
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• Step 5: If the previous condition has been satisfied, define the control input under
consideration of saturation in the actuator of the system as:

u(k|k) =







umin if u(i)(k|k) < umin

u(i)(k|k) elsewise

umax if u(i)(k|k) > umax

(4.19)

define u(k + j|k) = u(i)(k + j|k) for j = 1, . . . , Nu − 1 and apply u(k|k) to the
system. If the previous condition has not been satisfied, return to step 2.

It can be seen in the algorithm that the term f(u(i−1)) has a constant value during
the optimization in step 3. In the case of not satisfying the final accuracy condition the
term f(u(i−1)) is recalculated in step 2 with the control input sequence computed in
step 3 of the previous iteration. After calculating a new input sequence the satisfaction
of the final accuracy condition is checked in step 4. This condition is satisfied when the
sum of the absolute values of the difference between the current input sequence and
the input sequence from the previous iteration falls below some constant value δ. A
flowchart of the described iterative algorithm to solve the unconstrained optimization
problem is given in Fig. 4.4. It has to be mentioned that the presented iterative
optimization algorithm cannot guarantee the convergence of the solution if the initial
optimization problem (4.13) is non-convex. Nevertheless, with a suitable filtering of
the desired reference, convexity can be achieved in the neighborhood of the current
operating point. For details on the convergence of the presented algorithm see [39].

The initial vector u0 at k can be chosen by shifting the input sequence calculated
in the previous sampling period k − 1 by one element. Therefore, the optimized input
sequence is stored at the end of the optimization routine to be available for its use as an
initial input sequence in the next sampling period. Using the shifted input sequence,
the initial input sequence in the k-th sampling period is defined as:

u0 =












u(k|k − 1)

u(k + 1|k − 1)
...

u(k +Nu − 3|k − 1)

u(k +Nu − 2|k − 1)

u(k +Nu − 2|k − 1)












(4.20)

Note that the presented algorithm considers neither a weighting of the control effort
nor constraints. Therefore the control strategy will show an aggressive behavior without
the possibility to smoothen the system’s reaction. Just like in other MPC strategies
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Figure 4.4: Flowchart of the iterative algorithm to solve the unconstrained optimization

problem.
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[23], the use of a saturation for the input action results in a suboptimal solution to the
optimization problem. To avoid the mentioned problems the presented control strategy
will be extended in the following section in order to include constraints and a weighting
function for the input sequence.

4.3 Constrained optimization

The inclusion of constraints and a weighting of the control effort in the minimization
of the cost function requires some changes of the control strategy presented in Section
4.2. For the consideration of constraints the optimization routine has to be changed,
using quadratic programming (QP) instead of the explicit solution.

The general optimization problem considering linear constraints is defined by2:

u∗ = arg min
u

J(u)

s.t. Lcu ≤ bc
(4.21)

and the quadratic cost function with a weighting of the control effort in combination
with a prediction model based on a second order Volterra series model is given by:

J(u) = (Gu+ c + f(u)− r)T (Gu+ c+ f(u)− r)+

λuTLT
uLuu

T − 2λuT
l Luu+ λuT

l ul
(4.22)

with ul ∈ RNu being a column vector where the first element corresponds to u(k − 1)

and the remaining elements are zero, compare (2.50).

With the quadratic cost function considering a weighting of the control effort (4.22)
the optimal input sequence is defined as the minimizer of the optimization problem
(4.21). Analogously to the unconstrained case in Section 4.2, the used nonlinear pre-
diction model inhibits to find an explicit solution for the constrained optimization
problem. Nevertheless, with the possibility to separate the linear and the nonlinear
part of the prediction model the optimization can be carried out in an iterative manner
based on the general idea of iterative optimization (see Section 4.1). Therefore, the cost
function (4.22) will be modified so that the linear terms depend on the input sequence
u(i) to be minimized and the nonlinear terms are considered as constants depending
on the input sequence u(i−1) calculated in the previous iteration:

J(u(i)) =
(
Gu(i) + c+ f(u(i−1))− r

)T (
Gu(i) + c + f(u(i−1))− r

)
+

λu(i)TLT
uLuu

(i)T − 2λuT
l Luu

(i) + λuT
l ul

(4.23)

2In order to give a complete vision of the used technique and to increase the readability of the

current section, the definitions of the optimization problem with linear constraints (2.54) and the cost

function considering a weighting of the control effort (2.52) are repeated in this section.
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Note that the modified performance index (4.23) depends quadratically on u(i) and,
as a consequence, represents a convex function. With (4.23) the initial constrained
optimization problem (4.21) can be expressed as:

u(i) = arg min
u(i)

J(u(i))

s.t. Lcu
(i) ≤ bc

(4.24)

With the performance index being a convex and quadratic function in the input se-
quence u(i) to be calculated, the constrained optimization problem (4.24) can be solved
by means of quadratic programming (QP). Separating the quadratic and linear terms
as well as the constants, the cost function (4.23) can be rewritten as:

J(u(i)) =
1

2
u(i)T S u(i) + p(i)T u(i) +m(i) (4.25)

with
S = GTG+ λLT

uLu

p(i)T =
(
c+ f(u(i−1) − r)

)T
G− λuT

l Lu

m(i) =
(
c+ f(u(i−1))− r

)T (
c+ f(u(i−1))− r

)
+ λuT

l ul

(4.26)

Now, the input sequence u(i) can be computed by solving the convex quadratic opti-
mization problem (4.24) based on the quadratic performance index (4.25) by means of
quadratic programming. With the new input sequence, the nonlinear part f(u(i)) can
be recalculated and the input sequence u(i+1) can be determined. This procedure is
repeated until some convergence criterion is fulfilled, e.g. the difference between the
computed input sequence u(i) and the previous input sequence u(i−1) falls below a cer-
tain limit. Finally, the initial constrained optimization problem (4.21) can be solved
using the presented iterative approach. With the performance index in the form of
(4.25)-(4.26) the minimization can be carried out by quadratic programming.

4.3.1 Constrained control law

The constrained minimization problem (4.24) can be solved using a modification of the
iterative algorithm for the unconstrained problem (see Section 4.2.1) [77, 38]. Analo-
gously to the unconstrained case, the constrained optimization considering a weighting
of the control effort can be implemented in the following way [47]:

• Step 1: Define i = 0 and u(0) = u0

• Step 2: Set i = i+ 1 and calculate f(u(i−1))
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• Step 3: Compute u(i) solving the constrained optimization problem (4.24) by
minimizing the cost function

J(u(i)) =
1

2
u(i)T S u(i) + p(i)T u(i) +m(i)

with quadratic programming and the parameters S, p(i)T and m(i) (4.26).

• Step 4: Check the final accuracy

Nu−1∑

j=0

∣
∣u(i)(k + j|k)− u(i−1)(k + j|k)

∣
∣ < δ

• Step 5: If the previous condition has been satisfied, define the control signal
u(k|k) = u(i)(k|k) and apply u(k|k) to the system. If the previous condition
has not been satisfied, return to step 2.

Analogously to the unconstrained case in Section 4.2.1, the nonlinear term f(u(i−1))

is held constant during the optimization in Step 3. If the final accuracy condition is not
satisfied, the term f(u(i)) is calculated with the input sequence u(i) before computing
a new input sequence u(i+1). For the proposed constrained optimization a flowchart
is given in Fig. 4.5. Comparable to the case of unconstrained optimization, the itera-
tive algorithm for constrained optimization cannot guarantee convergence if the initial
optimization problems (4.21) is non-convex. Nevertheless, a non-convex iterative op-
timization problem can be transformed to a convex one by a suitable choice of the
weighting factor λ [35]. Furthermore, convexity can be achieved by using a filter for
the desired reference. For details on the convergence of the iterative optimization al-
gorithm the reader is referred to [39]. The initial vector for the input sequence u0 can
be defined by shifting the sequence of the previous sampling period by one:

u0 =












u(k|k − 1)

u(k + 1|k − 1)
...

u(k +Nu − 3|k − 1)

u(k +Nu − 2|k − 1)

u(k +Nu − 2|k − 1)












(4.27)

Note that the algorithm for the constrained optimization problem without conside-
ring constraints and a weighting of λ = 0 gives the same results as the algorithm for the
unconstrained case. This means that the proposed constrained optimization algorithm
includes the algorithm from Section 4.2.1. Furthermore it has to be mentioned that
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Initialization

Set i = 0 and

u(0) = u0

i = i+ 1

Calculate
f(u(i−1))

minimize (QP):

u(i) = arg min J(u(i))

‖u(i) − u(i−1)‖1 ≤ δ

Apply

u(k|k) = u(i)(k|k)

End

yes

no

Figure 4.5: Flowchart of the iterative algorithm to solve the constrained optimization pro-

blem.
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output constraints have not been considered in the proposed iterative algorithm. The
use of output constraints in combination with the nonlinear prediction model (2.43)-
(2.44) leads to the following optimization problem:

u(i) = arg min
u(i)

J(u(i))

s.t. q(u(i)) ≤ bc

It is clear that the use of output constraints for an optimization problem based on a
nonlinear model leads to nonlinear constraints which cannot be solved by quadratic
programming. Therefore, the optimization under consideration of output constraints
has to be carried out by nonlinear programming (NLP) or sequential quadratic pro-
gramming (SQP). Hence, nonlinear constraints can be considered substituting in Step 3
of the presented optimization algorithm the quadratic programming by nonlinear pro-
gramming. Nevertheless, the use of nonlinear programming will considerably augment
the necessary time to calculate a new input sequence and therefore eliminates one of
the biggest advantages of the iterative optimization, the low computational complex-
ity and fast computation of a new input sequence. Instead of including the nonlinear
programming in the proposed iterative optimization approach it is recommendable to
solve the initial optimization problem (4.21) directly by nonlinear programming.

4.4 Constrained optimization with guaranteed stabil-

ity

In this section the cost function and the constrained optimization problem presented
in Section 4.3 will be modified to guarantee stability. Based on a feasible and easy
determinable solution for the optimization problem, convergence for the modified MPC
strategy can be shown and, as a consequence, input-to-state stability (ISS) [54, 67] can
be proven. For the stability proof, the optimization problem has to be rewritten in
state-space representation.

The general optimization to guarantee input-to-state stability is defined by:

u∗ = arg min
u

J(u)

s.t. Lcu ≤ bc

u(k +Nu − 1|k) = ur(k)

N ≥ Nt +Nu

(4.28)

where the last element u(k+Nu − 1|k) of the input sequence has to correspond to the
necessary steady-state input ur(k) for a given reference r(k) (the exact definition of
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ur(k) will be given later in Section 4.4.1.1). Furthermore, the prediction horizon N has
to be greater or equal to the sum of the truncation order Nt and the control horizon
Nu. The quadratic cost function considering a prediction model based on a second
order Volterra series model used in the optimization problem (4.28) is given by

J(u) = (Gu+ c+ f(u)− r)T (Gu+ c+ f(u)− r)+

λ (u− ur)
T (u− ur)

(4.29)

where the vector ur ∈ R
N contains the steady-state input ur:

ur = [ur(k), ur(k), . . . , ur(k)]
T (4.30)

It is clear that the quadratic cost function (4.29) considering a second order Volterra
series model results in a possibly non-convex function with several minima. In order
to avoid the use of a nonlinear programming technique to solve the optimization pro-
blem (4.28), the same iterative optimization approach as in Section 4.3 will be used.
Therefore and analogously to the unconstrained (see Section 4.2) and the constrained
optimization (see Section 4.3), the cost function (4.29) will be modified so that the
nonlinear term f(u) depends on the input sequence u(i−1) calculated in the previous it-
eration whereas the remaining terms depend on the input sequence u(i) to be computed
in the current iteration:

J(u(i)) =
(
Gu(i) + c+ f(u(i−1))− r

)T (
Gu(i) + c + f(u(i−1))− r

)
+

λ
(
u(i) − ur

)T (
u(i) − ur

) (4.31)

Then, the cost (4.31) is a quadratic and convex function in u(i) and can be solved
easily by quadratic programming. Based on the modified cost function (4.31) the initial
constrained optimization problem with guaranteed stability (4.28) can be rewritten as:

u(i) = arg min
u(i)

J(u(i))

s.t. Lcu
(i) ≤ bc

u(i)(k +Nu − 1|k) = ur(k)

N ≥ Nt +Nu

(4.32)

Now, by separation of the quadratic and linear terms as well as the constants, the
convex and quadratic cost function (4.32) can be represented by:

J(u(i)) =
1

2
u(i)T S u(i) + p(i)T u(i) +m(i) (4.33)

with the parameters:

S = GTG+ λI

p(i)T =
(
c+ f(u(i−1))− r

)T
G− λuT

r

m(i) =
(
c+ f(u(i−1))− r

)T (
c+ f(u(i−1))− r

)
+ λuT

r ur

(4.34)
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Finally, the input sequence u(i) can be computed with quadratic programming solving
the optimization problem (4.32) based on the convex performance index (4.33) with
the parameters (4.34). Analogously to the unconstrained (Section 4.2) and constrained
optimization (Section 4.3) a new input sequence u(i) is calculated with the nonlinear
term f(u(i−1)) based on the input sequence from the previous iteration. This procedure
is repeated until some convergence criterion is fulfilled, e.g. the difference between the
computed input sequence u(i) and the previous input sequence u(i−1) falls below a
certain limit. Finally, the initial constrained optimization problem with guaranteed
stability (4.28) can be solved by quadratic programming and used as a MPC strategy
based on a second order Volterra series model. The iterative optimization problem can
be solved by the procedure presented in Section 4.3.1 using the parameters (4.34) and
the equality constraint u(i)(k+Nu − 1|k) = ur(k) under consideration of the condition
N ≥ Nt +Nu

4.4.1 Robust stability

In this section the robust stability of the proposed MPC strategy based on a second
order Volterra series is shown. In a first step, the optimization problem will be rewrit-
ten in state-space formulation. Afterwards, a feasible and easy determinable solution
for the optimization problem will be given. Finally, based on the feasible solution,
convergence for the proposed MPC strategies can be shown and, as a consequence,
input-to-state stability (ISS) [54, 67] can be proven. The proof of asymptotic stability
for the presented MPC strategies based on the nominal prediction model, i.e. without
considering an estimation error, is given in the Appendix A.4. Note that the stability
proof is given in a very general form, not only suitable for the iterative optimization
but also for other optimization techniques, e.g. sequential quadratic programming.

4.4.1.1 Optimization problem in state-space representation

For the stability proof of the proposed NMPC strategy based on the input sequence
(2.61) and a second order Volterra series prediction model (2.61) under consideration
of the estimation error, the following general optimization problem is considered:

min
u(k)

J(x(k),u(k), d(k))

s.t. u(k + i|k) ∈ U, i = 0, . . . , Nu − 1

h(x(k + i|k)) ∈ U, i = Nu, . . . , N − 1

x(k + i|k) ∈ X, i = 0, . . . , N − 1

x(k +N |k) ∈ Ω(d(k))

(4.35)
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where J(x(k),u(k), d(k)) denotes the cost function for a finite prediction horizon N

and a finite control horizon Nu. The prediction and control horizon have to satisfy the
condition Nu ≤ N . The initial state is denoted x(k) and u(k) represents the sequence
of Nu future input values along the control horizon. The predictions of the states
x(k+ i|k) for i = Nu +1, . . . , N , i.e. after reaching the end of the control horizon, are
calculated with a local control law h(x(k + i|k)) for i = Nu, . . . , N − 1. The terminal
set

Ω(d(k)) = {x : f(x(k +N |k)) + d(k) = r(k)} (4.36)

guarantees that the last element x(k+N |k) of the predicted output meets the desired
reference r(k). The prediction of the successor state can be generally written as:

x(k + i+ 1|k) = φ(x(k + i|k), u(k + i|k)), i = 0, . . . , Nu − 1

x(k + i+ 1|k) = φ(x(k + i|k), h(x(k + i|k))), i = Nu, . . . , N
(4.37)

The sequence u(k) calculated at k minimizing the cost function (4.35) is defined in a
general manner as:

u(k) = [u(k|k), u(k + 1|k), . . . , u(k +Nu − 1|k)]T (4.38)

and the cost function J(·, ·, ·) for a prediction horizon N and a control horizon Nu can
be written as:

J(x(k),u(k), d(k)) =

Nu−1∑

i=0

L(x(k + i|k), u(k + i|k), d(k))+

N−1∑

i=Nu

Lh(x(k + i|k), d(k))

(4.39)

where L(·, ·, ·) represents the stage cost along the control horizon and Lh(·, ·) denotes
the stage cost based on the local control law3. The quadratic stage costs L(·, ·, ·) and
Lh(·, ·) used in the cost function are defined in general as:

L(x(k + i|k), u(k + i|k), d(k)) = ‖f(x(k + i|k)) + d(k)− r(k)‖2Q+

‖u(k + i|k)− ur(k)‖
2
R

Lh(x(k + i|k), d(k)) = ‖f(x(k + i|k)) + d(k)− r(k)‖2Q+

‖h(x(k + i|k))− ur(k)‖
2
R

(4.40)

where f : RNt 7→ R (2.57) is a nonlinear function which maps the state vector to the
output (2.61) and r(k) denotes the reference of the system output. For a given reference
r(k) the variable ur(k) represents the necessary steady-state input signal.

3For the sake of simplicity the notation Lh(x(k + i|k), d(k)) = L(x(k + i|k), h(x(k + i|k)), d(k))

has be chosen.
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Based on the output prediction (2.61) and the estimation error, defined by d(k) =
y(k) − y(k|k − 1) and assumed to be constant over the entire prediction horizon, the
output prediction considering the estimation error can be written as

y(k + i|k) = ỹ(k + i|k) + d(k) (4.41)

where the output of the nominal model is defined as:

ỹ(k + i|k) = f(x(k + i|k)) (4.42)

In order to prove stability the last element of the output prediction has to satisfy the
condition y(k + N |k) = r(k). Substituting in (4.41) the output prediction for k + N

made at k by the desired reference, the predicted nominal output ỹ(k + N |k) can be
written as:

ỹ(k +N |k) = r(k)− d(k) (4.43)

Now, assuming that the nominal output reaches steady state in k + N or before, the
necessary steady-state input4 ur(k) is based on the predicted nominal output ỹ(k +

N − 1|k):
ur(k) = χ−1(ỹ(k +N |k))

= χ−1(r(k)− d(k))
(4.44)

where χ : R 7→ R is the static nonlinear function which maps the steady-state input
to the nominal steady-state output. The steady-state input (4.44) is used directly to
define the local control law in the initial optimization problem (4.35):

h(x(k + i|k)) = ur(k), i = Nu, . . . , N − 1 (4.45)

4.4.1.2 Feasibility of the solution

Consider the optimal sequence:

u∗(k) = [u∗(k|k), u∗(k + 1|k), . . . , u∗(k +Nu − 1|k)]T (4.46)

for the optimization problem (4.35) with the optimal cost J∗(x(k)) and the optimal
predicted states x∗(k+i|k) for i = 1, . . . , N . Furthermore, consider the shifted solution
uf(k + 1) for k + 1 given by:

uf(k + 1) = [uf(k + 1|k + 1), uf(k + 2|k + 1), . . . , uf(k +Nu|k + 1)]T (4.47)

4Note that the steady-state input depends on the given reference and the known estimation error.

For the sake of simplicity, the notation ur(k) = ur(r(k), d(k)) has been chosen. Furthermore it has to

be mentioned that the reference is constant, i.e. r(k) = r(k + 1).
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where the elements uf(k + i|k + 1) for i = 1, . . . , Nu are defined by:

uf(k + i|k + 1) =

{
u∗(k + i|k) for i = 1, . . . , Nu − 1

h(xf (k +Nu|k + 1)) for i = Nu
(4.48)

The use of the shifted solution uf(k + 1) in the optimization problem (4.35) results in
the cost Jf(x(k + 1)) and the predicted states xf(k + i|k + 1) for i = 2, . . . , N + 1.

The application of the optimal sequence u∗(k) results in the predicted states x∗(k+

i|k) for i = 1, . . . Nu. After reaching the end of the control horizon, the local control
law h(x(k+i|k)), corresponding to the necessary steady-state input ur(k), is applied to
the system. Based on the local control law the states x∗(k+i|k+1) for i = Nu+1, . . . N

are obtained. As the optimal solution u∗(k) and the local control h(x(k + i|k)) are
based on the conditions given in the optimization problem (4.35), the state vector at
k +N satisfies x∗(k +N |k) ∈ Ω(d(k)).

Due to the fact that the estimation error does not affect the states, the predicted
state for k + 1 made at k satisfies x∗(k + 1|k) = x(k + 1). With uf(k + 1) being
the shifted sequence u∗(k) plus the additional term of the local control law, the states
obtained from the application of uf(k + 1) satisfy xf(k + i|k + 1) = x∗(k + i|k) for
i = 1, . . . Nu. During the remaining prediction horizon the local control law with
h(x(k + i|k + 1)) = ur(k + 1) is applied to the system. Both the solution uf(k + 1)

(based on the shifted optimal solution u∗(k)) and the local control law h(x(k + i|k +

1)) are calculated satisfying the necessary conditions of (4.35). Hence, the statement
xf(k+N +1|k+1) ∈ Ω(d(k+1)) is true and, as a consequence, the solution uf(k+1)

to the optimization problem is feasible.

4.4.1.3 Convergence

Consider the costs J∗(x(k)) at k based on the optimal sequence u∗(k) as well as the
cost Jf(x(k + 1)) at k + 1 as a result of the feasible solution uf(k + 1). In order to
show the convergence it has to be shown that the calculated costs are monotonically
decreasing.

The optimal cost J∗(x(k)) at k can be written with (4.39) generally as:

J∗(x(k)) =
Nu−1∑

i=0

L(x∗(k + i|k), u∗(k + i|k), d(k))+

N−1∑

i=Nu

Lh(x
∗(k + i|k), d(k))

(4.49)
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and the cost Jf(x(k + 1)) at k + 1 calculated with the feasible solution uf(k + 1)

becomes5:

Jf (x(k + 1)) =
Nu−1∑

i=1

L(xf (k + i|k + 1), u(k + i|k + 1), d(k + 1))+

N∑

i=Nu

Lh(x
f(k + i|k + 1), d(k + 1))

(4.50)

Hence, the difference of the two cost functions ∆J(k + 1) = Jf(x(k + 1))− J∗(x(k))

can be written as:

∆J(k + 1) = Lh(x
f(k +N |k + 1), d(k + 1))− L(x∗(k|k), u∗(k|k), d(k))+

Nu−1∑

i=1

(

L(xf (k + i|k + 1), u(k + i|k + 1), d(k + 1))−

L(x∗(k + i|k), u∗(k + i|k), d(k))
)

+

N−1∑

i=Nu

Lh(x
f(k + i|k + 1), d(k + 1))− Lh(x

∗(k + i|k), d(k))

(4.51)

Now consider a prediction horizon N ≥ Nu+Nt and the nilpotent character (ANt =

0) of the state matrix (2.59) of the used prediction model (2.61). With the chosen
prediction horizon at k + 1, the (at least) last Nt input values correspond to the
steady-state input ur(k + 1). Therefore, the predicted nominal output reaches steady
state at k+N (or earlier). Based on the definition of the steady-state input (4.44) the
nominal output is then given by ỹ(k +N |k + 1) = r(k + 1)− d(k + 1). Furthermore,
with the nominal output defined as ỹ(k + i|k) = f(x(k + i|k)) (4.42) the statement
f(xf(k+N |k+1)) = r(k+1)−d(k+1) holds. Hence, with h(xf(k+N |k+1)) = ur(k+1)

and f(xf(k + N |k + 1)) = r(k + 1) − d(k + 1) the stage cost for k + N computed at
k + 1 satisfies Lh(x

f(k + N |k + 1), d(k + 1)) = 0. Finally, the difference in the cost
functions can be expressed:

∆J(k + 1) = −L(x∗(k|k), u∗(k|k), d(k)) + α1 + α2 + α3 + α4 (4.52)

5Note that the upper bound in the first sum has been changed from Nu to Nu − 1. With uf (k +

Nu|k + 1) = h(xf (k+Nu|k + 1)) (4.48) the stage cost for k+Nu calculated at k+ 1 can be included

in the second sum by changing the lower bound from Nu + 1 to Nu.
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with the terms

α1 =
Nu−1∑

i=1

(

‖f(xf(k + i|k + 1)) + d(k + 1)− r(k + 1)‖2Q − (4.53)

‖f(x∗(k + i|k)) + d(k)− r(k)‖2Q

)

α2 =
Nu−1∑

i=1

(

‖uf(k + i|k + 1)− ur(k + 1)‖2R − (4.54)

‖u∗(k + i|k)− ur(k)‖
2
R

)

α3 =

N−1∑

i=Nu

(

‖f(xf(k + i|k + 1)) + d(k + 1)− r(k + 1)‖2Q − (4.55)

‖f(x∗(k + i|k)) + d(k)− r(k)‖2Q

)

α4 =
N−1∑

i=Nu

(

‖h(xf(k + i|k + 1))− ur(k + 1)‖2R − (4.56)

‖h(x∗(k + i|k))− ur(k)‖
2
R

)

Lemma 4.1 A quadratic function g(a) = a2 is locally Lipschitz continuous in a ∈

[b1, b2] with −∞ < b1 ≤ b2 < ∞. With this condition a Lipschitz constant Lq can be

found such that ‖g(a1 + a2)− g(a1)‖ ≤ Lq‖a2‖.

Lemma 4.2 The inverse χ−1 of the static output nonlinearity of the Volterra model in

state space representation is Lipschitz continuous and, as a consequence the condition

‖χ−1(a1 + a2)− χ−1(a1)‖ ≤ Lχ‖a2‖ is satisfied.

Lemma 4.3 The output nonlinearity f of the Volterra model in state space represen-

tation is Lipschitz continuous and can be bounded by ‖f(a1 + a2)− f(a1)‖ ≤ Lf‖a2‖.

Lemma 4.4 The predicted states satisfy xf(k+i|k+1) = x∗(k+i|k) for i = 1, . . . , Nu

as uf(k + i|k + 1) = u∗(k + i|k) for i = 1, . . . , Nu − 1. The prediction of the states

based on the optimal and the feasible solution are defined for i = Nu + 1, . . . , N by:

x∗(k + i|k) = Ax∗(k + i− 1|k) +Bur(k)

xf(k + i|k + 1) = Axf(k + i− 1|k + 1) +Bur(k + 1)
(4.57)
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Then the difference between the states ∆x(k + i) = xf(k + i|k + 1) − x∗(k + i|k) for

i = Nu + 1, . . . , N can be written as:

∆x(k + i) = A∆x(k + i− 1) +B∆ur (4.58)

where ∆ur = ur(k+1)−ur(k) represents the difference of the steady-state input. With

∆ur bounded by input constraints the difference of the predicted states is also bounded

by

‖∆x(k + i)‖ ≤ cx ‖∆ur‖ (4.59)

being cx a constant.

Term α1: The predicted states based on the optimal and the feasible solution satisfy
xf(k + i|k + 1) = x∗(k + i|k) for i = 1, . . . , Nu − 1 and for the reference applies
r(k) = r(k + 1). Furthermore the increment in the estimation error is defined as
∆d = d(k + 1)− d(k). With z(k + i|k) = f(x∗(k + i|k)) + d(k)− r(k) the term α1 can
be expressed as:

α1 =
Nu−1∑

i=1

‖z(k + i|k) + ∆d‖2Q − ‖z(k + i|k)‖2Q (4.60)

Applying Lemma 4.1 to (4.60) the term α1 can be bounded by:

α1 ≤ c1(Q,Nu) · ‖∆d‖ (4.61)

being c1(·, ·) a constant depending on the weighting factor Q and the control horizon
Nu.

�

Term α2: The optimal solution and the feasible solution satisfy uf(k + i|k + 1) =

u∗(k+ i|k) for i = 1, . . . , Nu−1 (4.48). Furthermore the increment in the steady-state
input is defined as ∆ur = ur(k+1)−ur(k). With z1(k+ i|k) = u∗(k+ i|k)−ur(k) the
term α2 can be written as:

α2 =
Nu−1∑

i=1

‖z1(k + i|k)−∆ur‖
2
R − ‖z1(k + i|k)‖2R (4.62)

In a first step α2 in the form of (4.62) can be bounded with the help of Lemma 4.1 by:

α2 ≤ c2(R,Nu) · ‖∆ur‖ (4.63)

The increment in the necessary steady-state input is defined generally as ∆ur =

χ−1(r(k+1)−d(k+1))−χ−1(r(k)−d(k)) and for the reference applies r(k) = r(k+1).
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With z2 = r(k)−d(k) and ∆d = d(k+1)−d(k) the increment in the steady-state input
can be rewritten as ∆ur = χ−1(z2−∆d)−χ−1(z2). Under consideration of Lemma 4.2
the norm of ∆ur can be bounded by ‖∆ur‖ ≤ Lχ‖∆d‖. Using this bound in (4.63) the
term α2 can be finally bounded by:

α2 ≤ c2(R,Lχ, Nu) · ‖∆d‖ (4.64)

being c2(·, ·, ·) a constant depending on the weighting factor R, the parameter Lχ and
the control horizon Nu.

�

Term α3: Consider the predictions x∗(k+ i|k) and xf(k+ i|k+1) with the difference
∆x(k+ i) = xf(k+ i|k+1)−x∗(k+ i|k) for i = Nu, . . . N −1 and the initial condition
xf(k+Nu−1|k+1) = x∗(k+Nu−1|k). Defining z1(k+ i|k) = f(x∗(k+ i|k)+∆x(k+

i))− f(x∗(k+ i|k))+∆d and z2(k+ i) = f(x∗(k+ i|k))+d(k)−r(k) under consideration
of ∆d = d(k+1)−d(k) and r(k+1) = r(k), the term α3 can be bounded with Lemma
4.1 in the following form:

α3 =
N−1∑

i=Nu

‖z1(k + i) + z2(k + i)‖2Q − ‖z2(k + i)‖2Q

≤ c3(Q,N,Nu) · ‖z1(k + i)‖

(4.65)

Furthermore, with f being Lipschitz continuous (Lemma 4.3) the term z1(k + i|k) can
be bounded with ‖z1(k+ i|k)‖ ≤ ‖f(x∗(k+ i|k)+∆x(k+ i))− f(x∗(k+ i|k))‖+‖∆d‖ ≤

Lf‖∆x(k + i)‖+ ‖∆d‖. Hence, (4.65) can be expressed as:

α3 ≤ c3(Q,N,Nu) · (Lf‖∆x(k + i)‖+ ‖∆d‖) (4.66)

With the help of Lemma 4.4 the difference of the predicted states based on the optimal
and the feasible solution can be bounded with ‖∆x(k + i)‖ ≤ ‖cx∆ur‖. Using this
upper bound, (4.66) can be rewritten as:

α3 ≤ c3(Q,N,Nu) · (Lf‖cx∆ur‖+ ‖∆d‖) (4.67)

Finally, with Lemma 4.3 and ‖∆ur‖ ≤ Lχ‖∆d‖ (see explanation for Term α2) an upper
bound of α3 (4.67) is defined by:

α3 ≤ c3(Q,Lχ, Lf , cx, N,Nu) · ‖∆d‖ (4.68)

depending only on the norm of the increment ‖∆d‖ in the estimation error.
�
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Term α4: It is clear that the statement

α4 = 0 (4.69)

is true as the local control law (4.45) corresponds to the necessary steady-state input
signal.

�

Finally, after defining upper bounds for α1, α2 and α3 as well as showing that
α4 = 0, the difference ∆J(k + 1) = Jf(x(k + 1))− J∗(x(k)) (4.52) between the costs
for the optimal and the feasible solution can be bounded with:

Jf (x(k + 1))− J∗(x(k)) ≤ −L(x∗(k|k), u∗(k|k), d(k)) + cV ·‖∆d‖ (4.70)

where cV = c1(Q,Nu) + c2(R,Lχ, Nu) + c3(Q,Lχ, Lf , cx, N,Nu). With the terms cV ·
‖∆d‖ > 0 and −L(x∗(k|k), u∗(k|k), d(k)) ≤ 0 it is ensured that the cost based on the
feasible solution cost will decrease as long as −L(x∗(k|k), u∗(k|k), d(k)) > cV ·‖∆d‖.
As a direct consequence, the system is steered into the set:

Ψd = {x : L(x∗(k|k), u∗(k|k), d(k)) ≤ cV ·‖∆d‖} (4.71)

from any arbitrary x. However, when the state enters the set Ψd it is not guaranteed
that the cost decreases, giving rise to the possibility that the system remains in the
set or evolves out of it. The stage cost always satisfies −L(x∗(k|k), u∗(k|k), d(k)) ≤ 0,
hence (4.70) can be rewritten in the form:

Jf (x(k + 1)) ≤ J∗(x(k)) + cV ·‖∆d‖ (4.72)

Furthermore, the inequality:

J∗(x(k)) + cV ·‖∆d‖ ≤ max
x∈Ψd

J∗(x) + cV ·‖∆d‖ = βd (4.73)

holds for any x(k) ∈ Ψd. Then, taking into account (4.72) and (4.73), it follows that:

Jf(x(k + 1)) ≤ βd, ∀ x(k) ∈ Ψd (4.74)

Finally, whenever the state enters into Ψd, it evolves into the set:

Ψβ = {x : Jf(x) ≤ βd} (4.75)

Hence, once in the set Ψd the state may evolve outside of Ψd, but it will remain always
inside Ψβ. Thus, the state is ultimately bounded and the system is stabilized using the
feasible solution.
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Figure 4.6: Evolution of the system state x(·) and the sets Ψd and Ψβ.

It is obvious that the costs J∗(x(k+1)) based on the optimal solution at k+1 and
Jf (x(k + 1)) based on the feasible solution satisfy:

J∗(x(k + 1)) ≤ Jf (x(k + 1)) (4.76)

With (4.74), (4.75) and (4.76) it is straightforward to show that the system controlled
by the NMPC strategy based on the optimization problem (4.35) is ultimately bounded
by the set Ψβ. Hence, with the given proof, the initial optimization problem (4.28)
guarantees input-to-state stability. Figure 4.6 shows the possible evolution of the sys-
tem state x and the sets Ψd and Ψβ around the origin (or the desired reference). Once
inside the set Ψβ, the control strategy maintains the system inside the set.

Remark 4.5 Note that the equality constraint used in (4.28) is not necessary to guar-

antee stability of the proposed NMPC strategy. Nevertheless, considering the equality

constraint allows to use the vector and matrices as defined in the Appendix A.1. Oth-

erwise, the prediction model (2.43)-(2.44) has to be reformulated in order to consider

the local control law h(x(k + i|k)) = ur for i = Nu, . . . , N − 1.

4.5 Experimental results

After the detailed definition of different MPC strategies based on second order Volterra
series prediction models, both the constrained controller (see Section 4.3) and the
constrained controller with guaranteed stability (see Section 4.4) were applied to the
benchmark systems presented in Chapter 3. In the following sections the obtained
experimental results will be presented.
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4.5.1 Constrained optimization

The behavior of the constrained MPC strategy proposed in Section 4.3 was validated in
experiments with the three benchmark systems. With the pilot plant different experi-
ments such as setpoint tracking and disturbance rejection were carried out. Afterwards,
the proposed controller was applied to the commercial fuel cell and tested in several ex-
periments both with a constant and a variable setpoint. Finally, for the greenhouse the
performance of the controller was verified in an experiment stabilizing the temperature
in a given setpoint under normal environmental conditions.

4.5.1.1 Pilot plant

In order to carry out different experiments with the pilot plant emulating a chemical
reaction (see Section 3.1) the proposed constrained MPC strategy was implemented
in the Matlab/Simulink environment with a prediction horizon of N = 25, a control
horizon of Nu = 15, a weighting factor of λ = 5 and a final accuracy of ε = 10−3.
Furthermore, the system input was restricted by the following constraints:

5 ≤ u(k + i|k) ≤ 100, i = 0, . . . , 14

−20 ≤ ∆u(k + i|k) ≤ 20, i = 0, . . . , 14
(4.77)

In order to analyze the system behavior, several experiments have been carried out to
validate the reference tracking and disturbance rejection capabilities of the proposed
control strategy.

In the first place a setpoint tracking experiment has been carried out. The chosen
values for the reference are different enough to result in control actions in a large
interval, see Fig. 4.7. After the reference changes some overshoot (1.7 oC after the
first and −1.2 oC after the second setpoint change), justified by the nonlinear process
behavior, can be observed. In steady state the controller shows only small changes
in the control action, necessary to stabilize the output on the reference in presence of
variations in the generated heat and the cold water temperature.

In the second place a setpoint tracking experiment with an error in the model of
the exothermic reaction was carried out (see Fig. 4.8). The error introduced in the
activation energy E of the chemical reaction (see Section 3.1.2) was held constant
during the entire experiment. As the mentioned parameter has a big influence on the
reaction, E was increased only by 3%. The results show some overshoot after the
setpoint changes, approximately 2.2 oC after the first step and −3.4 oC after the second
one. Nevertheless the proposed controller stabilizes the temperature in the desired
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Figure 4.7: Experimental results of the pilot plant for setpoint tracking and controlled by

the constrained control law. From top to bottom: tank temperature T , aperture of the valve

v8, emulated concentration CA and necessary iterations iter to meet the convergence criterion.

value and no further oscillations can be observed. To see the influence of the modified
parameter the results can be compared with the setpoint tracking experiment shown
in Fig. 4.7.

In the third experiment the disturbance rejection capabilities of the proposed con-
strained MPC strategy were proven by means of an additive disturbance in the input
of the system. The results of the experiment can be seen in Fig. 4.9 where u denotes
the input signal for a given setpoint calculated by the control strategy and v8 repre-
sents the effective opening of the valve measured directly in the pilot plant. In normal
operation mode and in absence of errors in the integrated valve controller the variables
u and v8 have the same values, i.e. v8 = u. In the experiment a discrepancy between u
and v8 has been introduced so that it acts as an input disturbance (like an error in the
integrated valve controller). With the disturbance ∆v8 = −15% the measured opening
of the valve has the value v8 = u + ∆v8. After the application of the disturbance in
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Figure 4.8: Experimental results of the pilot plant with a persistent disturbance in the

emulated chemical reaction and controlled by the constrained control law. From top to bot-

tom: tank temperature T , aperture of the valve v8, emulated concentration CA and necessary

iterations iter to meet the convergence criterion.

t = 70min and the disappearance in t = 110min the proposed control strategy reacts
rapidly to the increasing error in the temperature and shows good disturbance rejection
capabilities. Neither the temperature nor the control action show oscillations after the
application and the disappearance of the disturbance.

Finally, Fig. 4.10 shows the experimental results applying an additive disturbance
in the feed Ff . In t = 60min a change in the feed flow rate of ∆Ff = −0.02 l/s, which
corresponds to an error of 40%, has been applied. With an increasing error in the
measured temperature, the controller reduces the opening of the valve and reaches a
compensation of the divergence after 25 minutes. In this experiment a maximal error of
−5 oC in the measured temperature can be observed. In spite of the strong disturbance
applied to the system, the proposed control strategy rejects the disturbance without
oscillations in the temperature and the control action.
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Figure 4.9: Experimental results of the pilot plant with a disturbance in the opening of the

valve v8 and controlled by the constrained control law. From top to bottom: tank temperature

T , aperture of the valve v8, emulated concentration CA, input value u calculated by the

controller and necessary iterations iter to meet the convergence criterion.

It is important to mention that the calculation of the control signal took place
without problems within the chosen sampling time of ts = 60 s. During the presented
experiments the average computation time was tavgc = 0.059 s, with a maximum of
tmax
c = 0.486 s and a minimum of tmin

c = 0.021 s. In order to meet the convergence
criterion, the proposed optimization needed an average of 4.69 iterations, with a ma-
ximum of 14 and a minimum of 1 iteration.

4.5.1.2 Fuel cell

The proposed constrained MPC strategy based on the identified second order Volterra
series model with parameter adaptation to changes in the current Iload (see Section
3.2.4) was implemented as a Simulink model and afterwards compiled with the Real-
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Figure 4.10: Experimental results of the pilot plant with a disturbance in the feed Ff and

controlled by the constrained control law. From top to bottom: tank temperature T , aperture

of the valve v8, emulated concentration CA, feed Ff and necessary iterations iter to meet the

convergence criterion.

Time Workshop toolbox. The compiled Simulink model can then be used directly on
the real-time system to regulate the oxygen excess ratio λO2 of the fuel cell module.
The quadratic programming was implemented with Lemke’s complementary pivoting
algorithm [65] and not with the built-in Matlab function as this function is not included
in Matlab’s real-time framework.

The sampling time for the real-time system and, as a consequence, the control strat-
egy was set to ts = 5ms, corresponding to the used sampling time for the identification
process of the Volterra series model. For the prediction and control horizons values
of N = 16 and Nu = 5 were chosen, respectively. The weighting factor used in the
control strategy was set to a value of λ = 1 and a final accuracy of ε = 10−3 was used.
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Furthermore, constraints both in the control signal and its increments were considered:

0.8V ≤ u(k + i|k) ≤ 7.2V, i = 0, . . . , 4

−0.5V ≤ ∆u(k + i|k), i = 0, . . . , 4
(4.78)

The upper constraint of 7.2V in the control action corresponds to the maximum input
value permitted by the microcontroller of the compressor motor and the lower con-
straint of 0.8V has been chosen for safety reasons. The constraint in the increment of
the control action had to be used as a faster reduction of the input value leads to an
emergency shutdown of the fuel cell module. Furthermore, the number of iterations
in the control algorithm presented in Section 4.3.1 was limited to a value of 4. This
limitation was necessary in order to guarantee that the real-time system calculates the
new control action within the sampling time of ts = 5ms. It is possible that the op-
timization terminates without reaching the final accuracy due to the limitation in the
number of iterations. Note that the limitation in the number of iterations can cause a
termination of the optimization without reaching the final accuracy. Nevertheless, the
computed input sequence is close to the optimal solution and is applied to the system.

In a first experiment the proposed constrained NMPC strategy was used to regulate
the oxygen excess ratio to a desired value of λrefO2

= 4, which corresponds to the control
objective defined in Section 3.2.2. The results in Fig. 4.11 show that the control
strategy regulates the oxygen excess ratio λO2 to the desired value in presence of step-
wise changes in the load current Iload. After compensating the errors in the oxygen
excess ratio λO2 due to the changes in the load current Iload, the input signal Vcm hardly
varies. The stack voltage Vst reaches steady state shortly after a change in the load
current Iload has been applied and leads to a fast adaption of the net output power
Pnet to the new demand. Furthermore it can be observed that the necessary time tc to
calculate the new input signal has a value between 0.7ms and 2.5ms and lies clearly
below the sampling time of ts = 5ms. The results show that the applied constrained
NMPC strategy controls the oxygen excess ratio λO2 in a wide range of the load current
Iload and that the fuel cell module supplies the demanded net output power Pnet.

The experiment shown in Fig. 4.11 was repeated with a linear MPC [45] in order to
compare the experimental results. The linear MPC was implemented with a sampling
time of ts = 5ms and the same control parameters as the proposed constrained NMPC
(N = 16, Nu = 5, λ = 1). A detailed comparison of the reaction of both control
strategies to changes in the load current Iload is given in Fig. 4.12. It can be observed
that the proposed constrained NMPC compensates the negative peaks in the oxygen
excess ratio λO2 slightly faster due to the more aggressive reaction of the nonlinear
control strategy. In the case of the positive peak both controllers need the same time
to compensate the error as the control action and its slew rate are limited. Nevertheless,
the linear MPC shows a longer overshoot than the NMPC. With the proposed nonlinear
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Figure 4.11: Experimental results of fuel cell module controlled by the proposed NMPC

with stepwise changes in the load current and a constant reference λref
O2

= 4 for the oxygen

excess ratio. From top to bottom: oxygen excess ratio λO2 , load current Iload, compressor

motor voltage Vcm, stack voltage Vst, net output power Pnet and computational time tc.

control strategy the shown negative peaks are compensated in 40ms and 70ms and the
positive peak in 110ms. In order to allow a better comparison of the two controllers,
the sum of square errors (SSE) is given in Tab. 4.1 for the experiments carried out
with the proposed NMPC and the linear MPC. The comparison of the experimental
results and the SSEs show a better performance of the constrained NMPC, attributed
to the nonlinear dynamics considered in the nonlinear control strategy.

Furthermore experiments with the proposed NMPC and the fuel cell’s built-in con-
troller were carried out in order to compare the performance of both controllers in
presence of changes in the load current Iload. In previous experiments [46] it was ob-
served that the built-in controller regulates the oxygen excess ratio λO2 to a variable
value depending on the load current Iload. It is clear that a comparison of the experi-
mental results is only possible if both controllers regulate the oxygen excess ratio λO2
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Figure 4.12: Experimental comparison of the NMPC (solid line) and a linear MPC (dashed

line) with stepwise changes in the load current and a constant reference λref
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line). From top to bottom: oxygen excess ratio λO2 , load current Iload and compressor motor

voltage Vcm.

Performance index NMPC MPC

SSE, t = [0, 25] s 336.67 413.63

SSE, t = [4.9, 5.3] s 12.06 19.25

SSE, t = [16.9, 17.3] s 31.89 41.03

SSE, t = [20.9, 21.3] s 127.76 137.03

Table 4.1: Comparison of the sum of square errors (SSE) for the experiments shown in Figs.

4.11 and 4.12 for the proposed constrained MPC strategy and a linear MPC.
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Figure 4.13: Experimental results of fuel cell module controlled by the proposed NMPC

with stepwise changes in the load current and a varying reference λref
O2

for the oxygen excess

ratio. From top to bottom: oxygen excess ratio λO2 , load current Iload, compressor motor

voltage Vcm, stack voltage Vst, net output power Pnet and computational time tc.

to the same value. Therefore a reference generator for the NMPC was developed from
experimental data obtained from the fuel cell controlled by the built-in controller. The
reference generator, a static nonlinearity and implemented as a simple lookup table,
calculates the desired value λrefO2

for the oxygen excess ratio based on the measured
value of the load current Iload. Finally, identical experiments were carried out with the
proposed NMPC and the built-in controller.

The experimental results of the fuel cell module controlled by the proposed NMPC
in combination with a varying setpoint generated by the reference generator are given
in Fig. 4.13. The results show that NMPC effectively compensates errors in the oxygen
excess ratio λO2 caused by changes in the load current Iload. It can be observed that the
input signal Vcm shows only insignificant variations after compensating the divergence
between the oxygen excess ratio λO2 and its reference λrefO2

. Shortly after a change in
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compressor motor voltage Vcm.

the load current Iload both the stack current Vst and the net output power Pnet reach
steady state. The necessary time tc to compute a new input signal lies between 0.8ms

and 2.4ms and therefore clearly below the sampling time of ts = 5ms. It can be seen
from the results that the proposed NMPC can be used to control the oxygen excess
ratio λO2 for a varying setpoint and a wide range of operating points.

The experiment carried out with the NMPC to control the oxygen excess ratio at
a variable setpoint was repeated with the built-in controller. A detailed comparison
of the results of these two controllers is shown in Fig. 4.14. It can be observed in
the results that the maximum deviation of the oxygen excess ratio λO2 is the same
for both controllers as it is physically impossible to avoid these characteristic peaks.
Nevertheless, the NMPC shows a fast reaction to deviations and compensates the
two shown negative peaks in approximately 40ms and the positive peak in 80ms.
In contrast, the built-in controller needs in the three shown cases at least 500ms to
compensate the error in the oxygen excess ratio. With respect to the compressor motor
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Performance index NMPC Built-in c.

SSE, t = [0, 25] s 128.61 850.51

SSE, t = [4.7, 5.7] s 18.99 161.86

SSE, t = [16.7, 17.7] s 7.16 33.45

SSE, t = [20.7, 21.7] s 37.74 225.89

Table 4.2: Comparison of the sum of square errors (SSE) for the experiments shown in Figs.

4.13 and 4.14 for the NMPC and the built-in controller.

voltage Vcm, the NMPC reacts very fast to deviations in the oxygen excess ratio and
after the compensation of the deviations the input signal shows little variations. Note
that the built-in controller uses internally a sampling time of approximately 1ms. Due
to limitations of the used real-time system the input signal Vcm computed by the built-
in controller was measured with a sampling time of ts = 5ms. For the entire experiment
and the sections shown in Fig. 4.14, the sum of square errors (SSE) is given in Tab.
4.2 for the proposed NMPC and the built-in controller. The comparison of the results
in Fig. 4.14 and the SSEs show that the proposed controller has a considerably better
performance than the original built-in controller with respect to the compensation of
errors in the oxygen excess ratio λO2, especially after changes in the load current Iload.

4.5.1.3 Greenhouse

The proposed constrained NMPC based on the identified Volterra series model (see
Section 3.3.2) was implemented in Matlab/Simulink and LabView and validated in
experiments with the greenhouse. Both for the prediction horizon and the control
horizon values of N = 9 and Nu = 9 have been chosen. For the final accuracy a
value of ε = 10−3 has been used and the sampling time of the controller was set to
ts = 60 s (the chosen sampling time corresponds to the sampling time used during the
identification process, see Section 3.3.2). The following constraints both in the control
signal and its increments were considered:

0 ≤ u(k + i|k) ≤ 100, i = 0, . . . , 8

−25 ≤ ∆u(k + i|k) ≤ 25, i = 0, . . . , 8
(4.79)

The constraints in the control signal and its increments have been chosen according to
the physical limitations of the actuators. The lower and upper bounds of the control
signal represent completely closed or opened windows. The constraints in the control
increments were necessary as the windows need several minutes to completely open or
close.
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Figure 4.15: Experimental results of the proposed controller from January 2010. From top to

bottom: output Xt,a (greenhouse temperature) and desired reference, input alat,rf (aperture

of the roof and lateral windows) and disturbances Pt,e (outside temperature), Pws,e (outside

wind speed), Psol,e (outside global solar radiation) and Pt,ss (soil surface temperature).

The proposed constrained NMPC was validated under different weather conditions,
in Fig. 4.15 some results from January 2010 can be seen. The experimental results show
the evolution of the main variables for a period of 6 days. During the shown experiment,
a value of 24 oC has been used for the setpoint of the greenhouse temperature Xt,a; only
during the third day a setpoint of 21 oC was chosen. It can be seen that both under
clear day and under strong disturbances mainly in solar radiation and wind speed, the
system is able to regulate the greenhouse temperature Xt,a around the given setpoint
while rejecting disturbances.

To give a more detailed view of the controller performance under strong disturbances
in outside weather, a zoom of the results of the fifth day is shown in Fig. 4.16. The
proposed NMPC stabilizes the controlled temperature Xt,a during more than 3 hours
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Figure 4.16: Detailed experimental results of the proposed controller for one day (day 5 in
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in the given setpoint. During the 3 hours, the temperature is maintained in an interval
around the setpoint with a maximum positive deviation of 0.75 oC and a maximum
negative deviation of −0.45 oC. The results show a good control performance and
underline the possibility to approximate the greenhouse dynamics by means of a second
order Volterra series model. Furthermore, the controller demonstrates its ability to
reject even strong disturbances.
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4.5.2 Constrained optimization with guaranteed stability

Analogously to the constrained NMPC, the proposed constrained NMPC with gua-
ranteed stability (see Section 4.4) was validated in experiments. The validation was
carried out in different experiments as setpoint tracking and disturbance rejection with
the pilot plant emulating a chemical reaction (see Section 3.1).

For the experiments, the proposed control strategy with guaranteed stability was
implemented in Matlab/Simulink with a prediction horizon ofN = 80, a control horizon
of Nu = 15 and a sampling time of ts = 60 s. With the chosen horizons and the
truncation order of Nt = 60 (see Section 3.1.3), the necessary condition N ≥ Nt +Nu

is fulfilled. For the weighting factor and the final accuracy values of λ = 5 and ε = 10−3

were used. The input was restricted to:

5 ≤ u(k + i|k) ≤ 100, i = 0, . . . , 14

−20 ≤ ∆u(k + i|k) ≤ 20, i = 0, . . . , 14

u(k + 14|k) = ur(k)

(4.80)

which corresponds to the constraints defined in (4.77) plus the necessary terminal
equality constraint to guarantee stability. Note that the experiments carried out with
the pilot plant to analyze the control behavior correspond to the ones shown in Section
4.5.1.1.

The results of a setpoint tracking experiment with the pilot plant emulating an
exothermic chemical reaction are given in Fig. 4.17. The results show that the system
reaches steady state without any overshoot, both after the first and after the second
change in the setpoint. It can be observed that the controller reacts in a first moment
very aggressive to the setpoint changes. Later, the controller shows a very smooth
behavior and leads the system to the new setpoint. With respect to the results given
in Fig. 4.7, the system controlled by the constrained NMPC with guaranteed stability
needs the same time to reach steady state.

In the second experiment the disturbance rejection capabilities of the proposed con-
troller were tested, see Fig. 4.18. Therefore an error in the activation energy E of the
mathematical model of the underlying exothermic chemical reaction was introduced.
The parameter E was increased by 3% and held constant during the entire experi-
ment. The results show some overshoot after both setpoint changes (approximately
1.3 oC after the first step and −1.7 oC after the second one). The proposed controller
with guaranteed stability needs considerably longer to completely reject the introduced
disturbance than the constrained controller (see Fig. 4.8). Nevertheless, the proposed
NMPC with guaranteed stability obtains a notably reduction in the overshoot in com-



Chapter 4. Iterative optimization algorithms 119

t [min]

t [min]

t [min]

t [min]

T
[o
C
]

C
A

[
m
o
l

l

]
v 8

[%
]

30

30

30

30

90

90

90

90

120

120

120

120

150

150

150

150
40

60

60

60

60

60

70

25

50

50

75

100

0
0

0
0

0

0

0.1

0.2

0.3

it
er

[−
]

5

10

Figure 4.17: Reference tracking experiment with the pilot plant applying the constrained

control law with guaranteed stability. From top to bottom: tank temperature T , aperture of

the valve v8, emulated concentration CA and necessary iterations iter to meet the convergence

criterion.

parison with the overshoot observed in Fig. 4.8.

In the third experiment with the proposed NMPC with guaranteed stability an
additive disturbance in the input of the system was applied. The disturbance ∆v8 =

−15% was applied in t = 70min and removed in t = 110min. In absence of the
disturbance the effective opening of the valve is given by v8 = u. During the application
of the disturbance in the system input, the valve opening is given by v8 = u + ∆v8.
In the results shown in Fig. 4.19, it can be observed, that the proposed NMPC with
guaranteed stability rejects the applied disturbance and compensates effectively the
error in the temperature. In comparison with the results shown in Fig. 4.9, it can be
seen that the application of the disturbance to the system controlled by the NMPC with
guaranteed stability results in a slightly higher maximum error in the temperature and
in a somewhat slower compensation of the divergence. However, the proposed NMPC
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Figure 4.18: Experimental results of the pilot plant with a persistent disturbance in the

emulated chemical reaction and controlled by the constrained control law with guaranteed

stability. From top to bottom: tank temperature T , aperture of the valve v8, emulated

concentration CA and necessary iterations iter to meet the convergence criterion.

with guaranteed stability shows good disturbance rejection capabilities and leads the
temperature to the given setpoint.

In the last experiment, see Fig. 4.20, the reaction of the system to an additive
disturbance in the feed Ff was tested. The disturbance ∆Ff = −0.02 l/s, which corre-
sponds to an error of −40%, was applied in t = 60min. After the application of the
disturbance the temperature of the pilot plant decreases as a result of the reduced con-
centration CA and reaches a maximum error of −5.7 oC. As a result of the increasing
error in the temperature, the proposed controller reduces the opening of the valve v8
and, as a consequence, compensates the error. Finally, at the end of the experiment,
the temperature T nearly reaches steady state. The proposed controller effectively
rejects the disturbance, but clearly slower and with a higher maximum error than the
controller used in the results shown in Fig. 4.10
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Figure 4.19: Experimental results of the pilot plant with a disturbance in the opening of

the valve v8 and controlled by the constrained control law with guaranteed stability. From

top to bottom: tank temperature T , aperture of the valve v8, emulated concentration CA and

necessary iterations iter to meet the convergence criterion.

Note that a new input sequence was always calculated within the used sampling time
of ts = 60 s during the shown experiments. The average computation time was tavgc =

0.076 s, with a minimum of tmin
c = 0.031 s and a maximum of tmax

c = 0.285 s. With
respect to the convergence criterion, the proposed NMPC with guaranteed stability
needed an average of 3.27 iterations, with a maximum of 7 and a minimum of 1 iteration.

4.6 Conclusions of the chapter

In this chapter, several NMPC strategies based on iterative optimization algorithms
have been proposed. The three control strategies are based on quadratic cost functions
and second order Volterra series models and allow a fast computation of the optimal
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Figure 4.20: Experimental results of the pilot plant with a disturbance in the feed Ff and

controlled by the constrained control law with guaranteed stability. From top to bottom: tank

temperature T , aperture of the valve v8, emulated concentration CA and necessary iterations

iter to meet the convergence criterion.

input sequence. The unconstrained optimization algorithm in Section 4.2 can be con-
sidered as the starting point for the development of new nonlinear control strategies
and was originally published in [77, 38]. This algorithm was modified to include linear
input constraints and a weighting function for the control effort (Section 4.3). Output
constraints have not been considered in the proposed algorithm as the nonlinearity of
the used second order Volterra series model results in nonlinear constraints. The com-
bination of the iterative approach and sequential quadratic programming to solve the
optimization problem with nonlinear constraints would eliminate the advantage of fast
computation. Finally, the constrained NMPC strategy was modified in order to guar-
antee input-to-state stability (see Section 4.4). The developed control strategies (the
constrained control strategy and the constrained control strategy with robust stability)
were applied successfully to different benchmark systems and the control behavior was
illustrated by means of experimental results.
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Note that the three control strategies are based on an iterative optimization ap-
proach which does not guarantee convergence if the initial optimization problem is
non-convex. In experiments it was observed that the non-convexity leads to optimiza-
tion problems and a non-converging iterative optimization. Nevertheless, convexity can
be obtained for the two constrained control strategies by high values for the weighting
factor λ of the control effort. In [35] it was shown how to determine the necessary
value for λ for a control horizon of Nu = 1. However, the possible convergence pro-
blem represents a serious drawback for the iterative control strategies and requires the
development of a control strategy which guarantees a converging optimization.





Chapter 5

A convex approach to Volterra based

MPC

In this chapter a novel approach to use second order Volterra series models in NMPC
will be presented. Quadratic lower bounds of the original cost function are obtained.
For those quadratic lower bounds, convexity can be achieved by adding a weighting
function for the control effort. Minimizing globally the approximating convex cost
functions, a new input sequence can be computed.

In the following section the general idea of convexification for second order func-
tions will be explained. The convexification approach will be used to approximate a cost
function based on a second order Volterra series prediction model by convex quadratic
functions. Afterwards a control law based on the minimization of the strict convex
functions will be presented. For the proposed convexification approach convergence
will be proven, one of the main drawbacks in the iterative optimization algorithms pre-
sented in Chapter 4. Finally, another control law based on the idea of convexification,
with a modification in the cost function and the general optimization problem to guar-
antee stability, will be presented. Both control strategies will be applied to one of the
benchmark systems and the control performance will be illustrated by experimental
results.

125
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5.1 General idea of convexification

This section shows the general concept to assure strict convexity for a quadratic cost
function when the model output is defined by a second order function. Generally, the
predicted output error can be defined as:

e = p(u) + b (5.1)

with p(u): RN
u → R

N being a nonlinear second order function in u and b ∈ R
N denotes

a constant vector. With the predicted output error (5.1) the quadratic cost function
without penalization of the control effort (2.46) can be expressed as:

J(u) = eTe (5.2)

It is straightforward to show that the cost (5.2) with e being a nonlinear second order
function in u may possess more than one minimum. The first order Taylor approxi-
mation of (5.2) at e(0) = p(u(0)) + b is given by:

J̃(u, e(0)) = e(0)Te(0) + 2e(0)T
(
e− e(0)

)
= −e(0)Te(0) + 2e(0)Te (5.3)

Since J(u) is convex with respect to e, the linearisation J̃(u, e(0)) satisfies:

J̃(u, e(0)) ≤ J(u), ∀ e(0) (5.4)

Moreover, since J̃(u(0), e(0)) = J(u(0)), the statement:

J(u) = sup
e(0)

J̃(u, e(0)) (5.5)

holds. Hence, J̃(u, e(0)) represents a lower bound of the original cost function (5.2).
Now, using the predicted output error (5.1) in (5.3), the approximated cost function
can be expressed as a function in u:

J̃(u, e(0)) = 2e(0)Tp(u) + 2e(0)Tb− e(0)Te(0) (5.6)

It can easily be seen that (5.6) is a second order function, depending only on p(u).
In order to check convexity, the approximated cost function J̃(u, e(0)) is decomposed
in its quadratic, linear and constant terms. Therefore the term 2e(0)Tp(u) is written
in the following way:

2e(0)Tp(u) = uTS u+ 2hTu+ q (5.7)

with the S = ST ∈ R
Nu×Nu , h ∈ R

Nu and q ∈ R to be defined on basis of the used
nonlinear model. Substituting the first term in (5.6) by (5.7), the lower bound of the
cost function becomes:

J̃(u, e(0)) = uTS u+ 2hTu+ q + 2e(0)Tb− e(0)Te(0) (5.8)
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It is clear that J̃(u, e(0)) is strictly convex with respect to u if and only if S is defi-
nite positive (S > 0). If S is not positive definite, an additional term weighting the
control effort can be added to (5.8) to obtain a strict convex cost function. In MPC,
this additional term is usually the quadratic function λ∆uT∆u based on the control
increments ∆u and weighted by the factor λ. Transforming the weighting term for the
control effort as shown in (2.51), the approximated performance index (5.8) including
a penalization of the control effort is defined as:

J̃(u, e(0), λ) = uT (S + λLT
uLu)u+ 2(hT − λuT

l Lu)u+

q + 2e(0)Tb− e(0)Te(0) + λuT
l ul

(5.9)

where the weighting factor λ, considered as a design parameter, is chosen in a way that
it guarantees strict convexity:

S + λLT
uLu > 0 (5.10)

If S is not positive definite, the condition (5.10) is satisfied and strict convexity of the
approximated cost function (5.9) can be assured for the weighting factor:

λ = −min
(
eig
(
(LT

u )
−1SL−1

u

))
+ ρ (5.11)

where eig(S) denotes the eigenvalues of S and ρ denotes a constant with ρ > 0. If S
is positive definite, the weighting factor λ = ϕ with ϕ ≥ 0 can be used. Analogously,
the original cost function (5.2) extended to include the weighting of the control effort
(2.51) is denoted as:

J(u, λ) = J(u) + λuTLT
uLuu

T − 2λuT
l Luu+ λuT

l ul (5.12)

Since J̃(u, e(0)) ≤ J(u) (5.4), it follows that:

J̃(u, e(0), λ) ≤ J(u, λ) (5.13)

where the strict inequality holds for u 6= u(0) and the equality is valid in the point of
approximation u = u(0). Hence, J̃(u, e(0), λ) can be considered a lower bound of the
cost function J(u, λ).

Now consider several convex cost functions J̃(u, e(j−1), λ(j)) approximated around
e(j−1) for j = 1, . . . , n where λ(j) is the necessary weighting to guarantee convexity for
the cost function approximated around e(j−1). With the condition:

λ(j) ≥ λ(j−1) (5.14)

the weighting factor λ(n) assures convexity for all cost functions J̃(u, e(j−1), λ(n)) with
j = 1, . . . , n. The maximum of several approximated cost functions based on the
weighting factor λ(n) is defined by:

J̃
(n)
Σ (u, λ(n)) = max

j=1, ..., n

{

J̃(u, e(j−1), λ(n))
}

(5.15)



128 5.2. Optimization based on convexification

replacemen
J
(·
)

u
−2 −1 1 2

−6

−3

0

0

3

6

9

12

Figure 5.1: Example for the approximation by means of convex functions with J(u, λ(n))

(dashed line), J̃
(n)
Σ (u, λ(n)) (solid line) and J̃(u,e(j−1), λ(n)) (dotted line) for j = 1, . . . , n

and n = 3 as well as the points of approximation (circles).

Using (5.15) the cost function (5.12) with the weighting factor λ(n) can be approximated
around different points e(j−1) with λ(n) guaranteeing strict convexity for all approxi-
mations. The pointwise maximum of these approximated strict convex cost functions
is also a strict convex function [21]. With (5.13) it can be shown that J̃ (n)

Σ (u, λ(n)) rep-
resents a convex hull of the cost function J(u, λ(n)) [76]. In Fig. 5.1 an example for the
approximation of a non-convex function J(u, λ(n)) by the convex function J̃ (n)

Σ (u, λ(n))

is shown. The example has been generated with 3 randomized points of approximation.

5.2 Optimization based on convexification

The convexification shown in Section 5.1 can be used in the optimization of NMPC
strategies based on second order Volterra series models. Therefore, a quadratic cost
function in combination with a second order Volterra series model will be approximated
by convex functions. Based on the convexification, an optimization approach for NMPC
strategies will be presented. Finally, convergence for the optimization approach will be
proven.

For second order Volterra model series, the future output can be expressed in matrix
form as shown in (2.43)-(2.44). One of the main drawbacks of this representation is
the mixture of linear and nonlinear terms in the variable f(u) as future-future and
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future-past cross terms depending on the input sequence u are considered. Therefore
the prediction model (2.43)-(2.44) is rewritten in the form:

ŷ = Gu+ fnl(u) + fl(u) + c (5.16)

c = Hup + g + h0 + d (5.17)

where the vector fnl(u) ∈ R
N contains the nonlinear future-future cross terms and

fl(u) ∈ R
N denotes the vector of linear future-past cross terms. A detailed definition

of the vectors fnl(u) and fl(u) is given in the Appendix A.5. The other variables used
in (5.16)-(5.17) are defined as shown in Section 2.3 and in the Appendix A.1.

With the modified predicted output for a second order Volterra series model (5.16)-
(5.17) the definition (5.1) of the predicted output error for a second order function can
be written as:

p(u) + b = Gu+ fnl(u) + fl(u) + c− r (5.18)

where Gu, fnl(u) and fl(u) are the only terms which depend on the input sequence u.
Hence, p(u) and b for the modified Volterra series prediction model can be defined as:

p(u) = Gu+ fnl(u) + fl(u) (5.19)

b = c− r (5.20)

To assure convexity, the term p(u) has to be decomposed as shown in (5.7). With fnl(u)

being the only term depending in a quadratic way on u, the matrix S is calculated by
means of fnl(u). Gu and fl(u) depend in a linear form on u and, as a consequence,
determine the vector h. The constant q is equal to 0 as p(u) does not contain any
constant. With these considerations, the following relations for the modified Volterra
series prediction model can be defined:

uTSu = 2e(0)T fnl(u) (5.21)

2hTu = 2e(0)T (Gu+ fl(u)) (5.22)

q = 0 (5.23)

In order to determine the matrix S and the vector h, the term 2e(0)Tp(u) in (5.7) is
defined in matrix form as:

2e(0)Tp(u) = 2 e(0)T
︸ ︷︷ ︸

Φ=[φ1, φ2, ..., φN ]








uTT1u+ 2lT1u+ q1
uTT2u+ 2lT2u+ q2

...
uTTNu+ 2lTNu+ qN








=

N∑

i=1

φi

(
uTTiu+ 2lTi u+ qi

)

(5.24)
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with Ti = T T
i for i, . . . , N . Combining (5.7) and (5.24) the parameters S, hT and q

are given by1:

S =

N∑

i=1

φiTi, hT =

N∑

i=1

φil
T
i , q =

N∑

i=1

φiqi (5.25)

To determine the matrix S for the modified prediction model (5.16)-(5.17) based on a
second order Volterra series model, the nonlinear term fnl(u) is written in general form
as:

fnl(u) =








fnl,1(u)

fnl,2(u)
...

fnl,N(u)







=








uTBnl,1u

uTBnl,2u
...

uTBnl,Nu








(5.26)

with the matrices Bnl,i given in the Appendix A.5. With (5.24) and (5.26) it results
that Ti = Bnl,i. Hence, according to (5.25) the matrix S is defined as:

S =

N∑

i=1

φiBnl,i (5.27)

In order to determine the vector h, the linear term fl(u) is rewritten as:

fl(u) =








fl,1(u)

fl,2(u)
...

fl,N(u)







=








uT
pBl,1

uT
pBl,2

...
uT

pBl,N







u (5.28)

with the matrices Bl,i given in the Appendix A.5. The matrix G can be expressed as:

G =









G[1]

G[2]

...

G[N ]









(5.29)

where G[i] denotes the i-th row of the matrix G. Based on (5.28) and (5.29), the term
Gu+ fl(u) in (5.22) can be given by:

Gu+ fl(u) =








G[1] + uT
pBl,1

G[2] + uT
pBl,2

...
G[N ] + uT

pBl,N







u (5.30)

1Note that the parameter q has already been defined for a second order Volterra series model by

q = 0 (5.23). Nevertheless, (5.25) gives the definition of q for a general second order model.
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From (5.24) and (5.30) it is clear that 2 lTi = G[i] + uT
pBl,i with i = 1, . . . , N . Based

on the definition (5.25), the parameter h can be defined in the form :

hT =
1

2

N∑

i=1

φi

(
G[i] + uT

pBl,i

)
(5.31)

With S (5.27), hT (5.31) and q (5.23) defined, the original cost function with a
weighting of the control effort (5.12) based on a second order Volterra series model
can be approximated by a convex function (5.9). By means of the design parameter λ,
strict convexity of the approximated cost function can be guaranteed.

5.2.1 Control law based on the convexification

The convexified cost functions are used in an NMPC strategy based on a second order
Volterra series model to compute the input sequence. The control law can be imple-
mented as an iterative approach approximating the original cost function by a convex
hull. The minimization of the convex hull results in a global optimization of the original
cost considering the same weighting of the control effort as the convex cost functions.

In a first step an initial candidate input sequence is used to determine a convexified
function approximating the cost based on a second order Volterra series model. Mini-
mizing this convex cost function, a new candidate input sequence can be obtained. The
new input sequence is then used to define a second convex function approximating the
original cost. The pointwise maximum of the different convex cost functions represents
a convex hull for the original cost function2. The global minimization of the convex
hull results then in a new input sequence. It is clear that the difference between the
original cost function and the convex hull is reduced with an increasing number of
convexified functions. This procedure is repeated until the final accuracy tolerance is
satisfied, i.e. the difference between the original cost and the convex hull falls below
a certain level. Constraints in the input sequence and its increments can be included
easily by Lcu ≤ bc with Lc ∈ R

nc×Nu and bc ∈ R
nc being nc the number of constraints.

The iterative procedure for the optimization based on the convexification can be
expressed in the following form:

2The different cost functions are used in the j-th iteration with the maximum weighting factor λ(j)

to assure convexity, see (5.14). Furthermore, the original cost function considering a weighting of the

control effort is also used with the maximum weighting factor λ(j).
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• Step 1: Define j = 0, u(0) = u0 and λ(0) = ϕ with ϕ ≥ 0, calculate b.

• Step 2: Set j = j + 1, calculate e(j−1) = p(u(j−1)) + b.

• Step 3: Determine S(j−1) (5.27), h(j−1) (5.31) and q(j−1) (5.23) so that:

2e(j−1)Tp(u) = uTS(j−1)u+ 2h(j−1)Tu+ q(j−1) (5.32)

• Step 4: Check if S(j−1) + λ(j−1)LT
uLu > 0. If yes, define λ(j) = λ(j−1). If not,

calculate a new weighting factor:

λ(j) = −min
(
eig
(
(LT

u )
−1S(j−1)L−1

u

))
+ ρ (5.33)

with ρ > 0.

• Step 5: û(j) is the minimizer of the convex hull, defined as the solution to the
optimization problem:

min
û(j),α(j)

α(j) (5.34)

s.t. û(j)T
(
S(n) + λ(j)LT

uLu

)
û(j) + 2

(
h(n)T − λ(j)uT

l Lu

)
û(j) +

. . .+ q(n) + 2e(n)Tb− e(n)Te(n) + λ(j)uT
l ul ≤ α(j)

Lcû
(j) ≤ bc

n = 0, . . . , j − 1

• Step 6: Check if û(j) = û(j−1). If yes, define u = û(j) and apply u(k|k) to the
system. Otherwise check if J(û(j), λ(j)) ≤ J(u(j−1), λ(j−1)) is satisfied. If yes, set
u(j) = û(j). If not, set û(j) = u(j−1) + κ (û(j) − u(j−1)) and check the previous
condition. Repeat the scaling of û(j) until the condition is satisfied.

• Step 7: Check if the final accuracy tolerance J(u(j), λ(j))−α(j) ≤ δ with 0 < δ ≪

1 is satisfied. If the convergence condition is satisfied, define u = u(j) and apply
u(k|k) to the system. Otherwise return to Step 2.

The choice of the scaling parameter κ plays an important role, as the number of
necessary iterations depends on its value. If a scaling of the input sequence is necessary,
a very low value for κ results in a new input sequence u(j) close to u(j−1). This leads to
an elevated number of iterations as the minimization of the approximated cost functions
is carried out in small steps. In simulations, the best results with respect to the number
of iterations have been obtained with values of 0.8 ≤ κ ≤ 0.95. Generally, the scaling
parameter has to be chosen in the interval 0 < κ < 1.
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It has to be mentioned that the initial weighting factor can be chosen equal to
λ(0) = 0. In this case, the proposed approach calculates in every sampling period
the smallest weighting factor λ(j) to guarantee strict convexity for all approximated
cost functions. To obtain a less aggressive control behavior, a positive definite initial
weighing factor λ(j) = ϕ with ϕ > 0 can be used. In this case, the procedure changes
the weighting factor only in the case of a non-convex approximation of the cost function.

The input sequence calculated in the previous sampling period k− 1 can be shifted
by one element and used as the initial input candidate sequence u0 at k:

u0 =












u(k|k − 1)

u(k + 1|k − 1)
...

u(k +Nu − 3|k − 1)

u(k +Nu − 2|k − 1)

u(k +Nu − 2|k − 1)












(5.35)

In order to use the shifted solution of the previous sampling period as initial input
candidate sequence, the computed input sequence has to be stored at the end of the
optimization routine in order to be available in the next sampling period.

5.2.2 Convergence

The optimization procedure proposed in Section 5.2.1 guarantees convergence as the
following two conditions are fulfilled:

• C1: the minimized approximated cost α(j) increases monotonically in every iter-
ation, i.e. α(j) > α(j−1), if û(j) 6= û(j−1) is true.

• C2: the original cost J(u(j), λ(j)) with the computed input sequence u(j) is non-
increasing with respect to the cost of the previous iteration, i.e. the costs satisfy
J(u(j), λ(j)) ≤ J(u(j−1), λ(j−1)).

Proof of C1: In every iteration a new constraint is added to the optimization problem
(5.34). Hence, for û(j) 6= û(j−1), i.e. the new constraint is active, the minimization
results in a higher value of α(j).

�
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Guarantee for C2: Consider the candidate input sequence u(j−1) computed in the
previous iteration and the sequence û(j) being the solution of the optimization problem
(see Step 5 of the proposed optimization approach) in the j-th iteration. If the original
cost J(û(j), λ(j)) based on the solution û(j) is larger than the cost J(u(j−1), λ(j−1)) based
on the candidate input sequence u(j−1), i.e.

J(û(j), λ(j)) > J(u(j−1), λ(j−1)) (5.36)

is true, the solution to the optimization problem is scaled in the form û(j) = u(j−1) +

κ (û(j) − u(j−1)) with 0 < κ < 1. This scaling of the input sequence is repeated until
the condition J(û(j), λ(j)) ≤ J(u(j−1), λ(j−1)) is satisfied.

The cost function J̃(u, e(j−1), λ(j)) is an approximation of the original cost function
J(u, λ(j)) around e(j−1) = p(u(j−1)) + b. Therefore, the approximated and the original
cost functions have in u(j−1) the same value and the same gradient ξ(u(j−1)). It is clear
that the statement

J̃(û(j), e(j−1), λ(j)) < J̃(u(j−1), e(j−1), λ(j)) (5.37)

is true for û(j) 6= u(j−1) (otherwise the final accuracy will be satisfied). As a conse-
quence of (5.37), the gradient ξ(u(j−1)) is negative in direction of û(j). With a decreas-
ing cost of J̃(u, e(j−1), λ(j)) in direction of û(j), the original cost J(u, λ(j)) (with the
same gradient in u(j−1)) also decreases around e(j−1) = p(u(j−1)) + b in direction of
û(j). With the scaling of the solution, the condition:

J(û(j), λ(j)) ≤ J(u(j−1), λ(j−1)) (5.38)

will be satisfied at least in a small neighborhood around u(j−1). Then, based on Step
6, the candidate input sequence is defined as u(j) = û(j) and the condition C2 with a
non-increasing original cost:

J(u(j), λ(j)) ≤ J(u(j−1), λ(j−1)) (5.39)

is true.
�

In Fig. 5.2 a simple example for the used scaling is shown. The non-convex
original cost J(u, λ(0)) is approximated by the convex function J̃(u, e(0), λ(1)) around
e(0). Minimizing this convex function, the candidate input sequence û(1) is computed.
It can be observed that the cost J(û(1), λ(1)) of the non-convex function in û(1) is
clearly bigger than J(u(0), λ(0)), i.e. J(û(1), λ(1)) > J(u(0), λ(0)). Based on the scaling
û(1) = u(0) + κ (û(1) − u(0)), the input sequence u(1) is determined (see Step 6 of the
proposed optimization approach). It can be seen that the new cost satisfies the condi-
tion J(u(1), λ(1)) ≤ J(u(0), λ(0)). With the convex cost function J̃(u, e(0), λ(1)) being an
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J
(·
)

u

scaling
effect

J(u(0), λ0) =

J̃(û(1),e(0), λ(1))

J(û(1), λ(1))

J(u(1), λ(1)) J̃(u(0),e(0), λ(1))

−1 1

−4

−2

−2

0

0

2

2

4

Figure 5.2: Example for scaling of the computed candidate input sequence with the original

cost function J(·, ·) and the convex cost function J̃(·, ·, ·).

approximation of J(u, λ(0)), both functions have the same value and the same gradient
in u(0). It can be seen that the value of the convex function J̃(u, e(0), λ(1)) decreases
for input sequences moving from u(0) to û(1), i.e. the convex function has a negative
gradient in u(0). With the convex function J̃(u, e(0), λ(1)) and the non-convex func-
tion J(u, λ(0)) possessing the same gradient in u(0), an input sequence u(1) satisfying
the condition of a non-increasing cost J(u(1), λ(1)) ≤ J(u(0), λ(0)) can be always found
(at least in a small neighborhood around u(0)). Note that in the shown example the
weighting factor λ(1) = λ(0) has been used and, as a consequence, J(u, λ(0)) = J(u, λ(1))

holds.

The conditions C1 and C2 guarantee that the difference between the original cost
and the approximated cost decreases monotonically in every iteration. Therefore,
convergence of the proposed optimization procedure is guaranteed. With the can-
didate input sequence converging to u∗, the statement J̃ (j)

Σ (u∗, λ(j)) = J(u∗, λ(j)) holds
(compare Proof of C1). Being J̃

(j)
Σ (u∗, λ(j)) the global minimum of the convex hull,

J(u∗, λ(j)) represents the global minimum of the original cost function with the weight-
ing factor λ(j). This means that the proposed procedure guarantees convergence and
minimizes globally the original cost function with a weighting factor of λ(j).



136 5.3. Optimization based on convexification with guaranteed stability

5.3 Optimization based on convexification with gua-

ranteed stability

This section explains the necessary modifications in the NMPC strategy based on a
second order Volterra series model using a convexification approach in order to prove
stability. After the definition of the general optimization problem in state-space re-
presentation, a feasible solution for the considered problem will be defined. Based on
the feasible solution, it can be shown that the solution computed by the convexification
algorithm guarantees input-to-state stability (ISS) [54, 67].

In a first step, the original cost function (5.2) and the approximated cost function
(5.8) are extended to include a quadratic weighting term of the input sequence. In
contrast to the weighting term λ∆uT∆u used in Section 5.2, the quadratic term
λ (u− ur)

T (u− ur) will be included in the cost functions. Hence, the original cost
function becomes:

J(u, λ) = J(u) + λuTuT − 2λuT
r u+ λuT

r ur (5.40)

and the approximated cost function can be written as:

J̃(u, e(0), λ) = uT (S + λI)u+ 2(hT − λuT
r )u

+q + 2e(0)Tb− e(0)Te(0) + λuT
r ur

(5.41)

For the approximated cost function (5.41) strict convexity (S+λI > 0) can be assured
easily by a suitable choice of the weighting parameter λ. If S is positive definite, strict
convexity is given for every λ ≥ 0. Otherwise, the weighting factor λ can be chosen to
assure strict convexity in the following form:

λ = −min (eig (S)) + ρ (5.42)

where ρ represents a constant with ρ > 0. Analogously to (5.13), J̃(u, e(0)) is a lower
bound for J(u, λ) with

J̃(u, e(0), λ) ≤ J(u, λ) (5.43)

where the equality is true for u = u(0) and the inequality holds for every u 6= u(0).
With the condition λ(j) ≥ λ(j−1), the pointwise maximum of several approximated cost
functions defined by:

J̃
(n)
Σ (u, λ(n)) = max

n=1, ..., j

{

J̃(u, e(j−1), λ(n))
}

(5.44)

can be considered as a convex hull of the cost function J(u, λ(n)) [76].
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The shown convexification can now be used to compute the input sequence for an
NMPC strategy based on a second order Volterra series prediction model. Using the
same prediction model (5.16)-(5.17) as in Section 5.2, the approximated cost function
can be expressed with S (5.27), hT (5.31) and q (5.23) in the form of (5.41). Finally,
in order to use the optimization approach proposed in Section 5.2.1, Step 4 and Step 5
have to be adjusted to the modified approximated cost function (5.41). Therefore, the
convexity check in Step 4 has to be substituted by:

• Step 4: Check if S(j−1)+λ(j−1)I > 0. If yes, define λ(j) = λ(j−1). If not, calculate
a new weighting factor:

λ(j) = −min
(
eig
(
S(j−1)

))
+ ρ (5.45)

with ρ > 0.

and the minimization of the convex hull in Step 5 has to be replaced by:

• Step 5: û(j) is the minimizer of the convex hull, defined as the solution to the
optimization problem:

min
û(j),α(j)

α(j) (5.46)

s.t. û(j)T
(
S(n) + λ(j)I

)
û(j) + 2

(
h(n)T − λ(j)uT

r

)
û(j) +

. . .+ q(n) + 2e(n)Tb− e(n)Te(n) + λ(j)uT
r ur ≤ α(j)

Lcû
(j) ≤ bc

û(k +Nu − 1|k) = ur

n = 0, . . . , j − 1

Based on the modified approximated cost function (5.41) and the equality constraint
û(k + Nu − 1|k) = ur and considering a prediction horizon of N ≥ Nt + Nu, input-
to-state stability can be guaranteed for the proposed modified optimization approach.
The stability proof and an explanation for the necessary conditions will be given in
the following sections. For the choice of u0, ϕ and κ, the declarations made in Section
5.2.1 apply. Furthermore, the given proof of convergence in Section 5.2.2 is also valid
for the modified optimization.
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5.3.1 Robust stability proof

In order to prove robust stability of the new NMPC strategy, the considered optimiza-
tion problem will be formulated in state space representation. In the state space, a
simple feasible solution for the optimization problem will be determined. Finally, input-
to-state stability can be proven by means of the convergence of the proposed NMPC
strategy based on the modified convexification approach. It has to be mentioned that
the stability proof is formulated in a general manner for NMPC strategies based on
second order Volterra series prediction models considering a variable weighting factor
λ. Hence, the stability proof also holds for other NMPC strategies based on the same
characteristics (Volterra series prediction model, consideration of the estimation error,
variable weighting factor λ and quadratic cost function). The Appendix A.6 shows the
proof of asymptotic stability for the proposed control strategy based on the nominal
prediction model, i.e. without estimation error.

5.3.1.1 Optimization problem in state-space representation

In general terms, the proposed NMPC strategy uses the convexification approach to
minimize a cost function based on second order Volterra series model with the estima-
tion error (2.61). The general optimization problem, for a finite prediction horizon N

and a finite control horizon Nu with N ≥ Nu, considers the cost function:

J(x(k),u(k), d(k), R(j)) =
Nu−1∑

i=0

L(x(k + i|k), u(k + i|k), d(k), R(j))+

N−1∑

i=Nu

Lh(x(k + i|k), R(j))

(5.47)

to be minimized. The vector x(k) denotes the initial state, u(k) is the sequence of Nu

future input values:

u(k) = [u(k|k), u(k + 1|k), . . . , u(k +Nu − 1|k)]T (5.48)

and d(k) is the estimation error at k. The variable R(j) ∈ R
Nu×Nu denotes the weighting

of the control effort calculated in the j-th iteration by the algorithm presented in
Section 5.2.1 and can be defined as R(j) = λ(j)I. The term L(·, ·, ·, ·) is the stage
cost considering the input u(k + i|k) for i = 0, . . . , Nu − 1 and Lh(·, ·) represents the
stage cost based on the local control law h(x(k + i|k)) for i = Nu, . . . , N − 1. The



Chapter 5. A convex approach to Volterra based MPC 139

optimization is subject to:

u(k + i|k) ∈ U, i = 0, . . . , Nu − 1

h(x(k + i|k)) ∈ U, i = Nu, . . . , N − 1

x(k + i|k) ∈ X, i = 0, . . . , N − 1

x(k +N |k) ∈ Ω(d(k))

(5.49)

where the predicted output y(k + N |k) = f(x(k + N |k)) + d(k) meets the desired
reference r(k) using the invariant terminal set:

Ω(d(k)) = {x : f(x(k +N |k)) + d(k) = r(k)} (5.50)

The function f : RNt 7→ R, defined previously in (2.57), is a nonlinear function which
maps the state vector to the output y(k + i|k) = f(x(k + i|k)) + d(k) (2.61) and r(k)

denotes the reference of the system output. The predictions of the states x(k + i|k)

are computed with the future input values and the local control law as:

x(k + i+ 1|k) = φ(x(k + i|k), u(k + i|k)), i = 0, . . . , Nu − 1

x(k + i+ 1|k) = φ(x(k + i|k), h(x(k + i|k))), i = Nu, . . . , N − 1
(5.51)

The quadratic stage costs L(·, ·, ·, ·) and Lh(·, ·) used in the cost function (5.47) are
defined in general as3:

L(x(k + i|k), u(k + i|k), d(k), R(j)) = ‖f(x(k + i|k)) + d(k)− r(k)‖2Q+

‖u(k + i|k)− ur(k)‖
2
R(j)

Lh(x(k + i|k), R(j)) = ‖f(x(k + i|k)) + d(k)− r(k)‖2Q+

‖h(x(k + i|k))− ur(k)‖
2
R(j)

(5.52)

where ur(k) represents the necessary steady-state input signal for a given reference
r(k).

Analogously to the iterative control strategy presented in Section 4.4.1.1 a necessary
condition to proof stability is that the output prediction for k +N made at k satisfies
y(k+N |k) = r(k). With the nominal output prediction ỹ(k+i|k), the output prediction
can be defined with (4.41):

y(k + i|k) = ỹ(k + i|k) + d(k) (5.53)

Now, substituting in (5.53) the predicted output y(k + N |k) for k + N made at k by
the reference r(k), the nominal predicted output can be written as:

ỹ(k +N |k) = r(k)− d(k) (5.54)

3For the sake of simplicity the notation Lh(x(k+i|k), R(j)) = L(x(k+i|k), h(x(k+i|k)), d(k), R(j))

has been chosen.
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Under the assumption that the nominal predicted output ỹ(k + N |k) reaches steady
state in k +N or before, the necessary steady-state input ur(k) can be defined as4:

ur(k) = χ−1(ỹ(k +N |k))

= χ−1(r(k)− d(k))
(5.55)

being χ : R 7→ R a static nonlinearity mapping the steady-state input to the nominal
steady-state output prediction. The steady-state input ur(k) is also used to define the
local control law h(x(k + i|k)) used in the stage cost (5.52):

h(x(k + i|k)) = ur(k), i = Nu, . . . , N − 1 (5.56)

5.3.1.2 Feasibility of the solution

Consider the solution:

us(k) = [us(k|k), us(k + 1|k), . . . , us(k +Nu − 1|k)]T (5.57)

calculated at k with the optimization algorithm presented in Section 5.3. The control
sequence us(k) and the local control law, defined in (5.56) as the steady-state input
ur(k), lead to the predicted states xs(k + i|k) for i = 1, . . . , N . Based on the optimal
or suboptimal sequence us(k) the shifted solution:

uf(k + 1) = [uf(k + 1|k + 1), uf(k + 2|k + 1), . . . , uf(k +Nu|k + 1)]T (5.58)

with the elements:

uf(k + i|k + 1) =

{
us(k + i|k) for i = 1, . . . Nu − 1

h(xf(k +Nu|k + 1)) for i = Nu
(5.59)

can be obtained. Note that the input sequence uf(k + 1) corresponds to the shifted
sequence us(k) plus the additional term of the local control law. With the shifted
solution uf(k + 1) and the local control law h(xf(k + i|k + 1)) = ur(k + 1) for i =
Nu + 1, . . . , N the predicted states xf(k + i|k + 1) for i = 2, . . . , N + 1 are obtained.

Consider the predictions xs(k + i|k) for i = 1, . . . Nu obtained with the optimal
or suboptimal sequence us(k) as well as the predicted states xs(k + i|k + 1) for i =
Nu + 1, . . . N based on the local control law h(x(k + i|k)). With the vector us(k)

and the local control law h(x(k + i|k)) i = Nu, . . . , N − 1 computed on basis of the
conditions (5.49), the predicted state vector for k+N satisfies xs(k+N |k) ∈ Ω(d(k)).

4Note that the steady-state input depends on the given reference r(k) and the known estimation er-

ror d(k). For the sake of simplicity, the notation ur(k) = ur(r(k), d(k)) has been chosen. Furthermore

it has to be mentioned that a constant reference has been assumed, i.e. r(k) = r(k + 1).
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Note that the prediction for k+1 made at k satisfies xs(k+1|k) = x(k+1) as the
estimation error considered in the Volterra based prediction model has no influence on
the states. Hence, with the initial state xf(k + 1|k + 1) = xs(k + 1|k) and uf(k +

i|k + 1) = us(k + i|k) for i = 1, . . . Nu − 1, the predictions made at k + 1 satisfy
xf(k + i|k + 1) = xs(k + i|k) for i = 2, . . . Nu. The predictions xf(k + i|k + 1) for i =
Nu+1, . . . , N+1 are computed with the local control law h(x(k+ i|k+1)) = ur(k+1)

for i = Nu, . . . , N . With the shifted solution uf(k + 1), based on the sequence us(k),
and the local control law h(x(k+ i|k+1)) satisfying the specified conditions of (5.49),
the statement xf(k + N + 1|k + 1) ∈ Ω(d(k + 1)) is true and, as a consequence, the
solution uf(k + 1) to the optimization problem is feasible.

5.3.1.3 Convergence

Consider the cost Js
0(x(k)) = J(x(k),us(k), d(k), R0) at k based on the optimal or

suboptimal solution us(k), the local control law h(xs(k+i|k)), the estimation error d(k)
and the initial weighting R0 of the convexification approach. Furthermore, consider the
cost Jf

0 (x(k + 1)) = J(x(k + 1),uf(k + 1), d(k + 1), R0) at k + 1 calculated with the
feasible solution uf(k), the local control law h(xf(k + i|k + 1)), the estimation error
d(k + 1) and the initial weighting R0. The convergence of the control strategy based
on the proposed optimization algorithm based on convexification and subject to the
conditions given in (5.49) can be guaranteed if the costs are monotonically decreasing.

The cost Js
0(x(k)) at k associated to the optimal or suboptimal solution us(k) is

defined with (5.47) as:

Js
0(x(k)) =

Nu−1∑

i=0

L(xs(k + i|k), us(k + i|k), d(k), R0)+

N−1∑

i=Nu

Lh(x
s(k + i|k), R0)

(5.60)

and the cost Jf
0 (x(k + 1)) at k + 1 has the form:

Jf
0 (x(k + 1)) =

Nu∑

i=1

L(xf (k + i|k + 1), uf(k + i|k + 1), d(k + 1), R0)+

=

N∑

i=Nu+1

Lh(x
f(k + i|k + 1), R0)

(5.61)

With uf(k +Nu|k + 1) = h(xf(k +Nu|k + 1)) the stage cost for k +Nu based on the
feasible solution can be expressed as L(xf (k+Nu|k+1), uf(k+Nu|k+1), d(k+1), R0) =
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Lh(x
f(k +Nu|k + 1), R0). Then, the difference ∆J0(k + 1) = Jf

0 (x(k + 1))− Js
0(x(k))

of the costs can be written generally as:

∆J0(k + 1) = Lh(x
f(k +N |k + 1), R0)− L(xs(k|k), us(k|k), d(k), R0)

+

Nu−1∑

i=1

(

L(xf (k + i|k + 1), uf(k + i|k + 1), d(k + 1), R0)

− L(xs(k + i|k), us(k + i|k), d(k), R0)
)

+
N−1∑

i=Nu

(

Lh(x
f(k + i|k + 1), R0)− Lh(x

s(k + i|k + 1), R0)
)

(5.62)

Consider a prediction horizon N ≥ Nu +Nt and the nilpotent character ANt = 0 of
the state matrix of the used prediction model (2.61). In k+1, the last Nt input values
correspond to the local control law h(x(k + i|k + 1)) = ur(k + 1) for i = Nu, . . . , N .
Due to ANt = 0 the prediction xf(k + N |k + 1) reaches steady state. Furthermore,
based on the definition of the steady-state input (5.55) the nominal output for k +N

predicted in k+1 is given by ỹ(k+N |k+1) = r(k+1)− d(k+1). With the definition
(4.42) of the nominal output ỹ(k+ i|k) = f(x(k+ i|k)) the relation f(x(k+N |k+1)) =

r(k+1)− d(k+1) can be obtained. Finally, with the mentioned relation and the local
control law h(xf(k + N |k + 1)) = ur(k + 1) it can be shown that the stage cost for
k+N computed at k+1 is Lh(x

f(k+N |k), R0) = 0. Then, the difference ∆J0(k+ 1)

of the cost functions can be expressed:

∆J0(k + 1) = −L(xs(k|k), us(k|k), d(k), R0) + α1 + α2 + α3 + α4 (5.63)

with the terms

α1 =
Nu−1∑

i=1

(

‖f(xf(k + i|k + 1)) + d(k + 1)− r(k + 1)‖2Q − (5.64)

‖f(xs(k + i|k)) + d(k)− r(k)‖2Q

)

α2 =
Nu−1∑

i=1

(

‖uf(k + i|k + 1)− ur(k + 1)‖2R0
− (5.65)

‖us(k + i|k)− ur(k)‖
2
R0

)

α3 =

N−1∑

i=Nu

(

‖f(xf(k + i|k + 1)) + d(k + 1)− r(k + 1)‖2Q − (5.66)

‖f(xs(k + i|k)) + d(k)− r(k)‖2Q

)
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α4 =
N−1∑

i=Nu

(

‖h(xf(k + i|k + 1))− ur(k + 1)‖2R0
− (5.67)

‖h(xs(k + i|k))− ur(k)‖
2
R0

)

The Lemmas 4.1-4.4 presented in Chapter 4 will be used to define upper bounds for
the terms α1, α2, α3 and α4 used in the difference of the cost functions given in (5.63).

Term α1: With xs(k + 1|k) = x(k + 1) and the input values of the feasible solution
defined as uf(k + i|k + 1) = us(k + i|k) for i = 1, . . . Nu − 1, the predicted states
satisfy xf(k + i|k + 1) = xs(k + i|k) for i = 1, . . . , Nu − 1. The reference is assumed
to be constant, i.e. r(k) = r(k + 1), and the estimation error increment is given
generally as ∆d = d(k + 1) − d(k). Defining the auxiliary variable z(k + i|k) =

f(xs(k + i|k)) + d(k)− r(k) the term α1 can be written as:

α1 =

Nu−1∑

i=1

‖z(k + i|k) + ∆d‖2Q − ‖z(k + i|k)‖2Q (5.68)

Now, using Lemma 4.1 on (5.68) the term α1 can be bounded by:

α1 ≤ c1(Q,Nu) · ‖∆d‖ (5.69)

where the upper bound depends on the estimation error increment ∆d and the constant
c1(·, ·).

�

Term α2: According to the definition (5.59), the elements of the feasible solution
satisfy uf(k+ i|k+1) = us(k+ i|k) for i = 1, . . . , Nu− 1. With the steady-state input
increment defined as ∆ur = ur(k + 1)− ur(k) and the auxiliary variable z1(k + i|k) =

us(k + i|k)− ur(k) the term α2 can be expressed as:

α2 =

Nu−1∑

i=1

‖z1(k + i|k)−∆ur‖
2
R0

− ‖z1(k + i|k)‖2R0
(5.70)

Applying Lemma 4.1 to (5.70), the term α2 is bounded by:

α2 ≤ c2(R0, Nu) · ‖∆ur‖ (5.71)

and depends on a constant c2(·, ·) and the steady-state input increment input ∆ur.
Based on the definition (5.55), the steady-state input increment input can be expressed
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as ∆ur = χ−1(r(k + 1) − d(k + 1)) − χ−1(r(k) − d(k)). With the auxiliary variable
z2 = r(k) − d(k), the constant reference r(k + 1) = r(k) and the estimation error
increment ∆d = d(k + 1) − d(k), the necessary steady-state input increment can be
rewritten as ∆ur = χ−1(z2 − ∆d) − χ−1(z2). Applying Lemma 4.2 to the norm of
the necessary steady-state input increment, the bound ‖∆ur‖ ≤ Lχ‖∆d‖ is obtained.
Finally, using the expression for ‖∆ur‖ in (5.71), the term α2 is bounded by:

α2 ≤ c2(R0, Lχ, Nu) · ‖∆d‖ (5.72)

where the constant c2(·, ·, ·) depends on the initial weighting factor R0, the parameter
Lχ and the control horizon Nu.

�

Term α3: Consider a constant reference r(k+1) = r(k), the estimation error increment
∆d = d(k+1)−d(k) and the difference between the states for i = Nu, . . . , N−1 given
by ∆x(k+ i) = xf(k+ i|k+1)−xs(k+ i|k). With the auxiliary variables z1(k+ i|k) =
f(xs(k+i|k))+d(k)−r(k) and z2(k+i|k) = f(xs(k+i|k)+∆x(k+i))−f(xs(k+i|k))+∆d

the term term α3 can be expressed as:

α3 =
N−1∑

i=Nu

‖z1(k + i|k) + z2(k + i|k)‖2Q − ‖z1(k + i|k)‖2Q (5.73)

Then, with Lemma 4.1 the term α3 can be bounded by:

α3 ≤ c3(Q,N,Nu) · ‖z2(k + i|k)‖ (5.74)

Now, using Lemma 4.3 the auxiliary variable can be bounded by ‖z2(k + i|k)‖ ≤

‖f(xs(k+ i|k)) +∆x(k+ i)− f(xs(k+ i|k))‖+ ‖∆d‖ ≤ Lf‖∆x(k+ i)‖+ ‖∆d‖. Then,
the upper bound (5.74) of the term α3 can be rewritten as:

α3 ≤ c3(Q,N,Nu) · (Lf‖∆x(k + i)‖+ ‖∆d‖) (5.75)

Furthermore, applying Lemma 4.4 to (5.75) the upper bound of α3 becomes:

α3 ≤ c3(Q,N,Nu) · (Lf‖cx∆ur‖+ ‖∆d‖) (5.76)

With Lemma 4.2 the necessary steady-state input increment can be bounded by ‖∆ur‖ ≤

Lχ‖∆d‖ (see explanation for Term α2). Hence, (5.76) can be modified and the upper
bound of α3 is defined by:

α3 ≤ c3(Q,Lχ, Lf , cx, N,Nu) · ‖∆d‖ (5.77)

depending only on the constant c3(·, ·, ·, ·, ·, ·) and the norm of the increment ‖∆d‖.
�
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Term α4: The term α4 is given by:

α4 = 0 (5.78)

as the local control law (5.56) is defined with the steady-state input.
�

Finally, with the upper bounds for α1 (5.69), α2 (5.72) and α3 (5.77) as well as the
term α4 = 0 (5.78), the difference ∆J0(k+1) = Jf

0 (x(k+1))−Js
0(x(k)) (5.63) between

the costs associated to the feasible solution and the optimal or suboptimal solution is
bounded for N ≥ Nu +Nt by:

Jf
0 (x(k + 1))− Js

0(x(k)) ≤ −L(x(k|k)s, us(k|k), d(k), R0) + cV ·‖∆d‖ (5.79)

with the constant parameter cV given by:

cV = c1(Q,Nu) + c2(R0, Lχ, Nu) + c3(Q,Lχ, Lf , cx, N,Nu) (5.80)

Note that cV ·‖∆d‖ > 0 and −L(xs(k|k), us(k|k), d(k), R0) ≤ 0, thus it is ensured that
the worst case cost will decrease as long as −L(xs(k|k), us(k|k), d(k), R0) > cV ·‖∆d‖.
It is clear that the system is steered in the set:

Ψd = {x : L(xs(k|k), us(k|k), d(k), R0) ≤ cV ·‖∆d‖} (5.81)

from any arbitrary x. However, when the state enters the set Ψd it may remain inside
or evolve out of it as the decrease of the cost is not guaranteed inside the set. With
the quadratic stage cost always satisfying −L(xs(k|k), us(k|k), d(k), R0) ≤ 0 and (5.79)
follows that:

Jf
0 (x(k + 1)) ≤ Js

0(x(k)) + cV ·‖∆d‖ (5.82)

For any x(k) ∈ Ψd the inequality:

Js
0(x(k)) + cV ·‖∆d‖ ≤ max

x∈Ψd

Js
0(x) + cV ·‖∆d‖ = βd (5.83)

holds. Then, taking into account (5.82) and (5.83) follows that:

Jf
0 (x(k + 1)) ≤ βd, ∀ x(k) ∈ Ψd (5.84)

Whenever the state enters into Ψd, it evolves into the set:

Ψβ = {x : Jf
0 (x) ≤ βd} (5.85)

Hence, once in the set Ψd the state may evolve outside of Ψd, but it will remain inside
Ψβ. Thus, the state is ultimately bounded and the system is stabilized using the
feasible solution.
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Now, with the inequality (5.84) and the set (5.85), input-to-state stability for the
NMPC based on the convexification algorithm, can be proven. Therefore, consider the
optimization approach (see Section 5.3) initialized in k + 1 with the feasible solution,
i.e. u(0)(k + 1) = uf (k + 1), and the initial weighting matrix R(0) = R0 = ϕ(0)I where
ϕ(0) ≥ 0. Then, in every iteration a new candidate input sequence u(j)(k + 1) and
a new weighting matrix R(j) = ϕ(j)I with ϕ(j) ≥ ϕ(j−1) are calculated. Furthermore,
consider the cost J (j)(x(k + 1)) = J(x(k + 1),u(j)(k + 1), d(k + 1), R(j)) associated
to the candidate input sequence u(j)(k + 1) and the weighting matrix R(j). From the
proof of the condition C2 (see Section 5.2.2) it can be shown that the statement:

J (j)(x(k + 1)) ≤ Jf
0 (x(k + 1)) (5.86)

holds. Furthermore, with the weighting matrix R(j) ≥ R(j−1) it is clear that

J(x(k + 1),u(j)(k + 1), d(k + 1), R(0)) ≤ J (j)(x(k + 1)) (5.87)

is always fulfilled. Combining (5.86) and (5.87) it can be shown that for every u(j)(k+1)

the inequality:

J(x(k + 1),u(j)(k + 1), d(k + 1), R(0)) ≤ Jf
0 (x(k + 1)) (5.88)

holds. Now, from the inequality (5.88), it is clear that the cost J(x(k + 1),u(j)(k +

1), d(k + 1), R(0)) based on the solution u(j)(k + 1) computed at the j-th iteration
is always lower or equal to the cost Jf (x(k + 1)) associated to the feasible solution
uf(k+1). With (5.84), (5.85) and (5.88) it is straightforward to show that the system
controlled by the NMPC based on the convexification approach is ultimately bounded
by the set Ψβ. Hence, under consideration of the conditions given in (5.49) and a
prediction horizonN ≥ Nu+Nt, the NMPC strategy based on the optimization problem
using the convexification approach for second order Volterra series models (see Section
5.3) possesses input-to-state stability. Once inside the set Ψβ, the control strategy
maintains the system inside the set.

Remark 5.1 Note that the performance index J(x(k + 1),u(j)(k + 1), R(j), d(k + 1))

decreases monotonically in every iteration (see proof of C2 in Section 5.2.2) and, as a

consequence, the cost J(x(k+1),u(j)(k+1), d(k+1), R(0)) also decreases monotonically.

Therefore, a higher optimality of the computed solution leads to a higher convergence

of the proposed NMPC. Hence, the proposed algorithm can be stopped in an arbitrary

iteration guaranteeing always input-to-state stability.

Remark 5.2 Note that with a horizon of N = Nu +Nt not only the output prediction

y(k+N |k+1) = r(k+1) reaches steady-state, but also y(k+N +1|k+1) = r(k+1).
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The same applies to the output prediction for k+N made at k, i.e. y(k+N |k) = r(k).

Therefore, without an error in the output predictions for k + N made at k and for

k +N + 1 made at k + 1, a terminal cost in the initial optimization problem (5.47) is

not required.

Remark 5.3 Furthermore, it has to be mentioned that the equality constraint û(k +

Nu − 1|k) = ur in (5.46) is not necessary to assure stability of the proposed control

strategy. However, with the mentioned equality constraint, the matrices and vectors

defined in the Appendix A.1 can be used without any modification. Without considering

the equality constraint, the prediction model (2.43)-(2.44) has to be adjusted to consider

the local control law h(x(k + i|k)) = ur for i = Nu, . . . , N − 1.

5.4 Experimental results

The two proposed NMPC strategies (Sections 5.2.1 and 5.3) using a convexification
of the cost function based on a second order Volterra series models were tested in
experiments. In the following sections the behavior of the proposed control strategies
will be illustrated by experimental results.

5.4.1 Convexified optimization

The NMPC strategy based on the convexification of the cost function presented in Sec-
tion 5.2.1 was validated in experiments. The experiments, including setpoint tracking
and disturbance rejection, were carried out with the pilot plant emulating an exother-
mic chemical reaction (see Section 3.1). Analogously to the experiments in Section
4.5.1.1, the proposed control strategy was implemented in the Matlab/Simulink envi-
ronment. Furthermore, with a prediction horizon of N = 25 and a control horizon
of Nu = 15 the same values as in Section 4.5.1.1 have been used for the proposed
control strategy. For the final accuracy a value of ε = 10−3 has been chosen and the
constraints:

5 ≤ u(k + i|k) ≤ 100, i = 0, . . . , 14

−20 ≤ ∆u(k + i|k) ≤ 20, i = 0, . . . , 14
(5.89)

have been considered. The proposed control strategy was tested with the same reference
tracking and disturbance rejection experiments as done before with the iterative control
strategies in Sections 4.5.1.1 and 4.5.2.
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Figure 5.3: Setpoint tracking experiment controlled by the proposed NMPC strategy based

on the convexification approach. From top to bottom: tank temperature T , aperture of the

valve v8, emulated concentration CA, necessary iterations iter and weighting factor λ.

The results of the setpoint tracking experiment are shown in Fig. 5.3. Starting
with a reference of 55 oC the setpoint is first changed to 65 oC and later to 45 oC. After
the first setpoint change in t = 30min an overshoot of approximately 1 oC can be
observed, the second setpoint change in t = 90min results in an overshoot of −0.7 oC.
In both cases, when the system reaches steady state after approximately 25 minutes,
the control signal shows only insignificant changes. Generally, the shown results are
very similar to the ones obtained with the constrained iterative control strategy (see
Fig. 4.7).

In the second experiment, the disturbance rejection capabilities of the proposed
controller were proven by means of a constant error in the parameter E of the emulated
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Figure 5.4: Disturbance rejection experiment (persistent disturbance in the emulated chem-

ical reaction) controlled by the proposed NMPC strategy based on the convexification ap-

proach. From top to bottom: tank temperature T , aperture of the valve v8, emulated con-

centration CA, necessary iterations iter, and weighting factor λ.

exothermic chemical reaction model and by changes in the given setpoint (see Fig. 5.4).
As the parameter E has a strong influence on the dynamic behavior of the emulated
reaction, the introduced error corresponds only to 3% of the original value of E. After
the changes in the setpoint, the system shows an overshoot of approximately 1.6 oC

and −2 oC. As can be observed, the overshoot after the second setpoint increased
considerably with respect to the results shown in Fig. 5.3. In spite of the introduced
error in the parameter E, the proposed control strategy stabilizes the system around
the given reference and shows only negligible changes in the control action for the
system in steady state.
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Figure 5.5: Disturbance rejection experiment (disturbance in the valve opening v8) controlled

by the proposed NMPC strategy based on the convexification approach. From top to bottom:

tank temperature T , aperture of the valve v8, emulated concentration CA, input value u

calculated by the controller, necessary iterations iter and weighting factor λ.

The third experiment with the pilot plant controlled by the proposed NMPC strat-
egy was carried out with an additive disturbance in the system input (see Fig. 5.5).
The mentioned disturbance has a value of ∆v8 = −15% and was applied in the period
from t = 70min until t = 110min. During the application of the disturbance, the
effective valve opening is given by v8 = u+∆v8 whereas, in absence of the disturbance,
the valve opening is defined by v8 = u. It can be observed that the controller, after the
application of the disturbance, efficiently compensates the error in the valve opening
and the in temperature. After the sudden disappearance of the disturbance, the con-
troller compensates the error in the output temperature and the system reaches steady
state at the end of the experiment. In spite of the amplitude of the chosen disturbance,
the proposed NMPC strategy rejects the disturbance efficiently and leads the system
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Figure 5.6: Disturbance rejection experiment (disturbance in the feed Ff ) controlled by

the proposed NMPC strategy based on the convexification approach. From top to bottom:

tank temperature T , aperture of the valve v8, emulated concentration CA, feed Ff , necessary

iterations iter and weighting factor λ.

to the desired setpoint.

In the last experiment, shown in Fig. 5.6, the capabilities of the proposed NMPC
strategy to reject an additive disturbance in the feed Ff were tested. The chosen
disturbance has a value of ∆Ff = −0.02 l/s, which corresponds to an error of −40%

with respect to the initial feed, and was applied in t = 60min. The application of
the disturbance results in a reduced concentration CA and, as a consequence, in a
decreasing temperature with a maximum error of −3.5 oC. The controller efficiently
rejects the applied disturbance by reducing the opening of the valve v8 and the system
reaches steady state approximately in t = 90min, 30 minutes after the application
of the disturbance. Neither the temperature nor the valve opening show oscillations
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during the application of the disturbance due to the smooth behavior of the proposed
controller. With respect to the weighting factor, the optimization algorithm resulted
always in a value λ < 10, except in the setpoint changes, requiring a higher value to
assure convexity.

With the proposed NMPC strategy based on a convexification of the performance
index, the calculation was carried out within the used sampling time of ts = 60 s. The
average computation time to calculate a new input sequence in the shown experiments
was tavgc = 0.736 s, with a maximum of tmax

c = 4.462 s and a minimum of tmin
c = 0.065 s.

The average number of iterations to meet the final accuracy was 6.35, with a maximum
of 12 and a minimum of 2 iterations.

5.4.2 Convexified optimization with guaranteed stability

The NMPC strategy using the optimization based on the convexification approach
with guaranteed stability (see Section 5.3) was implemented in the Matlab/Simulink
environment and tested on the pilot plant emulating an exothermic chemical reaction.
With the mentioned control strategy, several experiments were carried out, including
setpoint tracking and disturbance rejection. The control strategy was implemented
with a prediction horizon of N = 80 and a control horizon of Nu = 15, satisfying the
necessary condition N ≥ Nt + Nu to guarantee stability. Furthermore, for the final
accuracy, a value of ε = 10−3 was chosen and for the initial weighting factor a value of
λ(0) was used. The following input constraints were considered:

5 ≤ u(k + i|k) ≤ 100, i = 0, . . . , 14

−20 ≤ ∆u(k + i|k) ≤ 20, i = 0, . . . , 14

u(k + 14|k) = ur(k)

(5.90)

where the equality constraint has been included for stability purposes. The experiments
carried out with the proposed NMPC strategy correspond to the ones presented in
Section 5.4.1.

In a first step, a setpoint tracking experiment (see Fig. 5.7) was carried with the
pilot plant emulating an exothermic chemical reaction and controlled by the NMPC
strategy based on the convexification approach with guaranteed stability. During the
experiment, the setpoint was changed twice, first from 55 oC to 65 oC and later to 45 oC.
Only after the first setpoint change, a small overshoot can be observed (approximately
1.2 oC). The control strategy reacts quite fast to the setpoint changes and compensates
efficiently the divergence between the system output and the given reference. In com-
parison to the results shown in Fig. 5.3, the necessary modification in the cost function
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Figure 5.7: Setpoint tracking experiment controlled by the proposed NMPC strategy based

on the convexification approach with guaranteed stability. From top to bottom: tank temper-

ature T , aperture of the valve v8, emulated concentration CA, necessary iterations iter and

weighting factor λ.

to guarantee stability, i.e. the weighting of the difference between the input sequence
and the steady-state input instead of the weighting of the control effort, results in a
faster tracking after the first setpoint change and to a moderately slower reaction after
the second modification of the reference.

For the second experiment, an error in one of the parameters of the underlying
exothermic chemical reaction was introduced. Therefore, the value of the activation
energy E was increased by 3% and held constant during the entire experiment. Due
to the model mismatch, the results (see Fig. 5.8) show some overshoot after the
setpoint changes (approximately 1.5 oC and −1 oC after the first and second change,
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Figure 5.8: Disturbance rejection experiment (persistent disturbance in the emulated chemi-

cal reaction) controlled by the proposed NMPC strategy based on the convexification approach

with guaranteed stability. From top to bottom: tank temperature T , aperture of the valve

v8, emulated concentration CA, necessary iterations iter, and weighting factor λ.

respectively). Nevertheless, the control strategy with guaranteed stability stabilizes
the system on the reference and shows only marginal oscillations in the temperature
and very small control moves. With respect to the results presented in Fig. 5.4, the
proposed control strategy reduced considerably the overshoot after the setpoint changes
and shows a more aggressive behavior after the first setpoint change. In spite of the
uncertainty in the chemical reaction, the NMPC strategy showed a good behavior both
in setpoint tracking and stabilization of the system output in a given reference.

In the third experiment, the disturbance rejection capabilities of the proposed con-
trol strategy were tested by means of an additive disturbance in the system input (see
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Figure 5.9: Disturbance rejection experiment (disturbance in the valve opening v8) controlled

by the proposed NMPC strategy based on the convexification approach with guaranteed

stability. From top to bottom: tank temperature T , aperture of the valve v8, emulated

concentration CA, input value u calculated by the controller, necessary iterations iter and

weighting factor λ.

Fig. 5.9). Therefore, an error of ∆v8 = −15% was applied to the valve opening v8
in t = 70min and removed in t = 110min. After the application of the disturbance,
the temperature increases rapidly due to the reduced effective opening of the valve
v8. Due to this error, the proposed controller increases the valve opening and reduces
the divergence between the measured temperature and the setpoint and, as a conse-
quence, rejects the applied disturbance successfully. After the disappearance of the
disturbance at t = 110min, the controller rapidly stabilizes the temperature in the
setpoint. Generally, the results underline the disturbance rejection capabilities of the
proposed controller.
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Figure 5.10: Disturbance rejection experiment (disturbance in the feed Ff ) controlled by the

proposed NMPC strategy based on the convexification approach with guaranteed stability.

From top to bottom: tank temperature T , aperture of the valve v8, emulated concentration

CA, feed Ff , necessary iterations iter and weighting factor λ.

The last experiment, see results in Fig. 5.10, was carried out with a disturbance in
the feed Ff . At t = 60min, the disturbance ∆Ff = −0.02 l/s was applied to the system
and held constant until the end of the experiment. The applied disturbance corresponds
to an error of −40% in the initial feed and results in a reduced concentration CA in the
plant reactor. As a result of the low concentration CA the temperature decreases and
reaches a maximum error of −2.6 oC. The experimental results show that the proposed
control strategy reduces the opening of the valve v8 and successfully rejects the applied
disturbance. In spite of the magnitude of the disturbance, the controller needs only
15 minutes to stabilize the system output in the given reference. In comparison with
the experiment shown in Fig. 5.6, the use of the proposed control strategy results in a
lower maximum output error and a considerably faster rejection of the disturbance.
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Finally, it has to be mentioned that the proposed control strategy with guaranteed
stability always solved the optimization problem within the used sampling time of
ts = 60 s. During the experiments the average computation time to compute a new
input sequence was tavgc = 1.115 s, with a minimum of tmin

c = 0.2 s and a maximum
of tmax

c = 7.945 s. The average number of necessary iterations to find the solution
to the optimization problem was 6.35, with a maximum of 12 and a minimum of
2 iterations. Note that the proposed NMPC strategy based on convexification with
guaranteed stability (see Section 5.3) computes the input sequence with a considerably
lower weighting factor λ than the original NMPC strategy based on convexification
(see Section 5.2.1). The resulting weighting factors can be compared directly in the
experimental results shown in Section 5.4.1 and in Section 5.4.2.

5.5 Conclusions of the chapter

The current chapter has presented two NMPC strategies based on the convexification
of the performance index to be minimized. Both control strategies have been developed
for quadratic cost functions considering second order Volterra series prediction models.

The proposed control strategies are based on the approximation of the original cost
function by convex quadratic functions. With a control effort weighting 5, convexity
of the approximated functions can be assured by a suitable choice of the parameter
λ. It can be shown that the original cost function with a weighting factor λ can be
approximated by means of a convex hull based on the pointwise maximum of several
convex quadratic functions using the same parameter λ. Then, globally minimizing the
convex hull, a new input sequence can be calculated. The convexification was included
in an iterative optimization algorithm to be used as an NMPC strategy. It was shown
that the difference between the cost of the original cost function and the convex hull
decreases monotonically and, as a consequence, converges to the global minimum.
For both control strategies input constraints have been considered in the optimization
algorithm. Furthermore, for the control strategy proposed in Section 5.3, input-to-state
stability can be guaranteed for a prediction horizon satisfying N ≥ Nt +Nu.

Finally, both control strategies were applied to the pilot plant emulating an exother-
mic chemical reaction. With the control strategies, several experiments including set-
point tracking and disturbance rejection were carried out. Both control strategies
showed a good control behavior stabilizing the system output in the given reference

5In the control strategy proposed in Section 5.3, a weighting of the deviation between the input

sequence and the necessary steady-state input, i.e. λ(u − ur)
T (u− ur), has been considered.
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and rejecting the applied disturbances in an efficient manner. The behavior of the
control strategies was illustrated by means of experimental results.



Chapter 6

Linear Min-Max MPC

In Min-Max MPC (MMMPC), the control signal is computed for the worst case of a
cost function that considers the effect of process model uncertainties and disturbances
in the controller performance [25]. With an usually quadratic cost function J , the
state vector x and the input sequence u, the optimal input sequence u∗ is computed
by minimization of the worst case cost depending on the disturbance and uncertainty
vector θ:

u∗ = arg min
u

max
θ
J(u, x, θ) (6.1)

possibly subject to constraints in the input sequence and the disturbance and uncer-
tainty vector. The main drawback of this approach is the computational burden that
takes to compute the control signal. This usually involves the solution of a NP-hard
min-max problem [64, 122]. As a result, the number of applications of these con-
trol strategies is very small, even when there is evidence that they work better than
standard predictive controllers in processes with uncertain dynamics [23].

Multi-parametric programming has been applied to show that the MMMPC control
law is piecewise affine when a quadratic [106] or 1-norm based criterion [14, 55] is
used as the cost function. Thus, explicit forms of the control law can be built. Such
explicit forms can be evaluated very fast provided that the complexity of the state space
partition is moderate, which is the case for many applications. However, if the process
model or the controller tuning parameters change, the computation of the controller
has to be redone.

A common solution to the computational burden issue is to use an upper bound
of the worst case cost instead of computing it explicitly. This upper bound can be
computed by using linear matrix inequalities (LMI) techniques such as in [59] and [74].

159
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However, the LMI problems have a computational burden that cannot be neglected in
certain applications. In this chapter, two MMMPC strategies for linear models based
on computationally cheap upper-bounds of the worst case cost will be discussed.

The following section gives a detailed description of the general idea of MMMPC
and defines the optimization problem based on a semi-feedback approach. Afterwards
a min-max control strategy using a nonlinear upper bound of the worst case cost [105]
will presented. For this control strategy, originally published in [105] without stability
proof, guaranteed stability will be shown. In the second control strategy, published
in [3], the min-max problem is replaced by a quadratic programming (QP) problem
that provides a close approximation to the solution of the original min-max problem.
Both control strategies have a much lower computational complexity than the original
min-max optimization problem and can be used with prediction horizons typical in
linear MPC. Finally, the control strategies will be applied to a benchmark system and
their performance will be illustrated by experimental results.

It has to be mentioned that in this chapter for the sake of readability, a slightly
different mathematical notation will be used. In contrast to the other chapters, vectors
are not necessarily written in bold letters. The bold notation is used only for sequences
along the prediction horizon, e.g. the future input sequence u or the disturbance
sequence θ. In contrast, the vectors denoting the state, the disturbance or the input
in a certain sampling period are denoted with non-bold letters, e.g. the current state
vector x(k) or the input vector u(k + 1|k) for k + 1 computed in k.

6.1 General idea of min-max MPC

This section defines the general optimization problem of MMMPC. Furthermore, an
augmented representation of the optimization problem will be given and a simple upper
bound of the minimization problem will be given.

6.1.1 Problem description

Consider the following discrete-time state space model with bounded additive uncer-
tainties:

x(k + 1) = Ax(k) +Bu(k) +Dθ(k)

y(k) = Cx(k)
(6.2)
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with x(k) ∈ R
nx the state vector, u(k) ∈ R

nu the input vector and θ(k) ∈ {θ ∈ R
nθ :

‖θ‖∞ ≤ ε} the uncertainty, that is supposed to be bounded. The system is subject to
nc state and input time-invariant constraints Fuu(k)+Fxx(k) ≤ bc where Fu ∈ R

nc×nu

and Fx ∈ R
nc×nx. It is assumed a semi-feedback approach in which the control input

is given by:
u(k) = −Kx(k) + v(k) (6.3)

where the feedback matrix K is chosen to achieve some desired property such as nom-
inal stability or linear quadratic regulator (LQR) optimality without constraints. The
MMMPC controller will compute the optimal sequence of correction control inputs
v(k). With the semi-feedback approach, the state equation of system (6.2) can be
rewritten as

x(k + 1) = Aclx(k) +Bv(k) +Dθ(k) (6.4)

where Acl = (A − BK). The proposed strategies in the following sections also work
without the semi-feedback approach, i.e. u(k) = v(k). All the computational advan-
tages of the strategies remain the same and the procedures described here can be used
without any modification. Furthermore if the process is open-loop stable the stabilizing
conditions, which will be discussed later, can be used without problems.

The cost function is a quadratic performance index:

J(x, v, θ) =
N−1∑

j=0

x(k + j|k)TQx(k + j|k) +
N−1∑

j=0

u(k + j|k)TRu(k + j|k)

+x(k +N |k)TPx(k +N |k)

(6.5)

where x(k|k) = x is the current state and x(k + j|k) is the prediction of the state for
k + j made at k. The current input signal is u(k|k) = −Kx(k|k) + v(k|k) and the
future input for k + j made at k is denoted u(k + j|k) = −Kx(k + j|k) + v(k + j|k).
The input correction sequence along the prediction horizon N is defined generally as:

v =








v(k|k)T

v(k + 1|k)T

...
v(k +N − 1|t)T








(6.6)

Note that the values of the input sequence and the states depend on the future values
of the uncertainty. The sequence of future values of the uncertainty over the prediction
horizon N is denoted by:

θ =








θ(k)T

θ(k + 1)T

...
θ(k +N − 1)T








(6.7)
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and the set of possible uncertainty trajectories is defined by:

Θ = {θ ∈ R
Nnθ : ‖θ‖∞ ≤ ε} (6.8)

The matrices Q,P ∈ R
nx×nx and R ∈ R

nu×nu are symmetric positive definite matrices
used as weighting parameters.

A MMMPC strategy [25] minimizes the cost function (6.5) for the worst possible
case of the predicted future evolution of the process state or output signal. This is
accomplished through the solution of the min-max problem:

v∗ = arg min
v

max
θ∈Θ

J(x, v, θ)

s.t. Fuu(k + j|k) + Fxx(k + j|k) ≤ bc

j = 0, . . . , N, ∀θ ∈ Θ

x(k +N |k) ∈ Ω, ∀θ ∈ Θ

(6.9)

A terminal region constraint x(k +N |k) ∈ Ω, where Ω is a polyhedron, is included to
assure stability of the control law [85]. Furthermore, the terminal region Ω and the
matrix P are assumed to satisfy the following conditions:

• C1: If x ∈ Ω then ACLx+Dθ ∈ Ω, for every θ ∈ {θ ∈ R
nθ : ‖θ‖∞ ≤ ε}.

• C2: If x ∈ Ω then u(x) = −Kx+ v ∈ U , where U , {u : Fuu+ Fxx ≤ g}.

• C3: P −AT
CLPACL > Q+KTRK.

The stability of ACL guarantees the existence of a positive definite matrix P satisfying
C3.

The predictions x(k+j|k) and control actions u(k+j|k) depend linearly on x, v and
θ. This means that it is possible to find a vector bθ ∈ R

nc and matrices Mx, Mv and
Mθ [23], such that all the robust linear constraints of problem (6.9) can be rewritten
as:

Mxx+Mvv +Mθθ ≤ bθ, ∀θ ∈ Θ (6.10)

Defining M [i]
x , M [i]

v , M [i]
θ as the i-th rows of Mx, Mv and Mθ, respectively, and b

[i]
θ as

the i-th component of bθ ∈ R
nc the robust linear constraints (6.10) can be expressed

as:
M [i]

x x+M [i]
v v +M

[i]
θ θ ≤ b

[i]
θ , i = 1 . . . , nc, ∀θ ∈ Θ (6.11)

Denoting now ‖M
[i]
θ ‖1 the sum of the absolute values of row M

[i]
θ and taking into

account that:
max
θ∈Θ

M
[i]
θ θ = max

‖θ‖∞≤ε
M

[i]
θ θ = ε‖M

[i]
θ ‖1 (6.12)
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the robust fulfillment of the constraints is satisfied if and only if M [i]
x x + M

[i]
v v +

ε‖M
[i]
θ ‖1 ≤ b

[i]
θ for i = 1, . . . , nc. Therefore, to guarantee robust constraint satisfaction,

the set of linear constraints:
Mxx+Mvv ≤ bε (6.13)

must be satisfied, where the i-th component of bε is b[i]ε = b
[i]
θ − ε‖M

[i]
θ ‖1. Note that

this is a necessary and sufficient condition.

Taking into account (6.3), (6.4) and (6.5), the performance index function can be
evaluated as a quadratic function:

J(x, v, θ) = vTMvvv + θTMθθθ + 2 θTMθvv+

2 xTMT
vfv + 2 θTMθfx+ xTMffx

(6.14)

where the matrices can be obtained from the system and the control parameters [23].
With (6.14) being a convex cost function in θ, the solution to the maximization problem
in (6.9) can be found at least in one of the vertices of Θ. With the property of convexity
in θ and the reformulated robust linear constraints (6.13), the optimization problem
(6.9) is equivalent to

v∗ = arg min
v

max
θ∈vert(Θ)

J(x, v, θ)

s.t. Mxx+Mvv ≤ bε
(6.15)

where vert(Θ) is the set of vertices of θ [23]. Then, based on (6.14), the maximum
cost for a given x and v is denoted as

J∗(x, v) = max
θ∈vert(Θ)

J(x, v, θ)

= max
θ∈vert(Θ)

θTHθ + 2 θTq(x, v) + J(x, v, 0)
(6.16)

where

H = Mθθ (6.17)

q(x, v) = Mθvv +Mθfx (6.18)

J(x, v, 0) = vTMvvv + 2 xTMT
vfv + xTMffx (6.19)

with J(x, v, 0) denoting the part of the cost that does not depend on the uncertainty,
i.e. the nominal cost. With this definition, problem (6.15) can be rewritten as

v∗ = arg min
v

J∗(x, v)

s.t. Mxx+Mvv ≤ bε
(6.20)

and the system is controlled by u(k|k) = −Kx(k) + v∗(k|k). The maximization of
(6.16) is a well known NP-hard optimization problem which requires the evaluation
of the 2Nnθ vertices. Due to the exponential complexity of the maximization problem
(6.16) and, as a consequence, of the min-max optimization problem (6.20), only small
prediction horizons can be used.
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6.1.2 Augmented optimization problem and simple upper

bound

The maximum cost J∗(x, v) can be represented as an augmented optimization problem
in matrix form. Therefore, (6.16) is rewritten as:

J∗(x, v) = max
θ∈vert{Θ}

[
θ

1

]T [
H q(x, v)

q(x, v)T J(x, v, 0)

] [
θ

1

]

(6.21)

The augmented maximization problem (6.21) can be expressed as

J∗(x, v) = max
‖z‖∞≤1

zTM(v)z (6.22)

with the vector z ∈ R
nz and the matrix M(v) ∈ R

nz×nz

z =

[
θ

ε

1

]

, M(v) =

[
ε2H εq(x, v)

εq(x, v)T J(x, v, 0)

]

(6.23)

and nz = Nnθ + 1. The augmented optimization problem (6.22) will be used in the
later presented control strategies to compute an upper bound of the worst case cost.

The stability proofs of the later presented control strategies and the calculation of
a candidate input sequence to obtain a quadratic upper bound in Section (6.3) are
based on a simple upper bound of the worst case cost. This simple upper bound
approximates (6.16) by defining a maximum value for the terms θTHθ and θTq(x, v)

depending on the uncertainty θ. For a given matrix H (6.17) a diagonal matrix T with
the components:

T [ii] =

Nnθ∑

j=1

|H [ij]| for i = 1, . . . , Nnθ (6.24)

can be defined. The off-diagonal elements are given by T [ij] = 0 ∀ i 6= j, i = 1, . . . , Nnθ

and j = 1, . . . , Nnθ. With the new matrix T an approximated cost function

J̃(x, v, θ) = θTTθ + 2 θTq(x, v) + J(x, v, 0) (6.25)

can be defined. With T ≥ H the statement

J̃(x, v, θ) ≥ J(x, v, θ) (6.26)

holds, i.e. J̃(x, v, θ) represents an upper bound for the cost function J(x, v, θ) given
in (6.14). Then, the maximum of J̃(x, v, θ), corresponding to the worst case cost of
the approximated cost function, can be calculated easily by:

J̃∗(x, v) = J(x, v, 0) + ‖H‖s ε
2 + 2 ε

∥
∥q(x, v)T

∥
∥
1

(6.27)
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where ‖H‖s denotes the sum of the absolute values of the elements of H or, identically
‖H‖s = trace(T ). With the worst case cost (6.27) being a convex function in v,
the minimization problem can be solved by quadratic programming (QP). Hence, the
optimal solution based on the simple upper bound of the worst case cost (6.27) is
defined as:

ṽ∗ = arg min
v

J̃∗(x, v)

s.t. Mxx+Mvv ≤ bε
(6.28)

6.2 MMMPC with a nonlinear upper bound of the

worst case cost

The MMMPC strategy presented in this Section, published originally in [105], uses a
nonlinear upper bound of the worst case cost. In the presented control strategy, the
upper bound is represented by a diagonal matrix. The mentioned diagonal matrix can
be obtained by simple matrix operations and minimizes the error introduced by the
upper bound. The computationally efficient algorithm to compute the upper bound
can then be used in a MPC strategy to calculate the input sequence for the system.

Consider the augmented maximization problem (6.22) and diagonal matrix S ∈

R
nz×nz with the diagonal elements given by S [ii]. For1 S ≥M the statement:

zTM(v)z ≤ zTSz =

n∑

i=1

S [ii](z[i])2 ≤ trace(S)‖z‖2∞ ≤ trace(S) (6.29)

is true and therefore:
J∗(x, v) ≤ trace(S) (6.30)

As a consequence the trace of S represents an upper bound of J∗(x, v). The least
conservative bound is the one obtained with matrix S being a solution of the following
linear matrix inequality (LMI) problem:

J̆∗(x, v) = min trace(S)

s.t. S ≥M(v)

S diagonal

(6.31)

In order to solve the previous LMI problem special optimization algorithms, e.g.
interior point methods, are required. One of the drawbacks of these methods is the

1In this work a matrix inequality of the type S ≥ M is fulfilled if and only if S − M is positive

semi-definite.
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possible excessive computational cost. The following section presents a diagonalization
algorithm based only on simple matrix operations, originally published in [105], to
determine a conservative upper bound of the worst case cost.

6.2.1 Minimization of the upper bound

The strategy is to obtain a diagonal matrix Γ̂ ≥M(v) with a computationally efficient
procedure that keeps the upper bound, i.e. trace(Γ̂), close to J̆∗(x, v). The employed
strategy computes the matrix Γ̂ by adding nz − 1 positive semi-definite matrices ϕiϕ

T
i

to M(v):
M(v) +ϕ1ϕ

T
1 +ϕ2ϕ

T
2 +ϕ3ϕ

T
3 + · · ·+ϕnz−1ϕ

T
nz−1 = Γ̂ (6.32)

being Γ̂ a diagonal matrix and the vectors ϕi ∈ R
nz . The idea is to find the vectors ϕi

for i = 1, . . . , nz−1 such that the resulting matrix Γ̂ is diagonal and the conservatism of
the bound is held as low as possible. The approach presented in this section diagonalizes
one row and one column of the original matrix M(v) with every term ϕiϕ

T
i added.

The matrix M(v) can be defined in general form as:

M(v) =

[
a bT

b Mr

]

(6.33)

with a ∈ R, b ∈ R
nz−1 and Mr ∈ R

(nz−1)×(nz−1). Then, adding the first term ϕ1ϕ
T
1 to

(6.33), the desired result can be written as:

[
a bT

b Mr

]

+ϕ1ϕ
T
1 =

[
d 0

0 M̂r

]

(6.34)

being d ∈ R. After the first diagonalization step (6.34), the original matrix has been
partially diagonalized so that the first column and the first row correspond to a diagonal
matrix. Thereafter, ϕ2 is computed in order to partially diagonalize the submatrix M̂r.
This process is repeated until the matrix is completely diagonalized.

For the diagonalization the vectors ϕi for i = 1, . . . , nz − 1 have to be found such
that Γ̂ is the smallest diagonal matrix with Γ̂ ≥ M(v). In a first step, the vector ϕ1 is
defined as ϕ1 = [α βT ]T with α being a scalar and β ∈ R

nz−1. Then, the term ϕ1ϕ
T
1

results to be:

ϕ1ϕ
T
1 =

[
α

β

]
[
α βT

]
=

[
α2 αβT

αβ ββT

]

(6.35)

with α > 0. From (6.34) and (6.35) results that αβ = −b and, as a consequence,
β = −b

α
, d = a+ α2 and M̂r = Mr +

bbT

α2 . The vectors ϕi for i = 2, . . . , nz − 1 can be
computed in an analogous way, diagonalizing the submatrix M̂r (6.34). The parameter
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α has to be calculated such that the error introduced by the diagonalization procedure
is minimized. This way, the difference between the upper bound and the worst case
cost is kept as small as possible. This error is defined by:

zTϕ1ϕ
T
1 z = zT

[
α

− b

α

] [

α −bT

α

]

z (6.36)

The error (6.36) is maximized for2:

z∗ = sign

[
α

− b

α

]

(6.37)

Taking into account that:
[

α −b
T

α

]

z∗ =

∥
∥
∥
∥

α

− b

α

∥
∥
∥
∥
1

(6.38)

the maximum error introduced by the diagonalization procedure is
∥
∥
∥
∥

α

− b

α

∥
∥
∥
∥

2

1

(6.39)

The minimization of the introduced error (6.39) can be obtained by setting the deriva-
tive ∥

∥
∥
∥

α

− b

α

∥
∥
∥
∥
1

= α +
1

α
‖b‖1 (6.40)

equal to 0. Then, the value of α is:

α =
√

‖b‖1 (6.41)

Finally, with the diagonal matrix Γ̂ satisfying Γ̂ ≥M(v), the upper bound of the worst
case cost is defined as:

Ĵ∗(x, v) = trace(Γ̂) (6.42)

The upper bound (6.42) obtained by the mentioned diagonalization algorithm shows
a low suboptimality with respect to the exact solution J∗(x, v). For further details on
the suboptimality of the diagonalization algorithm see [105].

6.2.2 Algorithm for the computation of the upper bound

The computation of the upper bound Ĵ∗(x, v) (6.42) can be realized with the simple
procedure, diagonalizing successively the matrix M(v). With M(v) ∈ R

nz×nz the pro-
posed algorithm calculates the vectors ϕi for i = 1, . . . , nz−1 such that the introduced

2The maximum error is also obtained for −z∗.
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error is kept as small as possible. The algorithm to compute the upper bound Ĵ∗(x, v)

is the following:

Procedure 6.1 Algorithm to compute the diagonal matrix Γ̂ and the upper bound of

the worst case cost Ĵ∗(x, v) = trace(Γ̂) ≥ max
‖z‖∞≤1

zTM(v)z.

1. Set Γ̂(0) =M(v) ∈ R
nz×nz .

2. For i = 1 to nz − 1

3. Obtain M
(i)
sub ∈ R

(nz+1−i)×(nz+1−i) and Υ(i) ∈ R
(i−1)×(i−1) with3

Γ̂(i−1) =

[
Υ(i) 0T

(nz+1−i)×(i−1)

0(nz+1−i)×(i−1) M
(i)
sub

]

.

4. Obtain a ∈ R, b ∈ R
nz−i and Mr ∈ R

(nz−i)×(nz−i) with M
(i)
sub =

[
a bT

b Mr

]

.

5. Compute α =
√

‖b‖1.

6. If α = 0 then ϕi = 0nz×1, else ϕi =
[

0T
(i−1)×1 α −bT

α

]T

.

7. Partially diagonalize Γ̂(i) with Γ̂(i) = Γ̂(i−1) +ϕiϕ
T
i .

8. Endfor

9. Set Γ̂ = Γ̂(nz−1) and compute the upper bound Γ̂u(M) = trace(Γ̂).

It is evident from the Procedure 6.1 that Γ̂ is a diagonal matrix with Γ̂ ≥ M(v) and,
as a consequence, the expression

max
‖z‖∞≤1

zTM(v)z ≤ max
‖z‖∞≤1

zT Γ̂z = trace(Γ̂) = Ĵ∗(x, v). (6.43)

is satisfied. Using (6.43) in (6.16), the following statement for the worst case cost can
be made:

J∗(x, v) = max
‖z‖∞≤1

zT

[
ε2H εq(x, v)

εq(x, v)T J(x, v, 0)

]

z

≤ Γ̂u

([
ε2H εq(x, v)

εq(x, v)T J(x, v, 0)

]) (6.44)

3Note that for i = 1 the matrices Υ(i) ∈ R
(i−1)×(i−1) and 0(nz+1−i)×(i−1) are empty, i.e. M

(1)
sub =

Γ̂(0).
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As a consequence Ĵ∗(x, v) calculated in the Procedure 6.1 can be considered as an
upper bound of the worst case cost.

The idea of Procedure 6.1 is to find a diagonal matrix Γ̂ such that Γ̂ ≥ M(v) ≥ 0.
The maximization problem (6.22) is solved using Ĵ∗(x, v) = trace(Γ̂). Assume that in
a certain iteration i of the procedure the partially diagonalized matrix Γ̂(i) ≥ M(v)

has all elements of the submatrix M (i)
sub of step 3 nonnegative. Then

max
‖z‖∞≤1

zT Γ̂(i)z = ‖Γ̂(i)‖s ≥ J∗(x, v) (6.45)

with ‖Γ̂(i)‖s denoting the sum of the absolute values of all entries of matrix Γ̂(i). There-
fore it is not necessary to continue the diagonalization process as the continuation of
the diagonalization would not improve the bound. Hence, the matrix Γ̂ can be defined
Γ̂ = Γ̂(i) and the upper bound becomes Ĵ∗(x, v) = ‖Γ̂‖s.

Note that for the calculation of the upper bound only simple matrix operations
are required. Thus, the algorithm can easily be implemented, even with programming
languages not destined for mathematical calculations, commonly found in industrial
embedded systems. In order to illustrate the algorithm, Fig. 6.1 shows the implemen-
tation of the procedure in Matlab. The case that all elements of the submatrix M

(i)
sub

are nonnegative has been considered in the programme.

6.2.3 Control strategy using the upper bound

The upper bound calculated with Procedure 6.1 is used in a MMMPC strategy where
the input correction sequence is the solution of the problem:

v̂∗ = arg min
v
Ĵ∗(x, v)

s.t. Mxx+Mvv ≤ bε

(6.46)

Finally, the input correction sequence, calculated with the worst case cost Ĵ∗(x, v)

(see Procedure 6.1) based on H (6.17), q(v, x) (6.18) and J(x, v, 0) (6.19), can be
used in a receding horizon control strategy with the input defined by K̂MPC(x(k)) =

−Kx(k) + v̂∗(k|k).

Note that each of the nz − 1 iterations carried out by the Procedure 6.1 has a
computational complexity of O(n2

z), leading to a computational complexity of O(n3)

of the procedure. Hence, the number of necessary operations is approximately (Nnθ +

1)3 for the matrix M(v) with size nz = Nnθ + 1. In contrast, the minimization of
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function J_hat = upper_bound(M)

n_z = size(M,1);

S = M;

i=0;

positive = 0;

while (positive == 0) & (i<n_z)

i = i+1;

M_sub = S(i:end,i:end);

a = M_sub(1,1);

b = M_sub(2:end,1);

alfa = sqrt(sum(abs(b)));

if alfa == 0

phi = zeros(n_z,1);

else

phi = [zeros(i-1,1); alfa; -b/alfa];

end

S = S + phi*phi’;

if min(min(S))>=0

positive = 1;

end

end

J_hat = sum(sum(S));

Figure 6.1: Matlab code to calculate the upper bound of the worst case cost as proposed in

the Procedure 6.1.

the original min-max problem (6.20) requires approximately 2Nnθ+1 operations. That
means that the use of the proposed upper bound reduces considerably the number of
necessary operations and allows the evaluation of the cost function in polynomial time.

The minimization of the cost function, which corresponds to the computation of
the input correction sequence, can be carried out with any nonlinear programming
method, e.g. sequential quadratic programming (SQP). It has to be mentioned that
the NP-hard complexity of (6.15) is a consequence of the maximization problem to be
solved for every candidate input correction sequence. Hence, the substitution of the
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maximization by an upper bound of the worst case cost results in a lower computational
load.

6.2.4 Stability of the min-max MPC

In the first place, some necessary properties to assure stability of the proposed control
strategy will be presented. Consider the solutions v∗, ṽ∗ and v̂∗ of the minimization
problems (6.20), (6.28) and (6.46) respectively. Denote also J∗(x) = J∗(x, v∗), J̃∗(x) =

J̃∗(x, ṽ∗) and Ĵ∗(x) = Ĵ∗(x, v̂∗). Note that the optimization problems (6.20), (6.28)
and (6.46) have the same feasibility region as the used constraints are the same.

Property 6.2 The minimum costs Ĵ∗(x) and J̃∗(x) of the optimization problems (6.46)

and (6.28) satisfy:

Ĵ∗(x) ≤ J̃∗(x) (6.47)

when ṽ∗ is used as initial solution to the optimization problem (6.46).

Proof: Taking into account the definition of Ĵ∗(x) and that v̂∗ is the minimizer of
Ĵ∗(x, v) it is evident that

Ĵ∗(x, ṽ∗) ≥ Ĵ∗(x) (6.48)

Thus, in order to prove that Ĵ∗(x) ≤ J̃∗(x) it suffices to show that J̃∗(x, ṽ∗) ≥ Ĵ∗(x, ṽ∗).
First, note that taking into account that J(x, v, 0) ≥ 0:

J̃∗(x, ṽ∗) = ‖M(ṽ∗)‖1 =

∥
∥
∥
∥

[
ε2H εq(x, ṽ∗)

εq(x, ṽ∗)T J(x, ṽ∗, 0)

]∥
∥
∥
∥
1

=

∥
∥
∥
∥

[
a bT

b Mr

]∥
∥
∥
∥
1

= |a|+ 2 ‖b‖1 + ‖Mr‖1

(6.49)

On the other hand Ĵ∗(x, ṽ∗) is equal to trace(Γ̂), that is the sum of the elements of the
diagonal matrix computed in Procedure 6.1 which also is equal to ‖Γ̂‖1 as Γ̂ ≥ 0. The
initial value of Γ̂ is Γ̂(0) = M(ṽ∗), thus its 1-norm is equal to J̃∗(x, ṽ∗). Taking into
account (6.41) the 1-norm of Γ̂(1) after the first diagonalization step is

∥
∥
∥
∥
∥

a+ ‖b‖1 0

0 Mr +
bbT

‖b‖1

∥
∥
∥
∥
∥
1

≤ |a|+ ‖b‖1 + ‖Mr‖1 +

∥
∥
∥
∥

bbT

‖b‖1

∥
∥
∥
∥
1

(6.50)
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Taking into account that
∥
∥
∥

bb
T

‖b‖1

∥
∥
∥
1
= ‖b‖1 it follows that

∥
∥
∥
∥
∥

a + ‖b‖1 0

0 Mr +
bb

T

‖b‖1

∥
∥
∥
∥
∥
1

≤ ‖M(ṽ∗)‖1 (6.51)

and thus every diagonalization step decreases ‖Γ̂(1)‖1. This proves that:

Ĵ∗(x, ṽ∗) ≤ J̃∗(x, ṽ∗) (6.52)

and this completes the proof. �

It is clear that the optimal solution v̂∗ of problem (6.46) is a suboptimal feasible
solution for problem (6.20). As it is claimed in the following property, the difference
between the optimal value of the original objective function and the value obtained
with v̂∗ is bounded by trace(T )ε2.

Property 6.3 It holds that:

J∗(x, v̂∗)− trace(T )ε2 ≤ J∗(x) (6.53)

Proof: Note that J∗(x) = J∗(x, v∗). On the other hand:

J̃(x, v, θ) = J(x, v, θ) + θT (T −H)θ. (6.54)

Taking into account that T ≥ H ≥ 0, ‖θ‖∞ ≤ ε and that T is diagonal matrix, the
statement:

J̃(x, v, θ) ≤ J(x, v, θ) + θTTθ ≤ J(x, v, θ) + trace(T )ε2 (6.55)

is true. From (6.55) it can be inferred that:

J∗(x, v∗) ≥ J̃∗(x, v∗)− trace(T )ε2 (6.56)

Then, with ṽ∗ being the minimizer of J̃∗(x, v) and J∗(x) = J∗(x, v∗), (6.56) can be
rewritten as:

J∗(x) ≥ J̃∗(x)− trace(T )ε2 (6.57)

Now, from the relation Ĵ∗(x) ≤ J̃∗(x) (see Property 6.2) and (6.57) follows that:

J∗(x) ≥ Ĵ∗(x)− trace(T )ε2 (6.58)
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Finally, with the upper bound Ĵ∗(x, v) ≥ J∗(x, v) and (6.58), the statement for the
optimal cost:

J∗(x) ≥ J∗(x, v̂∗)− trace(T )ε2 (6.59)

is satisfied. This completes the proof. �

The following property, which is proven in [1] will be used in the proof of the
stability of the proposed approach (see Theorem 6.5 below).

Property 6.4 Consider that assumptions C1, C2 and C3 are satisfied. Let v =

[v(k|k), v(k + 1|k), . . . , v(k +N − 1|k)]T and vs a shifted version of v computed as

vs = [v(k + 1|k), v(k + 2|k), . . . , v(k +N − 1|k), 0]T . If v is feasible for problem

(6.20) at x(k) then vs is also feasible at x(k + 1) and there is a γ > 0 such that

for every feasible sequence v:

J∗(x(k + 1), vs) ≤ J∗(x(k), v)− x(k)TQx(k) + γε2 (6.60)

Proof: See [1] for a proof. �

Theorem 6.5 Under the assumption that the conditions C1, C2 and C3 are satisfied,

the control law given by K̂MPC(x(k)) = −Kx(k) + v̂∗(k|k) stabilizes system (6.2).

Proof: Consider the input sequence v̂∗
s being a shifted version (as in Property 6.4) of

v̂∗. Due to non-optimality of v̂∗
s for problem (6.20) it holds that

J∗(x(k + 1)) ≤ J∗(x(k + 1), v̂∗
s) (6.61)

Note that v̂∗
s is feasible for both (6.46) and (6.20), thus by property 6.4:

J∗(x(k + 1), v̂∗
s) ≤ J∗(x(k), v̂∗)− x(k)TQx(k) + γε2 (6.62)

Furthermore, by Property 6.3 it holds that J∗(x(k), v̂∗) ≤ J∗(x(k)) + trace(T )ε2,
thus taking into account this in (6.62) and using (6.61) J∗(x(k + 1)) ≤ J∗(x(k)) −

x(k)TQx(k) + (γ + trace(T ))ε2 which can be rewritten:

J∗(x(k + 1))− J∗(x(k)) ≤ −x(k)TQx(k) + (γ + trace(T ))ε2 (6.63)

and leads to the set:

Φε =
{
x ∈ R

n : (6.20) is feasible and x(k)TQx(k) ≤ (γ + trace(T ))ε2
}

(6.64)
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containing the origin. As a consequence, the system state is steered into Φε from any
arbitrary x(k). After entering the set Φε the state can remain inside or leave the set as
it is not guaranteed that the optimal worst case cost decreases. Under consideration
of −x(k)TQx(k) ≤ 0 and (6.63), the cost in k + 1 satisfies:

J∗(x(k + 1)) ≤ J∗(x(k)) + (γ + trace(T ))ε2 (6.65)

Now, for every x(k) ∈ Φε holds:

J(x(k)) + (γ + trace(T ))ε2 ≤ max
x∈Φε

J(x) + (γ + trace(T )) = β (6.66)

It is clear from (6.65) and (6.66) that for every x(k) ∈ Φε the cost in k + 1 satisfies:

J(x∗(k + 1)) ≤ β (6.67)

As a consequence, whenever the state enters the set Φε the system will evolve into the
set:

Ωβ = {x ∈ R
n : J∗(x) ≤ β} (6.68)

Although the state can leave the set Φε, it will remain inside the set Ωβ. With the
state being in Ωβ , the system is steered again and again into Φε. Hence, the state
is ultimately bounded and the system is stabilized by the control law K̂MPC(x(k)) =

−Kx(k) + v̂∗(k|k). �

6.3 MMMPC with a quadratic upper bound of the

worst case cost

This section presents a MMMPC strategy, based on [3, 48], that replaces the optimiza-
tion problem (6.20) by a tractable quadratic programming (QP) problem, providing
a close approximation of the solution of the original problem. The use of an upper
bound for the worst case cost leads, as in section (6.2), to a reduced computational
complexity and enables the use of larger prediction horizons. The substitution of the
NP-hard problem by a QP problem can be accomplished by the following steps:

1. Compute a candidate input correction sequence ṽ∗ by solving the QP problem
(6.28) based on a simple upper bound of the worst case cost.

2. A quadratic function of v that bounds the worst case cost can be obtained using
ṽ∗.
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3. Calculate the input correction v̂∗ sequence by solving a QP problem.

The computation of the candidate input sequence ṽ∗ can be carried out as shown in Sec-
tion 6.1.2. The computation of an upper bound of the worst case cost being a quadratic
function of v and its use in a control strategy are explained in the following sections.
The contribution of this thesis is the practical implementation of presented control
strategy based on the theoretical developments in [3]. In Section 6.4.2 the MMMPC
strategy will be used to control a benchmark system and the control performance will
be illustrated by experimental results.

6.3.1 Quadratic upper bound of the worst case cost

The augmented maximization problem defined in (6.22) can be used to calculate an up-
per bound of the worst case cost. The procedure to compute the bound, similar to Pro-
cedure 6.1 used in Section 6.2.2, diagonalizes the matrix M(v) for a given input correc-
tion sequence. During the procedure a set of parameters α(v) = [α1(v), . . . , αnz−1(v]

T

is calculated. These parameters can later be used to substitute the original optimiza-
tion problem by a QP problem, using an upper bound of the worst case cost close to the
optimal worst case cost. The procedure to calculate the parameters is the following:

Procedure 6.6 Computation of the parameters α(v) = [α1(v), . . . , αnz−1(v)]
T and

the upper bound Γ(v) of the worst case cost.

1. Set Γ(0) =M(v) ∈ R
nz×nz .

2. For i = 1 to nz − 1

3. Obtain M
(i)
sub ∈ R

(nz+1−i)×(nz+1−i) and Υ(i) ∈ R
(i−1)×(i−1) with4

Γ(i−1) =

[
Υ(i) 0T

(nz+1−i)×(i−1)

0(nz+1−i)×(i−1) M
(i)
sub

]

.

4. Obtain a ∈ R, b ∈ R
nz−i and Mr ∈ R

(nz−i)×(nz−i) with M
(i)
sub =

[
a bT

b Mr

]

.

5. Compute αi(v) =
√

‖b‖1.

4Note that for i = 1 the matrices Υ(i) ∈ R
(i−1)×(i−1) and 0(nz+1−i)×(i−1) are empty, i.e. M

(1)
sub =

Γ(0).
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6. If αi(v) = 0 then ϕi = 0nz×1, else ϕi =
[

0T
(i−1)×1 αi(v)

−b
T

αi(v)

]T

.

7. Partially diagonalize Γ(i) with Γ(i) = Γ(i−1) +ϕiϕ
T
i .

8. Endfor

9. Set Γ(v) = Γ(nz−1) and compute the upper bound Γu(M) = trace(Γ).

Analogously to Procedure 6.1, the matrix Γ(v) computed in Procedure 6.6 satisfies
Γ(v) ≥M(v). Therefore, the statement:

J∗(x, v) = max
‖z‖∞≤1

zTM(v)z ≤ max
‖z‖∞≤1

zTΓ(v)z = trace(Γ(v)) (6.69)

holds. Furthermore, based on the Property 6.2 it can be shown that:

trace(Γ(v)) ≤ J̃∗(x, v) (6.70)

As a consequence trace(Γ(v)) calculated in the Procedure 6.6 can be considered as an
improved upper bound of J∗(x, v) with respect to the upper bound J̃∗(x, v) obtained
in section 6.1.2.

Procedure 6.7 is the foundation to obtain an upper bound of the worst case cost
being a quadratic function of v close to the optimal worst case cost but with the ad-
vantage of the lower computational burden of a QP problem. Therefore, the candidate
input correction sequence ṽ∗ from Section 6.1.2 is used in Procedure 6.6 to compute the
parameter vector α(ṽ∗). This parameter vector can then be used to obtain a quadratic
function Γ̂(v) representing an upper bound of the worst case cost. This is achieved by
the following procedure:

Procedure 6.7 Computation of a quadratic function Γ̂(v) representing an upper bound

of the worst case cost.

1. Obtain the candidate input correction sequence ṽ∗ from the QP problem defined

in (6.1.2).

2. Compute α(ṽ∗) by Procedure 6.6.

3. Set Γ̂(0)(v) =M(v) ∈ R
nz×nz .

4. For i = 1 to nz − 1
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5. Obtain M
(i)
sub ∈ R

(nz+1−i)×(nz+1−i) and Υ(i) ∈ R
(i−1)×(i−1) with5

Γ̂(i−1)(v) =

[
Υ(i) 0T

(nz+1−i)×(i−1)

0(nz+1−i)×(i−1) M
(i)
sub(v)

]

.

6. Obtain a(v) ∈ R, b(v) ∈ R
nz−i and Mr(v) ∈ R

(nz−i)×(nz−i) with

M
(i)
sub(v) =

[
a(v) b(v)T

b(v) Mr(v)

]

.

7. If αi(ṽ
∗) = 0 then ϕi = 0nz×1, else ϕi = [0T

(i−1)×1 αi(ṽ
∗) −bT

αi(ṽ∗)
]T .

8. Compute Γ̂(i)(v) with Γ̂(i)(v) = Γ̂(i−1)(v) +ϕiϕ
T
i .

9. Endfor

10. Set Γ̂(v) = Γ̂(nz−1)(v) and compute the upper bound Γ̂u(M(v)) = trace(Γ̂(v)).

Analogously to Procedure 6.1, the diagonal matrix Γ̂(v) can be considered as an
upper bound of the worst case cost J∗(x, v) as the Procedure guarantees Γ̂(v) ≥M(v).
Hence, the following relation:

max
‖z‖∞≤1

zTM(v)z ≤ max
‖z‖∞≤1

zT Γ̂(v)z = trace(Γ̂(v)) = Ĵ∗(x, v) (6.71)

is satisfied. Furthermore, based on Property 6.2, Ĵ∗(x, v) can be considered as an
improved upper bound in comparison to (6.28), that means:

Ĵ∗(x, v) ≤ J̃∗(x, v) (6.72)

It is important to mention that the upper bound of the worst case cost Ĵ∗(x, v) is a
quadratic function of the input correction sequence v [3]. Therefore, consider the used
matrix M(v) (6.23) to have the following form:

M(v) =





ε2H11 ε2HT
1r εq1(x, v)

ε2H1r ε2Hrr εqr(x, v)

εq1(x, v) εqr(x, v)
T J(x, v, 0)



 (6.73)

with H11 ∈ R, q1(x, v) ∈ R, J(x, v, 0) ∈ R, H1r ∈ R
nz−2, qr(x, v) ∈ R

nz−2 and
Hrr ∈ R

(nz−2)×(nz−2). Note that q1(x, v) and qr(x, v) are affine functions in v and that

5Note that for i = 1 the matrices Υ(i) ∈ R
(i−1)×(i−1) and 0(nz+1−i)×(i−1) are empty, i.e. M

(1)
sub(v) =

Γ̂(0)(v).
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the nominal cost J(x, v, 0) is a quadratic function of v. Furthermore, M(v) is used used
as initial matrix in Procedure 6.7, that is Γ̂(0)(v) =M(v). Now, using the parameters
αi(ṽ

∗) calculated in Procedure 6.6, the matrix Γ̂(0)(v) can be partially diagonalized
with Procedure 6.7. With α1(ṽ

∗), (6.73) and Step 7 of Procedure 6.7 the vector6:

ϕT
1 =

[

α1 −
ε2HT

1r

α1
−
εq1(x, v)

α1

]

(6.74)

is obtained. Then, based on ϕ1 and Step 8 of Procedure 6.7, the new matrix Γ̂(1)(v)

can be written as:

Γ̂(1)(v) =







ε2H11 + α2
1 0 0

0 ε2Hrr +
ε4HT

1rH1r

α2
1

εqr(x, v) +
ε3HT

1rq1(x,v)

α2
1

0 εqr(x, v)
T + ε3H1rq1(x,v)

α2
1

J(x, v, 0) +
ε2q1]2(x,v)

2

α2
1







(6.75)

Note that Γ̂(1)(v) has been partially diagonalized and that the element ε2H11+α1(ṽ
∗)2

is not a function of v but a constant. Then, using the parameters αi(ṽ
∗) with i =

2, . . . , nz − 1 in the Procedure 6.7 results in the diagonal matrix Γ̂(v) = Γ̂(nz−1)(v)

given by:

Γ̂(nz−1)(v) =










Γ̂[11] 0 . . . 0 0

0 Γ̂[22] . . . 0 0
...

...
. . .

...
...

0 0 0 Γ̂[nz−1,nz−1] 0

0 0 0 0 Γ̂[nznz ](v)










(6.76)

where the elements Γ̂[ii] with i = 1, . . . , nz−1 are constants and Γ̂[nznz](v) is a quadratic
function of v defined as:

Γ̂[nznz](v) = J(x, v, 0) +
ε2q1(x, v)

2

α2
1

+
ε2q2(x, v)

2

α2
2

+

ε4H2
12q1(x, v)

2

α4
1α

2
2

+
ε4H12q1(x, v)q2(x, v)

α2
1α

2
2

+ . . .
(6.77)

Hence, after obtaining the diagonal matrix Γ̂(v) by means of the Procedure 6.7 the
upper bound of the maximum can be computed as:

Ĵ∗(x, v) = Γ̂[nznz](v) +

nz−1∑

i=1

Γ̂[ii] (6.78)

Note that the Procedure 6.7 to compute a quadratic upper bound of the worst case
cost can be repeated several times, improving the approximation of the worst case cost,

6For the sake of simplicity, the notation αi = αi(ṽ
∗) for i = 1, . . . , nz − 1 will be used in the

following equations.
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i.e. the difference between upper bound and exact worst case cost is reduced. This
improvement can be obtained by using the minimizer v̂∗ of (6.78) as a new candidate
input correction sequence instead of (6.28). With this new candidate input correction
sequence a new and improved upper bound of the worst case cost can be computed.
Minimizing (6.78) a new input correction sequence is obtained which can be applied
to the system or used as a new initial guess to compute an upper bound.

6.3.2 Control strategy using the upper bound

For the computation of the input correction sequence v̂∗ the upper bound Ĵ∗(x, v) of the
worst case cost has to be minimized. As the upper bound Ĵ∗(x, v) can be expressed as
a quadratic function of v (for details see Section 6.3.1), the value of the input correction
sequence is obtained by solving the following QP optimization problem:

v̂∗ = arg min
v

Ĵ∗(x, v)

s.t. Mxx+Mvv ≤ bε
(6.79)

and the system is controlled by K̂MPC(x(k)) = −Kx(k)+ v̂∗(k|k), where v̂∗(k|k) is the
first element of v̂∗.

The computational burden of the proposed strategy is much lower than that of the
exact MMMPC [3]. This computational burden is mostly due to the QP problems
that must be solved to obtain the initial guess and the proposed solution itself. Note
that in both cases, the complexity of each problem is the same as that of a standard
constrained MPC using a quadratic cost function. In contrast to evaluate the maximum
cost J∗(x, v) it is necessary to evaluate the function for all the 2Nnθ vertices of Θ

(because this is a well known NP-hard problem).

6.3.3 Stability of the min-max MPC

For the presented MMMPC strategy (see Section 6.3.2) with a quadratic upper bound of
the worst case cost stability has been proven in [2, 3]. Generally, stability of the control
strategy can be shown with the stability proof presented in Section 6.2.4. Therefore,
consider the solutions v∗, ṽ∗ and v̂∗ to the original optimization problem (6.20), the
optimization problem based upon a simple upper bound (6.28) and the optimization
problem using a quadratic upper bound of the worst case cost (6.79), respectively.

The minimized costs of the mentioned optimization problems are denoted generally
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as J∗(x) = J∗(x, v∗), J̃∗(x) = J̃∗(x, ṽ∗) and Ĵ∗(x) = Ĵ∗(x, v̂∗). With the same linear
constraints (Mxx + Mvv ≤ bε) the three optimization problems possess the same
feasibility region. With the proofs of the Property 6.2 and Property 6.3 it can be
shown that Ĵ∗(x) ≤ J̃∗(x) and J∗(x, v̂∗)−trace(T )ε2 ≤ J∗(x), respectively. Then, with
the feasible solution vs satisfying the Property 6.4 it can be shown with the Theorem
6.5 that the MMMPC strategy based on the semi-feedback approach K̂MPC(x(k)) =

−Kx(k) + v̂∗(k|k) is stable as a consequence of the ultimately bounded system state

6.4 Experimental results

The MMMPC strategies, based on a nonlinear upper bound (see Section 6.2) and
a quadratic upper bound (see Section 6.3) of the worst case cost were validated in
experiments with the pilot plant emulating an exothermic chemical reaction (see Section
3.1). For the implementation of the control strategies a suitable linear model had to
be identified.

Based on the experimental data that has been used to identify a second order
Volterra series model (see Fig. 3.7 in Section 3.1.3) and taking into account the response
time of the system, the sampling period has been chosen to ts = 60 s. With the
experimental data a least squares identification has been carried out and the following
model has been identified:

y(k) = 0.941 y(k − 1)− 0.061 u(k − 1) (6.80)

Thereby, the following input-output prediction model with integrated bounded additive
uncertainty was obtained7:

y(k + 1|k) = 0.941 y(k)− 0.061 u(k) +
θ(k|k)

∆
. (6.81)

Furthermore, based upon the one step ahead prediction error (see Fig. 6.2), the
parameter ε has been chosen to ε = 0.4. As a result, in 94% of the samples the one
step ahead prediction error is bounded by the chosen value. In order to verify the
goodness of fit of the identified model a second set of experimental data (see Fig. 3.9)
has been used to calculate the one step ahead prediction error. In Fig. 6.3 it can be
seen that the one step ahead prediction error for the second data set is bounded by
ε = 0.4 nearly throughout the whole experiment, only in a few samples the prediction

7Note that the use of (6.81) instead of the state-space model (6.2) requires some minor changes

in the implementation of the presented control strategies. These differences are explained in the

Appendix A.7.
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Figure 6.2: One step ahead prediction error during the experiment for the model identifica-

tion.
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Figure 6.3: One step ahead prediction error during the experiment for the model validation.

error exceeds the bound. Therefore the verification confirms the election of ε = 0.4 as
a valid choice.

For the implementation of the control strategies a prediction horizon of N = 25 and
a control horizon of Nu = 15 were used. Note that the use of different prediction and
control horizons (N 6= Nu) requires minor changes in the matrices Mvv, Mθv and Mvf in
the quadratic cost function (6.14) as well as in the matrixMv in the considered min-max
problem (6.15)8. In the implementation of the proposed control strategy the terminal
constraint and the terminal cost have not been considered. With a prediction horizon of
N = 25, including more than one time constant of the process, the terminal constraint

8Defining the variable σ = N −Nu (the difference of the two horizons), the necessary adjustment

of the matrices Mvv, Mθv, Mvf and Mv due to different prediction and control horizons leads to the

elimination of the last σ rows of Mvf , the last σ columns of Mv and Mθv and the last σ rows and

columns of Mvv.



182 6.4. Experimental results

is not active for the region of interest. Also, the prediction horizon is sufficiently large
and therefore, the effect of not including a terminal cost can be neglected. For a
formal study about the possibility to disregard the terminal constraint and terminal
cost see [85, 53, 68]. Due to the varying delay of the considered process a correction
in the prediction of y(k+ 1|k) has been used. With a Smith like predictor, the output
prediction for k+1 made at k using the nominal prediction ŷn(k+1|k) is corrected as:

ŷ(k + 1|k) = ŷn(k + 1|k) + (ŷn(k|k)− y(k)) (6.82)

being y(k) the real process output at k. This simple correction improves the perfor-
mance of MPC strategies in the case of systems with time delay [93].

Finally, the control strategies were implemented in the Matlab/Simulink environ-
ment and the weighting factor for the control effort has been chosen equal to R = 5.
In order to restrict the system input and output in the experiments, the following
constraints have been used:

5 ≤ u(k + i|k) ≤ 100, i = 0, . . . , 14

−20 ≤ ∆u(k + i|k) ≤ 20, i = 0, . . . , 14

30 ≤ ŷ(t + j|t) ≤ 70, j = 2, . . . , 26, ∀θ ∈ vert(Θ)

(6.83)

Note that in the output restrictions the effect of the uncertainty has to be considered.

6.4.1 Min-max MPC with nonlinear upper bound

With the MMMPC strategy based on a nonlinear upper bound of the worst case cost
(see Section 6.2) several setpoint tracking and disturbance rejection experiments were
carried out. As a benchmark system the pilot plant emulating an exothermic chemical
reaction was used and the control strategy was implemented with the identified model
(6.81) and the constraints (6.83).

In the first place, a setpoint tracking experiment with the presented min-max con-
trol strategy was carried out (see Fig. 6.4). Starting in steady state with a reference
of 55 oC, the setpoint is changed in t = 30min to 65 oC and in t = 90min to 45 oC.
It can be observed in the experimental results that the min-max control strategy ap-
plies the new setpoint changes rapidly to the system and stabilizes the temperature in
the setpoint in less than 20 minutes after the application of the changes in the refer-
ence. After the first setpoint change no overshoot can be observed whereas a marginal
overshoot (approximately −0.7 oC) appears after the second setpoint change. After
reaching steady state the control signal shows only small variations without periodic
oscillations and the concentration CA remains in a constant level.
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Figure 6.4: Setpoint tracking experiment controlled by the presented MMMPC strategy

based on a nonlinear upper bound of the worst case cost. From top to bottom: tank temper-

ature T , aperture of the valve v8, emulated concentration CA and computation time tc.

In the second experiment the presented min-max control strategy was used to con-
trol the pilot plant in presence of a constant error in the parameter E of the underlying
model of the chemical reaction. Due to the strong influence of the parameter E on the
dynamics of the system, the mentioned parameter was increased only by 3% of the
original value. The experimental results in Fig. 6.5 show that the control strategy sta-
bilizes the system output in the desired reference without difficulties. Nevertheless, as
a result of model mismatch, some overshoot can be observed after the setpoint changes
(approximately 0.9 oC and −2 oC after the first and the second step, respectively).
Comparing the result of Fig. 6.5 and Fig. 6.4 it is evident that the observed overshoot
is mainly a result of the introduced model mismatch. However, the min-max control
strategy shows its capability to stabilize the system in presence of a model uncertainty.

During the third experiment with the pilot plant controlled by the presented min-
max control strategy an additive disturbance in the system input was considered (see
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Figure 6.5: Disturbance rejection experiment (persistent disturbance in the emulated chemi-

cal reaction) controlled by the presented MMMPC strategy based on a nonlinear upper bound

of the worst case cost. From top to bottom: tank temperature T , aperture of the valve v8,

emulated concentration CA and computation time tc.

Fig. 6.6). The applied disturbance had a value of ∆v8 = −15% and was active from
t = 70min to t = 110min. During this interval the effectively applied system input
is given by v8 = u + ∆v8 whereas in absence of the disturbance the valve opening is
defined by v8 = u. After the application (or elimination) of the additive disturbance
the min-max control strategy reacts rapidly to the increasing error in the temperature
and compensates the divergence almost completely in only 10 minutes. During the
application of the disturbance the calculated control u is considerably higher and yields
an effective valve opening v8 which corresponds to the value of v8 before the application
of the disturbance. The presented min-max control strategy efficiently rejects the
disturbance and stabilizes the system in the given setpoint in spite of the magnitude
of the input error.

In the last experiment (see Fig. 6.7) with the pilot plant the disturbance rejection
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Figure 6.6: Disturbance rejection experiment (disturbance in the valve opening v8) controlled

by the presented MMMPC strategy based on a nonlinear upper bound of the worst case cost.

From top to bottom: tank temperature T , aperture of the valve v8, emulated concentration

CA, input value u calculated by the controller and computation time tc.

capabilities of the min-max control strategy were tested by means of a disturbance
in the feed Ff . Starting the experiment with the nominal feed Ff = 0.05 l/s, the
disturbance ∆Ff = −0.02 l/s was applied to the system in t = 60min. After the
application of the disturbance it can be observed that the concentration CA decreases
and, as a consequence, the temperature falls below the given setpoint and reaches
a maximum divergence of −2.5 oC. With an increasing error in the system output,
the min-max control strategy partially closes the valve v8 and compensates the effect
of the reduced feed. The control strategy rejects the disturbance in approximately
20 minutes, but shows afterwards small oscillations in the temperature and the valve
opening, totally justified by the magnitude of the disturbance (∆Ff corresponds to an
error of −40% with respect to the nominal feed).

The MMMPC strategy showed in the presented experiments a good behavior, both
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Figure 6.7: Disturbance rejection experiment (disturbance in the feed Ff ) controlled by the

presented MMMPC strategy based on a nonlinear upper bound of the worst case cost. From

top to bottom: tank temperature T , aperture of the valve v8, emulated concentration CA,

feed Ff and computation time tc.

for setpoint tracking and disturbance rejection. Based on a nonlinear upper bound
of the worst case cost, the computation of the input sequence required an average
computation time of tc = 0.772 s with a maximum of tc = 3.277 s and a minimum of
tc = 0.397 s. The necessary time to compute a new input sequence is quite low with
respect to the considered prediction horizon of N = 25 and lies clearly inside the used
sampling time of ts = 60 s. Note that the original optimization problem would require
approximately 2Nnθ+1 operations and could not be solved within the sampling time.
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6.4.2 Min-max MPC with quadratic upper bound

The MMMPC strategy using a quadratic upper bound of the worst case cost presented
in Section 6.3 was applied to the pilot plant which emulates an exothermic chemical
reaction. Several experiments, including setpoint tracking and disturbance rejection,
were carried out in order to test the mentioned control strategy. The min-max control
strategy for the pilot plant is based on the identified linear model (6.81) and has been
implemented with the constraints given in (6.83).

The results of a setpoint tracking experiment with the pilot plant controlled by
the MMMPC strategy are shown in Fig. 6.8. During the experiment the setpoint was
changed in t = 30min from 55 oC to 65 oC and in t = 90min set to 45 oC. After the first
setpoint change the control strategy compensates the error in the system output rapidly
and stabilizes the system output in the given reference without any overshoot. The
second setpoint change results in a small overshoot of −0.9 oC, only slightly higher than
the one observed in Fig. 6.4. After reaching steady state, the system output remains
in the given setpoint and the concentration CA maintains a constant level.

In the second experiment, the results are given in Fig. 6.9, the disturbance rejection
capabilities of the presented min-max control strategy were tested by means of an
error in the used underlying model of the exothermic chemical reaction. The error
was introduced in the parameter E and held constant during the entire experiment.
Due to the strong influence on the dynamic behavior of the system, the mentioned
parameter was increased only by 3% of the nominal value. Due to the model mismatch
(a consequence of the introduced error in the parameter E, compare results in Fig. 6.8)
an overshoot of 0.8 oC and −2.2 oC can be observed after the setpoint changes. In spite
of the error in the emulated model, the min-max control strategy stabilizes the system
output in the reference.

In the third experiment carried out with the MMMPC strategy an additive dis-
turbance was applied to the system input. The used disturbance had a value of
∆v8 = −15% and was active in the period from t = 70min to t = 110min. It
can be observed in Fig. 6.10 that the application of the disturbance in the system
input leads to a low effective opening of the valve v8 and, as a consequence, results in
a rapidly increasing temperature. The MMMPC strategy reacts quickly to the error in
the system output, but the stabilization of the system output in the reference requires
nearly 30 minutes, both after the application and after the removal of the disturbance.
The complete compensation of the output error underlines the disturbance rejection
capabilities of the applied control strategy.
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Figure 6.8: Setpoint tracking experiment controlled by the presented MMMPC strategy

based on a quadratic upper bound of the worst case cost. From top to bottom: tank temper-

ature T , aperture of the valve v8, emulated concentration CA and computation time tc.

In the fourth experiment (see Fig. 6.11) with the pilot plant and the presented min-
max control strategy an error was introduced in the feed Ff . The disturbance ∆Ff =

−0.02 l/s, which corresponds to an error of −40% in the nominal feed, was applied in
t = 60min and maintained constant until the end of the experiment. The application
of the disturbance leads to a reduced feed Ff and results in a lower concentration CA.
As a consequence, the temperature decreases and reaches a maximum output error of
−2.1 oC. The increasing difference between the system output and the given setpoint
causes the control strategy to close gradually the valve v8. The fast reaction of the
controller compensates the output error almost completely in 20 minutes. Afterwards,
the system shows a constant output error of approximately −0.5 oC during 11 minutes.
Finally, the min-max control strategy stabilizes the temperature in the setpoint and
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Figure 6.9: Disturbance rejection experiment (persistent disturbance in the emulated chemi-

cal reaction) controlled by the presented MMMPC strategy based on a quadratic upper bound

of the worst case cost. From top to bottom: tank temperature T , aperture of the valve v8,

emulated concentration CA and computation time tc.

the system reaches steady state. The magnitude of the applied disturbance justifies
the required time to completely compensate the output error and shows the efficiency
of the presented control strategy to reject disturbances.

The presented MMMPC strategy using a quadratic upper bound of the worst case
cost showed in the experiments its ability for setpoint tracking and disturbance rejec-
tion. The controller stabilized the system output in the reference even in presence of
strong disturbances. In the presented experimental results the control strategy needed
an average computation time of tavgc = 0.097 s to compute a new input sequence, with
a maximum of tmax

c = 0.179 s and a minimum of tmin
c = 0.088 s. For the conside-
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Figure 6.10: Disturbance rejection experiment (disturbance in the valve opening v8) con-

trolled by the presented MMMPC strategy based on a quadratic upper bound of the worst

case cost. From top to bottom: tank temperature T , aperture of the valve v8, emulated

concentration CA, input value u calculated by the controller and computation time tc.

red prediction horizon N = 25 the mentioned computation times represent very low
values which allow the implementation of the presented control strategy with typical
prediction horizons used in MPC.

6.5 Comparison of simulation results

For comparison purposes both MMMPC strategies have been applied to a simulation
model (3.1)-(3.5) of the pilot plant. The strategies have been implemented with the
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Figure 6.11: Disturbance rejection experiment (disturbance in the feed Ff ) controlled by

the presented MMMPC strategy based on a quadratic upper bound of the worst case cost.

From top to bottom: tank temperature T , aperture of the valve v8, emulated concentration

CA, feed Ff and computation time tc.

parameters and constraints used in the experiments to allow an exact comparison of
the simulation results. The simulations have been carried out on the same computer
used for the experiments presented in the previous sections.

The results obtained in a setpoint tracking experiment with the nominal model
are given in Fig. 6.12. It can be observed that both MMMPC strategies give very
similar results with a slightly better control performance of the control strategy based
on the nonlinear upper bound. The MMMPC based on the quadratic upper shows
a more conservative behavior resulting in a slower reaction to setpoint changes. The
second simulation, see Fig. 6.13, was carried out with a constant error of 3% in the
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Figure 6.12: Comparison of the simulations results with the nominal model obtained with

the MMMPC based on a nonlinear upper bound (solid line) and the MMMPC based on a

quadratic upper bound (dashed line). From top to bottom: tank temperature T , aperture of

the valve v8 and concentration CA.

activation energy E of the simulation model. The results confirm the faster reaction of
the MMMPC based on the nonlinear upper bound with a lower overshoot. The results
show that both MMMPC strategies reach an offset-free steady state in spite of the
model mismatch.

The quadratic upper bound used in the control strategy presented in Section 6.3.2 is
a more conservative estimation of the worst case than the nonlinear upper bound of the
strategy given in Section 6.2.3. As a consequence, the MMMPC based on the quadratic
bound shows a more cautious reaction in comparison to the MMMPC based on the
nonlinear bound. With respect to the computational burden, the use of a quadratic
upper bound gives the possibility to solve the optimization problem, i.e. to calculate
the input action, with QP techniques and leads to lower computation times. Tab. 6.1
presents the Sum of Square Errors for the different MMMPC strategies obtained in the
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Figure 6.13: Comparison of the simulations results with a disturbance in the activation

energy E of the simulation model obtained with the MMMPC based on a nonlinear upper

bound (solid line) and the MMMPC based on a quadratic upper bound (dashed line). From

top to bottom: tank temperature T , aperture of the valve v8 and concentration CA.

MMMPC SSE (nominal) SSE (model mismatch) tavgc

nonlinear b. 1946.5 2021.4 0.094 s

quadratic b. 2104.4 2188.7 0.778 s

Table 6.1: Comparison between the two MMMPC strategies with respect to the Sum of

Square Errors and the average computation times in the simulations.

simulations and the necessary computation times to calculate the input action.
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6.6 Conclusions of the chapter

In this chapter two MMMPC strategies based on upper bounds of the worst case cost
have been presented. Both control strategies have been developed to be used with
linear models with an additive uncertainty.

The first MMMPC strategy, originally published in [105], uses a nonlinear upper
bound of the worst case cost. This control strategy considerably reduces the computa-
tional complexity as the maximization problem, normally carried out by the evaluation
of all 2nz+1 possible vertices of the disturbance, is replaced by an algorithm which di-
agonalizes a quadratic matrix of size nz. The algorithm includes only simple matrix
operations and can be implemented even with programming languages usually used in
embedded systems.

The second MMMPC strategy, proposed in [3], is based on a quadratic upper bound
of the worst case cost. In this control strategy, the original optimization problem is
replaced by a tractable quadratic programming problem which provides a close solution
of the original problem. The modified optimization problem allows to obtain a new
input sequence by solving only 2 QP problems, one to obtain an initial guess and
one to solve the optimization problem. Each of the two QP problems have the same
complexity as a constrained linear MPC problem.

The presented MMMPC strategies have a reduced complexity in comparison to the
original optimization problem and can be used with prediction horizons typical in linear
MPC. For validation purposes, both control strategies were applied to a pilot plant em-
ulating an exothermic chemical reaction. The control strategies were tested in setpoint
tracking and disturbance rejection experiments. The obtained results underlined the
capability of the presented control strategies to stabilize the benchmark system even
in presence of strong disturbances. Besides, a direct comparison of results obtained in
simulations with the two MMMPC strategies was presented. The comparison showed
that the MMMPC based on the nonlinear upper bound requires higher computation
times to compute the control action, but leads to better results. The increased control
performance is a result of the nonlinear upper bound which represents a less conserva-
tive estimation of the worst case. With the presented proof of stability, the MMMPC
based on a nonlinear upper bound is a valid alternative to control uncertain processes.



Chapter 7

Volterra based min-max MPC

In this chapter, two novel nonlinear min-max MPC strategies using Volterra series
models are presented. The min-max formulation is used to take into account the effect
of model uncertainties and perturbations [25]. The computation of the input sequence
is carried out considering the worst case with respect to the model uncertainties and
the perturbations. Generally, the mentioned worst case is obtained by maximization of
an usually quadratic cost function. Then, the input sequence is computed minimizing
the previously mentioned worst case (compare Chapter 6) in the following way:

u∗ = arg min
u

max
θ
J(u, θ) (7.1)

where the optimization of the cost function, depending on the input sequence u and the
disturbance vector θ, is possibly subject to constraints in u and θ. Probably the main
disadvantage of the min-max approach is the complexity of the optimization problem,
leading to a high computational complexity. As already mentioned in Chapter 6, the
computation of the control sequence considering the worst case cost with respect to a
disturbance usually requires the solution of a NP-hard problem.

The min-max strategies for Volterra series models presented in this chapter allow
to calculate the worst case in a computationally efficient way. The computation of the
worst case exploits the non-autoregressive nature of the used Volterra series models.
In contrast to the procedures presented in Chapter 6 using approximations, i.e. up-
per bounds, of the worst case cost, the approach presented in the following sections
calculates the exact worst case cost.

In the following section, the computation of the exact worst case cost for a quadratic
cost function in combination with a second order Volterra series model will be shown.

195
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This worst case cost is then used in a receding horizon control strategy to calculate
the optimal input sequence. Afterwards, the weighting of the control effort of the
presented optimization will be modified in order to achieve stability. Then, input-to-
state stability for the control strategy based on the modified optimization problem will
be proven. Finally, both control strategies will be applied to a benchmark system and
the control performance will be illustrated by experimental results.

7.1 Volterra based MMMPC with exact worst case

cost

This section presents a min-max MPC based on a second order Volterra series model
using the exact worst case cost to compute the input sequence. In a first step, the
general optimization problem resulting from the use of a min-max approach in combi-
nation with a second order Volterra series prediction model will be shown. Afterwards,
the maximization problem will be replaced by the exact worst case cost and the opti-
mization problem will be included in an MPC strategy.

7.1.1 Problem description

Consider the general second order non-autoregressive Volterra model series to approx-
imate fading memory systems [20] defined as in (2.10). This model can be extended to
include a bounded additive disturbance in the following form:

y(k) = h0 +
Nt∑

i=1

h1,iu(k − i) +
Nt∑

i=1

Nt∑

j=i

h2,iju(k − i)u(k − j) + wθ(k) (7.2)

where the disturbance θ(k) ∈ R is bounded by |θ(k)| ≤ ε and w > 0. For simplicity
and without loss of generality ε = 1 is assumed1. The truncation order for the first
order and second order term coefficients is denoted with Nt (see section 2.3).

The future behavior of a second order Volterra series model is given generally by
(2.43)-(2.44) [38]. Under consideration of a bounded additive uncertainty (7.2) and
with the prediction horizon N , the control horizon Nu and the truncation order Nt the

1Otherwise, the parameter w can be scaled to become εw.
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prediction model is defined as an extension of (2.43)-(2.44):

ŷ = Gu+ c + f(u) +Wθ (7.3)

c = Hup + g + h0 + d (7.4)

where θ ∈ R
N denotes the future sequence of the disturbance over the prediction

horizon and W ∈ R
N×N is a matrix relating the disturbance sequence with the model

output along the prediction horizon. The sequence θ is given by:

θ =








θ(k + 1|k)

θ(k + 2|k)
...

θ(k +N |k)








(7.5)

and the set of possible disturbance trajectories is defined as:

Θ = {θ ∈ R
N : ‖θ‖∞ ≤ 1} (7.6)

With the used prediction model (7.3)-(7.4) being non-autoregressive, the disturbance
in a certain sampling period only influences the model output in the same sampling
period. Hence, W represents a diagonal matrix with all elements equal to w:

W = w IN (7.7)

For a detailed definition of the matrices and vectors used in the prediction model
(7.3)-(7.4) the reader is referred to Section 2.3 and to the Appendix A.1.

Consider the second order Volterra series prediction model with additive uncer-
tainty to be used in the quadratic performance index (2.47) with penalization of the
control effort. With the transformation of the penalization term as shown in (2.51),
the performance index based on (7.3)-(7.4) can be written as:

J(u, θ) = θTMθθθ + 2 θTMθuu+ 2 θTMθf f(u) + 2 θTmθc+

uTMuuu+ 2uTMuf f(u) + 2uTmuc+

f(u)TMff f(u) + 2 f(u)Tmfc +mcc

(7.8)

with the matrices defined by:

Mθθ = W TW, Muf = GT

Mθu = W TG, muc = GT (c− r)− λLT
uul

Mθf = W T , Mff = IN
mθc = W T (c− r) , mfc = c− r

Muu = GTG+ λLT
uLu, mcc = cTc+ rTr − 2 cTr + λuT

l ul

(7.9)
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where r denotes the reference trajectory along the prediction horizon and the matrix
Lu is defined as in (2.50). Note that the used prediction model (7.3)-(7.4) is affine in θ

and, as a consequence, the quadratic cost function (7.8) is convex in θ. Furthermore,
it has to be mentioned that the cost function is of fourth order with respect to the
input signal u due to the quadratic function f(u).

The considered initial scheme of predictive control is the MMMPC [23] in which
the optimal sequence u∗ is calculated by solving a min-max problem. Considering only
input constraints2, the optimization problem can be written as:

u∗ = arg min
u

J∗(u)

s.t. Lcu ≤ bc
(7.10)

with the worst case cost given by:

J∗(u) = max
θ ∈Θ

J(u, θ) (7.11)

and Lc ∈ R
nc×Nu and bc ∈ R

nc (being nc the number of restrictions). The solution of
this problem is applied using a receding horizon strategy, as in all predictive control
schemes.

Then, with the cost function (7.8) being convex in θ, the solution to the maxi-
mization problem (7.11) can be found (at least) in one of the vertices of Θ (compare
Section 6.1.1 for the case of a linear model). Hence, the maximization problem (7.11)
is equivalent to:

J∗(u) = max
θ∈vert{Θ}

J(u, θ) (7.12)

The evaluation of each one of the 2N vertices of Θ leads to an exponential complexity
and is a well known NP-hard problem. Therefore, the maximization problem (7.12)
and, as a consequence, the computation of the input sequence u∗ (7.10) can only be
solved for small horizons when the cost has to be evaluated for all possible vertices.

The adopted strategy in the control scheme used in this chapter is directed to reduce
the computational cost of the maximization problem (7.12). The special character of
the second order Volterra series model, with (7.2) being non-autoregressive, is exploited
to reduce the computational burden of the maximization. With the new algorithm, the
exact worst case cost can be calculated with a complexity of O(N2) instead of O(2N).

2Output constraints can be easily considered but they result in nonlinear constraints in the mini-

mization problem due to the nonlinearity of the Volterra series model. These nonlinear constraints can

be handled with advanced optimization algorithms such as sequential quadratic programming (SQP)

techniques.
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7.1.2 Calculation of the worst case cost

This section presents the computation of the exact worst case cost for the maximization
problem given in (7.12). The exact worst case cost can be determined with simple
mathematical operations and allows an easy implementation.

Using the cost function (7.8) based on a second order Volterra series prediction
model in (7.12), the maximization problem for a given input sequence u can be ex-
pressed as (compare (6.16) in Section 6.1.1):

J∗(u) = max
θ ∈vert{Θ}

θTTθ + 2 θTq(u) + J(u, 0) (7.13)

with
T = Mθθ

q(u) = Mθuu+Mθf f(u) +mθc

J(u, 0) = uTMuuu+ 2uTMuf f(u) + 2uTmuc+

f(u)TMff f(u) + 2 f(u)Tmfc +mcc

(7.14)

where J(u, 0) represents the nominal cost. The matrix T ∈ R
N×N is given with (7.7)

and (7.9) as:
T = w2 IN (7.15)

and is defined as a positive definite diagonal matrix. Then, the calculation of J∗(u)

requires the maximization of the sum of the terms θTTθ and θTq(u) with respect
to the disturbance vector θ. Obviously, with J(u, 0) not being a function of θ, the
nominal cost cannot be maximized (nor minimized) with respect to the uncertainty.

With T a positive definite diagonal matrix, the term θTTθ can be written as:

θTTθ = trace(T ) ∀θ ∈ vert{Θ} (7.16)

and represents a constant term for all possible vertices, i.e. θTTθ adopts its maximum
value independently of the chosen vertex θ. From (7.15), it is clear that trace(T ) =

Nw2 and the maximization problem (7.13) can be expressed as:

J∗(u) = Nw2 + max
θ∈ vert{Θ}

2 θTq(u) + J(u, 0) (7.17)

Now, with the first term in (7.17) being a constant, the optimization problem is solved
by maximizing θTq(u). This can be easily achieved when all elements of θ have
the same leading signs as the corresponding elements of q(u), more specifically the
multiplication of an element of θ with the corresponding element of q(u) leads to
a positive result. Hence, the disturbance vector θT maximizes the term θTq(u) for
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θ = sgn(q(u)). The resulting maximum corresponds to the sum of absolute values of
q(u):

max
θ∈vert{Θ}

θTq(u) = sgn(q(u))Tq(u) = ‖q(u)‖1 (7.18)

Then, being J(u, 0) a constant function with respect to the disturbance vector θ and
using (7.18) in (7.17), the initial maximization problem (7.13) becomes:

J∗(u) = Nw2 + 2 ‖q(u)‖1 + J(u, 0) (7.19)

With J(u, 0) being the nominal cost and θTTθ maximized for every θ ∈ vert{Θ}

(7.16), only the value of θTq(u) is influenced directly by the election of θ ∈ vert{Θ}.
As a consequence, the vertex maximizing the term θTq(u) also maximizes the cost
function J(u, θ). Hence, the vertex maximizing the cost function J(u, θ) is defined as:

θ∗ = arg max
θ∈vert{Θ}

J(θ,u) = arg max
θ∈vert{Θ}

θTq(u) = sgn(q(u)) (7.20)

Note that (7.19) is the exact solution to the maximization problem and can be
calculated easily by simple mathematical operations, i.e. the computation of the worst
case cost does not require an evaluation of the 2N vertices in Θ. The reduction of the
complexity of the maximization to O(N2) is especially relevant for the implementation
when using longer prediction horizons. It has to be mentioned that the exact and easy
computation of the worst case cost J∗(u) is a result of the non-autoregressive character
of the used second order Volterra series model with additive uncertainty (7.2). The
non-autoregressive character of the used model leads to the diagonal positive definite
matrix T which is the most relevant issue to compute the exact worst case cost. In the
case of an autoregressive second order Volterra series model with additive uncertainty,
i.e. the matrix T is non-diagonal and not necessarily positive definite, the Procedure
6.1 to compute an upper bound of the worst case cost shown in Section 6.2.2 can be
used. It has to be mentioned that the Procedure 6.1 used with a non-autoregressive
second order Volterra series model with additive uncertainty (7.2) results in a diagonal
matrix T with only positive entries and, as a consequence, the mentioned procedure
computes the exact solution of the maximization problem.

Remark 7.1 Consider the optimization problem (7.13) with the terms θTTθ and

θTq(u) to be minimized with respect to θ ∈ vert{Θ}. The maximization of these

terms satisfy the statement:

max
θ∈ vert{Θ}

θTTθ + 2 θTq(u) ≤ max
θ ∈ vert{Θ}

θTTθ + max
θ∈ vert{Θ}

2 θTq(u) (7.21)

for all possible trajectories θ ∈ vert{Θ}. In (7.21) the equality holds if and only if

both terms reach their maximum for the same vector θ.
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The term θTTθ = trace(T ) represents a constant, i.e. θTTθ adopts its maximum

value for every θ ∈ vert{Θ}. Hence, the disturbance vector θ∗ which maximizes the

term θTq(u) also maximizes the term θTTθ. As a consequence, the equality in (7.21)

holds for the optimization problem (7.13).

An alternative demonstration to obtain an explicit expression of the exact worst
case cost is given in the Appendix (A.8). This method is based on the diagonal and
semi-definite positive character of the matrix W and is not limited to second order
Volterra series models but can be used for other non-autoregressive models, e.g. finite
impulse response models or step response models.

7.1.3 Control strategy using the exact worst case cost

The presented MMMPC problem (7.1) can be solved easily with the explicit expression
of the worst case cost J∗(u) (7.19). In fact, using the explicit solution, the original op-
timization problem is reduced to a minimization problem similar to the ones presented
in Chapter 4 and Chapter 5 and the solution is defined as shown in (7.10).

The variable q(u) in the exact solution (7.19) can be rewritten with the definitions
(7.14) and (7.9) as W T (Gu+ f(u) + c− r). With the exact solution of the worst case
cost the optimization problem (7.10) to compute an input sequence can be rewritten
as:

u∗ = arg min
u

J(u, 0) +Nw2 + 2‖W T (Gu+ f(u) + c− r) ‖1

s.t. Lcu ≤ bc
(7.22)

subject to linear constraints. The calculated input sequence u∗ can then be used in an
MPC strategy where in every sampling period only the first element of u∗ is applied
to the controlled system.

Note that the use of an explicit solution of the maximization problem reduces consid-
erably the computational complexity of the control strategy with respect to strategies
using a vertex search approach or an upper bound of the worst case cost. Furthermore,
the term Nw2 in (7.22) does not depend on u and can be removed from the minimiza-
tion problem. The last term in (7.22) consists only of a summation of absolute values
and on simple matrix and vector operations. Therefore, the optimization problem con-
sidering an uncertainty or disturbance has a computational complexity similar to the
optimization of the nominal model. Finally, the calculation of the input sequence can
be carried out solving the optimization problem with nonlinear programming methods
as sequential quadratic programming (SQP).
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7.2 Volterra based MMMPC with exact worst case

cost and guaranteed stability

In this section, the nonlinear MMMPC strategy based on a second order Volterra
series model will be reformulated with some minor changes in the cost function and
an additional condition for the prediction horizon in order to achieve input-to-state
stability. In the first place, the control strategy with guaranteed stability will be given.
Then, the optimization problem will be transformed to its state-space representation
and a simple feasible solution to the optimization problem will be defined. Finally,
based on the feasible solution, input-to-state stability of the proposed control strategy
can be proven.

In a first step, the following quadratic performance index:

J(u, θ) = (ŷ − r)T (ŷ − r) + λ (u− ur)
T (u− ur) (7.23)

will be used in the optimization where the weighting term λ∆uT∆u used in the cost
function (2.47) has been substituted by λ (u− ur)

T (u− ur). The vector ur ∈ R
N

contains the necessary steady-state input for the given reference r and has been defined
in (4.30). The argument θ in the definition of the cost function indicates that the
predicted output ŷ depends on the uncertainty θ. Then, using the second order Volterra
series prediction model with uncertainty (7.3)-(7.4) in (7.23), the performance index
can be expressed in the form given in (7.8) with the partly modified matrices defined
by (compare (7.9) in Section 7.1.1):

Mθθ = W TW, Muf = GT

Mθu = W TG, muc = GT (c− r)− λur

Mθf = W T , Mff = IN
mθc = W T (c− r) , mfc = c− r

Muu = GTG+ λIN , mcc = cTc+ rTr − 2 cTr + λuT
r ur

(7.24)

With Mθθ = W TW = w2IN the cost function is convex in θ and the maximization
of (7.23) can be found at least in one of the vertices of Θ. Hence, the maximization
problem is defined by (7.12) where J∗(u) denotes the resulting worst case cost. Finally,
based on J∗(u), the input sequence can be calculated with:

u∗ = arg min
u

J∗(u)

s.t. Lcu ≤ bc

u(k +Nu − 1|k) = ur

(7.25)

where the equality constraint is not necessary for the upcoming stability proof, but it
has been included to allow the use of the vectors and matrices defined in the Appendix
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A.1 (for further details see the Remark 7.2). Using the explicit formulation of the worst
case cost (7.19) and q(u) = W T (Gu+ f(u) + c− r) (7.14), the min-max optimization
problem can be expressed as:

u∗ = arg min
u

J(u, 0) +Nw2 + 2‖W T (Gu+ f(u) + c− r) ‖1

s.t. Lcu ≤ bc

u(k +Nu − 1|k) = ur

(7.26)

and the resulting input sequence can be used in a receding horizon control strategy
where the first element of u∗ is applied to the system. Note that the effect of the
modified cost function influences only the nominal cost J(u, 0) and has no effect on
the computation of the worst case cost.

For the presented MMMPC (7.26) based on the modified cost function (7.23) input-
to-state stability can be proven for a prediction horizon satisfying the condition N ≥

Nt + Nu. In the following sections the stability of the control strategy (7.26) will be
proven and the necessary conditions will be given.

7.2.1 Stability proof

In this section the stability of the proposed MMMPC strategy (7.26) based on a second
order Volterra series model will be proven. In a first step, the considered optimiza-
tion problem will be reformulated in state-space representation. For the state-space
optimization problem a feasible solution will be determined. Finally, input-to-state
stability for the proposed MMMPC strategy can be proven showing the convergence
of the resulting cost. The stability proof is formulated in a general manner and holds
for other non-autoregressive models with additive uncertainty.

7.2.1.1 Optimization problem in state-space representation

The prediction model based on a second order Volterra series model considering an
estimation error and a future uncertainty can be expressed, analogously to (2.61), as3:

x(k + i+ 1|k) = Ax(k + i|k) +Bu(k + i|k)

y(k + i|k) = f(x(k + i|k)) + d(k) + θ(k + i|k)
(7.27)

3Note that in following stability proof the uncertainty θ(k+ i|k) in (7.27) is not scaled by the factor

w in order to keep the mathematical notation simple. The use of the scaling in the previous sections

simplified the computation of the exact worst case cost, but does not influence the proof of stability.
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where the uncertainty is bounded by θ(·) ≤ ε. With respect to the nominal model
(2.60), the output prediction considering the current estimation error and future dis-
turbance is defined by:

y(k + i|k) = ỹ(k + i|k) + d(k) + θ(k + i|k) (7.28)

with ỹ(k+ i|k) being the nominal model output. Then, with the model considering an
estimation error and an uncertainty, the optimization problem of the MMMPC strategy
(7.26) proposed in Section 7.2 can be rewritten in a general manner in state-space as4:

min
u(k)

max
θ(k)

J(x(k),u(k), d(k), θ(k))

s.t. u(k + i|k) ∈ U, i = 0, . . . , Nu − 1

h(x(k + i|k)) ∈ U, i = Nu, . . . , N − 1

x(k + i|k) ∈ X, i = 1, . . . , N − 1

x(k +N |k) ∈ Ω(d(k), θ(k +N |k))

θ(k|k) = 0

θ(k + i|k) ∈ Θ, i = 1, . . . , N − 1

(7.29)

where the set Θ is defined by the bound θ(·) ≤ ε. The input sequence u(k) is calculated
considering the worst case cost with respect to the sequence of future uncertainties θ(k).
The optimization of the cost is carried out over the finite prediction horizon N and
the finite control horizon Nu with Nu ≤ N . The initial state is denoted x(k) and
x(k + i|k) for i = 1, . . . , N represent the predictions of the future states made at k.
These predictions are calculated with the input signal u(k + i|k) for i = 0, . . . , Nu − 1

and with the local control law h(x(k + i|k)) for i = Nu, . . . , N − 1. The sequence of
future uncertainties is defined generally by:

θ(k) = [θ(k|k), θ(k + 1|k), . . . , θ(k +N − 1|k)]T (7.30)

and the sequence u(k) calculated at k minimizing the cost function (7.29) is defined in
a general manner as:

u(k) = [u(k|k), u(k + 1|k), . . . , u(k +Nu − 1|k)]T (7.31)

The terminal set is given by:

Ω(d(k), θ(k+N − 1|k)) = {x : f(x(k+N |k)) + d(k) + θ(k+N − 1|k) = r(k)} (7.32)

and has been included in (7.29) to assure that the output prediction for k+N+1 made
at k corresponds to the given reference r(k). Depending on the input signal u(k+ i|k)

4The equality constraint θ(k|k) = 0 considered in the optimization problem (7.29) is necessary

to proof stability, but can be disregarded in the implementation of the control strategy. For further

details see the Remark 7.3.
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for i = 0, . . . , Nu − 1 and the local control law h(x(k + i|k)) for i = Nu, . . . , N the
prediction of the successor state is calculated with

x(k + i+ 1|k) = φ(x(k + i|k), u(k + i|k)), i = 0, . . . , Nu − 1

x(k + i+ 1|k) = φ(x(k + i|k), h(x(k + i|k))), i = Nu, . . . , N
(7.33)

With the initial state x(k), the future input sequence u(k), the local control law
h(x(k+ i|k)) and the sequence of the uncertainty θ(k) as well as the current estimation
error d(k), the cost function J(·, ·, ·, ·) used in (7.29) is defined as:

J(x(k),u(k), d(k), θ(k)) =

Nu−1∑

i=0

L(x(k + i|k), u(k + i|k), d(k), θ(k + i|k))+

N∑

i=Nu

Lh(x(k + i|k))

(7.34)

with the quadratic stage costs L(·, ·, ·, ·) and Lh(·) given by:

L(x(k + i|k), u(k + i|k), d(k), θ(k + i|k)) =

‖f(x(k + i|k)) + d(k) + θ(k + i|k)− r(k)‖2Q + ‖u(k + i|k)− ur(k)‖
2
R

Lh(x(k + i|k)) =

‖f(x(k + i|k)) + d(k) + θ(k + i|k)− r(k)‖2Q + ‖h(x(k + i|k))− ur(k)‖
2
R

(7.35)

where f is a nonlinear function defined in (2.57), r(k) denotes the desired reference
for the system output and ur(k) is the necessary steady-state input signal for a given
reference.

For the later proof of convergence the last element of the output prediction should
satisfy y(k + N − 1|k) = r(k). Under this assumption the prediction y(k + N − 1|k)

(7.28) can be substituted by the desired reference r(k) and the predicted output of the
nominal model for k +N − 1 made at k can be written as:

ỹ(k +N − 1|k) = r(k)− d(k)− θ(k +N − 1|k) (7.36)

That means that the steady-state input has to be chosen in a way that the predicted
nominal output ỹ(k + N − 1|k) corresponds to (7.36). Hence, the steady-state input
is based on the predicted nominal model output for k +N − 1 made at k and can be
written as5:

ur(k) = χ−1(ỹ(k +N − 1|k))

= χ−1(r(k)− d(k)− θ(k +N − 1|k))
(7.37)

5Note that the steady-state input depends on the given reference r(k), the known estimation

error d(k) and the uncertainty θ(k + N − 1|k). For the sake of simplicity, the notation ur(k) =

ur(r(k), d(k), θ(k +N − 1|k)) has been chosen. Furthermore it has to be mentioned that a constant

reference has been assumed, i.e. r(k) = r(k + 1).
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The given steady-state input (7.37) is used to define the local control law used in the
initial optimization problem (7.29):

h(x(k + i|k)) = ur(k), i = Nu, . . . , N − 1 (7.38)

7.2.1.2 Feasibility of the solution

Consider the sequence:

u∗(k) = [u∗(k|k), u∗(k + 1|k), . . . , u∗(k +Nu − 1|k)]T (7.39)

being at k the optimal solution for the MMMPC problem (7.29) with the associated
cost J∗(x(k)) and the predicted states x∗(k + i|k) for i = 1, . . . , N . Furthermore,
consider the shifted solution uf(k + 1) for k + 1:

uf(k + 1) = [uf(k + 1|k + 1), uf(k + 2|k + 1), . . . , uf(k +Nu|k + 1)]T (7.40)

where the elements can be defined by means of the optimal solution in k and the local
control law:

uf(k + i|k + 1) =

{
u∗(k + i|k) for i = 1, . . . Nu − 1

h(xf(k +Nu|k + 1)) for i = Nu
(7.41)

The states predicted with the shifted solution uf(k+ 1) are denoted xf(k+Nu|k+ 1)

for i = 2, . . . , N + 1 and Jf(x(k + 1)) represents the resulting cost.

With the optimal input sequence u∗(k) and the local control law, corresponding
to the necessary steady-state input ur(k), the states x∗(k + i|k) for i = 1, . . . N can
be predicted. As the optimal solution and the local control law are computed under
consideration of the conditions given in (7.29), the statement:

x∗(k +N |k) ∈ Ω(d(k), θ(k +N |k)) (7.42)

is true.

Taking into account that the estimation error d(k) and the uncertainty θ(k + i|k)

for k = 1, . . . , N − 1 have no effect on the predictions, the optimal predicted state
satisfies x∗(k + 1|k) = x(k + 1). With uf(k + 1) being the shifted sequence u∗(k), i.e.
uf(k + i|k + 1) = u∗(k + i|k) for i = 1, . . . Nu − 1, the predictions satisfy:

xf(k + i|k + 1) = x∗(k + i|k), i = 2, . . . Nu (7.43)

During the remaining prediction horizon the local control law will be used to predict
the states xf(k + i|k + 1) for i = Nu + 1, . . . N + 1. Now, with the local control law
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computed according to the conditions defined in the optimization problem (7.29), the
state prediction for k +N + 1 made at k + 1 satisfies:

xf(k + 1 + 2|k + 1) ∈ Ω(d(k), θ(k +N + 1|k + 1)) (7.44)

Hence, the shifted sequence uf (k + 1) can be considered a feasible solution to the
optimization problem in k + 1.

7.2.1.3 Convergence

Consider the cost J∗(x(k)) at k based on the optimal solution u∗(k) minimizing the
problem (7.29). Furthermore consider the cost Jf (x(k+1)) at k+1 depending on the
feasible solution uf(k + 1) (see section 7.2.1.2). Convergence can be guaranteed if the
calculated cost for k + 1 is monotonically decreasing with respect to the cost for k.

With the general definition of the cost function (7.34), the optimal cost J∗(x(k))

at k is given by:

J∗(x(k)) =
Nu−1∑

i=0

L(x∗(k + i|k), u∗(k + i|k), d(k), θ(k + i|k))+

N−1∑

i=Nu

Lh(x
∗(k + i|k))

(7.45)

Analogously, the cost Jf(x(k + 1)) at k + 1 based on the feasible solution (7.40) can
be expressed as:

Jf(x(k + 1)) =

Nu−1∑

i=1

L(xf(k + i|k + 1), uf(k + i|k + 1), d(k + 1), θ(k + i|k + 1))+

N∑

i=Nu

Lh(x
f(k + i|k + 1))

(7.46)

With (7.45) and (7.46) the difference of the cost functions, defined as ∆J(k + 1) =
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Jf (x(k + 1))− J∗(x(k)), becomes:

∆J(k + 1) =

Lh(x
f(k +N |k + 1))− L(x∗(k|k), u∗(k|k), d(k), θ(k|k))+

Nu−1∑

i=1

(

L(xf(k + i|k + 1), uf(k + i|k + 1), d(k + 1), θ(k + i|k + 1))−

L(x∗(k + i|k), u∗(k + i|k), d(k), θ(k + i|k))
)

+

N−1∑

i=Nu

Lh(x
f(k + i|k + 1))− Lh(x

∗(k + i|k))

(7.47)

Now consider the term Lh(x
f(k +N |k + 1)) and the nilpotent character (ANt = 0)

of the used prediction model (7.27). For a prediction horizon of N ≥ Nu+Nt, the local
control law, defined by the steady-state input (7.38), is used (at least) in the last Nt

sampling periods. As a consequence of the property ANt = 0, the state xf(k+N |k+1)

for k + N at k + 1 reaches steady state. Taking into account the definition of the
steady-state input (7.37) it is clear that the nominal output in k + N is given by
ỹ(k + N |k + 1) = r(k + 1) − d(k + 1) − θ(k + N |k + 1). From the definition of the
nominal output (4.42), it follows that:

f(xf(k +N |k + 1)) = r(k + 1)− d(k + 1)− θ(k +N |k + 1) (7.48)

Finally, with (7.48) and the local control law h(xf(k+N |k+1)) = ur(k+1) it can be
shown that Lh(x

f(k +N |k + 1)) = 0. Hence, the difference of the two cost functions
(7.47) can be written in the following form:

∆J(k + 1) = −L(x∗(k|k), u∗(k|k), d(k), θ(k|k)) + α1 + α2 + α3 + α4 (7.49)
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with the terms given by:

α1 =
Nu−1∑

i=1

(

‖f(xf(k + i|k + 1)) + θ(k + i|k + 1) + d(k + 1)− r(k + 1)‖2Q −

‖f(x∗(k + i|k)) + θ(k + i|k) + d(k)− r(k)‖2Q

)

(7.50)

α2 =
Nu−1∑

i=1

(

‖uf(k + i|k + 1)− ur(k + 1)‖2R −

‖u∗(k + i|k)− ur(k)‖
2
R

)

(7.51)

α3 =

N−1∑

i=Nu

(

‖f(xf(k + i|k + 1)) + θ(k + i|k + 1) + d(k + 1)− r(k + 1)‖2Q −

‖f(x∗(k + i|k)) + θ(k + i|k) + d(k)− r(k)‖2Q

)

(7.52)

α4 =
N−1∑

i=Nu

(

‖h(xf(k + i|k + 1))− ur(k + 1)‖2R −

‖h(x∗(k + i|k))− ur(k)‖
2
R

)

(7.53)

The Lemmas 4.1-4.4 presented in Chapter 4 will be used to define upper bounds for
the terms α1, α2, α3 and α4 used in the difference of the cost functions given in (7.49).

Term α1: With x∗(k + 1|k) = x(k + 1) and uf(k + i|k + 1) = u∗(k + i|k) for i =
1, . . . , Nu−1, the predicted states computed with the optimal and the feasible solutions
satisfy xf(k + i|k + 1) = x∗(k + i|k) for i = 1, . . . , Nu − 1. For the reference applies
r(k) = r(k+1) and the increments in the estimation error and the uncertainty are given
generally as ∆d = d(k+1)−d(k) and ∆θ(k+i) = θ(k+i|k+1)−θ(k+i|k), respectively.
Defining the auxiliary variable z(k + i|k) = f(x∗(k + i|k)) + d(k) + θ(k + i|k) − r(k),
the term α1 can be expressed as:

α1 =

Nu−1∑

i=1

‖z(k + i|k) + ∆d+∆θ(k + i)‖2Q − ‖z(k + i|k)‖2Q (7.54)

and bounded under consideration of Lemma 4.1 by:

α1 ≤ Lq

Nu−1∑

i=1

‖∆d+∆θ(k + i)‖ (7.55)
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With the uncertainty limited by ‖θ(·)‖ ≤ ε the increment in the uncertainty is bounded
by ‖∆θ(·)‖ ≤ 2 ε. With this boundary the term α1 is limited to:

α1 ≤ c1(Q,Nu) · ‖∆d+ 2 ε‖ (7.56)

being c1(·, ·) a constant depending on the weighting factor Q and the control horizon
Nu.

�

Term α2: Consider the optimal solution and the feasible solution satisfying uf(k +

i|k + 1) = u∗(k + i|k) for i = 1, . . . , Nu − 1 (7.41). Defining the increment in the
steady-state input as ∆ur = ur(k + 1)− ur(k), the term α2 can be expressed with the
auxiliary variable z1(k + i|k) = u∗(k + i|k)− ur(k) in the form:

α2 =
Nu−1∑

i=1

‖z1(k + i|k)−∆ur‖
2
R − ‖z1(k + i|k)‖2R (7.57)

Then, applying Lemma 4.1 to (7.57), the term α2 can be bounded by:

α2 ≤ c2(R,Nu) · ‖∆ur‖ (7.58)

Taking in account the definition (7.37), the increment in the steady-state input can be
written in the following form:

∆ur = χ−1(r(k + 1)− d(k + 1)− θ(k +N |k + 1))−

χ−1(r(k)− d(k)− θ(k +N − 1|k))
(7.59)

The increment in the estimation error is defined as ∆d = d(k + 1) − d(k) and the
difference between the two shifted uncertainty terms can be written as ∆θ+ = θ(k +

N |k + 1) − θ(k + N − 1|k). Then, with r(k) = r(k + 1) and the auxiliary variable
z2 = r(k) − d(k) − θ(k + N − 1|k) the increment in the steady-state input can be
expressed as:

∆ur = χ−1(z2 −∆d−∆θ+)− χ−1(z2) (7.60)

Under consideration of Lemma 4.2 the norm of ∆ur can be bounded by ‖∆ur‖ ≤

Lχ‖∆d+∆θ+‖. With the uncertainty limited by ‖θ(·)‖ ≤ ε the difference between the
two shifted uncertainty terms is bounded by ‖∆θ+‖ ≤ 2 ε. Hence, the increment in the
steady-state input is bounded by:

‖∆ur‖ ≤ Lχ‖∆d+ 2 ε‖ (7.61)

Using (7.61) in (7.58), the term α2 can be finally bounded by:

α2 ≤ c2(R,Lχ, Nu) · ‖∆d+ 2 ε‖ (7.62)

where c2(·, ·, ·) represents a constant parameter.
�
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Term α3: Consider the predictions x∗(k+i|k) and xf (k+i|k+1) for i = Nu, . . . N−1

made at k and k + 1 with the optimal and the feasible solution, respectively. The
difference between these predictions is defined as ∆x(k+i) = xf(k+i|k+1)−x∗(k+i|k)

for i = Nu, . . . N−1 and the initial condition is xf(k+Nu−1|k+1) = x∗(k+Nu−1|k).
Furthermore, consider the increment in the estimation error ∆d = d(k+1)− d(k) and
the difference in the uncertainty ∆θ(k + i) = θ(k + i|k + 1) − θ(k + i|k). With the
auxiliary variables:

z1(k + i) = f(x∗(k + i|k) + ∆x(k + i))− f(x∗(k + i|k)) + ∆d+∆θ(k + i)

z2(k + i) = f(x∗(k + i|k)) + d(k) + θ(k + i|k)− r(k)

and a constant reference, i.e. r(k + 1) = r(k), the term a3 can be expressed as:

α3 =
N−1∑

i=Nu

‖z1(k + i) + z2(k + i)‖2Q − ‖z2(k + i)‖2Q (7.63)

Applying Lemma 4.1 to (7.63) the term a3 can be bounded in the following form:

α3 ≤ c3(Q,N,Nu) · ‖z1(k + i)‖ (7.64)

Furthermore, with the function f being Lipschitz continuous, the term z1(k + i|k) can
be bounded by Lemma 4.3:

‖z1(k + i|k)‖ ≤ ‖f(x∗(k + i|k) + ∆x(k + i))− f(x∗(k + i|k))‖+

‖∆d+∆θ(k + i)‖

≤ Lf‖∆x(k + i)‖+ ‖∆d+∆θ(k + i)‖

(7.65)

Hence, using (7.65) in (7.64), the upper bound of α3 can be expressed as:

α3 ≤ c3(Q,N,Nu) · (Lf‖∆x(k + i)‖+ ‖∆d+∆θ(k + i)‖) (7.66)

With the help of Lemma 4.4 the difference of the predicted states based on the optimal
and the feasible solution can be bounded with ‖∆x(k + i)‖ ≤ ‖cx∆ur‖. Using this
upper bound, (7.66) can be rewritten as:

α3 ≤ c3(Q,N,Nu) · (Lf‖cx∆ur‖+ ‖∆d+∆θ(k + i)‖) (7.67)

Finally, with Lemma 4.2 the increment in the steady-state input can be bounded by
‖∆ur‖ ≤ Lχ‖∆d + 2 ε‖ (see explanation for α2). Furthermore, with the uncertainty
limited by ‖θ(·)‖ ≤ ε the difference in the uncertainty is bounded by ‖∆θ(·)‖ ≤ 2 ε.
Hence, the upper bound of α3 (7.67) is defined by:

α3 ≤ c3(Q,Lχ, Lf , cx, N,Nu) · ‖∆d+ 2 ε‖ (7.68)

and depends on the constant c3(·, ·, ·, ·, ·, ·) as well as on the increments in the estimation
error and the bound of the uncertainty.

�
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Term α4: Under consideration of the local control law (7.38), the statement:

α4 = 0 (7.69)

holds.
�

Finally, upper bounds for the terms α1, α2 and α3 have been defined and it has been
shown that α4 = 0. These upper bounds depend only on the bound of the uncertainty
and the variation in the estimation error. Using these upper bounds in (7.49) the cost
difference ∆J(k + 1) = Jf(x(k + 1))− J∗(x(k)) is bounded by:

Jf(x(k + 1))− J∗(x(k)) ≤ −L(x∗(k|k), u∗(k|k), d(k), θ(k|k)) + cV ·‖∆d+ 2 ε‖ (7.70)

with L(x∗(k|k), u∗(k|k), d(k), θ(k|k)) being positive (except in the origin where this
term converges to zero) and the parameter cV given by:

cV = c1(Q,Nu) + c2(R,Lχ, Nu) + c3(Q,Lχ, Lf , cx, N,Nu)

The terms cV ·‖∆d+2 ε‖ > 0 and −L(x∗(k|k), u∗(k|k), d(k), θ(k|k)) ≤ 0 ensure that the
cost based on the feasible solution cost will decrease as long as the stage cost satisfies
−L(x∗(k|k), u∗(k|k), d(k), θ(k|k)) > cV ·‖∆d + 2 ε‖. Hence, the system is steered into
the set::

Ψd = {x : L(x∗(k|k), u∗(k|k), d(k), θ(k|k)) ≤ cV ·‖∆d+ 2 ε‖} (7.71)

from any arbitrary x. Nevertheless, when the state is inside the set Ψd, the system
may remain in it or evolve out of it as it is not guaranteed that the cost decreases.
For any x, the stage cost always satisfies −L(x∗(k|k), u∗(k|k), d(k), θ(k|k)) ≤ 0, hence
(7.70) can be written in the form:

Jf (x(k + 1)) ≤ J∗(x(k)) + cV ·‖∆d+ 2 ε‖ (7.72)

Besides, for any x(k) ∈ Ψd, the inequality:

J∗(x(k)) + cV ·‖∆d+ 2 ε‖ ≤ max
x∈Ψd

J∗(x) + cV ·‖∆d+ 2 ε‖ = βd (7.73)

holds. Now, from (7.72) and (7.73) follows that:

Jf (x(k + 1)) ≤ βd, ∀ x(k) ∈ Ψd (7.74)

Whenever the state enters into Ψd, it evolves into the set:

Ψβ = {x : Jf (x) ≤ βd} (7.75)

Finally, the system may evolve out of Ψd, but will remain in the set Ψβ. From the set
Ψβ the system will be steered again into Ψd and so on. As a consequence, the state is
ultimately bounded and the system is stabilized using the feasible solution.



Chapter 7. Volterra based min-max MPC 213

Furthermore, for the cost J∗(x(k + 1)) based on the optimal solution u∗(k + 1) at
k + 1 the statement:

J∗(x(k + 1)) ≤ Jf (x(k + 1)) (7.76)

holds. Then, with (7.74), (7.75) and (7.76) the proposed MMMPC strategy is also
ultimately bounded by the set Ψβ. Hence, the MMMPC strategy based on a second
order Volterra series model is input-to-state stable and maintains the system inside the
set Ψβ .

Remark 7.2 The equality constraint for the last element of the input sequence in

(7.26), also considered in the state-space optimization problem (7.29), is not necessary

to assure stability, i.e. the presented stability proof also holds without this constraint.

The consideration of this constraint allows to use the matrices and vectors defined

in the Appendix A.1. Without this constraint, the matrices and vectors used in the

prediction model (7.3)-(7.4) have to be modified in order to consider the local control

law h(x(k + i|k)) = ur for i = Nu, . . . , N − 1.

Remark 7.3 Without loss of generality the uncertainty in k can be assumed to satisfy

θ(k|k) = 0 as any error in the output has been already considered by the estimation

error d(k). The equality constraint is necessary for the stability proof as the stage

cost L(·, ·, ·, ·) for k has to be considered in the cost function (7.34). In contrast, the

effective implementation of the proposed min-max control strategy considers only the

future output values and, as a consequence, does not require this constraint as the

uncertainty θ(k|k) is not included in the optimization problem.

7.3 Experimental results

The two proposed MMMPC strategies based on second order Volterra series model
considering an additive uncertainty were implemented in the Matlab/Simulink envi-
ronment and applied to the pilot plant emulating an exothermic chemical reaction.
The maximal uncertainty has been determined with the help of the two data sets used
in Section 3.1.3 to identify and validate a second order Volterra series model. The
maximum error between the measured output and the model output represents the
maximum uncertainty which has to be considered in the min-max control strategy.
Finally, exploiting the mentioned data sets, a value of w = 6 has been identified. In
the following sections, the experimental results obtained with the proposed min-max
control strategies will be presented.
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7.3.1 Volterra based MMMPC with exact worst case cost

The MMMPC strategy presented in Section 7.1.3 was tested on the pilot plant by means
of setpoint tracking and disturbance rejection experiments. The minimization of the
worst case cost was carried out by Sequential Quadratic Programming (SQP) and for
the computation of the worst case the explicit solution (7.19) was used. The control
strategy was implemented with a prediction horizon of N = 25, a control horizon of
Nu = 15, a weighting of the control effort of λ = 5 and a bound of w = 6 for the
uncertainty. Furthermore, the following input constraints have been considered in the
computation of the input sequence:

5 ≤ u(k + i|k) ≤ 100, i = 0, . . . , 14

−20 ≤ ∆u(k + i|k) ≤ 20, i = 0, . . . , 14
(7.77)

Note that the constraints θ(k + i|k) ≤ 1 for i = 1, . . . , 25 are already included in
the computation of the worst case cost and do not require a consideration during the
minimization of the resulting cost.

In a first step, the proposed MMMPC strategy was validated in a setpoint tracking
experiment (see Fig. 7.1). Starting in steady state and with a reference of 55 oC, the
setpoint was changed in t = 30min to a value of 65 oC and in t = 90min to 45 oC.
After the setpoint changes a small overshoot of approximately 1 oC and −0.5 oC can
be observed. After the stabilization of the temperature, the input signal shows only
small changes, necessary to maintain the system output in the given reference.

The second experiment with the proposed min-max control strategy was carried
out with an error in the emulated exothermic chemical reaction (see Fig. 7.2). The
error was introduced in the activation energy E and held constant during the entire
experiment. With the parameter E having a strong influence on the dynamics of the
underlying chemical model, the value of the mentioned parameter was increased only
by 3%. Furthermore, the setpoint changes applied to the system were the same as the
ones shown in Fig. 7.1. In the experimental results shown in Fig. 7.2, the setpoint
changes result in an overshoot of 1.2 oC and −1.3 oC, only slightly higher than in the
experiments with the nominal model. Generally, the control strategy stabilizes the
system in the given setpoint and controls the system without difficulties in spite of the
introduced error.

In the third experiment, the disturbance rejection capabilities of the proposed con-
trol strategy were validated by means of an additive disturbance in the system input
(see Fig. 7.3). The additive disturbance had a value of ∆v8 = −15% and was active
from t = 70min until t = 110min. In absence of the disturbance, the valve opening is
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Figure 7.1: Setpoint tracking experiment controlled by the proposed MMMPC strategy.

From top to bottom: tank temperature T , aperture of the valve v8, emulated concentration

CA and computation time tc.

given by v8 = u, i.e. the valve opening corresponds to the value computed by the con-
trol strategy. During the application of the disturbance, the effective valve opening is
defined by v8 = u+∆v8. After the application of the disturbance, the control strategy
efficiently compensates the error in the temperature by increasing the control signal u.
After the sudden disappearance of the disturbance, the effective opening of the valve
is to high and results in a negative error in the temperature. The reduction of the
valve opening compensates the output error and stabilizes the system in the desired
reference. The results show that the control strategy efficiently rejects the disturbance
in the system input.

Finally, in the last experiment (see Fig. 7.4) the proposed MMMPC strategy was
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Figure 7.2: Disturbance rejection experiment (persistent disturbance in the emulated chem-

ical reaction) controlled by the proposed MMMPC strategy. From top to bottom: tank

temperature T , aperture of the valve v8, emulated concentration CA and computation time

tc.

tested applying an additive disturbance in the feed Ff . Starting the experiment with
the nominal value of the feed, a disturbance of ∆Ff = −0.02 l/s, which corresponds to
an error of −40%, was introduced in t = 60min and held constant until the end of the
experiment. After the appearance of the disturbance, the concentration CA decreases
and, as a consequence, the temperature falls below the given setpoint and results
in a maximum error of −2.5 oC. The control strategy reacts rapidly and efficiently
compensates the error in the system output in approximately 15 minutes. In spite
of the magnitude of the introduced disturbance, the control strategy shows a good
behavior without significant oscillations in the input signal and the temperature.
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Figure 7.3: Disturbance rejection experiment (disturbance in the valve opening v8) controlled

by the proposed MMMPC strategy. From top to bottom: tank temperature T , aperture of

the valve v8, emulated concentration CA, input value u calculated by the controller and

computation time tc.

The obtained results show that the proposed MMMPC strategy stabilizes the bench-
mark system in the given setpoint, even in presence of strong disturbances. The errors
in the system output as a result of disturbances have been efficiently compensated
without difficulties and underline the disturbance rejection capabilities of the proposed
control strategy.

In the presented experiments, the control strategy needed an average time of tavgc =

0.442 s to compute the input signal, with a maximum of tmax
c = 0.616 s and a minimum

of tmin
c = 0.146 s. Hence, the optimization problem was solved within the used sampling

time of ts = 60 s.
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Figure 7.4: Disturbance rejection experiment (disturbance in the feed Ff ) controlled by the

proposed MMMPC strategy. From top to bottom: tank temperature T , aperture of the valve

v8, emulated concentration CA, feed Ff and computation time tc.

7.3.2 Volterra based MMMPC with exact worst case cost and

guaranteed stability

The MMMPC strategy with guaranteed stability, proposed in Section 7.2, was validated
in experiments with the pilot plant emulating an exothermic chemical reaction. Several
experiments were carried out to test the setpoint tracking and disturbance rejection
capabilities of the developed control strategy. The computation of the input sequence
was implemented with sequential quadratic programming minimizing the worst case
cost given by (7.19). In order to satisfy the necessary condition N ≥ Nt + Nu for
guaranteed stability, a prediction horizon of N = 80 and a control horizon of Nu = 15

were used. Analogously to Section 7.3.1, the control effort was weighted with λ = 5
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and a bound of w = 5 for the uncertainty was employed. Furthermore, the constraints:

5 ≤ u(k + i|k) ≤ 100, i = 0, . . . , 14

−20 ≤ ∆u(k + i|k) ≤ 20, i = 0, . . . , 14

u(k + 14|k) = ur(k)

(7.78)

were considered in the computation of the input sequence. The constraints θ(k+ i|k) ≤
1 for i = 1, . . . , 80 have been considered implicitly in the computation of the worst
case cost.

In the first experiment carried out with the pilot plant, the setpoint tracking quality
of the proposed MMMPC strategy with guaranteed stability was validated. During the
experiment, see the results in Fig. 7.5, the setpoint was changed in t = 30min from
55 oC to 65 oC and set in t = 90min to 45 oC. The setpoint changes lead to a very
fast reaction of the control strategy which stabilizes the system in the given reference
without any overshoot. After the stabilization of the system, neither the temperature
nor the input signal show oscillations. In steady state, only small modifications in the
input signal can be observed, necessary to maintain the system output in the setpoint.
With respect to the results presented in Fig. 7.1, the higher prediction horizon leads
to a slower setpoint tracking, but also eliminates the overshoot resulting from the
step-wise change of the reference.

In the second experiment the disturbance rejection capability of the proposed con-
trol strategy was validated by means of an error in the parameter E of the underlying
exothermic chemical reaction. The introduced error, increasing the parameter E by 3%

of the nominal value, was held constant during the entire experiment while two setpoint
changes were applied to the system. After the application of the setpoint changes, the
control strategy reacts rapidly and stabilizes the system in the given reference. In spite
of the model mismatch (due to the error in the underlying chemical reaction model)
only a small overshoot can be observed, approximately 0.6 oC and −0.7 oC after the
first and the second change, respectively. In comparison to the results presented in Fig.
7.2, the MMMPC strategy with guaranteed stability shows a slightly slower adoption
of the new setpoint, but also reduces considerably the resulting overshoot.

In the third experiment (see Fig. 7.7) with the proposed control strategy an additive
disturbance in the system input was applied to the system. The disturbance had a
value of ∆v8 = −15% and was active in the interval from t = 70min to t = 110min.
Without the disturbance, the effective opening of the valve corresponds to the input
signal computed by the control strategy, i.e. v8 = u, whereas during the application
of the disturbance the valve opening is given by v8 = u+∆v8. The application of the
disturbance leads to a lower valve opening v8 and results in an increasing temperature.
With an increasing error in the system output, the control strategy gradually opens
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Figure 7.5: Setpoint tracking experiment controlled by the proposed MMMPC strategy

with guaranteed stability. From top to bottom: tank temperature T , aperture of the valve

v8, emulated concentration CA and computation time tc.

the valve and compensates the divergence. When the system reaches steady state in
t = 100min, the effective valve opening corresponds to the one before the application
of the disturbance. After the disappearance of the disturbance, the proposed control
strategy reduces the input signal and stabilizes the system output in the given reference.
The complete disturbance rejection underlines the robustness of the proposed control
strategy.

In the last experiment (see Fig. 7.8) with the pilot plant emulating an exothermic
chemical reaction, the proposed MMMPC strategy with guaranteed stability was val-
idated by means of a disturbance in the feed Ff . The disturbance ∆Ff = −0.02 l/s,
which corresponds to an error of −40% with respect to the nominal feed, was applied
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Figure 7.6: Disturbance rejection experiment (persistent disturbance in the emulated chem-

ical reaction) controlled by the proposed MMMPC strategy with guaranteed stability. From

top to bottom: tank temperature T , aperture of the valve v8, emulated concentration CA and

computation time tc.

to the system in t = 60min and held constant until the end of the experiment. The
disturbance in the feed reduces the supply of the reactive and leads to a decreasing
concentration CA. As a consequence, the chemical reaction slows down and the tem-
perature falls below the given setpoint. With an increasing error in the system output
(with a maximum error of −2.6 oC), the control strategy reduces the valve opening
and rejects the disturbance in approximately 15 minutes. After stabilizing the system
output, the input signal shows small oscillations, justified by the magnitude of the
applied disturbance.

The proposed MMMPC strategy with guaranteed stability was successfully applied
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Figure 7.7: Disturbance rejection experiment (disturbance in the valve opening v8) controlled

by the proposed MMMPC strategy with guaranteed stability. From top to bottom: tank

temperature T , aperture of the valve v8, emulated concentration CA, input value u calculated

by the controller and computation time tc.

to the pilot plant emulating an exothermic chemical reaction. The obtained exper-
imental results showed that the control strategy stabilizes the system output in the
setpoint and efficiently rejects uncertainties and disturbances. The compensation of
output errors as a result of disturbances underlines the robustness of the min-max con-
trol strategy. Furthermore, it is worth mentioning that the computation of the input
signal was always carried out within the used sampling time of ts = 60 s. In the pre-
sented results, the optimization problem was solved in an average time of tavgc = 0.925 s,
with a minimum of tmin

c = 0.285 s and a maximum of tmax
c = 4.408 s. Note that the

triplication of the prediction horizon in comparison to Section 7.3.1 results only in a
duplication of the necessary average computation time.
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Figure 7.8: Disturbance rejection experiment (disturbance in the feed Ff ) controlled by the

proposed MMMPC strategy with guaranteed stability. From top to bottom: tank temperature

T , aperture of the valve v8, emulated concentration CA, feed Ff and computation time tc.

7.4 Conclusions of the chapter

In this chapter two MMMPC strategies based on second order Volterra series models
have been presented. The min-max approach has been used to take into account model
uncertainties and to increase the robustness of the control strategies. The uncertainty
has been considered as an additive term and the factor w, which corresponds to the
upper bound of the uncertainty, can be easily obtained from experimental data.

The proposed control strategies calculate the input sequence by minimizing the
worst case with respect to the model uncertainty. Usually, the computation of the
worst case cost requires the evaluation of 2N possible vertices of the uncertainty. For
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the used second order Volterra series model it was shown that the exact worst case cost
can be calculated easily under consideration of the non-autoregressive character of the
model. As a consequence, the resulting optimization problem has practically the same
computational complexity as a constrained MPC problem based on a second order
Volterra series model. Note that the easy computation of the exact worst case cost is
not limited to the used second order Volterra series models, but can be used for other
non-autoregressive models. The reduced computational complexity of the optimization
problem allows the implementation of the proposed min-max control strategies with
larger prediction horizons than the ones used when evaluating all possible vertices of
the uncertainty. Furthermore, for the control strategy presented in Section 7.2, input-
to-state stability was proven for a prediction horizon satisfying N ≥ Nu +Nt.

After the theoretical development, both control strategies were implemented and
validated in experiments. With the used benchmark system, the pilot plant emulating
an exothermic chemical reaction, several setpoint and disturbance rejection experi-
ments were carried out. The proposed control strategies confirmed their robustness
stabilizing the system even in presence of strong disturbances. With the explicit for-
mulation of the worst case, the computation of the input sequence was carried out
without difficulties within the used sampling time. Finally, the performance of the
proposed control strategies was illustrated by means of experimental results.
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Conclusions

This thesis dealt with the development of novel MPC strategies both for nonlinear and
uncertain systems. Particular attention has been paid to the practical applicability of
the new control strategies in consideration of stabilizing issues. Discrete-time Volterra
series models played an important role in the development of MPC strategies, but also
discrete-time uncertain linear systems have been considered.

The unarguable success of linear MPC in industrial applications has several reasons,
amongst the most important ones the intuitive formulation of the optimization pro-
blem, the consideration of constraints, the easy implementation of the resulting control
law as well as the possibility to control processes in a wide range of different industrial
areas. In contrast, NMPC and MMMPC are used seldom in practical applications and
receive much less attention in industrial fields. The minor interest in these advanced
MPC techniques has its origin in several factors, important ones being the difficulty to
obtain suitable prediction models and the computational complexity to solve the opti-
mization problem. Besides, the NLP algorithms used to solve the possibly non-convex
optimization problem of NMPC are less reliable than the optimization algorithms used
in linear MPC. Other more theoretical problems when dealing with advanced control
techniques as NMPC and MMMPC include stability, robustness and optimality issues.

With the mentioned problems in mind, several robust and nonlinear MPC strate-
gies, presented in the previous chapters, have been developed. The considered models
to approximate the dynamics of a given system are easily obtainable from experimental
input-output data and prevent the problems of a difficult and expensive identification.
Two different model types have been considered in the development of control strate-
gies: Volterra series models and linear models in state-space representation. Both mod-
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Algorithm Stab. Prog. tmin
c tmax

c tavgc

Iterative optim. QP 0.021 s 0.481 s 0.059 s

Iterative optim. yes QP 0.031 s 0.284 s 0.076 s

Convexification NLP 0.066 s 4.462 s 0.736 s

Convexification yes NLP 0.200 s 7.945 s 1.115 s

MMMPC (nonl. bound) yes NLP 0.398 s 3.276 s 0.783 s

MMMPC (quad. bound) yes QP 0.088 s 0.179 s 0.097 s

nonlin. MMMPC NLP 0.146 s 0.616 s 0.442 s

nonlin. MMMPC yes NLP 0.285 s 4.408 s 0.939 s

MPC QP 0.021 s 0.112 s 0.031 s

MPC yes QP 0.031 s 0.160 s 0.060 s

Table 8.1: Comparison between the different control strategies with respect to the necessary

solvers and the required computation times in the experiments with the pilot plant.

els can be identified with least squares estimation methods, a standard identification
technique in control engineering and widely used in industry. For the development of
robust MPC strategies, both models have been extended to include persistent bounded
additive disturbances. The corresponding bound can be easily determined by means
of a comparison of the measured system output and the predicted model output.

With respect to the numerical complexity to solve the optimization problem of
MMMPC and NMPC strategies, different methods to reduce the computational bur-
den have been presented. The proposed control strategies have been implemented and
applied to at least one benchmark system. The control performance has been illustrated
by experimental results, both from setpoint tracking and disturbance rejection exper-
iments, and the practical applicability has been shown. Furthermore, it was shown
that a modification in the cost function and a sufficiently large prediction horizon can
ensure robust stability of the MPC strategies based on Volterra series models. Besides,
it was proven that the linear MMMPC based on a nonlinear upper bound ultimately
bounds the system state and, as a consequence, guarantees robust stability.

To give a small overview of the presented MPC strategies, the Tables 8.1 and 8.2
summarize the required times to compute a new input sequence (with average, mini-
mum and maximum computation times) and the Sum of Square Errors (SSE) obtained
in the different experiments with the pilot plant. Furthermore, the mentioned tables
provide information about the type of programming problem and if the proposed strat-
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egy guarantees closed-loop stability. For comparison issues, the numerical results of a
linear MPC have been included in the overview (for detailed information on the applied
MPC see Appendix A.9). The presented values show that the iterative optimization
algorithm for NMPC based on Volterra series models (Chapter 4), the linear MMMPC
based on a quadratic upper bound (Section 6.3) and the linear MPC (Appendix A.9),
i.e. the optimization problems which represent a quadratic programming (QP) pro-
blem, require lower computation times to compute an input sequence and can be used
to control processes with fast dynamics. The convexification approach for NMPC based
on Volterra series models (Chapter 5), the linear MMMPC based on a nonlinear upper
bound (Section 6.2) and the nonlinear MMMPC based on Volterra series models (Chap-
ter 7) are Nonlinear Programming (NLP) problems with a computational complexity
considerably superior to the one of the QP problems. Nevertheless, with modern NLP
methods, e.g. SQP solvers, the optimization problems of the proposed MPC strategies
are solvable in a reasonable time and are valid for processes with slow and intermediate
fast dynamics. Obviously, the comparison of the control performance of the proposed
control strategies is a difficult task1 as some strategies worked better in one experiment
and other strategies worked better in another experiment, e.g. the best SSE values in
the setpoint tracking experiment with the nominal model are associated to the NMPC
based on the convexification approach whereas in the experiment with a perturbation
in the valve the nonlinear MMMPC strategy gave the best results.

Nevertheless, it can be seen clearly that the application of the MMMPC and NMPC
strategies to the pilot plant results in all cases in lower SSE values than the linear MPC.

Summarizing the previous chapters, the main contributions of this thesis are the
following key issues:

• As a basic necessity for the practical application of NMPC, several different pro-
cesses with nonlinear dynamics have been approximated by second order Volterra
series models. The complex dynamic behavior of processes is difficult to approx-
imate by mathematical models, even with nonlinear models. Nevertheless, the
nonlinear character of Volterra series models offers the possibility to improve the
approximation quality with respect to the employment of linear models. Besides,
one of the benchmark system has been modeled by an uncertain linear model with
an additive persistent disturbance. The used model structures allow to determine
the parameters with linear identification techniques and have been chosen with

1An analytical comparison of the different MPC strategies with respect to their control perfor-

mance should be based on the results from computer simulations in order to avoid the influence of

non-reproducible exogenous disturbances. Furthermore, differentiated performance indices should be

used for a detailed analysis of the control performance with respect to setpoint tracking, disturbance

rejection and stabilization issues.
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Algorithm Stab. nominal error param. pert. feed pert. valve

Iterative optim. 2056.51 2098.15 1120.80 1088.31

Iterative optim. yes 2140.14 2136.82 1447.52 1495.71

Convexification 1934.44 1930.41 1119.80 1123.22

Convexification yes 1660.83 1690.92 803.72 764.42

MMMPC (nonl. bound) yes 2420.20 2301.37 1071.37 684.03

MMMPC (quad. bound) yes 2463.15 2294.94 1129.73 677.65

nonlin. MMMPC 2224.91 2208.78 1042.3 633.40

nonlin. MMMPC yes 2316.90 2318.31 1020.65 695.73

MPC 2675.26 2635.40 1549.22 1535.22

MPC yes 2621.67 2517.47 1529.92 1767.12

Table 8.2: Comparison between the different control strategies with respect to the Sum of

Square Errors (SSE) obtained in the presented experiments with the pilot plant.

the idea of a simple identification process.

• A computationally efficient unconstrained iterative optimization algorithm for
NMPC based on second order Volterra series models without weighting of the
control effort has been extended to include both linear constraints and a penal-
ization of the control effort. Furthermore, it was shown that a minor change in
the used cost function and a suitable prediction horizon ensures input-to-state
stability of the constrained iterative optimization algorithm.

• In view of the possibly non-convex optimization problem resulting from a quadratic
cost function in combination with second order Volterra series models, an NMPC
based on a convexification approach has been developed. This novel approach
approximates the original cost function by a series of convex quadratic functions.
These approximations represent a convex hull of the original cost function and
can be minimized globally. After a small modification in the used quadratic cost
function it has been proven that the NMPC using the proposed convexification
approach guarantees stability for sufficiently long prediction horizons.

• Robust stability of a linear MMMPC strategy has been proven. This control
strategy uses a nonlinear upper bound of the worst case cost and reduces consid-
erably the numerical complexity to solve the optimization problem. The reduc-
tion in the complexity is achieved by a diagonalization algorithm which allows a
fast computation of an upper bound of the worst case cost. Then, instead of the
evaluation of all possible vertices of the sequence of future uncertainties only a
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matrix has to be diagonalized. The reduction of the computational complexity
allows a faster computation of the input sequence and the use of longer prediction
horizons.

• A novel MMMPC strategy based on uncertain second order Volterra series has
been developed. The persistent bounded uncertainty has been considered in the
prediction model as an additive term where the bound can be easily determined
from a comparison of the system output and the predicted model output. It was
shown that an explicit expression of the worst case cost can be obtained, i.e.
the min-max optimization problem is reduced to a mere minimization problem.
Finally, a small modification in the cost function allowed to prove robust stability
of the proposed control strategy for a suitable prediction horizon.

• With respect to the practical applicability, the presented control strategies (with
exception of the unconstrained iterative optimization algorithm which was used
as a starting point for the development of new control strategies) have been im-
plemented and validated in experiments with at least one of the benchmark sys-
tems. In the experiments it was observed that the different NMPC and MMMPC
strategies had an improved control performance in comparison to linear MPC.
The successful application of the different control strategies shown in this work
joins the small number of NMPC and MMMPC applications reported in special-
ized literature.

Finally, some possible directions for future research include:

• The presented iterative optimization algorithms for NMPC based on second order
Volterra series models are computationally very efficient, but suffer from conver-
gence problems in the case of a non-convex optimization problem. Nevertheless,
convergence of the iterative algorithm can be assured by a suitable choice of the
weighting of the control effort or the use of a filter for the reference. A study of
the necessary conditions to guarantee convergence would improve the iterative
optimization algorithm.

• The presented convexification approach approximates the possibly non-convex
cost by convex quadratic functions and allows the global minimization of the
initial optimization problem. The simultaneous minimization of several convex
quadratic functions represents a quadratic programming problem which can be
solved by modern convex optimization algorithms as SQP methods. The use of
Linear Matrix Inequalities (LMIs) could reduce the computational burden to solve
the optimization problem allowing a faster computation of the input sequence.
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• The MMMPC strategy based on uncertain second order Volterra series is based
on an explicit formulation of the worst case, i.e. the min-max optimization pro-
blem degenerates to a minimization problem solvable by NLP algorithms. Here,
the possibility to solve the minimization problem by the iterative optimization
algorithm or the convexification approach could be studied.

• Non-autoregressive Volterra series models can be used to approximate a wide
range of open-loop stable systems, but are not valid for unstable systems. Here,
feedback controllers can be used to pre-stabilize the system enabling the possi-
bility to approximate the extended system (process + feedback controller) by a
non-autoregressive Volterra series model. The hierarchical control with an exte-
rior control loop containing a control strategy based on a Volterra series model
and an interior control loop with the stabilizing feedback controller could am-
plify the range of possible applications of Volterra series models in NMPC and
MMMPC.

• The finite control horizon and the constraints considered in the optimization
problem of an MPC strategy can result in unreachable states/output values for
a given reference, especially after setpoint changes. In this case the feasibility
of the optimization problem is not always ensured. In order to avoid the loss of
feasibility the tracking problem can be considered in the design of MPC strategies
which guarantee constraint satisfaction for any admissible setpoint.

• Different MMMPC strategies have been presented, both for linear models and
second order Volterra series models, and successfully applied to a benchmark
system. On a more theoretical basis, the increase in robustness of the proposed
MPC strategies could be analyzed.

• Another possibility is the use of parametric uncertainties and state-dependent
uncertainties in MMMPC based on Volterra series models. A possible future re-
search line could consider these uncertainties in the development of new MMMPC
strategies and analyze the closed-loop robustness, an important issue in industrial
applications.
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Mathematical definitions

A.1 Prediction model

The future output of the second order Volterra series model (2.10) is calculated with
the definitions of vectors and matrices taken from [77, 38] using the control horizon
Nu, the prediction horizon N and the truncation order Nt. It is assumed that the
horizons and the truncation order satisfy the condition: Nu ≤ N ≤ Nt. With the
following definitions, the prediction model (2.43)-(2.44) in matricial form can be used
to calculate the predicted output of a second order Volterra series model.

The vector ŷ ∈ R
N of the estimated future output at k has the form:

ŷ =








ŷ(k + 1|k)

ŷ(k + 2|k)
...

ŷ(k +N |k)








(A.1)

The input sequence u ∈ R
Nu computed at k is defined as:

u =








u(k|k)

u(k + 1|k)
...

u(k +Nu − 1|k)








(A.2)

The vector up ∈ R
Nt contains the input signals applied to the system in the previous

231
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sampling periods and can be written as:

up =








u(k − 1)

u(k − 2)
...

u(k −Nt)








(A.3)

The estimation error, defined as the difference between the measured output y(k) in
the current instant and the output estimation ŷ(k|k−1) made in the previous sampling
period, can be written as1:

d(k) = y(k)− ŷ(k|k − 1) (A.4)

As the estimation error can be calculated only for the current sampling period k and
not for every sampling period over the entire prediction horizon, the vector d ∈ R

N is
given by:

d =








d(k)

d(k)
...

d(k)








(A.5)

The matrix G ∈ R
N×Nu represents the linear influence of the future control actions on

the system output. Assuming u(k + j|k) = u(k + Nu − 1|k) ∀ Nu ≤ j ≤ N − 1, i.e.
a constant control signal after reaching the end of the control horizon2, the matrix G
containing the linear term parameters of the model is defined as:

G =
















h1(1) 0 . . . 0

h1(2) h1(1)
. . . 0

...
...

. . . h1(1)
...

...
. . . h1(1) + h1(2)

...
...

. . .
...

h1(N) h1(N − 1) . . .
N−Nu+1∑

i=1

h1(i)
















(A.6)

Analogously, the matrix H ∈ R
N×Nt , considering the influence of the past input values

over the future system output, contains the linear term parameters. If the prediction

1The definition of the estimation error d(k) corresponds to the one presented in (2.39). In order

to define completely the prediction model (2.43)-(2.44), the equation is repeated in this section.
2As already mentioned in Section 2.3, it is not necessary define the future input signal beyond the

prediction horizon, therefore the constant input signal is defined only for Nu ≤ j ≤ N − 1.
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horizon is shorter than the truncation order, i.e. N < Nt, the matrix H is defined as:

H =










h1(2) h1(3) . . . . . . . . . h1(Nt) 0

h1(3) h1(4) . . . . . . h1(Nt) 0 0
...

...
...

...
...

...
...

h1(N) . . . . . . h1(Nt) 0 . . . 0

h1(N + 1) . . . h1(Nt) 0 0 . . . 0










, for N < Nt (A.7)

For N = Nt the matrix H can be written in the following form:

H =












h1(2) h1(3) . . . . . . h1(Nt) 0

h1(3) h1(4) . . . h1(Nt) 0 0
...

...
...

...
...

...
h1(Nt − 1) h1(Nt) 0 . . . . . . 0

h1(Nt) 0 0 . . . . . . 0

0 0 0 . . . . . . 0












, for N = Nt (A.8)

The function f(u) : RNu 7→ R
N maps the input sequence u to the term containing the

future-future and future-past cross terms. As f(u) is used in (2.43) it will be used like
a vector in R

N and is defined generally as:

f(u) =








f(k + 1)

f(k + 2
...

f(k +N)








(A.9)

with the elements

f(k + i) = f1(k + i)T · B · f2(k + i) (A.10)

where the matrix B is given in (A.18). The vectors f1(k+ i) ∈ R
Nt and f2(k+ i) ∈ R

Nt

are defined for the case i ≤ Nu as:

f1(k + i) =

















u(k + i− 1|k)

u(k + i− 2|k)
...

u(k|k)

0

0
...
0

















, i = 1, . . . , Nu (A.11)



234 A.1. Prediction model

f2(k + i) =

















u(k + i− 1|k)

u(k + i− 2|k)
...

u(k|k)

u(k − 1)

u(k − 2)
...

u(k −Nt + i)

















, i = 1, . . . , Nu (A.12)

and for the case i > Nu, under consideration of a a constant control signal after reaching
the end of the control horizon, as:

f1(k + i) =






















u(k +Nu − 1|k)
...

u(k +Nu − 1|k)

u(k +Nu − 2|k)
...

u(k|k)

0

0
...
0






















, i = Nu + 1, . . . , N (A.13)

f2(k + i) =






















u(k +Nu − 1|k)
...

u(k +Nu − 1|k)

u(k +Nu − 2|k)
...

u(k|k)

u(k − 1)

u(k − 2)
...

u(k −Nt + i)






















, i = Nu + 1, . . . , N (A.14)

Analogously, the vector g ∈ R
N , containing the nonlinear terms depending exclusively
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on the past input signals, can be written in a general way as3:

g =








g(k + 1)

g(k + 2
...

g(k +N)








(A.15)

with the elements
g(k + i) = g1(k + i)T ·B · g1(k + i) (A.16)

The vectors g1(k + i) ∈ R
Nt are defined for 1 ≤ i ≤ N as:

g1(k + i) =















0
...
0

u(k − 1)

u(k − 2)
...

u(k −Nt + i)















(A.17)

The matrix B ∈ R
Nt×Nt used to calculate the vectors f(u) (A.9) and g (A.15) contains

the second order term parameters of the Volterra series model. It can be written as:

B =










h2(1, 1) h2(1, 2) h2(1, 3) . . . h2(1, Nt)

0 h2(2, 2) h2(2, 3) . . . h2(2, Nt)

0 0 h2(3, 3) . . . h2(3, Nt)
...

...
...

. . .
...

0 0 0 0 h2(Nt, Nt)










(A.18)

The vector h0 ∈ R
N considering the offset h0 of the second order Volterra series model

in the prediction model (2.43)-(2.44) is defined as:

h0 =








h0
h0
...
h0








(A.19)

Finally, with the definition of the vectors and matrices u (A.2), up (A.3), d (A.5),
G (A.6), H (A.7)-(A.8), f(u) (A.9), g (A.15) and h0 (A.19) the model (2.43)-(2.44):

3Note that g is a function g(up) : R
Nt 7→ R

N mapping the vector up of past input values to the

term containing the past-past cross terms. As g(up) depends on the input values already applied, i.e.

possesses a constant argument, the function g(up) is denoted as a constant vector g oppressing the

argument up. Compare the definition of f(u) (A.9) where the argument has not been oppressed.
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ŷ = Gu+ c + f(u) (A.20)

c = Hup + g + h0 + d (A.21)

can be used as an prediction model for systems represented by second order Volterra
series models.

A common technique to reduce the number of parameters is the use of diagonal
Volterra series models. For these models the second order term parameters satisfy the
condition h2(i, j) = 0 for i 6= j. In this case the calculation of f(u) and g can be
simplified as no cross terms depending on u and up have to be considered. Therefore,
the term f(u) considering only quadratic terms is defined as:

f(u) = Gdiag · diag(u) · u (A.22)

and analogously the term g can be written as:

g = Hdiag · diag(up) · up (A.23)

The matrix Gdiag ∈ R
N×Nu , containing the second order term parameters, is defined in

a similar way as the matrix G (A.6):

Gdiag =
















h2(1, 1) 0 . . . 0

h2(2, 2) h2(1, 1)
. . . 0

...
...

. . . h2(1, 1)
...

...
. . . h2(1, 1) + h2(2, 2)

...
...

. . .
...

h2(N,N) h2(N − 1, N − 1) . . .
N−Nu+1∑

i=1

h2(i, i)
















(A.24)

The matrix Hdiag ∈ R
N×Nt is defined analogously to H (A.7)-(A.8) for N < Nt as:

Hdiag =










h2(2, 2) h2(3, 3) . . . . . . . . . h2(Nt, Nt) 0

h2(3, 3) h2(4, 4) . . . . . . h2(Nt, Nt) 0 0
...

...
...

...
...

...
...

h2(N,N) . . . . . . h2(Nt, Nt) 0 . . . 0

h2(N+1, N+1) . . . h2(Nt, Nt) 0 0 . . . 0










for N < Nt (A.25)
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and in the case N = Nt as:

H2 =












h2(2, 2) h2(3, 3) . . . . . . h2(Nt, Nt) 0

h2(3, 3) h2(4, 4) . . . h2(Nt, Nt) 0 0
...

...
...

...
...

...
h2(Nt − 1, Nt − 1) h2(Nt, Nt) 0 . . . . . . 0

h2(Nt, Nt) 0 0 . . . . . . 0

0 0 0 . . . . . . 0












for N = Nt (A.26)

A.2 Objective function for MPC

This section defines the input increment sequence ∆u and the reference trajectory r

used in the objective function in Section 2.4. The matrices and vectors of the prediction
model based on the second order Volterra series model have been defined in Appendix
A.1.

The input increment sequence ∆u ∈ R
Nu represents the calculated control incre-

ments along the control horizon Nu and is defined as:

∆u =








∆u(k|k)

∆u(k + 1|k)
...

∆u(k +Nu − 1)







=








u(k|k)− u(k − 1)

u(k + 1|k)− u(k|k)
...

u(k +Nu − 1)− u(k +Nu − 2)








(A.27)

The vector r ∈ R
N denotes the reference trajectory along the prediction horizon N

and can be defined as:

r =








r(k + 1)

r(k + 2)
...

r(k +N)








(A.28)

A.3 Matrix scaling

In the model (3.20) used to approximate the dynamics of the fuel cell a nonlinear scaling
by the last measured value of the disturbance has been included. As a consequence of
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this scaling the matrices G and H of the prediction model (2.43)-(2.44) and the matrix
B used to compute the vectors f (A.9) and g (A.15) have to be modified in order to
contain the mentioned scaling.

The matrix G ∈ R
N×Nu , previously defined in (A.6), containing the scaling by the

disturbance is defined as:

G =
1

w(k)
















h1(1) 0 . . . 0

h1(2) h1(1)
. . . 0

...
...

. . . h1(1)
...

...
. . . h1(1) + h1(2)

...
...

. . .
...

h1(N) h1(N − 1) . . .
N−Nu+1∑

i=1

h1(i)
















(A.29)

Analogously, the matrixH ∈ R
N×Nt , initially defined in (A.7) and (A.8), can be written

for N < Nt as:

H =
1

w(k)










h1(2) h1(3) . . . . . . . . . h1(Nt) 0

h1(3) h1(4) . . . . . . h1(Nt) 0 0
...

...
...

...
...

...
...

h1(N) . . . . . . h1(Nt) 0 . . . 0

h1(N + 1) . . . h1(Nt) 0 0 . . . 0










for N < Nt

(A.30)

and for N = Nt as:

H =
1

w(k)












h1(2) h1(3) . . . . . . h1(Nt) 0

h1(3) h1(4) . . . h1(Nt) 0 0
...

...
...

...
...

...
h1(Nt − 1) h1(Nt) 0 . . . . . . 0

h1(Nt) 0 0 . . . . . . 0

0 0 0 . . . . . . 0












for N = Nt

(A.31)

In the same way, the matrix B ∈ R
Nt×Nt , defined in (A.18), is modified to include the

scaling by the disturbance and is defined by:

B =
1

w(k)










h2(1, 1) h2(1, 2) h2(1, 3) . . . h2(1, Nt)

0 h2(2, 2) h2(2, 3) . . . h2(2, Nt)

0 0 h2(3, 3) . . . h2(3, Nt)
...

...
...

. . .
...

0 0 0 0 h2(Nt, Nt)










(A.32)
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A.4 Stability of nominal MPC based on the iterative

optimization

This section will proof the asymptotic stability for the constrained optimization pre-
sented in Section 4.4 based on the nominal prediction model, i.e. (2.43)-(2.44) without
considering an estimation error. The initial optimization problem is already defined
by (4.28)-(4.29). In a first step, the optimization problem will be rewritten in state-
space representation and a feasible solution to the problem will be defined. Based on
the feasible solution, asymptotic stability for the initial optimization problem can be
shown.

A.4.1 Optimization problem in state-space representation

For the stability proof of the proposed nonlinear predictive control strategy (4.28)-
(4.29) based on the second order Volterra series model without considering an estima-
tion error (2.60) the following general model predictive control optimization problem
is considered:

min
u(k)

J(x(k),u(k))

s.t. u(k + i|k) ∈ U, i = 0, . . . , Nu − 1

h(x(k + i|k)) ∈ U, i = Nu, . . . , N − 1

x(k + i|k) ∈ X, i = 0, . . . , N − 1

x(k +N |k) ∈ Ω

(A.33)

being J(x(k),u(k)) the cost for a finite prediction horizon N and finite control horizon
Nu with Nu ≤ N . The initial state is denoted x(k) and u(k) is the input sequence
with the Nu future input values. After reaching the end of the control horizon, the
local control law h(x(k+ i|k)) for i = Nu, . . . , N−1 is used to calculate the predictions
x(k + i|k) for i = Nu + 1, . . . , N . The successor state is generally defined by:

x(k + i+ 1|k) = φ(x(k + i|k), u(k + i|k)), i = 0, . . . , Nu − 1

x(k + i+ 1|k) = φ(x(k + i|k), h(x(k + i|k))), i = Nu, . . . , N
(A.34)

and the sequence u(k) is calculated at k minimizing (A.33) is given by:

u(k) = [u(k|k), u(k + 1|k), . . . , u(k +Nu − 1|k)]T (A.35)

The cost function J(x(k),u(k)) for a prediction horizon N and a control horizon Nu

can be written as:

J(x(k),u(k)) =
Nu−1∑

i=0

L(x(k + i|k), u(k + i|k)) +
N−1∑

i=Nu

Lh(x(k + i|k)) (A.36)
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where L(·, ·) represents the stage cost along the control horizon and Lh(·) denotes the
stage cost based on the local control law4:

L(x(k + i|k), u(k + i|k)) = ‖f(x(k + i|k))− r(k)‖2Q+

‖u(k + i|k)− ur(k)‖
2
R

Lh(x(k + i|k)) = ‖f(x(k + i|k))− r(k)‖2Q+

‖h(x(k + i|k))− ur(k)‖
2
R

(A.37)

where f : RNt 7→ R (2.57) maps the state vector x(k) to the output y(k) = f(x(k))

(2.60). Furthermore, r(k) represents the reference of the system output and the variable
ur(k) denotes the necessary steady state input for a given reference r(k).

For the later proof of stability it is necessary that the output prediction for k+N−1

made at k satisfies y(k + N − 1|k) = r(k). That means that the steady state input
ur(k) has to be chosen so that the given condition will be satisfied. Hence, the steady
state input5 ur(k) is based on the predicted output y(k +N − 1|k):

ur(k) = χ−1(y(k +N − 1|k))

= χ−1(r(k))
(A.38)

The steady state input (A.38) is used directly to define the local control law in the
initial optimization problem (A.33):

h(x(k + i|k)) = ur(k), i = Nu, . . . , N − 1 (A.39)

A.4.2 Feasibility of the solution

Consider the optimal input sequence

u∗(k) = [u∗(k|k), . . . , u∗(k +Nu − 1|k)] (A.40)

for the initial optimization problem (A.33). The optimal control sequence u∗(k) as well
as the local control law, defined in (A.39) with the steady state input ur(k), lead to
the optimal predicted states x∗(k + i|k) for i = 1, . . . , N and the associated optimal
cost J∗(x(k)). Furthermore, consider the solution uf(k + 1) for k + 1 defined by:

uf(k + 1) = [uf(k + 1|k + 1), uf(k + 2|k + 1), . . . , uf(k +Nu|k + 1)]T (A.41)

4For the sake of simplicity the notation Lh(x(k + i|k)) = L(x(k + i|k), h(x(k + i|k))) has been

chosen.
5Note that the steady state input depends on the given reference. For the sake of simplicity, the

notation ur(k) = ur(r(k)) has been chosen. Furthermore it has to be mentioned that the reference is

constant, i.e. r(k) = r(k + 1).
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with the elements uf(k + i|k + 1) for i = 1, . . . , Nu given by:

uf(k + i|k + 1) =

{
u∗(k + i|k) for i = 1, . . . , Nu − 1

h(xf(k +Nu|k + 1)) for i = Nu
(A.42)

Note that the input sequence uf(k+1) corresponds to the shifted sequence u∗(k) plus
the additional term of the local control law. With the shifted solution uf(k + 1) and
the local control law h(x(k+ i|k+1)) = ur(k+1) for i = Nu+1, . . . , N the predicted
states xf(k + i|k + 1) and the cost Jf(x(k + 1)) are obtained.

With the real system and the model being identical, the state prediction for k + 1

made at k satisfies x∗(k + 1|k) = x(k + 1). Hence, with uf(k + i|k) = u∗(k + i|k) for
i = 1, . . . Nu−1 the predictions based on the two input sequences u∗(k) and uf (k+1)

satisfy:

xf(k + i|k + 1) = x∗(k + i|k), i = 2, . . . Nu (A.43)

After reaching the end of the control horizon Nu, the local control law h(x∗(k +

i|k)) = ur(k) for i = Nu, . . . , N − 1 is used to predict the states x∗(k + i|k) for
i = Nu + 1, . . . , N . Analogously, the states xf(k + i|k + 1) for i = Nu + 2, . . . , N + 1

are predicted with the h(xf(k+i|k+1)) = ur(k+1) for i = Nu+1, . . . , N . Furthermore,
with r(k) = r(k + 1) the local control laws are identical, i.e. in both cases the steady
state input ur(k) = ur(k+1) is used to predict in k and k+1 the future states. Hence,
with xf(Nu|k + 1) = x∗(Nu|k) and the same local control law the predicted states
fulfill:

xf(k + i|k + 1) = x∗(k + i|k), i = Nu + 1, . . . N (A.44)

Since the optimal solution u∗(k) and the local control law h(x∗(k + i|k)) for i =

Nu, . . . , N−1 have been calculated considering the conditions given in (A.33), the pre-
dicted state satisfies x∗(k+N |k) ∈ Ω being Ω an invariant set. With xf(k+N |k+1) =

x∗(k+N |k) (A.44) the statement xf(k+N |k+1) ∈ Ω is true. As a consequence, the
prediction for k + N + 1 made at k + 1 satisfies xf(k + N + 1|k + 1) ∈ Ω and, as a
consequence, the solution uf(k + 1) to the optimization problem is feasible.

A.4.3 Convergence

Consider the cost J∗(x(k),u∗(k)) at k based on the optimal solution u∗(k) and the local
control law h(x∗(k+i|k)) for i = Nu, . . . , N−1 as well as the cost Jf (x(k+1),uf(k+1))

at k + 1 calculated with the feasible solution uf (k + 1) and the local control law
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h(xf(k + i|k + 1)) for i = Nu + 1, . . . , N . The convergence of the proposed control
strategy (A.33) can be guaranteed if the costs are monotonically decreasing.

The optimal cost J∗(x(k)) at k is defined with (A.36) as:

J∗(x(k)) =
Nu−1∑

i=0

L(x∗(k + i|k), u∗(k + i|k)) +
N−1∑

i=Nu

Lh(x
∗(k + i|k)) (A.45)

and the cost Jf(x(k + 1)) at k + 1 has the form:

Jf (x(k + 1)) =

Nu∑

i=1

L(xf(k + i|k + 1), uf(k + i|k + 1))+

N∑

i=Nu+1

Lh(x
f(k + i|k + 1))

(A.46)

With uf(k +Nu|k + 1) = h(xf(k +Nu|k + 1)) the stage cost for k +Nu based on the
feasible solution can be expressed as L(xf(k+Nu|k+1), uf(k+Nu|k+1)) = Lh(x

f(k+

Nu|k + 1)). As a consequence, the difference ∆J(k + 1) = Jf(x(k + 1))− J∗(x(k)) of
the costs can be written generally as:

∆J(k + 1) = −L(x∗(k|k|k), u∗(k|k)) + Lh(x
f(k +N |k + 1))

+
Nu−1∑

i=1

(

L(xf(k + i|k + 1), uf(k + i|k + 1))

− L(x∗(k + i|k), u∗(k + i|k))
)

+

N−1∑

i=Nu

(

Lh(x
f(k + i|k + 1))− Lh(x

∗(k + i|k + 1))
)

(A.47)

With the definition (A.37) as well as xf(k + i|k + 1) = x∗(k + i|k) for i = 1, . . . N ,
uf(k + i|k + 1) = u∗(k + i|k) for i = 1, . . . Nu − 1, h(xf(k + i|k + 1)) = h(x∗(k + i|k))

for i = Nu, . . . N − 1, r(k + 1) = r(k) and ur(k + 1) = ur(k) it can be shown that the
stage costs L(·, ·) for i = 1, . . . Nu − 1 and Lh(·) for i = Nu, . . . N − 1 satisfy:

L(xf(k + i|k + 1), uf(k + i|k + 1)) = L(x∗(k + i|k), u∗(k + i|k))

Lh(x
f(k + i|k + 1)) = Lh(x

∗(k + i|k))
(A.48)

As a consequence, the difference of costs ∆J(k + 1) (A.47) can be rewritten in the
form:

∆J(k + 1) = −L(x∗(k|k), u∗(k|k)) + Lh(x
f(k +N |k + 1)) (A.49)

where the first term is always non-positive as L(·, ·) has been defined as a quadratic
function (A.37). With the nilpotent character of the state matrix A (2.59) it can be
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shown that6 Lh(x
f(k+N |k+1)) = 0 under certain circumstances. With ANt = 0 every

input signal influences the system state and, as a consequence, the system output at
most during Nt sampling periods. Consider a prediction horizon of N ≥ Nu + Nt

to be used in the initial optimization problem (A.33), i.e. with the local control law
h(x∗(k + i|k + 1)) = ur(k + 1) for i = Nu + 1, . . . , N the last Nt control actions
correspond to the steady state input ur(k+ 1). Hence, the prediction xf(k+N |k+ 1)

is calculated exclusively with the steady state input. Due to the nilpotent character
of the state matrix (ANt = 0) the predicted state xf(k +N |k + 1) reaches steady. As
a consequence the output prediction y(k + N |k + 1), defined in (2.60), also reaches
steady state. Following the definition of the steady state input (A.38) the output
prediction satisfies y(k + N |k + 1) = r(k + 1). Therefore, with y(k + N |k + 1) =

r(k+1) and h(xf (k+N |k+1)) = ur(k+ 1) the stage cost for k+N at k+1 satisfies
Lh(x

f(k +N |k + 1)) = 0.

Finally, with N ≥ Nu +Nt, the difference of the costs (A.49) can be simplified to:

Jf (x(k + 1))− J∗(x(k)) = −L(x(k), u∗(k|k)) (A.50)

It is clear that for the optimal cost J∗(x(k + 1)) at k + 1 and the suboptimal cost
Jf (x(k + 1)) based on a feasible solution the relation J∗(x(k + 1)) ≤ Jf (x(k + 1)) is
true. With this relation the statement:

J∗(x(k + 1))− J∗(x(k)) ≤ Jf(x(k + 1))− J∗(x(k))

= −L(x(k), u∗(k|k))
(A.51)

holds. With L(x(k), u∗(k|k)) (A.37) strictly positive definite (except in the origin) it
can be shown that

J∗(x(k + 1))− J∗(x(k)) < 0 (A.52)

The strictly decreasing cost guarantees nominal asymptotic stability of the model pre-
dictive control strategy based on a second order Volterra series model.

Note that with a horizon of N = Nu + Nt not only the output prediction y(k +

N |k + 1) = r(k + 1) reaches steady, but also y(k + N + 1|k + 1) = r(k + 1). The
same applies to the output prediction for k + N made at k, i.e. y(k + N |k) = r(k).
Therefore, without an output error in the output predictions for k+N made at k and
for k +N + 1 made at k + 1 a terminal cost in the initial optimization problem is not
required.

6The second term in (A.49) has to satisfy Lh(x
f (k + N |k + 1)) ≤ 0. Being a quadratic function

the stage cost Lh(·, ·) cannot adopt negative values. Therefore the condition Lh(x
f (k+N |k+1)) ≤ 0

has been substituted by Lh(x
f (k +N |k + 1)) = 0.
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A.5 Matrices used for convexification

The nonlinear term f(u) used in the prediction model (2.43) can be written as:

f(u) = fnl(u) + fl(u) (A.53)

with fnl(u) : R
Nu 7→ R

N being a nonlinear function depending on u and fl(u) : R
Nu 7→

R
N representing a linear function in u. These functions, used in (5.26) and (5.28),

are based on the matrices Bl and Bnl which will be defined in this section. With the
truncation order Nt, the prediction horizon N and the control horizon Nu the matrix
Bl ∈ R

Nt×Nu×N or the submatrices Bl,i ∈ R
Nt×Nu are defined for i = 1, . . . , N if

N < Nt and for i = 1, . . . , N − 1 if N = Nt as:

Bl,i =



















h2(i, i+1) h2(i−1, i+1) . . . h2(i−Nu+2, i+1)
i−Nu+1∑

j=1

h2(j, i+1)

h2(i, i+2) h2(i−1, i+2) . . . h2(i−Nu+2, i+2)
i−Nu+1∑

j=1

h2(j, i+2)

...
...

...
...

...

h2(i, Nt) h2(i−1, Nt) . . . h2(i−Nu+2, Nt)
i−Nu+1∑

j=1

h2(j,Nt)

0 0 0 0 0
...

...
...

...
...

0 0 0 0 0



















(A.54)

For the case i = N and N = Nt the submatrix Bl,N has the form:

Bl,N = 0 (A.55)

Analogously the matrix Bnl ∈ R
Nu×Nu×N or the submatrices Bnl,i ∈ R

Nu×Nu with
i = 1, . . . , N are defined as:

Bnl,i =
















h2(i, i) h2(i−1, i) . . . h2(i−Nu+2, i)
i−Nu+1∑

j=1

h2(j, i)

0 h2(i−1, i−1) . . . h2(i−Nu+2, i−1)
i−Nu+1∑

j=1

h2(j, i−1)

...
...

. . .
...

...

0 0 . . . h2(i−Nu+2, i−Nu+2)
i−Nu+1∑

j=1

h2(j, i−Nu+2)

0 0 . . . 0
i−Nu+1∑

k=1

k∑

j=1

h2(j, k)
















(A.56)

It has to be mentioned that in (A.54) and (A.56) the parameters h2(i, j) for i ≤ 0 or
j ≤ 0 are defined as h2(i, j) = 0.
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A.6 Stability of the nominal MPC based on the con-

vexification approach

In this section the asymptotic stability of the control strategy based on a nominal
second order Volterra series prediction model, i.e. (2.43)-(2.44) without considering
an estimation error, and the convexification of the cost function will be shown. The
considered optimization problem, already defined in Section 5.3, has to be transformed
to its state-space representation. After the definition of a feasible solution to the
optimization problem, asymptotic stability for the proposed control strategy can be
proven.

A.6.1 Optimization problem in state-space representation

The proposed control strategy based on the convexification approach (see Section 5.3)
for a finite prediction horizon N and a finite control horizon Nu with N ≥ Nu considers
the general cost function:

J(x(k),u(k), d(k), R(j)) =

Nu−1∑

i=0

L(x(k + i|k), u(k + i|k), d(k), R(j))+

N−1∑

i=Nu

Lh(x(k + i|k), R(j))

(A.57)

to be minimized. The vector x(k) represents the initial state vector and the sequence
u(k) of Nu future input values is defined by:

u(k) = [u(k|k), u(k + 1|k), . . . , u(k +Nu − 1|k)]T (A.58)

Furthermore, d(k) denotes the estimation error in k and the matrix R(j) ∈ R
Nu×Nu is

the considered variable weighting of the control effort. The weighting matrix is gen-
erally defined as R(j) = λ(j)I with λ(j) to be calculated by the optimization algorithm
presented in Section (5.3). The terms L(·, ·, ·, ·) and Lh(·, ·) represent the stage costs
based on the input sequence and a local control law, respectively. The optimization,
based on the convexification algorithm, is subject to

u(k + i|k) ∈ U, i = 0, . . . , Nu − 1

h(x(k + i|k)) ∈ U, i = Nu, . . . , N − 1

x(k + i|k) ∈ X, i = 0, . . . , N − 1

x(k +N |k) ∈ Ω

(A.59)



246 A.6. Stability of the nominal MPC based on the convexification approach

where h(x(k + i|k)) for i = Nu, . . . , N − 1 denotes a local control law used to predict
the future states x(k + i|k) for i = Nu + 1, . . . , N . With x(k|k) = x(k) being the
initial state, the predictions based on the input sequence u(k) or the local control
h(x(k + i|k)) for i = Nu, . . . , N − 1 are given by:

x(k + i+ 1|k) = φ(x(k + i|k), u(k + i|k)), i = 0, . . . , Nu − 1

x(k + i+ 1|k) = φ(x(k + i|k), h(x(k + i|k))), i = Nu, . . . , N − 1
(A.60)

The performance index (A.57) is based on the quadratic stage costs L(·, ·, ·, ·) and
Lh(·, ·) given by:

L(x(k + i|k), u(k + i|k), R(j)) = ‖f(x(k + i|k))− r(k)‖2Q+

‖u(k + i|k)− ur(k)‖
2
R(j)

Lh(x(k + i|k), R(j)) = ‖f(x(k + i|k))− r(k)‖2Q+

‖h(x(k + i|k))− ur(k)‖
2
R(j)

(A.61)

where the nonlinear function f : RNt 7→ R, defined in (2.57), maps the state vector to
the output y(k) = f(x(k)) (2.60) and ur(k) represents the steady-state input for the
given reference r(k).

In order to proof stability, the output prediction for k + N − 1 made at k has to
satisfy y(k+N−1|k) = r(k). Under the assumption that the prediction y(k+N−1|k)

reaches steady-state and satisfies de mentioned condition, the steady-state input is
defined by:

ur(k) = χ−1(y(k +N − 1|k))

= χ−1(r(k))
(A.62)

where χ : R 7→ R is a static nonlinearity which maps the steady-state input to the
steady-state output. Finally, the steady state input (A.62) is used directly to define the
local control law used in the model predictive control strategy subject to the conditions
given in (A.59):

h(x(k + i|k)) = ur(k), i = Nu, . . . , N − 1 (A.63)

A.6.2 Feasibility of the solution

Consider the input sequence:

us(k) = [us(k|k), . . . , us(k +Nu − 1|k)] (A.64)

being the optimal or suboptimal solution to the optimization problem calculated at k
with the iterative optimization algorithm (see Section 5.3). Furthermore, consider the
sequence:

uf(k + 1) = [uf(k + 1|k + 1), uf(k + 2|k + 1), . . . , uf(k +Nu|k + 1)]T (A.65)
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with the elements uf(k + i|k + 1) for i = 1, . . . , Nu given by:

uf(k + i|k + 1) =

{
us(k + i|k) for i = 1, . . . , Nu − 1

h(xf(k +Nu|k + 1)) for i = Nu
(A.66)

obtained by shifting the optimal or suboptimal solution us(k) by one element. Based
on the solution us(k) and the local control law (A.63) the predictions xs(k + i|k)

for i = 1, . . . , N can be obtained. Analogously, the states xf(k + i|k + 1) for i =
2, . . . , N +1 can be predicted with the shifted solution uf(k+1) and the local control
law h(xf(k + i|k + 1)) = ur(k + 1) for i = Nu + 1, . . . , N .

Consider the predictions xs(k + i|k) for i = 1, . . . Nu − 1 as well as the predictions
xf(k + i|k + 1) for i = 2, . . . Nu. Assuming a perfect model, i.e. the model and the
system are identical, the prediction for k+1 made at k satisfies xs(k+1|k) = x(k+1).
Hence, with xs(k+1|k) = xf(k+1|k+1) and identical inputs uf(k+i|k+1) = us(k+i|k)

for i = 1, . . . Nu − 1 the predictions based on the input sequences us(k) and uf (k+ 1)

satisfy:
xf(k + i|k + 1) = xs(k + i|k), i = 2, . . . , Nu (A.67)

Furthermore, with a constant reference r(k) = r(k + 1) the used steady state input
values are identical, i.e. ur(k) = ur(k + 1). Hence, with h(xs(k + i|k)) = ur(k)

and h(xf(k + i|k + 1)) = ur(k + 1) the predictions xs(k + i|k) and xf(k + i|k + 1)

with i = Nu + 1, . . . , N are based on the same input values. As a consequence, the
predictions satisfy:

xf(k + i|k + 1) = xs(k + i|k), i = Nu + 1, . . . , N (A.68)

From the considered conditions (A.59) it is clear that the state prediction for k + N

made at k satisfies xs(k+N |k) ∈ Ω being Ω an invariant set. From xf(k+N |k+1) =

xs(k+N |k) follows directly that xf(k+N |k) ∈ Ω. With h(xf(k+N |k+1)) computed
considering the conditions (A.59), the prediction for k+N+1 made at k+1 also satisfies
xf(k+N+1|k+1) ∈ Ω and, as a consequence, the solution uf(k+1) to the optimization
problem is feasible.

A.6.3 Convergence

Consider the cost Js
0(x(k)) = Js(x(k),us(k), R0) computed with the initial state vector

x(k), the optimal or suboptimal solution us(k) and the initial weighting factor R0.
Furthermore, consider the cost Jf

0 (x(k+1)) = Jf (x(k+1),uf(k+1), R0) based on the
initial state vector x(k + 1), the feasible solution uf (k) and the weighting parameter
R0. The predictive control strategy (5.3) based on the convexification approach and a
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nominal second order Volterra series prediction model is stable if the costs are strict
monotonically decreasing (except in the origin).

The cost Js
0(x(k)) at k based on the optimal or suboptimal solution us(k) is given

by (A.57) as:

Js
0(x(k)) =

Nu−1∑

i=0

L(xs(k + i|k), us(k + i|k), R0) +

N−1∑

i=Nu

Lh(x
s(k + i|k), R0) (A.69)

and the cost Jf
0 (x(k + 1)) at k + 1 as a result of the feasible input sequence uf (k + 1)

has the form7:

Jf
0 (x(k + 1)) =

Nu−1∑

i=1

L(xf (k + i|k + 1), uf(k + i|k + 1), R0)+

N∑

i=Nu

Lh(x
f(k + i|k + 1), R0)

(A.70)

With (A.69) and (A.70) the difference of the costs given by ∆J0(k + 1) = Jf
0 (x(k +

1))− Js
0(x(k)) can be written generally as:

∆J0(k + 1) = −L(xs(k|k), us(k|k), R0) + Lh(x
f(k +N |k + 1), R0)

+

Nu−1∑

i=1

(

L(xf(k + i|k + 1), uf(k + i|k + 1), R0)

− L(xs(k + i|k), us(k + i|k), R0)
)

+
N−1∑

i=Nu

(

Lh(x
f(k + i|k + 1), R0)− Lh(x

s(k + i|k + 1), R0)
)

(A.71)

For the nominal model the predictions satisfy xf(k + i|k + 1) = xs(k + i|k) for i =
1, . . . N (see Section A.6.2) due to uf(k+i|k+1) = us(k+i|k) for i = 1, . . . Nu−1 (A.66)
and identical local control laws h(xf(k+ i|k+1)) = h(xs(k+ i|k)) for i = Nu, . . . N−1

(as a consequence of a constant reference r(k + 1) = r(k)). Hence, the stage costs in
(A.71) satisfy:

L(xf(k + i|k + 1), uf(k + i|k + 1), R0) = L(xs(k + i|k), us(k + i|k), R0)

Lh(x
f(k + i|k + 1), R0) = Lh(x

s(k + i|k), R0)
(A.72)

for i = 1, . . . Nu−1 and i = Nu, . . . N −1, respectively. With the identical stage costs,
the difference of costs (A.71) can be simplified to:

∆J0(k + 1) = −L(xs(k|k), us(k|k), R0) + Lh(x
f(k +N |k + 1), R0) (A.73)

7Note that L(xf(k+Nu|k+1), uf(k+Nu|k+1), R0) = Lh(x
f (k+Nu|k+1), R0) as uf (k+Nu|k+1) =

h(xf (k+Nu|k+1)). Therefore the term L(xf (k+Nu|k+1), uf(k+Nu|k+1), R0) has been considered

in the second sum in (A.70).
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In order to proof stability of the proposed predictive control strategy it has to be shown
that (A.73) monotonically decreases.

Now consider a prediction horizon N ≥ Nt + Nu and the nilpotent character of
the state matrix A (2.59) of the used prediction model (2.60). From ANt = 0 follows
that an input signal influences at most during Nt sampling periods the states and the
output. With the considered prediction horizon the last Nt input values correspond in
k+1 to the local control law, i.e. h(xf(k+ i|k+1)) = ur(k+1) for i = Nu, . . . , N . As
a consequence the prediction xf(k +N |k + 1) is based only on the steady-state input
ur(k + 1). With ANt = 0 it is clear that both the predicted state xf(k +N |k + 1) and
the output prediction y(k + N |k + 1) reach steady-state. Following the definition of
the steady-state input (A.62) the output prediction satisfies y(k+N |k+1) = r(k+1)

and, as a consequence, the statement f(xf(k+N |k+1)) = r(k+1) holds. Hence, with
f(xf(k + N |k + 1)) = r(k + 1) and h(xf(k + N |k + 1)) = ur(k + 1) the stage cost in
(A.73) becomes Lh(x

f(k +N |k + 1), R0) = 0. Then, the difference of costs (A.73) can
be rewritten as:

Jf
0 (x(k + 1))− Js

0(x(k)) = −L(xs(k|k), us(k|k), R0) (A.74)

where the term −L(xs(k|k), us(k|k), R0) is always non-positive due to its quadratic
character (A.61).

Consider the proposed iterative optimization (see Section 5.3) initialized in k + 1

with the feasible solution u(0)(k + 1) = uf(k + 1) and the initial weighting factor
R0 = R(0) = λ(0)I where λ(0) ≥ 0. The optimization algorithm computes in every
iteration a new candidate input sequence u(i)(k + 1) and a new weighting matrix
R(j) = λ(j)I with λ(j) ≥ λ(j−1). Based on the proof of the condition C2 (see Section
5.2.2) it can be shown that the cost J (j)(x(k + 1)) = J(x(k + 1),u(j)(k + 1), R(j))

satisfies:
J(x(k + 1),u(j)(k + 1), R(j)) ≤ Jf

0 (x(k + 1)) (A.75)

Then, with λ(j) ≥ λ(j−1) and, as a consequence, R(j) ≥ R(i−1) follows directly:

J(x(k + 1),u(j)(k + 1), R(0)) ≤ J(x(k + 1),u(j)(k + 1), R(j)) (A.76)

With (A.75) and (A.76) the statement:

J(x(k + 1),u(j)(k + 1), R(0)) ≤ Jf
0 (x(k + 1)) (A.77)

holds for all u(j)(k + 1). Finally, (A.77) can be used to rewrite (A.74) in the following
form:

J(x(k + 1),u(j)(k + 1), R(0))− Js
0(x(k)) ≤ −L(xs(k|k), us(k|k), R0) (A.78)
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The strictly decreasing cost (except in the origin) guarantees nominal asymptotic sta-
bility of the model predictive control strategy based on the iterative control strategy
using a convexification algorithm for second order Volterra series models. It has to be
mentioned that the proposed control strategy is also asymptotic stable using the feasi-
ble solution based on the result given in (A.74). Hence, the optimization algorithm can
be stopped in an arbitrary iteration without loss of the asymptotic stability. Neverthe-
less, the cost J(x(k + 1),u(j)(k + 1), R(0)) decreases monotonically in every iteration
(see the proof of the condition C2 in Section 5.2.2) and leads to a higher optimality of
the computed solution and a better convergence of the proposed control strategy.

With a horizon N = Nu +Nt the output predictions reach steady-state with y(k +
N−1|k) = r(k) and y(k+N |k+1) = r(k+1). As a direct consequence, the predictions
also satisfy y(k +N |k) = r(k) and y(k +N + 1|k + 1) = r(k + 1). Without an output
error in the predictions y(k+N |k) and y(k+N+1|k+1) a terminal cost is not required
in the initial cost function.

A.7 Linear min-max MPC using input-output models

The use of a model in input-output representation as (6.81) instead of the state-space
model (6.2) requires some minor changes in the implementation of the min-max control
strategies presented in Chapter 6. In the case of a CARIMA (controlled autoregressive
integrated moving average) model, the output is defined as:

A(q−1)y(k) = B(q−1)u(k) + C(q−1)
θ(k)

∆
(A.79)

being q−1 the backward shift operator. Based on the CARIMA model (A.79) the
evolution of the output can be written in short form as:

y = Guu+Gθθ +Gxx (A.80)

where Gu, Gθ and Gx are matrices which can be obtained from the system model
and the parameters of the control strategy by means of different methods as solving
the Diophantine equation [23]. Another more intuitive form is computing Gu with
the coefficients of the step impulse response of the system and to calculate the free
response vector Gxx by means of the evolution of the system from the current state
under the assumption of a constant input signal. On the other side, as the disturbance
can be considered as an additional system input, the matrix Gθ can be computed with
the same method as Gu but assuming that B(q−1) = 1. Then, the matrix Gθ can be
calculated by solving the Diophantine equation or by using the free response of the
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system to a step in θ(k). Note that in the case of the CARIMA model the vector u

contains the future control increments and the state vector is composed of the current
and past values of the output as well as the past values of the control increments:

x =
[
y(k), . . . , y(k − na), ∆u(k − 1), . . . , ∆u(k − nb)

]T
(A.81)

where na and nb denotes the polynomial size of A(·) and B(·), respectively. With
the prediction (A.80) and assuming that Q is the identify matrix the quadratic cost
function (6.5) can be expressed as8:

J(x,u, θ) = (Guu+Gθθ +Gxx)
T (Guu+Gθθ +Gxx) + uTRu (A.82)

Then, the cost function (A.82) can be expressed similar to (6.14) as:

J(x,u, θ) = uTMuuu+ θTMθθθ + 2 θTMθuu+

2xTMT
ufu+ 2xTMT

θfθ + xTMffx
(A.83)

with Muu = GT
uGu + R, Mθθ = GT

θGθ, Mθu = GT
θGu, Muf = GT

uGx, Mθf = GT
θGx,

Mff = GT
xGx. Finally, the cost function (A.83) based on the general CARIMA model

(A.79) can be used in the min-max model predictive control strategies presented in
Chapter 6.

A.8 Alternative approach for an explicit expression

of the worst case cost

This section gives an alternative approach to the one shown in Section 6.2.2 to express
the worst case cost explicitly. The approach presented in the following paragraphs is
not limited to second order Volterra series models but can be used for a wide range of
non-autoregressive models in input-output representation.

Consider the output prediction ŷ ∈ R
N for a non-autoregressive model with uncer-

tainty given by:
ŷ = ŷn +Wθ (A.84)

where ŷn ∈ R
N denotes the nominal prediction and W ∈ R

N×N is a diagonal positive
definite matrix given by W = w IN (7.7). The condition of W being diagonal, positive

8In the given cost function (A.82) the terminal cost has not been included as this term has been

disregarded in the implementation of the control strategies in Section 6.4. Furthermore, the experi-

mental results presented in Section 6.4 have been obtained without the semi-feedback approach (6.3),

i.e. the control law u(k) = −Kx(k) has been used.
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definite and with identical elements on the main diagonal is a direct consequence of
the non-autoregressive character of the used model. The vector θ ∈ R

N represents the
bounded future uncertainty sequence and the set of possible uncertainty trajectories
is given by Θ = {θ ∈ R

N : ‖θ‖∞ ≤ 1}. Note that the possibility to separate (A.84)
in a term denoting the nominal output and a term depending only on the disturbance
vector is a result of the non-autoregressive character of the model used to generate the
prediction model.

Consider the prediction model (A.84) in the general quadratic cost function without
penalization of the control effort (2.46):

J(u, θ) = (ŷn +Wθ − r)T (ŷn +Wθ − r) (A.85)

where r ∈ R
N denotes the reference trajectory. This cost function can be rewritten as:

J(u, θ) = ŷT
n ŷn − 2 ŷT

nr + rr + 2 (ŷn − r)TWθ + θTW TWθ (A.86)

With (A.86) being a convex function in θ (W TW is a positive definite diagonal matrix),
the worst case cost with respect to the uncertainty can be found at least in one of the
vertices of Θ. Hence, the maximum cost J∗(u) is defined as shown in (7.12).

In order to obtain the worst case cost, the terms 2 (ŷn − r)TWθ and θTW TWθ of
(A.86) have to be maximized with respect to θ. For the term θTW TWθ it can easily
be shown that:

θTW TWθ = trace(W TW ) = w2N (A.87)

is true and, as a consequence, the value of this term does not depend on the uncertainty
θ (or reaches its maximum for every θ ∈ vert{Θ}). Consider now the function σ :

R
N 7→ R

N defined by:

σ(x) =

{
1 if x ≥ 0,

−1 if x < 0
(A.88)

Then, using the signum-like function (A.88) in (A.87), the term θTW TWθ can be
expressed as:

θTW TWθ = w2N = w2σ(ŷn − r)Tσ(ŷn − r) (A.89)

With the term θTW TWθ reaching its maximum value independently from θ, the uni-
tary hypercube θ∗ which maximizes the term 2 (ŷn − r)TWθ also maximizes the cost
(A.86). With the new function σ, the maximum value of the term 2 (ŷn − r)TWθ can
be written as9

max
θ∈vert{Θ}

2 (ŷn − r)TWθ = 2w(ŷn − r)Tσ(ŷn − r) (A.90)

9Note that a separate maximization of the terms 2 (ŷn − r)TWθ and θTWTWθ is possible if and

only if both terms reach their maximum for the same hypercube θ. For further details see Remark

7.1.
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Finally, the worst case cost, i.e. the cost function (A.86) maximized with respect
to the uncertainty θ, can be expressed with (A.89) and (A.90) as:

J∗(u) = ŷT
n ŷn − 2ŷT

n r + rr + 2w(ŷn − r)Tσ(ŷn − r)+

w2σ(ŷn − r)Tσ(ŷn − r)

= (ŷn − r + wσ(ŷn − r))T (ŷn − r + wσ(ŷn − r))

(A.91)

It is obvious that the worst case cost given in (A.91) can be evaluated easily.

The above defined function σ (A.88) can easily be built by means of the sign func-
tion, e.g. σ(x) = sgn(2 sgn(x) + 1). Furthermore it has to be mentioned that the
definition of the function σ (A.88) with a return value σ(0) = −1 does not change the
result of the maximization. Alternatively, (A.91) can be expressed directly with the
sign function, i.e without building the function σ, as:

J∗(u) = (ŷn − r + w sgn(ŷn − r))T (ŷn − r + w sgn(ŷn − r))

+w2
(
N − sgn(ŷn − r)T sgn(ŷn − r)

) (A.92)

A.9 Experimental results of a linear MPC

For comparison purposes, a linear MPC has been used to control the pilot plant em-
ulating an exothermic chemical reaction. The used MPC is based on a finite impulse
response model identified and validated with the experimental data presented in Fig.
3.7 and Fig. 3.9, respectively. The finite impulse response model was, analogously to
the second order Volterra series model, identified with a sampling time of tm = 60 s

and a truncation order of Nt = 60.

In a first step the MPC was implemented with a prediction horizon of N = 25, a
control horizon of Nu = 15, a weighting factor of λ = 5 and the constraints given in
(4.77). Here, the weighting factor was used to penalize the increments ∆u in the input
sequence. In a second step, the MPC was implemented with N = 80, Nu = 15 and
λ = 5 for the prediction horizon, the control horizon and the weighting factor. In order
to guarantee stability, the cost function was slightly modified to consider a weighting
of the difference between the input sequence and the necessary steady-state input, i.e.
u− ur. Besides, the constraints given in (4.80) have been considered.

The MPC control strategies were applied to the pilot plant and several setpoint
tracking and disturbance rejection experiments were carried out. The results in Fig.
A.1 have been obtained in setpoint tracking experiments with the linear MPC imple-
mentations. The experiment was repeated (see Fig. A.2), but with an error of 3%
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Figure A.1: Setpoint tracking experiment controlled by linear MPC strategies with a pre-

diction horizon of N = 25 (solid line) and N = 80 (dash-dotted line).
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Figure A.2: Disturbance rejection experiment (persistent disturbance in the emulated chem-

ical reaction) controlled by linear MPC strategies with a prediction horizon of N = 25 (solid

line) and N = 80 (dash-dotted line).

in the parameter E of the underlying model of the chemical reaction. The results of
the third experiment, given in Fig. A.3, show the effect of an additive disturbance of
∆v8 = −15% in the system input, active in the period from t = 70min to t = 110min.
Finally, Fig. A.4 gives the results of a disturbance rejection experiment with a distur-
bance of ∆Ff = −0.02 l/s in the feed Ff applied in t = 60min.

As expected, the application of the linear MPC strategies to a process with nonlinear
dynamics results in considerable errors in the system output with oscillations in the
case of the MPC with a prediction horizon of N = 25 or a very slow error compensation
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Figure A.3: Disturbance rejection experiment (disturbance in the valve opening v8) con-

trolled by linear MPC strategies with a prediction horizon of N = 25 (solid line) and N = 80

(dash-dotted line).
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Figure A.4: Disturbance rejection experiment (disturbance in the feed Ff ) controlled by

linear MPC strategies with a prediction horizon of N = 25 (solid line) and N = 80 (dash-

dotted line).

for the MPC with a prediction horizon of N = 80. Comparing the results shown in
the previous chapters it is clear that the NMPC and MMMPC strategies proposed
in this thesis have a better control performance for the used process. For the sake
of completeness, the necessary computation times will be given. The optimization
problem for a prediction horizon of N = 25 was solved in an average time of f tavgc =

0.031 s, with a minimum of tmin
c = 0.021 s and a maximum of tmax

c = 0.112 s. For
a prediction horizon of N = 80, the computation of the input sequence required an
average of tavgc = 0.060 s, a minimum of tmin

c = 0.031 s and a maximum of tmax
c = 0.160 s.
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Spanish translations

This appendix presents the Spanish translations of the introduction (Chapter 1) and
conclusions (Chapter 8) of this thesis.

B.1 Capítulo 1: Introducción

B.1.1 Motivación

Muchas técnicas de control moderno están basadas en modelos matemáticos que apro-
ximan la evolución dinámica del sistema que se desea controlar. El controlador usa el
modelo matemático para calcular la acción de control según cierto criterio. Por lo tanto,
la calidad del modelo matemático usado para aproximar la dinámica del sistema tiene
una influencia decisiva en el funcionamiento del controlador. En el control predictivo
basado en modelo (MPC, del inglés Model Predictive Control) se realiza el cálculo de
la acción de control a partir de la predicción que hace el modelo matemático de la
evolución futura del sistema. Hoy en día, el MPC representa una de las técnicas de
control avanzado más aplicadas a procesos industriales [23, 75]. Entre los factores que
han contribuido al empleo frecuente del MPC destacan, entre otros, la formulación
intuitiva del problema del control, la posibilidad de controlar una gran variedad de
procesos, la consideración de restricciones en el cálculo de la señal de entrada y, en el
caso del MPC basado en modelos lineales, la fácil implementación de la ley de control.
Otra ventaja es la posibilidad de utilizar modelos matemáticos que se pueden obtener
fácilmente del proceso considerado, p.ej. modelos de respuesta ante escalón en Dynamic

257
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Matrix Control (DMC) [31] o modelos impulsionales en Model Predictive Heuristic

Control1 (MPHC) [111, 112]. A nivel industrial, diferentes estudios [104, 130, 13]
indican que el MPC es una de las técnicas de control que se utiliza con mayor frecuencia.

Prácticamente todos los procesos dinámicos de importancia industrial exhiben cierto
comportamiento no lineal [97]. Sin embargo, la gran mayoría de técnicas de control ha
sido desarrollada para sistemas con dinámicas lineales. En el caso de procesos con no
linealidades leves, tales técnicas de control habitualmente proporcionan buenos resulta-
dos. Además, muchas técnicas de control lineal muestran un buen rendimiento en torno
a un punto operación dado. El predominio industrial de las técnicas de control lineal se
entiende dada la facilidad de implementación de éstas y los resultados frecuentemente
que ofrecen. Además, los modelos lineales se pueden obtener con métodos muy comunes
en ingeniería de control, p.ej. respuestas ante escalón o impulso (que se pueden utilizar
en DMC o MAC, respectivamente) de un sistema en cierto punto de operación o el uso
de técnicas de identificación ampliamente conocidas para la obtención de funciones de
transferencia con la ayuda de datos experimentales. Adicionalmente, existe una gran
variedad de resultados teóricos para técnicas de control lineal incluyendo temas como
estabilidad, optimalidad y robustez [23, 75, 85, 88].

Sin embargo, en muchos casos el rendimiento de un controlador lineal aplicado a
un proceso dinámico no lineal es ineficiente. Esto se debe en muchas ocasiones a que
el proceso real consta de no linealidades fuertes al variar el punto de operación del
mismo. Con un modelo lineal determinado para cierto punto de operación, el modelo
usado no es capaz de aproximar el proceso con suficiente calidad en un intervalo amplio
de operación. Además, algunos procesos exhiben fuertes no linealidades incluso en la
vecindad de un punto de operación y tienen un efecto negativo sobre el comportamiento
del sistema en bucle cerrado. La omisión de la dinámica no lineal resulta con frecuencia
en un rendimiento de control inaceptable y, en el peor de los casos, puede provocar una
desestabilización del sistema controlado. También existen procesos que se encuentran
continuamente en un modo transitorio como los procesos por lotes (batch mode), que
nunca están en régimen estacionario o que experimentan modos de operación lejos de
régimen estacionario durante algunos periodos, tales como el arranque o la parada.
En los casos mencionados se deben tener en cuenta técnicas de control basadas en
modelos no lineales con el fin de mejorar el rendimiento del sistema. Sin embargo, la
consideración de utilizar modelos no lineales en el control de procesos plantea nuevas
cuestiones Uno de los puntos más esenciales cuando se trata con modelos no lineales
es la elección de una estructura de modelo apropiada. Esta elección no sólo define
implícitamente la capacidad para aproximar las no linealidades del proceso, es decir, no

1El Model Predictive Heuristic Control es también conocido como Matrix Algorithmic Control

(MAC).
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todas las estructuras de modelo son convenientes para aproximar ciertas no linealidades,
sino que también influye en un alto grado la técnica de control usada para calcular la
acción de control.

Obviamente, una de las ventajas principales de los modelos no lineales es la posi-
bilidad de considerar la dinámica no lineal de un proceso. Existe una gran variedad
de modelos para aproximar hasta cierto grado los procesos con dinámica no lineal.
Hay que subrayar que los modelos no lineales no representan un grupo homogéneo y
no son tan fáciles de clasificar como modelos lineales. De hecho, la diferencia entre
dos modelos no lineales puede ser mayor que la diferencia entre un modelo lineal y un
modelo no lineal. Además, muchos de los modelos no lineales para control son más
difíciles de obtener que los modelos obtenido a partir de la respuesta impulsional o ante
escalón. Habitualmente la obtención de modelos no lineales se realiza mediante iden-
tificación con datos de entrada-salida o con primeros principios, considerando las leyes
de conservación de energía y masa [23]. Otro problema de los modelos no lineales es la
posible identificación de dinámicas no existentes y de ruido, como consecuencia de una
sobre-parametrización o del elevado grado de libertad de la estructura de modelo no
lineal elegida. A todo ello se suma la dificultad de comprensión e interpretación del sig-
nificado físico de los modelos no lineales, que en muchos casos requiere un conocimiento
profundo del proceso considerado.

El concepto básico de MPC ofrece la posibilidad de usar modelos no lineales para
predecir la evolución futura del sistema. Por tanto, el MPC en combinación con mo-
delos no lineales, conocido como control predictivo no lineal (NMPC, del inglés Non-

linear Model Predictive Control), puede ser empleado para calcular la acción de control.
Aunque la idea principal del MPC no excluye la consideración de modelos no lineales,
el uso de este tipo de modelos ocasiona diferentes problemas. Desde un punto de vista
práctico, la consideración de modelos no lineales en una función de coste cuadrática
resulta en un problema de optimización posiblemente no convexo con varios mínimos.
Mientras que el MPC lineal requiere en cada muestreo la solución de un problema con-
vexo, habitualmente realizado con Programación Cuadrática (QP, del inglés Quadratic

Programming), NMPC necesita resolver (al menos parcialmente) un problema de opti-
mización mediante Programación No Lineal (NLP, del inglés Nonlinear Programming)
[17]. La dificultad de resolver el problema de optimización resulta en un incremento im-
portante del tiempo de cálculo, limitando en muchos casos el uso de NMPC a procesos
lentos o a horizontes de control cortos. Desde un punto de vista más teórico, la posible
no convexidad del problema de optimización complica considerablemente el análisis de
estabilidad o robustez. Además, los modelos no lineales pueden ser muy diversos y
requieren frecuentemente un procedimiento específico para resolver el problema de op-
timización y para el análisis de aspectos teóricos. Debido a estos problemas, el uso de
NMPC en la industria es muy escaso y se reduce a una pocas aplicaciones en áreas como
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refino, química, polímeros, así como procesamiento de aire y gas [104]. El aumento de
la carga computacional derivado de la complejidad de los problemas de optimización no
convexos y de la posibilidad de mínimos múltiples, convierte la aplicación del NMPC
en una tarea difícil con muchos aspectos no resueltos como el análisis de estabilidad,
robustez y otros.

El cambio de modelos lineales a modelos no lineales permite la aproximación de pro-
cesos en un intervalo de operación más amplio y la consideración de un comportamiento
dinámico más complejo. Incluso con modelos no lineales es difícil de reproducir las
dinámicas complejas de procesos. Además, modelos lineales y no lineales ignoran la
posible influencia de perturbaciones sobre la futura evolución del sistema. Aunque se
puede comprobar la estabilidad de MPC o NMPC, la existencia de incertidumbres o
perturbaciones puede desestabilizar el sistema en bucle abierto bajo ciertas condiciones
o resultar en un rendimiento de control insuficiente [23, 118]. Para evitar este efecto
no deseado, se pueden considerar incertidumbres y perturbaciones explícitamente en
la formulación del modelo usado para predecir la futura evolución del sistema. Las
incertidumbres paramétricas y las perturbaciones exógenas acotadas representan las
formulaciones más comunes para tener en cuenta cierta incertidumbre en el modelado.
Sin embargo, el uso de modelos con incertidumbre para la predicción no resulta en una
única trayectoria, sino que genera un conjunto de posibles trayectorias. Un punto muy
importante para considerar la incertidumbre de modelado en modelos lineales y no
lineales es la elección de una realización de incertidumbre adecuada. La elección de la
estructura para considerar una incertidumbre o perturbación tiene que asegurar que el
modelo puede aproximar suficientemente bien la dinámica del proceso considerado. De
no ser así, ninguna trayectoria del conjunto de predicciones corresponderá a la futura
evolución del sistema.

Como en el caso de los modelos no lineales, el concepto de MPC permite usar
una gran variedad de diferentes modelos inciertos para predecir la futura evolución
del sistema considerado. No obstante, el cálculo de la acción de control mediante una
estrategia de MPC basada en un modelo incierto no es trivial y trae consigo diver-
sas dificultades computacionales y teóricas. En el caso de considerar incertidumbres
acotadas, el conjunto de posibles trayectorias también es acotado. Esa cota repre-
senta el peor caso con respecto a la incertidumbre y se puede obtener un control más
robusto calculando la acción de control mediante la minimización del coste asociado
al peor caso. La minimización del coste del peor caso para calcular la secuencia de
control es conocida como control predictivo mín-máx (MMMPC, del inglés Min-Max

Model Predictive Control) [25]. El inconveniente principal de este enfoque es la carga
computacional para calcular la secuencia de control con una complejidad creciendo ex-
ponencialmente en función del horizonte de predicción considerado. Como consecuencia
directa, el número de aplicaciones de MMMPC es muy bajo a pesar de que hay evi-
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dencia de que el enfoque mín-máx proporciona habitualmente mejores resultados que
el MPC estándar en procesos con incertidumbre en la dinámica. La consideración de
incertidumbres complica el estudio de temas teóricos como el de la estabilidad, siendo
un campo de investigación abierto.

Esta tesis aborda el estudio y el desarrollo de nuevas técnicas de MPC basado en
modelos de Volterra y en modelos inciertos, cubriendo así el marco general de la tesis
NMPC y MMMPC. Se presta atención especial a la aplicabilidad de las técnicas de
MPC con la idea de evitar o, por lo menos, reducir los problemas anteriormente men-
cionados. Aparte de este enfoque práctico con respecto a la aplicación de estrategias
de MPC, en esta tesis el estudio de la estabilidad desempeña un papel muy importante
en el diseño de nuevas técnicas de MPC. La consideración simultánea de aplicabilidad
y estabilidad constituye un importante desafío, ya que en muchos casos las condiciones
necesarias para asegurar estabilidad contrarrestan la aplicabilidad del controlador. En
el caso de MMMPC, el enfoque principal es la reducción de la cota computacional
asociada al problema de maximización, es decir, la determinación del peor caso para
permitir el uso de horizontes de predicción más largos. En el diseño de técnicas de
NMPC, la mayor dificultad estriba en encontrar la solución de un problema posible-
mente no convexo.

Es evidente que la elección de una determinada estructura de modelo tiene un
efecto decisivo en el posterior desarrollo de nuevas estrategias de MPC. En esta tesis,
se utiliza principalmente como estructura de modelo un modelo no lineal de Volterra en
tiempo discreto [132], con énfasis especial en los modelos de Volterra de segundo orden.
La decisión de usar modelos de Volterra para la aproximación de sistemas dinámicos
complejos se encuentra en la estructura particular de estos modelos, que representan
la extensión natural de los modelos de convolución con la no linealidad considerada
en un término aditivo. Esta estructura facilita la separación de los términos lineales
y no lineales y puede ser explotada en el desarrollo de técnicas de MPC basado en
modelos de Volterra. El segundo modelo, un modelo lineal en espacio de estados, es
uno de los modelos más comunes utilizados en ingeniería de control. Aunque este
modelo no tiene la capacidad de aproximar dinámicas no lineales, se pueden incluir
explícitamente incertidumbres en la formulación del modelo para obtener un buen
rendimiento del controlador para procesos no lineales y en presencia de perturbaciones.
Se puede considerar el uso de dicho modelo como un paso necesario para ampliar el
concepto de MMMPC a MPC basado en modelos de Volterra.
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B.1.2 Estado del arte

Para la aproximación de procesos no lineales se usan modelos de Volterra en muchos
campos, entre otros en aplicaciones biomédicas [58, 78, 87, 10], acústica [128, 60],
electrónica [110, 136] y control de procesos [38, 4, 35], pero especialmente en el proce-
samiento de señales para el diseño de filtros no lineales [94, 56]. Una lista bibliográfica
extensa sobre la identificación de sistemas no lineales en el procesamiento de señales,
incluidos los modelos de Volterra, se puede encontrar en [42]. El interés de usar mo-
delos de Volterra para la aproximación de procesos no lineales en las diferentes áreas
tiene varias razones, probablemente las más importantes son:

• Los modelos de Volterra, a pesar de representar modelos no lineales, son lineales
en sus parámetros. Debido a ello se pueden estimar los parámetros de los mo-
delos de Volterra mediante técnicas de identificación habitualmente usadas para
modelos lineales, p.ej. métodos de mínimos cuadrados.

• Existe la posibilidad de estimar los parámetros de los modelos de Volterra a
partir de datos experimentales de tipo entrada-salida. Por tanto, no hace falta
un conocimiento profundo del proceso que se aproxima.

• Los modelos de Volterra pueden ser usados para modelar una gran variedad de
dinámicas no lineales diferentes, como sistemas de fase no mínima.

Además de las ventajas mencionadas anteriormente, los modelos de Volterra tienen
unas características de especial interés para el control de procesos:

• Representan la extensión lógica de los modelos de respuesta finita al impulso
(FIR, del inglés Finite Impulse Response) que se han usado ampliamente en
MPC lineal. Debido a ello, los modelos de Volterra muestran un comportamiento
cualitativo muy similar a los modelos FIR, de los cuales son una generalización.

• Poseen un término adicional para considerar la no linealidad aproximada. Esta
estructura especial permite la separación de los términos lineales y no lineales y
puede ser explotada en el diseño de nuevas técnicas de control.

Uno de los principales inconvenientes de los modelos de Volterra es el elevado número
de parámetros para describir la dinámica no lineal de un proceso. La identificación de
un alto número de parámetros exige conjuntos de datos grandes que frecuentemente son
costosos de obtener. Otro punto importante de los modelos de Volterra es la imposibi-
lidad de aproximar procesos inestables, estando por tanto limitados a la aproximación
de sistemas estables.
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Las razones mencionadas convierten los modelos de Volterra en buenos candidatos
para el desarrollo de nuevas técnicas de NMPC. La flexibilidad de este tipo de modelo
permite el modelado de procesos dinámicos no lineales en una amplia gama de áreas
sin la necesidad de una compresión profunda del sistema considerado [120, 38]. La
estructura de dichos modelos es muy variable e incluye, bajo ciertas condiciones, la
representación de modelos bilineales [70]. En [20] se ha demostrado que los mode-
los mencionados pueden aproximar arbitrariamente bien cualquier sistema estable con
memoria evanescente. No obstante, una mejor aproximación requiere modelos de altos
órdenes o de secuencias de memoria más largas. En la práctica es necesario encon-
trar un compromiso entre el número de parámetros y la calidad de aproximación de la
dinámica del sistema.

Frecuentemente se identifican los parámetros de los modelos de Volterra mediante
datos experimentales de tipo entrada-salida obtenidos del proceso que se desea aproxi-
mar. Para obtener una identificación apropiada se propone en [96] el uso de secuencias
pseudoaleatorias multinivel (PRMS, del inglés Pseudo-Random Multilevel Sequence).
Tales secuencias alteran el proceso considerado al objeto de obtener datos adecuados
para la posterior estimación de los parámetros del modelo. En [101] se presentan se-
cuencias de entrada que permiten la identificación de los parámetros de los términos
lineales y no lineales por separado. Las secuencias propuestas están consideradas suaves
(“plant-friendly”), ya que poseen un número reducido de transiciones. Otra manera de
obtener datos apropiados para la estimación de parámetros de un modelo es el uso
de señales multi-seno restringidas. Estas señales permiten la obtención de datos ex-
perimentales de tipo entrada-salida en un tiempo razonable mientras se satisfacen las
restricciones impuestas por el usuario.

La identificación de modelos autorregresivos con un número reducido de parámetros
ha sido propuesto en [52, 71]. A partir del modelo autorregresivo identificado se pueden
calcular fácilmente los parámetros correspondientes de un modelo no autorregresivo de
Volterra. Otro enfoque es la reducción de la complejidad paramétrica usando funciones
con base ortonormal, como las funciones de Laguerre [24] o de Kautz [32] o funciones de
base ortonormal generalizadas [124, 92]. En [70] se relaciona el rendimiento de control
en bucle cerrado con el error de modelado en bucle abierto usando control de modelo
no lineal interno (NIMC, del inglés Nonlinear Internal Model Control). En base a esa
relación se propone un método de optimización que permite una reducción relevante
de los modelos de Volterra para su uso en estrategias de control.
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B.1.2.1 NMPC basado en modelos de Volterra

Aunque se pueden usar los modelos de Volterra para aproximar una gran variedad
de sistemas diferentes, se han publicado sólo unos pocos trabajos científicos sobre
estrategias de NMPC basado en modelos de Volterra. Debido a que la investigación
de NMPC basado en modelos de Volterra es muy escasa, sólo se han reportado un un
pequeño número de aplicaciones prácticas.

Con respecto a la utilización de modelos de Volterra en NMPC, en [37, 77] pro-
pusieron un método computacionalmente eficiente para calcular la secuencia de futuras
acciones de control. La optimización se realiza sin consideración de restricciones me-
diante un algoritmo iterativo basado en la separación de los términos lineales y no
lineales de un modelo de Volterra de segundo orden. La estrategia de control consiste
en un controlador lineal convencional extendido con un bucle auxiliar para incluir la
dinámica no lineal en el proceso de optimización. La estrategia de control ha sido
validada en simulaciones [37] con una reacción de polimerización en un reactor con-
tinuo de tanque agitado (CSTR, del inglés Continuous Stirred Tank Reactor) y una
reacción isotérmica basada en la cinética de van de Vusse. La capacidad de la es-
trategia de NMPC propuesta para controlar sistemas de múltiple entrada y múltiple
salida (MIMO, del inglés Multiple-Input Multiple-Output) se demostró en [77] con la
simulación de un CSTR multivariable. Se puede considerar la estrategia de NMPC
mencionada como el punto de partida de esta tesis para el desarrollo de técnicas de
NMPC novedosas basadas en modelos de Volterra. El enfoque de optimización itera-
tivo ha sido modificado en [51] para considerar modelos autorregresivos de Volterra en
la predicción de la evolución futura del sistema. El NMPC modificado ha sido aplicado
en simulaciones a un proceso de dos tanques con una entrada y una salida (SISO, del
inglés Single-Input Single-Output) y se ha demostrado la viabilidad de la estrategia de
control modificada.

En [50] se han presentado dos estrategias de NMPC subóptimas basadas en modelos
de Volterra de segundo orden. La primera estrategia está basada en la suposición de
incrementos constantes en acción de control sobre el horizonte de control entero, es
decir la secuencia de entrada resultante tiene una pendiente constante. La segunda
estrategia genera una secuencia de control donde los elementos de la secuencia tienen
el mismo valor a lo largo del horizonte de control. En ambas estrategias de NMPC,
dependiendo sólo de una única variable de decisión (dependiendo de la pendiente cons-
tante o de la señal de entrada constante), el problema de optimización posiblemente no
convexo se convierte en un polinomio de orden cuatro. Se puede minimizar fácilmente
este problema de optimización unidimensional, que no necesariamente es convexo, con
respecto a la única variable de decisión. A continuación se evalúa la función del coste
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para todos los valores de la variable de decisión asociados a mínimos no complejos y se
elige el valor de la variable de decisión que corresponde al mínimo global de la función
de coste. El problema de optimización reducido permite calcular analíticamente el
valor de la variable de decisión que minimiza el coste y, en consecuencia, resulta en
un cálculo de la secuencia de entrada muy rápido. Independientemente del método de
optimización elegido, analítico o numérico, se pueden incluir restricciones de la entrada
en el la minimización del coste.

En [36, 35] se extiende el NMPC propuesto en [37, 77] con la ponderación del
esfuerzo de control en la función de coste. La inclusión de la ponderación del esfuerzo
de control no cambia la complejidad computacional del problema de optimización y, en
consecuencia, no cambia la eficiencia del enfoque iterativo. Además se ha estudiado en
[35] cuestiones de convexidad del problema de optimización que resulta de la inclusión
de la ponderación del esfuerzo de control. Se ha demostrado que se puede asegurar
convexidad del problema de optimización mediante una elección apropiada del factor
de ponderación y, por lo tanto, garantizar convergencia del enfoque iterativo. Además,
[35] analiza la estrategia de NMPC para procesos con tiempo muerto cuando éste se
considera implícitamente en el modelo de Volterra o se utiliza un compensador de
tiempos muertos.

El NMPC para modelos de Volterra de segundo orden [37, 77] ha sido generalizado
en [66] para su uso en combinación con modelos de Volterra de ordenes más altos.
Análogamente al enfoque de optimización original, el problema de es resuelto por un
algoritmo de optimización iterativo basado en la separación de los términos lineales y no
lineales. A diferencia de la estrategia de NMPC original [37, 77] donde se considera sólo
el termino de segundo orden del modelo de Volterra en el bucle auxiliar, [66] propone
la inclusión de los términos de orden tres o más altos en el lazo auxiliar. La estrategia
de control generalizada fue validada en simulación con un proceso de polimerización no
lineal identificado mediante un modelo de Volterra de orden tres. La comparación del
NMPC basado en un modelo de Volterra de orden tres con un MPC lineal demostró
que el uso de modelos de Volterra de alto orden mejora el rendimiento de control en
caso de procesos altamente no lineales.

Recientemente, [4] ha presentado la aplicación de una estrategia de NMPC basado
en un modelo de Volterra de segundo orden a un modelo detallado que permite la
simulación de un proceso de refino de petróleo crudo. El proceso considerado es un
sistema subactuado (de tipo MIMO con 2 entradas y 4 salidas) y muestra un fuerte
acoplamiento entre los diferentes estados. El NMPC aplicado no logra estabilizar los
4 estados en la referencia dada debido a la complejidad del proceso y la interconexión
entre los estados. En un segundo paso se ha considerado un subsistema con 2 entradas
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y 2 salidas para la validación del NMPC. El NMPC basado en un modelo de Volterra de
segundo orden podía estabilizar los estados del subsistema en diferentes simulaciones
de seguimiento de referencia y rechazo de perturbaciones. Un PI tradicional aplicado
al mismo sistema obtuvo resultados inaceptables con oscilaciones importantes en las
entradas y salidas por el acoplamiento entre los estados.

Con respecto a la estabilidad de las estrategias de NMPC es importante tener en
cuenta que los modelos de Volterra representan una generalización de los modelos FIR
y representan sistemas con olvido. Varios autores han demostrado la estabilidad en
bucle cerrado para estrategias de MPC basado en modelos lineales de tipo FIR, entre
otros [41, 135, 91]. En [85] se propone el uso de una restricción terminal de igualdad
para garantizar la estabilidad de sistemas con memoria finita como es el caso en los
modelos de Volterra. Otras publicaciones como [82, 86, 33] enfatizan que se puede
demostrar estabilidad de estrategias de NMPC bajo ciertas condiciones mediante fun-
ciones de Lyapunov. A pesar de las proposiciones mencionadas el tema de estabilidad
de NMPC basado en modelos de Volterra es un campo de investigación abierto con
pocos resultados.

B.1.2.2 Control predictivo mín-máx

Los modelos no lineales, en comparación con los modelos lineales, permiten aproximar
sistemas con dinámicas más complejas. Sin embargo, incluso con modelos matemáticos
no lineales complejos es difícil de capturar por completo la dinámica de un proceso
físico. La posible discrepancia entre el sistema y el modelo así como perturbaciones
externas pueden resultar en una predicción deficiente de la evolución futura del sistema
considerado. Con el fin de obtener un control más robusto se pueden usar modelos
con incertidumbre en el marco de MMMPC, inicialmente propuesto por [134]. En
general se dividen las estrategias de MMMPC en dos tipos, los controladores basados
en la predicción en bucle abierto y los controladores basados en la predicción en bucle
cerrado. El MMMPC en bucle abierto minimiza el peor caso sin realimentación de las
predicciones calculadas [25, 5]. Además, todas las posibles trayectorias de la evolución
del sistema deben cumplir las restricciones impuestas, resultando a menudo en un
rendimiento de control considerablemente conservador. La complejidad del problema
de optimización depende de forma exponencial del horizonte de predicción utilizado y
representa un problema de tipo NP-duro [73]. El enfoque de bucle abierto ha sido una
de las primeras estrategias de MPC basada en la formulación mín-máx del problema
de optimización.

Con el fin de reducir el conservadurismo de la ley de control, [123] propuso el uso de
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MMMPC basado en las predicciones en bucle cerrado. En el MMMPC en bucle cerrado
se minimiza el problema de optimización considerando explícitamente la realimentación
de la evolución predicha del sistema [85]. El enfoque en bucle cerrado resulta en
un problema de optimización de dimensión infinita y es mucho más compleja que el
problema de optimización correspondiente al MMMPC en bucle abierto. En general es
muy difícil de calcular la secuencia de entrada y se pueden encontrar sólo unos pocos
algoritmos para sistemas lineales [89, 43]. La carga computacional elevada limita el uso
de MMMPC en bucle cerrado a procesos simples u horizontes de predicción pequeños.
En esta tesis se considerará exclusivamente el concepto de MMMPC en bucle abierto.

Recientemente se ha demostrado en [14, 55] que la ley de control de MMMPC en
bucle abierto es afín a trozos cuando se usa una función de coste basada en la norma 1.
Análogamente, [106] probó afinidad a trozos para funciones de coste cuadráticas. Esta
propiedad del problema de optimización permite la construcción de formas explícitas
de la ley de control con una importante reducción de la complejidad [90]. Otro enfoque
comúnmente utilizado está basado en una cota superior para el peor coste en lugar
de calcular explícitamente el coste exacto. El problema de optimización resultante
se puede resolver mediante desigualdades lineales matriciales (LMIs, del inglés Linear

Matrix Inequalities). En el supuesto caso de usar una cota superior del peor caso la
diferencia entre la solución exacta y la cota calculada aumenta el conservadurismo de
la ley de control.

En [34] se demostró que el problema de optimización de MMMPC en bucle cerrado
basado en costes y restricciones convexos puede ser representado por un problema de
optimización convexo de dimensión finita. En el caso especial de un coste cuadrático
se puede resolver el problema de optimización mediante programación cuadrática con
restricciones cuadráticas (QCQP, del inglés Quadratically Constrained Quadratic Pro-

gram). Además de las distintas estrategias de MMMPC, hay que mencionar las técnicas
de MPC basado en tubos que permiten el cálculo de la señal de control mediante la
solución de un QP estándar [83, 84, 69]. El concepto de los tubos se introdujo en [16]
y está basado en la idea de una secuencia de conjuntos donde un conjunto es alcanza-
ble desde el conjunto anterior. Las estrategias de MPC basado en tubos permiten la
satisfacción robusta de restricciones para sistemas lineales [27] y no lineales [79, 22].

En [81] se presentaron condiciones suficientes para diseñar estrategias de MMMPC
asintóticamente estables para sistemas cuyas incertidumbres dependen del estado, esto
es, las incertidumbres desaparecen en el punto de equilibrio del sistema. Para sis-
temas con incertidumbres persistentes, la estabilidad entrada a estado (ISS, del inglés
Input-to-State Stability) representa un marco apropiado para el análisis de la capacidad
estabilizadora de MPC [126, 54]. En [68] se presentaron condiciones suficientes para
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garantizar la estabilidad de sistemas con ciertos tipos de incertidumbres acotadas, con-
trolados con estrategias de MMMPC. Considerando a priori las condiciones suficientes
de estabilidad robusta, [62] presentó un enfoque nuevo para el diseño de MMMPC en
bucle cerrado que garantiza ISS para sistemas no lineales. Actualmente hay muchos
grupos de investigación que invierten un considerable esfuerzo en el análisis de la es-
tabilidad de sistemas discretos con incertidumbres. Para una visón general de temas
relacionados con la estabilidad robusta se remite al lector a [67].

B.1.3 Objetivos

El objetivo general de esta tesis es contribuir al desarrollo de nuevas estrategias de
MPC no lineal y robusto. El enfoque principal se hará a partir de los modelos de
Volterra de tiempo discreto y su posible uso en estrategias de control de horizonte
deslizante. Además, se considerarán los modelos lineales con incertidumbres en el
marco de MPC robusto como paso previo para el desarrollo de MMMPC basado en
modelos de Volterra. En el diseño de nuevas estrategias de control se prestará especial
atención a la aplicabilidad práctica, relacionada con la carga computacional necesaria
para resolver el problema de optimización, y también al estudio de estabilidad.

A pesar de la importancia de los procesos no lineales en la industria, rara vez se
usan estrategias de MPC no lineal y robusto en aplicaciones industriales. Además, en
el área de técnicas de MPC avanzado se puede observar una separación importante
entre la investigación académica y la práctica industrial. Uno de los objetivos de esta
tesis es el desarrollo de nuevas técnicas de MPC que cumplan los requisitos de las apli-
caciones industriales. Una razón importante para el escaso éxito de MPC no lineal y
robusto en la práctica industrial se encuentra en la dificultad para obtener modelos de
predicción apropiados. Por este motivo, los modelos considerados en esta tesis son de
fácil obtención a partir de datos experimentales de tipo entrada-salida, una práctica
común en la industria. En el caso de los modelos de Volterra, representando la exten-
sión lógica de los modelos de convolución lineal, se pueden identificar los parámetros
con técnicas de identificación lineal. En los modelos lineales se ha considerado la in-
certidumbre persistente como término aditivo y acotado, con la posibilidad de obtener
la cota directamente de la comparación de la salida del sistema y la salida predicha.

Otro problema en la aplicación de técnicas avanzadas de MPC es la complejidad
computacional del problema de optimización resultante. En el caso de NMPC, el cálculo
de la acción de control requiere la solución de un problema posiblemente no convexo. En
ese caso, la estructura particular de los modelos de Volterra, es decir, la separabilidad
de los términos lineales y no lineales, puede ser explotada para encontrar algoritmos
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computacionalmente eficientes para resolver el problema de optimización. La compleji-
dad numérica de las estrategias de MMMPC se encuentra en el cálculo del peor caso y
crece de forma exponencial en función del horizonte de predicción. Teniendo en cuenta
la aplicabilidad práctica, se estudiarán nuevos enfoques para determinar el peor caso.
Además, las nuevas estrategias de control deben permitir una implementación simple
y, en consecuencia, facilitar su utilización en aplicaciones industriales.

El análisis de la estabilidad es fundamental en el diseño de nuevas estrategias de
MPC. La estabilidad es especialmente relevante en la implementación práctica de MPC
cuando se consideran explícitamente incertidumbres en el modelo de predicción. Un
objetivo importante en esta tesis será el análisis y la prueba de estabilidad tanto para
MMMPC como NMPC.

Resumiendo los objetivos anteriormente mencionados, esta tesis tratará los siguien-
tes temas:

• Desarrollo de novedosas estrategias de NMPC y MMMPC basado en modelos de
Volterra y modelos lineales con incertidumbre

• Análisis de las propiedades estabilizantes de las estrategias de control y formu-
lación de las condiciones necesarias para lograr la estabilidad

• Implementación de las diferentes estrategias de MPC y aplicación a procesos
industriales no lineales

B.1.4 Estructura de la tesis

La tesis está organizada de la siguiente forma:

• En el Capítulo 2 se dará una introducción general a los modelos de Volterra, con
énfasis especial en los modelos de Volterra no autorregresivos de segundo orden
en tiempo discreto y su uso en el MPC. Se explicarán la identificación de los
parámetros a partir de datos empíricos y la transformación de la forma autorre-
gresiva en su representación no autorregresiva. Para los modelos de Volterra de
segundo orden se especificará un modelo de predicción que puede ser usado en el
MPC. A continuación se presentará la función de coste, habitualmente cuadrática,
del MPC y se definirá el problema general de optimización de MPC basado en
modelos de Volterra de segundo orden. La última sección presentará los modelos
de Volterra en espacio de estados, especialmente importantes para las pruebas de
estabilidad necesarias.
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• El Capítulo 3 dará una descripción detallada de los diferentes sistemas usados
en esta tesis como bancos de pruebas, para la aplicación de estrategias de MPC.
Los sistemas considerados incluyen una planta piloto, una pila de combustible y
un invernadero, los cuales representan procesos no lineales. Se aproximarán las
dinámicas no lineales de los diferentes procesos mediante modelos de Volterra de
segundo orden para su posterior uso en estrategias de MPC. Los parámetros de
los modelos se identificarán a partir de datos entrada-salida obtenidos mediante
experimentos con dichos procesos.

• En el Capítulo 4 se estudiarán algoritmos iterativos para resolver el problema
de optimización de NMPC basado en modelos de Volterra de segundo orden.
Empezando con una formulación básica del problema de optimización sin res-
tricciones, se introducirán diversas modificaciones en la función de coste y en
el algoritmo iterativo, con el fin de considerar restricciones y una ponderación
del esfuerzo de control. El algoritmo iterativo considerando restricciones será
modificado para garantizar la estabilidad en bucle cerrado. Finalmente, se apli-
carán los dos algoritmos iterativos con restricciones a distintos procesos y se ilus-
trará el rendimiento de los controladores mediante los resultados experimentales
obtenidos.

• El Capítulo 5 presentará un enfoque de convexificación para estrategias de NMPC
basado en modelos de Volterra de segundo orden. El enfoque permite la minimi-
zación global del problema de optimización, teniendo en cuenta una ponderación
adecuada del esfuerzo de control. Mediante algunas modificaciones en el enfoque
de convexificación se podrá garantizar la estabilidad de la estrategia de NMPC
resultante. Además se verifica la aplicabilidad práctica de las estrategias de
NMPC desarrolladas mediante experimentos con uno de los procesos usados como
banco de pruebas.

• El Capítulo 6 se centra en dos estrategias de MMMPC para sistemas lineales con
incertidumbre aditiva y persistente. La primera estrategia de control está basada
en una cota superior del peor caso y reduce considerablemente la complejidad
computacional del problema de optimización. En el caso de la segunda estrategia,
se calcula una aproximación del peor caso mediante la solución de un problema
QP. Para ambas estrategias de control, cada una con una carga computacional
considerablemente más baja que el problema de optimización original, se puede
garantizar la estabilidad. Por último, se aplican las estrategias de MMMPC a
uno de los procesos y se presentan los resultados experimentales obtenidos.

• En el Capítulo 7 se desarrollará una estrategia de MMMPC basado en un mo-
delo de Volterra de segundo orden con incertidumbre aditiva y persistente. Se
demostrará que el carácter no autorregresivo del modelo permite la obtención de
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una formulación explícita del peor caso. La carga computacional para calcular
la secuencia de entrada es mucho menor que la del problema mín-máx original,
ya que el problema de optimización degenera en un problema de minimización.
Después de algunos cambios en la función de coste se puede demostrar estabilidad
robusta del MMMPC desarrollado. Finalmente, se implementan y aplican las
estrategias de MMMPC basado en un modelo de Volterra de segundo orden a
uno de los sistemas usados como banco de pruebas y se exponen los resultados
obtenidos con los experimentos.

• El Capítulo 8 resumirá las contribuciones y resultados de esta tesis y dará posibles
direcciones para futuras investigaciones.

• El Apéndice A da una definición detallada del modelo de predicción basado en
modelos de Volterra de segundo orden, así como otras definiciones matemáticas.
En el Apéndice B se encuentran las traducciones al castellano de los Capítulos 1
y 8.
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B.2 Capítulo 8: Conclusiones

Esta tesis se dedicó al desarrollo de nuevas estrategias de MPC tanto para sistemas no
lineales, como para sistemas con incertidumbre. Se ha prestado especial atención a la
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aplicabilidad de las nuevas estrategias, teniendo en cuenta cuestiones de estabilidad.
Los modelos de Volterra en tiempo discreto desempeñaron un papel fundamental en
el desarrollo de estrategias de MPC, pero también se consideraron modelos lineales
inciertos en tiempo discreto.

El éxito indiscutible del MPC lineal en aplicaciones industriales tiene varias ra-
zones, entre las más importantes destacan la formulación intuitiva del problema de
optimización, la consideración de restricciones, la fácil implementación de la ley de
control, así como la posibilidad de controlar procesos en una gama muy amplia de dife-
rentes áreas industriales. En contraste, el NMPC y el MMMPC se utilizan escasamente
en aplicaciones prácticas y, en consecuencia, estas estrategias reciben menos atención
en sectores industriales. El menor interés en estas técnicas de MPC avanzado tiene
su origen en varios factores, los más importantes son la dificultad de obtener mode-
los de predicción adecuados y la complejidad computacional para resolver el problema
de optimización. Además, los algoritmos de programación no lineal, necesarios para
resolver el problema de optimización posiblemente no convexo del NMPC son menos
fiables que los algoritmos de optimización utilizados en el MPC lineal. Otros problemas
más teóricos del estudio de técnicas de control avanzado como el NMPC y el MMMPC
incluyen temas de estabilidad y robustez así como cuestiones de optimización.

Teniendo en cuenta los problemas mencionados, se desarrollaron en los capítulos
anteriores varias estrategias de MPC robusto y no lineal. Los modelos para aproxi-
mar la dinámica de los procesos considerados se obtienen fácilmente a partir de datos
experimentales de tipo entrada-salida y previenen los problemas de una identificación
difícil y costosa. Se han considerado dos tipos diferentes de modelos en el desarrollo de
estrategias de control: modelos de Volterra y modelos lineales en espacio de estados.
Ambos modelos pueden ser identificados con métodos de estimación basada en míni-
mos cuadrados. Estos métodos representan una técnica de identificación estándar en
ingeniería de control que es ampliamente utilizada en la industria. En ambos modelos
se incluyeron incertidumbres aditivas, acotadas y persistentes con el objetivo de desa-
rrollar estrategias de MPC robustas. Mediante la comparación de la salida medida del
sistema con la salida predicha del modelo, se puede determinar fácilmente la cota de
la incertidumbre.

Con respecto a la complejidad numérica para resolver el problema de optimización
de estrategias de MMMPC y NMPC, se presentaron diferentes métodos para reducir
la carga computacional. Se implementaron y aplicaron las estrategias de control al
menos a uno de los sistemas usados como banco de pruebas. Mediante los resultados
obtenidos en experimentos de seguimiento de referencia y rechazo de perturbación se
ilustró el rendimiento de los controladores propuestos y se verificó la aplicabilidad
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Algoritmo Estab. Prog. tmin
c tmx

c tavgc

Optim. iterativa QP 0.021 s 0.481 s 0.059 s

Optim. iterativa sí QP 0.031 s 0.284 s 0.076 s

Convexificación NLP 0.066 s 4.462 s 0.736 s

Convexificación sí NLP 0.200 s 7.945 s 1.115 s

MMMPC (cota no lin.) sí NLP 0.398 s 3.276 s 0.783 s

MMMPC (cota cuadr.) sí QP 0.088 s 0.179 s 0.097 s

MMMPC no lineal NLP 0.146 s 0.616 s 0.442 s

MMMPC no lineal sí NLP 0.285 s 4.408 s 0.939 s

MPC QP 0.021 s 0.112 s 0.031 s

MPC sí QP 0.031 s 0.160 s 0.060 s

Cuadro B.1: Comparación entre las diferentes estrategias de control con respecto al tipo

de problema de programación y al tiempo necesario para calcular la acción de control en los

experimentos con la planta piloto.

práctica. Se demostró que una modificación en la función de coste y el uso de un
horizonte suficientemente largo garantizan la estabilidad robusta de las estrategias de
MPC basado en modelos de Volterra. Además, se comprobó que la estrategia de
MMMPC lineal basado en una cota superior no lineal del peor caso, acota el estado
del sistema y, en consecuencia, garantiza la estabilidad robusta.

Con el fin de dar una visión general de las estrategias de MPC desarrolladas se pre-
senta en los Cuadros B.1 y B.2 un resumen de los tiempos necesarios para calcular una
nueva secuencia de entrada (con los valores medios, mínimos y máximos de los tiempos
de cálculo) y las sumas de errores cuadráticos (SSE, del inglés Sum of Square Errors)
obtenidas en los diferentes experimentos con la planta piloto. Asimismo, los cuadros
especifican el tipo de problema de programación y si la estrategia propuesta garantiza
estabilidad en bucle cerrado. Además, por razones de comparación, se incluyeron en
los cuadros los resultados numéricos de un MPC lineal (para información detallada
sobre la aplicación del MPC véase el Apéndice A.9). Los resultados muestran que los
algoritmos iterativos para el NMPC basado en modelos de Volterra (Capítulo 4), el
MMMPC lineal basado en una cota superior cuadrática (Sección 6.3) y el MPC lineal
(Apéndice A.9), es decir, los problemas de optimización que representan un problema
de programación cuadrática (QP, del inglés Quadratic Programming), requieren poco
tiempo para calcular la secuencia de control y pueden ser usados para controlar pro-
cesos con dinámica rápida. El enfoque de convexificación para el NMPC basado en
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modelos de Volterra (Capítulo 5), el MMMPC lineal basado en una cota superior no
lineal (Sección 6.2) y el MMMPC no lineal basado en modelos de Volterra (Capítulo
7) constituyen problemas de programación no lineal (NLP, del inglés Nonlinear Pro-

gramming) con una complejidad computacional considerablemente superior a la de los
problemas QP. Sin embargo, con métodos modernos de NLP, p.ej. algoritmos de pro-
gramación cuadrática secuencial (SQP, del inglés Sequential Quadratic Programming),
se pueden resolver los problemas de optimización de las estrategias de MPC propuestas
en un tiempo razonable y, por tanto, tales estrategias de control son válidas para pro-
cesos con dinámica lenta o intermedia. Obviamente, la comparación de los resultados
de las estrategias de control propuestas es una tarea difícil2, ya que algunas estrategias
dieron mejores resultados en unos experimentos y otras rindieron mejor en otros, p.ej.
los mejores valores de SSE en el experimento de seguimiento de referencia se obtenían
con el NMPC basado en el enfoque de convexificación, mientras que el MMMPC no
lineal dio los mejores resultados en los experimentos con una perturbación en la válvula.

Sin embargo, se puede ver claramente que la aplicación de las estrategias de MMMPC
y NMPC a la planta piloto resulta en todos los casos en índices de errores cuadráticos
más bajos que el MPC lineal.

Resumiendo los anteriores capítulos, las contribuciones principales de esta tesis son
los siguientes temas claves:

• Se han aproximado diferentes tipos de procesos con dinámica no lineal mediante
modelos de Volterra de segundo orden, para su uso posterior en aplicaciones prác-
ticas de NMPC. El comportamiento dinámico complejo de los procesos es difícil
de aproximar mediante modelos matemáticos, incluso con modelos no lineales.
Sin embargo, el carácter no lineal de los modelos de Volterra ofrece la posibilidad
de mejorar la calidad de la aproximación en comparación con los modelos linea-
les. Además, uno de los sistemas considerados ha sido aproximado por un modelo
lineal con incertidumbre persistente y aditiva. Las diferentes estructuras de mo-
delo utilizadas permiten determinar los parámetros con técnicas de identificación
lineal y han sido elegidas con la idea de una fácil identificación.

• Se ha estudiado un algoritmo de optimización iterativo para el NMPC basado
en modelos de Volterra. Este algoritmo es computacionalmente eficiente, pero
no considera restricciones en la optimización, además la función de coste del

2Un análisis comparativo de las diferentes estrategias de MPC con respecto a su rendimiento debe

basarse en resultados de simulaciones por ordenador, a fin de evitar la influencia de perturbaciones

exógenas no reproducibles. Además, para un análisis detallado de las estrategias propuestas con

respecto al seguimiento de referencia, el rechazo de perturbaciones y los problemas de estabilización

se deben usar índices de rendimiento diferenciados.



Appendix B. Spanish translations 277

Algoritmo Estab. nominal error parám. dist. alim. dist. valvula

Optim. iterativa 2056.51 2098.15 1120.80 1088.31

Optim. iterativa sí 2140.14 2136.82 1447.52 1495.71

Convexificación 1934.44 1930.41 1119.80 1123.22

Convexificación sí 1660.83 1690.92 803.72 764.42

MMMPC (cota no lin.) sí 2420.20 2301.37 1071.37 684.03

MMMPC (cota cuadr.) sí 2463.15 2294.94 1129.73 677.65

MMMPC no lineal 2224.91 2208.78 1042.3 633.40

MMMPC no lineal sí 2316.90 2318.31 1020.65 695.73

MPC 2675.26 2635.40 1549.22 1535.22

MPC sí 2621.67 2517.47 1529.92 1767.12

Cuadro B.2: Comparación entre las diferentes estrategias de control con respecto a las sumas

de errores cuadráticos obtenidas en los experimentos con la planta piloto.

NMPC no incluye una ponderación del esfuerzo de control. En primer lugar se ha
extendido el algoritmo iterativo y el problema de optimización para incluir tanto
restricciones como una penalización del esfuerzo de control. Con una modificación
adicional en la función de coste y un horizonte de predicción apropiado se ha
demostrado estabilidad entrada a estado (ISS, del inglés Input-to-State Stability)
del algoritmo iterativo con restricciones.

• Con vista al problema de optimización posiblemente no convexo, resultado de
la combinación de una función de coste cuadrática y un modelo no lineal, se ha
desarrollado un enfoque de convexificación para estrategias de NMPC basado en
modelos de Volterra de segundo orden. En este nuevo enfoque se aproxima la
función de coste original mediante una serie de funciones cuadráticas convexas.
Estas aproximaciones representan una envoltura convexa de la función de coste
original y permiten la minimización global del problema original con algoritmos
estándares de optimización convexa. Después de una modificación en la función
de coste, se ha demostrado estabilidad robusta del enfoque de convexificación
para horizontes de predicción que satisfacen cierta condición.

• Se ha demostrado estabilidad robusta para una estrategia de MMMPC lineal
basado en una cota superior del peor caso. Esta estrategia reduce considerable-
mente la complejidad numérica del problema de optimización usando un algo-
ritmo de diagonalización para determinar la cota superior. Por tanto, el cálculo
de la cota requiere sólo la diagonalización de una matriz, en lugar de la evaluación
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de todos los posibles vértices de la secuencia de perturbaciones futuras. En con-
secuencia, el MMMPC permite una computación rápida de la cota mencionada,
así como el uso de horizontes de predicción más largos.

• Con el fin de considerar posibles perturbaciones, se ha desarrollado una nove-
dosa estrategia de MMMPC basado en modelos de Volterra. En el modelo de
predicción se ha considerado la incertidumbre como término aditivo y persis-
tente, donde la estructura del modelo permite una fácil obtención de la cota de
la incertidumbre, mediante la comparación entre la salida del sistema y la salida
predicha del modelo. Por último, con una modificación en la función de coste,
se ha demostrado que la estrategia de control propuesta garantiza estabilidad
robusta para un horizonte de predicción suficientemente largo.

• Para comprobar la aplicabilidad práctica, se han implementado y validado las
diferentes estrategias de control presentadas (con excepción del algoritmo itera-
tivo de optimización sin restricciones, que se puede considerar como punto de
partida para el desarrollo de nuevas estrategias de control) en experimentos con
al menos uno de los sistemas usados como banco de pruebas. En los resultados
de los experimentos se ha observado que las estrategias de NMPC y MMMPC
tienen un mejor rendimiento de control en comparación con un MPC lineal. El
empleo exitoso de las diferentes estrategias se une al bajo número de aplicaciones
de NMPC y MMMPC existentes en la literatura especializada.

Por último, posibles futuras investigaciones podrían incluir las siguientes direcciones:

• Los algoritmos iterativos de optimización para el NMPC basado en modelos de
Volterra de segundo orden son computacionalmente muy eficientes, pero muestran
problemas de convergencia en el caso de un problema de optimización no convexa.
Sin embargo, se puede garantizar la convergencia del algoritmo iterativo mediante
la elección de una ponderación apropiada del esfuerzo de control o un prefiltro
de la referencia. Por tanto, se sugiere un análisis detallado de las condiciones
necesarias para asegurar la convergencia de los algoritmos iterativos.

• El enfoque de convexificación presentado aproxima una función de coste posible-
mente no convexa mediante funciones cuadráticas convexas y permite la mini-
mización global del problema inicial. La minimización simultánea de varias fun-
ciones cuadráticas convexas representa un problema de programación cuadrática
que se puede resolver mediante algoritmos modernos de optimización convexa
como métodos de SQP. El uso de desigualdades lineales matriciales (LMI, del in-
glés Linear Matrix Inequalities) podría reducir la carga computacional necesaria
para resolver el problema de optimización y, en consecuencia, permitir calcular
más rápido la secuencia de control.



Appendix B. Spanish translations 279

• La estrategia de MMMPC para modelos de Volterra de segundo orden con incer-
tidumbre persistente y aditiva, está basada en una formulación explícita del peor
caso, es decir, el problema de optimización mín-máx degenera en un problema de
minimización y se puede resolver usando métodos de NLP. Para esta estrategia se
propone el estudio de posibles soluciones del problema de minimización mediante
algoritmos iterativos o el enfoque de convexificación.

• Los modelos de Volterra no autorregresivos permiten la aproximación de una gran
variedad de sistemas estables en bucle abierto, pero no son válidos para modelar
sistemas inestables. No obstante, se puede pre-estabilizar el sistema con la ayuda
de controladores por realimentación y aproximar el sistema extendido (proceso
+ controlador por realimentación) por un modelo de Volterra no autorregresivo.
Un esquema de control jerárquico que consiste en un bucle exterior con el con-
trolador basado en un modelo de Volterra y un bucle interior con el control por
realimentación, podría ampliar el rango de posibles aplicaciones de MPC basado
en modelos de Volterra.

• El horizonte finito y las restricciones consideradas en un problema de optimización
de una estrategia de MPC puede resultar en estados inalcanzables para una re-
ferencia dada. Especialmente después de cambios en la consigna, no siempre
se puede garantizar la factibilidad del problema de optimización. Con el fin de
evitar la pérdida de factibilidad se puede considerar el problema de seguimiento
en el diseño de estrategias de MPC, de manera que se asegure la satisfacción de
las restricciones para cualquier referencia admisible.

• Se han presentado diferentes estrategias de MMMPC, tanto para modelos lineales,
como para modelos de Volterra de segundo orden y sus aplicaciones a los sistemas
usados como bancos de pruebas. En un estudio más teórico se podría analizar el
aumento de robustez obtenido con las estrategias propuestas.

• Otra posibilidad en el MMMPC basado en modelos de Volterra es el uso de incer-
tidumbres paramétricas e incertidumbres que dependen del estado del sistema.
Una posible línea futura de investigación podría considerar tales incertidumbres
en el desarrollo de nuevas estrategias de MMMPC y analizar la robustez en bucle
cerrado, un punto importante en aplicaciones industriales.
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