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24 ABSTRACT 
 

25 Imaging techniques have revolutionised the way quality is assessed in food 
 

26 products. Using cameras, it is possible to estimate not only the chemical 
 

27 composition of a product but also its geometric distribution. However, the limited 
 

28 range of detectors implies the use of different measuring equipment. The 
 

29 presence of small and discrete samples or very heterogeneous samples makes 
 

30 joining both sets of data a complicated task. This work arises from the need to 
 

31 merge images with colour information and NIR spectral information on grape 
 

32 samples and derivatives. An application has been created under MATLAB to join 
 

33 this type of images so that it is possible to simultaneously extract the colour 
 

34 and/or spectral information of each pixel or object present in the image. Although 
 

35 the software can be used in a wide range of applications, it has been successfully 
 

36 applied to grape and grape seed samples. In red grape bunches, it was possible 
 

37 to evaluate individually grapes and notice differences due to changes in visible 
 

38 and infrared regions at the same time. In the case of white grape seeds, it was 
 

39 proved that merged images were better to discriminate between varieties than 
 

40 the single CIELAB or spectral images. 
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44 1. INTRODUCTION 
 

45 Colour and appearance, as the first attributes that consumers perceive, have 
 

46 been the features most characterized in food products (Fernández-Vázquez et 
 

47 al., 2011). Historically, these analyses have been done through sensory analysis, 
 

48 which over the years has been replaced by instrumental measurements, mainly 
 

49 due to the need to automate inspection processes in the food industry. Advances 
 

50 in technology have led to the emergence of devices capable of analysing in real- 
 

51 time and transmitting the results online for rapid decision making. So much so 
 

52 that, the use of Precision Agriculture is the only viable way to manage the needs 
 

53 of such an overpopulated world (Singh and Singh, 2020). 
 

54 Of all the devices available for rapid analysis in agriculture, those based on 
 

55 Computer Vision are worth mentioning (Ma et al., 2016). There is an ad hoc 
 

56 application for the evaluation of any type of product. Mangoes (Wendel et al., 
 

57 2018), grapes (Nogales-Bueno et al., 2015b), asparagus (Donis-González and 
 

58 Guyer, 2016), coffee beans (de Oliveira et al., 2016), or figs (Benalia et al., 2016) 
 

59 are good examples of products whose agrological and physicochemical 
 

60 characteristics are quite different and which already have a solution of imaging 
 

61 techniques to be evaluated. 
 

62 1.1. Imaging Techniques 
 

63 Since the creation of the first computer, human beings have dreamed of creating 
 

64 machines capable of relating to their environment in the same way their senses 
 

65 do. Making a machine capable of seeing has been one of the great challenges of 
 

66 electronics. Simply creating cameras was not enough. We needed machines that 
 

67 could understand what they were seeing. All the advances in optical systems 
 

68 have made Computer Vision one of the techniques with the greatest field of 
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69 application in the food industry. Depending on the measurement geometry and 
 

70 the type of information obtained we will differentiate between conventional RGB 
 

71 images and spectral images. 
 

72 RGB imaging 
 

73 Conventional RGB cameras are usually built with silicon-based detectors with 
 

74 filters so that each point only receives information from one of the three primary 
 

75 colours. The big problem with these cameras is that RGB or HSI colour spaces 
 

76 are device-dependent, so in principle, they cannot be used for absolute colour 
 

77 measurements (Yam and Papadakis, 2004). Despite these limitations, many 
 

78 authors still use these colour spaces. By controlling all environmental factors and 
 

79 through chemometrics tools it is possible to predict physicochemical 
 

80 characteristics in food products from these colour data. Other authors use the 
 

81 CIELAB transformation that graphic editing programs offer. This transformation 
 

82 only depends on the original values of RGB, thus they always make a systematic 
 

83 error. If the final aim is not the colorimetric measurement but the physicochemical 
 

84 analysis through chemometrics, this error has no further importance. The most 
 

85 orthodox method is to follow the recommendations of CIE and use not device- 
 

86 dependent colour spaces (CIE, 2004). The most used colour space in food 
 

87 products analysis is CIE 1976 (L*a*b*) or simply: CIELAB. However, conversion 
 

88 between RGB and CIELAB requires long calibration processes utilizing standard 
 

89 illumination and reference materials (León et al., 2006). This is the only method 
 

90 when the goal is to get absolute colorimetric measurements by means of RGB 
 

91 cameras. 
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92 Spectral imaging 
 

93 Spectral imaging technology appeared in the mid-1980s. This revolution, that 
 

94 began with airborne images and which could be applied to several fields, was 
 

95 appointed as “hyperspectral imaging”. Almost forty years later, this technology 
 

96 cannot be longer mentioned as groundbreaking, but its applications continue 
 

97 growing nowadays. Now that the technique is well implemented, experts 
 

98 recommend the use of more appropriated terms such as “imaging spectroscopy” 
 

99 or “spectral imaging” (Polder and Gowen, 2020). Spectral images are three- 
 

100 dimensional data matrix where the first two axes (x and y) of the matrix represent 
 

101 the spatial coordinates, while the third (λ) axis depicts the spectral dimension. 
 

102 They can be visualised as hundreds of single grayscale images of the same 
 

103 scene, where each image represents a single band that may be as narrow as the 
 

104 equipment allows. 
 

105 1.2. Image Analysis and Viticulture 
 

106 The wine industry has relevant importance within food science. To obtain quality 
 

107 wines it is necessary to control the cultivation at all levels. For this reason, there 
 

108 are methods for evaluating vines, soil, foliage, and fruit, among others. Even 
 

109 within the fruit of the vine, it is necessary to control different parts such as seed, 
 

110 pulp, and skin. Imaging techniques have been successfully applied to these parts 
 

111 over the last ten years. Detection of flowering (Palacios et al., 2020), 
 

112 determination of soil quality (Retzlaff et al., 2015), leaf characterization (Diago et 
 

113 al., 2013), grape marc composition (Jara-Palacios et al., 2016), ripeness of 
 

114 berries and seeds (Rodríguez-Pulido et al., 2012), or grape composition 
 

115 (Nogales-Bueno et al., 2015a) are some examples of these applications. 
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116 1.3. Complementarity of techniques and objective of the work 
 

117 There is not a universal optical sensor capable of recording information from 
 

118 many regions of the electromagnetic spectrum at the same time. Therefore, 
 

119 depending on the characteristics to be measured on the samples, the type of 
 

120 sensor must be chosen correctly. The most common detectors are CCD, whose 
 

121 spectral range depends on whether it is cooled or not, CMOS or InGaAs. Silicon- 
 

122 based detectors such as CCD and CMOS have sensitivities up to 1000 nm. 
 

123 Those based on InGaAs have no sensitivity in the visible but reach wavelengths 
 

124 of 1700 nm (Huang et al., 2017). Besides, detectors can be matrix or linear, the 
 

125 latter needing a brooming system to acquire a complete image. 
 

126 In many studies, it is common to simultaneously determine characteristics by 
 

127 different optical techniques. When using point spectroscopy this task is as simple 
 

128 as measuring the same sample by different techniques and then joining the 
 

129 information obtained. This task is more challenging when it refers to imaging 
 

130 techniques. Imaging techniques are preferably used when the optical 
 

131 characteristics of the image vary according to the area of the sample being 
 

132 measured. In this case, it is difficult to join the information from different 
 

133 techniques, since the optical characteristics vary drastically, and it is not possible 
 

134 to simply superimpose the matrices that comprise each type of image. 
 

135 Furthermore, this task would be limited for reasons as simple as differences in 
 

136 resolution and framing. 
 

137 When using RGB images, the task of joining images with common elements is 
 

138 completely solved. The process by which two images with common elements are 
 

139 merged is called "image matching" or "image stitching". There are numerous 
 

140 computer programs capable of performing this process quickly and reliably. In 
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141 fact, research is still underway to improve the algorithms, which are increasingly 
 

142 robust to changes in light and perspective, and to improve the resulting images 
 

143 (Laraqui et al., 2015; Wang and Yang, 2020). All systems of airborne or satellite 
 

144 spectral images include their own stitching procedure to merge their captures for 
 

145 obtaining a whole complete image of the scanned region. The problem arises 
 

146 when it is necessary to merge data obtained from very different imaging 
 

147 techniques. 
 

148 This work stems from the need for evaluating jointly NIR spectral images and 
 

149 images obtained from a conventional imaging system. To our knowledge, there 
 

150 is not an available application to make this task. Therefore, this work has aimed 
 

151 to develop a simple application that allows researchers to get in a single spectral 
 

152 image both colorimetric and NIR data. 
 
 

153 2. MATERIALS AND METHODS 
 

154 2.1. Programming language 
 

155 The App Designer tool included in MATLAB R2020a has been used for this work 
 

156 (The Mathworks, 2020). MATLAB (short for Matrix Laboratory) is a mathematical 
 

157 software tool widely used in the scientific field and is characterised by its use of 
 

158 a friendly language for those researchers without extensive programming 
 

159 experience. Its main feature is the ease with which the program manipulates 
 

160 matrices. This is very useful in image analysis since both digital images and 
 

161 spectral images can be considered three-dimensional matrices. 
 

162 2.2. Starting images 
 

163 CIELAB images 
 

164 These images were acquired with the DigiEye® imaging System (Verivide, UK) 
 

165 (Luo et al., 2001). This equipment is specially designed for colour measurement 
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166 according to CIE guidelines and the evaluation of appearance. The equipment 
 

167 consists of a dome lighting booth with two D65 standard illuminant emulators 
 

168 lamps, a Nikon® D80 reflex camera and a computer that controls the equipment. 
 

169 The output images are stored in TIF files (57.4 MB) that have a resolution of 
 

170 3872×2592 pixels which each contains L*a*b* colour coordinates stored in 16-bit 
 

171 data per channel. 
 

172 Spectral Images 
 

173 The system comprised a Xenics® XEVA-USB InGaAs camera (320×256 pixels; 
 

174 Xenics Infrared Solutions, Inc., Leuven, Belgium), a spectrograph (Specim 
 

175 ImSpector N17E Enhanced; Spectral Imaging Ltd., Oulu, Finland) covering the 
 

176 spectral range between 884 and 1717 nm (spectral resolution of 3.25 nm), two 
 

177 70 W tungsten iodine halogen lamps (Prilux®, Barcelona, Spain) used as light 
 

178 source, a mirror scanner (Spectral Imaging Ltd., Oulu, Finland), and a computer 
 

179 system. Images were recorded using a 50 Hz frame rate and an exposure time 
 

180 of 9 ms using the instrument acquisition software SpectralDAQ 3.62 (Spectral 
 

181 Imaging Ltd., Oulu, Finland). Once the images are acquired, ‘white reference’ and 
 

182 ‘dark reference’ images were also recorded to calibrate the signal according to 
 

183 the equation R=(R0–D)/(W–D), being D the dark signal, W the white reference 
 

184 signal and R0 the RAW data. In this work, the relative reflectance spectrum 
 

185 obtained after calibration was used for the calibration processes. No 
 

186 spectroscopic transformation treatments or other spectral pre-treatments were 
 

187 performed. Each calibrated spectral image is composed of two files. First one is 
 

188 a DAT file (75 MB) that contains the binary data of the cube. For its reading, a 
 

189 header HDR file (3 KB) is also needed. This header has the metadata associated 
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190 with the binary file. The content is variable, but it usually has the size, data type, 
 

191 and the wavelength that belongs to each band. 
 
 

192 3. RESULTS AND DISCUSSION 
 

193 3.1. Design of Graphical User Interface 
 

194 Figure 1 shows a layout of the Graphical User Interface (GUI). Its design consists 
 

195 of a single screen that contains all the controls for its functioning and can be 
 

196 divided into the following parts. At the top, there are two areas in parallel for 
 

197 displaying CIELAB and spectral images. Between them, there are the buttons 
 

198 and controls to prepare the images before matching. In the middle, there is a 
 

199 panel with the “match” button and the options to export the resulting image. Below 
 

200 this section, there are the steps that indicate the status of the process and alerts 
 

201 about the possible troubles found in it. And finally, at the bottom, there are the log 
 

202 of the program and the buttons to reset and exit. 
 

203 3.2. Functioning 
 

204 Loading a pair of images 
 

205 The ‘load’ button opens a pop-up dialogue box for opening the CIELAB image. It 
 

206 automatically reads the spectral image if it has the same name. In the case it has 
 

207 not, a new dialogue box will request the location of the spectral file. This spectral 
 

208 file must have the corresponding header to be opened. The two parallel windows 
 

209 show a preview of both images. For CIELAB image, it can be visualized as a 
 

210 regular RGB image or with any of the five colorimetric coordinates in greyscale: 
 

211 L* (lightness), a*, b*, C*ab (chroma) or hab (hue). In the case of the spectral image, 
 

212 a slider allows browsing along the range of wavelengths available. A specific 
 

213 band can be also fixed in an edit field. 
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214 Cropping and Segmentation 
 

215 Some images may contain big background areas or non-desirable elements. This 
 

216 only will increase the computing workload. Therefore, ‘Crop image’ button will 
 

217 allow us to cut them by clicking and dragging a selection box around the regions 
 

218 of interest. The goal of this task is to reduce the information to the sample with 
 

219 the minimum of surrounding background. 
 

220 The ‘Segmentation’ button will identify the sample in both images and display the 
 

221 segmentation mask for each one. The segmentation process is based on a k- 
 

222 means algorithm that collects all the pixels from the two images and categorises 
 

223 them into two groups. For the CIELAB image it uses as input the L*a*b* data and 
 

224 for the spectral image it samples one every ten spectral bands. In this last case, 
 

225 the algorithm calculates previously the first derivative of the signal. This enhances 
 

226 the results when there are parts of the background surface inconsistently 
 

227 illuminated. To find out which category belongs to which group, the programmed 
 

228 algorithm inspects the pixels at the cropped image boundaries, regions that will 
 

229 always belong to the background. 
 

230 Straightening 
 

231 Both images, CIELAB and spectral, may have very different resolutions and 
 

232 sizes. Also, the frame of the captures may not have had the same angle. For 
 

233 these reasons, at this point in the process, it must be decided whether it is the 
 

234 CIELAB image that will be modified to adapt in resolution and straightening to the 
 

235 spectral image, or vice versa. The image to straighten will be selected by 
 

236 switching between two radio buttons. Then, ‘Adjust angle’ will straighten the 
 

237 alignment of the sample before matching. If the image is completely rotated to 
 

238 each other, a check box will amend this point. Otherwise, if there is no angle to 
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239 correct, the user only must select the image to adapt and click on ‘Skip adjust’. In 
 

240 any case, both windows will show previsualization of the steps before matching. 
 

241 Match and export 
 

242 In this point of the process, both images are ready to be matched. Based on the 
 

243 segmentation masks created previously, the algorithm resizes and re-crops the 
 

244 image to adapt it to the other. To adjust the new resolution, every output pixel 
 

245 value in resizing is a weighted average of pixels in the nearest 2-by-2 
 

246 neighbourhood. The merged image will be saved as a new spectral image. There 
 

247 are some checkboxes to select the desired information to export. The 
 

248 segmentation mask, RGB, CIELAB in different formats and the whole or a specific 
 

249 range of the spectrum can be stored in an image that will be saved with the 
 

250 original name with the suffix ‘_matched’. This name can be also modified in an 
 

251 edit field. 
 

252 The software developed can be used in a wide range of fields. Notwithstanding, 
 

253 we have successfully applied it in our research in viticulture. 
 

254 3.3. Examples of application 
 

255 Application to white grape seeds 
 

256 In this essay, we used samples of grape seeds (Vitis vinifera L.) of two white 
 

257 varieties (cv. Moscatel and cv. Pedro Ximénez). There is an heterogeneity that 
 

258 occurs naturally along the whole maturation process (Quijada-Morín et al., 2016). 
 

259 For this reason, it is not easy to discriminate between varieties when only seeds 
 

260 are measured. Separately, colorimetric and spectral datasets have already been 
 

261 successfully applied to perform this task (Rodríguez-Pulido et al., 2012, 2013). 
 

262 Anyway, if colour and NIR spectrum want to be simultaneously measured in each 
 

263 seed we must consider each one as a sample unit. Due to the small size and the 
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264 chaotic distribution of seeds on a sample tray, it would be very difficult to pair both 
 

265 datasets; nevertheless, this was easily performed with the application developed. 
 

266 Figure 2 shows four samples of groups of seeds (419 single seeds). Those at the 
 

267 top belong to Moscatel (MO) and those at the bottom to Pedro Ximénez (PX). 
 

268 This is the representation of the image acquired with DigiEye. The spectral image 
 

269 of each sample was also acquired and then, they were matched with the 
 

270 application. Employing an algorithm made with MATLAB, the information of each 
 

271 seed was extracted, which contained both colorimetric and NIR spectral data. 
 

272 Considering the variety as a categorical variable, we applied three Linear 
 

273 Discriminant Analyses (LDA), depending on the matrix used as independent 
 

274 variables. The first one used only CIELAB coordinates, the second used only NIR 
 

275 spectral values and the last one used the blend of these two. Table 1 shows the 
 

276 classification matrix of each LDA. If we consider each of the grape varieties, MO 
 

277 variety is better classified than the PX when the colorimetric data is used. When 
 

278 using only NIR, PX seeds are more accurately classified than MO seeds. The 
 

279 linkage of spectral data to the colour data has hardly any increase in accuracy 
 

280 compared to the use of colour data for the MO variety. On the contrary, for the 
 

281 PX variety, the increase in accuracy is up to six per cent higher compared to using 
 

282 colour data alone. 
 

283 Application to red grape bunches 
 

284 In this second essay, we acquired images of grape (Vitis vinifera L.) bunches of 
 

285 two red varieties (27 of cv. Syrah and 22 of cv. Tempranillo). Sampling was 
 

286 carried out from the start of veraison until one week after harvesting. In this case, 
 

287 we show a pair of images representing the beginning and the end of sampling. 
 

288 CIELAB and spectral images were successfully matched with the software 
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289 created. According to the selected options, the new cube of data contained the 
 

290 segmentation mask, RGB values, CIELAB and spectral information. Then, a 
 

291 Principal Component Analysis (PCA) was applied to the layers belonging to 
 

292 CIELAB and spectral data separately. In order to see the whole information at a 
 

293 glance, this was represented as an image that contained the main Principal 
 

294 Components in each RGB channel. Thus, differences in the pseudo-colour image 
 

295 showed differences in the input database used in the PCA model (Figure 3). At 
 

296 the top, there is a common RGB image to see the actual appearance of both 
 

297 bunches. In the middle, PCA results of the CIELAB data are shown. As it was 
 

298 expected, there is a high correlation between top and middle images. In this 
 

299 analysis, hab was the colorimetric coordinate with the most influence in PC1 (red 
 

300 channel), b* and Cab* had almost the same influence in PC2 and, eventually, L* 
 

301 was the coordinate with the highest loading in PC3. Yellowish areas in the middle 
 

302 image in Figure 3 implies high scores in PC1 and PC2. At the bottom, there are 
 

303 the PCA results when only the NIR spectrum is considered. It is possible to notice 
 

304 differences in grapes, but it is not so conditioned by the appearance of them. In 
 

305 this new image, wavelengths between 1100-1200 nm and around 1400 nm had 
 

306 the most influence in PC1, PC2, and PC3, represented by RGB, respectively. 
 

307 These regions are in agreement with Hernández-Hierro et al. (2013). According 
 

308 to literature, colour changes during the veraison are due to the loss of chlorophylls 
 

309 and the biosynthesis of anthocyanins in the skins. Once the veraison is complete, 
 

310 the chemical composition of grapes continues towards the increase of sugars in 
 

311 the pulp as well as the evolution of phenolic compounds. These last changes 
 

312 have not to impact in the appearance (Ristic and Iland, 2005; Rolle et al., 2009; 
 

313 Zsófi et al., 2014). Nogales-Bueno et al. (2015c) proved that the union of 
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314 colorimetric and spectral data improve the goodness of fit in quantitative 
 

315 analyses. With these new spectral cubes, which have all data available at each 
 

316 pixel, chemometric models can give more weight to those variables that are most 
 

317 useful in prediction models, especially when stepwise regression models are 
 

318 used. 
 

319 This tool was also used for detecting fully ripe grapes. From each image of 
 

320 bunches belonging to Tempranillo and Syrah varieties along the maturation, the 
 

321 sugar concentration in must was measured in five grapes randomly picked in 
 

322 each sample with a portable refractometer at 20 ºC. Colorimetric and NIR images 
 

323 were acquired in the same session. For building models and after merging the 
 

324 images, data from points were collected from each grape using a 21-pixel grid. In 
 

325 turn, these points were labelled regarding this ripeness (Figure 4). In total, there 
 

326 were collected 1827 pixels from 87 fully ripe grapes and 3328 pixels from 158 
 

327 underripe grapes. As in the case of seeds, three Linear Discriminant Analyses 
 

328 (LDA) were performed, depending on the matrix used as independent variables: 
 

329 CIELAB, NIR, and the blend of these two by using the software developed. 
 

330 Moreover, since it was a huge amount of data, samples were split into calibration 
 

331 (75%) and prediction (25%) sets. Table 2 shows the classification matrix of each 
 

332 LDA for the prediction set. Colorimetric data had a high potential for predicting 
 

333 underripe grapes. This happened because veraison is a phenomenon that occurs 
 

334 much before the technological maturity in grapes. All green grapes are 
 

335 consequentially underripe. Conversely, once the colour has changed, it is not 
 

336 possible to assess whether the grape has reached the desired level of sugars. 
 

337 This is the reason why only 48.3 % of fully ripe grapes are correctly classified. If 
 

338 we consider NIR data, where colour has no influence, the classification is correct 
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339 for 80% of the samples, approximately. Moreover, this percentage is almost the 
 

340 same for the two classes. In the last case, where both kinds of data were 
 

341 simultaneously considered, the percentage of correct classification reached 
 

342 93.6%. The classification was better for both underripe and fully ripe grapes when 
 

343 comparing with previous LDA results. It is worth mentioning that the synergy 
 

344 demonstrated between the two techniques has been made possible by the point- 
 

345 to-point comparison within the images, which would be very difficult to obtain with 
 

346 conventional spectroscopic techniques or with the separate imaging techniques. 
 

347 
 
 

348 4. CONCLUSIONS 
 

349 The software developed in this study solves an analytical problem when wanting 
 

350 to combine colorimetric and spectral data using imaging techniques. Although the 
 

351 synergy between optical techniques was already demonstrated, this new tool 
 

352 allows the evaluation of discrete samples and those in which there is a certain 
 

353 optical heterogeneity. The simultaneous availability of data allows chemometric 
 

354 techniques to discern in each case the weight of the variables in the prediction 
 

355 models. This application has proved useful whenever images obtained in the 
 

356 laboratory are considered, under controlled environmental conditions and always 
 

357 using smooth and homogeneous surfaces as a sample background. Although 
 

358 these conditions can be easily reproduced in industrial food control processes, 
 

359 the future of the application should focus on the possibility of processing images 
 

360 acquired in more complex environments. 
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483 FIGURE CAPTIONS 
 

484 Figure 1. Layout of the Graphical User Interface (GUI). 
 

485 Figure 2. RGB images of grape seeds. The two upper ones are Moscatel (MO) 
 

486 and the lower ones are Pedro Ximénez (PX). 
 

487 Figure 3. Top, the actual appearance of grape bunches; middle, PCA of 
 

488 colorimetric data; and bottom, PCA of NIR spectral data. 
 

489 Figure 4. Detail of an image of a grape bunch and the 21-pixel grid used to extract 
 

490 both colourimetric and spectral information from the merged images. In green, 
 

491 pixels of unripe grapes and, in red, pixels of overripe grapes. 
 

492 
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Highlights (for review) 
 
 
 
 
 

HIGHLIGHTS 
 

 A new software was developed for merging colorimetric and NIR spectral 
 

images. 
 

 New resulting images allow getting the CIELAB information and NIR 
 

spectrum from any pixel at the same time. 
 

 This program has been successfully applied to grape bunches and grape 
 

seeds images
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Table 1. Classification matrices after LDA using CIELAB, NIR and CIELAB + NIR 
 

as independent variables for predicting the variety of grape seeds. 
 
 
 
 

CIELAB Percent MO PX 

MO                 92.1%             176               15 

PX                  88.6%               26             202 

Total        90.2%             202             217 
 

NIR  Percent MO PX 

MO                 79.6%             152               39 

PX 80.7% 44 184 

Total 
 

CIELAB + NIR 

MO 

PX 

Total 

80.2% 196 223 
 

Percent MO PX 

92.7%             177               14 

94.3%               13             215 

93.6%             190             229
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Table 2. Classification matrices after LDA using CIELAB, NIR and CIELAB + NIR 
 

as independent variables for predicting the ripeness of grapes. 
 
 
 

CIELAB 

Underripe 

Fully ripe 

Total 
 

NIR 

Underripe 

Fully ripe 

Total 
 

CIELAB + NIR 

Underripe 

Fully ripe 

Total 

 

Percent 

84.3% 

48.3% 

73.8% 
 

Percent 

79.6% 

80.7% 

80.2% 
 

Percent 

92.7% 

94.3% 

93.6% 

Underripe 

384 

429 

813 
 

Underripe 

363 

160 

523 
 

Underripe 

423 

47 

470 

Fully ripe 

72 

401 

473 
 

Fully ripe 

93 

670 

763 

 

Fully ripe 

33 

783 

816
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