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Abstract: Kinetic analysis remains a powerful tool for studying a large variety of reactions, which
lies at the core of material science and industry. It aims at obtaining the kinetic parameters and
model that best describe a given process and using that information to make reliable predictions in a
wide range of conditions. Nonetheless, kinetic analysis often relies on mathematical models derived
assuming ideal conditions that are not necessarily met in real processes. The existence of nonideal
conditions causes large modifications to the functional form of kinetic models. Therefore, in many
cases, experimental data hardly obey any of these ideal models. In this work, we present a novel
method for the analysis of integral data obtained under isothermal conditions without any type of
assumption about the kinetic model. The method is valid both for processes that follow and for those
that do not follow ideal kinetic models. It consists of using a general kinetic equation to find the
functional form of the kinetic model via numerical integration and optimization. The procedure has
been tested both with simulated data affected by nonuniform particle size and experimental data
corresponding to the pyrolysis of ethylene-propylene-diene.

Keywords: kinetic analysis; kinetic modelling; model free; polymer degradation; isothermal

1. Introduction

The philosophy of kinetic analysis in materials is to determine the parameters and
the physico-geometrical model that describe gas–solid or solid–solid reactions to make
predictions about their progress in a wide range of conditions. It is a powerful tool with
applicability to a myriad of processes that lie at the core of the materials manufacturing
industry and materials applications [1–4]. Isothermal kinetic analysis (IKA) is extensively
employed for studying a large number of heterogeneous processes, including calcium
looping under realistic conditions [5,6], curing [7–9], hydration and dehydration [10,11],
redox [12,13], and crystallization [14]. From the experimental point of view, isothermal
experiments are straightforward as temperature is maintained constant while the evolution
of the process is monitored by changes in mass, heat flow, spectroscopic or diffraction mea-
surements, changes in volume or dimensions, changes in physical properties, etc. [15]. Thus,
IKA is used to analyse data recorded with a large variety of techniques, including thermo-
gravimetry [16,17], differential scanning calorimetry [18], in situ XRD synchrotron [19,20],
and Raman spectroscopy [21]. Moreover, from the kinetic point of view, a significant
advantage of IKA is related to the fact that the shape of the extent of the reaction curve is
directly linked to the kinetic model [22], unlike linear heating rate experiments where the
curves always exhibit a sigmoidal shape regardless of the obeyed model [23–25]. More-
over, IKA simplifies the determination of the apparent activation energy, as it has been
demonstrated that the resulting values of activation energy are independent of the assumed
kinetic model [26,27].

The model-fitting approach is, by far, the most common procedure for IKA. Thus, the
model from the list of literature ideal kinetic models that provides the best fit is considered

Materials 2023, 16, 1851. https://doi.org/10.3390/ma16051851 https://www.mdpi.com/journal/materials

https://doi.org/10.3390/ma16051851
https://doi.org/10.3390/ma16051851
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/materials
https://www.mdpi.com
https://orcid.org/0000-0001-6982-1411
https://doi.org/10.3390/ma16051851
https://www.mdpi.com/journal/materials
https://www.mdpi.com/article/10.3390/ma16051851?type=check_update&version=2


Materials 2023, 16, 1851 2 of 13

to be the true kinetic model of the process [28,29]. Thus, it is assumed that the process
follows one of these ideal models. Moreover, although, as stated before, the value of the
calculated activation energy is independent of the assumed model, it is crucial to perform
accurate predictions on the reaction’s evolution with time [30]. A problem arises when
none of the ideal models can properly describe the process. Actually, models are deduced
assuming ideal conditions that are not necessarily met in real systems. For instance, it is
known that the particle size distribution (PSD) strongly affects the kinetics and leads to a
significant deviation from ideal models, which are deduced assuming that all particles are
identical [31–33]. Consequently, ideal models are often insufficient to adequately describe
the reaction’s progress.

Perez-Maqueda et al. proposed using an empirical equation, a modified version of the
Setak–Berggren equation (MSBE), that covers most kinetic models found in the literature
and their deviation due to nonideal conditions present in experiments [34]. These authors
applied the MSBE to combine kinetic analysis, which simultaneously analysed differential
data recorded under different conditions. Unfortunately, the integral of the MSBE does
not have an analytical solution, and therefore, MSBE could not be directly applied to the
analysis of integral isothermal data.

Here, we propose a novel method that uses the MSBE to calculate, through the
optimization and numerical integration of data recorded under isothermal conditions, the
kinetic model obeyed by the reaction without any assumption about it. Using numerical
simulations, we prove that the method can be effectively applied to reactions described
by models modified by nonideal conditions. Finally, the procedure is also tested with
its application to the kinetic analysis of experimental data (the thermal decomposition of
ethylene-propylene-diene).

2. Experimental Section

The ethylene-propylene-diene (EPDM) used in this work was supplied by ExxonMobil
(Vistalon Rubbers, Barcelona, Spain): 69 wt% ethylene, 5 wt% ethylidene norbornene,
and 26 wt% propylene. The thermal degradation of EPDM was studied under isothermal
conditions using a thermogravimetric analyser Q5000IR from TA instruments (New Castle,
DE, USA). The pyrolysis was conducted at 683, 693, 698, and 703 K. The experiments
started with a heating ramp at 300 K·min−1 from room temperature to the temperature
of the isotherm. Then, the temperature was maintained constant for two hours in the
experiments with EPDM. The experiments were carried out in nitrogen with a flow rate of
200 mL/min. Since methods for kinetic analysis are quite sensible to errors associated with
measurements, the influence of experimental conditions needed to be carefully considered
when recording data [35,36]. For instance, the conclusion of kinetic analysis can be strongly
conditioned by the flow rate used to conduct the experiments or/and the characteristics of
the reactor employed [37]. The EPDM thermal degradation experiments were conducted
with small amounts of material (10 mg) to prevent heat and mass transfer phenomena and
obtain experimental data representative of the reaction.

3. Theoretical Foundation and Simulations

In general, the progress of solid–gas reactions far from equilibrium can be described
by [38]:

dα

dt
= A· exp

(
− E

RT

)
· f (α) (1)

where A is the pre-exponential factor, E is the apparent activation energy, T stands for
temperature, t is the time, α is the extent of reaction (calculated as the ratio between the
mass converted at the instant t to the total mass converted once the process is completed),
and f (α) is the kinetic model that describes the progress of the process. Under isothermal
conditions (T = constant), Equation (1) becomes:

dα

dt
= k· f (α) (2)
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k is the reaction rate constant. This later equation can be integrated to obtain a
relationship between α and t:

g(α) = k·t (3)

where:
g(α) =

∫ dα

f (α)
(4)

is the integral form of the kinetic model. Using a modified Sestak–Bergen equation (MSBE)
originally proposed in [34] as an empirical kinetic model:

f (α) = C(1− α)nαm (5)

where C, n, and m are the parameters to be determined from the best fitting to experimental
data. Equation (4) can be written as:

g(α) =
∫ dα

(1− α)nαm (6)

Since experimental data are discretely recorded, we need to approximate Equation (6)
with a sum. Then, the integral form of g at the instant t = tN is estimated by:

g(t = tN , n, m) =
N

∑
i=0

α(ti+1)− α(ti)

(1− α(ti))
nα(ti)

m (7)

where N is the number of measurements up to the instant t = tN , and α(ti) is the extent
of the reaction at t = ti. The lapse of time between two consecutive measurements is
∆t = ti+1 − ti with t0 = 0 s. With this approximation, Equation (3) becomes:

g(t = tN , n, m) = ktN (8)

The linear relationship will be only satisfied for a particular selection of the values for n
and m corresponding to the empirical kinetic model expressed by Equation (5). Hence, it is
an optimization problem that can be algorithmically solved by trying different combinations
of n and m while assessing the R-squared correlation coefficient (R2) when representing g
versus t to see which combination yields the closest value to 1. In this work, we employed
a method based on the approximation to the optimum value. We started varying n and
m within the range [−2, 2] with a difference of 0.1 between two consecutive values tried.
The initial range of values for (n, m) was selected taking into account the values needed to
fit the kinetic models from the literature, which are provided in Table 1. Thus, the initial
possible values for this couple of parameters (n, m) were (−2, −2), (−2, −1.9), (−2, −1.8),
(−2, −1.7) . . . (−1.9, −2), (−1.9, −1.9), (−1.9, −1.8), (−1.9, −1.7) . . . (2, −2), (2, −1.9),
(2,−1.8), (2,−1.7) . . . For each couple, we calculated the value of (R2), when conducting the
linear fitting to g versus t, g being calculated through Equation (7). The couple that yielded
the value of R2 closest to 1 was used as the starting point for the next step of the optimization
process. Let us suppose those values were (−1.5, 1). We repeated the procedure with n and
m varying within the range [−1.6, −1.4] and [0.9, 1.1], respectively. In this second step, we
decreased to 0.01 for the difference between two consecutive values. Therefore, the possible
values were (−1.6, 0.9), (−1.6, 0.91), (−1.6, 0.92), (−1.6, 0.93) . . . (−1.59, 0.9), (−1.59, 0.91),
(−1.59, 0.92), (−1.59, 0.93) . . . (−1.4, 0.9), (−1.4, 0.91), (−1.4, 0.92), (−1.4, 0.93) . . . Again,
the couple that resulted in the value of R2 closest to 1 was used as the starting point for the
next step of the optimization process and so on. The process might be repeated indefinitely.
In this work, we determined the values of n and m with a resolution of three decimal places.
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Table 1. Values of the parameters n and m needed for reconstructing some kinetic models from
the literature.

Kinetic Model f(α) n m

Contracting area: R2 (1− α)1/2 1/2 0
Contracting volume: R3 (1− α)2/3 2/3 0

1D Avrami–Erofeev equation: F1 (1− α) 1 0

2D Avrami–Erofeev equation: A2 2(1− α)[− ln(1− α)]1/2 0.806 0.515

3D Avrami–Erofeev equation: A3 3(1− α)[− ln(1− α)]2/3 0.748 0.693

2D diffusion: D2 1/[− ln(1− α)] 0.425 −1.008

3D diffusion, Jander equation: D3 [3(1− α)2/3]/
{

2
[
1− (1− α)1/3

]}
0.951 −1.004

Since it is fulfilled that:
ln k = ln A− E

RT
(9)

Using a set of isothermal curves, the pre-exponential factor and the apparent activation
energy can be determined from the slope of the line ln k versus 1/T. Thus, according to
Equation (9), the slope, S, of the best-fitting line to ln k versus 1/T and the apparent
activation energy are related by E = −R·S, while the relationship between the intercept, I,
and the pre-exponential factor is A = exp I.

3.1. Simulation Using the Tridimensional Avrami–Erofeev Equation A3

A set of isothermal curves (Figure 1a) was simulated using the Runge–Kutta method
by assuming isothermal conditions, i.e., 600, 610, 620, and 630 K, an activation energy,
E = 150 kJ·mol−1, a preexponential factor, A = 1010 s−1, and a tridimensional Avrami–
Erofeev model given by:

f (α) = 3(1− α)[− ln(1− α)]2/3 (10)

When simulated curves are fitted by kinetic models different from the one used in
the simulations, the plot of g(α) versus time does not show a linear trend. As a way of
example, Figure 1b depicts the plot of g(α) versus time for an A2 kinetic model. As clearly
shown in the figure, the dots do not follow the linear trend as the kinetic model is not
the correct one. Nevertheless, data are linearized by employing the MSBE equation with
n = 0.748 and m = 0.693 (Figure 1c). These n and m values were determined by employing
the optimization procedure described above. Figure 1d shows some ideal kinetic models
from the literature normalized to their value for α = 0.5 together with the MSBE with the
n and m values resulting from the optimization procedure. As expected, the MSBE with
n = 0.748 and m = 0.693 perfectly matches the ideal kinetic model A3 that was used for
the simulation, yielding straight lines in Figure 1c. From the slope of such lines, values
of the rate constant, k, for different temperatures are calculated (Equation (3)). Figure 2
shows ln k as a function of 1/T for the data plotted in Figure 1c. According to Equation (9),
the pre-exponential factor and the apparent activation energy can be calculated from the
intercept and slope, respectively, of the best-fitting line in Figure 2, yielding E = 150 kJ and
A = 1011 s−1. These values are identical to those used to simulate the curves represented
in Figure 1a.
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Figure 1. (a) Data simulated under isothermal conditions (600, 610, 620, and 630 K) using the kinetic
model A3 with E = 150 kJ·mol−1 and A = 1011 s−1. (b,c) Plot of g(α) vs. t for the ideal kinetic model
A3 and the MSBE with n = 0.748 and m = −0.693. (d) Normalized kinetic models used in this study.
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Figure 2. ln k as a function of 1/T. The values of the constant rate are equal to the slope of the
best-fitting line of the data plotted in Figure 1c.

The method presented here can be applied to the most commonly used ideal kinetic
models from the literature, often employed for analysing gas–solid reactions. Table 1
collects the values of the parameters n and m needed to reconstruct some ideal models [34].
These values were determined by fitting Equation (5) to the f (α) ideal model equation.
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3.2. Simulation Using the Contracting Volume Model R3 with Particle Size Distribution

For a solid material consisting of spheres with a lognormal particle size distribution,
PSD, (Figure 3 with standard deviation σ = 0.5 and expected value µ = ln(10−5)) that
thermally decomposes according to the contracting volume kinetic model (R3), it has
been previously demonstrated that the extent of reaction of particles with radius r can be
expressed as a function of time by [31]:

αr(t) = 1−
(

1− k′

r
t
)3

(11)
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k′ = A′· exp(−E/RT) is the inward growth velocity with A′ = constant. Note that,
when k′t = r, the reaction is completed. Thus, the overall value of the extent of the reaction
considering the PSD is given by:

α(t) = ∑ Rαr(t)
1

rσ
√

2π
exp

(
− (ln r− µ)2

2σ2

)
∆R (12)

where ∆r is the interval of sizes in which the volume fraction is considered to be constant.
Using Equations (4) and (5) and assuming isothermal conditions (600, 610, 620, and

630 K), four curves with E =150 kJ·mol−1 and A′ =3.36·104 m·s−1 were simulated
(Figure 4a). Table 2 collects the values of the R-squared correlation coefficient (R2) ob-
tained when using the integral form of some ideal kinetic models to determine which one
best linearizes g(α) as a function of time.

Table 2. Values of R2 obtained in the linear fitting of g(α) versus time using different ideal kinetic
models from the literature and the MSBE model obtained by optimization.

Kinetic Model 〈R2〉

MSBE: n = 1.584, m = −0.019 0.9999
R3 0.6844
R2 0.6283
A2 0.5823
A3 0.4934
D2 0.7642
D3 0.9893
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Figure 4. (a) Data simulated under isothermal conditions (600, 610, 620, and 630 K) using Equations
(4) and (5) and assuming the PSD represented in Figure 3. Subfigures (b,c) respectively show g(α) vs.
t for the ideal kinetic model D3 and the MSBE with n = 1.584 and m = −0.019. (d) Normalized kinetic
models used in this study.

These ideal models fail at yielding a linear relationship; not even the 3D diffusion
model (D3), which has the highest correlation coefficient, provides a linear relationship
for g(α) vs. t, as clearly shown in Figure 4b. On the contrary, the MSBE with n = 1.584
and m = −0.019 linearizes the data with R2 = 0.9999, as seen in Figure 4c where data
calculated from the simulation are plotted as dots and the best-fitting lines are represented
as dashed lines. The values of n and m were determined using the optimization procedure
described above.

Figure 4d shows the ideal kinetic models and the MSBE (n = 1.584 and m = −0.019)
normalized to their values when α = 0.5 as a function of the extent of the reaction. The
normalized values of the derivative, calculated as (∆α/∆t)/(∆α/∆t)|α=0.5 from the data
shown in Figure 4a, were also plotted in the same graph as the open circles. As expected
from the results discussed before, the normalized derivative matches the MSBE with
n = 1.584 and m = −0.019.

Figure 5a shows ln k as a function of 1/T for the curves plotted in Figure 4b (assuming
a D3 kinetic model) and Figure 4c (MSBE obtained from the optimization procedure).
As observed, the points follow a linear trend, the best-fitting lines being parallel to each
other, which indicates that the value of the activation energy, E = 150 kJ·mol−1, is identical
for both models (D3 and MSBE). This fact agrees with our previous work where it was
mathematically proven that the apparent activation energy values can be determined
regardless of the model used to fit the experimental data recorded under isothermal
conditions [26]. Actually, this is a unique feature of isothermal kinetic analysis. Nonetheless,
the pre-exponential factor does depend on the considered model: A = 3.13 · 1011 s−1 for the
MSBE and A = 5.60 · 1010 s−1 for D3.
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Figure 5. (a) Arrhenius plot: ln k as a function of 1/T for the kinetic models D3 and the MSBE
(n = 1.584 and m = −0.019). (b,c) Comparison between the curve simulated at T = 600 K and the
curves predicted with the parameters obtained with the models D3 and the MSBE, respectively.

Two sets of isothermal curves (T = 600 K) were simulated using the Runge–Kutta
method and the kinetic parameters obtained, as explained above, for the D3 (Figure 5b) and
the MSBE (Figure 5c) models and were plotted together with the simulated curve obtained
for an R3 kinetic model with a particle size distribution (dots) used for the analysis. It is
quite clear that only the curve for the MSBE model matches the curve simulated with a
particle size distribution. These results are consistent with previous works that highlight the
importance of selecting the proper kinetic model to reconstruct the experimental data [30].
Actually, with the parameter values obtained for the kinetic model D3, the time predicted
to achieve α = 0.8 is 156 s, which is ~50% larger than the actual time interval required to
reach that value of the extent of the reaction. On the other hand, the curve built using the
model based on the MSBE perfectly matches the simulated curve.
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A common approach to validate the results of the isothermal kinetic analysis consists
of using the parameters and the model obtained to predict the results of experiments
conducted under conditions different from isothermal ones. Figure 6 shows the results
of simulating a linear heating experiment with a heating rate of 5 ◦C/min and the same
kinetic parameters considered for the simulation of the isothermal curves. The predictions
using the two models compared in Figure 5 are plotted as continuous lines. The perfect
agreement between the data simulated and the MSBE (n = 1.584 and m = −0.019) is clear,
whilst the prediction using the kinetic model D3 fails at fitting the curve.
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4. Application to an Experimental Case: The Thermal Decomposition of
Ethylene-Propylene-Diene

Figure 7a includes the time evolution of the extent of the reaction during the isothermal
pyrolysis of EPDM under conditions described in the experimental section. As shown in
Figure 7b, the data can be linearized by employing the MSBE equation with n = 1.054 and
m = 0.455. The obtained kinetic model resembles a scission kinetic model, as might be
observed in Figure 7c, where two scission models have been also plotted for comparison
with the resulting MSBE. Indeed, scission has been previously identified as the kinetic
mechanism driving the thermal decomposition of EPDM and other polymers [39,40].
Furthermore, the values of the apparent activation energy and the pre-exponential factor
determined from the Arrhenius plot (Figure 7d), E = 242 kJ·mol−1 and A = 2.4·1017 min−1,
respectively, are in good agreement with those previously reported for this material [40].

To test our capability to predict the results of experiments conducted in conditions dif-
ferent from isothermal, using the kinetic parameters and the model obtained, we conducted
experiments on the pyrolysis of EPDM under linear heating conditions employing two dif-
ferent heating rates, namely, 2.5 K/min and 10 K/min. The results of these experiments are
plotted as dots in Figure 8, while the predictions obtained using the kinetic parameters of
the analysis are represented as solid lines. As might be observed, there is a good agreement
between the prediction and the experimental results, which validates the kinetic analysis of
EPDM’s pyrolysis.
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Figure 7. (a) Experimental data corresponding to the pyrolysis of EPDM in isothermal conditions:
683, 693, 698, and 703 K. (b) Plot of g(α) vs. t for the MSBE with n = 1.051 and m = 0.455. (c) Arrhenius
plot: ln k as a function of 1/T. (d) Comparison between the MSBE obtained in the analysis and the
scission kinetic models L2 and L8.
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Figure 8. Comparison between the curves recorded under linear heating conditions (2.5 K/min and
10 K/min) and the data predicted using the kinetic parameters obtained in the isothermal kinetic
analysis. Predictions are plotted as solid lines, whilst experimental data are represented by dots.

5. Conclusions

In this work, we presented a novel method for the kinetic analysis of isothermal
integral data that, unlike conventional analyses, allows for the determination of the kinetic
parameters and the model without previous assumptions. The procedure relies on a modi-
fied version of the Sestak–Berggren equation to find the kinetic model via the numerical
integration of experimental data and optimization.
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It was demonstrated that this method can be successfully applied to reactions obeying
the ideal kinetic models from the literature. In particular, the procedure was applied
to simulated data generated assuming the Avrami–Erofeev kinetic model A3, allowing
for the equivalent Sestak–Berggren equation and the kinetic parameters to be obtained
with accuracy.

Furthermore, the procedure covers deviations produced by nonideal conditions uncon-
sidered when deriving the kinetic models, such as nonuniform particle size distributions.
In this work, this was demonstrated in the case of a contracting volume kinetic model
modified by a lognormal particle size distribution.

Finally, the method was validated by its application to experimental data correspond-
ing to the thermal decomposition of EPDM.

The analysis tool presented in this work might be employed for studying any process
obeying a unique kinetic model with a single value of the apparent activation energy.
Nonetheless, further research needs to be conducted to derive a similar tool for analysing
reactions happening in two or more steps with different kinetic models and values of the
activation energy.
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