Biomonitoring of 21 endocrine disrupting chemicals in human hair samples using
 ultra-high performance liquid chromatography-tandem mass spectrometry
 3

- 4 R. Rodríguez-Gómez^a, J. Martín^b, A. Zafra-Gómez^{*a}, E. Alonso^b, J.L. Vílchez^a, A. Navalón^a
 - ^a Research Group of Analytical Chemistry and Life Sciences, Department of Analytical Chemistry, University of Granada, Campus of Fuentenueva, E-18071 Granada, Spain
 - ^b Department of Analytical Chemistry, Superior Polytechnic School, University of Seville, C/ Virgen de África 7, E-41011 Seville, Spain
- 9 10 11

5 6

7

8

Rapid industrial growth has increased human exposure to a large variety of 12 ABSTRACT chemicals with adverse health effects. These industrial chemicals are usually present in the 13 environment, foods, beverages, clothes and personal care products. Among these compounds, 14 endocrine disrupting chemicals have raised concern over the last years. In the present work, the 15 determination of 21 EDCs in human hair samples is proposed. An analytical method based on the 16 17 digestion of the samples with a mixture of acetic acid/methanol (20:80, v/v) followed by a solidliquid microextraction and analysis by ultra-high performance liquid chromatography-tandem 18 mass spectrometry (UHPLC-MS/MS) was developed and validated. The most influential 19 parameters affecting the extraction method were optimized. The method was validated using 20 matrix-matched calibration and recovery assays. Limits of detection ranged from 0.2 to 4 ng g⁻¹, 21 limits of quantification from 0.5 to 12 ng g⁻¹, and inter- and intra-day variability was under 15% 22 in all cases. Recovery rates for spiked samples ranged from 92.1 to 113.8%. The method was 23 applied for the determination of the selected compounds in human hair. Samples were collected 24 weekly from six randomly selected volunteers (three men and three women) over a three-month 25 period. All the analyzed samples tested positive for at least one of the analyzed compounds. 26

27

KEYWORDS: Endocrine disrupting chemicals; Biomonitoring; Human hair analysis; UHPLC–
 MS/MS

^{31 *} Corresponding author: *Email address:* azafra@ugr.es (A. Zafra-Gómez)

32 1. Introduction

33

Humans are constantly exposed to new chemicals with adverse health effects. These 34 potentially hazardous compounds, are ubiquitous in the environment, foods, beverages, and 35 personal care products. Among these emerging contaminants, endocrine disrupting chemicals 36 (EDCs) have raised concern over the last years. EDCs are synthetic and natural substances that 37 can interfere with the hormonal systems in wildlife and humans. The biological effects of EDCs 38 are related to their ability to mimic/antagonize endogenous hormones, or alter the synthesis and 39 40 metabolism of endogenous hormones and receptors (Sonneschein and Soto, 1998). Bisphenol A (BPA) and its chlorinated derivatives, parabens (PBs), benzophenone-UV filters (BPs) and 41 perfluoroalkyl compounds (PFCs) are included in this group of compounds (Fei et al., 2009; 42 Kavlock et al., 2013; Liao et al., 2009; Liu et al., 2007; Paris et al., 2002; Rivas et al., 1997; U.S. 43 Environmental Protection Agency, 2003). 44

BPA is mainly used for the manufacturing of epoxy resin and polycarbonate plastics, with an 45 annual production of over 2-3 million tons. BPA has attracted considerable attention of 46 47 governments and the scientific and medical community (Bisphenol A website). The European Food Safety Authority (EFSA) and the US-Environmental Protection Agency (US-EPA) have 48 established the maximum acceptable level of exposure to BPA of 50 µg kg⁻¹ body weight/day 49 (Nicolucci et al., 2013). There are many sources of human exposure to BPA, with diet considered 50 the main source (Calafat et al., 2008). Interestingly, literature has reported the formation of 51 chlorinated derivatives of BPA during the chlorination process of drinking water before 52 consumption (Yamamoto and Yasuhara, 2002). PBs are the alkyl esters of p-hydroxybenzoic acid. 53 They are used as antimicrobial preservatives, mainly against mold and yeast. PBs are used as 54 additives in the manufacture of cosmetic products, pharmaceuticals, food and beverages. In the 55 last years, several studies have demonstrated the ability of PBs to disrupt physiological functions 56

in both in vitro (van Meeuwen et al., 2008), and in vivo models (Boberg et al., 2010; Soni et al., 57 2005). Inhalation, dermal contact and ingestion are the main sources of exposure to PBs (El 58 Houssein et al., 2010). The existing European Union (EU) limit for total PB concentration in 59 cosmetics is 0.8 % (w/w) and 0.4 % (w/w) as acid for mixtures or individually, respectively 60 (European Union Regulation No. 1223/2009). BPs are one of the most common UV filters used in 61 sunscreens because they absorb UVA (320 to 400 nm) and UVB (290 to 320 nm) radiation. BPs 62 have been reported to enter the human body through the food chain (Cuderman and Heath, 2007) 63 and skin absorption (Jiang et al., 1999). Finally, PFCs are commonly used in the manufacture of 64 finished products such as paints, adhesives, waxes, polishes, electronics, fire-fighting foams and 65 caulks, as well as grease-proof coatings for food packaging (Corsini et al., 2014; Giesy and 66 Kannan, 2001; Henkster et al., 2003; Rivière et al., 2014). Although food is the major exposure 67 route for PFCs, drinking water, indoor air and house dust can also be potential sources of PFC 68 exposure (Domingo, 2011). 69

Hair analysis has been traditionally used for drug testing, especially in cases of drug abuse 70 (Olivezira et al., 2007). In addition, hair has been used as a bio-indicator of exposure to pesticides 71 in children and exposure to organochlorine pollutants in adults. Although human milk, placental 72 tissue, serum, blood or urine are conventionally used to determine exposure to EDCs, hair analysis 73 74 could be used as a complementary tool, especially in cases of chronic exposure or when traditional matrices are not available. The main advantage of hair analysis is its large window of detection, 75 which allows us to establish a chronological profile of exposure based on hair length (Cooper et 76 77 al., 2012). Additional advantages of hair analysis include non-invasive collection and easy monitoring, difficult tampering with samples, storage and transportation at room temperature, and 78 most contaminants are chemically stable (Caplan and Golberger, 2001). Therefore, the analysis 79 of hair samples can might be of great interest for the assessment of exposure to different EDCs 80 (Król et al., 2013), but not many analytical methods have been validated for the determination of 81

the EDCs mentioned in hair samples. Moreover, the methods described in the literature focused
on the individual determination of BPA (Tzatzarakis et al., 2015), PBs (Sakol et al., 2015), or both
chemicals (Martín et al., 2015).

The aim of the present work was to develop a multi-class method for the determination of 21 85 EDCs in human hair samples. A sensitive multi-residue method based on the digestion of hair 86 samples followed by a solid-liquid microextraction prior to the UHPLC-MS/MS analysis was 87 developed. BPA and its chlorinated derivatives (mono- bi- tri- and tetrachorobisphenol A), four 88 PBs (methyl-, ethyl-, n-propyl- and butylparaben), six BP-UV filters (benzophenone-1, 89 benzophenone-6, benzophenone-2, benzophenone-3, benzophenone-8 4-90 and 91 hidroxybenzophenone) and six PFCs (perfluorobutanoic to perfluorooctanoic acid and perfluorooctane sulfonate) were selected as target analytes. After validation, the method was 92 applied to determine the free pollutant content in samples from six randomly selected volunteers 93 (three men and three women) from Granada, Spain. 94

95

96

97 2. Experimental

98

100

The reagents used for the experiments were of high analytical grade and purity. A Milli-Q 101 system from Millipore (Bedford, MA, USA) was used for water purification (18.2 MQ cm). 102 Perfluorobutanoic acid (PFBuA) (98%), perfluoropentanoic acid (PFPeA) (97%), 103 perfluorohexanoic acid (PFHxA) (≥97%), perfluroroheptanoic acid (PFHpA) (99%), 104 perflurorooctanoic acid (PFOA) (96%) and perfluorooctanesulfonic acid (PFOS) (≥98%), 105 perfluoro-n-[1,2,3,4-13C4]octanoic acid (MPFOA), methylparaben (MPB), ethylparaben (EPB), n-106

^{99 2.1.} Chemicals and reagents

propylparaben (PPB), and n-butylparaben (BPB) were supplied by Alfa Aesar (Massachusetts, 107 MA, USA). Bisphenol A (BPA), tetrachlorobisphenol A (Cl₄-BPA), deuterium labelled bisphenol 108 A (BPA-d₁₆), benzophenone-1 (BP-1), benzophenone-2 (BP-2), benzophenone-3 (BP-3), 109 benzophenone-6 (BP-6), benzophenone-8 (BP-8), 4-hydroxybenzophenone (4-OH-BP), 110 deuterium labelled benzophenone (BP-d₁₀), deuterium labelled ethylparaben (EPB-d₅), LC-MS 111 grade methanol, water and acetonitrile, acetic acid and ammonia (25%, w/v) were supplied by 112 Sigma-Aldrich (Madrid, Spain). Mono-, di- and trichlorobisphenol A (Cl-BPA, Cl₂-BPA, Cl₃-113 BPA) were synthesized in our laboratory (purity > 99 %) by chlorination of BPA (Vílchez et al., 114 2003). Stock solutions of 1000 mg L⁻¹ of each compound, prepared in methanol, were stored in a 115 116 freezer at -20 °C. Working solutions were prepared fresh weekly by diluting the stock standard solutions in methanol or in the initial mobile phase. They were maintained at 4 °C in the 117 refrigerator. All of the solutions were stored in the dark, in order to prevent photodegradation. 118

119

120 2.2. Instrumentation and software

121

A chromatographic system Acquity UPLCTM H-Class (Waters, Manchester, UK), provided 122 with a binary solvent manager was used for chromatographic separation. Analyte detection was 123 124 carried out using a triple quadrupole mass spectrometer (Waters) Xevo TQS with an orthogonal Z-sprayTM electrospray ionization (ESI) source. The stationary phase was an Acquity UPLC[®] BEH 125 C_{18} column (50 mm × 2.1 mm i.d., 1.7 µm particle size). Other laboratory equipment such as a 126 127 vortex-mixer (IKA, Staufen, Germany), an ultrasound-HD bath (Selecta, Barcelona, Spain), a Spectrafuge[™] 24D centrifuge from Labnet International, Inc. (New Jersey, USA) and a sample 128 concentrator (Stuart, Staffordshire, UK) were also used. Statistical analysis of data was performed 129 with Statgraphics Plus version 5.1 (Statpoint Technologies Inc., Virginia, USA). 130

Hair samples were collected from six healthy volunteers (three men and three women) aged 134 18 or older from the city of Granada, Spain. Hair samples were collected weekly for a three-month 135 period. All volunteers were informed about the scope and nature of the study. Hair specimens were 136 cut from the posterior vertex region of the head, as this region is associated with the smallest 137 variation in growth rate, and as close as possible to the scalp. Sample length was of roughly 3-5 138 cm. Samples were anonymized and stored in aluminum foil, at room (ambient) temperature until 139 further processing and analysis. One of the concerns in hair analysis is the need to differentiate 140 141 between external contamination (from air or dust) and internally incorporated chemicals. The ideal 142 decontamination procedure should remove external contamination (deposited on the hair cuticle) without affecting internally incorporated compounds (present in the hair bulk). 143

To remove endogenous substances as well as adsorbed chemicals from the surface of the hair 144 (Schramm, 2008), samples were washed twice with MilliQ water (ultra-sonicated for 5 min), 145 washed with SDS (for 5 min), and finally rinsed with MilliQ water (for 5 min). In forensic 146 protocols, SDS has shown to be significantly less effective for removing external contamination 147 148 of hair with lipophilic substances compared with more aggressive substances such as MeOH or 149 DCM. For this work, however, water and SDS were used since, as reported by the scarce literature available, the use of organic solvents could extract internally deposited contaminants (Kucharska 150 et al., 2015), especially polar organic pollutants like PBs or BPA. SDS and water are used by most 151 152 authors to determine other organic pollutants like polybrominated diphenyl ethers (PBDEs) (Tadeo et al., 2009; Zheng et al., 2011; Krol et al., 2014), polychlorinated biphenyls (PCBs) (Zhao et al., 153 2008; Wielgomas et al., 2012; Liang et al., 2014) or pesticides (Altshul et al., 2004; Cuong et al., 154 2012) in hair samples. After washing, samples were cut in 2-3 mm pieces, dried at room 155

temperature and wrapped in aluminum foil until analysis. Thus, all pollutant concentrationsdetermined are related to the weight of the dry hair.

158

159 2.4. Basic procedure

160

161 *2.4.1. Preparation of spiked samples*

162

No certified reference materials are commercially available for the determination of these 163 compounds in hair. Therefore, spiked samples were prepared for optimization and validation of 164 the method. The samples were spiked at eight concentration levels (from 0.5 to 500.0 ng g⁻¹) for 165 calibration standards, validation and quality control, and at 100.0 ng g⁻¹ for method optimization. 166 Aliquots of 0.05 g were weighted into 2 mL Eppendorf tubes and spiked with 100 µL of a methanol 167 solution (50.0 ng mL⁻¹) of the four surrogates: MPFOA, BPA-d₁₆, EPB-d₅ and BP-d₁₀ (100.0 ng g⁻ 168 ¹ final concentration in hair). After shaking for 1 min, the solvent was allowed to evaporate at room 169 temperature and the spiked samples were ready for the optimization and/or validation experiments. 170

171

172 *2.4.2. Sample treatment*

173

An aliquot of the hair sample (0.05 g) containing the surrogates was weighed in a 2 mL Eppendorf tube, and incubated with 0.5 mL of a mixture acetic acid/methanol (20:80, v/v) at 38 °C for 12 hours. After cooling to room temperature, 1 mL of acetonitrile was added for the extraction of analytes. The mixture was shaken for 15 min and centrifuged for 5 min at 16,300 × g. The organic phase (acetonitrile) containing the analytes was separated into a glass vial and evaporated to dryness under a nitrogen stream at room temperature. The residue was dissolved 180 with 250 μ L of the initial mobile phase. After stirring for 30 s in a vortex and centrifugation for 5 181 min at 16,300 × g, the sample was injected into the UHPLC system.

182

183 2.4.3. Ultra-high performance liquid chromatography–tandem mass spectrometry conditions

184

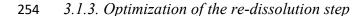
185 Chromatographic separation of compounds was performed using an Acquity UPLC[®] BEH C₁₈ 186 column (50 mm × 2.1 mm i.d., 1.7 μ m particle size). A gradient mobile phase consisting of 0.1% 187 (v/v) ammonium in water (solvent A) and methanol (solvent B) was used. The optimized gradient 188 was: 0.0–2.0 min, 30% B; 2.0–5.0 min, 30-90% B; 5.0–5.1 min, 90–100% B; 5.1–7.0 min, 100% 189 B and back to 30% in 0.1 min (total run 10 min). Flow rate was 0.25 mL min⁻¹, injection volume 10 μ L, and column temperature 40 °C.

Selected reaction monitoring mode (SRM) was used for operation of the triple quadrupole mass spectrometer. A unit mass resolution was set at Q1 and Q3 quadrupoles. ESI was performed in negative ion mode. The ion source temperature was 150 °C. Capillary voltage was 0.60 kV; source temperature 150 °C; desolvation temperature, 500 °C; cone gas flow, 150 L h⁻¹; desolvation gas flow, 500 L h⁻¹; collision gas flow, 0.15 mL min⁻¹; and nebulizer gas flow, 7.0 bars. Nitrogen (99.995%) was used as cone and desolvation gas. The collision gas was argon (99.999%). Dwell time was fixed in 25 ms. Table 1 shows the parameters and mass transitions for each compound.

198

Table 1

- 199
- 200 *2.4.4. Quality assurance and quality control*
- 201


To assure the validity of the results obtained, simple quality assurance and quality control (QA/QC) measurements were carried out. First, to test for background contamination, procedural blanks were injected. Blanks were processed in the same way as the samples and injected into the

205	UHPLC-MS/MS system. No quantifiable amounts of target compounds were detected. To
206	evaluate potential contamination and variability in the chromatographic system, spiked samples at
207	two concentration levels, 0 and 250 ng g ⁻¹ ; and a standard in the initial mobile phase (100 ng mL ⁻
208	¹) were injected in triplicate every 20 samples.
209	
210	
211	3. Results and discussion
212	
213	3.1. Extraction procedure optimization
214	
215	An extraction with organic solvents was used for the isolation of the analytes from the
216	previously digested hair samples. Key variables of the extraction step such as type of solvent and
217	technique used were accurately optimized using aliquots of 0.1 g of sample spiked with the
218	compounds at a concentration level of 100 ng g ⁻¹ . All experiments were carried out in triplicate.
219	
220	3.1.1. Selection of the extraction solvent
221	
222	Four extraction solvents (acetone, acetonitrile, ethyl acetate and methanol), which are widely
223	used in the literature for the extraction of different families of EDCs from biological samples, were
224	assayed (Rodríguez-Gómez et al., 2015). After incubation, spiked hair samples were mixed with
225	1 mL of each of the studied solvents. The highest extraction efficiencies (> 80% in all cases) were
226	obtained using acetonitrile, followed by acetone, ethyl acetate and methanol. Therefore,
227	acetonitrile was selected for optimization.
228	
229	3.1.2. Selection of the extraction procedure

One of the main difficulties traditionally found in hair analysis is to distinguish between 231 external contaminants and chemicals incorporated from the human body. In order to overcome 232 this, hair samples were thoroughly washed to remove contaminants from the surface and biogenic 233 compounds, such as fatty acids, sphingolipids or steroids, which might affect analysis. Sample 234 washing protocol has been described in Section 2.3. After washing, the key variables of the 235 extraction procedure to be optimized are sample amount, solvent for extraction volume, and 236 incubation time. A 15-run Box-Behnken experimental design including three replicates at the 237 center point was used for fitting a second-order response surface. Three factors and three levels 238 239 for each one were selected: amount of sample (0.05, 0.125 and 0.2 g), acetonitrile volume (0.5, 1.0 240 and 1.5 mL) and incubation time (0.6 and 12 h). The data were analyzed using ANOVA, which provided determination coefficients (R^2) > 0.90 in all cases. P-values for the *lack-of-fit* test were 241 >0.05, which makes the model satisfactory with a 95% confidence level. Pareto charts were also 242 obtained and statistically significant effects of the variables were screened using a Student's t-test. 243 Variables having a confidence > 95% were considered to have a significant effect on the extraction 244 efficiency. The desirability function was studied for the combination of the optimized 245 experimental values for each compound. First, the responses for each analyte in the Box-Behnken 246 247 design were normalized (0 to 1). The global desirability function is the geometric mean for each response. Figure 1 shows the plot of this function when sample amount vs. solvent volume, with 248 fixed extraction time, is represented. The optimal values were 12 h for incubation time, 0.05 g for 249 250 sample amount and 1.0 mL for solvent volume.

- 251
- 252

Figure 1

After isolation of analytes from digested samples, the extraction solvent is removed by 256 evaporation under a nitrogen stream, and the dry extract is then re-dissolved in the initial UHPLC 257 mobile phase for chromatographic analysis. The effect of the volume of reconstitution solvent is 258 an important aspect to take into account when mass spectrometry is used as the detection 259 technique. Selectivity aspects, including ion suppression, are critical in this case. Volumes of 50, 260 100, 250, 500 and 1000 μ L were tested, and it was observed that the use of volumes > 250 μ L 261 provided a cleaner extraction solution with less background, while with 50 and 100 µL the 262 extraction solution appeared cloudy and the noise was extremely high, making quantification 263 difficult. Since a constant response was observed for volumes $> 250 \ \mu$ L in all cases, this was the 264 265 selected volume.

266

267 *3.2. Analytical performance*

268

A calibration curve at eight concentration levels was built for each compound. 269 Analyte/surrogate peak area ratio versus concentration of analyte was used for establishing the 270 calibration function. Surrogates (MPFOA, BPA-d₁₆, EPB-d₅ and BP-d₁₀) were added at a final 271 concentration of 100 ng g⁻¹ of hair. The presence/absence of matrix effect was estimated using two 272 calibration curves for each EDC. The first curve was built in the initial mobile phase, and the 273 second in samples of natural dark hair free of analytes obtained from one of the volunteers. A 274 Student's *t*-test was used for comparison of the two calibration curves. Previously, a Snedecor's 275 *F*-test was applied to compare the estimated variances $(S^2_{v/x})$. The Student's *t*-test showed, in most 276 of the cases, statistically significant differences between the slopes of the two calibration curves, 277 which indicated significant matrix effects. Therefore, the validation and the application of the 278

method was carried out using matrix-matched calibration for all the studied analytes. Theanalytical and statistical parameters are summarized in Table 2.

- 281
- 282

Table 2

283

284 *3.3. Validation of the method*

285

Linearity, sensitivity (limits of detection, LODs, and quantification, LOQs), accuracy (in terms of trueness and precision) and selectivity were determined. The US Food and Drugs Administration (FDA) guideline for Bioanalytical Method Validation was used.

289 *Linearity.* The concentration range selected was from the minimal quantified amount (LOQ) to 125.0 ng g⁻¹ for all compounds except for BPA, its chlorinated derivatives and PFBuA which 290 was 250.0 ng g⁻¹ (see Table 2). Linearity of the calibration curves was assessed with the 291 determination coefficients (% R²) and the P-values (% P_{lof}) of the lack-of-fit test (Analytical 292 Method Committee, 1994). The values obtained for R² ranged from 99.4% for PFOA to 99.9% for 293 Cl-BPA, Cl₂-BPA, Cl₄-BPA, MPB, EPB, BPB, BP-1, BP-2, BP-3, BP-6, BP-8, 4-OH-BP, PFBuA, 294 PFPeA, PFHpA and PFOS. P_{lof} values > 5% were found for all compounds. Therefore, a good 295 linearity within the stated ranges can be assured. 296

Sensitivity. LODs and LOQs were calculated in order to check the sensitivity of the analytical method. These parameters were calculated from the calibration function, using the standard deviation of residual, $S_{y/x}$, the slope of the curve, b, and an estimation of the standard deviation of the blank (S₀), (Currie, 1999). The LOD is defined as $3 \cdot S_0$ and the LOQ as $10 \cdot S_0$. The values obtained for the LODs ranged from 0.2 to 4 ng g⁻¹, and the LOQs from 0.5 to 12 ng g⁻¹ for MPB and PFBuA respectively. The results are summarized in Table 2.

303	Accuracy (precision and trueness). Since no certified materials are commercially available to
304	evaluate the precision and the trueness of the proposed method, a recovery assay with spiked hair
305	samples (free of the analytes), at three concentrations levels for each compound, was proposed.
306	For BPA and its chlorinated derivatives and PFBuA, 25.0, 125.0 and 250.0 ng g ⁻¹ were the
307	concentrations assayed; and 5.0, 25.0 and 125.0 ng g ⁻¹ for to the rest of the EDCs analyzed. The
308	analyses were carried out in triplicate over six days. The relative standard deviation (RSD) was
309	used for precision determination, and % recovery was applied for trueness evaluation. Precision
310	and trueness results are shown in Table 3. The recoveries obtained were close to 100% and RSDs
311	were $< 15\%$ for all compounds. The values obtained for both parameters are within the acceptable
312	limits defined by the Analytical Method Committee guidelines ($\leq 15\%$, except for the LOQ which
313	should not exceed 20%) which indicate that the method is highly accurate.
314	
315	Table 3
316	
317	Selectivity. The chromatograms of the procedure blank and the corresponding blank of sample
318	were analyzed. Taking into account the retention time of all analytes, no interferences from
319	endogenous substances were detected. The spectrometric conditions used ensured high selectivity
320	of the UHPLC-MS/MS method. Figure 2A shows the SRM chromatograms obtained from a blank
321	hair sample spiked with the analytes (75.0 ng g^{-1}).
322	Figure 2
323	
324	3.4. Biomonitoring of EDCs in human hair. Method application
325	
326	After validation, the method was used for the determination of the selected EDCs in hair
327	samples from six volunteers. In order to study the persistence of compounds over a long period of

time, a hair sample from each volunteer was collected weekly over a three-month period (12 samples per volunteer). Three replicates were analyzed for each day. The results obtained, expressed as means of concentrations for each volunteer, are summarized in Table 4. In all the analyzed samples at least one of the compounds studied was found. Figure 2B shows the chromatograms of one of the samples (M04).

- 333
- 334 335

Table 4

As shown in Table 4, 13 of the 21 analyzed compounds were detected in almost one of the 336 samples but were not quantified in all of them. BPA was detected in only three of the samples. 337 338 Chlorinated derivatives of BPA were not detected in any of the analyzed samples. For PBs, at least one of the compounds was detected and quantified in five of the samples. Regarding BPs, only 339 four of the six compounds were detected and/or quantified in at least one sample. BP-1 and BP-3 340 showed the highest concentration values. Finally, among the six PFCs analyzed, PFOA was the 341 most commonly found compound, followed by PFOS. Both compounds were quantified in 83% 342 of the samples. PFPHxA and PFPHpA were also detected in five of the samples but quantified in 343 one, with concentrations close to the LOQs for both compounds. 344

345 Because of the limited information available on the selected pollutants in human hair, the comparison of the results previously published in hair and other biological matrices is of great 346 interest. Perez et al. (2012) studied the presence of PFCs in human hair and urine and found a 347 similar pattern of PFCs to ours, but they found much higher concentration in urine than in hair 348 samples . PFOS and PFOA were the compounds more frequently quantified. PFOA was present 349 in the 0.1–6 ng g⁻¹ range among the positive samples, whereas PFOS was between 3.7 and 7.0 ng 350 g⁻¹, while concentrations up to 49 ng L⁻¹ were reported in urine samples. In a large study by 351 Vassiliadou et al. (2010), concentrations ranging from 7.5 to 15 ng mL⁻¹ for PFOS and from 2 to 352

4 ng mL⁻¹ for PFOA were found in blood samples from three different groups of adults living in 353 Greece. Some of the selected analytes have also been previously analyzed by the authors of the 354 present work in human milk (Rodríguez-Gómez et al., 2014). BPA, PBs and BPs were detected 355 and quantified in almost one of the analyzed samples. However, none of the chlorinated derivatives 356 of BPA were detected. BPA was quantified at concentrations ranging from 3.2 to 10.8 ng mL⁻¹. 357 Among the four PBs analyzed, EPB and PPB were the most abundant quantified in most milk 358 samples, with concentrations ranging from 0.8 to 43.5 ng mL⁻¹ for PPB and from 0.8 to 15.0 ng 359 mL⁻¹ for EPB. Martín et al. (2015) reported concentration levels of up to 1980 ng g⁻¹ for EPB and 360 PPB in human hair from German individuals. Hines et al. (2015) reported concentrations in 361 362 multiple matrices (milk, urine and serum) of PBs and BPA. These data suggest that urine is the best matrix for measurements, with concentration levels similar to those found in this study, 993 363 and 279 ng mL⁻¹ for MPB and PPB respectively. In a recent study to estimate the burden of BPA 364 in urban and rural populations, Tzatzarakis et al. (2015) reported concentration levels in hair 365 between 17.7–192.8 ng g⁻¹ in urban population and between 13.1–72.8 ng g⁻¹ in rural population. 366

367

368

369 4. Conclusions

370

A new analytical method for the biomonitoring of 21 EDCs (BPA and its chlorinated derivatives, 4 PBs, 6 BP-UV filters and 6 PFCs) in human hair samples has been successfully validated with good analytical features using a simple extraction procedure with acetonitrile after incubation of samples, and UHPLC-MS/MS analysis. The method was successfully validated, obtaining low LODs (between 0.2 ng g⁻¹ for MPB; and 4 ng g⁻¹ for PFBuA), high recoveries (>90% and <115%) and precision (RSD <15%). The proposed procedure of sample preparation was considered optimal because of its high extraction yield and easy operation. The method has been applied to hair samples obtained from six volunteers over a three-month period. To our knowledge, this is the first validated method that allows the biomonitoring of such a large number of EDCs. At least one of the compounds analyzed was found in 100% of the samples, although quantification was not always possible.

The main advantage of the present study is the possibility of performing a multiresidue and 382 multiclass analytical determination in only two steps while providing the sensitivity and selectivity 383 necessary for the detection of compounds in human hair samples. Since hair is a representative 384 sample for providing evidences of EDC exposure, the sampling protocol is crucial. Hair should be 385 cut from the posterior vertex region of the head, as close as possible to the scalp (root) to minimize 386 387 external exposure, with a length of roughly 3-5 cm. The main limitation of hair analysis is distinguishing between internal and external exposure. For this reason, hair samples were carefully 388 washed. After washing, samples were cut in 2-3 mm pieces. Hair natural pigmentation and hair 389 treatments are also possible limitations of hair analysis. 390

Finally, one of the limitations of the present work is the small amount of samples, and a larger cohort is required for the determination of global exposure to the target analytes. Nonetheless, this method is a powerful analytical tool that can be used in further determinations of human exposure to EDCs.

395

396

397 Acknowledgements

398

This study was supported by the Regional Government of Andalusia (Project of Excellence No.
P09-CTS-4470) and by the Spanish Ministry of Economy and Competitiveness (Project No.
CGL2013-44402-R). The authors are grateful to the Regional Government of Andalusia for the

- 402 fellowship granted to R. Rodríguez-Gómez and to the University of Seville for the mobility grant
- 403 awarded to J. Martín.

404	References

405)
-----	---

406	Altshul, L., Covaci, A., Hauser, R., 2004. The relationship between levels of PCBs and
407	pesticides in human hair and blood: preliminary results. Environ. Health Perspect. 112,
408	1193–1199.
409	
410	Analytical Methods Committee, 1994. Is my calibration linear? Analyst 119 2363–2366.
411	
412	Bisphenol A Website. Document available on line at: http://www.bisphenol-a.org
413	Visited: 13/06/2016.
414	
415	Boberg, J., Taxvig, C., Christiansen, S., Hass, U., 2010. Possible endocrine disrupting effects of
416	parabens and their metabolites. Reprod. Toxicol. 30, 301-312.
417	
418	Calafat, A.M., Ye, X.Y., Wong, L.Y., Reidy, J.A., Needham, L.L., 2008. Exposure of the U.S.
419	population to bisphenol A and 4-tertiary-octylphenol: 2003-2004. Environ. Health Perspect.
420	116, 39–44.
421	
422	Caplan, Y.H., Goldberger, B.A., 2001. Alternative specimens for workplace drug testing. J. Anal.
423	Toxicol. 25, 396–399.
424	
425	Cooper, G.A.A., Kronstrand, R., Kintz, P., 2012. Society of Hair Testing guidelines for drug
426	testing in hair. Forensic Sci. Int. 218, 20–24.
427	

428	Corsini, E., Luebke, R.W., Germolec, D.R., DeWitt, J.C., 2014. Perfluorinated compounds:
429	emerging POPs with potential immunotoxicity. Toxicol. Lett. 230, 263–270.
430	
431	Cuderman, P., Heath, E., 2007. Determination of UV filters and antimicrobial agents in
432	environmental water samples. Anal. Bioanal. Chem. 387, 1343-1350.
433	
434	Cuong, L.P., Evgen'ev, M.I., Gumerov, F.M., 2012. Biomonitoring of organic and inorganic
435	chemicals in the hair of Vietnamese people via spectral and chromatographic analysis. J.
436	Supercritical Fluids 61, 86–91.
437	
438	Currie, L.A., 1999. Detection and quantification limits: origins and historical overview. Anal.
439	Chim. Acta 391, 127–134.
440	
441	Domingo, J.L., 2011. Health risks of dietary exposure to perfluorinated compounds. Environ. Int.
442	40, 187–195.
443	
444	El Hussein, S., Muret, P., Berard, M., Makki, S., Humbert, P., 2007. Assessment of principal
445	parabens used in cosmetics after their passage through human epidermis-dermis layers (ex-
446	vivo study). Exp. Dermatol. 16, 830–836.
447	
448	European Parliament and of the Council of 30 November 2009 on cosmetic products, European
449	Union Regulation No. 1223/2009 (2009) 59–209.
450	
451	Fei, C., McLaughlin, J.K., Lipworth, L., Olsen, J., 2009. Maternal levels of perfluorinated
452	chemicals and subfecundity. Human. Reprod. 24, 1200–1205.

454	Giesy, J.P., Kannan, K., 2001. Global distribution of perfluorooctane sulfonate in wildlife.
455	Environ. Sci. Technol. 35, 1339–1342.
456	
457	Guidance for Industry, Bioanalytical Method Validation, U.S. Department of Health and Human
458	Services, Food and Drug Administration, Center for Drug Evaluation and Research (CDER),
459	Center for Veterinary Medicine (CVM), 2001.
460	
461	Hekster, F.M., Laane, R.W.P.M., de Voogt, P., 2003. Environmental and toxicity effects of
462	perfluoroalkylated substances. Rev. Environ. Contam. Toxicol. 179, 99-121.
463	
464	Hines, E.P., Mendola, P., von Ehrenstein, O.S., Ye, X., Calafat, A.M., Fenton, S.E., 2015.
465	Concentrations of environmental phenols and parabens in milk, urine and serum of lactating
466	North Carolina women. Reprod. Toxicol. 54, 120–128.
467	
468	Jiang, R., Roberts, M.S., Collins, D.M., Benson, H.A.E., 1999. Absorption of sunscreens across
469	human skin: an evaluation of commercial products for children and adults. Br. J. Clin.
470	Pharmacol. 48, 635–637.
471	
472	Kavlock, R.J., Daston, G.P., DeRosa, C., Fenner-Crisp, P., Gray, L.E., Kaattari, S., Lucier, G.,
473	Luster, M., Mac, M.J., Maczka, C., Miller, R., Moore, J., Rolland, R., Scott, G., Sheehan,
474	D.M., Sinks, T., Tilson, H.A., 1996. Research needs for the risk assessment of health and
475	environmental effects of endocrine disruptors: a report of the U.S. EPA-sponsored
476	workshop. Environ. Health Perspect. 104, 715–740.
477	

478	Król, S., Namieśnik, J., Zabiegała, B., 2014. Occurrence and levels of polybrominated diphenyl
479	ethers (PBDEs) in house dust and hair samples from Northern Poland; an assessment of
480	human exposure. Chemosphere. 110, 91–96
481	
482	Król, S., Zabiegała, B., Namiesnik, J., 2013. Human hair as a biomarker of human exposure to
483	persistent organic pollutants (POPs). Trends Anal. Chem. 47, 84-98.
484	
485	Liang, B., Liu, X., Hou, J., Liang, G., Gong, W., Xu, D., Zhang, L., 2014. PCBs levels and
486	indicator congeners in children's and adolescent's hair. Environ. Pollut. 185, 10-15.
487	
488	Liao, C., Wang, T., Cui, L., Zhou, Q., Duan, S., Jiang, G., 2009. Changes in synaptic transmission,
489	calcium current, and neurite growth by perfluorinated compounds are dependent on the chain
490	length and functional group. Environ. Sci. Technol. 43, 2099–2104.
491	
492	Liu, C., Du, Y., Zhou, B., 2007. Evaluation of estrogenic activities and mechanism of action of
493	perfluorinated chemicals determined by vitellogenin induction in primary cultured tilapia
494	hepatocytes. Aquat. Toxicol. 85, 267–277.
495	
496	Martín, J., Möder, M., Gaudl, A., Alonso, E., Reemtsma, T., 2015. Multi-class method for
497	biomonitoring of hair samples using gas chromatography-mass spectrometry. Anal. Bioanal.
498	Chem. 407, 8725–8734.
499	
500	Multi-Year Plan (FY2000-2012) for Endocrine Disruptor, Office of Research and Development.
501	U.S. Environmental Protection Agency. 2003.
502	Available at: http://www.epa.gov/osp/myp/edc.pdf (Visited: 11/04/2016).

504

505

506	spectrometry method for quantization of BPA urinary levels in children. Anal. Bioanal.
507	Chem. 405, 9139–9148.
508	
509	Oliveira, C.D.R., Roehsig, M., Almeida, R.M., Rocha, W.L., Yonamine, M., 2007. Recent
510	advances in chromatographic methods to detect drugs of abuse in alternative biological
511	matrices. Curr. Pharm. Anal. 3, 95–109.
512	
513	Paris, F., Balaguer, P., Térouanne, B., Servant, N., Lacoste, C., Cravedi, J.P., Nicolas, J.C., Sultan,
514	C., 2002. Phenylphenols, biphenols, bisphenol-A and 4-tert-octylphenol exhibit α and β
515	estrogen activities and antiandrogen activity in reporter cell lines. Mol. Cell. Endocrinol.
516	193, 43–49.
517	
518	Perez, F., Llorca, M., Farre, M., Barcelo, D., 2012. Automated analysis of perfluorinated
519	compounds in human hair and urine samples by turbulent flow chromatography coupled to
520	tandem mass spectrometry. Anal. Bioanal. Chem. 402, 2369–2378.
521	
522	Rivas, A., Olea, N., Olea-Serrano, F., 1997. Human exposure to endocrine-disrupting chemicals:
523	assessing the total estrogenic xenobiotic burden. Trends Anal. Chem. 16 (1997) 613-619.
524	
525	Rivière, G., Sirot, V., Tard, A., Jean, J., Marchand, P., Veyrand, B., Le Bizec, B., Leblanc, J.C.,
526	2014. Food risk assessment for perfluoroalkyl acids and brominated flame retardants in the

Nicolucci, C., Rossi, S., Menale, C., Miraglia del Giudice, E., Perrone, L., Gallo, P., Mita, D.G.,

Diano, N., 2013. A high selective and sensitive liquid chromatography-tandem mass

French population: results from the second French total diet study. Sci. Total Environ. 491-527 492, 176–183. 528 529 Rodríguez-Gómez, R., Dorival-García, N., Zafra-Gómez, A., Camino-Sánchez, F.J., Ballesteros, 530 O., Navalón, A., 2015. New method for the determination of parabens and bisphenol A in 531 human milk samples using ultrasound-assisted extraction and clean-up with dispersive 532 sorbents prior to UHPLC-MS/MS analysis. J. Chromatogr. B 992, 47-55. 533 534 Rodríguez-Gómez, R., Zafra-Gómez, A., Camino-Sánchez, F.J., Ballesteros, O., Navalón, A., 535 536 2014. Gas chromatography and ultra high performance liquid chromatography tandem mass spectrometry methods for the determination of selected endocrine disrupting chemicals in 537 human breast milk after stir-bar sorptive extraction. J. Chromatogr. A. 1349, 69-79. 538 539 Sako1, A.V.F., Dolzan1, M.D., Micke, G.A., 2015. Fast and sensitive method to determine 540 parabens by capillary electrophoresis using automatic reverse electrode polarity stacking 541 mode: application to hair samples. Anal. Bioanal. Chem. 407, 7333-7339. 542 543 544 Schramm, K.W., 2008. Hair biomonitoring of organic pollutants. Chemosphere 72, 1103-1111. 545 Soni, M.G., Carabin, I.G., Burdock, G.A., 2005. Safety assessment of esters of p-hydroxybenzoic 546 547 acid (parabens). Food Chem. Toxicol. 43, 985-1015. 548 Sonnenschein, C., Soto, A.M., 1998. An updated review of environmental estrogen and androgen 549 mimics and antagonists. J. Steroid. Biochem. Mol. Biol. 65, 143-150. 550 551

552	Tadeo, J.L., Sánchez-Brunete, C., Miguel, E., 2009. Determination of polybrominated diphenyl
553	ethers in human hair by gas chromatography-mass spectrometry. Talanta. 78, 138-143.
554	
555	Tzatzarakis, M.N., Vakonaki, E., Kavvalakis, M.P., Barmpas, M., Kokkinakis, E.N., Xenos, K.,
556	Tsatsakis, A.M., 2015. Biomonitoring of bisphenol A in hair of Greek population.
557	Chemosphere 118, 336–341.
558	
559	van Meeuwen, J.A., van Son, O., Piersma, A.H., de Jong, P.C., van den Berg, M., 2008. Aromatase
560	inhibiting and combined estrogenic effects of parabens and estrogenic effects of other
561	additives in cosmetics. Toxicol. Appl. Pharmacol. 230, 372-382.
562	
563	Vassiliadou, I., Costopoulou, D., Ferderigou, A., Leondiadis, L., 2010. Levels of
564	perfluorooctanesulfonate (PFOS) and perfluorooctanoate (PFOA) in blood samples from
565	different groups of adults living in Greece. Chemosphere. 80, 1199–1206.
566	
567	Vílchez, J.L., del Olmo, M., González-Casado, A., Navalón, A., 2003. Spanish Patent ES 2 190
568	852 B1 (2005). Patent application number ES 20 190 852.
569	Available at: http://digibug.ugr.es/handle/10481/1114 (ES 2190852 B1).
570	Visited: 11/06/2016.
571	
572	Wielgomas, B., Czarnowski, W., Jansen, E.H.J.M., 2012. PCBs levels and indicator congeners in
573	children's and adolescents' hair. Chemosphere. 89, 975–981.
574	

575	Yamamoto, T., Yasuhara, A., 2002. Chlorination of bisphenol A in aqueous media: formation of
576	chlorinated bisphenol A congeners and degradation to chlorinated phenolic compounds.
577	Chemosphere 46, 1215–1223.
578	
579	Zhao, G., Wang, Z., Dong, M.H., Rao, K., Luo, J., Wang, D.I., Zha, J., Huang, S., Xu, Y., Ma, M.,
580	2008. PBBs, PBDEs, and PCBs levels in hair of residents around e-waste disassembly sites
581	in Zhejiang Province, China, and their potential sources. Sci. Total Environ. 397, 46–57.
582	
583	Zheng, J., Luo, X.J., Yuan, J-G., Wang, J., Wang, Y.T., Chen, S.J., Mai, B.X., Yang, Z.Y., 2011.
584	Levels and sources of brominated flame retardants in human hair from urban, e-waste, and

rural areas in South China. Environ. Pollut. 159, 3706–3713.

586 Figure captions

587

Fig. 1. Optimization of the sample amount, solvent volume and incubation time. Response
surfaces obtained for Box–Behnken design: (A) BPA and chlorinated derivatives; (B)
PBs; (C) BPs and (D) PFCs. Time of digestion was fixed in 12 hours.

Fig. 2. SMR chromatograms of: (A) a spiked sample standard mixture (75.0 ng g⁻¹ of each analyte), (B) a natural hair sample (Sample M04).

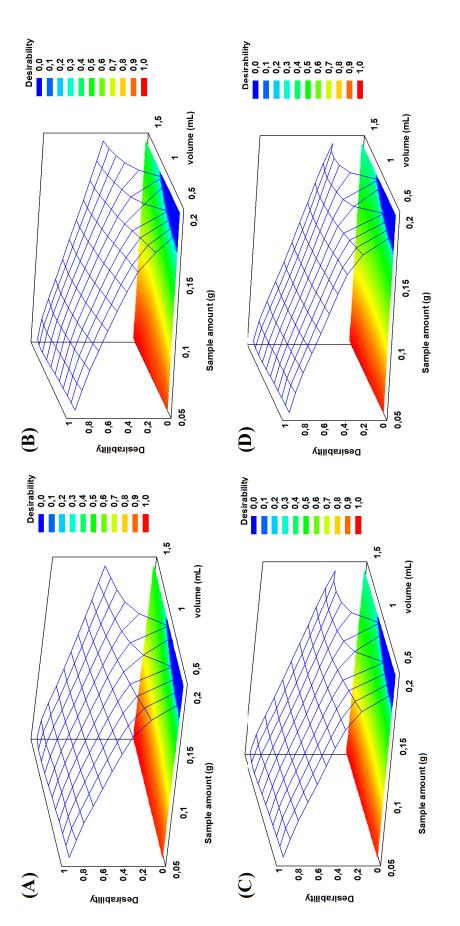


Figure 1

(A)																			
100 %										5.09 ^{5.1}	8								PFOS
	0.50	1.00	1.50	2.00	2.50	3.00	3.50	4.00	4.50	5.00 4.86	5.50	6.00	6.50	7.00	7.50	8.00	8.50	9.00	MPFOA
100 01	0.50	1.00	1.50	2.00	2.50	3.00	3.50	4.00	4.50	5.00	5.50	6.00	6.50	7.00	7.50	8.00	8.50	9.00	
100 3										4.85									PFOA
100 0	0.50	1.00	1.50	2.00	2.50	3.00	3.50	4.00	4.50	5.00	5.50	6.00	6.50	7.00	7.50	8.00	8.50	9.00	,
100									4.46										PFHpA
04,	0.50	1.00	1.50	2.00	2.50	3.00	3.50	4.00	4.50	5.00	5.50	6.00	6.50	7.00	7.50	8.00	8.50	9.00	,
								3.91											PFHxA
100	0.50	1.00	1.50	2.00	2.50	3.00 6	3.50	4.00	4.50	5.00	5.50	6.00	6.50	7.00	7.50	8.00	8.50	9.00	PFPeA
<u>م</u> لادہ	0.50	1.00	1.50 1.50	2.1 2.00	6 2.50	3.00	3.50	4.00	4.50	5.00	5.50	6.00	6.50	7.00	7.50	8.00	8.50	9.00	,,,,,
100	0.52																		BP2
04	0.50	1.00	1.50	2.00	2.50	3.00	3.50	4.00	4.50	5.00	5.50	6.00	6.50	7.00	7.50	8.00	8.50	9.00	,
100								3.90											BPA-CI4
	0.50	1.00	1.50	2.00	2.50	3.00	3.50	4.00	4.50	5.00	5.50	6.00	6.50	7.00	7.50	8.00	8.50	9.00	BPA-CI3
100 %	0.50	1.00	1.50	2.00	2.50	3.00	, 1941, 16	<u> </u>		F 00	5.50	6.00	6.50	7.00	7.50		8.50		,,,,,
100	0.50	1.00	1.00	2.00	2.50	3.00	3.50	4.00	4.50	5.00 4.99	0.00	6.00	6.00	7.00	7.00	8.00	8.50	9.00	BPA-CI2
100 0-	0.50	1.00	1.50	2.00	2.50	3.00	3.50	4.06	4.50	5.00	5.50	6.00	6.50	7.00	7.50	8.00	8.50	9.00	,
100	0.00	1.00	1.00	2.00	2.00	0.00	0.00	1.00	4.00	4.91	0.00	0.00	0.00	1.00	1.00	0.00	0.00	0.00	BPA-CI
ő -	0.50	1.00	1.50	2.00	2.50	3.00	3.50	4.00	4.50	5.00	5.50	6.00	6.50	7.00	7.50	8.00	8.50	9.00	
100-										4.86									BPA
ō. L	0.50	1.00	1.50	2.00	2.50	3.00	3.50	4.00	4.50	5.00	5.50	6.00	6.50	7.00	7.50	8.00	8.50	9.00	
100										4.85									BPA-d16
	0.50	1.00	1.50	2.00	2.50	3.00	3.50	4.00	4.50	5.00	5.50	6.00	6.50	7.00	7.50	8.00	8.50	9.00	
100	0.350.39	0.98 	.03 1	.75 2.27	2.40														PFBuA
0 444	0.50	1.00	1.50	2.00	2.50	3.00	3.50	4.00	4.50	5.00	5.50	6.00	6.50	7.00	7.50	8.00	8.50	9.00	BPB
100 %	0.50	1.00	1.50			3.00	3.50	4.12	L		5.50				7.50		8.50		
100-	0.50	1.00	1.50	2.00	2.50	3.1		4.00	4.50	5.00	5.50	6.00	6.50	7.00	7.50	8.00	8.50	9.00	PPB
	0.50	1.00	1.50	2.00	2.50	3.00 A	3.50	4.00	4.50	5.00	5.50	6.00	6.50	7.00	7.50	8.00	8.50	9.00	,
100			1.46																EPB-D5
ĵ.	0.50	1.00	1.50	2.00	2.50	3.00	3.50	4.00	4.50	5.00	5.50	6.00	6.50	7.00	7.50	8.00	8.50	9.00	,
100	0.59		1.50	2.1	4														EPB
0-4	0.50	1.00	1.50	2.00	2.50	3.00	3.50	4.00	4.50	5.00	5.50	6.00	6.50	7.00	7.50	8.00	8.50	9.00	
100	0.49	<u> </u>							,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,										MPB
100 -	0.50	1.00	1.50	2.00	2.50	3.00	3.50	4.00	4.50	5.00		6.00	6.50	7.00	7.50	8.00	8.50	9.00	BP6
100 %	0.50	1.00	1.50	2.00	2.50	3.00	3.50	4.00	4.50	5.00	5.48 5.50	6.00	6.50	7.00	7.50	8.00	8.50	9.00	
100 %										4.82 A									BP8
0 4	0.50	1.00	1.50	2.00	2.50	3.00	3.50	4.00	4.50	5.00	5.50	6.00	6.50	7.00	7.50	8.00	8.50	9.00	
100 %											5.6 N	7							BP3
	0.50	1.00	1.50	2.00	2.50	3.00	3.50	4.00	4.50	5.00	5.50	6.00	6.50	7.00	7.50	8.00	8.50	9.00	BP1
100 %					2.57														,
100-	0.50	1.00	1.50	2.00	2.50	3.00	3.50	4.00	4.50	5.00	5.50	6.00	6.50	7.00	7.50	8.00	8.50	9.00	4-OH-BP
	0.50	1.00	1.50	2.00	2.50	3.00	3.50	4.00	4.50	5.00	5.50	6.00	6.50	7.00	7.50	8.00	8.50	9.00	
100										5.2									BP-d10
100 0-	0.50	1.00	1.50	2.00	2.50	3.00	3.50	4.00	4.50	5.00	5.50	6.00	6.50	7.00	7.50	8.00	8.50	9.00	Time
																			Fig

(B)																			
100										5.15		9 5.86							PFOS
0-444	0.50	1.00	1.50	2.00	2.50	3.00	3.50	4.00	4.50	5.00 4.90	5.50		6.50	7.00	7.50	8.00	8.50	9.00	MPFOA
										A	استاست								pm
100-	0.50	1.00	1.50	2.00	2.50	3.00	3.50	4.00	4.50	5.00 4.92	5.50	6.00	6.50	7.00	7.50	8.00	8.50	9.00	PFOA
0-L.	0.50	1.00	1.50	2.00	2.50	3.00	3.50	4.00	4.50	5.00	5.50	6.00	6.50	7.00	7.50	8.00	8.50	9.00	
100									4.52 Å										PFHpA
ō.Ļ,	0.50	1.00	1.50	2.00	2.50	3.00	3.50	4.00	4.50	5.00	5.50	6.00	6.50	7.00	7.50	8.00	8.50	9.00	
100								3.97											PFHxA
0 4	0.50		1.50	2.00	2.50	3.00	3.50	4.00	4.50	5.00	5.50	6.00	6.50	7.00	7.50	8.00	8.50	9.00	PFPeA
1001 0-L	0.50	011.08	1.141.64	1.70 2. 2.00	24 ^{2.64} 2.50	3.00	6 3.50	4.00	4.50	5.00	5.50	6.00	6.50	7.00	7.50	8.00	8.50	9.00	
100	0.63 0.31		1.00	2.00	2.00	0.00	0.00	4.00	4.00	0.00	0.00	0.00	0.00	1.00	1.00	0.00	0.00	0.00	BP2
õl,	0.31	1.00	1.50	2.00	2.50	3.00	3.50	4.00	4.50	5.00	5.50	6.00	6.50	7.00	7.50	8.00	8.50	9.00	
					L.		h. i	3.90											BPA-CI4
U-44	0.50	1.00	1.50	2.00	2.50	3.00	3.50	4.00	4.50	5.00	5.50	6.00	6.50	7.00	7.50	8.00	8.50	9.00	BPA-CI3
100- 0-4-					<u></u>	البيده	<u></u>		4.36										
	0.50	1.00	1.50	2.00	2.50	3.00	3.50	4.00	4.50	5.00 5.1	5.50	6.00	6.50	7.00	7.50	8.00	8.50	9.00	BPA-CI2
100- %-	0.50	1.00	1.50	2.00	2.50	3.00	3.73 3.50	3.90 4.	<u></u>	4.82 5.00	.5.24	6.00	6.50	7.00	7.50	8.00	8.50	9.00	.,
100-	0.00	1.00	1.00	2.00	2.00	0.00		1.75 3.79				0.00	0.00	7.00	1.00	0.00	0.00	5.00	BPA-CI
őł,	0.50	1.00	1.50	2.00	2.50	3.00	3.58 3.50	()()	4.20 4.50		<u> </u>	6.00	6.50	7.00	7.50	8.00	8.50	9.00	
100										4.87									BPA
0-4,	0.50	1.00	1.50	2.00	2.50	3.00	3.50	4.00	4.50	5.00	5.50	6.00	6.50	7.00	7.50	8.00	8.50	9.00	
100										4.85									BPA-d16
										Λ									
0-4	0.50	1.00	1.50		2.50	3.00	3.50	4.00	4.50	5.00	5.50	6.00	6.50	7.00	7.50	8.00	8.50	9.00	DEBUA
	0.35 _0.	55 1.04 m. M.,	1.45 1.	76 ^{1.99}	2.42														PFBuA
		55 1.04 m. M.,				3.00	3.50 3.50		4.50 4.50 4.39	5.00	5.50	6.00	6.50 6.50	7.00	7.50	8.00 8.00	8.50 8.50	9.00	PFBuA
100	0.35 _0.	55 1.04 m. M.,	1.45 1.	76 ^{1.99}	2.42				4.50										
100 % 0 4 	0.35 0.	55 1.04	1.45 1. 	76 1.99 Marian 2.00	2.42	3.00	3.50 3.50 3.43	4.00	4.50 4.39	5.00	5.50	6.00	6.50	7.00	7.50	8.00	8.50	9.00	
100 0.4 100 0.4	0.35 0.	55 1.04	1.45 1. 	76 1.99 Marian 2.00	2.42	3.00	3.50 3.50	4.00	4.50 4.39	5.00	5.50	6.00	6.50	7.00	7.50	8.00	8.50	9.00	BPB PPB
100 % 0 4 	0.35 0.	55 1.04 	1.45 1. ******** 1.50	76 1.99 2.00 2.00 2.00	2.42	3.00	3.50 3.50 3.43	4.00	4.50 4.39 A 4.50	5.00	5.50	6.00	6.50 6.50	7.00	7.50	8.00	8.50	9.00	BPB
100	0.35 0.	55 1.04 	1.45 1 1.50 1.50 1.50 1.50	76 1.99 2.00 2.00 2.00 74 2.00	2.42	3.00	3.50 3.50 3.43	4.00	4.50 4.39 A 4.50	5.00	5.50	6.00	6.50 6.50	7.00	7.50	8.00	8.50	9.00	PPB PPB PPB PPB-D5
100	0.35 0. 0.50	1.00 1.00 1.00	1.45 1 	76 1.99 2.00 2.00 2.00 74 2.00	2.42 2.50 2.50 2.50	3.00 3.00 3.00 3.00	3.50 3.50 3.43 3.50 3.50	4.00 4.00 4.00 4.00	4.50 4.39 4.50 4.50 4.50	5.00 5.00 5.00	5.50 5.50 5.50	6.00 6.00 6.00	6.50 6.50 6.50	7.00 7.00 7.00	7.50 7.50 7.50 7.50	8.00 8.00 8.00 8.00	8.50 8.50 8.50 8.50	9.00 9.00 9.00 9.00	BPB PPB
	0.35 0.50	551.04 1.00 1.00 1.00 1.00 1.00 1.00	1.45 1 1.50 1.50 1.50 1.50	76 1.99 2.00 2.00 2.00 74 2.00	2.42	3.00	3.50 3.50 3.43	4.00	4.50 4.39 A 4.50	5.00	5.50	6.00	6.50 6.50	7.00	7.50	8.00	8.50	9.00	PPB PPB PPB PPB-D5
	0.35 0. 0.50	1.00 1.00 1.00	1.45 1 	76 1.99 2.00 2.00 2.00 74 2.00	2.42 2.50 2.50 2.50	3.00 3.00 3.00 3.00	3.50 3.50 3.43 3.50 3.50	4.00	4.50 4.39 4.50 4.50 4.50	5.00 5.00 5.00	5.50 5.50 5.50 5.50	6.00 6.00 6.00 6.00	6.50 6.50 6.50	7.00 7.00 7.00 7.00	7.50 7.50 7.50 7.50	8.00 8.00 8.00 8.00	8.50 8.50 8.50 8.50	9.00 9.00 9.00 9.00	PPB PPB EPB-D5 EPB
	0.35 _0. 0.50	1.00 1.00 1.00 1.00 1.00	1.45 1 	76 1.99 2.00 2.00 74 2.00 1.88 2.00	2.42 2.50 2.50 2.50 2.50	3.00 3.00 3.00 3.00 3.00	3.50 3.43 3.50 3.50 3.50	4.00 4.00 4.00 4.00	4.50 4.39 4.50 4.50 4.50 4.50	5.00 5.00 5.00 5.00 5.00	5.50 5.50 5.50 5.50	6.00 6.00 6.00 6.00	6.50 6.50 6.50 6.50	7.00 7.00 7.00 7.00	7.50 7.50 7.50 7.50	8.00 8.00 8.00 8.00 8.00	8.50 8.50 8.50 8.50 8.50	9.00 9.00 9.00 9.00 9.00	PPB PPB EPB-D5 EPB
	0.35 _0. 0.50	1.00 1.00 1.00 1.00 1.00	1.45 1 	76 1.99 2.00 2.00 74 2.00 1.88 2.00	2.42 2.50 2.50 2.50 2.50	3.00 3.00 3.00 3.00 3.00	3.50 3.43 3.50 3.50 3.50	4.00 4.00 4.00 4.00	4.50 4.39 4.50 4.50 4.50 4.50	5.00 5.00 5.00 5.00 7 5.11	5.50 5.50 5.50 5.50	6.00 6.00 6.00 6.00	6.50 6.50 6.50 6.50	7.00 7.00 7.00 7.00 7.00	7.50 7.50 7.50 7.50	8.00 8.00 8.00 8.00 8.00	8.50 8.50 8.50 8.50 8.50	9.00 9.00 9.00 9.00 9.00	PPB PPB PPB-D5 PPB-D5 PPB-D5 PPB PPB PPB
100,200 100	0.35 0.50 0.50 0.50 0.50 0.50 0.50	551.04 1.00 1.00 1.00 1.00 1.00 1.00 1.00	1.45 1 1.50 1.50 1.50 1.50	76 199 2.00 2.00 2.00 74 2.00 1.88 2.00	2.42 2.50 2.50 2.50 2.50 2.50	3.00 3.00 3.00 3.00 3.00	3.50 3.43 3.50 3.50 3.50 3.50	4.00 4.00 4.00 4.00 4.00 4.00 4.00 4.00	4.50 4.39 4.50 4.50 4.50 4.50 4.50 4.50 4.50	5.00 5.00 5.00 5.00 7 5.11 5.00	5.50 5.50 5.50 5.50 5.50 5.50	6.00 6.00 6.00 6.00	6.50 6.50 6.50 6.50	7.00 7.00 7.00 7.00 7.00	7.50 7.50 7.50 7.50 7.50	8.00 8.00 8.00 8.00 8.00	8.50 8.50 8.50 8.50 8.50	9.00 9.00 9.00 9.00 9.00	PPB PPB PPB-D5 PPB-D5 PPB-D5 PPB PPB PPB
	0.35 0.50 0.50 0.50 0.50 0.50 0.50	551.04 1.00 1.00 1.00 1.00 1.00 1.00 1.00	1.45 1 1.50 1.50 1.50 1.50	76 199 2.00 2.00 2.00 74 2.00 1.88 2.00	2.42 2.50 2.50 2.50 2.50 2.50	3.00 3.00 3.00 3.00 3.00	3.50 3.43 3.50 3.50 3.50 3.50	4.00 4.00 4.00 4.00 4.00 4.00 4.00	4.50 4.39 4.50 4.50 4.50 4.50 4.50 4.50 4.50	5.00 5.00 5.00 5.00 7 5.11 5.00	5.50 5.50 5.50 5.50 5.50 5.50 5.50 5.50	6.00 6.00 6.00 6.00 6.00 6.00 6.00	6.50 6.50 6.50 6.50	7.00 7.00 7.00 7.00 7.00	7.50 7.50 7.50 7.50 7.50	8.00 8.00 8.00 8.00 8.00	8.50 8.50 8.50 8.50 8.50	9.00 9.00 9.00 9.00 9.00	PPB PPB EPB-D5 EPB EPB MPB BP6 BP8
100,200 100		2551.04 1.00 1.00 1.00 1.00 1.00 1.00 1.00	1.45 1. 1.50 1.50 1.50 1.50 1.50 1.50 1.50 1.50	76 199 2.00 2.00 2.00 2.00 1.88 2.00 2.00 2.00	2.42 2.50 2.50 2.50 2.50 2.50 2.50 2.50	3.00 3.00 3.00 3.00 3.00 3.00 3.00	3.50 3.50 3.43 3.50 3.50 3.50 3.50 3.50 3.50 3.50	4.00 4.00 4.00 4.00 4.00 4.00 4.00 4.00	4.50 4.50 4.50 4.50 4.50 4.50 4.50 4.50	5.00 5.00 5.00 5.00 5.00 7 5.11 5.00 7 5.11 5.00 7 5.00 7 5.00 7 5.00 7 5.00	5.50 5.50 5.50 5.50 5.50 5.50 5.50 5.50	6.00 6.00 6.00 6.00 6.00 6.00 7	6.50 6.50 6.50 6.50 6.50	7.00 7.00 7.00 7.00 7.00 7.00 7.00	7.50 7.50 7.50 7.50 7.50 7.50 7.50	8.00 8.00 8.00 8.00 8.00 8.00 8.00 8.00	8.50 8.50 8.50 8.50 8.50 8.50 8.50	9.00 9.00 9.00 9.00 9.00 9.00	PPB PPB EPB-D5 EPB BP6 MPB
100, 4, 4 100, 5, 4 100, 5, 4 100, 5, 6 100, 5, 7 100, 5, 7		1.00 1.00 1.00 1.00 1.00	1.45 1. 	76 199 2.00 2.00 74 2.00 74 2.00 2.00 2.00 2.00	2.42 2.50 2.50 2.50 2.50	3.00 3.00 3.00 3.00 3.00 3.00 3.00 3.00	3.50 3.43 3.50 3.50 3.50 3.50 3.50 3.50	4.00 4.00 4.00 4.00 4.00 4.00 4.00 4.00	4.50 4.50 4.50 4.50 4.50 4.50 4.50 4.50	5.00 5.00 5.00 5.00 5.00 7 5.00 7 5.00 7 5.00 5.00	5.50 5.50 5.50 5.50 5.50 5.50 5.50 5.50	6.00 6.00 6.00 6.00 6.00 6.00 6.00	6.50 6.50 6.50 6.50 6.50	7.00 7.00 7.00 7.00 7.00 7.00	7.50 7.50 7.50 7.50 7.50 7.50	8.00 8.00 8.00 8.00 8.00 8.00	8.50 8.50 8.50 8.50 8.50 8.50 8.50	9.00 9.00 9.00 9.00 9.00	PPB PPB EPB-D5 EPB EPB BPB BPB BPB
		2551.04 1.00 1.00 1.00 1.00 1.00 1.00 1.00	1.45 1. 1.50 1.50 1.50 1.50 1.50 1.50 1.50 1.50	76 199 2.00 2.00 2.00 2.00 1.88 2.00 2.00 2.00	2.42 2.50 2.50 2.50 2.50 2.50 2.50 2.50 2.5	3.00 3.00 3.00 3.00 3.00 3.00 3.00 3.00	3.50 3.50 3.43 3.50 3.50 3.50 3.50 3.50 3.50 3.50	4.00 4.00 4.00 4.00 4.00 4.00 4.00 4.00	4.50 4.50 4.50 4.50 4.50 4.50 4.50 4.50	5.00 5.00 5.00 5.00 5.00 7 5.11 5.00 7 5.11 5.00 7 5.00 7 5.00 7 5.00 7 5.00	5.50 5.50 5.50 5.50 5.50 5.50 5.50 5.50	6.00 6.00 6.00 6.00 6.00 6.00 7	6.50 6.50 6.50 6.50 6.50	7.00 7.00 7.00 7.00 7.00 7.00 7.00	7.50 7.50 7.50 7.50 7.50 7.50 7.50	8.00 8.00 8.00 8.00 8.00 8.00 8.00 8.00	8.50 8.50 8.50 8.50 8.50 8.50 8.50	9.00 9.00 9.00 9.00 9.00 9.00	нин ВРВ РРВ ССРВ-D5 ССРВ-ССРВ-ССРВ-ССРВ-ССРВ-ССРВ-ССРВ-ССРВ
100 x		1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00	1.45 1 1.50 1.50 1.50 1.50 1.50 1.50 1.50 1.50 1.50 1.50 1.50	76 199 2.00 2.00 2.00 74 2.00 1.88 2.00 2.00 2.00	2.42 2.50 2.50 2.50 2.50 2.50 2.50 2.50 2.5	3.00 3.00 3.00 3.00 3.00 3.00 3.00 74	3.50 3.50 3.50 3.50 3.50 3.50 3.50 3.50 3.50 3.50 3.50 3.50	4.00 4.00 4.00 4.00 4.00 4.00 4.00 4.00	4.50 4.50	5.00 5.00 5.00 5.00 7 5.00 7 5.00 7 5.00 7 5.00 7 5.00 7 5.00 7 5.00	5.50 5.50 5.50 5.50 5.50 5.50 5.50 5.50	6.00 6.00 6.00 6.00 6.00 6.00 6.00 7 6.00	6.50 6.50 6.50 6.50 6.50 6.50 6.50	7.00 7.00 7.00 7.00 7.00 7.00 7.00 7.00	7.50 7.50 7.50 7.50 7.50 7.50 7.50 7.50	8.00 8.00 8.00 8.00 8.00 8.00 8.00 8.00	8.50 8.50 8.50 8.50 8.50 8.50 8.50 8.50	9.00 9.00 9.00 9.00 9.00 9.00 9.00	нин ВРВ РРВ ССРВ-D5 ССРВ-ССРВ-ССРВ-ССРВ-ССРВ-ССРВ-ССРВ-ССРВ
100 x		1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00	1.45 1 1.50 1.50 1.50 1.50 1.50 1.50 1.50 1.50 1.50 1.50 1.50	76 1.99 2.00 2.00 2.00 1.88 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00	2,42 2,50 2,50 2,50 2,50 2,50 2,50 2,50 2,5	3.00 3.00 3.00 3.00 3.00 3.00 3.00 74	3.50 3.50 3.50 3.50 3.50 3.50 3.50 3.50 3.50 3.50 3.50 3.50	4.00 4.00 4.00 4.00 4.00 4.00 4.00 4.00	4.50 4.50 4.50 4.50 4.50 4.50 4.50 4.50	5.00 5.00 5.00 5.00 7 5.00 7 5.00 7 5.00 7 5.00 7 5.00 7 5.00 7 5.00	5.50 5.50 5.50 5.50 5.50 5.50 5.50 5.50	6.00 6.00 6.00 6.00 6.00 6.00 6.00 6.00	6.50 6.50 6.50 6.50 6.50 6.50 6.50 6.50	7.00 7.00 7.00 7.00 7.00 7.00 7.00 7.00	7.50 7.50 7.50 7.50 7.50 7.50 7.50 7.50	8.00 8.00 8.00 8.00 8.00 8.00 8.00 8.00	8.50 8.50 8.50 8.50 8.50 8.50 8.50 8.50	9.00 9.00 9.00 9.00 9.00 9.00 9.00	BPB EPB-D5 EPB-D5 MPB BP6 BP6 BP6 BP3 BP1
		551.04 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 5.02 1.00 1.00 1.00 1.00 1.00	1.45 1 1.50 1.50 1.50 1.50 1.50 1.50 1.50 1.50 1.50 1.50 1.50 1.50	76 1.99 2.00 2.00 2.00 1.88 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00	2,42 2,50 2,50 2,50 2,50 2,50 2,50 2,50 2,5	3.00 3.00 3.00 3.00 3.00 3.00 3.00 3.00	3.50 3.43 3.50 3.50 3.50 3.50 3.50 3.50 3.50 3.5	4.00 4.00 4.00 4.00 4.00 4.00 4.00 4.00	4.50 4.50 4.50 4.50 4.50 4.50 4.50 4.50	5.00 5.00 5.00 5.00 7 5.00 7 5.00 7 5.00 7 5.00 7 5.00	5.50 5.50 5.50 5.50 5.50 5.50 5.50 5.50	6.00 6.00 6.00 6.00 6.00 6.00 6.00 6.00	6.50 6.50 6.50 6.50 6.50 6.50 6.50 6.50	7.00 7.00 7.00 7.00 7.00 7.00 7.00 7.00	7.50 7.50 7.50 7.50 7.50 7.50 7.50 7.50	8.00 8.00 8.00 8.00 8.00 8.00 8.00 8.00	8.50 8.50 8.50 8.50 8.50 8.50 8.50 8.50	9.00 9.00 9.00 9.00 9.00 9.00 9.00 9.00	BPB EPB-D5 EPB-D5 MPB BP6 BP6 BP6 BP3 BP1

	Transitions	CV	CE		Transitions	CV	CE
BPA	$227.2 \rightarrow 211.9^{\rm a}$	-50	-22	BP-8	$245.0 \rightarrow 120.9^{\rm a}$	14	20
	$227.2 \rightarrow 132.9^{\rm b}$	-50	-26	BP-8	$245.0 \rightarrow 150.9^{\rm b}$	14	20
Cl-BPA	$261.1 \rightarrow 182.0^{\rm a}$	-56	-30		$199.0 \rightarrow 120.8^{\rm a}$	36	20
	$261.1 \rightarrow 210.0^{\rm b}$	-56	-22	4-OH-BP	$199.0 \rightarrow 104.8^{\rm b}$	36	18
Cl ₂ -BPA	$295.0 \rightarrow 215.9^{\rm a}$	-74	-30	DED. A	$213.0 \rightarrow 169.0^{\rm a}$	36	20
	$295.0 \rightarrow 243.9^{\rm b}$	-74	-24	PFBuA	$213.0 \rightarrow 5.6^{\rm b}$	36	20
Cl ₃ -BPA	$329.0 \rightarrow 249.8^{a}$	-52	-32		$263.0 \rightarrow 219.0^{\rm a}$	36	20
	$329.0 \rightarrow 277.9^{\rm b}$	-52	-24	PFPeA	$263.0 \rightarrow 89.7^{\rm b}$	36	20
Cl ₄ -BPA	$365.0 \rightarrow 313.9^{a}$	-50	-28		$313.0 \rightarrow 269.0^{\mathrm{a}}$	36	20
	$365.0 \rightarrow 285.9^{\rm b}$	-50	-32	PFHxA	$313.0 \rightarrow 119.0^{\rm b}$	36	20
MPB	$151.1 \rightarrow 91.8^{a}$	-38	-22		$363.0 \rightarrow 319.0^{\mathrm{a}}$	36	20
	$151.1 \rightarrow 135.8^{\rm b}$	-38	-14	PFHpA	$363.0 \rightarrow 333.0^{\text{b}}$	36	20
EPB	$165.1 \rightarrow 91.9^{\rm a}$	-38	-24		$413.0 \rightarrow 369.0^{\rm a}$	36	20
EFD	$165.1 \rightarrow 136.6^{\rm b}$	-38	-16	PFOA	$413.0 \rightarrow 194.0^{\rm b}$	36	20
PPB	$179.1 \rightarrow 91.8^{a}$	-42	-24	PFOS	$499.0 \rightarrow 80.0^{\rm a}$	36	20
PPB	$179.1 \rightarrow 136.1^{\text{b}}$	-42	-16	PFUS	$499.0 \rightarrow 52.0^{\rm b}$	36	20
מחת	$193.1 \rightarrow 91.4^{a}$	-42	-24		$241.2 \rightarrow 223.0^{\rm a}$	-46	-22
BPB	$193.1 \rightarrow 136.1^{\text{b}}$	-42	-16	BPA-d ₁₆	$241.2 \rightarrow 141.9^{\rm b}$	-46	-32
DD 1	$214.9 \rightarrow 136.8^{\rm a}$	2	18	EDD 1	$170.1 \rightarrow 92.1^{a}$	-38	-24
BP-1	$214.9 \rightarrow 105.1^{\rm b}$	2	32	EPB-d ₅	$170.1 \rightarrow 136.0^{\rm b}$	-38	-16
DD 2	$245.1 \rightarrow 134.8^{\rm a}$	-40	-16	ן תם 1	$193.1 \rightarrow 109.8^{\rm a}$	18	16
BP-2	$245.1 \rightarrow 108.9^{\rm b}$	-40	-22	$BP-d_{10}$	$193.1 \rightarrow 81.8^{\rm b}$	18	30
0 ח ל	$229.0 \rightarrow 150.8^{\rm a}$	4	20	MDEOA	$417.0 \rightarrow 371.0^{\rm a}$	36	20
BP-3	$229.0 \rightarrow 104.9^{\rm b}$	4	18	MPFOA	$417.0 \rightarrow 168.0^{\rm b}$	36	20
	$275.0 \rightarrow 150.9^{\rm a}$	14	18				
BP-6	$275.0 \rightarrow 94.9^{\rm b}$	14	34				

Table 1 Transitions and optimized potentials for UHPLC-MS/MS analysis

^a SRM transition used for quantification; ^b SRM transition used for confirmation CV: Cone voltage (V); CE: Collision energy (eV)

Table 2Analytical and statistical parameters

	b	$\mathbf{S}_{\mathbf{b}}$	% R ²	LOD	LOQ	LDR
	$(g ng^{-1})$	$(g ng^{-1})$	70 IX	$(ng g^{-1})$	$(ng g^{-1})$	$(ng g^{-1})$
BPA	$8.40 \cdot 10^{-4}$	$2.72 \cdot 10^{-6}$	99.8	2	7	7 - 250
Cl-BPA	$1.00 \cdot 10^{-3}$	8.72 · 10 ⁻⁵	99.9	1	4	5 - 250
Cl ₂ -BPA	$3.30 \cdot 10^{-4}$	7.09 · 10 ⁻⁶	99.9	3	9	9 - 250
Cl ₃ -BPA	6.47 · 10 ⁻⁴	$3.43 \cdot 10^{-6}$	99.8	2	7	7 - 250
Cl ₄ -BPA	9.50· 10 ⁻⁴	$4.02 \cdot 10^{-6}$	99.9	3	9	9 - 250
MPB	$5.24 \cdot 10^{-3}$	$2.09 \cdot 10^{-5}$	99.9	0.2	0.5	0.5 - 125
EPB	$3.50 \cdot 10^{-3}$	$1.70 \cdot 10^{-5}$	99.9	0.6	2	2 - 125
PPB	$7.20 \cdot 10^{-3}$	$1.80 \cdot 10^{-4}$	99.8	0.3	1	1 - 125
BPB	$6.00 \cdot 10^{-3}$	8.92 · 10 ⁻⁵	99.9	0.4	1	1 - 125
BP-1	$1.40 \cdot 10^{-1}$	$3.45 \cdot 10^{-3}$	99.9	0.5	2	2 - 125
BP-2	$8.00 \cdot 10^{-3}$	$3.48 \cdot 10^{-5}$	99.9	0.3	1	1 - 125
BP-3	8.60 · 10 ⁻²	$3.50 \cdot 10^{-4}$	99.9	0.5	2	2 - 125
BP-6	3.96 · 10 ⁻²	$7.40 \cdot 10^{-4}$	99.9	0.7	2	2 - 125
BP-8	$7.40 \cdot 10^{-2}$	$1.00 \cdot 10^{-3}$	99.9	0.9	3	3 - 125
4-OH-BP	5.30 · 10 ⁻¹	$1.45 \cdot 10^{-3}$	99.9	0.8	3	3 - 125
PFBuA	$1.90 \cdot 10^{-3}$	$2.57 \cdot 10^{-5}$	99.9	4	12	12 - 250
PFPeA	$5.73 \cdot 10^{-3}$	$3.45 \cdot 10^{-5}$	99.9	1	4	4 - 125
PFHxA	$1.75 \cdot 10^{-2}$	$1.20 \cdot 10^{-3}$	99.5	2	5	5 - 125
PFHpA	$1.75 \cdot 10^{-2}$	2.80 · 10 ⁻⁴	99.9	2	5	5 - 125
PFOA	$3.00 \cdot 10^{-2}$	$2.30 \cdot 10^{-3}$	99.4	1	4	4 - 125
PFOS	$3.64 \cdot 10^{-2}$	$5.00 \cdot 10^{-4}$	99.9	0.6	2	2 - 125

b, slope; S_b , slope standard deviation; R^2 , determination coefficient; LOD, limit of detection; LOQ, limit of quantification; LDR, linear dynamic range

	Spiked	Found ^a	RSD	Recovery		Spiked	Found ^a	RSD	Recovery
	$(ng mL^{-1})$	(ng mL ⁻¹)	(%)	(%)			(ng mL ⁻¹)	(%)	(%)
	25.0	26.5	10.1	105.9		5.0	4.6	9.3	92.1
BPA	125.0	128.8	7.4	103.0	BP-3	25.0	24.9	3.4	99.5
	250.0	247.9	3.6	99.2		125.0	126.3	3.8	101.0
	25.0	24.1	8.7	96.2		5.0	5.4	14.2	107.4
Cl-BPA	125.0	130.9	13.4	104.7	BP-6	25.0	26.8	2.5	107.2
	250.0	240.0	9.4	96.6		125.0	127.7	4.1	102.2
	25.0	24.3	8.7	97.2		5.0	5.7	5.3	113.8
Cl ₂ -BPA	125.0	121.3	4.3	97.1	0 חת	25.0	24.8	0.8	99.1
	250.0	241.2	2.6	96.4	BP-8	125.0	119.7	12.2	95.8
	25.0	27.0	8.9	108.0		5.0	5.0	5.3	99.0
Cl ₃ -BPA	125.0	135.9	5.6	107.1	4-OH-BP	25.0	24.7	6.1	98.9
	250.0	258.0	4.3	103.2		125.0	128.0	9.7	102.0
	25.0	26.5	5.0	106.0		25	24.6	1.1	98.4
Cl ₄ -BPA	125.0	124.9	8.3	99.9	PFBuA	125	126.5	2.9	101.2
	250.0	250.0	10.8	100.0		250	249.5	10.0	99.8
	5.0	5.4	8.8	107.2		5.0	4.9	4.9	98.5
MPB	25.0	25.0	10.8	100.1	PFPeA	25.0	25.0	7.4	100.0
	125.0	128.5	3.4	102.8		125.0	129.5	5.1	103.6
	5.0	5.2	6.3	103.5		5.0	4.4	7.8	88.0
EPB	25.0	23.8	7.0	95.3	PFHxA	25.0	24.0	8.9	96.1
	125.0	125.8	4.3	100.6		125.0	126.7	3.3	101.3
	5.0	5.5	12.5	109.7		5.0	5.5	10.3	110.1
PPB	25.0	26.0	6.5	104.1	PFHpA	25.0	23.8	5.7	95.1
	125.0	123.0	5.6	98.4		125.0	125.2	5.3	100.1
	5.0	4.9	10.9	97.8		5.0	4.9	9.1	99.1
BPB	25.0	24.7	7.8	98.7	PFOA	25.0	26.7	5.1	106.9
	125.0	125.0	9.1	100.0		125.0	141.0	5.4	112.8
-	5.0	4.9	14.5	98.5		5.0	5.5	2.0	109.4
BP-1	25.0	24.5	10.9	98.0	PFOS	25.0	25.8	9.6	103.2
	125.0	127.4	11.9	101.9		125.0	128.6	2.5	102.9
	5.0	5.6	13.9	108.9					
BP-2	25.0	27.0	12.7	107.8					
DF-2	125.0	127.0	3.7	101.5					

Table 3			
Recovery assay,	precision	and trueness	of the method

^a Mean of 18 determinations; RSD: relative standard deviation

	*Mean amount for each volunteer (SD) ng g ⁻¹									
	BPA	MPB	EPB	PPB	BPB	BP-1	BP-2			
M01	ND	21 (1)	9.0 (0.3)	69 (4)	5.8 (0.3)	ND	2.8 (8.1)			
M02	ND	ND	ND	ND	3.5 (0.3)	4.3 (0.2)	D			
M03	45 (3)	33 (2)	ND	107 (4)	4.4 (0.3)	116 (4)	1.5 (5.0)			
M04	12.3 (0.6)	18.7 (0.6)	D	80 (6)	9.4 (0.5)	29 (1)	5.8 (4.1)			
M05	ND	ND	ND	ND	ND	ND	ND			
M06	9.2 (0.6)	10.2 (0.6)	9.0 (0.6)	11.6 (0.6)	5.7 (0.3)	12.5 (0.6)	D			
	BP-3	4-OH-BP	PFPHxA	PFPHpA	PFOA	PFOS				
M01	D	ND	D	D	10.6 (0.5)	4.9 (0.4)				
M02	7.0 (0.3)	ND	D	D	14.8 (0.6)	5.4 (0.2)				
M03	8.5 (0.5)	D	D	D	23.9 (0.7)	9.9 (0.5)				
M04	5.2 (0.2)	D	5.5 (0.4)	7.1 (0.4)	20.0 (0.9)	6.8 (0.3)				
M05	D	ND	ND	ND	D	D				
M06	10.5 (0.7)	ND	D	D	18.0 (0.7)	6.8 (0.4)				

Table 4	
Application to hair samples	

* Mean of 36 analysis (12 samples per volunteer / 3 replicates a day); ND, not detected (< LOD); D: detected (>LOD and <LOQ); SD, standard deviation