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Nuclear Physics in the Era of Quantum Computing and
Quantum Machine Learning

José-Enrique García-Ramos,* Álvaro Sáiz, José M. Arias, Lucas Lamata,
and Pedro Pérez-Fernández

In this paper, the application of quantum simulations and quantum machine
learning is explored to solve problems in low-energy nuclear physics. The use
of quantum computing to address nuclear physics problems is still in its
infancy, and particularly, the application of quantum machine learning (QML)
in the realm of low-energy nuclear physics is almost nonexistent. Three
specific examples are presented where the utilization of quantum computing
and QML provides, or can potentially provide in the future, a computational
advantage: i) determining the phase/shape in schematic nuclear models, ii)
calculating the ground state energy of a nuclear shell model-type
Hamiltonian, and iii) identifying particles or determining trajectories in
nuclear physics experiments.

1. Introduction

In this perspective review, we discuss the link between low-
energy nuclear physics and the emerging research field of quan-
tum computing,[1] which includes quantum simulations and
quantum machine learning (QML) techniques. While both re-
search fields have their own distinct problems and applications,
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they can be combined in a fruitful col-
laboration to yield new and relevant ad-
vancements. Although quantum simula-
tions in nuclear physics havemade progress
in recent years, they have mainly focused
on toy models or simple scenarios. How-
ever, the utilization of QML techniques
in low-energy nuclear physics is very lim-
ited. The objective of this perspective is to
showcase the value of studying the fields
of nuclear physics and quantum comput-
ing. We provide examples and highlight
the significant potential for researchers in
both domains. Indeed, several long-term
plans and white papers have already con-
sidered and promoted these new research
avenues such as refs. [2] and [3] (US

Department of Energy), the white paper[4,5] (US Department of
Energy, National Science Foundation, and National Institute of
Standards and Technology) or the NuPECC Long Range Plan
2024 (still under discussion).
The structure of this work is as follows: in Section 2, we present

the fundamentals of nuclear physics and its potential connec-
tions with quantum computing and QML. Next, in Section 3, we
provide a brief overview of quantum simulations and QML. In
Section 4, we discuss the current connections between quantum
simulations, QML, and nuclear physics, illustrating this through
a few examples such as: i) determining the shape/phase of a nu-
cleus using the time evolution of an appropriated observable, ii)
calculating the ground state energy of nuclei, and iii) identifying
particles and reconstructing particle trajectories. Finally, in Sec-
tion 5, we present our conclusions and provide an outlook for
future research.

2. The Nuclear Physics Realm

In this section, we provide a concise overview of three key aspects:
first, the most commonly employed nuclear physics models de-
signed for low-energy nuclear physics; second, the primary re-
search directions in nuclear physics within the realm of quantum
computing; and third, the latest applications of machine learning
(ML) in addressing nuclear physics problems.

2.1. Nuclear Models

The study of the atomic nucleus is difficult since it is a quan-
tummany-body systemwhere two types of nucleons, protons and
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neutrons, interact via a force that cannot be expressed in a closed
form starting from first principles[6] and, as a matter of fact, it
is intractable in the non-perturbative regime of the QCD. In ad-
dition, the number of particles is not large enough for the use
of the powerful statistical mechanic machinery,[6] therefore, it is
necessary to explicitly consider a large number of degrees of free-
dom. Because of that, to understand the nuclear structure, one
has to rely on nuclear models, which can only partially describe
the nuclear degrees of freedom. The situation is radically differ-
ent from the studies in quantum chemistry, where the interaction
is of Coulomb nature and therefore fully known.However, a large
number of particles should still be considered. In the atomic nu-
cleus, a natural center for the potential does not exist, as it is the
case of the atom, and the field that the nucleons feel is created by
the own nucleons. Therefore, it is not obvious whether a mean
field could be defined.[6] The theoretical description of the nu-
clear structure at low energy is based on three main approaches:
i) the microscopic approach whose basic realization is the shell
model[6,7] ii) themean-field approach,[7,8] and iii) themacroscopic
approach based on the liquid drop model.[7,9,10] These are briefly
described below.

a) The nuclear shell model provides a description of the behav-
ior of nucleons (protons and neutrons) in an atomic nucleus
based on the independent particle motion of nucleons, being
possible to define single particle orbits and, therefore, sin-
gle particle levels, that occupy the nucleons within the nu-
cleus, in a similar manner to electrons in an atom, i.e., in the
atomic shell model. The model assumes that nucleons move
in a mean field created by the whole set of nucleons. Once
the nucleons are distributed in shells, the residual interaction
between them is taken into account and the full diagonaliza-
tion of the Hamiltonian is required.[11] The shell model suc-
cessfully explains many nuclear properties, such as nuclear
stability, magic numbers (nuclei with particularly stable con-
figurations), nuclear spectra, and nuclear reactions.

b) The mean field, the beyond mean-field approximation and
the use of energy functional theories[7,8,12,13] rely on the as-
sumption that nucleons move independently in an effective
average potential generated by all other nucleons. The inter-
action can be obtained globally in a self-consistent way for the
whole mass table, fixing a set of free coefficients to reproduce
ground state properties of all known nuclei. This simplifica-
tion allows for the treatment of complex many-body systems
by reducing the problem to an effective single-particle prob-
lem. Theoretical foundations of mean-field models include:
i) theHartree-Fock orHartree-Fock-Bogoliubov formalism, ii)
density functional theory (DFT), and iii) mean-field potentials
and self-consistency. Applications ofmean-fieldmodels in nu-
clear structure include the calculations of nuclear binding en-
ergies and masses, nuclear deformation, and shape transi-
tions, shell structure and magic numbers, and collective mo-
tion and excitations, among others.

c) The collective model, also known as the liquid drop model,
treats the nucleus as a droplet of incompressible nuclear mat-
ter. This model assumes that the nucleus behaves as a classi-
cal liquid drop, with nucleons interacting through attractive
and repulsive forces. It explains nuclear phenomena by con-
sidering collective motion, such as rotation and vibration, of

the nuclear surface. The model successfully describes phe-
nomena such as nuclear deformation, fission, and certain as-
pects of nuclear spectra. Along the same lines, the Kumar-
Baranger model,[14–16] or the generalized collective model,
is an extension of the collective Bohr model.[9] It takes into
account the coupling between collective motion and single-
particle excitations within the nucleus. This model considers
both vibrational and rotational degrees of freedom and is es-
pecially useful for describing transitional nuclei that exhibit
characteristics of both vibrational and rotational motion.

These models and their extensions have contributed signifi-
cantly to our understanding of nuclear structure. The difficulty
in solving the nuclear physics problem, apart from the related
one with the interaction, is the dimension of the Hilbert space
that for medium-mass and heavy nuclei around the center of a
major shell, either in protons, neutrons or both, is far beyond the
present and even future computational capabilities using a di-
rect diagonalization of the system Hamiltonian. However, alter-
native techniques have been developed in the past decades such
as the Shell Model Monte Carlo method[17] or the Monte Carlo
Shell Model,[18] which introduced the QuantumMonte Carlo Di-
agonalization method. As a matter of fact, in the shell model, an
explosion of the dimension of the Hilbert space appears when a
large number of nucleons are distributed in large major shells.
Moreover, in order to explain certain phenomena, multi-particle-
hole excitations across two major shells, which generates a fur-
ther explosion of the Hilbert space dimension, are needed to be
included. In the case of the energy functional approach, themain
problem is related to the generation of states with defined quan-
tum numbers, i.e., to go beyond the mean field using, for in-
stance, the generator coordinate method,[7] which involves the
evaluation of integrals, which again can be computationally ex-
pensive. The use of quantum computing and, in particular, quan-
tum machine learning can open a new avenue to deal with these
nuclear problems in the near future.
Nowadays, the implementation of state-of-the-art nuclear shell

model or beyond mean-field problems in Noisy-Intermediate
Scale Quantum (NISQ) computers is not yet possible, because
of the reduced number of available qubits, but also due to the
accumulated gate errors, which promote the design of new al-
gorithms to work with these devices. Some simpler models that
retain the main characteristics of the aforementioned ones have
been recently used: i) the Lipkin-Meshkov-Glick (LMG) model[19]

that resembles the quadrupole-quadrupole nuclear interaction,
but it is of great interest in condensed matter and also describes,
in an approximate way, certain solid state systems and ii) the
Agassi model[20] that mimics the interplay between pairing and
quadrupole interactions as in the Kumar-Baranger model, or
iii) the family of exactly solvable models known as Richardson-
Gaudin models.[21,22]

2.2. Nuclear Physics and Quantum Computing

Nuclear physics is a discipline that faces problems that are
highly demanding computationally where quantum computing
can open a new avenue to deal with them. Here, we mention
some potential applications where quantum computing is or can
be employed in the nuclear physics realm:
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a) Quantum simulations: quantum computers could have the
potential to simulate quantum systems more efficiently than
classical computers.[23] This includes simulating the behav-
ior of atomic nuclei and nuclear interactions. The quantum
simulation of a nuclear system could allow us to gain deeper
insights into nuclear physics phenomena.[24,25]

b) Quantum algorithms for nuclear physics: quantum al-
gorithms, such as the Variational Quantum Eigensolver
(VQE)[26,27] and Quantum Phase Estimation (QPE),[1] have
been developed to solve problems in quantum chemistry,
where the quantummany-body problem is exponentially diffi-
cult to be treated on classical computers. Nuclear physics also
faces the same difficulty in solving its quantum many-body
problem. These algorithms can be applied to nuclear physics
problems, such as calculating nuclear energy levels or simu-
lating nuclear reactions.

c) Data analysis and optimization: nuclear physics experiments
generate vast amounts of data that need to be analyzed and op-
timized. Quantum computing techniques, such as QML algo-
rithms or quantum optimization algorithms, may offer novel
approaches to simulate and extract valuable insights from nu-
clear physics data.[28,29]

While the full extent of the connection between nuclear
physics and quantum computing is still being explored, it is al-
ready a potential area of collaboration and research. The develop-
ment of more powerful and scalable quantum computers may
provide new tools and techniques to address complex nuclear
physics problems.

2.3. Nuclear Physics and Machine Learning

In the last few years, ML has been applied to nuclear physics in
different tasks[30]:

a) Data analysis: nuclear physics generates large amounts of
experimental data. ML can help to process and analyze this
data efficiently to extract patterns, identify particles, perform
classifications, and make predictions. ML algorithms such as
neural networks can uncover hidden correlations and trends
in nuclear data.

b) Nuclearmodeling:ML can also be used to developmodels and
simulations in nuclear physics. Traditional nuclear physics
models often involve complex calculations and approxima-
tions. ML offers alternative approaches to nuclear modeling,
whereML algorithms can be used to construct empiricalmod-
els from nuclear data and improve prediction accuracy.

c) Particle detection and identification: in nuclear physics exper-
iments, it is crucial to identify and track charged particles. ML
has been successfully applied to particle detection and trajec-
tory reconstruction, which can enhance the precision and ef-
ficiency of data analysis. The recognition of patterns in large
dataset is of key importance and ML generative models can
enormously simplify this task.[31] Algorithms such as pattern
classifiers, convolutional neural networks (CNN), and parti-
cle tracking algorithms can also aid in particle identification
and reconstruction in nuclear detectors. An interesting appli-
cation of ML to particle detection is the improvement in track

seeding resulting from the use of artificial neural networks
(ANNs) and deep learning methods that produces a substan-
tially faster track reconstruction speed.[32,33] The combination
of ANNs, CNNs, and Variational Autoencoders (VAEs) im-
proves particle recognition in Cherenkov detectors,[34] while
ANNs contribute to the detection of photons produced in the
decays of hadrons in calorimeters.[35]

d) Experimental optimization: ML can assist in the optimiza-
tion of nuclear physics experiments. Optimization algorithms
such as genetic algorithms or reinforcement learning can
help finding optimal configurations of experimental param-
eters, thereby saving time and resources in data collection.

These are just a few areas where ML has been successfully
applied in nuclear physics. The intersection of both disciplines
offers exciting opportunities to improve data analysis, develop
more accurate models, and optimize experiments. As ML con-
tinues to evolve, its application in nuclear physics is likely to ex-
pand further.

3. Quantum Simulations and Quantum Machine
Learning

Quantum simulations[23] is a rapidly growing area of research in
which a quantum controllable system is employed to reproduce
the properties (either dynamical or static) of another quantum
system of interest. Over the past two decades, numerous pro-
posals, and experiments have emerged in this field, employing
various quantum simulator platforms such as trapped ions, su-
perconducting circuits, cold atoms, quantum photons, and nu-
clear magnetic resonance. The simulated quantum systems are
diverse and could be roughly grouped into condensed matter,
quantum chemistry, and high-energy physics, although this is
not an exhaustive list. Within the realm of quantum simulations,
a nascent field has emerged in recent years at the intersection of
many-body quantum systems and high-energy physics.[36]

Quantum hardware belongs mainly to one of three possible
categories: digital quantum simulators, analog quantum simu-
lators, and digital-analog quantum simulators.[37] Digital quan-
tum simulators allow to deal with a wide variety of systems,
as they have universality properties: they decompose the sim-
ulated quantum dynamics into elementary unitary gates, that
later on are implemented in the quantum simulator step by step.
The most usual way to do this is using the Lie-Trotter-Suzuki
expansion[1] and, in particular, its first-order approach, but it is
also possible to include higher-order terms. Another option is to
use theQuantumSignal Processing (QSP)[38] which is equivalent
to the second-order Lie-Trotter-Suzuki expansion but using fewer
resources. Finally, it is worth mentioning the Linear Combina-
tion of Unitaries (LCU), which is designed to implement opera-
tors either unitary or not.[39] The main drawback of digital quan-
tum simulators is that it is difficult to go beyond a few dozen
qubits with current technology, due to the accumulated fidelity
gate errors that are much larger for the two-qubit gates than for
the one-qubit ones.Moreover, the approximations used to express
the Hamiltonian in terms of single- and two-qubit gates induce
additional errors, called “Trotter errors” in short, that can be al-
ways reduced going to higher order approximations, but at the
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cost of using a larger number of quantum gates, thereby greatly
increasing the fidelity error.
Analog quantum simulators implement, in the quantum plat-

form, quantum dynamics following aHamiltonian that is similar
to the one of the simulated quantum system, by tuning some con-
trol parameters such as laser pulses, microwaves, etc. The advan-
tage of analog quantum simulators is that they are more scalable
than the purely digital ones as they incur less accumulated gate
and digital errors.
Finally, digital-analog quantum simulators aim at benefiting

from both paradigms, digital and analog, via combining large
analog blocks (which provide scalability) with digital steps (which
enable to simulate a wider variety of models than the purely ana-
log). This paradigm could be a way to achieve useful new knowl-
edge in NISQ computers in the near and mid term.[37]

The typical errors in a quantum simulator are the following
ones: accumulated gate error and digital error, as well as the ones
common to all quantum systems, such as decoherence due to
an uncontrollable coupling to the environment. Therefore, some-
times it is advisable to employ a master equation to theoretically
model a quantum simulation platform, as well as to interpret the
experimental results.[23]

QML[28,29] aims to connect the two fields of ML (in turn be-
longing to the more general field of artificial intelligence) and
quantum computing. The goal is either to employ quantum de-
vices to carry out more efficient ML calculations, or to use ML al-
gorithms to better control and analyze quantum systems. Today,
still in only a few examples, QML has proven a clear advantage
over ML using classical data. In ref. [40], the authors have studied
the conditions (“checklist”) that a learning problem should satisfy
to have a provable quantum speedup. Quantum systems produce
counter-intuitive patterns that are expected not to be easily gen-
erated by classical systems, hence, it is reasonable to postulate
that quantum computers may outperform the classical ones on
ML tasks.[29] Thus, it is sensible to aim at using quantum devices
to carry out some of the ML tasks that suffer from the so-called
dimensionality curse, far more efficiently. Namely, with less time
and energy resources expense.[28,29]

The field of QML has grown significantly in the past five years,
and several theoretical proposals, as well as experimental realiza-
tions have been produced on platforms such as superconducting
circuits, quantum photonics, and trapped ions.[41,42] QML mod-
els inspired by biology, i.e., quantum biomimetics, have been
proposed.[43] However, the use of QML protocols for the analysis
of nuclear physics is a relatively unexplored field so far, although
certain examples of use already exist.[44] Some of the quantum
algorithms being employed in QML are quantum versions of
standard ML ones, such as quantum supervised learning, quan-
tum unsupervised learning, and quantum reinforcement learn-
ing. QML algorithmsmay be divided into ideal protocols for scal-
able quantum computers, such as the Harrow-Hassidim-Lloyd
(HHL),[29] and near term algorithms, e.g., the variational quan-
tum eigensolver (VQE).[45] In the latter case, some promising
outcomes have been produced, which could perhaps enable new
knowledge of quantum systems in the near term. However, there
are also difficulties, such as barren plateaus, in which the opti-
mization protocol may end up stuck in a local minimum, and not
improve further. This problem seems to grow with system size,
and further ways of avoiding these issues should be developed.

The expressivity of variational quantumprotocols also plays a cru-
cial role, in the sense that a simple ansatz can not be enough to
capture the model features, but a too complicated ansatzmay be
too hard and costly to train. Much of the field relies on heuristics,
as well as trial and error, hence, it is hard to guarantee that a cer-
tain protocol will always work.[45] Furthermore, in recent years,
efforts in the field have also focused on studying whether noise
in quantummachine learning protocols is not only not detrimen-
tal inmany situations, but indeedmore useful than a purely ideal
system, at least in certain cases.[46]

4. Quantum Simulations and Quantum Machine
Learning for Low Energy Nuclear Physics

Having introduced in preceding sections some key aspects of nu-
clearmodels, quantum computing,ML andQML, we will explore
below three relevant examples.

4.1. Determination of the Shape of a Nuclear System through its
Time Evolution

Quantum Phase Transitions (QPTs) appear in quantum systems
at zero temperature when a sudden change in the ground-state
structure occurs under a change of a control parameter in the
Hamiltonian,[47] thus changing the shape of the system. A typi-
cal situation in which a QPT is present corresponds to Hamilto-
nians that can be written as two pieces with different symmetries
(A and B):

Ĥ = (1 − x)ĤA + xĤB (1)

This formulation allows us to investigate the interplay between
the two symmetries, A and B, by adjusting the control parameter
x, which determines the relative contribution of each symmetry
to the overall Hamiltonian. Under the formulation (1) two well
defined situations exist: A for x = 0, and B for x = 1. They cor-
respond, in the majority of cases, to dynamical symmetries.[48]

However, for x −values not equal to 0 and 1, the Hamiltonian
has no definite symmetry, and A and B compete among them-
selves. In spite of this lack of symmetry, interestingly enough,
the system remains having a structure close to A or B until the
critical point, x = xc, at which a sudden change in the system
structure appears (QPT). The existence of a QPT also implies a
sudden change in the so-called order parameter, which vanishes
in one of the phases (symmetric) and takes a nonzero value in the
other phase (broken or non-symmetric phase).[47] QPTs can be
classified accordingly to the Ehrenfest classification[49] in a sim-
ilar manner to the phase transitions that occur in macroscopic
systems at nonzero temperature.
In nuclear models, the shape/phase of the system is deter-

mined through mean-field calculations, although it can also be
explored using certain observables that can serve as proxies for
QPTs even in finite-size systems.[50] Is it possible to extract in-
formation about the phase/shape of the system using a differ-
ent approach? To answer this question in refs. [51, 52] the phase
diagram[53,54] of the Agassi model[20] has been determined explor-
ing the time evolution of a correlation operator using a quan-
tum simulator that generates instances to train a ML algorithm,
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Figure 1. Panel (a) Phase diagram of the extended Agassi Hamiltonian. For convenience, the rescaled parameters 𝜒 , Σ, and Λ are used (V = 𝜀𝜒

2j−1 ,

g = 𝜀Σ
2j−1 , and h = 𝜀Λ

2j−1 where 2j corresponds to the shell size). The red vertical planes represent second-order QPT surfaces. The green surface and the

blue vertical one correspond to first-order critical surfaces. The symbols represent the different possible phases of the system (see ref. [53]). Panels
(b–g) correspond to the exact time evolution of Cz(1, 2) for selected values of the control parameters. Reproduced with permission.[51] Copyright 2022,
American Physical Society.

i.e., defining a hybrid quantum-classical algorithm. The Agassi
model considers a two-level system with m −sites in each level.
For the fermion operators, two indexes are used: 𝜉 for the level
(+1 for the upper and −1 for the lower one) and m for the site
within each level. The Agassi Hamiltonian is interesting because
it includes the competition between the monopole–monopole
and the pairing interactions and mimics the Kumar-Baranger
model for nuclear structure. The Hamiltonian for the extended
Agassi model used in ref. [53] can be written as

H = 𝜀J0 − g
∑

𝜉,𝜉′=−1,1
A†
𝜉
A𝜉′ −

V
2
[(J+)2 + (J−)2] − 2hA†

0A0 (2)

where the operators in the Hamiltonian are all defined in terms
of fermion creation and annihilation operators, c†

𝜉,m and c𝜉,m,

J+ =
j∑

m=−j
c†1,mc−1,m = (J−)† (3)

J0 = 1
2

j∑
m=−j

(
c†1,mc1,m − c†−1,mc−1,m

)
(4)

A†
1 =

j∑
m=1

c†1,mc
†
1,−m = (A1)

† (5)

A†
−1 =

j∑
m=1

c†−1,mc
†
−1,−m = (A−1)

† (6)

A†
0 =

j∑
m=1

(
c†−1,mc

†
1,−m − c†−1,−mc

†
1,m

)
= (A0)

† (7)

The phase diagram for the extended Agassi model is depicted
in Figure 1a where the phase transition surfaces are clearly
marked together with a pictorial representation of the phases.
There, the gray oval corresponds to the BCS phase, the blue one
to the HF phase, the green crossed one to the HF-BCS phase,
the red sphere to the Symmetric phase and the open oval to the
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Valley phase. The phase diagram has been obtained analytically
using mean-field techniques.[53]

The Hamiltonian (2) can be easily mapped onto a spin Hamil-
tonian using the Jordan-Wigner (JW) mapping approach,[55,56]

which can later be experimentally implemented in a digital quan-
tum simulator. So far, the simulation has been performed for a
system with eight sites (N = 8, j = 2). This is a small size from
the point of view of QPT analysis, taking into account that the
phase of a given system is expected to be properly defined in the
large N limit. However, precursors of QPTs can be observed.[57]

Let us define the correlation function between two sites i, j of the
system as

Cz(i, j) =
⟨
𝜎zi ⊗ 𝜎zj

⟩
−
⟨
𝜎zi

⟩⟨
𝜎zj

⟩
(8)

where 𝜎ai are the Pauli matrices at site i for a = x, y, z. We will
consider as an ansatz that the time evolution of this function
with the state |↓1 ↓2 ↓3 ↓4 ↑5 ↑6 ↑7 ↑8 〉 can serve as a proxy to de-
termine the shape of the system and eventually find the loca-
tion of the phase transition surfaces. Observing such an evolu-
tion with the naked eye, one cannot provide any hint about the
shape of the system (see panels (b–g) of Figure 1 where the time
evolution is depicted for selected values of the Hamiltonian pa-
rameters). Therefore, the use of a ML technique can greatly help
classifying the obtained time evolution in terms of the different
possible shapes of the system. In particular, we will focus on
the use of a CNN (in ref. [51] a Multi-Layer Perceptron is also
used). To generate instances for training the CNN, a lattice in the
control parameter space was created with 9261 points, reserving
10% of them for testing purposes. The classical ML training was
performed using as input the exact evolution operator and also
approximating it with a Trotter expansion (using a number of
Trotter steps equal to six) to compute the expectation value of
Equation (8) over a given time range. The global accuracy ob-
tained for the correct determination of the phase was 98.7% for
the exact evolution, while 99.2% for the Trotter one. An appeal-
ing fact is that the accuracy of the procedure is even larger when
using the Trotter approximation with a small number of steps,
which has clear practical advantages, because it implies the use
of quantum circuits of smaller depth. A possible explanation is
that the larger oscillations obtained in the approximate evolu-
tion, compared with the exact one, gives rise to exaggerated pat-
terns that are easier to recognize, but this is an issue not fully
understood.[51] In Figure 2, the results of the CNN analysis are
presented for both the exact evolution and the Trotter one for se-
lected values of the Hamiltonian parameters. The reason why the
time evolution of a given matrix element is able to describe the
phase of the system is that it is connected with the complete spec-
trum of the Hamiltonian, assuming that the state is not an eigen-
state of it. For instance, a vibrational-like nuclear Hamiltonian
will generate a vibrational spectrum, while a rotational Hamilto-
nian will produce a sequence l(l+ 1). In the first case, the nucleus
has a spherical shape, while it is well deformed in the second
situation.
Very recently, a similar work has been published, but for the

Isingmodel[58] (note that latter, an extended version to larger spin
models was published in ref. [59]). It shows that the phase di-
agram in the axial next-nearest-neighbor Ising (ANNNI) model

can be obtained using a quantum convolutional neural network
(QCNN). The considered Hamiltonian can be written as

H =
N∑
i=1

(
𝜎xi 𝜎

x
i+1 − 𝜅𝜎

x
i 𝜎

x
i+2 + h𝜎zi

)
(9)

where 𝜎ai are the Pauli matrices at position i, the coefficients 𝜅
and h are taken as positive and N is an even number correspond-
ing to the number of sites in the lattice. The phase diagram of
the model is quite rich and three phases are known which are
separated by two second-order phase transition lines. The phase
diagram of the quantum model at temperature T = 0 K has been
studied mainly using the renormalization group or Monte Carlo
techniques. To detect the phase in this case, a QCNN was used.
The function proposed to train and characterize the phase is
the ground state energy of the system. In order to get this en-
ergy, a VQE is used and it serves to create instances to train the
QCNN. The circuit that implements the QCNN is depicted in
Figure 3.
In order to train the QCNN and fix the variational parameters,

𝜃i, the cross entropy  loss function between the classical labels,
written as a function of the control parameters, and the predic-
tions on the training region of the phase space was used.[58] In
Figure 4 the theoretical phase diagram of the model is depicted
superimposing the training points (red dots) and the predicted
phase transition lines (red lines). Note that the training data are
only the red dots placed over the axis, while the prediction of the
model corresponds to the whole plain. The appealing fact of this
work is that only very few points were used over the 𝜅 = 0 or
h = 0 axes but, nevertheless, the whole phase diagram, includ-
ing the phase transition lines, was correctly reproduced. It is re-
ally remarkable the ability of the QCNN to disentangle the com-
plete phase diagram, including the point with h = 0 and 𝜅 = 0.5
where three phases coexist. Note that in ref. [58], the unsuper-
vised anomaly detection ML technique has also been used, but
only a qualitative agreement is obtained to reproduce the phase
diagram (Figure 4).
To finish this subsection, we can compare the twomodels ana-

lyzed. In both cases, the wave functions are generated in a quan-
tum manner. In the case of the Agassi model the phase of the
system is determined through the time evolution of a given state,
while for the Ising model, it is done using a VQE. For the learn-
ing part, a CNN is constructed in the Agassi model, while in the
Ising model a QCNN is employed. In both cases, the labeling
of the classes is done thanks to the analytical knowledge of the
phase diagram, although in the case of the Ising model this is
true only for part of the phase diagram. In the Agassi model only
supervised ML is used, while in the Ising case unsupervised ML
(AD) is also considered, although only with qualitative results.

4.2. Shell Model Calculations: the Ground State of Nuclear
Systems

The determination of the ground state of a nuclear system is one
of the central problems of nuclear physics, as it is for quantum
chemistry to determine the structure of a given molecule. The
exact treatment of this problem is really far from our present
knowledge, and consequently, the use of some kind of effective

Adv. Quantum Technol. 2024, 2300219 2300219 (6 of 17) © 2024 The Authors. Advanced Quantum Technologies published by Wiley-VCH GmbH
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Figure 2. Quantum phase prediction of the system via the CNN. The graphs show the probability that the system is in a given phase for each point,
predicted only from the time evolution of the Cz(1, 2) correlation function; both the exact solution and the one obtained from the Trotter expansion with
nT = 6 are presented for the initial state |↓1 ↓2 ↓3 ↓4 ↑5 ↑6 ↑7 ↑8 〉 with 𝜖 = 1. QPTs are shown moving through the following lines of the phase space: a)
Σ = 0.5 and Λ = 0.5 moving from 𝜒 = 0 (Symmetric) to 𝜒 = 2 (HF - broken symmetry monopole–monopole induced Hartree-Fock type); b) 𝜒 = 0.5
and Λ = 0.5 moving from Σ = 0 (Symmetric) to Σ = 2 (BCS - broken symmetry pairing induced BCS type); c) 𝜒 = 0.5 and Σ = 0.5 moving from Λ = 0
(Symmetric) to Λ = 2 (Combined broken symmetry HF-BCS); d) 𝜒 = 1.5 and Λ = 0.5 moving from Σ = 0 (HF) to Σ = 2 (BCS); e) 𝜒 = 1.5 and Σ = 0.5
moving from Λ = 0 (HF) to Λ = 2 (Combined HF-BCS); (f) 𝜒 = 0.5 and Σ = 1.5 moving from Λ = 0 (BCS) to Λ = 2 (Combined HF-BCS). See the text for
the definition of the phases. The dashed black line in each graph denotes the theoretical critical point between phases for each case. Reproduced with
permission.[51] Copyright 2022, American Physical Society.

model is required (see Section 2). One of these models is the
nuclear shell model, which provides an ideal starting framework
for quantum simulations. Below, different key examples of pro-
posed quantum simulations to calculate ground state energies in
nuclear systems are discussed. All of them correspond to the pio-
neering implementation of the VQE technique[26,27] to obtain the

ground state of an atomic nucleus. The VQE is a variational pro-
cedure that strongly depends on the ansatz used. It is a hard prob-
lem to disentangle whether the trial state is the most appropriate
or not. To help along this line, a work in which a reinforcement
learning optimization approach is carried out over a variational
quantum circuit[60] has been proposed. Thismethod shows a very

Adv. Quantum Technol. 2024, 2300219 2300219 (7 of 17) © 2024 The Authors. Advanced Quantum Technologies published by Wiley-VCH GmbH

 25119044, 0, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/qute.202300219 by U

niversidad D
e Sevilla, W

iley O
nline L

ibrary on [05/05/2024]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense

http://www.advancedsciencenews.com
http://www.advquantumtech.com


www.advancedsciencenews.com www.advquantumtech.com

Figure 3. Circuit architecture: VQE states (blue) are the input of the quantum CNN composed of free rotations R (yellow), convolutions C (light green),
pooling P (red), and a fully connected layer FC (dark green). Reproduced from ref. [58]. This figure is licensed under CC BY-SA 4.0.

remarkable performance in reproducing the ground state energy
of the LiH molecule.
One of the first works in nuclear physics using the VQE

was the study of the ground state structure of deuteron in a
quantum computer discussed in ref. [24]. The deuteron was
treated using a Hamiltonian extracted from a pionless effective
field theory such that it can be simulated on a quantum chip.
The ground state is obtained using a variational wave-function
ansatz based on the unitary coupled-cluster theory (UCC). In
the case of the deuteron, the dimension of the Hilbert space is
very small and only three single-particle states have been con-
sidered. However, for the extrapolation to larger systems, the
harmonic-oscillator variant of Lüscher’s formula for finite-size

Figure 4. Phase diagram of the ANNNI model predicted by the trained
QCNN for N = 6. Reproduced from ref. [58]. This figure is licensed under
CC BY-SA 4.0.

corrections to the ground-state energy has been used and, as a
result, the energy of the ground state is only 0.5% away from
the exact value. The expectation value of the different terms ap-
pearing in the Hamiltonian and evaluated in two different quan-
tum computers are presented in Figure 5. The 𝜃 variable in the X
axis of Figure 5 is the corresponding variational parameter. This
type of calculation opens the possibility of dealing with heav-
ier systems that are not accessible via calculations on classical
computers.
Another example of the use of the VQE is refs. [61, 62] where

a widely used model that sketches the nuclear interaction, such
as the LMGmodel,[19] was implemented in a quantum computer
and the ground state was determined using the VQE. In this case,
the design of the trial wave function is guided by symmetry con-
siderations of the model and it makes possible to use a single
variational parameter, 𝜃, in the wave function for four particles,
which is a rather good approximation,

|𝜓(𝜃)⟩ = cos2 𝜃| ↓↓↓↓⟩ + sin2 𝜃| ↑↑↑↑⟩ + − 1√
12

sin 2𝜃(| ↑↑↓↓⟩

+ | ↓↓↑↑⟩ + | ↓↑↓↑⟩ + | ↓↑↑↓⟩ + | ↑↓↓↑⟩ + | ↑↓↑↓⟩)
(10)

Also focused in the LMG model, in ref. [63] the equation of
state method, which is an extension of the VQE, is employed to
obtain excited states of the system. In this work, two levels of
complexity were used, RPA (Random Phase Approximation) or
second RPA (SRPA) and they found no noticeable difference be-
tween both. Therefore, RPA is themost appropriate choice. Other
recent publications of interest include,[64] where the VQE is ap-
plied to the LMGandAgassimodels, taking into account the sym-
metry of the problem to construct the variational wave function;
as well as ref. [65], where the same strategy is applied to the J1 −
J2 Heisenberg model.
So far, we have seen two types of approaches for defining

the variational state, either using the UCC or using the sym-
metry of the Hamiltonian to guide the choice of the trial wave

Adv. Quantum Technol. 2024, 2300219 2300219 (8 of 17) © 2024 The Authors. Advanced Quantum Technologies published by Wiley-VCH GmbH
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Figure 5. Experimentally determined energies for expectation values of the Pauli terms needed to calculate the ground state energy of deuteron as
obtained on the QX5 and 19Q chips. Symbols stand for the experimental results, while lines stand for the theory. Reproduced with permission ref. [24].
Copyright 2018, American Physical Society.

function. In both cases, they were applied to small systems. Next,
we will present in detail a set of works where the considered
nuclei are heavier and, therefore, their Hilbert spaces are much
larger. In these cases, the authors consider as trial wave function
the UCC ansatz with Adaptive derivative-assembled problem-
tailored (ADAPT)-VQE,[66] which seems to provide a clear ad-
vantage over other VQE approaches. In general, ADAPT-VQE is
superior to the random or lexical ordering of the excitation opera-
tors in terms of convergence and circuit depth. The ADAPT-VQE
defines the ansatz by selecting operators from a pool,

{𝜏1, 𝜏2,… , 𝜏N} (11)

that presents the largest influence on the gradient, i.e., the largest
value of

||||
𝜕E
𝜕𝜃i

||||𝜃i=0
= |⟨𝜓|[H, 𝜏i]|𝜓⟩| (12)

where H is the system Hamiltonian and 𝜃i correspond to the
variational parameters. Once a new operator from the pool has
been selected, k optimization steps of the ground state energy
are carried out until convergence is reached, before moving to a
new term from the pool. It is worth mentioning that with this
method, the number of trainable parameters does not grow ex-
ponentially with the size of the system. The number and type of
operators in the pool can be limited thanks to symmetry consid-
eration, which can strongly reduce the complexity of the calcula-
tion. This method has been used for 6Li,[67] reaching a precision
for the energy of a 3.81% for the ground state (relative difference
with the exact result, obtained through a direct diagonalization)
and 0.12% for the first excited one. The calculation was run in
the IBM Quantum 27 qubits architecture ibmq_mumbai using
error mitigation. The authors noticed that because the number

of nuclear states grows very rapidly with the number of valence
nucleons, the scaling of the VQE application becomes unfeasible,
needing the use of symmetry arguments to reduce the number
of operators in the pool.
A step forward to improve the use of ADAPT-VQE is to start

with amore correlated initial state, not just the Hartree-Fock one.
In ref. [68], the authors use the UCC with ADAPT-VQE, but they
include two-particle two-hole excitations in the initial state, ob-
taining a rather good approximation for the ground state energy
of 6He, 6Be, 20O and 22O. In Figure 6, the circuit to implement
a Hartree-Fock state including two-particle two-hole excitations
is shown.
The latest case to be discussed[69,70] also corresponds to the

use of ADAPT-VQE to obtain the ground state within the nu-
clear shell model, but in this case, the authors present a rather
general formalism and a large set of potential nuclei can be con-
sidered. The formalism is intended to work in the p shell (0p1/2,
0p3/2 orbitals), the sd shell (1s1/2, 0d3/2, and 0d5/2 orbitals) or the pf
shell (0f7/2, 0f5/2, 1p3/2, and 1p1/2 orbitals). The number of single-
particle states, either for protons or neutrons, are 6, 12, and 20, re-
spectively. The type of two-body interaction to deal with the above
shells is the Cohen-Kurath interaction in the p shell, the USDB
in the sd shell and the KB3G interaction in the pf shell. The di-
mension of the Hilbert space will correspond to the product of
the dimension of the states for protons and neutrons, which de-
pend in a combinatorial way on the size of the single-particle
space and the number of valence particles. This makes unfea-
sible a direct diagonalization when the dimension is well above
of several millions, even using the Lanczos algorithm. Quantum
computation has the capability to avoid this problem using the
ADAPT-VQE approximation. The fermion nuclear shell model
Hamiltonian is easily mapped into Pauli matrices using a Jordan-
Wigner (JW) transformation. The JW mapping only requires
as many qubits as single-particle states, independently of the

Adv. Quantum Technol. 2024, 2300219 2300219 (9 of 17) © 2024 The Authors. Advanced Quantum Technologies published by Wiley-VCH GmbH
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Figure 6. Circuit for including a limited number of two-particle, two-hole configurations on top of the Hartree-Fock solution for two particles in six states.
Reproduced with permission.[68] Copyright 2022, American Physical Society.

number of valence particles, which means that the dimension
of the problem remains constant for all nuclei belonging to the
same major shell. In this work, the authors explore the complete
quantum circuit design to estimate the necessary resources to
carry out the nuclear shell-model calculations in regions where
the standard approaches cannot be used. In Figure 7, a quan-
tum circuit with five layers to prepare the ground state of the
nucleus 18O is shown. The multiqubit gates in boxes are defined
as Upq

rs (𝜃) = ei𝜃T
pq
rs , where Tpq

rs is a two-particle promotion operator
present in the pool of operators of the ADAPT-VQEmethod. The
state defined in Figure 7 has an energy accuracy better than 10−6.
An important conclusion of this work is that the accuracy for

the ground state energy obtained with this approach is increasing
faster than the growth of the number of CNOT gates. In Figure 8,
the error value together with the number of used CNOT gates is
depicted and one can easily note that the errors decay exponen-
tially while the number of CNOT gates increases polynomially.
The results obtained are very encouraging, having computed the
ground state energy for 6Be (10−8 relative error), 6Li, 8, 10Be (10−7

relative error), 13C (10−5 relative error), 18, 19, 20, 22O (10−6 relative
error), 20, 22, 24Ne (10−2 relative error), 42Ca (10−8 relative error),
and 44, 46, 48, 50Ca (10−2 relative error).
Finally, tightly connected with the use of the shell model or

other simple models, there are a few other publications that de-
serve to be mentioned. In ref. [71] the comparison between the
use of qubits and qudits is explored in the Agassi model. In
ref. [72], the authors studied the effect of using effective model
spaces in the quantum computation. In ref. [73], the authors cal-
culate the position of the neutron drip line in oxygen isotopes em-
ploying a VQE. A quantum imaginary time evolution is used in
ref. [74] to solve the Hartree-Fock equations. The issue of restor-
ing symmetries or preparing states with a given symmetry is ana-
lyzed in depth in refs. [75–78]. Finally, in ref. [79], a technique for
preparing excited states is presented and in ref. [80], a neutrino-
nucleus scattering calculation has been implemented in a quan-
tum computer. The work[81] is of particular interest, where a
VQE entanglement forging based variational algorithm, employ-
ing generative neural networks, is used to obtain the ground-state

Figure 7. Circuit to prepare the 18O ground state. Reproduced from ref. [69]. This figure is licensed under CC BY-SA 4.0.
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Figure 8. Evolution of the relative error for the ground-state energy (top
panel) and number of CNOT gates (bottom panel) for selected examples.
Reproduced from ref. [69]. This figure is licensed under CC BY-SA 4.0.

energy of several nuclei in the sd shell. The use of this method al-
lows to reproduce the ground-state energy quite accurately while
reducing the number of qubits needed.

4.3. Particle Identification and Track Reconstruction

The detection and identification of particles, including the mea-
surements of their properties, such as energy, charge, linear,
or angular momentum is the cornerstone of nuclear and high
energy physics experiments since the pioneering works of E.
Rutherford making collide 𝛼 particles with a thin foil of gold un-
til nowadays. Nuclear physics and high energy physics experi-
ments present many aspects in common. In particular, the need
to know the precise trajectory of the particle inside the detec-
tor system or the large number of events to be analyzed (much
larger in the case of high energy physics) are standard tasks in
the experiments of both research areas. In nuclear physics, 𝛾-
ray spectra is a standard technique for isotope identification and
fundamental to nuclear structure studies. It is critical to deter-
mine the energy spectrum of the nuclei and to obtain informa-
tion about transition probabilities between states, which is essen-
tial to disentangle the internal structure of the states. Also, the
spectroscopy of charged particles, 𝛽 or 𝛼, is of great relevance. So
far, no QML techniques have been used in nuclear spectroscopy,
but classical ML methods have already been applied (see Sec-
tion 2.3). In particular, in ref. [82] the authors show that clas-
sical CNN and Transformer-Encoder methods outperforms de-
terministic algorithms in challenging classification problems in

low-energy physics, such as distinguishing single from double 𝛽
events. In high energy physics, practical examples of the applica-
tion of QML already exist,[44,45] which could serve as inspiration
for nuclear physics. On the one hand, the use of quantum gener-
ative models can gain some advantage over the classical ones due
to the probabilistic character of quantummeasurements. On the
other hand, the analysis of data of quantum character, as the ones
coming from nuclear physics, using QML is expected to be per-
formed in a faster way than with classical ML. Here, we describe
two QML techniques already applied to high energy physics that
could be easily implemented in low-energy nuclear experiments.
The first example corresponds to the determination of the pre-

cise trajectory followed by a charged particle or a photon (which
ionizes the active volume of the detector), which is commonly
known as tracking. Tracking consists in associating the hits ob-
served in the system of detectors to a given particle, and then,
reconstructing its trajectory. Tracking is the cornerstone of parti-
cle path reconstruction, which is compulsory to identify the na-
ture of events of interest. In high luminosity experiments, as hap-
pens with LHC experiments, the number of events to be ana-
lyzed is really large and, therefore, to carry out the tracking of
particles becomes a challenge. Nowadays, state-of-the-art algo-
rithms are based on the use of Kalman filters. This approach is
rather reliable and robust, providing good physics performance.
Its main problem is related to its scalability, which is expected to
be worse than quadratic with the increase in the number of si-
multaneous collisions. Therefore, it is of great interest to explore
other approaches to speed up the process, including deep ma-
chine learning techniques. Such a new avenue is based on image-
based interpretation of the detector data where the use of CNN
could provide high-accuracy results. The HEPtrkX project[83] and
its evolution, EXAtrkX,[84] followed this approach and it is based
on graph neural networks (GNNs) to perform hits and segments
classification.
A step further corresponds to the use of a GNN architecture

from a quantum computing perspective, implementing the orig-
inal networks as quantum circuits.[85] In this work, the analysis
begins with the TrackML dataset,[86] a publicly available dataset
that consists of simulated measurements of many detector layers
in a cylindrical geometry. The detector layers are arranged using
a model layout that is common to most LHC experiments. This
set of data is first preprocessed prior to the training. The Hep-
TrkX team proposed a GNN to perform segment classification.
The model consists of three types of networks. The first one is an
input network, the second one is the edge network and the third
one is the node network. The model has an overall accuracy of
99.5% in correctly identifying the track.
To transform the GNN into a quantum circuit, many modifi-

cations are needed. For simplicity, the authors only take into ac-
count the edge network and do not use the input and the node
networks. Next, the Tree Tensor Network (TTN) is considered
among the hierarchical quantum classifiers as the quantum cir-
cuit to replace the neural network layer. The input (taken from the
TrackML dataset) is encoded in qubits and then the TTN circuit
is applied. The TTN circuit is composed of Ry and CNOT gates.
Ry gates start with random parameters that will be tuned later.
The CNOT gate is used to introduce correlations between qubits
so that their values are not independent. At the end of the circuit,
there is a measurement. The structure of the quantum circuit is

Adv. Quantum Technol. 2024, 2300219 2300219 (11 of 17) © 2024 The Authors. Advanced Quantum Technologies published by Wiley-VCH GmbH
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Figure 9. Qubit tree tensor network (TTN) representation of the Quantum Edge Network. Reproduced from ref. [85]. This figure is licensed under CC
BY-SA 4.0.

depicted in Figure 9. The quantum circuit was trained over two
epochs. This low number is used to simplify as much as possible
the quantum circuit. The data were divided randomly into train-
ing and test sets with a ratio of 9 to 1. The model is trained using
stochastic gradient descent and weighted binary cross entropy.
The training performance of the model can be seen in Figure 10.
Note that the accuracy obtained is noticeably small, but this is
mainly due to the oversimplification of the model. At the end of

the day, this is still a proof-of-principle prototype of a complete
quantum GNN structure.
The second example that we will present corresponds to the

application of QML to identify if a jet contains a hadron formed
by a b (bottom) or b̄ quark[87] at the moment of production. To
this end, the Variational Quantum Classifier (VQC) is used with
simulated data from the LHCb experiment. LHCb is a single-
arm spectrometer designed to study b and c (charm) hadrons

Figure 10. Training loss (on the left) and validation accuracy (on the right) of the TTN in two full epochs. Reproduced from ref. [85]. This figure is licensed
under CC BY-SA 4.0.
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Figure 11. Schematic representation of the two jet tagging methods. In
the exclusive method, the information comes from a particle and a muon
(lower jet); in the inclusive method, the information is extracted from the
jet constituents (upper jet). Reproduced from ref. [87]. This figure is li-
censed under CC BY-SA 4.0.

in the forward region of proton–proton collisions. The analysis
is restricted to a sample of jets that belong to these two cate-
gories, labeled either as b jets or as b̄ jets. Hence, we have a binary
classification problem. The QML approach presented in this ap-
plication belongs to the category of inclusive algorithms (upper
jet of Figure 11, i.e., the information is extracted from the jet con-
stituents). The figure of merit of this work corresponds to the
tagging power, defined as

𝜖tag = 𝜖eff (2a − 1)2 (13)

where ϵeff is the tagging efficiency and a the accuracy, i.e., the
fraction of correctly tagged jets with respect to the tagged jets.
TheQML procedure is implemented with a VQCwhich is a hy-

brid quantum-classical algorithm to perform classification tasks
based on a Parametrized Quantum Circuit (PQC). The structure

of the PQC consists in i) the data encoding, ii) the variational cir-
cuit and, iii) the prediction. Two different PQCs are used in this
work, the Amplitude Embedding and the Angle Embedding. In
Figure 12, we depict the quantum circuit for the first case. The
probability of identifying a b or a b̄ is connected with the mea-
surement of 𝜎z, i.e. 〈𝜎z〉.
In this work, two different datasets are used, namely, themuon

and the complete one. As usual, both are split into training and
testing sub-datasets: about 60% of the samples are used in the
training and the remaining 40% are used to test, evaluate and
compare the classifiers.
In Figure 13, the value of the tagging power as a function of

jet pT and 𝜂 parameters is presented for the classical and quan-
tum classifiers. The results are similar for the different classi-
fiers, without any obvious bias. The tagging power decreases as
the pT value increases because for larger values of pT the identi-
fication is more difficult. The deep neural network (DNN) shows
slightly better performance compared to the Angle Embedding
algorithm. In any case, both algorithms reach better results
than the Amplitude Embedding model and the muon tagging
approach.
An additional analysis of the value of the tagging power as a

function of the number of training events shows that, for a large
number of events, the performance of the quantum algorithm
is similar to the DNN, but when the number of training events
decreases, the quantum algorithm keeps very high performance,
while the DNN is not able to perform a good classification. There-
fore, with respect to the DNN, the QML method reaches optimal
performance with a lower number of events (see Figure 14). This
special feature of QML algorithms deserves an analysis in depth.
It is worth mentioning the two recent works[88,89] where the re-

construction of trajectories is formulated in terms of a quadratic
unconstrained binary optimization (QUBO). This way, one can
group two or three hits from consecutive detector layers and bi-
nary values represent if a given doublet or triplet corresponds to a
particle track. In general, one has to build a QUBO Hamiltonian
and its ground state will correspond to the desired solution.

5. Conclusion and Outlook

The field of nuclear physics, especially in the study of low-energy
phenomena, is still in its infancy concerning the utilization of
quantum computing. Although machine learning techniques

Figure 12. Circuit representation of the Amplitude Embedding model. In blue, variables that are embedded into the amplitudes of a quantum state. In
red, trainable gates. In green, CNOT gates entangling qubits with a circular topology. Reproduced from ref. [87]. This figure is licensed under CC BY-SA
4.0.
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Figure 13. Tagging power ϵtag with respect to (a) jet pT and (b) jet 𝜂 for the muon dataset. Reproduced from ref. [87]. This figure is licensed under CC
BY-SA 4.0.

have found extensive application in nuclear physics, the explo-
ration of Quantum Machine Learning (QML) in the context of
low-energy nuclear physics remains largely uncharted. This cre-
ates a significant gap in the scientific literature.
The aim of this perspective is to provide non-experts with es-

sential insights to comprehend the current research landscape

Figure 14. Accuracy of the (red) Angle Embedding structure and (blue)
DNN on the muon dataset versus the number of training events. Repro-
duced from ref. [87]. This figure is licensed under CC BY-SA 4.0.

in nuclear structure studies and to introduce three noteworthy
applications of quantum computing and QML in the realm of
nuclear physics. The envisioned outcome is to inspire future re-
search efforts. The three applications considered are: i) determin-
ing the phase and shape of a simplified nuclear system, ii) calcu-
lating the ground state of a system using a shell model Hamil-
tonian, and iii) identifying particle trajectories and particles in
nuclear experiments.
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