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Transition metal dichalcogenides (TMDs) are an exciting family of 2D materials; a member of this family,
MoS2, became the first studied monolayer semiconductor. In this paper, a generalized phenomenological
continuum approach for the optical vibrations of the monolayer TMDs valid in the long-wavelength limit is
developed. The equation of motions for nonpolar and polar oscillations include the phonon dispersion up to
a quadratic approximation in the phonon wave vector. On the other hand, the polar modes satisfy coupled
equations for the displacement vector and the inner electric field. The two-dimensional phonon dispersion curves
for in-plane and out-of-plane oscillations are thoroughly analyzed. The model parameters are fitted from density
functional perturbation theory calculations. The current formalism provides an effective tool to describe the
phonon dispersion curves around the � point of the Brillouin zone for a large group of members of the TMD
monolayers. A detailed evaluation of the intravalley Pekar-Fröhlich and the A1-homopolar mode deformation
potential coupling mechanisms is performed. The effects of metal ions and chalcogen atoms on polaron mass and
binding energy are studied. It is argued that both mechanisms should be considered for a correct analysis of the
properties of the polaron or of any process that involves the intraband transitions assisted by the electron-phonon
interaction.

DOI: 10.1103/PhysRevB.103.235424

I. INTRODUCTION

The emergence of two-dimensional (2D) transition metal
dichalcogenide (TMD) materials has encouraged basic re-
search with potentially extraordinary applications in the field
of energy storage, biosensors, electronic devices, solar cells,
among others (see Refs. [1–4]). The bulk family of TMDs has
a puckered layered structure with a MX2 pattern in each layer,
M=Mo, W is a transition metal, and X=S, Se, Te a chalcogen.
The stacking can be found preferably forming three different
polytypes with 2H hexagonal honeycomb, 1T trigonal, or 3R
rhombohedral symmetries. These structures include semimet-
als such as MoTe2 and WTe2 or semiconductors like MoS2,
MoSe2, WS2, and WSe2 [5]. Molybdenum disulfide mono-
layer (1ML) is the most studied member of this family [6].
Due to the existence in the 1ML MoS2 of a direct band gap of
1.75 eV, the TMD family acquired a renewed notoriety with
promising applications in optoelectronics. It has been shown
that optical phonons of the 1ML TMD impact the interband
and intraband relaxation processes [7], transport properties
[8,9], photoluminescence [10], hot luminescence [11], and
even modulate the piezoelectricity effect [12]. In addition, the
phonon-assisted exciton recombination explains the observed
photoluminescence peaks below the bright exciton of WSe2.
The developed microscopic model includes both the inter- and

intravalley exciton scattering assisted by optical and acoustic
phonons [13].

In general, in any comprehensive study of dielectric and
electronic properties of 2D TMDs the role of the optical
phonons needs to be addressed [14]. In the phonon spectra
of 1ML TMDs we can find six optical branches at the � point
of the Brillouin zone (BZ) that are classified in terms of the
irreducible representation of the point group D3h [15–17] with
symmetries E ′′ (LO1 and TO1), E ′ (LO2 and TO2), A1 (ZO2),
and A2 (ZO1) which correspond to two in-plane longitudinal
(LO1 and LO2), two in-plane transverse (TO1 and TO2), and
two out-of-plane (ZO1 and ZO2) vibrations.

The development of analytical methods together with
ab initio calculations allows us to describe optical oscil-
lations in 2D materials and understand phonon dispersion
laws [18] as well as the electron-phonon interaction [19]. A
phenomenological continuum model should contain the sym-
metry properties of the structure and the main characteristics
of the optical modes under study. In this paper, we present a
long-wavelength phenomenological continuum approach for
the six optical phonon branches of the 2D TMD family. The
formalism takes into account the dispersion up to quadratic
dependence on the phonon wave vector and the symmetry
properties. We assume in-plane isotropy, as the anisotropy
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derived from the D3h symmetry is negligible in the disper-
sion laws for long wavelength. This results in six analytical
solutions for the optical branches. The parameters introduced
in the equation of motions were fitted to match ab initio
calculations of the phonon spectra. The polaronic corrections
are also obtained considering both Fröhlich and short-range
deformation potential interactions, emphasizing the important
role of the A1-homopolar mode. Our model provides an easy
approach to get an accurate description of the in-plane and
out-of-plane phonon properties of all the TMD family.

The paper is organized as follows: In Sec. II we introduce
the phenomenological model starting from a general equation
of motion for the relative displacement vector of the atoms
involved in the phonon oscillations. In Sec. III we describe
the procedure we followed with the ab initio calculations
of the TMDs. In Sec. IV we list all the parameters of our
phenomenological macroscopic approach for all the family of
TMD obtained from fitting ab initio calculations and elab-
orate on LO2-TO2 splitting found in the optical modes. In
Sec. V we derive analytically two main mechanisms respon-
sible for the electron-phonon interaction: Pekar-Fröhlich and
A1-homopolar deformation potential interactions. In Sec. VI
employing both Hamiltonians, we explore the polaron proper-
ties and obtain the polaron mass and binding energy. Finally,
we expose our conclusions in Sec. VII.

II. PHENOMENOLOGICAL MODEL

Lets recall first some basic concepts of the long-
wavelength phenomenological continuum approach adapted
to 2D TMD layers [21]. For the sake of clarity, we divide
the study of the six optical oscillations into two groups: (i)
polar modes with E ′ (LO2, TO2) or A2 (ZO1) symmetry and
(ii) nonpolar phonons for the E ′′ (LO1, TO1) or A1 (ZO2)
branches.

A. Polar phonons

The opposite motions of chalcogen (Xi, i = 1, 2) and
transition-metal (M) ions are responsible for the appear-
ance of three polar branches. The oscillations are composed
of the in-plane (LO2, TO2) and out-of-plane (ZO2) modes
with a relative vector displacement U = uM − (uX1

+ uX2
)/2

where uM (uXi
, i = 1, 2) is the vector amplitude of the metal

(chalcogen). Hence, the normal vibrational mode at � with
irreducible representation A2 is infrared active while E ′ is
Raman and infrared active [16]. These atomic displacements
in the unit cell generate a macroscopic electric field E in the
layer. We will assume the following equation of motion for
the relative vector displacement U = (uE ′ (ρ), uZO1

(ρ)) of the
atoms involved in the long-wavelength limit for polar phonons
around the � point of the BZ,

ρmω2U + γ
↔ · U + α

↔ · E(ρ, 0) − ∇ · σ↔ = 0, (1)

where ρm is the 2D reduced mass density with μ−1 = m−1
M

+
(2mX )−1, E(ρ, 0) = (Eρ(ρ, 0), Ez(ρ, 0)) the 2D electric field
and ρ the in-plane radius vector. In Eq. (1) γ

↔
, α
↔

, σ
↔ are second

rank tensors. γ
↔ is a symmetric tensor describing the coupling

of mechanical amplitude with itself given by

γ
↔ = −ρm

⎛
⎝ω2

E ′ 0 0
0 ω2

E ′ 0
0 0 ω2

0A2

⎞
⎠, (2)

ωE ′ (ω0A2 ) being the natural optical frequency at in-plane (out-
of-plane) phonon wave vector q = 0 with symmetry E ′ (A2).
The tensor α

↔ describes the interaction between the mechanical
vector amplitude U and the field E expressed in the form

α
↔ =

⎛
⎝α 0 0

0 α 0
0 0 αZO1

⎞
⎠, (3)

where α (αZO1
) is the coupling constant between the displace-

ment uE ′ (ρ) [uZO1
(ρ)] and the in-plane macroscopic electric

field Eρ(ρ, 0) [the z component of the electric field, Ez(ρ, 0)].
The term ∇ · σ↔ is introduced to describe the phonon disper-
sion up to the quadratic term in the phonon wave vector and it
can be cast as (see Appendix A)

∇ · σ↔ = ρm

⎛
⎜⎜⎝

∓β2
LO2

∂2
x ux ∓ β2

TO2
∂2

y ux ± (
β2

LO2
− β2

TO2

)
∂2

x,yuy

∓β2
LO2

∂2
y uy ∓ β2

TO2
∂2

x uy ± (
β2

LO2
− β2

TO2

)
∂2

x,yux

∓β2
ZO1

(
∂2

x uz + ∂2
y uz

)

⎞
⎟⎟⎠.

(4)
The coefficients α, αZO1

, βLO2
, βTO2

, and βZO1
are phe-

nomenological parameters obtained by fitting the phonon
dispersion law ω(q) (experimentally or by ab initio calcula-
tions). The choice of sign, + or −, depends on the curvature
of the mode under consideration. In addition, Eq. (1) is sup-
plemented by the Maxwell equation

∇ · (E(ρ, z) + 4πP(ρ, z)) = 0 (5)

for the in-plane oscillations and

∇ · (Ez(ρ, z) + 4πPz(ρ, z)) = 0 (6)

for the out-of-plane vibrations. For the macroscopic polariza-
tions we assume the following relations

P = [αuE ′ (ρ) + α2Eρ(ρ, 0)] p(z) (7)

and

Pz = [αZO1
uZO1

(ρ) + χeEz(ρ, 0)] p(z), (8)

where α2 is the polarizability in the plane and χe the out-
of-plane electronic susceptibility [18]. The function p(z) in
Eqs. (7) and (8) is the profile density along the z direction
[8,19,20] and it will be considered uniform over the mono-
layer of thickness d , i.e.,

p(z) =
{

1/d ; |z| < d/2
0 ; |z| > d/2.

(9)

The dispersion relations are obtained by solving the cou-
pled equations (1), (5), and (6) for uE ′ , uZO1

, Eρ(ρ, 0), and
Ez(ρ, 0). These equations represent a generalization of the
Born-Huang equation [21,22] for 2D TMD materials in-
cluding the quadratic dependence on the q vector of the
optical modes. Due to the translational symmetry on the
plane we have that U = (u0E ′ , uZO1

) eiq·ρ and E(ρ, z = 0) =
E(q) eiq·ρ, thus Eq. (1) is decoupled into two independent
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equations for in-plane and out-of-plane motions with the
vector displacements u1 = (uE ′ (ρ), 0) and u2 = (0, uZO1

(ρ)),
respectively. As a consequence, we get three phonon dis-
persion relations, two for in-plane longitudinal (LO2) and
transverse (TO2) branches with symmetry E ′, as well as one
for out-of-plane phonon vibration A2 (ZO1). Hence, from
Eqs. (1) and (5) and using E(ρ, z) = −∇ϕ(ρ, z) we get for
the in-plane oscillations

ρm
(
ω2 − ω2

E ′
)
u0E ′ = −αEρ(q) ± ρmβ2

LO2
q(q · u0E ′ )

± ρmβ2
TO2

[−q(q · u0E ′ ) + q2u0E ′ ], (10)

and the Poisson’ equation

∇2ϕ + 4πα2∇2
ρϕ2(ρ)p(z) = 4πα∇ · [uE ′ (ρ)p(z)], (11)

with ϕ2(q) = ϕ(ρ, z = 0). For searching the solution of
the system of Eqs. (10) and (11) we take the Fourier
transform [23]

ϕ(ρ, z) = 1

(2π )3

∫
ϕ̄(q, qz ) ei(q·ρ+qzz) d2q dqz. (12)

Inserting (12) into (11) we have, in the long-wavelength
limit qd/2 � 1, that the Fourier transform of the electrostatic
potential is [24]

ϕ̄(q) = − 2π

q

αF (q)

1 + 2πα2q
, (13)

where ϕ̄(q) = ∫ ∞
−∞ ϕ̄(q, qz ) dqz/2π and

F (q) =
∫

∇ · [uE ′ (ρ] e−iq·ρ d2ρ. (14)

From the Fourier transform of the in-plane electric field
Eρ(ρ, z = 0) = −∇ϕ2(ρ) we get from (13) and (14)

E(q) = −2πα
q
q

q · u0E ′

(1 + 2πα2q)
. (15)

Employing (10) and (15) and considering u0E ′ = uLO2
+ uTO2

,
with uLO2

(uTO2
) the longitudinal (transverse) vector displace-

ment, we obtain that the phonon dispersion relation for the
LO2 phonon is given by

ω2 = ω2
E ′ + 2πα2

ρm

q

(1 + 2πα2q)
± β2

LO2
q2, (16)

and for TO2 mode

ω2 = ω2
E ′ ± β2

TO2
q2. (17)

We observe that the breaking of the translational symmetry
along the z axis provokes the absence of LO2-TO2 splitting
at �; the LO2 and TO2 phonons are degenerate at q = 0.
The LO2 mode is due to the longitudinal displacement and
its dispersion relation (16) shows a finite slope. The coupling
of the LO2 phonon amplitude with the macroscopic electric
field (15) is responsible of the q-linear behavior at the long-
wavelength limit.

In the out-of-plane A2 vibration, Eqs. (1) and (6) provide
the macroscopic equations

ρm
(
ω2 − ω2

0A2

)
uZO1

= −αZO1
Ez(q) ∓ ρmβ2

ZO1
q2uZO1

(18)

and [
d2

dz2
− q2

]
ϕ0(z) = 4π

d p

dz

[
αZO1

u0z − χe
dϕ0(0)

dz

]
, (19)

where the electrostatic potential is chosen as ϕ(ρ, z) =
ϕ0(z) eiq·ρ. Taking ϕ0(z) = ∫ ∞

−∞ ϕ̄(qz ) eiqzz dz/2π and em-
ploying Eq. (19) follows in the qd/2 � 1 limit that the z
component of the electric field Ez(q) is written as [23]

Ez = −4π

d

αZO1

1 + 4π
d χe

uZO1
. (20)

Employing Eqs. (20) and (18) we have the phonon dispersion
for the A2 mode

ω2 = ω2
0A2

+ 4π

ρmd

α2
ZO1(

1 + 4π
d χe

) ∓ β2
ZO1

q2. (21)

The role of the coupling constant term αZO1
and the

electronic susceptibility χe is to renormalize the intrinsic os-
cillatory frequency ω0A2 , thus

ω2 = ω2
A2

∓ β2
ZO1

q2. (22)

We take ω2
A2

= ω2
0A2

+ 4πα2
ZO1

/[ρmd (1 + 4π
d χe)] equal to the

frequency value at q = 0 provided by ab initio calculations.

B. Nonpolar phonons

The modes with symmetry E ′′ are responsible for one-in-
plane longitudinal (LO1) and one-in-plane transverse (TO1)
optical vibrations, while the A1 (ZO2) mode oscillates out
of plane. The normal vector displacement UN = (U X1

−
U X2

)/2 = (UE ′′ , uZO2
) describes the contrary motion of the

two chalcogen atoms Xi (i = 1, 2) with the mass of the metal
fixed and reduced mass μ−1 = 2m−1

X
. As a consequence we

are in the presence of nonpolar modes independent of the
electric field. Both branches are Raman active [18] and fulfill
the following equation of motion

ρmω2UN + γ
↔

N · UN − ∇ · σ↔N = 0, (23)

where the tensors γ
↔

N and σ
↔

N have the same structures as γ
↔

and σ
↔ in Eqs. (2) and (4) but with the substitutions of ωE ′ →

ωE ′′ , ω0A2 → ω0A1 , βLO2
→ βLO1

, βTO2
→ βTO1

, and βZO1
→

βZO2
. As in the polar case, these parameters are evaluated by

fitting the dispersion relations obtained from Eq. (23) with
experimental values or by ab initio calculations. Searching the
solutions of Eq. (23) as UN = (u0E ′′ , uZO2

)eiq·ρ we get for the
vector component u0E ′′ the equation(

ω2 − ω2
E ′′

)
u0E ′′ = ±β2

LO1
q(q · u0E ′′ )

± ρmβ2
TO1

[−q(q · u0E ′′ ) + q2u0E ′′ ]. (24)

Taking u0E ′ = uLO1
+ uTO1

, where uLO1
and uTO1

are two
independent vector amplitudes, immediately follows the dis-
persion relations for the longitudinal LO1 mode

ω2 = ω2
E ′′ ± β2

LO1
q2 (25)

and

ω2 = ω2
E ′′ ± β2

TO1
q2 (26)
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FIG. 1. Optical phonon dispersions for 1ML MoX2 (X=S, Se, Te). Out-of-plane phonons: A2(ZO1) (black) and A1(ZO2) (green). In-plane
modes with symmetry E ′′ and E ′ split into LO1 (dark yellow), TO1 (purple), and LO2 (blue) and TO2 (red) optical phonons. Straight lines
correspond to ab initio calculations as explained in Sec. III; dots represent the dispersion laws obtained by the phenomenological model
detailed in Sec. II.

for the transverse TO1 mode. For the case of homopolar
phonons vibrating out of plane we have(

ω2 − ω2
0A1

)
uZO2

= ±β2
ZO2

q2uZO2
, (27)

with the phonon law

ω2 = ω2
0A1

∓ β2
ZO2

q2. (28)

III. FIRST-PRINCIPLES CALCULATIONS

We performed ab initio calculations employing density
functional theory perturbation (DFPT) [25] within the QUAN-
TUM ESPRESSO code [26] to obtain the phonon dispersion
spectra for each of the six monolayer TMDs. DFPT relies
upon density functional theory (DFT) evaluation of the elec-
tronic ground state. We have employed the optB86b-vdW
exchange correlation functional [27,28] to properly consider
the van der Waals interaction. The spin-orbit coupling is not
included in the calculation. We have sampled the Brillouin
zone by means of a �-centered 12 × 12 × 1 k-point grid.
For the expansion of wave functions and electronic density
in plane waves, we have set kinetic energy cutoffs of 65 Ry
and 650 Ry, respectively. Only the valence electrons enter
explicitly in the calculations. The effect of inner electrons
is simulated by means of projector augmented wave (PAW)
potentials [29] from the PSLibrary [30]. We have optimized
the structures by means of variable-cell relaxation, until the
forces and in-plane stress tensor components were smaller
than 10−3 a.u. and 0.01 kbar, respectively. We set the out-
of-plane unit cell size equal to five times the in-plane lattice
parameter, in order to simulate the TMD layer as embedded in
vacuum. The Coulomb interaction was truncated in the out-of-

plane direction [19], allowing total energy, forces, and stresses
to be computed in a two-dimensional framework. In our DFPT
calculations, we computed the dynamical matrices for a �-
centered 6 × 6 × 1 q-point grid in the reciprocal lattice unit
cell, and we employed Fourier interpolation for intermediate
q points. Finally, we obtained phonon frequencies and eigen-
vectors by diagonalization of the dynamical matrices.

In Figs. 1 and 2 we show the optical phonon dispersions,
ω(q), of MoX2 and WX2 (X=S, Se, Te) for phonon wave
vectors q � 0.25(2π/a). The six optical branches ZO1, ZO2,
LO2, TO2, LO1, and TO1 along the � → K direction of the
BZ obtained by the ab initio procedure are shown by straight
lines, while the data from the phenomenological continuous
approach are represented by dots. The values of all the pa-
rameters employed to evaluate ω(q) are listed in Table I. To
obtain the polarizability, α2 from Eq. (16), we follow the pro-
cedure of Ref. [19] where for an isolated TMD the screening

TABLE I. Employed parameters for the evaluation of the out-
plane and in-plane dispersion relations as give by Eqs. (16), (17),
(22), (25), (26), and (28). a is optimized lattice constant, c is in-
terlayer distance, d is thickness of the monolayer, r0 = 2πα2 is the
screening parameter, and ε is dielectric constant.

MoS2 MoSe2 MoTe2 WS2 WSe2 WTe2

a (Å) 3.1635 3.2974 3.5274 3.1627 3.2954 3.5296
c (Å) 15.9300 16.4871 17.6370 15.8137 16.4772 17.6481
r0 (Å) 46.0182 53.3517 68.6562 41.8979 48.7041 64.8081
d (Å) 5.4817 5.9712 6.6789 5.5093 6.0065 6.6978
ε 16.8096 17.9009 20.5752 15.2536 16.2581 19.3865
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FIG. 2. The same as Fig. 1 for 1M WX2 (X=S, Se, Te). The inset shows the phonon dispersion of ZO2, LO2, and TO2 in the small momenta
interval for WSe2.

parameter r0 = 2πα2 is reduced to

r0 =
(

ε

2
− 1

3ε

)
d, (29)

with the dielectric constant ε evaluated using the standard
3D QE code [19]. In both figures we notice the well known
trend of the phonon frequency with the reduced mass, ω ∼√

1/μ, i.e., as μ increases the optical phonon frequency de-
creases. The most notable example is the out-of-plane ZO2

mode (green lines and dots in the figures), for this mode μ =
mX/2. Good agreement between the first-principles and phe-
nomenological model calculations is achieved for the phonon
dispersions covering up to 20% or higher around the � point
of the BZ. For the MoS2 the LO2 branch presents an agree-
ment lower than 16%. The exceptions are the ZO2 and LO2

modes of WSe2 where we achieve a concordance smaller than
2%; we discuss this behavior in Sec. IV.

IV. PARAMETERS OF THE MODEL
FROM AB INITIO CALCULATIONS

We are able to extract the characteristic parameters of
the phonon frequencies ω = ω(q; α, β1, β2) for each phonon
symmetry A2, A1, E ′, and E ′′ at � by fitting the phonon
dispersion laws obtained from ab initio calculations to the
equations proposed in our phenomenological model. These
sets of parameters provide a simple description of the phonon
dispersion curves, LO2-TO2 splitting, as well as for electron-
phonon interaction. For the fitting procedure we introduce the
dimensionless curvature parameters Cδ = ±(2πβδ )2/(aωδ )2

and the dimensionless slope � = (2πα)2/(aρmω2
E ′ ), where

δ = A2(ZO1), A1(ZO2), E ′(LO2, TO2), and E ′′(LO1, TO1) ac-
count for the phonon symmetry. Employing the analytical
phonon dispersions detailed in Eqs. (16), (17), (22), (25),

(26), (28) and those provided by first principle calculations
along the � → K direction; in Table II we collect the relevant
parameters of the six optical phonon branches. For phonon
wave vectors q � 0.25(2π/a) the two independent directions
� → K and � → M provide practically the same values for
both coefficients � and Cδ .

A. LO2-TO2 splitting

An important result valid for resonant Raman scat-
tering [31], transport effects [9], polaron effects [32],

TABLE II. Phonons data of MoS2, MoSe2, MoTe2, WS2,
WSe2, and WTe2 of 1M TMDs. The dimensionless curva-
ture Cδ = ±(2πβδ )2/(aωδ )2 and the dimensionless slope � =
(2πα)2/(aρmω2

E ′ ) are estimated from the dispersions curves ω(q)
[see Eqs. (16), (17), (22), (25), (26), and (28)] and the phonon
dispersion law obtained by ab initio calculations for the six optical
branches δ = A2(ZO1), A1(ZO2), E′(LO2, TO2), and E′′(LO1, TO1).
ωδ in cm−1.

MoS2 MoSe2 MoTe2 WS2 WSe2 WTe2

ωA2 463.73 347.97 289.03 432.45 303.65 238.41
CZO1 −2.38 −1.95 −1.62. −2.6. −2.2 −2.05
ωA1 399.29 236.83 170.26 410.69 243.83 174.12
CZO2 0.78 −2.68 −2.25 −0.48 41 −2.95
ωE ′ 378.10 280.96 233.20 349.44 242.20 191.53
CLO2 −2.85 0.54 −0.60 −0.22 −36.5 1.1
� 1.03 3.3 12 0.23 1.2 7.0
CTO2 0.46 0.23 0.52 −0.43 −0.16 0.13
ωE ′′ 279.51 164.34 115.80 290.73 170.31 118.18
CLO1 4.7 7.45 9.84 4.3 7.2 8.8
CTO1 1.39 1.61 2.12 1.6 1.84 2.17
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FIG. 3. LO2-TO2 splitting for 1M MoX2 (X=S, Se, Te). LO2 (blue) and TO2 (red) optical modes. Straight lines correspond to ab initio
calculations; dots represent the dispersion laws obtained by Eqs. (16) and (17).

magneto-polaron [33], exciton-phonon resonances [34], and
magneto-Raman scattering [35] among other properties is
the splitting between the longitudinal and transverse optical
modes. Using the analytical results for the phonon dispersion
law we can study the h̄ωLO2

− h̄ωTO2
energy splitting and its

dependence on the characteristic parameters of the material
under consideration. Figures 3 and 4 show the dependence of
the frequencies ωLO2

and ωTO2
on q for the series of MoX2

and WX2 TMD materials. We observe an excellent agreement
of Eqs. (16) and (17) with our first-principle calculations. In
addition, it is clearly seen the linear dispersion relation of the
LO2 modes for 1 
 2πα2q and for the WSe2 the long wave
phenomenological model, as dictated by Eq. (1), provides
good results for the LO2 branch if q < 0.016 × 2π/a. From
the analytical results displayed in Sec. II A we can extract
several conclusions. Using Eqs. (16) and (17) the energy of

FIG. 4. The same as Fig. 3 for WX2 (X=S, Se, Te).
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TABLE III. Comparison of the LO2-TO2 splitting coefficients
SPh and S reported in Ref. [36] for several TMDs.

MoS2 MoSe2 MoTe2 WS2 WSe2 WTe2

S (10−3 eV2 Å) 1.13 2.09 4.87 0.21 0.625
SPh (10−3 eV2 Å) 1.14 2.10 5.63 0.22 0.568 2.21

the LO2-TO2 splitting is given by

�E2
LO2−TO2

= h̄2ω2
LO2

− h̄2ω2
TO2

= SPh
q

(1 + 2πα2q)
+ h̄2�β2q2, (30)

with the coefficient SPh = 2π (h̄α)2/ρm and �β2 = ±β2
LO2

∓
β2

TO2
. Equation (30) shows that for q → 0, �ELO2-TO2

=
h̄ωLO2

− h̄ωTO2
is linear on q with a slope P = SPh/2h̄ωE ′ .

A similar expression has been obtained in Ref. [18] from
a microscopic dipole lattice model and Ref. [36] by first-
principles calculations, respectively. In Table III we compare
the LO2-TO2 splitting coefficients SPh obtained from Eq. (30)
and S from Ref. [36]. Notice that Eq. (30) predicts that
�ELO2-TO2

has a maximum in the neighborhood of q ∼ 0 for
such systems with negative curvature, i.e., CLO2 < 0 and
β2

LO2
> β2

TO2
in the phonon dispersion law (MoS2 and WSe2).

Hence, the LO2-TO2 splitting may present a maximum at
certain q = q0 > 0 solutions of the equation

q0(1 + r0q0)2 = − SPh

2h̄2�β2
. (31)

Hence, we learn that as the curvature βLO2
increases q0 →

0. As a consequence, the maximum value of the func-
tion �ELO2-TO2

(q0) decreases, explaining those results for the
LO2-TO2 splitting of MoS2 and WSe2 as shown in Figs. 3
and 4. Moreover, if the transverse curvature CTO2 is negative
and the TO2-phonon dispersion cannot be considered flat, the
LO2-phonon dispersion, Eq. (16), has a maximum at q = q0

solution of Eq. (31). This is the case of the WS2 shown in
Fig. 4. It is important to keep in mind that the inclusion of
quadratic terms in the equation of motion, proportional to
phenomenological parameters β2

LO2
and β2

TO2
, is responsible

for the correct description of the ωLO2
(q) phonon law. From

Table III it follows that for each series of MX2 (X = S, Se,
Te), �E2

LO2-TO2
increases as we move from S to Te. To explain

the dependence of �E2
LO2-TO2

on chalcogen ions, we realize that
the force constant values FX employed in the first-principle
calculations meet the inequality FTe < FSe < FS. Therefore,
for smaller values of FX we get larger LO2-TO2 splitting.
In addition, if we compare the slopes of the MoX2 set with
those of WX2, we find that the Mo compounds have a splitting
coefficient SPh greater than the W counterparts.

V. ELECTRON-PHONON INTERACTION
IN 2D TMD SEMICONDUCTORS

The intravalley electron scattering processes in TMD are
associated with two main mechanisms: Fröhlich and defor-
mation potential. The first one is linked to internal electrical

polarization associated to the optical vibration u. The LO2-
phonon lattice vibration in the TMD layer gives rise to a 2D
macroscopic electric field that couples to the charge carriers in
the same band. The second is due to the dispersive mechanical
nature. The A1 phonon, with the metal atom fixed and the
chalcogen atoms vibrating in phase opposition out of plane,
is also associated to intraband transitions of carriers. It is
mandatory in studies of transport properties [37], mobility
[38], carriers relaxation time [11], scattering of photoexcited
carriers [10], optoelectronic functionality [39], photonic [40],
and resonant Raman scattering in external fields [41], to know
the relative contributions of both interactions. The relative im-
portance of the Pekar-Fröhlich and the deformation potential
interactions depend on the material and the band (conduction
or valence) under consideration [19].

Recently, the authors of Ref. [42] were able to resolve
the spectral characteristics of the phonon sidebands by using
a 2D microspectroscopy. The method is very promising for
measuring exciton-phonon coupling in monolayers of TMDs.
Surprisingly, in the case of 1ML MoSe2 a Huang-Rhys factor
of the order of 1 is obtained, a rather high value compared
to polar II-VI semiconductors. Furthermore, Ref. [43] ad-
dresses the influence of the electron-phonon coupling on the
electronic transport properties of 1ML 2H-TaS2 monolayer, a
new 2D compound where the phonon modes have the same
symmetry properties as 1ML TMDs studied here.

In this section we present detailed calculations of the
Pekar-Fröhlich and deformation potential electron-phonon
Hamiltonians.

A. Pekar-Fröhlich-type Hamiltonian

The Pekar-Fröhlich Hamiltonian HF is proportional to the
LO2-TO2 phonon splitting which is ruled by the coupling
constant α. This parameter determines the strength of the
electron-phonon interaction. For TMD materials, HF can be
written as

HF = −eϕ2(ρ). (32)

Using Eq. (13) we obtain [23]

ϕ2 = − α

2π

∫
F (q)

q(1 + 2πα2q)
eiq·ρd2q, (33)

with F (q) given by Eq. (14). The general canonical quantum-
mechanical version for the LO2-vibrational amplitude can be
cast as [23]

ûE ′ =
∑
q

q
q

(
h̄

2ρmNcAωE ′

)1/2[
b̂qeiq·ρ + b̂†

qe−iq·ρ]
, (34)

where ωE ′ is the phonon frequency in Eq. (16), A the area
of the unit cell, Nc the number of cells, and b̂†

q (b̂q) the cre-
ation (annihilation) phonon operator. Inserting Eq. (34) into
Eqs. (14) and (33) we finally obtain

HF = −i
∑
q

GPh√
Nc(1 + r0q)

[
b̂qeiq·ρ + b̂†

qe−iq·ρ]
, (35)
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TABLE IV. Comparison of the Fröhlich constants GPh from
Eq. (36) following the fitting procedure GF considering our ab initio
calculations as given by Eq. (37) and those reported in Ref. [19] for
several 1ML TMDs.

Material MoS2 MoSe2 MoTe2 WS2 WSe2 WTe2

GPh (eV) 0.356 0.538 0.904 0.162 0.301 0.625
GF (eV) 0.352 0.531 0.858 0.163 0.309 0.592
Gab (eV) 0.334 0.502 0.819 0.140 0.276

where

GPh =
(

2π2e2h̄α2

AρmωE ′

)1/2

(36)

is the Fröhlich coupling constant obtained by the fitting pro-
cedure of the parameter α and the LO2-phonon dispersion. In
addition, the Fröhlich interaction can be cast in terms of the
Born effective charges as given by [19,44]

GF = 2πe2

A

∑
i

eq · Zi · eLO√
2Miωq

, (37)

where Mi is the mass of atom i, Zi the tensors of Born effective
charge, eq the unit vector along the q vector, and eLO the
eigenvector of the LO2 phonon. In Table IV we compare
the Fröhlich constants GPh and GF from Eqs. (36) and (37),
respectively, with those values reported in Ref. [19], Gab, for
several TMD materials. The small differences between the
values of GF and Gab should be awarded to force constants
employed in the first principle calculations.

B. Deformation potential interaction

Optical homopolar mode changes the electronic energy
band due to the mechanical deformation of the atoms in the
primitive unit cell. This coupling is known as deformation
potential and, in the first order of approximation, we will
consider this interaction independent of the phonon wave
vector. The first-order deformation potential in q accounts
for electronic intervalley transitions assisted by the ZO2

modes. Assuming the Born-Oppenheimer approximation the
electron-phonon contribution to the electronic Hamiltonian of
the crystal, Hc, is defined as [45]

HDp =
∑

l

(
∂Hc

∂Rl

)∣∣∣∣
0

· δRl , (38)

where δRl is the atom displacements from the equilibrium.
In the long-wavelength limit, the homopolar phonon can be
considered as microscopic oscillation within the primitive cell
independent of the phonon wave vector q and δRl ≈ uZO2

the
relative vector displacement out of plane for the A1(ZO2)
mode (see Sec II B). Considering a nondegenerate band with
energy Ek, Eq. (38) is reduced to

HDp = Dpez · uZO2
, (39)

where Dp is the deformation potential characterizing the
changes of the electronic energy for k near the K point of the
BZ due to the phonon lattice oscillation uZO2

. Writing uZO2
in

terms of creation and annihilation phonon operators we have

HDp =
∑
q

Dp

(
h̄

2ρmNcAω0A1

)1/2[
b̂qeiq·ρ + b̂†

qe−iq·ρ]
,

(40)
with ω0A1 the ZO2-phonon frequency (28).

It becomes clear that the electron-phonon coupling in
Eq. (40) is independent of the phonon wave vector, and it
corresponds to short-range interaction. As a consequence, HDp

is responsible for the intravalley transitions coupling electrons
(holes) in the lowest (upper) nondegenerate conduction (va-
lence) band. The values of the optical-phonon deformation
potentials can be extracted by Raman scattering technique
[45], transport properties [37], tight-binding [46], or first-
principle calculations [8].

VI. POLARON PROPERTIES: EFFECTIVE MASS
AND BINDING ENERGY

Polaron effects are particularly interesting for cyclotron
resonance experiments [47], magneto-polaron resonances
[33,48], and magneto-Raman scattering [49]. The authors
in Ref. [50] discussed the role of the polaron effect in the
absorption spectra of TMDs. Theoretical evaluations show
an asymmetric phonon sideband and polaron redshift in the
optical absorption spectra in good agreement with the experi-
mental observation of 1ML MoSe2, MoS2, WSe2, and WS2. In
3D semiconductors the binding energy and effective mass de-
pend strongly on the coupling of electrons with LO phonons at
small momenta. The polaron correction in quasi-2D systems
as quantum wells is a good example as the dimensionality
affects the electron-optical phonon coupling [51]. A straight-
forward application of the electron-phonon Hamiltonians for
2D TMD developed in Sec. V is the evaluation of the polaron
energy of electrons at the K valley. Employing the general
Green’s function formalism, the polaron state is obtained by
solving the Dyson equation [52]

G(k) = G(0)(k) + G(0)(k)
∑
k′

,q

Sk,k′ (q)G(k′), (41)

where G(k) (G(0)) is the T = 0 K one-particle Green′s func-
tion (unperturbed) for the electron and Sk,k′ (q) the irreducible
self-energy. For the unperturbed Green function we know that

G(0) = 1

ε − h̄2k2

2m + iδ0

, (42)

with m the electron effective mass and δ0 → 0. To low-
est order of electron-optical phonon interaction Sk,k′ (q) =
S(k, q)δk,k′+q, thus, solving Eq. (41) we obtain that

G(k) = 1

ε − h̄2k2

2m − Sε(k) + iδ1

, (43)

with Sε the self-energy as given by

Sε =
∑
q

|Cq|2
h̄2

2m [k2 − |k − q|2] − h̄ω0 + iδ1

, (44)
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TABLE V. Polaron mass mp, binding energy �εp, the Fröhlich
2αF f3(R0), and deformation potential αDp/4 contributions for several
1ML TMD. m is the electron effective mass at the K point, m0 the
bare electron mass, and Dp the deformation potential.

Material MoS2 MoSe2 MoTe2 WS2 WSe2

m/m0 0.51a 0.64a 0.56b 0.31a 0.39a

Dp (eV/Å) 5.8a 5.2a 1.34c 3.1a 2.3a

2αF f3(R0) 0.009 0.032 0.094 0.002 0.013
αDp/4 0.017 0.035 0.004 0.002 0.003
mp/m0 1.027 1.071 1.108 1.004 1.016
�εp (eV) −0.0024 −0.0028 −0.0002 −0.0003 −0.0003

aRef. [37]
bRef. [19]
cRef. [38]

Cq being the coupling constant, ω0 the optical-phonon fre-
quency, and the parameter δ1 → 0. For the evaluation of the
renormalized energy spectrum for conduction electrons, ε(k),
we take the real part of G(k). Considering 3D bulk semi-
conductors the polaron effective mass and polaron binding
energy are m3D = m/(1 − α3D/6) and �ε = −α3Dh̄ωLO, re-
spectively, with α3D the Fröhlich coupling constant and ωLO

the LO phonon frequency [53].
In 2D TMDs the LO2 and A1(ZO2) modes couple to the

lower (upper) conduction (valence) band. In consequence,
to evaluate the self-energy (44) we have to add the short-
range deformation potential interaction (40) to the typical
Pekar-Fröhlich contribution (35). It is possible to show that
the polaron effective mass and binding energy are given by
(see Appendix B)

mp = m

1 − αp
, �εp = −αF h̄ωE ′ f1(R0) − αDph̄ω0A1 ln 2,

(45)
with αp = 2αF f3(R0) + αDp/4. The function fi(R0) (i = 1, 3)
and the effective coupling constant αF and αDp are detailed in
the Appendix B. The values of mp/m0 and �εp are summa-
rized in Table V for the TMD family; for the evaluation we
employ the parameters of Tables II and IV.

From the results of Table V we have that for a given series
of MX2 compounds as the mass of the chalcogen atom X
increases, the mp increases following the same trend of the
Fröhlich coupling constant (36). In addition, it can be seen that
the deformation potential plays a crucial role in the binding
energy and in the polaron mass, in particular, of the MoS2 and
MoSe2 monolayers. For the WX2 compounds the deformation
potential contribution is weaker than MoX2 ones.

VII. CONCLUSIONS

We implemented a continuum phenomenological approach
valid for any monolayer TMDs family. The model accurately
describes the dispersive phonon spectra of the nonpolar and
polar optical phonon modes with in-plane (LO1, TO1, LO2,
and TO2) or out-of-plane oscillations (ZO1 and ZO2). We
employed ab initio calculations to evaluate the characteristic
parameters of the phonon dispersion laws up to parabolic
term with the wave vector. These results allow us to establish
the validity of our macroscopic phenomenological approach

(see Figs. 1–4). The compiled data in Table II for the de-
scription of the six optical phonon modes and the long-range
electron-phonon strength interaction for the 1ML TMD family
constitutes one of the main results of the present work.

Under the condition that the curvature parameters of the
TMD meet the inequality βLO2

> βTO2
, we predict that the

LO2-TO2 splitting has a maximum for TMDs with negative
curvature in the phonon dispersion. For the case of LO2 and
ZO2 oscillations in WSe2, the range of validity of their re-
spective phonon dispersions is restricted to a small interval
of q (q < 0.016 2π/a in Fig. 2). A plausible explanation is
that our model in (1) does not take into account the interplay
between A1 and E ′ phonon. The frequency separation between
ω0A1 and ωE ′ is less than 2 cm−1.

The present results provide a complete description of the
2D long-range (35) and short-range homopolar deformation
potential (40) electron-phonon interactions. We report in Ta-
ble IV the values of the coupling constant needed to obtain
analytically the 2D intravalley Pekar-Fröhlich Hamiltonian
for the TMDs family. Finally, using the electron-phonon
Hamiltonians (35) and (40) we report the polaron proper-
ties for TMDs MoS2, MoSe2, MoTe2, WS2, and WSe2.
Consequently, the results detailed in Table V show that the
contribution of the deformation-potential interaction associ-
ated with the A1 mode cannot be disregarded. This conclusion
is valid for all those processes involving the evaluation of the
electron or hole intraband transitions (mobility, scattering rate,
Raman dispersion, among others) assisted by the electron-
optical phonon interaction.

Last but not least, it is important to note that the model
developed here could be extended to other 2D TMD families
[54]. However, the extension of our phenomenological model
is not a straightforward task. For instance, in monolayers of
1T-TaX2 phase, the symmetry of the unit cell is different than
the 2H phase we studied [43]. On the contrary, in the 1ML 2H-
TaSe2 phase, the optical modes at � show the same vibrational
and symmetry properties as those TMDs here analyzed [55].
The phenomenological model can be extended to this system
and the equations of motion (1) and (23) are valid to describe
the six optical branches.
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APPENDIX A: “STRESS” TENSOR
AND DISPERSIVE OSCILLATIONS

In order to account for dispersion oscillations of the
phonons along a given direction of the BZ, we introduce the
tensor σ

↔ in Eq. (1). This tensor can be associated to some
kind of internal “stress” and considering the similarity with
the elastic theory [56,57] we define σ

↔ as

σ
↔ = C

↔
: ∇U (ρ), (A1)

where C
↔

plays the same role of the “elastic constant” or the
“elastic stiffness” tensor [21]. The fourth rank tensor C

↔
must

have the same symmetry properties of the elastic constant of
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the medium. For the 2D TMD structure with a D3h symmetry
we have to deal with five independent parameters and σ

↔ can
be cast as⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

σxx

σyy

σzz

σzx

σyz

σxy

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

= ρm

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

β2
11 β2

12 β2
13 0 0 0

β2
12 β2

11 β2
13 0 0 0

β2
13 β2

13 β2
33 0 0 0

0 0 0 β2
44 0 0

0 0 0 0 β2
44 0

0 0 0 0 0 1
2 (β2

11 − β2
12)

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

×

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

Uxx

Uyy

Uzz

2Uzx

2Uyz

2Uxy

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

, (A2)

with Ui j = 1
2 (∂iUj + ∂ jUi ). For the case of 1ML TMD where

we assume strictly a 2D system, the terms ∂zUi = 0 (i =
x, y, z). Taking the parameters β2

11 = β2
LO2

, 1
2 (β2

11 − β2
12) =

β2
TO2

and β2
44 = β2

ZO1
immediately follows Eq. (4).

APPENDIX B: POLARON PROPERTIES

The total self-energy Sε = S(F )
ε + S(Dp)

ε where S(F )
ε cor-

responds to the Fröhlich interaction while S(Dp)
ε to the

mechanical lattice distortion.

1. Fröhlich contribution

From Eq. (35) it follows that Cq = GPh/
√

Nc(1 + r0q).
Thus, the self-energy S(F )

ε can be written as

S(F )
ε = −αF h̄ωE ′F (κ, Ro), (B1)

where κ = k/
√

h̄/2mωE ′ , R0 = r0
√

2mωE ′/h̄,

αF =
√

3

2π

m

h̄2a−2

G2
Ph

h̄ωE ′
, (B2)

and

F (κ, R0) =
∫ ∞

0

z

(1 + R0z)2
√

(1 + z2)2 − 4κ2z2
dz. (B3)

If h̄2k2/(2m) < h̄ωE ′ we can approximate the function

(1 + z2 − 4κ2z2)−1/2 ≈ 1

z2 + 1
+ 2z2

(z2 + 1)3
κ2, (B4)

and S(F )
ε can be cast as

S(F )
ε = −αF h̄ωE ′[ f1(R0) + 2κ2 f3(R0)], (B5)

with

fp =
∫ ∞

0

zp

(1 + R0z)2(1 + z2)p
dz. (B6)

2. Deformation potential

For the A1 modes the electron-deformation potential cou-
pling constant is

C2
q = h̄

2ρmNcAω0A1

D2
p (B7)

and for the S(Dp)
ε we obtain

S(Dp)
ε = −αDph̄ω0A1

[
ln 2 + κ2

4

]
, (B8)

where

αDp = m

4πρm

(
Dp

h̄ω0A1

)2

. (B9)

Taking the real part of the Green function (43) we obtain the
2D polaron energy as

εp(k) = h̄2k2

2m

[
1 − 2αF f3(R0) + αDp

4

]

−αF h̄ωE ′ f1(R0) − αDph̄ω0A1 ln 2. (B10)
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