Bioaccumulation of perfluoroalkyl compounds in marine echinoderms: Results of laboratory-scale experiments with *Holothuria tubulosa* Gmelin, 1791

Julia Martín^(a), Félix Hidalgo^(b), María Teresa García Corcoles^(c), Alejandro José Ibáñez-Yuste^(d), Esteban Alonso^(a), Jose Luís Vilchez^(c), Alberto Zafra-Gómez^{(c)*}

- (a) Department of Analytical Chemistry, Superior Polytechnic School, University of Seville, C/ Virgen de África 7, E-41011 Seville, Spain
- ^(b) Department of Zoology, University of Granada, Campus of Fuentenueva, E-18071 Granada, Spain
- ^(c) Research Group of Analytical Chemistry and Life Sciences, Department of Analytical Chemistry, University of Granada, Campus of Fuentenueva, E-18071 Granada, Spain
- ^(d) Agriculture and Fisheries Management Agency of Andalusia (AGAPA), Administrative Central Services, Av. of Greece s/n, 41012 Seville, Spain

Declarations of interest: none

*Corresponding author: *E-mail address:* <u>azafra@ugr.es</u> (A. Zafra-Gómez)

ABSTRACT Bioaccumulation of six perfluorinated substances (PFASs) was assessed 1 using the marine echinoderm Holothuria tubulosa Gmelin, 1791. Batch experiments were 2 conducted to establish the relationship between concentrations in water, sediment and biota 3 over 197 days. The sample treatment for the determination of compounds involves steps of 4 lyophilization, solvent extraction and clean-up of the extracts with dispersive sorbents. PFASs 5 were then analysed by liquid chromatography-tandem mass spectrometry. During 6 contaminant exposure, detectable levels of compounds were found in all samples collected. 7 Mean concentrations of selected PFASs were higher in sediments than in water samples. This 8 9 fact is explained by the strong adsorption of these compounds into sediments. Sediment-water distribution coefficients (log Kd) were in the range 0.11 (PFBuA) to 2.46 (PFOA). Beside 10 this, PFASs accumulation was observed in Holothuria tubulosa organisms. The uptake of 11 PFASs was very rapid, reaching the maximum between 22-38 days of assay. Bioaccumulation 12 factors (mean log BAF: 1.16 - 4.39) and biota sediment accumulation factors (mean log 13 BSAF: 1.37 - 2.89) indicated a high bioaccumulation potential for the target compounds. Both 14 parameters increased with perfluorinated carbon chain length (R2 > 0.93; p < 0.05). In organ-15 specific distributions of PFASs, greater concentrations were found in intestine than in gonads. 16 Also, male specimens showed higher concentration levels than female (student t test: tcal = 17 2.788, ttab = 2.262; p < 0.05). These data provide a detailed accounting of PFASs fate and 18 distribution in the marine environment highlighting accumulation at lower trophic levels, a 19 potential source for contamination in higher organisms. 20

- 21
- 22

Keywords: Perfluoroalkyl compounds; Holothuria tubulosa; Environmental partitioning; 23 **Bioaccumulation studies**

25 **1. Introduction**

26

Perfluorinated compounds (PFASs) are markedly surface-active agents with unique 27 physicochemical properties due to the combination of a hydrophilic head group and a 28 hydrophobic perfluorinated tail (Martin et al., 2003a). Due to their unique physicochemical 29 properties, including thermal stability and water/oil resistance, PFASs are extensively used in 30 fire-fighting foams, acid plating baths, and in many consumer products such as cleaners, 31 polishes, lubricants, rust inhibitors, shampoos, and cosmetics (Cerveny et al., 2018; Kissa, 32 2001; Mudumbi et al., 2017). In the last decades, these compounds have been widely 33 investigated due to their persistence, bioaccumulative potential and possible adverse effects 34 on wildlife and humans (Cerveny et al., 2018; Mudumbi et al., 2017; Renzi et al., 2013; 35 Sturm and Ahrens, 2010; Zhao et al., 2012;). Many scientific papers have reported the global 36 distribution and ubiquitous detection in different environmental compartments: water (Campo 37 et al., 2015, 2016; Hu et al., 2016; Flores et al., 2013; Myers et al., 2012; Pan et al., 2014; 38 Pignotti et al., 2017), sediments (Campo et al., 2015, 2016; Gómez et al., 2011), biota (Bertín 39 et al., 2014; Chen et al., 2016; Fujii et al., 2018; Gómez et al., 2011; Hart et al., 2008; Llorca 40 et al., 2012; Pan et al., 2018), and even in human tissues (Kärrman et al., 2008; Martín et al., 41 2016a, 2016b; Sturm and Ahrens, 2010). 42

Because of the environmental concern of perfluorooctane sulfonate (PFOS) and perfluorooctanoic acid (PFOA), the 3M Company voluntarily phased out the production in 2000, and replaced them with shorter-chain chemicals (Ahrens and Bundschuh, 2014; Lindstrom et al., 2011; Renner, 2006). In 2009, PFOS was listed as Persistent Organic Pollutant (Annex B, United Nations Environmental Program) and in 2013 the watch list of priority substances under the European Union Water Framework Directive (2000/60/EC) has been extended to include PFOS and its derivatives (2013/39/EU). The U.S. EPA has also recently revised the Health Advisory Levels of PFOS and PFOA in drinking water to 70 parts
per trillion (Hu et al., 2016; Munoz et al., 2017).

Aquatic sediment PFASs might also be important sources of contamination of aquatic 52 food webs (Armitage et al., 2006; Beyer et al., 2017; Bertin et al., 2014; Higgins and Luthy, 53 2006; Hong et al., 2015; Houde et al., 2011; Lasier et al., 2011; Moon et al., 2010; Naile et 54 al., 2010; Sedlak et al., 2017; Thompson et al., 2011; Wu et al., 2012). The distribution of 55 water, sediment, and biota as well as the role of the sediment compartment in biota 56 contamination is still poorly understood (Kwadijk et al., 2014). The length of the 57 fluorocarbon chain is an important criterion for PFAS distribution in the environment (Bertin 58 et al., 2014; Ahrens et al., 2009; Higgins and Luthy, 2006). PFASs with eight or more carbon 59 atom backbones are known to be bioaccumulative (Bertin et al., 2014; Ahrens et al., 2011; 60 Loi et al., 2011; Kelly et al., 2009; Kannan et al., 2005). Benthic invertebrates are often 61 exposed to PFAS-contaminated sediments via ingestion of sediment particles. These 62 organisms are key components of aquatic food webs and contribute significantly to fish diets 63 (Jiang et al., 2015; Xing and Chia, 1997). The Holothuria, or sea cucumbers, are a diverse 64 group of the phylum Echinodermata for the most part belonging to the benthic epifauna, 65 living and foraging on the sea floor. They ingest and defecate large amounts of sediment and 66 digest and absorb only the organic and living material. They play an important role in aquatic 67 ecosystems since they stir up and oxygenate the sediment while feeding and mobilizing 68 nutrients, therefore contributing to bioturbation (Kristensen et al., 2012; Uthicke, 2001). 69 Moreover, sea cucumbers are excellent ecotoxicological sentinels because they can 70 bioaccumulate micropollutants (Jiang et al., 2015; Martín et al., 2017; Sugni et al., 2007; 71 Warnau et al., 2006; Xia and Chia, 1997; Xing and Chia, 1997). Additionally, sea cucumbers 72 are considered as a delicacy in many Asian cultures, and are now harvested and traded in 73

more than 70 countries, which has led to overfishing and rapid worldwide depletion of stocks(Purcell et al., 2012).

Bioaccumulation Factor (BAF) and Biota-Sediment Accumulation Factor (BSAF) are 76 parameters for understanding the partitioning of pollutants from water and sediment into 77 ecological receptors, (Arnot and Gobas, 2006; Conder et al., 2012; Hong et al., 2015; Mackay 78 et al., 2013; Naile et al., 2013; Rocha et al., 2018; Wilkinson et al., 2018; Xu et al., 2014; 79 Zhang and Kelly, 2018). However, field-based BAF and BSAF data for PFASs are still 80 limited, especially for short chain PFASs. Fluorocarbon chain length seems to be related to 81 environmental distribution of PFASs (Ahrens et al., 2009; Bertin et al., 2014; Hong et al., 82 2015; Kannan et al., 2005; Kelly et al., 2009; Labadie and Chevreuil, 2011; Loi et al., 2011; 83 84 Myers et al., 2012; Tomy et al., 2004; Zhang and Kelly, 2018; Zhao et al., 2014).

The main purpose of this study was to evaluate the bioaccumulation of six PFASs using 85 the marine echinoderm Holothuria tubulosa Gmelin, 1791. Semi-static batch experiments, at 86 three different spiked concentration levels $(0.1, 0.5 \text{ and } 1 \text{ mg } \text{L}^{-1})$, were conducted to establish 87 the relationship between contaminant concentrations in water, sediment and biota over a 197 88 day period. The distribution and partitioning of PFASs between water and sediment (K_d) as 89 well as the BAF and BSAF from intestine and gonads of Holothuria tubulosa specimens were 90 calculated and compared with those from other aquatic organisms. To our knowledge, this is 91 the first study on the bioaccumulation behaviour of PFASs in Holothuria tubulosa. 92

- 93
- 94 2. Materials and methods
- 95

96 *2.1. Standards and reagents*

All reagents were analytical grade unless otherwise specified. The PFASs, 98 perfluorobutanoic acid (PFBuA), perfluoropentanoic acid (PFPeA), perfluorohexanoic acid 99 (PFHxA), perfluoroheptanoic acid (PFHpA), perfluorooctane sulfonic acid (PFOS), and 100 perfluorooctanoic acid (PFOA), were purchased from Sigma-Aldrich (Steinheim, Germany). 101 The internal standard (IS) perfluorooctanoic acid-¹³C₄ (PFOA-¹³C₄) was supplied by 102 Cambridge Isotope Laboratories (MA, USA). Mixtures of the studied compounds at different 103 concentration levels were freshly prepared by appropriate dilutions of the stock standard in 104 water:ethanol 95:5 (v/v). Water, ethanol, methanol, acetonitrile and acetone (chromatographic 105 analysis grade) were purchased from Romil Ltd. (Barcelona, Spain). Octadecyl functionalized 106 silica (C18) was provided by Sigma-Aldrich (Steinheim, Germany). Ammonium acetate was 107 from Panreac (Barcelona, Spain). 108

109

110 *2.2. Holothuria collection and acclimation*

111

The specimens of *Holothuria tubulosa* Gmelin 1791 of a similar size (200 g average) were randomly collected by hand by SCUBA divers at a 10-15 m depth, in May 2016, in the infralittoral zone of San Cristobal Beach (Almuñécar, Granada, Southern Spain; GPS coordinates: 36° 44' 00.7" N; 3° 42' 17.9" W). Specimens were carried to the experimental facility in refrigerated containers at 4 °C, without any damage. There they acclimated to the experimental conditions during two weeks.

118

119 2.3. Experimental conditions and design

120

121 Three independent experimental units were arranged at the aquarium facility of the 122 Department of Zoology of the University of Granada (Granada, Spain). Each unit was composed of nine polypropylene tanks with seawater supply in a closed recirculating system that contains a biological filter, protein skimmer, UV sterilizing unit, aeration system, chiller, heater and water pump. Tanks ($42 \times 36 \times 25 \text{ cm}$) had 25 L capacity and 0.15 m² bottom surface. A 5 cm layer of silica sand (0.4-0.8 mm particle size) was placed on the bottom of the tanks. An artificial photoperiod of 12 h light/12 h dark was applied. Figure S1 shows the experimental aquarium.

The physicochemical characteristics of the water were monitored daily throughout the 129 experimental period and remained approximately stable with mean values of temperature = 20130 °C, salinity = 37 PSU (conductivity = 50.3 mS cm⁻¹), pH = 8.3, dissolved oxygen 131 concentration = 6 mg L⁻¹ (90 % saturation level), nitrates = 50 mg L⁻¹, nitrites = 0.1 mg L⁻¹, 132 ammonium = 0.25 mg L^{-1} . The following instruments were used for the measurements: Hanna 133 Instruments[®] digital thermometer (model HI Checktemp 1), HACH[®] sensIONTM + EC5 134 portable conductivity/TDS meter with a conductivity probe (model 50 60), HACH[®] HQ40d 135 portable multi meter with a pH probe (model pHC101) and a luminescent dissolved oxygen 136 probe (model LDO101). Nitrate, nitrite and ammonium analyses were performed using Hanna 137 instruments® Test Kits (HI 3874, 3873 and 3826, respectively). Water temperature was 138 measured with an AKO $^{\rm \tiny R}$ 14716 and a RENA $^{\rm \tiny R}$ TE-2000 thermostats connected to HAILEA $^{\rm \tiny R}$ 139 HC130A water chillers and generic aquarium electric heaters. 140

Feeding. Holothuria specimens were fed once a week with 10 g minced dry *Laminaria*algae (ALGAMAR[®] Kombu).

Experimental design. Specimens (108) were randomly distributed in 3 batches of 36 specimens each one putting 4 animals per tank into the experimental units. After an acclimation period of two week, stock solutions of PFASs were added to each experimental unit to achieve contaminant doses of 1.0 mg L⁻¹ (Batch-1), 0.5 mg L⁻¹ (Batch-2) and 0.1 mg L⁻¹ (Batch-3), with spiked water concentration in the three batches differing by a factor of 2 to

10. The concentration levels used were selected in base on the concentration levels measured previously in these organisms up to 3.97 ng/g for PFOA (Martín et al., 2017) and in order to observe clear tendency and differences between the spiked concentrations. The experiment lasted six months and sampling was conducted before contaminant administration and then on days 1, 8, 15, 22, 27, 38, 53, 86 and 197.

Sample collection. At each sampling, three Holothuria specimens and corresponding 10 mL aliquots of water and 1 g of sediment were collected, by hand, from each experimental unit using polypropylene bottles pre-cleaned with acetone and methanol. The digestive tracts as well as the gonads were dissected out from sea cucumbers (Figure S2) and the outer body wall was discarded. Dissected material was placed in sterile polythene bags and stored in the laboratory deep freezer at -40 °C until analysis.

159

160 2.4. Quantification of PFASs

PFASs were extracted and analysed from water, sediment and holothuria samples using the method previously published by Martín et al. (2017) and Martín et al. (2014) briefly modified.

Holothuria (gonads and intestine) and sediment samples were freeze-dried, homogenized 164 and grounded into powder. Aliquots of the samples (0.5 g) were weighed into 12 mL glass 165 vials, containing 100 µL of a methanol solution (250 ng mL⁻¹) of PFOA¹³C₄. The samples 166 were vortexed twice for homogenization in 7 mL of acetonitrile for 2 min and centrifuged for 167 10 min at 4050 \times g. For clean-up, disperse solid phase extraction (d-SPE) was applied. The 168 supernatants obtained from the two extractions of each sample were combined in a 50 mL 169 polypropylene conical tube containing 800 mg of C18 sorbent. The mixture was hand-shaken 170 for 2 min and centrifuged for 5 min at $4050 \times g$. The solvent was evaporated to dryness at 171 room temperature under a nitrogen stream and the extract was reconstituted in 0.25 mL of 172

methanol:water (50:50, v/v) and filtered through a 0.22 μ m nylon filter. A 20 μ L aliquot of the extract was injected into the LC instrument. Water samples were collected in brown bottles pre-cleaned with acetone and methanol. Prior to analysis, water samples were filtered through a 0.45 μ m membrane filter. Subsequently 2 mL of sample was evaporated to dryness at room temperature under a nitrogen stream and the extract was reconstituted in 0.25 mL of methanol:water (50:50, v/v) and filtered through a 0.22 μ m nylon filter. A 20 μ L aliquot of the extract was injected into the LC instrument.

Water samples were filtered through a 0.45 µm membrane filter. Sample pH was adjusted 180 to 2 by addition of sulfuric acid 40 % (v/v) and then PFOA¹³C₄ was added to achieve a 181 concentration of 100 ng mL⁻¹. Oasis HLB cartridges were conditioned using 3 mL of 182 methanol, 3 mL of 0.5 N hydrochloric acid, and 3 mL of deionized water. The acidified 183 sample (5 mL) was percolated through the cartridge at a flow rate of 10 mL min⁻¹. Then, the 184 cartridges were washed with 3 mL of deionized water, dried for 10 min, and eluted with four 185 aliquots of 1 mL of methanol at a flow rate of 1 mL min⁻¹. The eluates were collected in 10-186 mL collection tubes and evaporated to dryness at room temperature by a gentle nitrogen 187 stream. Finally, the extracts were reconstituted in 0.25 mL of methanol:water (50:50, v/v) and 188 filtered through a 0.22 µm nylon filter. A 20 µL aliquot of the extract was injected into the LC 189 instrument. 190

Liquid chromatography-tandem mass spectrometry analysis was performed using a HALO C-18 Rapid Resolution ($50 \times 4.6 \text{ mm i.d.}$, 2.7 µm particle size) column. The compounds were separated using a gradient mobile phase consisting of an aqueous buffer solution of acetic acid/ammonium acetate (pH 4.4) (solvent A) and methanol buffered with the same composition (solvent B). The gradient program was as follows: 0-14 min, linear gradient from 28 to 70 % of solvent B, from 70 % to 80 % of solvent B in 5 min, and then increased to 100 % in 6 min and held for 2 min. Flow rate was 0.6 mL min⁻¹; column

monitoring (MRM) transitions were selected for each analyte for quantification and
confirmation of compounds. The mass spectrometer was operated in negative ESI mode.
MS/MS features are shown in Table 1.
Table 1
The validation characteristics of the method (linearity and range, sensitivity, trueness and
precision) are described in the Supplementary material and summarized in Table 2.
Table 2
4. Results and discussion
4.1. PFASs distribution in water and sediment
4.1. PFASs distribution in water and sediment
4.1. PFASs distribution in water and sediment Water samples used in the experiment batches collected before spiking revealed trace

compounds were found in all samples. The mean (n=3) of the measured water concentrations of target compounds ranged between 0.03 ng mL⁻¹ (PFOS) to 32.7 ng mL⁻¹ (PFOA) in the low exposure batch (Batch-3), between 0.10 ng mL⁻¹ (PFOS) to 139 ng mL⁻¹ (PFBuA) in the medium exposure batch (Batch-2) and between 0.62 (PFOS) to 276 ng mL⁻¹ (PFBuA) in the high exposure batch (Batch-1). PFAS concentration profiles were relatively similar throughout the exposure phase in the three batches. In the water compartment, PFBuA was the most abundant compound in all the experiments, while PFOS was the least abundant. The

223	mean and standard deviation of the concentration levels measured in water and sediment
224	samples during the trials in the three batches are shown in the Supplementary materials Table
225	S1. Figure 1 shows the fate profile of PFASs in Batch-1 over the 197 day experiments.
226	
227	Figure 1
228	
229	The compounds were detected at higher concentration in sediment samples than in water
230	samples. These results suggest that sediments may be an important source of PFASs for
231	benthonic biota. The mean (n=3) of the measured concentrations of individual target
232	compounds ranged between 0.42 ng g ⁻¹ dry matter (d.m.) (PFOS) to 87.9 ng g ⁻¹ (d.m.)
233	(PFBuA) in Batch-3, between 7.08 ng g ⁻¹ (d.m.) (PFHxS) to 152 ng g ⁻¹ (d.m.) (PFBuA) in
234	Batch-2, and between 17.6 ng g ⁻¹ (d.m.) (PFHxA) to 695 ng g ⁻¹ (d.m.) (PFOS) in Batch-1. The
235	kinetics of disappearing of C6-C8 and PFOS significantly fitted to an asymptotic model. A
236	similar profile was also found between the spiking amount and the PFASs concentration in
237	the aqueous phase for all target compounds, which suggests that spiking levels had no
238	influence on the partitioning in the sediment.
239	A similar distribution of PFASs in water, sediment and biota were found in a study
240	conducted by Campos et al. (2015) in the Llobregat River ecosystem (Mediterranean area, NE
241	Spain). All samples were positive with at least one PFAS, being the most frequently found
242	PFBuA, PFOA and PFOS. Mean PFAS concentrations measured in sediments (0.01-3.67 ng
243	g^{-1}) and biota (0.79–431 ng g^{-1}) samples were higher than those found in water (0.01–233 ng
244	L ⁻¹).
245	
246	4.2. Partition between water and marine sediment

The field estimated partition factor between marine sediment and water was determined as $K_d=C_{sed}/C_w$; where C_{sed} is the concentration of PFASs measured on sediment in ng g⁻¹ (d.w.) and C_w is PFASs concentration in the aqueous phase in ng mL⁻¹ (Ahrens et al., 2011). Data on PFASs partitioning are shown in Table 3.

- 252
- 253

Table 3

254

The average log K_d of PFASs in Batch-1 was between 0.11 (PFBuA) and 2.46 (PFOS). No mayor differences were observed between the three spiked batches. Overall, the partition coefficient increased with PFAS length chain (R²>0.884; p<0.05). The experimental data suggest that in the marine environment, PFASs are mainly adsorbed to suspended solids rather than to dissolved phase, with adsorption increasing with chain length.

K_d data are essential for modelling transport and environmental fate of contaminants 260 (Ahrens et al., 2009, 2011; Higgins et al., 2007), but data in short chain PFASs are scarce 261 (Labadie and Chevreuil, 2011). Yang et al. (2011) evaluated the occurrence and partitioning 262 of PFASs in water and sediment from Liao River and Taihu Lake in China. The 263 concentrations of PFOS and long chain perfluorocarboxylic acids in sediments were much 264 higher than in water samples, indicating a preferential partition of these PFASs into sediment. 265 The average log K_d of PFASs found was between 2.16 and 2.88. These values are similar to 266 those reported by Higgins and Luthy (2006), who studied PFAS sorption to sediments and 267 found log K_{oc} of PFOS and PFOA of 2.68 ± 0.09 and $2.11 \text{ cm}^3 \text{ g}^{-1}$, respectively. They also 268 reported that perfluorocarbon chain length was the key structural feature influencing sorption, 269 with each CF₂ moiety contributing 0.50–0.60 log units to log K_{oc}, and the sulfonate moiety 270 contributing 0.23 log units compared to carboxylate analogs. Field-based K_d and organic 271 carbon-normalized sediment-water distribution coefficients (Koc) were also determined for 272

273 PFASs in a coastal environment by Ahrens et al. (2011) and their results suggested that 274 sediment characteristics have a crucial influence on PFAS sorption capacity.

275

276 4.3. PFAS bioacumulation in Holothuria tubulosa specimens

277

Before spiking, PFASs were detected in Holothuria tubulosa samples at concentration 278 levels between 26 and 386 ng g^{-1} (d.w.). These concentrations were 100-fold lower than those 279 found after eight days of exposure in Batch-1. All target PFASs were detected in the biota at 280 higher levels than in water and sediment, which highlights the need for special attention to the 281 potential effects of PFASs on these species. As with PFAS distribution in sediment, PFOS 282 and PFOA were the two most abundant in Holothuria samples. Benthonic organisms are 283 frequently exposed to sediment-associated PFASs by ingestion of sediment particles (Martín 284 et al., 2017). PFAS uptake was rapid and after only 8 days of exposure to 1 mg L⁻¹, the 285 intestine and gonads concentrations of PFOA were 196 and 37.1 mg kg⁻¹ (d.w.), respectively. 286 The mean and standard deviation of the concentration levels measured in intestine and gonad 287 samples during the trials in the three batches are shown in the Supplementary materials Table 288 S2. For most of the PFASs, concentrations in Holothuria tubulosa increased over time until 289 day 38, as shown in Figure 1. At day 38 mean concentrations (n=3) of PFOA were up to 216 290 and 271 mg kg⁻¹ (d.w.) in Batches 1 and 2, respectively. At day 197, PFOA concentration in 291 Holothuria tubulosa organisms decreased to 1.6 and 6.6 mg kg⁻¹ (d.w.) in Batches 1 and 2, 292 respectively. Moreover, no significant differences were found between the spiked level in 293 Batches 2 and 3. These results suggest that Holothuria tubulosa do not have an active 294 mechanism for excretion of PFASs, which has also been reported for rainbow trout exposed 295 to PFASs (Martin et al., 2003a). Higher concentrations of compounds were detected in the 296 intestine of Holothuria tubulosa compared to gonads. As reported previously, PFASs 297

accumulate primarily in the intestine, blood or liver, but not in adipose tissues. This may be 298 partially attributed to the inherent lipophobic properties of the fluorinated chain (Martin et al., 299 2003a). Similar results were reported by Hong et al. (2015) who found higher concentrations 300 of PFASs in fish intestine compared to other organs and tissues such as liver or gills. The long 301 half-life of compounds can be attributed to the fact that they are metabolically inert and that 302 they enter enterohepatic recirculation, a process that is more effective as the fluorinated chain 303 length increases (Martin et al., 2003b). Concentrations of the target compounds were 304 significantly higher in male gonads than in female gonads (Student's t test: $t_{cal} = 2.788$, $t_{tab} =$ 305 2.262; p < 0.05). This could be explained by the physiological differences between males and 306 females that arise during the processes of maturation as well as by the different feeding 307 behaviour (Cerveny et al., 2018; Shubert et al., 2016; Wang et al., 2013). 308

309

310 4.4. Bioaccumulation factors (BAFs), biota-sediment accumulation factors (BSAFs)

311

Differences have been found between the empirical BAF data available for individual 312 PFASs in different organisms, probably due to the nature of field data. Thus, more field-based 313 biological data should provide a better understanding of species-specific bioaccumulation 314 characteristics (Hong et al., 2015; Zhao et al., 2014). In our work, BAF was calculated as 315 C_{hol}/C_w (L kg⁻¹); where C_{hol} is the concentration in intestine or gonads of *Holothuria tubulosa* 316 specimens on dry weight basis (ng g⁻¹ d.w.), and C_w is freely dissolved concentration in water 317 (ng mL⁻¹) (Table 3). Chemical bioacumulation is considered for BAF values > 1000, 2000 or 318 5000 L kg⁻¹ by various regulatory authorities (Arnot and Gobas, 2006). 319

Our results show a clear correlation between BAF increases and higher K_{ow} and therefore also with perfluoroalkyl chain length. LogBAF values were positively correlated with the chain length in all organs ($R^2 > 0.93$; p < 0.05) (Figure 2). These findings are in agreement

323	with those reported by Kwadijk et al. (2010) for C7-C9 acids and C4/C8 sulfonates and with
324	findings reported by Labadie and Chevreuil (2011) who calculated a correlation of $R^2 > 0.86$
325	for fish liver and muscle.

Figure 2

- 326
- 327
- 328

In some cases, the estimated log BAF for a given compound was dependent on the corresponding PFAS concentrations in spiked water. In particular, BAF values in Batch-1 were sometimes significantly lower than those found in Batch-3. This was the case for shortchain compounds, PFBuA, in intestine and gonads. However, as reported by Hong et al. (2015), BAF in Batch-3 might be underestimated because of the possible overestimation of freely dissolved PFAS in water.

As shown in Table 4, log BAFs for PFASs varied slightly between organisms. This might 335 be due to the different capacities to accumulate and/or metabolize compounds of the different 336 species. For example, according to the results by Hong et al. (2015), gastropods seem to 337 accumulate shorter-chain PFASs (C6 to C9 perfluorocarboxylic acids and C4 to C6 338 perfluorosulphonic acids), but fish or shrimp tend to accumulate longer-chain compounds 339 340 (C10 to C11 perfluorocarboxylic acids and C8 to C10 perfluorosulphonic acids). Kwadijk et al. (2010) determined field-based BAFs for PFAS in European eel (Anguilla anguilla) and 341 suggested that PFASs with <7 fluorinated carbons are not bioaccumulative, in agreement with 342 Xu et al. (2014), Lasier et al. (2011) and Conder et al. (2008). Wilkinson et al. (2018) 343 assessed the spatial bioaccumulation of PFASs, pharmaceuticals, illicit drugs, plasticisers and 344 metabolites in river sediment, aquatic plants and benthic organisms (amphipod crustaceans 345 [Gammarus pulex] and aquatic snails [Bithynia tentaculata]) with similar results to those 346 found in our work. While several studies have reported field-based BAFs for PFOS and 347

PFOA, there is less available literature on BAF data for short-chain PFASs, detected mostly
in water. Nevertheless our results show that, short chain PFASs are also bioaccumulative.

Previous studies have also demonstrated that trophic dilution can occur and that lower-350 level organisms tend to have the highest BAFs when organisms at higher trophic levels are 351 able to better metabolize a given substance (Arnot and Gobas, 2006). Therefore, the lower 352 BAFs values of PFASs in higher trophic organisms (shrimp and fish) compared with benthic 353 organisms or zooplankton might reflect the higher metabolic capacity of shrimp and fish. 354 Similar behaviour has been reported for other families of emerging pollutants such as 355 pharmaceutical active compounds (Xie et al., 2017). However, it should be noted that there 356 are inherent difficulties in interpreting and comparing field BAFs. The concept of BAF 357 assumes that the sampled organisms exist in a steady state with the surrounding water, but 358 PFAS concentrations in water may vary significantly with time and location. In addition, 359 mobile organisms such as fish are exposed to a wide range of PFAS concentrations in the 360 water. 361

BSAF is other relevant parameter used to describe and predict bioaccumulation of organic pollutants in aquatic organisms through sediments (Zhao et al., 2014; Labadie and Chevreuil, 2011). BSAF was calculated as $BSAF = C_{hol}/C_{sed}$; where C_{hol} is the concentration in intestine or gonads of *Holothuria* specimens in ng g⁻¹ (d.m.), and C_{sed} is the concentration measured in sediment in ng g⁻¹ (d.m.) (Table 3).

As shown in Table 3, log BSAF values of PFASs vary considerably, from 1.80 (PFBuA) to 2.89 (PFOA) and from 1.37 (PFOA) to 1.71 (PFBuA) in Batch-1 for intestine and gonads, respectively. Relatively higher log BSAF values were found for PFOS and PFOA in intestine, while higher values were found for PFBuA in gonads. PFHxA showed the lowest accumulation. BSAF also increased with perfluorinated chain length (Figure 2, $R^2 > 0.92$), although this correlation became less significant at lower PFAS concentrations ($R^2 > 0.67$).

The relationship between bioaccumulation, fluorinated carbon chain length, and end functional groups has also been reported in other aquatic organisms such as mussels (Liu et al., 2011), rainbow trout (Martin et al., 2003a,b), common carp (Inoue et al., 2012), and *Lumbriculus variegates* (Lasier et al., 2011). The general trend is observed as that BSAF increased along with the increment of log K_{ow}, as in the relationship between log BAF and log K_{ow}, BSAF increases were also observed with increasing log K_{ow}.

The comprehensive evaluation of bioaccumulation in freshwater and marine environment of organic contaminants using BAFs and BSAFs is still limited (Zhang and Kelly, 2018). Table 4 shows BAF and BSAF values reported in the literature for different organisms.

- 382
- 383

Table 4

384

Higgins et al. (2007) investigated the BSAF of PFASs for the first time using 385 Lumbriculus variegatus (oligochaete) to predict bioaccumulated compounds under controlled 386 conditions. Our results were in most cases slightly higher than those in oligochaete (-0.08 to 387 0.49) (Higgins et al., 2007; Lasier et al., 2011), ovster (-1.4 to 0) (Zhao et al., 2014), mussel (-388 1.2 to -0.2) (Zhao et al., 2014), or fish (0.4 to 3.0) (Hong et al., 2015; Naile et al., 2013; 389 Pignotti et al., 2017). This finding suggests that benthic invertebrates may have a stronger 390 capacity to bioaccumulate PFASs than other organisms. Contaminants appeared to be 391 differentially bioaccumulative in different biota, indicating that there may be a need for a 392 species-specific BAF/BSAF classification system. This seems to be due to differences related 393 to food sources, feeding guild, uptake and excretion rates, and metabolism (Naile et al., 2010, 394 2013). This finding has been recently published (e.g., Hong et al., 2015; Lagesson et al., 395 2016; Wilkinson et al., 2018) which suggests further research is warranted. 396

In the light of the increasing need to propose animal models different from vertebrate

models, the use of echinoderms represents a promising alternative for future bioaccumulation
and ecotoxicological studies of emerging pollutants. It is unfortunate that the European Water
Framework Directive (WFD) only uses fish species to assess compliance with Environmental
Quality Standards (EQSs) stablished in fish, which are not adapted to other organisms.

402

403 4. Conclusions

404

The present work provides the first description of the partitioning and bioaccumulation 405 behavior of six PFASs in marine environment using field estimated partition factor and 406 various bioaccumulation metrics in Holothuria tubulosa specimens. Semi-static batch 407 experiments spiked with compounds were conducted over a period of 197 days. Results 408 suggest that sediments may be an important source of PFASs for benthic biota. Absorption 409 and bioaccumulation of PFASs were strongly influenced by compounds structure, as 410 demonstrated by the strong correlation between log K_d or log BAF and log BSAF and 411 perfluoroalkyl chain length. Higher levels were observed in Holothuria tubulosa intestine and 412 gonads than in water or sediments, which highlights the need for special attention to the 413 414 potential effects on these species. PFASs concentrations were generally higher in the intestine than in gonads. Both the log BAFs and log BSAFs (>1.1) indicate potential bioaccumulation 415 of PFASs in benthic aquatic organisms, even of short chain compounds. The highest mean log 416 BAF in this work was for PFOS in the intestine of Holothuria tubulosa, which indicates that 417 this is a highly bioaccumulative contaminant. BSAF values were generally slightly higher 418 than BAF values, which may indicate that accumulation in the intestine occurs primarily via 419 420 sediment rather than via water, while the opposite was observed in gonads. Furthermore, PFASs uptake by Holothuria tubulosa is concentration dependent, with higher sediment 421 concentrations resulted in higher BSAFs. 422

423	We hope that these findings could provide essential information to support the risk
424	assessment and management of these chemicals. There are still remaining knowledge gaps
425	calling for further research and clarification, including the study of compounds whose uptake
426	and accumulation mechanisms deviate from the standard partitioning model and the factors
427	affecting the trophic transfer of pollutants in terms of metabolism and uptake routes.
428	
429	Acknowledgements
430	
431	This study was supported by the Spanish Ministry of Economy and Competitiveness (Project
432	No. CTM2017-82778-R).
433	
434	References
435	
436	Ahrens, L., Bundschuh, M., 2014. Fate and effects of poly- and perfluoroalkyl substances in
437	the aquatic environment: a review. Environ. Toxicol. Chem. 33, 1921–1929.
438	Ahrens, L., Siebert, U., Ebinghaus, R., 2009. Temporal trends of polyfluoroalkyl compounds
439	in harbor seals (Phoca vitulina) from the German Bight, 1999-2008. Chemosphere 76,
440	151–158.
441	Ahrens, L., Taniyasu, S., Yeung, L.W.Y., Yamashita, N., Lam, P.K.S., Ebinghaus, R., 2010.
442	Distribution of polyfluoroalkyl compounds in water, suspended particulate matter and
443	sediment from Tokyo Bay, Japan. Chemosphere 79, 266–272.
444	Ahrens, L., Yeung, L.W.Y., Taniyasu, S., Lam, P.K.S., Yamashita, N., 2011. Partitioning of
445	perfluorooctanoate (PFOA), perfluorooctane sulfonate (PFOS) and perfluorooctane
446	sulfonamide (PFOSA) between water and sediment. Chemosphere 85, 731-737.
447	Armitage, J., Cousins, I.T., Buck, R.C., Prevedouros, K., Russell, M.H., Macleod, M.,

448	Korzeniowski, S.H., 2006. Modeling global-scale fate and transport of per-
449	fluorooctanoate emitted from direct sources. Environ. Sci. Technol. 40, 6969-6975.
450	Arnot, J.A., Gobas, F.A.P.C., 2006. A review of bioconcentration factor (BCF) and
451	bioaccumulation factor (BAF) assessments for organic chemicals in aquatic organisms.
452	Environ. Rev. 14, 257–297.
453	Bertin, D., Ferrari, B.J.D., Labadie, P., Sapin, A., Garric, J., Budzinski, H., Houde, M., Babut,
454	M., 2014. Bioaccumulation of perfluoroalkyl compounds in midge (Chironomus riparius)
455	larvae exposed to sediment. Environ. Pollut. 189, 27-34.
456	Beyer, J., Green, N.W., Brooks, S., Allan, I.J., Ruus, A., Gomes, T., Brate, I.L.N., Schoyen,
457	M., 2017. Blue mussels (Mytilus edulis spp.) as sentinel organisms ino, coastal pollution
458	monitoring: A review. Mar. Environ. Res. 130, 338-365.
459	Campo, J., Lorenzo, M., Pérez, F., Picó, Y., la Farré, M., Barceló, D., 2016. Analysis of the
460	presence of perfluoroalkyl substances in water, sediment and biota of the Jucar River (E
461	Spain). Sources, partitioning and relationships with water physical characteristics.
462	Environ. Res. 147, 503–512.
463	Campo, J., Pérez, F., Masiá, A., Picó, Y., la Farré, M., Barceló, D., 2015. Perfluoroalkyl
464	substance contamination of the Llobregat River ecosystem (Mediterranean area, NE
465	Spain). Sci. Total Environ. 503–504, 48–57.

467 2018. Fate of perfluoroalkyl substances within a small stream food web affected by

Cerveny, D., Grabic, R., Fedorova, G., Grabicova, K., Turek, J., Zlabek, V., Randak, T.,

sewage effluent. Water Res. 134, 226-233.

- Chen, F., Gong, Z., Kelly, B.C., 2016. Bioavailability and bioconcentration potential of
 perfluoroalkyl-phosphinic and -phosphonic acids in zebrafish (Danio rerio): Comparison
 to perfluorocarboxylates and perfluorosulfonates. Sci. Total Environ. 568, 33–41.
- 472 Conder, J.M., Gobas, F.A., Borga, K., Muir, D.C., Powell, D.E., 2012. Use of trophic

- 473 magnification factors and related measures to characterize bioaccumulation potential of474 chemicals. Integr. Environ. Assess. Manag. 8, 85-97.
- 475 Conder, J.M., Hoke, R.A., Wolf, Wd., Russell, M.H., Buck, R.C., 2008. Are PFAs bio476 accumulative? A critical review and comparison with regulatory criteria and persistent
 477 lipophilic compounds. Environ. Sci. Technol. 42, 995-1003.
- Dai, Z., Xia, X., Guo, J., Jiang, X., 2013. Bioaccumulation and uptake routes of
 perfluoroalkyl acids in Daphnia magna. Chemosphere 90, 1589-1596.
- 480 Directive 2013/39/EU of 12 August 2013 amending Directives 2000/60/EC and
 481 2008/105/EC as regards priority substances in the field of water policy. Off. J. Eur.
- 482 Union, L 226.
- Directive 2000/60/EC of the European Parliament and of the Council of 23 October 2000
 establishing a framework for Community action in the field of water policy. Off. J. Eur.
 Union, L 327/1.
- Flores, C., Ventura, F., Martin-Alonso, J., Caixach, J., 2013. Occurrence of perfluorooctane
 sulfonate (PFOS) and perfluorooctanoate (PFOA) in N.E. Spanish surface waters and
 their removal in a drinking water treatment plant that combines con-ventional and
 advanced treatments in parallel lines. Sci. Total Environ. 461–462, 618–626.
- Fujii, S., Polprasert, C., Tanaka, S., Lien, N.P.H., Qiu, Y., 2007. New POPs in the water
 environment: distribution, bioaccumulation and treatment of perfluorinated compounds
 a review paper. J. Water Supply Res. T. 56, 313–326.
- 493 Fujii, Y., Kato, Y., Sakamoto, K., Matsuishi, T., Kouji, H.H., Koizumi, A., Kimura, O., Endo,
- T., Haraguchi, K., 2018. Tissue-specific bioaccumulation of long-chain perfluorinated
 carboxylic acids and halogenated methylbipyrroles in Dall's porpoises (Phocoenoides
 dalli) and harbor porpoises (Phocoena phocoena) stranded in northern Japan. Sci. Total
 Environ. 616–617, 554–563.

- Gómez, C., Vicente, J., Echavarri-Erasun, B., Porte, C., Lacorte, S., 2011. Occurrence of
 perfluorinated compounds in water, sediment and mussels from the Cantabrian Sea
 (North Spain). Mar. Pollut. Bull. 62, 948–955.
- Hart, K., Kannan, K., Tao, L., Takahashi, S., Tanabe, S., 2008. Skipjack tuna as a bioindicator
 of contamination by perfluorinated compounds in the oceans. Sci. Total Environ. 403,
 215–221.
- Higgins, C.P., Luthy, R.G., 2006. Sorptionofperfluorinated surfactants on sediments. Environ.
 Sci. Technol. 40, 7251-7256.
- Higgins, C.P., Mcleod, P.B., Macmanus-Spencer, L.A., Luthy, R.G., 2007. Bioaccumulation
- 507 of perfluorochemicals in sediments by the aquatic oligochaete Lumbriculus variegatus, 508 Environ. Sci. Technol. 41, 4600–4606.
- Hong, S., Khim, J.S., Wang, T., Naile, J.E., Park, J., Kwon, B.O., Song, S.J., Ryu, J., Codling,
- G., Jones, P.D., Lu, Y., Giesy, J.P., 2015. Bioaccumulation characteristics of
 perfluoroalkyl acids (PFAAs) in coastal organisms from the west coast of South Korea.
 Chemosphere 129, 157–163.
- Houde, M., Bujas, T.A., Small, J., Wells, R.S., Fair, P.A., Bossart, G.D., Solomon, K.R.,
 Muir, D.C., 2006. Biomagnification of perfluoroalkyl compounds in the bot- tlenose
 dolphin (Tursiops truncatus) food web. Environ. Sci. Technol. 40, 4138- 4144.
- Houde, M., De Silva, A.O., Muir, D.C.G., Letcher, R.J., 2011. Monitoring of perfluorinated
 compounds in aquatic biota: an updated review: PFCs in aquatic biota. Environ. Sci.
 Technol. 45, 7962–7973.
- Hu, X.C., Andrews, D.Q., Lindstrom, A.B., Bruton, T.A., Schaider, L.A., Grandjean, P.,
- 520 Lohmann, R., Carignan, C.C., Blum, A., Balan, S.A., Higgins, C.P., Sunderland, E.M.,
- 521 2016. Detection of poly-and perfluoroalkyl substances (PFASs) in US drinking water
- 522 linked to industrial sites, military fire training areas, and wastewater treatment plants.

- 523 Environ. Sci. Technol. Lett. 3, 344–350.
- Inoue, Y., Hashizume, N., Yakata, N., Murakami, H., Suzuki, Y., Kikushima, E., Otsuka, M.
 2012. Unique physicochemical properties of perfluorinated compounds and their
 bioconcentration in common carp Cyprinus carpio L. Arch. Environ. Con. Tox. 62, 672–
 680.
- Jiang, H., Tang, S., Qin, D., Chen, Z., Wang, J., Bai, S., Mou, Z., 2015. Heavy Metals in Sea
 Cucumber Juveniles from Coastal Areas of Bohai and Yellow Seas, North China.
 Bull. Environ. Contam. Toxicol. 94, 577–582.
- Kannan, K., Tao, L., Sinclair, E., Pastva, S.D., Jude, D.J., Giesy, J.P., 2005. Perfluorinated
 compounds in aquatic organisms at various trophic levels in a Great Lakes food chain.
 Arch. Environ. Con. Tox. 48, 559-566.
- Kärrman, A., Nadal, M., Garcia, F., Domingo, J.L., van Bavel, B., Lindström, G., 2008.
 Levels of perfluorinated compounds in human liver samples from Catalonia, Spain.
 Organohalogen Compd. 70, 1063.
- 537 Kelly, B.C., Ikonomou, M.G., Blair, J.D., Hoover, D., Grace, R., Gobas, F.P.C., Surridge, B.,
- 2009. Perfluoroalkyl contaminants in an Arctic marine food web: trophic magnification
 and wildlife exposure perfluoroalkyl contaminants. Environ. Sci. Technol. 43, 4037–
 4043.
- Kissa, E., 2001. Fluorinated Surfactants and Repellents, vol. 97. Marcel Dekker: New York,
 226.
- Kristensen, E., Penha-Lopes, G., Delefosse, D., Valdemarsen, T., Quintana, C.O., Banta,
 G.T., 2012. What is bioturbation? The need for a precise definition for fauna in aquatic
 sciences. Mar. Ecol. Prog. Ser. 446, 285–302.
- Kwadijk, C.J.A.F., Korytar, P., Koelmans, A.A., 2010. Distribution of perfluorinated
 compounds in aquatic systems in The Netherlands. Environ. Sci. Technol. 44, 3746–

548 3751.

- Labadie, P., Chevreuil, M., 2011. Partitioning behaviour of perfluorinated alkyl contaminants
 between water, sediment and fish in the Orge River (nearby Paris, France). Environ.
 Pollut. 159, 391–397.
- Lagesson, A., Fahlman, J., Brodin, T., Fick, J., Jonsson, M., Bystrom, P., Klaminder, J., 2016.
 Bioaccumulation of five pharmaceuticals at multiple trophic levels in an aquatic food
 web-Insights from a field experiment. Sci. Total Environ. 568, 208–215.
- Lasier, P.J., Washington, J.W., Hassan, S.M., Jenkins, T.M., 2011. Perfluorinated chemicals
 in surface waters and sediments from northwest Georgia, USA, and their
 bioaccumulation in Lumbriculus variegatus, Environ. Toxicol. Chem. 30 (2011) 2194–
 2201.
- Lindstrom, A.B., Strynar, M.J., Libelo, E.L., 2011. Polyfluorinated compounds: past, present,
 and future. Environ. Scie. Technol. 45, 7954-7961.
- Liu, C., Gin, K.Y.H., Chang, V.W.C., Goh, B.P.L., Reinhard, M., 2011. Novel perspectives
 on the bioaccumulation of PFCs e the concentration dependency. Environ. Sci. Technol.
 45, 9758–9764.
- Llorca, M., Farré, M., Tavano, M.S., Alonso, B., Koremblit, G., Barceló, D., 2012. Fate of a
 broad spectrum of perfluorinated compounds in soils and biota from Tierra del Fuego and
 Antarctica, Environ. Pollut. 163, 158–166.
- Loi, E.I.H., Yeung, L.W.Y., Taniyasu, S., Lam, P.K.S., Kannan, K., Yamashita, N., 2011.
 Trophic magnification of poly- and perfluorinated compounds in a subtropical food web.
 Environ. Sci. Technol. 45, 5506–5513.
- Mackay, D., Arnot, J.A., Gobas, F.A., Powell, D.E., 2013. Mathematical relationships
 between metrics of chemical bioaccumulation in fish. Environ. Toxicol. Chem. 32, 14591466.

573	Martín, J., Camacho-Muñoz, D., Santos, J.L., Aparicio, I., Alonso, E., 2014. Determination of
574	emerging and priority industrial pollutants in surface water and wastewater by liquid
575	chromatography-negative electrospray ionization tandem mass spectrometry. Anal.
576	Bioanal. Chem. 406, 3709–3716.

577 Martín, J., Rodríguez-Gómez, R., Zafra-Gómez, A., Alonso, E., Vílchez, J.L., Navalón, A.

578 2016a. Polar stir bars for isolation and preconcentration of perfluoroalkyl substances 579 from human milk samples prior to UHPLC–MS/MS analysis. Bioanalysis 8 (7), 633-647.

580 Martín, J., Rodríguez-Gómez, R., Zafra-Gómez, A., Alonso, E., Vílchez, J.L., Navalón, A.,

- 2016b. Validated method for the determination of perfluorinated compounds in placental
 tissue samples based on a simple extraction procedure followed by ultra-high
 performance liquid chromatography-tandem mass spectrometry analysis. Talanta 150
 (1), 169-176.
- Martín, J., Zafra-Gómez, A., Hidalgo, F., Ibáñez-Yuste, A.J., Alonso, E., Vílchez, J.L.,
 Navalón, A., 2017. Multi-residue analysis of 36 priority and emerging pollutants in
 marine echinoderms (Holothuria tubulosa) and marine sediments by solid-liquid
 extraction followed by dispersive solid phase extraction and liquid chromatography–
 tandem mass spectrometry analysis. Talanta 166 (1), 336-348.
- Martin, J.W., Mabury, S.A., Solomon, K.R., Muir, D.C.G., 2003a. Bioconcentration and
 tissue distribution of perfluorinated acids in rainbow trout (Oncorhynchus mykiss).
 Environmental Toxicology and Chemistry 22, 196–203.
- Martin, J.W., Mabury, S.A., Solomon, K.R., Muir, D.C.G., 2003b. Dietary accumulation of
 perfluorinated acids in juvenile rainbow trout (Oncorhynchus mykiss). Environmental
 Toxicology and Chemistry 22, 189–195.
- 596 Moon, H.B., Kannan, K., Yun, S., An, Y.R., Choi, S.G., Park, J.Y., Kim, Z.G., Moon, D.Y.,
- 597 Choi, H.G., 2010. Perfluorinated compounds in minke whales (Balaenoptera

acutorostrata) and long-beaked common dolphins (Delphinus capensis) from Korean
coastal waters, Mar. Pollut. Bull. 60, 1130–1135.

- Mudumbi, J.B.N., Ntwampe, S.K.O., Matsha, T., Mekuto, L., Itoba-Tombo, E.F., 2017.
 Recent developments in polyfluoroalkyl compounds research: a focus on
 human/environmental health impact, suggested substitutes and removal strategies,
 Environ. Monit. Assess. 189, 402.
- Munoz, G., Labadie, P., Botta, F., Lestremau, F., Lopez, B., Geneste, E., Pardon, P., Dévier,
 M.H., Budzinski, H., 2017. Occurrence survey and spatial distribution of perfluoroalkyl
 and polyfluoroalkyl surfactants in groundwater, surface water, and sediments from
 tropical environments. Sci. Total Environ. 607–608, 243–252.
- Myers, A.L., Crozier, P.W., Helm, P.A., Brimacombe, C., Furdui, V.I., Reiner, E.J.,
 Burniston, D., Marvin, C.H., 2012. Fate, distribution, and contrasting temporal trends of
 perfluoroalkyl substances (PFASs) in Lake Ontario, Canada. Environ. Int. 44, 92-99.

Naile, J.E., Khim, J.S., Hong, S., Park, J., Kwon, B.O., Ryu, J.S., Hwang, J.H., Jones, P.D.,

Giesy, J.P., 2013. Distributions and bioconcentration characteristics of perfluorinated
compounds in environmental samples collected from the west coast of Korea.
Chemosphere 90, (2013) 387–394.

611

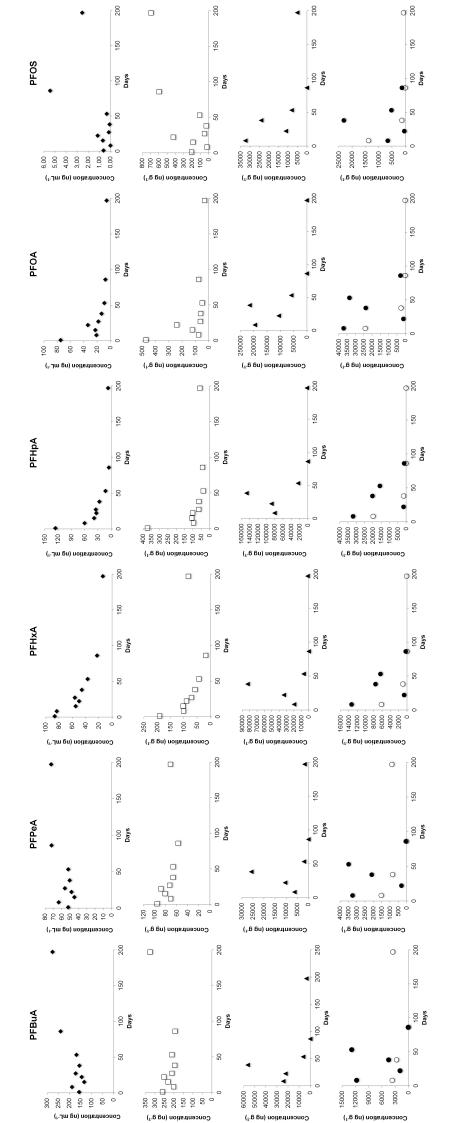
- Naile, J.E., Khim, J.S., Wang, T., Chen, C., Luo, W., Kwon, B.O., Park, J., Koh, C.H., Jones,
 P.D., Lu, Y., Giesy, JP., 2010. Perfluorinated compounds in water, sediment, soil and
 biota from estuarine and coastal areas of Korea. Environ. Pollut. 158, 1237–1244.
- 618 Pan, C.G., Yu, K.F., Wang, Y.H., Zhang, R.J., Huang, X.Y., Wei, C.S., Wang, W.Q., Bin
- Zeng W., Qin, Z.J., 2018. Specific profiles and risk assessment of perfluoroalkyl
 substances in coral reef fishes from the South China Sea. Chemosphere 191, 450–457.
- 621 Pan, G., Zhou, Q., Luan, X., Fu, Q.S., 2014. Distribution of perfluorinated compounds in
- Lake Taihu (China): impact to human health and water standards. Sci. Total Environ.

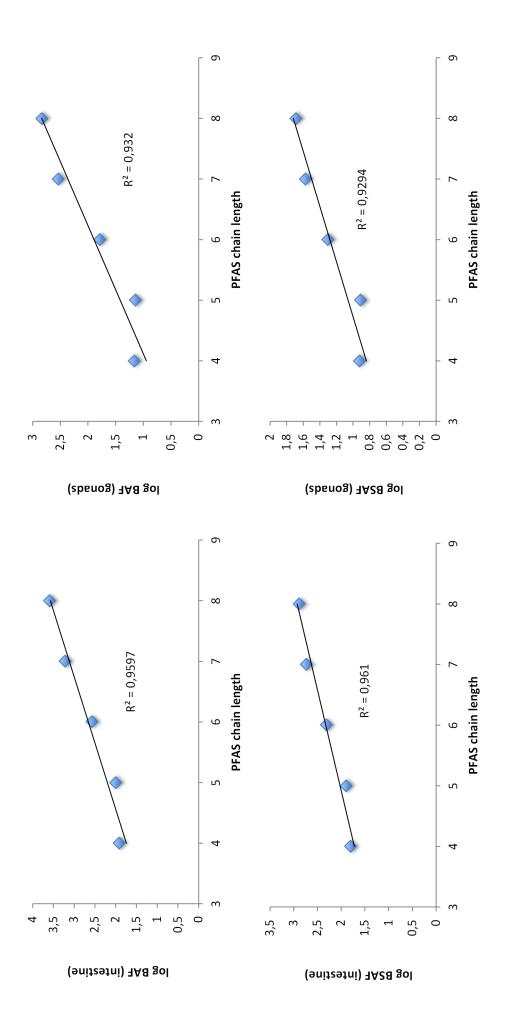
623 487, 778–84.

- Pico, Y., Blasco, C., Farre, M., Barcelo, D., 2012. Occurrence of perfluorinated compounds in
 water and sediment of L'Albufera Natural Park (Valencia, Spain). Environ. Sci. Pollut.
 Res. 19, 946–957.
- Pignotti, E., Casas, G., Llorca, M., Tellbüscher, A., Almeida, D., Dinelli, E., Farré, M.,
- Barceló, D., 2017. Seasonal variations in the occurrence of perfluoroalkyl substances in
 water, sediment and fish samples from Ebro Delta (Catalonia, Spain). Sci. Total Environ.

630 607–608, 933–943.

- Purcell, S.W., Samyn, Y., Conand, C., 2012. Commercially important sea cucumbers of the
 world. FAO Species Catalogue for Fishery Purposes. No. 6. Rome, FAO. 150 pp. 30
- 633 colour plates.
- Renner, R., 2006. The long and the short of perfluorinated replacements. Environ. Sci.
 Technol. 1, 12-13.
- Renzi, M., Guerranti, C., Giovani, A., Perra, G., Focardi, S.E., 2013. Perfluorinated
 compounds: Levels, trophic web enrichments and human dietary intakes in transitional
 water ecosystems. Mar. Pollut. Bull. 76, 146–157.
- Rocha, A.C., Camacho, C., Eljarrat, E., Peris, A., Aminot, Y., Readman, J.W., Boti, V.,
 Nannou, C., Marques, A., Nunes, M.L., Almeida, C.M., 2018. Bioaccumulation of
 persistent and emerging pollutants in wild sea urchin Paracentrotus lividus. Environ. Res.
 161, 354–363.
- Sedlak, M.D., Benskin, J.P., Wong, A., Grace, R., Greig, D.J., 2017. Per- and polyfluoroalkyl
 substances (PFASs) in San Francisco Bay wildlife: Temporal trends, exposure pathways,
 and notable presence of precursor compounds. Chemosphere 185, 1217–1226.
- 646 Shi, Y., Pan, Y., Wang, J., Cai, Y., 2012. Distribution of perfluorinated compounds in water,
- sediment, biota and floating plants in Baiyangdian Lake, China. J. Environ. Monit. 14,


648 636-642.


- Sturm, R., Ahrens, L., 2010. Trends of polyfluoroalkyl compounds in marine biota and in
 humans. Environ. Chem. 7, 457–484.
- Sugni, M., Mozzi, D., Barbaglio, A., Bonasoro, F., Carnevali, M.D.C., 2007. Endocrine
 disrupting compounds and echinoderms: new ecotoxicological sentinels for the marine
 ecosystem. Ecotoxicology 16, 95–108.
- Thompson, J., Roach, A., Eaglesham. G., Bartkow, M.E., Edge, K., Mueller, J.F., 2011.
 Perfluorinated alkyl acids in water, sediment and wildlife from Sydney Harbour and
 surroundings. Mar. Pollut. Bull. 62, 2869–2875.
- Tomy, G.T., Budakowski, W., Halldorson, T., Helm, P.A., Stern, G.A., Friesen, K., Pepper,
 K., Tittlemier, S.A., Fisk, A.T., 2004. Fluorinated organic compounds in an Eastern arctic
 marine food web. Environ. Sci. Technol. 38, 6475-6481.
- Uthicke, S., 2001. Nutrient regeneration by abundant coral reef holothurians. J. Exp. Mar.
 Biol. Ecol. 265, 153–170.
- Wang, J., Zhang, Y., Zhang, F., Yeung, L.W.Y., Taniyasu, S., Yamazaki, E., Wang, R., Lam,
- P.K.S., Yamashita, N., Dai, J., 2013. Age- and gender-related accumulation of
 perfluoroalkyl substances in captive Chinese alligators (Alligator sinensis). Environ.
 Pollut. 179, 61-67.
- Warnau, M., Dutrieux, S., Ledent, G., Rodriguez, A.M., Dubois, P., 2006. Heavy Metals in
 the Sea Cucumber Holothuria tubulosa (Echinodermata) from the Mediterranean
 Posidonia oceanica Ecosystem: Body Compartment, Seasonal, Geographical and
 Bathymetric Variations. Environ. Bioindic. 1, 268–285.
- Wilkinson, J.L., Hooda, P.S., Swinden, J., Barker, J., Barton, S., 2018. Spatial (bio)
 accumulation of pharmaceuticals, illicit drugs, plasticisers, perfluorinated compounds and
 metabolites in river sediment, aquatic plants and benthic organisms. Environ. Pollut. 234,

673 <u>864–875</u>.

- Wu, Y., Wang, Y., Li, J., Zhao, Y., Guo, F., Liu, J., Cai, Z., 2012. Perfluorinated compounds
 in seafood from coastal areas in China. Environ. Int. 42, 67–71.
- Kia, J., Chia, F.S., 1997. Heavy metal accumulation in tissue/organs of a sea cucumber,
 Holothuria leucospilota. Hydrobiologia 352, 17–23.
- Xie, Z., Lu, G., Yan, Z., Liu, J., Wang, P., Wang, Y., 2017. Bioaccumulation and trophic
 transfer of pharmaceuticals in food webs from a large freshwater lake. Environ. Pollut.
 222, 356-366.
- Xing, J., Chia, F.S., 1997. Heavy metal accumulation in tissue/organs of a sea cucumber,
 Holothuria leucospilota. In Asia-Pacific Conference on Science and Management of
 Coastal Environment, 17–23.
- Xu, J., Guo, C.S., Zhang, Y., Meng, W., 2014. Bioaccumulation and trophic transfer of
 perfluorinated compounds in a eutrophic freshwater food web. Environ. Pollut. 184, 254–
 261.
- Yang, L., Zhu, L., Liu, Z., 2011. Occurrence and partition of perfluorinated compounds in
 water and sediment from Liao River and Taihu Lake, China. Chemosphere 83, 806–814.
- Zhang, H., Kelly, B.C., 2018. Sorption and Bioaccumulation Behavior of Multi-class
 Hydrophobic Organic Contaminants in a Tropical Marine Food Web. Chemosphere 199,
 44-53.
- Zhao, Y.G., Wan, H.T., Wong, M.H., Wong, C.K.C., 2014. Partitioning behavior of
 perfluorinated compounds between sediment and biota in the Pearl River Delta of South
 China. Mar. Pollut. Bull. 83, 148–154.
- Zhao, Y.G., Wong, C.K.C., Wong, M.H., 2012. Environmental contamination, human
 exposure and body loadings of perfluorooctane sulfonate (PFOS), focusing on Asian
 countries. Chemosphere 89, 355–368.

698	Zhou, Q., Deng, S.B., Fan, Q., Zhang, Q.Y., Yu, G., Huang, J., 2010. Sorption of
699	perfluorooctane sulfonate and perfluorooctanoate on activated sludge. Chemosphere 81,
700	453–458.
701	
702	Figure Captions
703	
704	Fig. 1. Fate profile of PFASs in the high exposure tank along 197 days trial. \blacklozenge : water
705	samples; \square : sediment samples; \blacktriangle : intestine biota samples; \bigcirc : female gonad biota
706	samples; \bullet : male gonad biota samples.
707	
708	Fig. 2. Relationships between log BAF (top) / log BSAF (bottom) and perfluorinated carbon
709	chain length in intestine and gonad samples.

PFAS	Internal standard	MRM 1	MRM 2	Fragmentor (V)	Collision energy (eV)
PFBuA	PFOA- ¹³ C ₄	213>169	213> 51	55	0
PFPeA	PFOA- ¹³ C ₄	263 > 219	263 > 69	68	0
PFHxA	PFOA- ¹³ C ₄	313 > 269	313 > 119	60	0
PFHpA	PFOA- ¹³ C ₄	363 > 319	363 > 169	68	0
PFOA	PFOA- ¹³ C ₄	413 > 369	413 > 169	68	4
PFOS	PFOA- ¹³ C ₄	499 > 80	499 > 51	145	40

Table 1MRM conditions and ESI mode used for LC-MS/MS of PFASs.

MRM 1: transition used for quantification; MRM 2: transition used for confirmation

Table 2

	Holothuria specimens				Sediment samples			Water samples				
PFASs		LOQ ⁻¹ d.w.)	RSD (%)		LOD (ng g ⁻	-		Rec (%)		LOQ mL ⁻¹)	RSD (%)	Rec (%)
PFBuA	0.008	0.03	12	97	0.008	0.03	0.2	101	0.004	0.02	6.7	89
PFPeA	0.008	0.03	3.2	103	0.008	0.03	8.0	99	0.004	0.02	13	100
PFHxA	0.008	0.03	2.2	92	0.008	0.03	8.5	94	0.004	0.02	2.3	102
PFHpA	0.008	0.03	15	88	0.008	0.03	5.7	92	0.004	0.02	6.3	90
PFOA	0.008	0.03	5.5	96	0.008	0.03	1.8	84	0.004	0.02	6.3	93
PFOS	0.008	0.03	1.3	88	0.008	0.03	9.4	74	0.004	0.02	9.0	93

Limit of detection and limit of quantification, precision and recovery of target compounds in *Holothuria tubulosa* specimens, sediment and water samples.

LOD: Limit of detection; LOQ: Limit of quantification; RSD: Relative Standard Deviation; Rec: Recovery

Batch	log Kd		log BAF (in	testin)	log BAF (go	nads)	log BSAF (i	intestin)	log BSAF (gonads)	
Batch-1 (1 mg L ⁻¹)	Range	Mean	Range	Mean	Range	Mean	Range	Mean	Range	Mean
PFBuA	-0.09-0.22	0.11	1.11-2.56	1.91	-0.45-1.88	1.16	1.04-2.08	1.80	1.28-2.25	1.71
PFPeA	-0.10-0.26	0.12	1.37 - 2.71	2.00	-0.23-1.82	1.14	1.38-2.59	1.90	1.21-2.14	1.67
PFHxA	-0.11-0.35	0.21	2.09-3.26	2.57	1.13-2.24	1.79	1.32-3.16	2.31	1.29-2.07	1.70
PFHpA	0.21-0.90	0.50	2.55-3.74	3.22	1.66-3.08	2.54	1.65-3.36	2.74	1.34-1.73	1.53
PFOA	0.54 - 1.00	0.73	2.57-4.21	3.59	1.51-3.57	2.83	1.73-3.56	2.89	1.10-1.48	1.37
PFOS	2.04-2.57	2.46	3.31-5.54	4.39	2.48 - 5.52	3.72	0.87-2.93	2.06	1.26-2.28	1.63
Batch-2 (0.5 mg L ⁻¹)	Range	Mean	Range	Mean	Range	Mean	Range	Mean	Range	Mean
PFBuA	-0.58-0.24	-0.09	1.50-2.79	1.82	1.27-1.67	1.54	1.33-2.75	1.95	1.73-2.07	1.87
PFPeA	-0.61-0.27	-0.10	1.52-2.93	1.99	1.38-1.53	1.49	1.74-2.89	2.14	1.40-2.48	1.81
PFHxA	-0.09-0.35	0.13	2.25-3.73	2.86	1.61 - 2.37	1.89	2.11-3.49	2.72	1.15-2.22	1.78
PFHpA	0.44 - 1.00	0.74	2.84-4.31	3.34	2.01-2.73	2.34	2.19-3.48	2.59	0.79-1.85	1.58
PFOA	0.63-1.43	0.90	2.52-4.52	3.39	1.68-2.51	2.18	1.74-3.49	2.59	0.93-1.81	1.51
PFOS	0.79 - 2.54	1.91	3.28-4.91	4.08	2.77-4.06	3.53	1.79-2.85	2.35	1.32-2.13	1.58
Batch-3 (0.1 mg L ⁻¹)	Range	Mean	Range	Mean	Range	Mean	Range	Mean	Range	Mean
PFBuA	-0.17-0.36	0.12	1.59–2.97	2.23	1.70-2.69	2.08	1.35-2.96	2.08	-0.56-1.78	0.92
PFPeA	-0.30-0.33	0.04	1.63-3.10	2.32	1.54-2.44	1.95	1.62-3.21	2.25	-0.63-1.66	0.91
PFHxA	0.02-0.53	0.33	2.06-3.34	2.86	1.45-2.67	2.14	1.64-3.18	2.49	0.02-2.12	1.30
PFHpA	0.27-0.91	0.75	2.33-4.22	3.35	1.61-3.09	2.51	1.62-3.41	2.55	0.10-2.63	1.57
PFOA	0.37-1.19	0.80	2.41-4.38	3.37	1.72-3.07	2.40	1.21-3.55	2.48	0.13-2.84	1.69
PFOS	1.08-1.98	2.00	3.74-4.67	4.23	3.46-4.65	4.11	1.89–3.39	2.09	-0.09–2.83	1.48

Table 3Kd (n=27), BAF (n=15) and BSAF (n=15) values of PFASs measured in *Holothuria tubulosa* at three exposure concentrations.

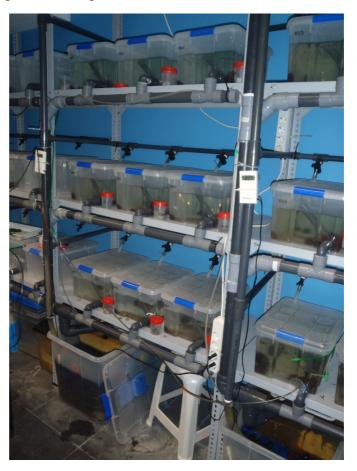
PFCs	Log K _d	Log BAF	Log BSAF	Biota	Reference
PFBuA	-0.09–0.22	1.11–2.56	1.04–2.08	Echinoderm (<i>Holuthuria tubulosa</i> intestine)	This work
		-0.45-1.88	1.28–2.25	Echinoderm (<i>Holuthuria tubulosa</i> gonads)	This work
	0.70-3.23				Campo et al., 2016
	0.99–3.37	0.95-3.58		Fish (Barbus graellsii, Ccyprinus carpio, Micropterus salmoides)	Campo et al., 2015
			-1.40.7	Oyster	Zhao et al., 2014
			-1.20.3	Mussel	Zhao et al., 2014
PFPeA	-0.10-0.26	1.37–2.71		Echinoderm (<i>Holuthuria tubulosa</i> intestine)	This work
		-0.23-1.82	1.21-2.14	Echinoderm (<i>Holuthuria tubulosa</i>	This work
	1.11			gonads)	Pico et al., 2012
	1.11			Fish and eel (Salmo trutta, Gobio lonzanoi, Pseudochrondrostoma	1 100 et al., 2012
	2.44-4.82	6.38		polylepis, Mycroptero salmoides, Barbus guiraonis, Lepomis gibbosus, Alburnus alburnus, Esox lucius, Anguila anguila)	Campo et al., 2016
	2.37-2.43	3.53-3.94		Fish (Barbus graellsii, Ccyprinus carpio, Micropterus salmoides)	Campo et al., 2015
PFHxA	-0.11–0.35	2.09-3.26	1.32–3.16	Echinoderm (<i>Holuthuria tubulosa</i> intestine)	This work
		1.13–2.24	1.29–2.07	Echinoderm (<i>Holuthuria tubulosa</i> gonads)	This work
	1.18				Pico et al., 2012
	0.80				Labadie and
		1.4		$\Gamma' \downarrow (C \rightarrow \cdots \rightarrow)$	Chevreuil, 2011
		1.4		Fish (Cyprinus carpio)	Pignotti et al., 2017
		1.3		Fish (<i>Liza sp.</i>) Fish (<i>R. rutilus</i>)	Pignotti et al., 2017
		0.42		Fish (S. erythropthalmus)	Pignotti et al., 2017 Pignotti et al., 2017
		1.1		Fish (S. glanis)	Pignotti et al., 2017
		0.90		Fish (Squalius laietanus)	Pignotti et al., 2017
		1.8		Fish (<i>A. alburnus</i>)	Pignotti et al., 2017
		1.8		Fish	Hong et al., 2015
		2.4		Bivalve	Hong et al., 2015
		1.6		Crab	Hong et al., 2015
		2.2		Gastropod	Hong et al., 2015
		1.8		Shrimp	Hong et al., 2015
PFHpA	0.21-0.90	2.57-4.21	1.65-3.36	Echinoderm (<i>Holuthuria tubulosa</i> intestine)	This work
		1.66–3.08	1.34–1.73	Echinoderm (<i>Holuthuria tubulosa</i> gonads)	This work
	1.97 1.26				Campo et al., 2016 Pico et al., 2012
	0.8	1.60	-0.50	Fish (Leuciscus cephalus)	Labadie and Chevreuil, 2011
		1.9		Fish	Hong et al., 2015
		1.9		Bivalve	Hong et al., 2015
		1.5		Crab	Hong et al., 2015
		1.9		Gastropod	Hong et al., 2015
		1.9		Shrimp	Hong et al., 2015
		0.75-2.26		Fish (Hemigrapsus sanguineus, Sesarma pictum, Hemigrapsus	Naile et al., 2013
				penicillatus, Helice tridens tridens,	1 (all) 00 all, 2010

Table 4	
Literature log K ₄ log BAF and log BSAF values for PFASs measured i	n aquatic organisms

Philyra pisum)


		1.69		Bivalve (Mytilus edulis, Mactra veneriformis, Nuttallia olivacea, Sinonovacula constricta)	Naile et al., 2013
		1.14–1.61		Crab (Acanthogobius flavimanus, Sebastes schlegeli, Tridentiger obscurus, Hexagrammos otakii, Mugil cephalus)	Naile et al., 2013
		1.81		Gastropod (Littorina brevicula, Monodonta labio, Umbonium thomasi, Glossaulax didyma, Monodonta labio)	Naile et al., 2013
			0.18	Oligochaete (Lumbriculus variegatus)	Lasier et al., 2011
PFOA	0.54–1.00	2.57-4.21	1.73–3.56	Echinoderm (<i>Holuthuria tubulosa</i> intestine)	This work
		1.51-3.57	1.10-1.48	Echinoderm (<i>Holuthuria tubulosa</i> gonads)	This work
	1.71-4.56				Campo et al., 2016
	1.27–2.91	2.91		Fish (Barbus graellsii, Cyprinus carpio, Micropterus salmoides)	Campo et al., 2015
	0–2.13				Pan et al., 2014
	1.55				Pico et al., 2012
	2.28				Yang et al., 2011
	2.17–2.54 2.18–2.48				Ahrens et al., 2010 Zhou et al., 2010
	1.83				Kwadijk et al., 2010
					Higgins and Luthy,
	2.11				2006
		2.21	2.76	Aquatic snails (Bithynia tentaculata)	Wilkinson et al., 2018
		1.75	2.76	Amphipod crustaceans (<i>Gammarus pulex</i>)	Wilkinson et al., 2018
		2.2		Fish (Cyprinus carpio)	Pignotti et al., 2017
		2.0		Fish (<i>Liza sp.</i>)	Pignotti et al., 2017
		2.1		Fish (R. rutilus)	Pignotti et al., 2017
		1.9		Fish (S. erythropthalmus)	Pignotti et al., 2017
		2.1		Fish (S. glanis)	Pignotti et al., 2017
		2.0		Fish (Squalius laietanus)	Pignotti et al., 2017
		2.3		Fish (A. alburnus)	Pignotti et al., 2017
		1.9		Fish	Hong et al., 2015
		2.1 2.6		Bivalve Crab	Hong et al., 2015 Hong et al., 2015
		2.5		Gastropod	Hong et al., 2015
		1.8		Shrimp	Hong et al., 2015
		0.99–1.82		Fish	Xu et al., 2014
		1.47		Zooplankton	Xu et al., 2014
		1.94		Phytoplankton	Xu et al., 2014
			-0.90	Oyster	Zhao et al., 2014
		1.95		Crustacean (Daphnia magna) Fish (Hemigrapsus sanguineus,	Dai et al., 2013
		1.05-2.24		Sesarma pictum, Hemigrapsus penicillatus, Helice tridens tridens,	Naile et al., 2013
		1.65		Philyra pisum) Bivalve (Mytilus edulis, Mactra veneriformis, Nuttallia olivacea, Sinonovacula constricta) Crab (Acanthogobius flavimanus,	Naile et al., 2013
		1.47–1.89		Sebastes schlegeli, Tridentiger obscurus, Hexagrammos otakii, Mugil cephalus)	Naile et al., 2013
		1.70		Gastropod (Littorina brevicula, Monodonta labio, Umbonium thomasi, Glossaulax didyma, Monodonta labio)	Naile et al., 2013

		2.08 1.93 1.62 1.77 1.32 0.70–0.97 1.9–3.7		Fish (Silver carp) Prawn Snakehead Tire track eel Fish (Crucian carp) Common Carp (<i>Cyprinus carpio L.</i>) Floating plants	Wang et al., 2013 Wang et al., 2013 Wang et al., 2013 Wang et al., 2013 Wang et al., 2013 Inoue et al., 2012 Shi et al., 2012 Labadie and
		1.0-2.1	0.07	Fish (<i>Leuciscus cephalus</i>)	Chevreuil,et al., 2011
		1.1–1.2 2.43 2.26	0.07	Oligochaete (<i>Lumbriculus variegatus</i>) Mussel (<i>Perna viridis</i>) Zooplankton Fish Echinoderm (<i>L. Variegatus</i>)	Lasier et al., 2011 Liu et al., 2011 Loi et al., 2011 Fujii et al., 2007 Higgins et al., 2007
		1.91 -1.42	0.20 0.02	Zooplankton Rainbow trout (<i>Oncorhynchus mykiss</i>)	Houde et al., 2006 Martin et al., 2003a
PFOS	2.04-2.57	3.31-5.54	0.87–2.93	Echinoderm (<i>Holuthuria tubulosa</i> intestine)	This work
		2.48-5.52	1.26–2.28	Echinoderm (<i>Holuthuria tubulosa</i> gonads)	This work
	1.07–3.70	5.37		Fish and eel (Salmo trutta, Gobio lonzanoi, Pseudochrondrostoma polylepis, Mycroptero salmoides, Barbus guiraonis, Lepomis gibbosus, Alburnus alburnus, Esox lucius, Anguila anguila)	Campo et al., 2016
	0.47–2.03 1.78–2.12 2.32–3.32	2.3–3.80	0.97–1.81	Eel, Perch, Pike	Campo et al., 2015 Kwadijk et al., 2014 Pan et al., 2014
	2.4 2.15 2.88 2.1 2.35 2.30–3.60 2.68	3.5–5.2	-0.3–1.5	Fish (<i>Leuciscus cephalus</i>)	Labadie and Chevreuil, 2011 Pico et al., 2012 Yang et al., 2011 Ahrens et al., 2010 Kwadijk et al., 2010 Zhou et al., 2010 Higgins and Luthy, 2006
		2.64	3.46	Aquatic snails (<i>Bithynia tentaculata</i>)	Wilkinson et al., 2018
		2.77	3.46	Amphipod crustaceans (<i>Gammarus pulex</i>)	Wilkinson et al., 2018
		3.0 0.68 2.3 1.9 2.0 2.0 2.4 2.9 2.5 2.5 2.7 2.9 2.95–3.71 2.25 2.92–4.49	-0.5–0.0 -0.8–0.2 -1.64	Fish (Cyprinus carpio) Fish (Liza sp.) Fish (R. rutilus) Fish (S. erythropthalmus) Fish (S. glanis) Fish (Squalius laietanus) Fish (A. alburnus) Fish (A. alburnus) Fish Bivalve Crab Gastropod Shrimp Fish Oyster Mussel Larvae (Chironomus riparius) Crustacean (Daphnia magna) Fish (Hemigrapsus sanguineus, Sesarma pictum, Hemigrapsus penicillatus, Helice tridens tridens,	Pignotti et al., 2017 Pignotti et al., 2017 Hong et al., 2015 Hong et al., 2015 Hong et al., 2015 Hong et al., 2015 Xu et al., 2014 Zhao et al., 2014 Zhao et al., 2014 Bertin et al., 2014 Dai et al., 2013 Naile et al., 2013


Philyra pisum)

1.89		Bivalve (Mytilus edulis, Mactra veneriformis, Nuttallia olivacea, Sinonovacula constricta)	Naile et al., 2013
1.72–2.41		Crab (Acanthogobius flavimanus, Sebastes schlegeli, Tridentiger obscurus, Hexagrammos otakii, Mugil cephalus)	Naile et al., 2013
2.33		Gastropod (<i>Littorina brevicula</i> , Monodonta labio, Umbonium thomasi, Glossaulax didyma, Monodonta labio)	Naile et al., 2013
3.58		Fish (Silver carp)	Wang et al., 2013
2.65		Prawn	Wang et al., 2013
3.48		Snakehead	Wang et al., 2013
2.26		Fish (Common carp)	Wang et al., 2013
3.04		Tire track eel	Wang et al., 2013
2.38		Fish (Crucian carp)	Wang et al., 2013
2.85-3.11		Common Carp (Cyprinus carpio L.)	Inoue et al., 2012
3.0-4.1		Floating plants	Shi et al., 2012
	0.49	Oligochaete (Lumbriculus variegatus)	Lasier et al., 2011
2.4-2.6		Mussel (Perna viridis)	Liu et al., 2011
3.82-4.66		Fish	Fujii et al., 2007
	-0.08-0.09	Oligochaete (Lumbriculus variegatus)	Higgins et al., 2007
-0.49		Rainbow trout (Oncorhynchus mykiss)	Martin et al., 2003a

Fig. S1. Photo of an open specimen of *Holoturia tubulosa*.

Fig. S2. Image of the experimental aquarium.

Chromatographic analyses were performed on an Agilent 1200 series LC system (Agilent, USA) equipped with a vacuum degasser, a binary pump, an autosampler, and a thermostated column compartment. The LC system was coupled to a 6410 triple quadrupole mass spectrometer (MS/MS) equipped with an electrospray ionization (ESI) source (Agilent). Ionization of analytes was carried out using the following settings: MS capillary voltage 3000 V, drying-gas flow rate 9 L min⁻¹, drying-gas temperature 350 °C, and nebulizer pressure 0.28 MPa. A vortex-mixer (IKA, Staufen, Germany), an ultrasound-HD bath (Selecta, Barcelona, Spain), a Spectrafuge[™] 24D centrifuge (Labnet International, Inc., Edison, NJ, USA), and a sample concentrator (Stuart, Staffordshire, UK) were also used.

Validation requirements

The method was validated according to the International Conference on Harmonization (ICH) guidelines for analytical method validation (ICH Quality Guidelines).

Matrix-matched calibration standards were prepared at eight different analyte concentration levels. The mixtures were vortexed for 2 min and then left to stand for 24 h at 4 °C in the dark before analysis.

Limit of detection (LOD) and limit of quantification (LOQ) are fundamental aspects that need to be examined in the validation of the analytical method in order to determine whether the analyte is present in the sample. The LOD is the minimum amount of analyte detectable in the sample while the LOQ is the minimum amount that can be quantified. In this work, these parameters were calculated from the signal-tonoise ratio (LODs = 3, LOQ = 10) obtained from injecting several blank samples fortified with decreasing amounts of the compounds of interest.

A recovery assay was carried out to validate the accuracy of the method in terms of trueness and precision. Fortified blank samples for each compound at three concentrations levels were analyzed. Precision, expressed as relative standard deviation (%, RSD) was determined from triplicate spiked samples during the same day and in six different days, and the trueness was evaluated using the recovery data.

The selectivity of the method was determined by comparing the chromatograms of blank with the corresponding spiked sample.

Validity of the analytical results was verified by some simple quality assurance and quality control (QA/QC) measures. Procedural blanks (samples from a tank without analyte contamination) were injected to monitor background contamination. Blanks were processed in the same way as the samples and injected into the LC-MS/MS system. No quantifiable amounts (<LODs reported in Table 2) of target compounds were detected. Additionally, in order to evaluate possible contaminations and the variability of the instrumental analysis, standards (spiked blank samples at 50, 200 and 500 ng g-1 d.w.) and a standard in the initial mobile phase (100 ng mL-1) were injected by triplicate every 20 samples. Matrix-matched calibration standards were prepared at eight different analyte concentration levels. Taking into account the substance specific responses and the concentration levels in natural samples, different concentration ranges were used for each matrix (from 0.1 to 500 μ g g⁻¹ d.w. for holothurian and sediment samples and from 0.01 to 300 ng mL⁻¹ for water samples). The mixtures were vortexed for 2 min and then left to stand for 24 h at 4 °C in the dark before analysis. This allows the analytes to come into full contact with the sample.

		FBPuA		PFPeA		PFHxA		PFHpA		PFOA		PFOS	
Water samples													
Batch	Day	Mean	SD	Mean	SD	Mean	SD	Mean	SD	Mean	SD	Mean	SD
Blank	0	1.2	0.4			0.25	0.03	2.1	0.1	2.1	0.6	0.06	0.01
Batch-1	1	156	1	52.4	0.7	86	2	126	1	75.8	0.2	0.60	0.01
	8	188	0.3	63.8	0.2	83	1	60.2	0.3	21.0	0.2		
	15	133	2	45.0	0.2	54.9	0.2	38.6	0.2	22.7	0.2	0.70	0.01
	22	144	1	48.4	0.1	49.8	0.6	33.7	0.6	33.9	0.3	1.20	0.01
	27	172	0.3	56.4	0.2	56.1	0.3	34.8	0.4	18.2	0.3	0.14	0.01
	38	155	1	50.6	0.1	45.5	0.4	26.8	0.4	13.3	0.1	0.07	0.03
	53	168	1	52.3	0.3	36.8	0.2	13.1	0.3	9.1	0.1	0.33	0.02
	86	240	2	72.4	0.2	22.7	0.4	5.4	0.1	7.5	0.2	5.44	0.04
	197	276	4	72.9	0.3	14.0	0.3	7.2	0.1	5.7	0.2	2.55	0.01
Batch-2	1	99.3	0.1	32.1	0.1	36.5	0.3	18.9	0.30	10.8	0.1		
	8	87.8	0.3	28.3	0.1	23.8	0.2	16.9	0.21	84	1	2.72	0.01
	15	84.6	0.3	27.2	0.1	18.5	0.2	7.5	0.1	7.2	0.1	0.75	0.04
	22	112	0.2	36.6	0.2	19.1	0.1	7.3	0.1	7.8	0.1	0.23	0.07
	27	81.0	0.9	25.4	0.3	12.1	0.1	5.2	0.1	7.6	0.3	0.47	0.05
	38	92.7	0.3	28.6	0.1	14.5	0.1	9.9	0.3	8.2	0.2		
	53	151	1	44.4	0.4	17.6	0.3	8.2	0.3	9.2	0.3	0.53	0.01
	86	98.1	0.6	26.8	0.2	4.45	0.03	2.8	0.1	3.1	0.1	0.10	0.02
	197	139	1	34.3	0.2	5.66	0.03	5.6	0.1	4.4	0.5	0.37	0.03
Batch-3	1	33	2	11.1	0.2	17.5	0.4	20.3	0.2	12.8	0.3	0.03	0.02
	8	21.8	0.3	7.7	0.1	10.8	0.2	9.2	0.2	12.8	0.2	0.19	0.01
	15	18.3	0.3	6.5	0.1	7.8	0.2	6.0	0.7	6.5	0.1	0.39	0.03
	22	19.9	0.4	7.1	0.1	6.7	0.1	4.2	0.5	4.8	0.1		
	27	18.8	0.3	6.6	0.1	4.9	0.1	4.9	0.1	11.7	0.4	0.26	0.01
	38	25.7	0.1	8.9	0.1	5.9	0.1	4.9	0.1	6.6	0.4	0.05	
	53	25.3	0.1	8.2	0.1	5.0	0.2	4.6	0.3	4.7	0.6	0.04	
	86	26.6	0.3	8.4	0.1	2.9	0.3	3.3	0.1	4.6	0.1	0.07	0.01
	197	27.3	0.2	7.3	0.1	2.4	0.1	5.2	0.2	5.2	0.4	0.17	0.02

Table S1. Concentration values (mean and standard deviation) of PFASs measured in water and sediment samples at three exposure batches.

Batch	Day	Day FBPuA		PFPeA	PFPeA		PFHxA P		PFHpA		PFOA		PFOS	
						Sediment	t samples							
		Mean	SD	Mean	SD	Mean	SD	Mean	SD	Mean	SD	Mean	SD	
Blank	0	1.8	0.3			2.6	0.1	11.2	0.3	25.7	0.5			
Batch-1	1	260	4	95.4	0.3	191	1	374	2	472	5	206	3	
	8	202	2	71.0	0.8	101	1	96	1	77	3	20.4	0.9	
	15	231	1	81.0	0.1	103	2	107	3	122	6	189	3	
	22	253	2	88.6	0.3	90	2	101	1	240	5	425	10	
	27	211	3	72.8	0.4	71	1	65	2	63	1	51	1	
	38	196	2	66.6	0.7	58	1	64	2	60	1	28	1	
	53	211	4	66.4	0.2	43	2	37	1	48	1	110	3	
	86	194	4	57.3	0.2	18	1	42	1	75	2	597	13	
	197	326	2	71.4	0.9	83	1	58	1	31	1	695	15	
Batch-2	1	122	2	40	1	48	2	52	1	46	2	1.8	0.3	
	8	152	2	53	2	54	3	97	1					
	15	85	5	26	1	20	1	33	2	34	3	4.6	0.6	
	22	89	2	27	3	18	1	34	1	46	2	33.7	0.7	
	27	66	1	20	1	18	2	51	1	79	1	161	5	
	38	101	3	31	1	25	1	67	2	89	3	68	1	
	53	87	2	25	1	14.1	0.2	36	1	49	2	72	1	
	86	26	1	6.6	0.1	8.8	0.1	27.6	0.2	24	1	6.0	0.2	
	197	98	3	21	1	7.1	0.3	24.6	0.7	119	3	42.9	0.1	
Batch-3	1	29	1	8.7	0.2	18.4	0.5	38.0	0.9	30.4	0.7	0.40	0.02	
	8	50	1	16.6	0.3	36.8	0.7							
	15	23	2	6.8	0.2	14.6	0.1	37.0	0.3	42.6	0.7	8.7	0.5	
	22	21	1	5.5	0.1	9.7	0.9	27.8	0.3	33	1	8.95	0.3	
	27	26	2	7.7	0.2	12.9	0.3	31.9	0.5	57	0.9	18.1	0.6	
	38	29	2	8.2	0.2	12.0	0.2	32.3	0.4	41.3	0.4	17.8	0.1	
	53	34	1	10.1	0.1	11.5	0.1	32.4	0.3	36.4	0.3	20.6	0.4	
	86	88	2	23.3	0.3	8.8	0.1	30.0	0.4	29.3	0.3	21.8	0.7	
	197	19	1	3.7	0.1	6.3	0.4	26.4	0.9	80.8	2	16.4	0.2	

Table S1 cont. Concentration values (mean and standard deviation) of PFASs measured in water and sediment samples at three exposure batches.

SD: Standard Deviation

Batch	Day	PFBuA		PFPeA		PFHxA		PFHpA		PFOA		PFOS	
Intestine samples													
Blank	0	Mean	SD	Mean	SD	Mean	SD	Mean	SD	Mean	SD	Mean	SD
Blank	0	50.1	6.7	26	3	137	15	281	9	386	15	95	4
Batch-1	8	24437	2970	6333	688	19974	1530	80543	5722	196268	23442	32530	2925
	22	22413	1749	10534	991	33918	2831	87877	4897	106478	10842	11164	1133
	38	56507	6377	25771	2987	82982	9365	147956	9179	216068	23408	24158	1602
	53	6502	843	2023	77	7061	116	24049	2554	59672	5334	8107	622
	86	29.7	5.1	22.6	2.8	191	16.9	737	133	1282	78	128	15
	197	3559	451	1723	88	1722	101	2569	110	1676	128	5179	434
Batch-2	8	3223	165	1265	273	6968	481	17457	583	27403	1533	5148	298
	22	4521	208	2239	205	8745	464	8110	541	18166	1738	2890	331
	38	56612	6023	24360	2265	78154	8026	201936	24767	271577	19784	38963	1718
	53	8824	637	6496	359	25407	1670	21530	3646	42396	1907	4433	197
	86	3100	174	2160	119	3677	202	7573	439	3904	217	1657	221
	197	6898	521	1138	125	1011	87	3836	153	6604	781	30125	3351
Batch-3	8	4145	247	1129	67	5995	258	14562	878	25193	1330	3743	231
	22	18640	1826	8899	143	14602	1260	70863	6714	115143	11661	18339	1409
	38	10753	1039	3385	189	5904	664	35773	1047	32361	1627	2518	238
	53	2955	139	2062	114	5734	567	7181	494	16410	927	1526	83
	86	1967	328	959	35	2685	371	6727	414	3631	236	366	45
	197	1058	83	309	15	278	19	1095	198	1322	181	1265	171
						Male gona	d sample:	8					
Blank	0	64	2	12	1	26	2	62	5	69	6	32	4
Batch-1	8	11712	105	3248	75	13344	355	31933	987	37105	888	6590	100
	22	1922	99	305	21	685	8	1524	20	1104	51	346	41
	38	4481	101	2095	130	7593	540	20260	1195	23761	2209	23088	94
	53	12825	1371	3489	302	6391	692	15806	1502	33599	3979	5203	491
	86	85.1	5.7	43.1	1.0	304	5	1186	79	2856	19	1235	13

Table S2. Concentration values (mean and standard deviation) of PFASs measured in intestine and gonads of *Holothuria tubulosa* during trial at three exposure batches.

Batch-2	8	2901	265	869	11	1037	23	2104	77	4014	103	1586	93
	38	3355	330	963	11	1073	18	2241	173	2661	184	1247	27
	86	4564	388	905	10	1038	14	1495	26	296	41	1137	62
Batch-3	8	2404	31	522	29	912	84	2542	86	2249	242	541	75
	22	1326	16	249	27	231	10	517	26	571	12	338	14
	38	1296	10	282	12	169	12	201	14	351	12	371	21
	53	3997	71	1462	10	914	38	2248	169	3091	84	1232	81
	86	1836	97	580	33	1326	31	2691	191	1264	59	540	11
						Female gor	ad samp	les					
Blank-Female	0	117	18	47	6	136	11	323	7	298	6	56.1	1.6
Batch-1	8	3690	195	1524	41	6186	343	19901	1257	24110	1854	13847	1529
	38	2702	59	842	16	1011	26	1534	38.7	2576	68	1299	22
	86	53.3	1.1	13.6	1.8	18.5	0.2	54.8	0.35	102	8	31.4	1.6
	197	3543	56	883	56	121	17	72.2	0.59	113	11	696	10
Batch-2	22	5204	255	1227	127	781	44	746	67	1058	80	1158	186
	38	3744	13	864	12	743	36	1537	13	2126	210	2132	162
	53	2791	34	1055	13	1147	64	2064	140	2311	129	894	15
	86	2902	35	890	18	708	53	1162	95	396	35	771	73
Batch-3	8	4813	91	1569	29	3357	74	11375	740	14997	328	5719	187
	22	1805	14	543	15	323	1.6	321	2	416	40	318	31
	38	12497	109	2475	49	1969	82	2467	15	2530	38	2391	112
	53	1831	104	470	19	875	60	2292	168	2358	143	745	74
	86	5791	58	1240	59	1351	10	3080	28	1322	22	455	40

SD: Standard Deviation

References

ICH Quality Guidelines, Topic Q2 (R1): Validation of Analytical Procedures: Text and Methodology, (2005).