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Resumen en castellano

Comenzamos esta memoria de tesis doctoral con un resumen en castellano de sus princi-
pales resultados. Dichos resultados estdn estudiados en profundidad en la segunda parte
de la tesis (a partir de la pdgina 31), en la que se incluyen demostraciones y ejemplos
para un mejor entendimiento de la materia analizada, y que estd integramente redactada

en inglés.

Introduccién

En esta tesis estudiamos problemas de optimizacién desde el punto de vista de la teoria
de juegos cooperativos. En problemas de optimizacién el objetivo es determinar un plan
éptimo para maximizar (o minimizar) ciertos beneficios (o costes). Si el plan dptimo
depende sélo de la decisién de un tdnico agente, nos seria suficiente aplicar técnicas de
optimizacién clésica. Pero no es extrafio encontrar problemas de optimizacién en los que
un grupo de agentes (personas, empresas, partidos politicos,...) con objetivos distintos,
y a menudo encontraros, tienen el control de los recursos necesarios para producir el
beneficio. Dichos recursos pueden ser dinero, medios de transporte, carreteras, ... Por lo
tanto, el plan 6ptimo puede depender de las decisiones de varios agentes. Normalmente,
cuando los agentes unen sus recursos, €l beneficio global crece, luego parece 1égico pensar
que dichos agentes trabajardn juntos para obtener un mejor resultado. Pero ésta no es
la 1inica cuestién del problema, pues una vez que se ha conseguido el beneficio global
surge una nueva pregunta: jcémo se reparte el beneficio obtenido? Todo cl problema en
conjunto se denomina juego cooperativo. A lo largo de este trabajo daremos respuesta
a las cuestiones anteriormente propuestas para diversos juegos cooperativos, todos ellos

teniendo como problema raiz un problema de programacién lineal. Para este fin hemos
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dividido la tesis en 6 capitulos. Los dos primeros estdn dedicados a dar al lector una breve
introduccion sobre programacion lineal, teoria de grafos y teoria de juegos cooperativos,
con el fin de que no sea necesario consultar otros trabajos para un buen entendimiento de
los capitulos posteriores. Los cuatro tltimos capitulos de la tesis abordan cuatro diferentes

clases de juegos.

En el capitulo 1 presentamos los problemas de programacion lineal. Dichos proble-
mas estdn pensados para identificar un conjunto de variables maximizando o minimizando
una funcién objetivo lineal sujeta a un conjunto de restricciones que son también lineales.
Algunos de los problemas de optimizacién con los que trabajaremos en esta tesis se pueden
formular mediante la teoria de grafos. Un grafo es un conjunto de puntos que pueden estar
unidos entre s{ mediante arcos. En este capitulo también damos una breve introduccién a
la teorfa de grafos. También presentamos algunos de los modelos més conocidos de la pro-
gramacion lineal, ya que seran de utilidad en el estudio de las cuatro clases de problemas
que presentaremos en capitulos posteriores. En dichos problemas consideraremos que un
conjunto de agentes tiene el control de los recursos necesarios para producir beneficios,
un juego. Las clases que presentamos en esta tesis tienen la particularidad de que los
agentes implicados pueden realizar acuerdos entre ellos, los llamados juegos cooperativos.
Los juegos en los que no se permite que los jugadores lleguen a acuerdos se llaman juegos

no cooperativos, pero no entran en el marco de esta tesis.

En el capitulo 2 introducimos la clase de juegos cooperativos con utilidad transferi-
ble. También mostramos diferentes formas de repartir (compartir) los beneficios (costes)
generados. Adema&s también presentamos algunas de las clases de juegos cooperativos
mas conocidas, que serdn utilizadas en posteriores capitulos. Para terminar el capitulo se
introduce brevemente una generalizacién de juegos cooperativos en la que cada jugador

tiene varios objetivos diferentes y encontrados.

El capitulo 3 analiza més en detalle una de las clases de juegos presentadas en el
capfitulo 2, los juegos de produccién lineal. Owen (1975) probé que dicha clase de juegos es
totalmente balanceada, dando ademds un reparto del core que se puede calcular mediante
un problema de programacién lineal. Més recientemente, en un articulo firmado por van
Gellekom y otros (2000), se proporciona una caracterizaciéon axioméatica de las soluciones
de Owen en los juegos de produccién lineal. Atin asi no siempre es l6gico dar como reparto

de un juego de produccién lineal una solucién de Owen, ya que a veces dichos repartos dan
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pago cero a jugadores que son absolutamente necesarios para obtener beneficio. Por lo
tanto el resultado de dicho reparto puede ser econémicamente contradictorio. En esta tesis
evitamos dichos problemas con la introduccién de un nuevo conjunto de soluciones para
juegos de produccién lineal, llamados repartos de Owen Extendido. En dichos repartos
suponemos que los jugadores juegan un nuevo juego, en el que se han desecho previamente
de los recursos sobrantes. M4s tarde aplicamos las técnicas propuestas por Owen a el

nuevo juego.

En el capitulo 4 abordamos el principal problema presentado en esta tesis, los jue-
gos de cadenas de abastecimiento. Dichos juegos surgen cuando se considera la posi-
ble cooperacién entre los nodos involucrados en un problema particular de cadenas de
abastecimiento definido en la primera seccién del capitulo. Los problemas de cadenas de
abastecimiento se sitian entre los modelos més complejos estudiados actualmente en inves-
tigacién operativa. Incluyen diferentes aspectos que van desde localizacién o distribucién
hasta horarios o gestién de inventarios. La parte de optimizacién de los problemas de cade-
nas de abastecimiento se ha estudiado en profundidad desde muchos puntos de vista. Sin
embargo, la cooperacién en los modelos de cadenas de abastecimiento ha sido mayormente
estudiada desde un punto de vista de teoria inventarios, obviando otras posibilidades. El
analisis de la cooperacién en problemas de inventario no es nuevo. Uno puede encontrar en
la literatura varios modelos de inventarios (véase Eppen (1979), Gerchak y Gupta (1991),
Hartman y Dror (1996, 2003, 2005), Hartman y otros (2000), Anupindi y otros (1991),
Miiller y otros (2002), Meca y otros (2003, 2004), Minner (2003), Tijs y otros (2005) o
Slikker y otros (2006). En este capitulo estudiamos un aspecto diferente del modelo y nos
centramos mas en temas de distribucién de productos que en control de inventarios. En
la literatura se han estudiado varios modelos de cooperacién en grafos. Nuestro modelo
incorpora como novedad el hecho de que los proveedores son jugadores y que los costes
de produccién y envio, asi como los beneficios de venta, son variables. Probamos en este
capitulo que la cooperacién es ventajosa para los agentes que participan en el juego, ya que
al colaborar incrementan el beneficio total. Ademds demostramos que la cooperacién es
estable, es decir, hay repartos justos del beneficio general del sistema entre los jugadores.
Nuestro modelo no debe interpretarse como un intento de dar un andlisis completo de
una cadena de abastecimiento, sino més bien como otra pieza més que, junto con todas
las aportaciones anteriores, ayude a comprender la naturaleza compleja de la cooperacién

en modelos de cadenas de abastecimiento.
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El problema de cadenas de abastecimiento que proponemos surge cuando, sobre un
grafo, un grupo de nodos ofrece un cierto producto, otro grupo de nodos lo demanda y
un tercer grupo de nodos no necesita dicho material ni lo ofrece pero es estratégicamente
relevante para el plan de distribucién. La entrega de una unidad de material en un nodo
de demanda genera un cierto beneficio, y el envio de material a través de los arcos tiene un
coste asociado. Dicho problema se define en la primera seccién del capitulo. Mostramos
que en este marco la cooperacién es beneficiosa para los agentes. Probamos también que
dicha situacién cooperativa es totalmente balanceada. El capitulo también muestra la
relacién entre nuestros nuevos juegos cooperativos y otros conocidos juegos, léase juegos
de produccién lineal, juegos de flujo, juegos de asignacién, juegos de transporte y juegos
de camino més corto. Méas adelante introducimos algunos conceptos de solucién aplicados
especialmente a nuestra nueva clase de juegos. La primera de ellas es la solucién de Owen,
que nos da un reparto del core en tiempo polinomial. Més adelante aplicamos el conjunto
de Owen Extendido propuesto para juegos de produccién lineal en el capitulo 3 a nuestra
clase de juegos de cadenas de abastecimiento. El valor de Shapley, una conocida regla de
reparto para juegos cooperativos, también se aplica a nuestra nueva clase de juegos. El
cuarto concepto de solucién presentado es la solucién arco-proporcional. Dicha solucién
encuentra un plan de distribucién éptimo y divide el beneficio total entre los jugadores
teniendo en cuenta el uso que se hace de sus arcos en dicho plan de distribucién. La tabla

1 presenta un resumen de los resultados obtenidos en la fase de experimentacién. Para

Solucién Complejidad | Frecuencia en el core | Tiempo (segundos)
Owen O(n?) 100.000% 0.102464
Shapley O(n?2m) 73.875% 16.376855
Arco-Proporcional O(n?) 43.375% 0.078708

Table 1: Diferentes repartos para juegos de cadenas de abastecimiento

terminar esta seccién proponemos un procedimiento para encontrar repartos que consiste
en resolver diferentes juegos de cadenas de abastecimiento uno a uno, llamados repartos
secuenciales. La ultima seccién del capitulo presenta una extensién de nuestros juegos de

cadenas de abastecimiento al caso multiobjetivo.

El capitulo 5 estd dedicado a introducir y estudiar otra clase nueva de juegos coope-

rativos, llamada juegos de didmetro. Probamos que los juegos de didmetro son totalmente
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balanceados y estudiamos dos conceptos de solucién, el valor de Shapley y el nucleolo, para
esta clase de juegos. Es conocido que, en general, no se puede calcular de forma eficiente
ni el valor de Shapley ni el nucleolo, pero presentamos unos algoritmos que demuestran
que para la clase de juegos de didmetro ambas soluciones se pueden calcular en tiempo
polinomial. Ademés, probamos que el célculo del nucleolo de un juego de didmetro se

reduce a la resoluciéon de un problema de programacion lineal continuo.

El ﬁltimo capitulo de esta tesis, el capitulo 6, estudia otra nueva clase de juegos
cooperativos, llamados juegos de asignacién multidimensional. Dichos juegos son una
extensién de los juegos de asignacién clésicos. Probamos que los juegos de asignacién
multidimensional tienen core no vacié. Debido a que los problemas de programacién
lineal entera que dan lugar a esta clase de juegos, llamados problemas de asignacién
multidimensional, son NP duros, necesitamos usar algoritmos de aproximacién para dar
vectores de pagos en un tiempo razonable. Nétese que, para un juego en el que el valor de
cada coalicién se calcula a partir de un problema de programacién lineal entera, el célculo
de la funcién caracteristica puede ser imposible de realizar en una cantidad de tiempo
razonable. Una clase de algoritmos de aproximacién, llamada K-SGTS, ha sido utilizada
para resolver problemas de asignacién multidimensional y viene descrita en trabajos de
investigacién anteriores. Por lo tanto introducimos un conjunto de repartos para esta
clase de juegos basados en los algoritmos K-SGTS, los cuales pueden ser calculados en

“tiempo polinomial.

La tesis termina con un indice de los principales conceptos utilizados en este trabajo

y una lista de las referencias consultadas para su desarrollo.

En el resto de este resumen presentamos los resultados mas importantes de los

capitulos 3,4,5 y 6.

Capitulo 3: nuevos repartos para juegos de produccién
lineal
En este capitulo se analizan los juegos de produccién lineal, que surgen de procesos de

produccién lineal en los que hay un conjunto finito de recursos R = {1,2,...,7}, a

partir de los cuales se pueden producir ciertos productos P = {1,2,...,p}. La matriz
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A € R™*? es la matriz tecnoldgica, donde A;; denota la cantidad de recurso i necesaria
para producir una unidad del producto j, Vi=1,...,7, j =1,...,p. El juego aparece
cuando un conjunto de jugadores N = {1,...,n} con objetivos encontrados controla los
recursos. Suponemos que el jugador k tiene Bj, unidades del recurso i, k=1,...,n, i =
1,...,r. Sea B la matriz correspondiente, denominada matriz de recursos-jugadores. Sea
(es) € RIS definido por (es)x = 1 si k € S y cero en caso contrario, para todo S C N.

Denotamos por L la clase de todos los juegos de produccién lineal.

Para una coalicién cualquiera S C N, definimos su funcién caracteristica como el

valor éptimo del siguiente problema:

max cx
(1) s.a.:. Az < Beg (P(S))
z>0

El dual de P(S) es el problema

max yBeg
(2) sa.: yA>c (D(S))
y2>0

Sea Onin(A, B, ¢) el conjunto de soluciones 6ptimas del problema (2) para S = N.

Definicién 1 Sea (A, B,c) un juego de produccion lineal. El conjunto de Owen de
(A, B,c) es

(3) Owen(A, B,c) .= {yB :y € Omin(4, B, ¢)}.

Es bien conocido que el conjunto de Owen de un juego de produccién lineal estd formado
por repartos del core de dicho juego. A pesar de ser repartos del core, a menudo los
repartos de Owen presentan ciertos problemas de justicia, tales como asignar un pago cero
a jugadores que son absolutamente necesarios para producir cualquier tipo de beneficio.
Debido a ese tipo de problemas, en este capitulo se presenta otro concepto de solucién,
llamado conjunto de Owen Extendido, ideado especialmente para los juegos de produccién

lineal.
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Sea Omax(A, B, ¢) el conjunto de soluciones dptimas del problema (1) para S = N.
Sea z* € Omax(A, B,c). Supongamos que todos los jugadores reducen su cantidad de
recurso ¢ hasta que la cantidad total de dicho recurso sea (Az*);, es decir, los recursos
sobrantes se eliminan. Sea B*" la correspondiente matriz de recursos-jugadores. Definimos

entonces (A4, B*", ¢) como el juego reducido asociado a z*.

A menudo encontramos juegos de produccién lineal en los que hay un inico plan
de produccién éptimo z*. Sea L la clase de dichos juegos de produccién lineal. Sobre la

clase L se define el conjunto de Owen Extendido asi:

Definicién 2 Sea (A, B,c) € L. El conjunto de Owen Extendido de (A, B, c) es

(4) EOQwen(A, B,c) = {y"B" : y* € Omin(4, B%,¢), {z} = Omax(4, B, c)}-

En este capitulo se demuestran los siguientes resultados para el conjunto de Owen
Extendido.

Teorema 1 Sea (A4, B,c) € L y {z*} = Omax(A, B,c). Se tiene que

1. EOwen(A, B, c) = Owen(A, B?,c).
2. Owen(A, B,c) C EOwen(A, B, c).
3. EOwen(A, B®,c) = Owen(A, B*,c).

4. Si vy € FOwen(A, B, c), entonces v es eficiente.

También en este capitulo se da una caracterizacién axiomadtica del conjunto de Owen

Extendido en la clase £, a partir de los siguientes cinco axiomas:

1. Un concepto de solucién ¢ sobre L satisface eficiencia unipersonal si (A, eg,c) =
{vmin(A, €g, ¢)} para todo (4, eg, c) € L.

2. Un concepto de solucién ¢ sobre L satisface reescalamiento si ¢(HA,HB,c) =
(A, B,c) V H € RY*" matriz diagonal con entradas positivas, para todo (4, B, c) €

~

L.
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3. Un concepto de solucién ¢ sobre L satisface la propiedad de mezcla si para toda
H e Ry™™ con Hey = ey, y para todo(A4, b, c) € L, se cumple que w(A,B,c)H =
w(A,BH,c), donde p(A, B,c)H = {aH : a € p(A, B,c)}.

4. Un concepto de solucién satisface consistencia si para cualquier (A, Iy,c) € L con
r=n > 2y para todo o € ¢(A4, Iy,c) se cumple que (A_g., In\k, C) € Ey a_y €
©(A_ka, Inyi, C) para todo k € N, donde ¢; = ¢; — axAg; para todo j € Py A_ie

denota la matriz resultante al borrar la fila k de la matriz A.

5. Un concepto de solucién ¢ sobre L satisface supresién si para todo (A, Iy,c) €
L y para todo J C P tales que Unin(Ae_s, In,C—7) = Umin(A, In,c), entonces
0(A, In,c) C ¢(Aeg,In,c_y), donde A,_; denota la matriz resultante después
de borrar la columna j, V j € J, de la matriz A.

Para el caso en el que haya mds de un tnico plan de produccién, se define el conjunto de

Owen Extendido de tres formas diferentes:

Definicién 3 Sea (A,B,c) € L y {z',...,z*} las soluciones extremas del problema
P(N).

1. El conjunto de Owen Extendido 1 de (A, B,c) es el conjunto

EOwenl(A, B,c) = ﬂ Owen(A, B* | c).

t=1

2. El conjunto de Owen Extendido 2 es el conjunto

EOwen2(A, B,c) = {§B% : § € [ | Omin(A, B*',¢), T € Omux(A, B,0)}.

t=1

3. El congunto de Owen Extendido 3 de (A, B, c) es el conjunto

EOwen3(A, B,c) = U Owen(A, B” c).

t=1
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A lo largo de este capitulo se demuestra que las tres extensiones del conjunto de Owen
estan bien definidas y son repartos eficientes. Ademss, para cualquier juego de produccién

lineal (A, B, c), se demuestran las siguientes propiedades

e Owen(A, B,c) C EOwenl(A, B,c) C FOwen2(A, B,c) C EOQwen3(A, B,c).

e Owen(A, B,c) 2 EOwenl(A, B,c) 2 EOwen2(A, B,c) 2 EOwen3(A, B,c).

EOwen(A, B,c) = EOwenl(A, B,c) = EOwen2(A, B, c)
= EQwen3(A, B, c) = Owen(A, B* ,c).

El capitulo termina con una aplicacién del conjunto de Owen Extendido a los juegos

de flujo, definidos en el capitulo 2.

Capitulo 4: juegos de cadenas de abastecimiento

En este capitulo estudiamos modelos de cooperacién sobre un problema de cadenas de
abastecimiento particular. Actualmente, los problemas de cadenas de abastecimiento
estdn entre los modelos de optimizacién mds complejos analizados por la investigacién
operativa. Dichos problemas abarcan desde problemas de localizacién hasta problemas
de horarios o gestién de inventarios. Los problemas de cadenas de abastecimiento han
sido estudiados desde muchas perspectivas posibles y, sin embargo, la cooperacién en
estos problemas se ha estudiado principalmente desde un punto de vista de teoria de
inventarios. El problema de cadenas de abastecimiento que proponemos surge cuando,
sobre un grafo, un grupo de nodos ofrece un cierto producto (nodos oferta), otro grupo
de nodos lo demanda (nodos demanda) y un tercer grupo de nodos no lo ofrece ni lo
necesita pero es estratégicamente relevante para el plan de distribucién 6ptimo (nodos
transbordo). Sean P, @ y R dichos conjuntos. Supondremos que cada nodo oferta 7
ofrece b; unidades y cada nodo demanda i pide b; unidades. La entrega de una unidad
de material en un nodo demanda i genera un cierto beneficio k;, y el transporte de una
unidad de material sobre los arcos tiene un coste que depende de cada arco, siendo ¢;; el

coste unitario de transportar una unidad sobre el arco (¢,7). Suponemos también que la
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capacidad de cada arco es limitada, siendo h;; la capacidad del arco (3, j). Sea (N, A) el

grafo sobre el que definimos nuestro problema.

El juego que proponemos en este capitulo aparece cuando cada nodo tiene intereses

distintos y encontrados, por lo que identificaremos el conjunto de nodos con el conjunto

de jugadores.

Definicién 4 Un juego de cadenas de abastecimiento es un par (N,v) donde N es el

conjunto de jugadores y v es la funcion caracteristica, dada para cada coalicién S C N

por el valor dptimo del siguiente problema:

max Z (kj —k; — Cij)xij = fs()

s.t.

donde Ps,Qs, Rs y Ag son los correspondientes conjuntos P,Q, R y A en la coalicion S.

La clase de todos los juegos (N,v) con v definida como antes se denota SChG.

Los juegos de cadenas de abastecimiento presentados en esta tesis cumplen las si-

(l:J)EAS

>

]ES‘(ZJ)EAS

xij

CL']','
JES:(ji)EAS
CL‘ji
JES:(j,i)EAg
a:ij
Jj€S:(i,7)€As
Tij
Jj€S:(i,j)eAs
0< Tij < hij

guientes propiedades:

Teorema 2 Sea (N, v) un juego de cadenas de abastecimiento. Se cumple que (N, v)

-2
- >
iy
- )

JES:(ji)EAs

JjES:(i,4)EASs
Tij
Jj€S:(i,j)€As
Tji
JES:(ji)EAS

JES:(Ji)eAs

v (11.7) € AS

1. estd bien definido y es no negativo.

2. es 0-normalizado.

3. es superaditivo.

T ji < b

<

Vie Pg

LEijS 0 Vie Pg

—b,
0 VieQs

0 VieRs

Vi€ Qs (Pr(5))
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4. es mondtono.

5. es totalmente balanceado.

A partir de la dltima propiedad enunciada en el teorema anterior, se deduce que los juegos

de cadenas de abastecimiento tienen core no vacio.

También estudiamos la relacién existente entre nuestros SChG y otros juegos es-
tudiados en la literatura de juegos cooperativos. Consideremos las siguientes clases de
juegos: Juegos de flujo, F'G; Juegos de programacién lineal, L PrG; Juegos de asignacién,

AG}; Juegos de transporte, T'G; Juegos de camino més corto, SPG.

En la tesis se demuestran las siguientes inclusiones (estrictas):

SChG ¢ FG, SChG G LPrG, AG & SChG, TG & SChG, SChG & SPG.

El siguiente paso en el estudio de la clase SChG es la busqueda de repartos del
beneficio obtenido entre los nodos del grafo correspondiente. Se estudiaron las siguientes

soluciones:

El conjunto de Owen

Lo m3s relevante de esta seccién es el hecho de que se puede dar un reparto del core de

nuestros juegos de cadenas de abastecimiento en tiempo polinomial. Se calcula un reparto
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de Owen a partir del problema dual de (5), que tiene la forma

min Z b,‘ui — Z bj’LL]' + Z vijhij

i€ Pg JEQs (i,)eAR
s.a.: (Ui — tl) — (Uj ‘—tJ) +Uij 2 ]Cj — k‘i — Cij Y {Z,]} S PS X PS
(Ui—'ti)+(Uj—tj)+Uijzk'j—‘k'i—cij \V/{i,j}EPSXQS

(i —t) —uj+ vy >k — ki —cij vV {i,7} € Ps x Rg
—(u; — ) — (u; —t;) +vi; > kj—ki—cy; YV {i,j} € Qs x Ps
(6) —(u = t) + (uj —tj) + v > kj —ki —cy V{i,j} €Qs xQs
—(us —t;) —uj +vi; > kj — ki — ¢ V {i,j} € Qs x Rg
u; — (uy — b)) + vy >k — ki — ¢y vV {i,j} € Rs x Ps
u; + (u; —t;) + vy > k; — ki — cij V {i,j} € Rs X Qs
up —uj + v > ki — ki —cij V {i,j} € Rs X Rg

Ui,tiZOV’iEPSUQS
vi; 20V (i,5) € A%

donde AR = {(i,7) € As : hij < +oo}. Notar que las variables v;; no tienen sentido
cuando hy; = +00, y que las restricciones anteriores sélo son validas para aquellos pares
{7, 7} tales que (3,j) € A.

Considerando el problema (6) con S = N, y ((u*);, (t*)i, (v*);;) una solucién de dicho
problema, un reparto de Owen del correspondiente juego de cadenas de abastecimiento es

el reparto a = (ay,...,an) € C(N,v) con
1 .
(7) o = |bifu} + 5 { S ohgup+ > huvl} VieN.
Ji(i,j)e AR Ji(5i)e AR

El conjunto de todos los repartos generados a partir de soluciones éptimas del problema
(6) es el conocido conjunto de Owen, que sabemos que estd formado por repartos del core.
Ademés, dichos repartos se pueden calcular en tiempo polinomial, como se afirma en el

siguiente teorema que estd demostrado en la tesis.

Teorema 3 Sea (N, v) un SChG. La complejidad computacional para calcular un reparto

en el conjunto de Owen es polinomial, exactamente dada por

(8) O(n?).
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Debido a los problemas de justicia que a veces presentan los repartos de Owen, también

aplicamos las soluciones de Owen Extendidas a los juegos SChG.

Conjunto de Owen Extendido

Definicién 5 Sea (N,v) un juego de cadenas de abastecimiento, y sea z* un plan de
distribucion dptimo del correspondiente problema de cadenas de abastecimiento. El juego
reducido de (N,v) asociado a z*, (N,v®"), es el juego de cadenas de abastecimiento con

los mismos datos que (N,v) pero cambiando

bF =2 iiea® ~ Ljgoeath Vi €P
(9) b =23 Giea®hi = 2juneaty ViEQ
hi; =i V (i,5) € A

Por lo tanto, se define el conjunto de Owen Extendido para juegos de cadenas de abaste-

cimiento de la siguiente forma:

Definiciéon 6 Dado (N,v) un SChG, el conjunto de Owen FEzxtendido de dicho juego es
(10) EOwen(N,v) = {a*"*" = (u,t,v) € Omin(N, "), 2" = Omax(N,v)}
donde

utv,z* z* 1 * z*
(11) a’L vt7 ) = u,-bi + 5{ Z hzz] ’Uij + Z th 'Uji},

3:(i,j)€ AR J:(iH)e AR
Y Omin(N,v®"), Omax(N,v) son las soluciones dptimas de los problemas dual y primal de

los correspondientes juegos.

Al igual que en los juegos de produccién lineal, se puede demostrar que:

(12) EOwen(N,v) = Owen(N,v™ ).
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El valor de Shapley

Anteriormente se estudiaron dos conjuntos de soluciones. Ahora analizamos el valor de
Shapley, que no nos da un conjunto sino un tnico punto, y que ademés siempre se puede

calcular. Consideremos los siguientes axiomas:

1. Eficiencia, (EFF), dice que una regla de reparto reparte todo el beneficio generado

por la cooperacién de los jugadores.

2. Propiedad de jugadores irrelevantes, (IPP), afirma que si una regla de reparto lo
cumple entonces los jugadores irrelevantes (aquellos nodos aislados) no deberian

recibir pago alguno.

3. Justicia para jugadores no conectados, (FUP), exige que, para cualquier par %, j de
nodos no conectados, i debe ganar o perder cuando j abandona el juego lo mismo

que j gana o pierde cuando ¢ abandona el juego.

4. Justicia para jugadores adyacentes, (FAP), el cual significa que, cuando se suprime
un arco del grafo, los jugadores situados en los extremos de dicho arco se benefician

o se ven perjudicados de la misma forma.

Y ahora se puede demostrar la caracterizacién axiomdtica del valor de Shapley para la

clase de juegos de cadenas de abastecimiento.

Teorema 4 En nuestros juegos de cadenas de abastecimiento, hay una tnica regla de
reparto U satisfaciendo EFF, IPP, FUP and FAP. Dicha regla de reparto viene dada por

(13) ¥;(B) = ¢i(vs)

para todo B C A y todo ¢ € N, donde ¢ denota el valor de Shapley.

Desafortunadamente, el valor de Shapley de nuestros juegos de cadenas de abastecimiento

no puede ser calculado, en general, en tiempo polinomial.
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La solucién arco-proporcional

Debido a los problemas de justicia de los repartos de Owen, y a que no se puede calcular
el valor de Shapley de manera eficiente, se propone en la tesis otro concepto de solucién
especialmente creado para los juegos SChG. Dicho concepto de solucién viene definido a
partir de los planes de distribucién éptimos del correspondiente problema de cadenas de

abastecimiento.

Definicién 7 Sea (N,v) un juego de cadenas de abastecimiento, y sea x* un plan de
distribucidn dptimo del correspondiente problema de cadenas de abastecimiento. El reparto

v(z*) del juego (N,v) es:

(14) (@) :% > (;EZ; —c,-j> x;‘j+% > (;g; —cj,) z, VieN

Ji(hg)EA Jjr)eA

(15) Liz)= Y (b —k)zly, T()= > a

(i,5)€EA (4,4)€EA
El conjunto Arco-Proporcional es:

(16) Q= {y(z*) : z* es solucidén dptima de Pr(N)}.
El conjunto Arco-Proporcional satisface las siguientes propiedades:

1. Es una extensién del conjunto Arco-Igualitario propuesto para juegos de transporte.
2. Esta formado por repartos eficientes.

3. Bajo ciertas condiciones estd formado por repartos del core.

4. Esta formado por repartos simétricos.

5. Satisface la propiedad IPP.

6. Satisface la propiedad estandar para dos jugadores.
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En la tesis estdn demostradas todas esas propiedades, incluyendo ejemplos ilustrativos.

Ademaés, se puede demostrar que los repartos del conjunto Arco-Proporcional se

pueden calcular en tiempo polinomial.

Teorema 5 Sea (N, v) un SChG. La complejidad computacional para calcular una solucién

arco-proporcional es polinomial con respecto al nimero de jugadores, dada por

(17) O(n?).

Soluciones secuenciales

En esta seccién se estudian formas de calcular repartos mediante la resolucién de diferentes
problemas secuencialmente. La forma de elegir dichos problemas es haciendo que todos
los jugadores ofrezcan o soliciten la minima demanda u oferta que tienen originalmente.

En forma de pseudocédigo, dicho proceso se puede resumir de la siguiente forma:

Sea G® = (N, A,C, bk, H) un problema de cadenas de abastecimiento y (N,v) su
juego asociado. Fijar [ =1, y € R*, y; =0V i e ir al paso 1.

1. Sea 2! = max{|b;| : b; # 0}. Considerar el SChP G' = (N, A,C, b,k, H) donde:

e Si b; > 0 entonces b = 2t

e Si b; < 0 entonces b}, = —2t.

e Si b, = 0 entonces bﬁ = (.
Considerar ahora (N, v!) el juego asociado a G'.

o Si v}(N) =0, STOP.

e Si v/(N) > 0, calcular un plan de distribucién éptimo ¢! para G', y un reparto

del juego (IV,v'). Denote dicho reparto por 3'. Ahora actualizar by H:

— Para todo ¢ € N hacer,
si b; > 0, entonces b; = b; — (3_,.;.4)ea T — Y iGieA zh;).
si by < 0, entonces b; = b; + (3_,,; yca Tk — > ig)eA ;).

* Para todo j € N, si hy # +oo hacer hy; = hy; — ;.
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Fijar y = y + %' e ir al paso 1.

Es facil encontrar ejemplos en los que el reparto final, y, no reparte todo el beneficio

que la gran coalicién podfa haber obtenido en el juego original (/V,v). Para evitar

u(N) y

tal problema normalizamos y proponemos como reparto final y = S 3
i€ ®

Nétese que, dependiendo del reparto calculado en cada paso, 3, obtenemos diferentes
repartos. Por lo tanto se pueden definir la solucién de Owen secuencial, la solucién de
Owen Extendida secuencial, la solucién arco-proporcional secuencial o el valor de Shapley

secuencial.

A modo ilustrativo se realizaron experimentos para comprobar el tiempo de com-
putacién necesario para calcular los repartos propuestos en este capitulo. Adem3s se
calculd la frecuencia con la que dichos repartos pertenecian al core del juego correspondi-

ente. La tabla 2 muestra un resumen de los resultados obtenidos.

| Jugadores | Tiempo Shapley | Tiempo Owen | Tiempo AP | Core Shapley | Core AP
3 0.03353 0.00848 0.00854 99% 93%
4 0.12226 0.01683 0.01217 86% 71%
5 0.39523 0.03048 0.02207 66% 57%
6 1.27179 0.05362 0.04142 81% 35%
7 3.62249 0.08243 0.06557 72% 29%
8 10.95464 0.13888 0.10615 67% 29%
9 27.63470 0.19014 0.13953 74% 13%
10 86.98020 0.29885 0.23429 46% 20%

Table 2: Resultados experimentales.

Juegos de cadenas de abastecimiento multiobjetivo

Para terminar este capitulo se estudian los juegos de cadenas de abastecimiento multiob-
jetivo, en los que el transporte de material a través de los arcos tiene asociado un vector
I-dimensional de costes, y tanto el beneficio como el coste generado en cada uno de los

nodos no es un escalar sino otro vector I-dimensional. El resto de los datos son los mismos
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que en el caso uniobjetivo. Por lo tanto, la funcién caracteristica de un juego de cadenas
de abastecimiento multiobjetivo viene dada por el valor éptimo del siguiente problema de

programacién lineal multiobjetivo:

max (f§(), ..., fs(z))

s.a.: Z Tiyj — Z T < b Vie Ps

JES:(4,5)EAs keS:(k,i)EAs
Z Tri — Z xijfo Vie Ps
keS:(k,i)EAs JES:(4,5)EAs
(18) Z Thi — Z r; < —=b VieQs (MPr(S))
keS:(ki)EAs JES:(4,5)EAs
Z Tij — Z T <0 ViEQs
JES:(1,j)EAs keS:(ki)eAs
> ;- ) @ =0 Vi€Rs
JES:H(i,j)EASs keS:(k,i)EAs

0<uzy <hy VY(i,j)€As

donde fi(z) = > (ki —ki—cj)zyVi=1,... L
(i,j)EAs
Estos juegos tienen core de dominancia no vacio, y en la tesis se proporcionan

diversas formas de obtener repartos en dicho core.

Capitulo 5: Juegos de diametro

En este capitulo se presenta una nueva clase de juegos cooperativos, llamada juegos de

didmetro.

Dado un 4rbol G = (N U v, A), donde vy es la rafz del arbol, se define la funcién

caracteristica v para toda posible coalicién de N como
(19) v(S):=d(SU{w})VSCN,

donde d(L) denota el didmetro del conjunto L sobre el drbol G, para todo L C N U .
El didmetro de un conjunto de nodos L sobre un 4rbol es la méxima distancia inducida

sobre el 4rbol entre dos nodos de L. Notar que v(@) = 0. El juego cooperativo resultante
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(N,v) se denomina juego de didmetro.

Dado un juego de didmetro (/V,v), se puede demostrar que:

1. esta bien definido y es no negativo.
2. es subaditivo.
3. es convexo.

4. tiene core no vacio.

Ademas proporcionamos un reparto del core de todo juego de didmetro, que puede ser
calculado en tiempo lineal. Dicho reparto se basa en el hecho que el coste total de una

coalicién puede ser pagado por los nodos que dan el valor del didmetro de dicha coalicién.

El valor de Shapley y el nucleolo

A pesar de que en general el valor de Shapley no se puede calcular de forma eficiente,
debido a la estructura especial de los juegos de didmetro sf es posible calcularlo en tiempo
polinomial para esta clase de juegos. En la tesis proporcionamos dos algoritmos que
calculan el valor de Shapley con complejidad O(n*) y O(n®) respectivamente. Esto se
consigue gracias a que los coeficientes que nos dan el valor de Shapley, v(S U {i}) — v(S),
se repiten con mucha frecuencia. Por lo tanto los algoritmos propuestos se basan en
calcular todos los posibles valores que dichos coeficientes pueden tomar para después

contar todas las coaliciones que tomas dichos valores, obteniendo asi el valor de Shapley.

También se estudia el caso particular en el que el juego de didmetro viene generado

por un arbol lineal. En esos casos el cdlculo del valor de Shapley se simplifica.

Otro concepto de solucién bien estudiado en la literatura de juegos cooperativos es
el nucleolo. Dicha solucién se obtiene resolviendo una serie de problemas de programacion
lineal que, en general, tienen O(2") restricciones. Es decir, en general el célculo del nucle-
olo no se puede hacer con complejidad polinomial con respecto al nimero de jugadores.
Pero de nuevo, debido a la estructura especial de los juegos de didmetro, proporcionamos

un algoritmo que calcula el nucleolo de nuestra nueva clase de juegos en tiempo polinomial.
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Ademsds, también se prueba un resultado que asegura que para calcular el nucleolo uno

sélo tiene que resolver un problema, de programacién lineal continuo con O(n*) variables.

Aunque en la tesis todos los célculos estdn realizados suponiendo que el juego de
didmetro estd generado por un &rbol, tanto los algoritmos propuestos como los razo-
namientos utilizados se pueden extender al caso en el que el juego estd generado por un

grafo gencral.

Capitulo 6: Juegos de asignacion multidimensional

En este tltimo capitulo de la tesis se presenta otra clase nueva de juegos cooperativos, que
surge a partir del problema combinatorio de asignacién multidimensional. El problema
de asignacién multidimensional es una extensién del problema clésico de asignacién. Un
ejemplo tipico del problema de asignacién es cémo asignar trabajadores a tareas de tal
forma que el rendimiento global se maximice. El problema de asignacién multidimensional
tiene el mismo objetivo, pero teniendo en cuenta otras dimensiones tales como localizacion

fisica, punto en el tiempo,...

Un problema de asignacién w-dimensional se compone de w conjuntos disjuntos dos
ados N' ..., N*. La asignacién de un elemento de cada conjunto a un elemento de cada
uno de los otros conjuntos se traduce en un beneficio a;1,_;». Por lo tanto un problema

de asignacién w-dimensional es
(20) (N',...,N";a),

y su formulacién como problema de programacién lineal entera viene dada en la ecuacién
(6.9) (ndtese que se han tomado los conjuntos N& en lugar de N* | Vk=1,...,w. Enla

literatura se ha probado que los problemas de asignacién multidimensional son NP-duros.

Los juegos de asignacién multidimensional aparecen de forma natural a partir de
un problema de asignacién multidimensional (N!,..., N¥:a). Por lo tanto, el conjunto

de jugadores vendra dado por N = N'U ... U N y la funcién caracteristica serd el valor
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6ptimo del siguiente problema de programacién lineal:

max E v E ail‘”imxil_”iw

ileN}  weNY

s.a.: Z Z T e <1 Vile N}

€Nz ivENY

21 L V ik e N&, P
( ) . Z Z Z szl.‘.z"’sl <k <w—1 (S)

dLeN}  ik-leNETlikt1gNktL ivENY

Yo Y zaw <l V¥ e NY

eNL  qu-lgny!
xl‘lmiw 6 {0, 1}
donde NS\ =N*NSVEk=1,...,w

Los juegos de asignacién multidimensional cumplen las siguientes propiedades:

1. estan bien definidos y son no negativos.
2. son 0-normalizados por grupos, es decir, v(S) =0V S :|S| < w.
3. son mondtonos.

4. son superaditivos.

En general, los juegos de asignacién multidimensional no son balanceados. Aun asi, en la
tesis proporcionamos una subclase de dichos juegos que sf es totalmente balanceada: la
clase de juegos separables. Dichos juegos son aquellos en los que para todo (i}, ...,i¥) €

. w-—1
N'x .- x N¥ existen af 40 VE=1,...,w— 1 tales que @, ;w = > o) Qfiisr-

Algoritmos de aproximacion en juegos de asignaciéon multidmen-

sional

Debido a que los problemas que generan los juegos de asignacién multidimensional son
NP-duros, se hace necesario el uso de algoritmos de aproximacién para dar repartos en
un tiempo razonable. La estrategia de aproximacién que hemos seguido en esta tesis es
aplicar algoritmos tipo greedy. Por lo tanto, una regla de reparto, en adelante llamada

reparto greedy, se calcularia asi:
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Reparto Greedy.
1.2z=0,C=N

2. Repetir.
Encontrar la asociacién con beneficio més alto en C, s.
Sea a(s) el beneficio de la asociacién s.
Para cada i € s fijar z; = a(s)/w.
C—C\s.

Hasta que no se puedan encontrar mas asociaciones.

3. Salida z.

Nétese que no ha sido necesario calcular la funcién caracteristica del juego para dar este

reparto.
El reparto greedy cumple las siguientes propiedades.
Teorema 6 Sea x = (zy,...,%,) el reparto greedy de un juego de asignacién multidi-
mensional (/V,v) que surge de un problema de asignacién w-dimensional. Se cumplen las
siguientes afirmaciones:
1. z es una preimputacién de (N, v).
2. x satisface el principio de racionalidad individual.
v(N)
4. z se puede calcular en tiempo polinomial.
Para terminar la tesis se estudia una generalizacién del reparto greedy, que consiste
en elegir en cada etapa no la asociacién que dé el maximo beneficio sino el grupo de
K asociaciones disjuntas que maximicen la suma de beneficios. El reparto resultante se

llamard reparto K-greedy. Notar que el reparto K-greedy cuando K = 1 coincide con el

reparto greedy.
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Teorema 7 Sea z = (z4,...,%,) el reparto K-greedy de un juego de asignacién multidi-
mensional (N, v) que surge de un problema de asignacién w-dimensional. Se cumplen las

siguientes afirmaciones:

1. z es una preimputacién de (N, v).
2. z satisface el principio de racionalidad individual.

3. z se puede calcular en tiempo polinomial.

Una vez repasados todos los resultados estudiados en la tesis, a partir de ahora entramos
a analizarlos en profundidad. Debido a que parte del trabajo se realizd en el extranjero,

el resto de la memoria esta redactado en inglés.
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Introduction

This thesis addresses optimization problems from a cooperative point of view. In such
problems an optimal plan must be determined in order to maximize (minimize) certain
benefit (cost). If the optimal plan depends only on the decision of one individual agent,
the problem is solved by any of the classical optimization tools. But it is usual to find
optimization problems in which a group of distinct agents (persons, companies, political
parties,...) are in control of the necessary resources to produce benefit. Such resources can
be money, means of transportation, roads,... Therefore, the optimal plan might depend
on the decisions of several agents. Normally, when the agents controlling the resources
join their efforts, the global benefit is maximized. Then it seems logical to think that
those agents will work together. But this is not the end of the problem. Once they have
joined their resources to obtain a maximal profit, the question of how to divide such profit
is posed. This whole situation is called a cooperative game. Throughout this work we will
answer such questions for several situations, all of them arising from the so-called linear
programming problems. The thesis is divided into 6 different chapters. Chapters 1 and 2
are meant to give the necessary preliminary concepts on optimization, graph theory and
game theory in order to follow the rest of the work. The following four chapters analyze

four different classes games.

In Chapter 1 linear programming problems are presented. They are problems de-
signed to identify a set of nonnegative variables minimizing a linear objective function
subject to a set of linear constraints. Some of the optimization problems we will be work-
ing with in this thesis can be formulated by using Graph Theory. A Graph is a set of
points which can be connected to each other by arcs. A brief introduction to graphs can
also be found in Chapter 1. After having defined linear programming and some of its
most visited models, in the following chapters we will study some situations that need
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linear programming methods in order to be analyzed. In such situations we will consider
a group of agents with conflicting objectives, facing optimization problems to maximize a
profit or to minimize costs, with the property that they can cooperate in order to increase

their benefits: what we will call cooperative games.

In Chapter 2 the class of cooperative games with transferable utility is introduced.
Several ways of allocating (sharing) the generated benefit (cost) will be shown. Besides,
some classical classes of cooperative games, which will be referred to in following chapters,
are presented. To finish, a generalization of games in which each player has k different
(conflicting) objectives to be optimized is briefly presented, named multicriteria cooper-

ative games.

Chapter 3 analyzes more in detail one of the games presented in Chapter 2, linear
production games. Owen [47] proved that such class of games is totally balanced by pro-
viding a core allocation for every linear production game. For obtaining such allocations,
called Owen allocations, one only needs to solve a linear programming problem. More
recently van Gellekom et al. [24] gave an axiomatic characterization of the Owen solutions
for linear programming games. Nevertheless one cannot propose Owen allocations in ev-
ery linear production game, due to the fact that sometimes Owen allocations give null
payoff to players that are absolutely necessary for any benefit to be obtained. Therefore
the outcome of the game may lead to very economically counter-intuitive results. We
overcome those problems that Owen allocations have by proposing a new set of alloca-
tions, named Extended Owen set. In such allocations we assume that players play a new
game in which they get rid of the resource surplus, to later apply the techniques proposed

by Owen to the new game.

Chapter 4 addresses the main problem presented in this thesis, named Supply Chain
Games. Such a game arises when considering the possible cooperation between the nodes
involved in a particular Supply Chain Problem as defined in the first section of this
chapter. Supply chain problems are among the most complex models analyzed nowadays
by Operations Research [7]. They include different aspects ranging from location or
distribution to scheduling or inventory management. The optimization face of supply
chain problems have been widely studied from most of its different perspectives (the
interested reader is referred to [8]). Nevertheless, cooperation in supply chain models

has been addressed mainly from the inventory point of view. These models assume that
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firms can make binding agreements on the convenience of the entire system and studies
consolidation in ordering, holding, etcetera. The analysis of cooperation in inventory
situations is not new. Thus, one can find in the literature several centralization inventory
models approached from this point of view. The interested reader is referred to Eppen [15],
Gerchak and Gupta [25], Hartman and Dror [29, 30, 31], Hartman et al. [32], Anupindi
et al. [2], Miiller et al. [44], Meca et al. [38, 37], Minner [40], Tijs et al. [68] and Slikker
et al. [64] among others, for comprehensive literature on this subject. In this chapter we
address a different aspect of the model and we focus on distribution matters rather than
in inventory control. Several models of cooperation on graphs have been studied in the
literature, see [23], [36], [42], [58] or [73]. A more related attempt are the newsvendor
games, see for instance [75], which analyze the situation of a group of retailers that sell the
same item at the same price, with common purchasing costs from a supplier that is not an
active agent of the game. Comparing with the above approaches, our model incorporates
the fact that suppliers are players, and that the purchasing costs, production costs and
selling benefits are variable. We prove that cooperation is advantageous for the firms in
the chain since they improve the overall gain. Moreover, we find that the cooperation is
stable, i.e. there are fair divisions of the overall benefit of the system among the agents
such that no group of them would like to leave the system. Needless to say, none of
the previously mentioned approaches by themselves are enough to perform a complete
analysis of a supply chain as a whole. In this regard, our approach can be seen as a new
building block that together with all the previous attempts will help in understanding the

complex nature of cooperation in supply chain models.

The Supply Chain Problem we propose arises when, over a graph, a group of nodes
offers certain commodity, other nodes require it and a third group of nodes does not need
this material nor offer it but is strategically relevant to the distribution plan. The delivery
of one unit of material to a demand node generates a fixed profit, and the shipping of
the material through the arcs has an associated cost. Such problem is defined in the first
section of this chapter. We show that in that framework cooperation is beneficial for the
different parties. We prove that such a cooperative situation, which will be called a Supply
Chain Game, is totally balanced by finding a fair allocation (in the core of an associated
cooperative game). The chapter also shows the relation between these cooperative games
and other well-known games: Linear Production, Flow, Assignment, Transportation and

Shortest Path games. Later on we will introduce some solution concepts specifically
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applied to our new class of games. The first one is the Owen solution, which gives a core
allocation in polynomial time. Afterwards we apply the Extended Owen set proposed for
linear production games in Chapter 3 to our class of supply chain games. The Shapley
value, a well-known value for cooperative games, is also applied to our supply chain games.
An axiomatic characterization of the Shapley value is given for the class of Supply Chain
Games. The fourth solution concept presented for our new class of games is the Arc-
Proportional solution. This solution finds one optimal distribution plan and divides the
total benefit among the players according with the use of their arcs in such distribution
plan. Table 3 presents a summary of the results obtained through the tested games.

To finish the section we proposed a procedure to find allocations consisting of finding

Solution Complexity | Frequency in Core | Time (sec)
Owen O(n?) 100.000% | 0.102464
Shapley O(n%2m) 73.875% | 16.376855
Arc-Proportional O(n?) 43.375% | 0.078708

~ "Table 3: Different allocations for SChG

allocations for different supply chain games one by one, named sequential allocations.
The last section of the chapter presents an extension of Supply Chain Games to the

multicriteria case.

Chapter 5 is devoted to introduce and study a new class of cooperative games
named Diameter Games. Such games arise when the value of a coalition is given by the
maximum distance between two nodes belonging to the coalition. The game is played
over a tree and its players are all the nodes of the tree but the root. In this chapter
we prove that diameter games are balanced by giving a core allocation, which can be
calculated efficiently. Such allocation is based on the fact that the two most distant nodes
may pay the cost of the whole coalition. Two well-known solution concepts, the Shapley
value and the nucleolus, are studied for the class of diameter games. It is known that, in
general, one cannot efficiently compute nor the Shapley value nor the nucleolus. This is
due to the fact that for calculating the Shapley value one, in general, needs to compute
the characteristic function, leading to a number of operations growing exponentially with
the number of players. For calculating the nucleolus one need to solve up to n, where

n is the number of players, linear programming problems with n variables and O(2")



CONTENTS 45

constraints. Nevertheless, making use of the special structure of this class of games, we
provide algorithms that compute such solutions in polynomial time. Additionally, we also
prove that the nucleolus of a diameter game can be obtained by solving a continuous

linear programming problem.

The last chapter of the thesis, Chapter 6, studies a new class of cooperative games,
named Multidimensional Assignment games. Such class of games extends the classical
assignment games. Multidimensional Assignment games arise from a class of combina-
torial optimization problems: Multidimensional Assignment Problems. The multidimen-
sional assignment (MDA) problem is a higher dimensional version of the standard (two-
dimensional) assignment problem in the literature. The general idea behind the MDA
problem is that there are often additional scheduling dimensions besides just scheduling
men to jobs that should be taken into consideration when making the optimal decision.

These additional dimensions might be time, space or some other factors [54].

The multidimensional assignment problem has been shown to be a useful model to
solve real world problems. Among them we mention multi-target tracking. According to
[3], tracking is the processing of measurements obtained from a target in order to maintain

an estimate of its current state, which typically consists of:

e Kinematic components - position, velocity, acceleration, turn rate, etc.

e Feature components - radiated signal strength, spectral characteristics, radar cross-

section, target classification, etc.

e Constant or slowly varying parameters - aerodynamic parameters, etc.

One of the major difficulties in the application of multi-target tracking involves the prob-
lem of associating measurements received by a sensor, also called plots, with the appro-
priate target. Pattipati et al. ([50], [51]) and later Poore ([55], [56]) formulated the multi-
target (multi-sensor) tracking problem as a MDA problem, and developed a multistage
Lagrangian relaxation approach to solve the MDA problem as a series of classical (two
dimensional) assignment problems, which are solvable in pseudo-polynomial time. More
recently, new polynomial time approximation algorithms for solving the MDA problem
have been developed, see [9, 52, 53].
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In this chapter several properties of MDA games are proved. Unfortunately MDA
games are not in general totally balanced. Nevertheless we provide a subclass of MDA
games which is totally balanced. Since the integer linear programming problems that
give rise to this class of games, MDA problems, are mathematically termed NP-hard,
the use of approximation algorithms is needed to give payoff vectors in a reasonable
amount of time. Note that, for a game in which the value of each coalition is calculated
from an integer linear programming problem, computing the characteristic function might
be impossible in a reasonable amount of time. From previous works on Multidimensional
Assignment problems we know that a class of approximation algorithms, named K-SGTS,
have successfully been used to solve them. Therefore we introduce a class of allocations for
this class of games, based on K-SGTS algorithms, which can be computed in polynomial

time.

The thesis is finished with an index of the main concepts of this work and a list of

the references.



Chapter 1
Linear Programming and Graphs

Linear Programming has both theoretical and practical importance, and constitutes the
basis of many computational algorithms to solve real situations. Many practical problems
of economy, operations research, decision theory and engineering can be formulated as

linear programming models.

A linear programming problem is designed to identify a set of nonnegative variables

minimizing a linear objective function subject to a set of linear constraints.

A standard form of a linear programming problem is:

min zZ=cx
(1.1) subject to Az =b
x>0

where A is a given matrix of order m x n, m < n, c € R", b € R™ and z is an unknown

vector of n components which shall be called decision variables.

Many algorithms have been proposed to solve Problem (1.1), among them we men-
tion the Simpler method, introduced by Dantzig in 1947. Although in general the simplex
algorithm has a good efficiency in practice, it has been shown to have exponential growth
in effort on certain classes of problems as the problem size increases. Thus, it cannot be
classified as a polynomial time algorithm for solving linear programming problems. How-
ever, there exist theoretically efficient algorithms for linear programming problems, for

instance Khachian’s or Karmarkar’s. Both of these algorithms are nonlinear approaches to
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linear programming problems whose effort grows polynomially in the size of the problem,
that is, they are polynomial time algorithms for solving linear programming problems, see
[4]. Another class of algorithms for solving linear programming problems are the so-called
interior-point methods. One of them, the Predictor-Corrector, is known to solve any lin-
ear programming problem with complexity O(4L+/n), where 27 is the maximum error
between the solution given by the Predictor-Corrector algorithm and the actual optimal
value, see [72]. One usual threshold is 1078, having this way L ~ 26. This complexity
is not polynomial itself, but can be bounded from above by a linear function on n, for

n > 2.

There are some optimization models that can be formulated and solved in an alternative
way: by using graph theory. In the development of this thesis we will work with such
models. Thus, now we give some basic definitions. A graph is a pair (N, A) where N is a
finite set of points (also called nodes or vertices) and A is a set of lines, called edges or
arcs. Bach arc joins a pair of distinct nodes. If 4,7 € N, i # j, the edge joining ¢ and j
will be denoted by (i, j), and is said to be incident at vertices ¢ and j. There is at most
one edge between any pair of nodes, and every edge contains exactly two points of V.

If the edge (i, j) goes from i to j only in this direction, the edge is said to be directed.
A graph with only directed arcs is said to be a directed graph or digraph. From now on
we will mainly work with directed graphs, so every time we mention graph we will refer

to directed graphs.
Given a graph G = (N, A), and two nodes ¢ and j of N, a path from i to j in G is

a sequence of nodes of the form

(1.2) {io, ... ik}

where iy = 4, i = j and (4;_1,%;) € A for all ¢ = 1,...,k. A path is said to be a simple
path if every node along the path appears in the sequence only once. A cycle is a path
joining a node to itself that contains at least two different nodes. A cycle is a simple cycle

if it is a simple path from a node to itself.

Two nodes (i, 7) are said to be connected nodes if there is a path from i to j. A
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graph is a connected graph if V (i, j) pair of nodes, ¢ and j are connected. Otherwise it
is a disconnected graph. A connected graph that contains no cycles is called a tree. For a

more detailed explanation on graphs see for instance [71].

Figure 1.1: Network example

Figure 1.1 shows an example of a network or graph. This graph has the special
feature that each node is directly connected by one arc to every other node. Those graphs
satisfying that property are called complete graphs. A complete graph with n nodes is
usually denoted by K,,. So, Figure 1.1 shows Kj.

In the rest of the chapter we present several problems that can be solved by graph

theory as well as their formulation by using linear programming.

1.1 Minimum Cost Network Flows Problem

An important class of problems with many applications is the class of Minimum Cost
Network Flow Problems. They can be used to model liquids flowing through pipes,
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parts through assembly lines, current through electrical networks, information through
communication networks, ...

Given a digraph G = (N, A) with arc capacities h;; for all (¢,j) € A, demands or
supplies b; at each node i € N, and unit flow cost ¢;; for all (4, j) € A, the minimum cost
network flow problem consists of finding a feasible flow that satisfies all the demands at

minimum cost.

This situation can be formulated as a linear programming problem as follows:

min E CijTij

(i,j)eA

(13) s.t.: Z Tik — Z Tri = bi VieN
keB(1) ke E(i)
0 S T4 S hij V(Z,]) € A

where z;; denotes the flow running through arc (i,7), B(i) = {k : (i,k) € A} (arcs
beginning at i) and E(:) = {k : (k,i) € A} (arcs ending at i). For the problem to be
feasible, the total sum of demands must be equal to the total sum of supplies, that is,
Y ienbi=0.

Sometimes, we may be interested in shipping integer units. In such a case we should
ask the decision variables z;; to be integer, which turns Problem (1.3) into an Integer
Linear Programming (ILP for short) Problem, Problem (1.4). An /LP problem is a
linear programming problem in which the decision variables are forced to be integer.

min E CijTij

(¢,5)eA

(1.4) s.t.: Z Tik — Z Tk =b, YVieN
keB(i) ke E()
0<z; <hy V(i,j) € A
T4 eZ V(l,j) €A

Solving an ILP problem is, in general, N P-hard. Nevertheless, the matrix that gives
us the constraints of Problem (1.3) satisfies the unimodularity property, see [74]. Linear

programs whose constraint matrix is unimodular are proven to have an integer optimal
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solution. From this argument, the following result can be concluded.

Theorem 1.1.1 In a minimum cost flow problem, if the demands and supplies (b;) and
the capacities (hy;) are integer, then each optimal feasible flow (z};) of Problem (1.4) is

integer.

Proof. See [74]. O

This theorem allows us to say that solving Problem (1.3) is equivalent to solving the
associated ILP problem (1.4) provided that all b; and h;; are integer. An ILP problem
without the integer constraints is called a relazed problem. For instance, Problem (1.3) is

a relaxation of Problem (1.4).

Many different algorithms have been developed to solve the minimum cost flow
problem. To mention one of them, the Out-of kilter algorithm solves a minimum cost
flow problem with complexity O(nU), where U denotes the largest magnitude of any
supply/demand or finite arc capacity. For a more detailed summary on algorithms for

solving the minimum cost flow problem see [21].

Some of the other problems in networks that will be presented in this chapter, named
Mazimum Flow Problems, Transportation Problems, Assignment Problems and Shortest
Path Problems, can be considered as particular instances of the minimum cost network

problem. Let us introduce them.

1.2 Maximum Flow Problems

Consider a network with ¢ nodes and r arcs where only one good flows through. We
associate an upper bound h; with each arc j = 1,...,r of the network (the maximum
amount of flow that can pass through 7), which shall be called capacity of j. The function
h that assigns to every arc its capacity is called capacity function. For every node i =
1,...,q, let B(i) denote the set of arcs that start in node 7 and E(i) the set of arcs that
end in node i. In the mazimum flow problem, the goal is to find the maximum amount of
flow from node 1, which shall be called source and denoted by s, to node g, which shall

be called sink and denoted by ¢, without violating the capacity constraints of the arcs.

Wied
Uiy
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If we denote the amount of source-to-sink flow by f, then the maximum flow problem

can be formulated via the following linear program:

max f

s.t. Z x]-—"z zr = f
)

jeB(1) ke E(1

Yozi— Y m=0 i=2,...,¢-1
FEB() keEW)

Doz Y m=—f

jEB(q) k€E(q)

OS.’L'jSh]‘ j:]_,__,”r

Example 1.2.1 Consider the graph in Figure 1.2, in which the capacity of each arc s

framed on it. The objective is to send as much material as possible from the source s, node

1, to the sink t, node 4, taking into account the capacity constraints of the arcs. Equation

Figure 1.2: Flow Problem
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(1.6) shows the linear programming problem arising from this example.

max f

Ti2 + T3+ T4 = f

Toqg — T12 — 232 =0

T3a+ 232 — 213 =10

T1g+ Tog + Tzg = f
(1.6) 0<z12<3

0<13<6

0<z,4 <1

0< 2y <8

0<m3 <4

0<234<3

One optimal solution to Problem (1.6) is:

(1.7) Ti, =3, 21,=06, z}, =1, x5, =8, x5, =4, 25, = 2.

Although any Flow Problem can be written as a linear programming problem, there are
several algorithms to solve flow problems and calculate their maximum flow that consider-
ably improve the methods for solving general linear programming problems. Among them
we mention the labelling algorithm by Ford and Fulkerson, see [21]. This algorithm finds
the minimum cutset, which has been proven to give us the maximum value of feasible flow
vectors. A cutset is a set of arcs such that, without them, it is not possible to connect
the source s to the sink ¢. The following theorem shows the relationship between cutsets

and maximum flow.

Theorem 1.2.1 In the single commodity flow problem (1.5), the maximum source-to-
sink flow is equal to the minimum capacity of the cutsets separating the source and the

sink.

Proof. See [41] g
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Example 1.2.2 The minimum cutset separating the source and the sink in Example 1.2.1
is {(1,2),(1,4),(1,3)}. So the mazimum source to sink flow in this ezample 1s 3+14+6 =
10, the sum of the capacities of the arcs in the minimum cutset. This amount of flow can

be achieved from the flow vector x* obtained as a solution in Example 1.2.1.

Although the labelling algorithm is easy to implement and flexible, it is not very efficient
in practice. A better method for practical implementations is the FIFO preflow-push
algorithm (first-in first-out), whose complexity is O(n?), see [26]. Goldberg and Tarjan
also showed an implementation of the push-relabel method with dynamic trees, taking
O(nmlog(n?/m)) time, see [27] and [28]. Cheriyan and Maheshwari, see [10], and Tuncel,
[69], got to solve the problem with complexity O(n%\/m). Further improvements were
given by Ahuja, Orlin and Tarjan, see [1]. For a more detailed summary on algorithms

for solving the minimum cost flow problem see [21].

1.3 Transportation Problems

Assume that we have a directed network defined by a set of nodes N and a set of directed
edges A. In the transportation problem the network is bipartite and complete, that is,
all its nodes can be arranged in two groups; supply nodes numbered ¢ = 1,2,...,m
and demand nodes numbered j = 1,2,...,n. Every supply node ¢ offers a; units of
a commodity and every demand node j needs b; units of the same commodity. Every
supply node has n outgoing edges to all demand nodes. The edge from the supply node
i to the demand node j has a shipping cost per unit of transported commodity equal to
cij- The problem is to determine the shipping amounts z;; Vi=1,...,m, j=1,...,n,
which minimize the total transportation cost satisfying the requirements of the demand

nodes. The formulation of such a problem as a linear program is:
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m n
min E E Cij Ty

i=1 j=1

n
s.t. xijgai i=l,...,m

08 2

m
ZCEUZb]‘ j:].,...,’l’l

i=1

xijzo 7::17"')m7 j:17""n

The transportation problem has a feasible solution if the total offer is greater than or

equal to the total demand,

(19) Zai > ij

In such a case, the demand constraints hold as strict equalities at the optimal solution,
that is,

(1.10) dmy=b Vi=1...,n
=1

Moreover, if

(1.11) dai=> b

then every feasible solution satisfies all the inequality constraints in (1.8) as equalities.

The transportation problem is another instance of how linear programming models
network situations and can be solved by a specialized primal simplex method. There is
also an alternative approach to solve (1.8) known as the primal-dual algorithm due to Ford
and Fulkerson [21], which is of complexity O(a(n+m)), where o is the maximum between

U as previously defined for minimum cost network flow problems and C = max; ;{c;;}.



96 CHAPTER 1. LINEAR PROGRAMMING AND GRAPHS

1.4 Assignment Problem

A very special and important kind of transportation problems is that where m = n, and
a; =b; =1V 1,5=1,...,m. This very special case is called assignment problem. As an
example, let us suppose that we are running a company where there are m workers and
m jobs to be done. If worker i is assigned to job 7, there will be a benefit of ¢;; units. One
wants to determine the assignment between people and jobs that gives us the maximum
benefit. If we consider the decision variables z;;, where z;; = 1 means that worker 7 is
going to do job j, and z;; = 0 means that ¢ does not do job j V ¢,5 = 1,...,m, the

mathematical formulation of the assignment problem as a LP problem is:

m m
max E E CijTij

i=1 j=1

s.t. zy=1 t1=1,...,m
(1.12) ; !

m
ay=1 j=1,....m
=1

CL’”:{O,l} i,jzl,...,m

Since the assignment problem is a particular case of the transportation problem, the
primal-dual algorithm is valid. Nevertheless, there are faster algorithms to solve this
problem, for instance the Hungarian algorithm due to Kuhn, see [4]. This algorithm is a
direct implementation of the primal-dual algorithm for the minimum cost flow problem.

It solves the assignment problem with complexity O(m?), see [21].

When the objective is to match d-tuples, d > 2, of objects in such a way that the
solution with the optimum total cost is found, the problem is called a Multidimensional
Assignment (MDA) problem. The case d = 2 is the classical Assignment Problem as
presented in this section. The MDA problem will be presented in more detail in Chapter
6.
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1.5 Shortest Path Problems

Shortest path problems are among the most fundamental and also the most commonly
encountered problems in the study of transportation and communication networks. There
are many types of shortest path problems. For instance, we may be interested in finding
the shortest path from one specified node in the network to another specified node; or we
may need to determine the shortest path from a fixed node to all other nodes; or we might
want to find the shortest path between all pair of nodes in the network; or we may need
to find a shortest path from one given node to another given node that passes through

certain specified intermediate nodes.

The case presented in this section assumes that the given network is directed and
there is a weight associated to each edge (which could be interpreted as distances). For-

mally, a shortest path problem o is a 5-tuple (N, A, ¢, s,t) such that:

e (N, A) is a directed graph without loops. The elements of N and A are called nodes

and arcs respectively.

e cis a map assigning to every arc a € A a non-negative real number c¢(a), which can

be interpreted as the length of a.

e sand t are non-empty and disjoint subsets of N. The elements of s and ¢ are called

sources and sinks, respectively.

The goal of this model is to find the shortest path between the set s and the set ¢ by using
the arcs of A. To show the mathematical formulation of this Shortest Path Problem, let
us start first by assuming that |s| = |t| = 1, that is, we have to find the shortest path

between node s and node t.

We may think of the shortest path problem in a minimum cost network flow context
if we set up a network in which we wish to send a single unit of flow from node 1 (the
node source) to node n (the node sink) at minimal cost. Thus by = 1, b, = 1 and

b; =0V i€ N, i#1,n. The mathematical formulation of this problem becomes:
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min E Cij Tij

(i,J)€A
1 ifi=1
(1.13) st Z Tij — Z Tpi = 0 ifi#1,n
jiif)eA ki(k,i)eA -1 ifi=n

zi; =00r1V(i,j) €A

where c¢;; denotes the length of arc (4, j) € A.

This formulation can automatically be extended to the case in which we have more

than one node in s or in ¢ as follows:

min E CijTij

(i,7)€EA
s.b.: Z( Z Tij — Z Tg) =1
1€s j:(i,j)€A k:(ki)eA
(1.14) Y mi— Y zu=0VigsUt
Ji(i,5)eA k:(ki)EA
DAYy > ww) =l
i€t 5:(,7)€EA ki(k,i)eA

z;=00r1V(5,j) €A

To solve the shortest path problem one can use the algorithm due to Dijkstra, see {13], of

complexity O(n?).

1.6 Minimum Cost Spanning Tree problem

The minimum cost spanning tree, or just minimum spanning tree, (MST) of a graph
defines the cheapest subset of edges that keep the graph in one connected component.
Telecommunication companies are particularly interested in minimum spanning trees,
because the minimum spanning tree of a set of sites defines the wiring scheme that connects

the sites using as little wire as possible.
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Formaily, given a weighted directed graph G = (N, A) we want to find the minimum
spanning tree. A tree of G is a connected subgraph of G such that it contains no cycles. If
it also includes every node of the graph, it is called a spanning tree. Then, the minimum
spanning tree problem consists of finding a spanning tree minimizing the sum of weights.
In Figure 1.3 and Figure 1.4 a connected graph and one of its minimum spanning trees

are shown.

Figure 1.4: Minimum spanning tree of graph in Figure 1.3.

Two classical algorithms efficiently construct minimum spanning trees, namely Prim’s,
see [57] and Kruskal’s, see [35].

The Prim, or Prim-Dijkstra, algorithm starts with an arbitrary node and builds a
connected graph by every time choosing a cheapest arc. This way it makes a connection
between the part of the tree that has already been constructed and the nodes that are not

connected yet. Kruskal’s algorithm selects arcs to belong to the tree to be constructed, by
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starting with a cheapest edge and adding each time a cheapest edge among the ones that
have not been selected yet, which does not create a cycle. The computational complexity
of both algorithms is O(m + nlogn), where n denotes the number of nodes |N| and m is

the number of arcs |A| of the network.

To formulate the MST problem as a linear programming problem we define for each

a € A the variable x,, where

(1.15)

1 if edge a is included in the tree
Ty =
0 otherwise

Since a spanning tree should have n—1 arcs, the constraint ) _, z, = n—1is introduced.
In every subset S of IV, the number of arcs with both endpoints in S must be less than

or equal to |S| — 1.

If we denote by ¢, the length of arc a and for every S C N we define E(S) =
{{i,7} € Ali,j € S}, the formulation of the minimum spanning tree problem as a linear

programming problem results in:

min E CaZq

a€A
s.t.: Za:a =n-—1
(1.16) acA
Z an"S'——l» QQSQN
a€E(S)
z, € {0,1}

1.7 Multiobjective Linear Programming

Multiobjective programming is a part of mathematical programming dealing with decision
problems characterized by multiple and conflicting objective functions that are to be
optimized over a feasible set of decisions. Such problems, referred to as multiobjective
programs (MOPs), are commonly encountered in areas such as engineering, management

and others. A typical formulation of a multiobjective linear programming program is
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given by the problem

min f(z) = (az,..., )
(1.17) st. Az =10
z>0

where A is a given matrix of order m xn, m<n,c, € R*"Vi=1,...p, bE R™ and z is

an unknown vector of n components which shall be called decision variables.

A feasible solution z to Problem (1.17) is evaluated by p objective functions (c;z, @ =
1,...,p) producing the outcome f(z). We define the set of all attainable outcomes or
criterion vectors for all feasible solutions in the objective space Y := f(X) C RP, where
X ={zeR": Az = b}.

The symbol min is generally understood as finding optimal or preferred outcomes
in Y and their pre-images in X, where the preference between the outcomes results from

a binary relation R defined on Y. One such relation could be

(1.18) r<pye <y Vi

For a more detailed description on multiobjective linear programming see, for in-
stance, [20] or [65].

In following chapters we will consider situations in which optimizations problems have
to be solved. Additionally, we will also consider that a group of agents having conflicting
objectives are involved in the optimization process. Those situations are called games,

and will be briefly introduced in Chapter 2.



Chapter 2

TU-Games

A general decision process is a situation in which a group of agents converge and act,
independently or collectively, under certain rules in order to obtain a benefit. The part of
the mathematics that studies these situations is called Game Theory. Those agents that
act in the decision process are called players and the result they obtain after the process

is called payoff. The whole situation is a Game.

Game Theory can be divided into two main fields of research: Noncooperative Game
Theory and Cooperative Game Theory, the greatest difference between those two areas
being the possibility for the players to make agreements between each other. Since in the
situations we are going to study in this work it is possible for the players to cooperate,

we start by giving a brief introduction to Cooperative Games.

Examples of cooperative situations are pacts and coalitions made in a council or
a city hall after an election in order to form a majority or to have a better representa-
tion. Those examples are situations in which every player tries to get their best payoff

personally, but this payoff can be improved if they cooperate between each other.

For a more complete description on Game Theory, including also noncooperative
theory, see [22] or [48].

63
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2.1 Cooperative Games: Definition and properties

Given the set of players N = {1,...,n}, a coalition of N is any S C N. The set of all
possible coalitions of N shall be denoted by 2%.

For a game with set of players N = {1,...,n}, we shall define its characteristic

function as the map
(2.1) v:2¥ SR,

defined for every coalition S C N as the maximum profit that the coalition S can make
by acting on its own, without taking into account what the other players N \ S can do.
So, v(N) is the best payoff that the coalition formed by all the players can obtain. This

coalition, N, is called the grand coalition.

Therefore, a cooperative game can be represented by I' = (N, v) where N is its set

of players {1,2,...,n} and v is its characteristic function

2y 5 R

S — v(9)

(2.2) v

having v(#) = 0 and v(S) the maximum profit that the coalition S can make without the
help of any of the other players.

In cooperative situations we can distinguish between two main cases:

o Transferable Utility games (TU-games for short): those where the profit obtained by
each player can be transferred between each other. In those games v(S) e RY § C
N.

e Non Transferable Utility games (NTU-games for short): those in which the profit
made by each coalition is valued in a different way by different players, and it is not
possible any transfer of payoffs. In those games v(S) € RISl ¥V S C N.

Since NTU-games will not be used in the rest of the work, nor will noncooperative
games, from now on we will refer to TU-games by saying “cooperative games” or just

“games”.
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We are interested in games satisfying some properties. Among them we enumerate:
Definition 2.1.1 (0-normality) The game (N, v) is said to be 0-normalized if and only
if
(2.3) v({i})=0 VieN.

In games with this property players have incentives to act cooperatively since, if they did
not, they would receive no payoff at all.

Definition 2.1.2 (Superadditivity) The game I' = (N,v) is superadditive if

(2.4) VSTCN:SNT=0=v(S) + v(T) < v(SUT).

Having a superadditive characteristic function is a desirable property, since players will try
to make bigger coalitions so that their benefit is higher. Sometimes we do not require that

much and it is enough to have a characteristic function satisfying the following property:

Definition 2.1.3 (Weak superadditivity) We shall say that the game ' = (N,v) is
weakly superadditive if

(2.5) VSCN, oN)2u(S)+ > v({i})

iEN\S
One can easily see that superadditivity implies weak superadditivity.

Definition 2.1.4 (Monotonicity) The game I' = (N,v) is monotonic if

(2.6) VST, u(S)<u().

This property states that, if a coalition accepts new members, then its global benefit is

not decreased.

Some of the conditions above must be satisfied for the cooperation to be possible,
that is, the structure of the characteristic function is of great importance for the coopera-

tion between players to arise. For instance, if we have a game (N, v) in which there exists
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a player ¢ € N such that v({i}) > v(S) V S C N, it is clear that player i will not want
to cooperate with other players, as the benefit it can get by its own is the maximum. In

such game the grand coalition would not be constituted.

Definition 2.1.5 (Convexity) We say that a game I' = (N,v) is convez if

(2.7) w(S) +v(T) < v(SUT) +v(SNT) VS,TCN.

It can be seen that this definition is equivalent to

(2.8) VieN, di(S)< d(T), VScT,
where

v(SU{i}) —v(S) ifi¢sS
2.9 di(S) =
29) (5) {U(S)—U(S\{i}) ifieS

d;(S) is the marginal contribution of i to S.
The interpretation of this definition is that, for any player ¢ € N, the bigger a

coalition is, the greater the contribution of ¢ to that coalition becomes.

Definition 2.1.6 (Veto player) Given a game (N,v), we say that player i is a veto
player if

(2.10) o(N —{i}) = 0.

Veto players are absolutely necessary for the cooperation to arise, because without them
there is no benefit at all.

Another special kind or players are those that have no direct influence in the game

since they contribute nothing to any coalition. Those players are called dummy players.

Definition 2.1.7 (Dummy player) Let (N,v) be a game. We say thati € N is a
dummy player if

(2.11) W(SU{i}) =v(S)V S C N.
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Let us see now possible incentives that players have in order to constitute the grand

coalition, that is, the coalition including all players.

In a cooperative game (N, v) such that

(2.12) v(N) < Y v({i}),

ieN
there will be no cooperation to form the grand coalition, since there are players that
prefer to act individually because they get a better payoff this way. A game satisfying
this property is said to be irrational. On the other hand, if we have that

(2.13) u(N) > Zv({z’}),

then players may want to join all together and form coalitions. In this case we say that

the game is rational. This kind of games can also be divided in two groups, those where
v(N) > ) w({i}),
ieN
which shall be called essentials, and those where
(2.14) , v(N) = o({i}),
ieN

named inessential games.

The main problem we face when dealing with cooperative games is how to distribute
the total benefit generated among the players. We define an allocation for the game
[ = (N,v) as a vector © € R", where its i** coordinate represents the payoff that player
i receives from the allocation z. For each coalition S C N and for each z € R", let z(S)

denote the payoff that coalition S receives from the allocation z, that is,

(2.15) z(5) = in-

€S
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For a game I' = (N, v) we define its set of feasible allocations as the set

(2.16) I'(N,v) ={z/z € R*, z(N) <v(N)}.

The set above can be bounded by applying an efficiency principle, demanding that
players should divide among them the maximum profit they can obtain. Mathematically

this set is defined as
(2.17) I*(N,v) = {z/z € R", z(N) =v(N)},

and its elements are called pretmputations.

When we assign an allocation it is logical to think that each player should receive
from such allocation, at least, what they would obtain by acting individually, that is,
z; > v({i}) Vi € N. This condition is called individual rationality principle. Every
preimputation satisfying this principle shall be called imputation. The set of all imputa-
tions of a game (N, v), denoted by I(N,v), is

(2.18) I(N,v) = {z/z € R*, z(N)=v(N), z; >v({i}) Vi € N}.

Once we have presented what games are, in the rest of this chapter it will be shown
how to find allocations satisfying certain properties. Later on some classes of games will
be introduced. To finish the chapter we will consider cooperative games in which each

player has several objectives.

2.2 Solutions in Cooperative Games

The goal of the cooperative game theory analysis is to find allocations belonging to the
preimputation set that have properties we consider acceptable. Giving a procedure that
assigns to every game a set of allocations is what we call a solution concept. Formally, we

have the following definition:
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Definition 2.2.1 (Solution Concept) A solution concept over the class of Cooperative
Games is a map v that assigns to each Cooperative Game ' a subset y(I') C I*, where

I* is the set of preimputations of the game T.

An instance of a solution concept is the proportional rule, which assigns to each player ¢
v(N)

the value =~*. This rule is not always acceptable, see the following example.

Example 2.2.1 Consider the game (N,v) with N = {1,2} and v({1}) = 1, v({2}) =
4, v({1,2}). = 6. According to the proportional rule, both player 1 and player 2 should
receive 8. But player 2 can make 4 units on its own, therefore it will not want to constitute
the grand coalition, since its profit acting indiwidually is higher than what the proportional

rule would give him.

In the rest of the section we see some different solution concepts that are well

accepted because of the properties they satisfy.

2.2.1 Stable sets

The idea of stable sets was first introduced in 1944 by Von Neumann and Morgenstern [45].

Those sets are described in terms of a relation between imputations called dominance.

Definition 2.2.2 (Dominance) Given a cooperative game I' = (N, v) and two imputa-
tions of this game, x and y, we say that z dominates y, and we represent it as T dom y,

if there exists a nonempty coalition S such that

1L.xz; >y VieS and

2. Zazz < ().

€S

From the first condition we conclude that all the members of the coalition S prefer
the imputation = to y, whereas the second condition states that if the members of the
coalition S cooperate between each other, they receive at least the same benefit as they
would obtain from the allocation z. That is, condition 2 states that the members of S

are capable of obtaining what x gives them.



70 CHAPTER 2. TU-GAMES

Informally, we can define a stable set V' as a subset of imputations satisfying that
no imputation of V' dominates another imputation of V', and that any imputation out of

V is dominated by an imputation of V. Formally, stable sets are defined as follows:

Definition 2.2.3 Given is I' = (N,v) a cooperative game. We say that the set V C
I(N,v) is a stable set if it satisfies the following conditions:

1. If x,y € V, then one has that x no dom y (Internal stability ).

2. IfyeI(N,v), y¢V =3Iz eV : zdomy (External stability).

The concept of dominance leads us to build a set of undominated allocations. Such a set

is the core.

2.2.2 The core

Given the imputation set of a game, we are interested in those allocations satisfying some
properties. An acceptable property is the collective rationality principle, which assures
that every coalition S of N receives a better payoff than the one they would obtain by
acting without the help of the other players N \ S. Formally, we define the core via the

coalitionally rational property.

Definition 2.2.4 (Coalitionally rational) Given a cooperative game (N,v), we say

that one of its imputations x is coalitionally rational if

(2.19) VSCN )z >u(S).

€S

The core of the game I' is defined as the set of imputations satisfying the collective

rationality property.
Definition 2.2.5 (Core) Let (N,v) be a cooperative game. The core of (N,v) is defined
by

(2.20) C(N,v)={z €R" : z(S)>v(S) VS C N, zn:x = u(N)}.

i=1
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We remark that z € C(N,v) if and only if no coalition can improve upon z. Thus, each
member of the core consists of a highly stable payoff distribution. It is known that the

set of all undominated imputations is the core, see [48].

Unfortunately not all games have imputations in the core. The concept of balanced-

ness provides us with a theorem that characterizes those games with non-empty core.

Definition 2.2.6 (Balancedness) Let (N,v) and ¥ = {51, S,,...,S,} be a cooperative
game and a collection of coalitions of N, respectively. We say that ¥ is a balanced col-
lection if there exist some coefficients 1,72, ..., Vs, with vy > 0V 1 =1,2,...,7, such
that

(2.21)  m=1 VieN.

1:1€S;

The coefficients vy, are called balancing weights.

Bondareva, [6], and Shapley, [63], independently identified the class of games that

have non-empty core as the class of balanced games.

Theorem 2.2.1 [Bondareva and Shapley] The core of the game (NV,v) is non-empty if
and only if for every balanced collection {Sy,..., Sk} with balancing weights Ay,..., Ak
the inequality

(2.22) > \u(S;) < v(N)

holds.

The relationship between the core and the stable sets can be summarized in the following

proposition:

Proposition 2.2.1 Let (IV,v) be a cooperative game and V a stable set of imputations
of (N,v). Then C(N,v) C V.

Proof. See [48]. g

Thus, each member of the core is a highly stable allocation.
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So far we have seen two desirable solution concepts but they have a problem, their
existence is not assured. In the following section we see other solution concepts, the

Shapley value and the nucleolus, that do always exist.

2.2.3 The Shapley value

One of the alternatives for the problem of the no general existence of core allocations
has been solved by searching for other solution concepts. Among them there are the so-
called values. One of those values is the Shapley value, which is a solution concept that
always gives us a unique solution, unlike the stable sets and the core which are not just one
unique point but a set. The Shapley value assigns to each player a convex combination
of their marginal contributions (d;(S) as previously defined). There are more values with
the same idea, but it was Shapley who first introduced one of them in 1953, defining this

value as follows:

Definition 2.2.7 (Shapley value) Given a game (N, v), we define the Shapley value of

the game as the vector ¢ € R™ where

b= Z (s — D)}(n —s)! 4:(S)

n!
SCN:eS

where

(2.23) |S| =s; [N| =n and d;(S) = v(S) —v(S\ {¢}).

It has been proven that the Shapley value is always a preimputation, if the game is
superadditive then it is also an imputation and if the game is convex then the Shapley
value is an allocation in the core, see [22]. So, a game with convex characteristic function
is guaranteed to have at least one core allocation, this allocation being the Shapley value.
But we must note that the computational complexity of the calculus of the Shapley value
is, in general, exponential, as for every i € N we have to calculate O(2") weights. At the
end of this thesis we present a class of games, Diameter Games, for which the calculation

of the Shapley value is of polynomial complexity.
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2.2.4 The nucleolus

Another well-studied solution concept in the literature is the nucleolus, as introduced by
Schmeidler in [61]. For its definition, an excess vector is defined for each allocation of a

cooperative game.

Definition 2.2.8 Let (N, v) be a cooperative game and x € R™ a payoff vector. We define

the excess vector of T as the vector 6(x) € R*"

(2.24) . 8(z) = (e(S,x)), withe(S,z)=1v(S)—=z(S)VSCN.

Each component of the excess vector gives us a measure of the complaints that the cor-

responding coalition might have if the allocation z is taken.

After defining the excess vector, the nucleolus of a cooperative game can be intro-
duced.

Definition 2.2.9 Given a function v : R*" — R, consider the linear programming prob-
lem

min  (6(z))

(2.25) st zeI(N)

If Problem (2.25) selects a payoff vector minimizing the excess vector according to a lez-
icographic order, i.e., minimizing the mazimum complaint, then the solution obtained is
that introduced by Schmeidler in [61] called the nucleolus.

Now we see a process for computing such allocation.

Define 7(z) to be the 2™-vector of excesses of game (N, v), where the excesses are

arranged in nondecreasing order,
Define the minimum set 7" of Problem (2.25) under the lexicographic minimization:

(2.27) T={zel:yel=7(x)<,7(y)}
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where the order < is defined as
(2.28) r<py=3Jk<n:z;=y;Vji=1..,kand 241 < Yrs1,

x <p y meaning that either x < y or x = y.
Theorem 2.2.2 T as defined in Equation (2.27) is a single point, the nucleolus.

Proof. See [22]. a

To finish the introduction of the nucleolus, we show an iterative procedure for cal-
culating it. If e;(x) is the first component of 7(z), then the nucleolus must be a solution

to

(2.29) Iilel}l Iglcagl((v(S) —z(5))

which can be formulated as a linear programming problem via

min w,
(2.30) P st z(S)+w >2v(S)VSCN
z(N) = v(N)

If P; has a unique optimal solution z*, then x* is the nucleolus. Otherwise, we compute the
minimum of the second largest excess ex(x) among those imputations which are optimal
solutions to ;. Let &; be such set of imputations and let w] be the value of problem P;.

The new linear programming problem to be solved is

min ws
(2.31) p 5 ( ) wp >v(S) VS €2V\ S
( ) v( ) wiVSes

Again, if the solution to P, is unique, such solution is the nucleolus. Otherwise we build

problems Pj, Py, .... By Theorem 2.2.2, this process is finished after a finite number of
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steps.

By the construction of the nucleolus, it is easy to prove the following result.

Theorem 2.2.3 Let (N,v) be a game. If C(N,v) # 0, then the nucleolus is a core

allocation.

2.3 Linear programming games

In this section we deal with the special class of cooperative games whose characteristic
function is given by the optimal value of a linear program. Consider the following linear

programming problem:

max cz
t: zA<b

(2.32) She B4 S
zH =d

x>0

where c e R™, b e R?, d € R", A € R™*P, H ¢ R™*". The value of Problem (2.32) shall
be denoted by v,(A, H,b,d, c), and is equal to cz*, where z* is any optimal solution to
Problem (2.32).

One can check that the dual problem of (2.32) is

min yb+ z2d
(2.33) st Ay+Hz>c
y=>0

The value of (2.33) shall be denoted by vs(A, H,b,d,c). The duality theorem, see [4],
assures that (2.33) is feasible and bounded if and only if (2.32) is feasible and bounded,
and in this case v,(A4, H,b,d,c) = va(A, H,b,d, c).

Suppose now that there is a set of players N = {1,...,n}, each of them having their
own vectors b(i) and d(3), for all i € N. Thus, we can construct a cooperative game from
2.32. This can be done in different ways. One of them could be assuming that for every

coalition S C N, its characteristic function v(S) is the value of the problem
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max cx
t: 2A<D
(2.34) st @A < b(S)
xH = d(5)
x>0

where bk(S) = ZieS bk(l), dk(S) = ZiGS dk(l)

Definition 2.3.1 (Linear programming game) A cooperative game (N, v) is said to
be a linear programming game if there exist A € R™*?, H € R™*" and vectors b(S) €

R?, d(S) € R" such that v(S) = v,(A, H,b(S),d(S),c) ¥V S C N\0.

To obtain a cooperative game, v(S) must exist for all S C N, that is, v,(4, H, b(S5), d(S), ¢)
should be a real number for all S € 2V \ . So Problem (2.34) should be feasible and
bounded V S € N. Whenever the equality conditions are void, a sufficient but not
necessary condition for (2.34) to be feasible and bounded is that b(S) > 0 and A(3,j) >

OVi=1,...,m, j=1,...,p, with at least one positive entry in each row.

The class of linear programming games coincides with the class of games with non

empty core, as stated in the following theorem.

Theorem 2.3.1 A cooperative game is totally balanced if and only if it is a linear pro-

gramming game.

Proof. See [12]. O

In the proof of this theorem it is described an efficient way of building a core alloca-
tion (in general a linear program with 2" constraints must be solved). For calculating such
core allocation it is not necessary to compute the value of v(S) for all 2" — 1 non-empty
coalitions, we just need to solve the dual program (2.33). In the following chapters of this
work we shall make use of this construction, thus we are going to briefly describe how to

obtain such core allocation.

Let yy, 2y be an optimal solution to (2.33). Then, we have that the allocation
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z € R™ defined as
(2.35) z; = ynb(t) + 23d(f) Vi=1,...,n

is in the core of the Game, see [12]. The set consisting of all solutions calculated this way
is the well-known Owen set, see [47]. To complete this section we briefly introduce some

classes of linear programming games that will be referred to in the rest of the thesis.

2.3.1 Linear Production Games

Linear production games arise from linear production processes in which there is a finite
set of resources R = {1,2,...,r} and from those resources a set P = {1,2,...,p} of con-
sumption goods can be produced. The production technologies are given by a production
matrix A € R"?, where A;; denotes the amount of resource ¢ necessary to produce one
unit of product j,Vi=1,...,7, j = 1,...,p. It is also assumed that the demand of every
product is large enough to sell all produced products, the unitary market price of product
j being c¢;. The game arises when a bunch of players N = {1,...,n} with conflicting
objectives is in control of the resources. Assume that player k owns By units of resource
i,k=1,...,n, i =1,...,r. Therefore, let B = (B ),xn be the resource-player matrix.
Let b € R” be the resource vector, that is b = Bey, where eg € R™ such that (eg)y = 1
if £k € S and zero otherwise for all S C N. In other words, b; is the total amount of
resource ¢ owned by the grand coalition, b; = > ,_, By V ¢ € R. Thus, the maximum
profit that can be made by the grand coalition is given by the value of the following linear

programming problem:

max CcIr
(2.36) st: Az <b (P(N))
z>0

The dual program of P(N), denoted by D(N), is
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max yb
(2.37) st yA>c (D(N))
y=20

It is easy to check that, although players can try to produce individually, it is always
more profitable to join their resources as the benefit they obtain this way is at least as
high as the sum of the individual profits separately. For a coalition S C N, we define its

characteristic function via the optimal value of the problem

max cr
(2.38) s.t.. Az < Beg (P(S))
x>0

The dual of P(S) is the linear program

max yBeg
(2.39) st yA>c (D(S))
y=>0

It is easy to check that P(S) is feasible and bounded for all possible coalitions if

e Beg > 0.
e c>0.
e If ¢; > 0 there is at least one resource ¢ € R with A;; > 0.

Definition 2.3.2 L is the class of linear production games (LP games for short). That is
to say, L is the class of cooperative games (N,v) such that there exists a 3-tupla (A, B, c)
satisfying that v(S) is the optimal value of Problem 2.38, for every coalition S C N.

It is easy to check that the class of linear production games is included in the class

of linear programming games, as stated in the following theorem.



2.3. LINEAR PROGRAMMING GAMES 79

Theorem 2.3.2 Linear Production Games are Linear Programming Games.

2.3.2 Flow Games

Another class of games that can be expressed as linear programming games is that of

Flow Games (F@ for short), which arise from Flow Problems and we describe as follows.

Consider a directed network G with node and arc sets M = {1,...,¢q} and L =
{1,...,7}, respectively. Let N = {1,...,n} be the set of players. Suppose that each arc
i € L belongs to a unique player p; € N. However, we allow a given player j € N to own

several arcs. Let o be the function

o: L —-— N

2.40
( ) i — ot)

that assigns to every arc a player, the owner of that arc (o is called ownership function).

Let node 1 and node g be the source and the sink of this network respectively. For
each coalition of players S C N, let G° be the network consisting of all the nodes of G
but only the arcs that belong to the members of S. We denote by f(S) the value of the

maximum flow from the source to the sink in G¥.

Definition 2.3.3 (Flow game) (N,v) is said to be a Flow Game if there exists a net-
work G such that

(2.41) w(S) = f(S) ¥ S C N.

Now we will see how F'G can be transformed into Linear Programming Games, proving
this way that they have non-empty core. To do so we have to give the necessary matrices
and vectors to define the characteristic function of any Flow Game as an optimal solution

of a linear program.
Theorem 2.3.3 Flow Games are Linear Programming Games.

Proof. The proof is taken from [12], but we include it since it gives us the way to express

Flow Games as Linear Programming Games.
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Let (N,v) be a Flow Game with associated network G, consisting of r arcs and ¢
nodes. Let [;,ls, -+ ,l. be an ordering of the arcs of G such that {l;,---,[,} are those

arcs beginning at the source and {l/,11, -, s} are the arcs that finish at the source.

For each i € N, define vector b(i) € R as follows:

0 otherwise

(2.42) i) = { c(ly) if o(ly) =i

Let py,- -+, pg be the nodes of G, satisfying that p; is the source and p, is the sink. We
define the matrix H = (hgm) € M,y via:

1 if m+# 1,q and I, starts at p,,
(2.43) hem = ¢ —1 if m+#1,q and [, ends at p,,

0 otherwise

For each i € N we define d(i) as the g-dimensional vector with all its entries null. Let
p € R? be the vector with the first g coordinates equal to 1, the following h — g coordinates

equal to -1 and the rest of the coordinates equal to 0. If we consider the following linear

program,
max px
(2.44) st xl <b(S) (1) P
zH =d(S) (2)
x>0

where b(S) = Zb(i), d(S) = 0, then we have that v(S) = px¥, where z% is an optimal
icS

solution to (2.44), V S € 2V \ {@}. This concludes the proof. In (2.44) the inequali-

ties (1) correspond to the capacity constraints and the inequalities (2) refer to the flow

conservation constraints.
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The dual program of (2.44), which will be useful in following sections, is

min yb(S)
(2.45) Iy+Hz>p Ds
y=>0

Example 2.3.1 Consider the Flow Problem described in Example 1.2.1. Suppose that
there are three players that own the siz arcs. In Figure 2.1 we represent this situation
where the three numbers on the arcs mean: the number we assign to it, the player that

owns it and its capacity, in that order.

Figure 2.1: Flow game.

The characteristic function of the resultant game, that is, the mazimum source-to-

sink flow that each coalition can transport without the help of other players, is expressed
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in the following table:

S 1 { {2 [ {3t {22 | {13} | {25} | {1235}
o)l o | 1] 0| 1 7 4 10

(2.46)

By performing the above construction to transform a flow game into a linear pro-

gramming game, we obtain the following data:

b(l) = (3’0707 O? 07 4)7 b(2) = (07 07 170737 0)7 b(g) = (07 67 07 87070)7

0 -1 00
0 0 -1 0
(2.47) H= 0 0 00
0 1 00
0 0 10
0 -1 10
and
(2.48) p=(1,1,1,0,0,0).

Then, by solving the respective linear programs we obtain the characteristic function of

the game, v, described above.

2.3.3 Assignment Games

Let N = M UM’ where M and M’ are the supply node set (worker set) and the demand
node set (job set) respectively, see Section 1.4. Let M = {1,2,...,m} and M’ = {m +
1,m+2,...,2m}. Then the coalition consisting of players : € M and m + j € M’ can
obtain a profit

(2.49) v({i,m +j}) = ci;.
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For any S C M or S C M’, clearly v(S) = 0. For other S containing both jobs and
workers, v(S) is equal to the maximum total profit generated by the assignment of jobs
among the members of S, subject to the constraints that no job can be assigned to more
than one worker, and no worker can do more than one job. Thus, if S has no more jobs

than workers, we assign worker m + j(i) to job 4, and the total profit is

(2.50) S

1€ESNM

Then, v(S) is given by the value of the linear program

max E E Cij i

1€ESNM jeSNM/
(2-51) jesnm’
Z xij:]. ]ESOMI
i€SNM

L5 = {0,1} Z,] )

or equivalently,

(2.52) v(S) = max Z Ci (i)

ieSNM

where the maximum is taken over all such assignments. A different treatment in case S

has more jobs than workers gives us

(2.53) v(S) = max Z Ci(j),j-

m+jeSNM’

For the set N we have

(2.54) v(N) =max Y _ cij0,
=1
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where the maximum is taken over all permutations (j(1),7(2),...,7(m)) of the set M.

This can be written as
(255) 'U(N) = maxZinjcij,
i=1 j=1

with the usual interpretation for the coefficients z;;, if j** worker is to do #** job, then
z;; = 1, and z;; = 0 otherwise. Consider the linear program (1.12) in section 1.4. Due
to the unimodularity of its constraint matrix, it can be shown that the solution to this

program coincides with the solution to the relaxed problem

m m
max E E Cij i

i=1 j=1

s.t. z;=1 i=1,...,m
(2.56) ; ?

Yay=1 j=1,....m
i=1

z; >0 4,j=1,....m

It is well known that, among all the properties that they have, the core in these games

is nonempty and coincides with the Owen set, as we can see in the following construction.

Consider, next, the dual program of (2.56), which is

m m
min Y + %
st yitzi2e; 4,j3=1,...,m.

Note that there is no nonnegativity restriction on the dual variables y;, z;. However it is

easy to see that the minimum vector is not unique, for instance if

(2.58) (W 2") = (U, - Um 20y ey 2)
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is an optimal vector in (2.57), then so is
(2.59) , ;2= =ty — bz + b, 2, + ),

for any real number ¢. In particular, if we choose

(2.60) t = miny;
then
(2.61) | miny, = 0.

Thus, y; > 0 and there exists &k such that y; = 0. For every j we have that
Then, (y; 2') constructed this way is a minimizing vector for (2.57) with all components

non—negativé. Now, by duality

m m

(2.63) Zy{Zzg =v(N
=1 j=1

and so (y'; 2/) is an imputation for the game (NV,v). We shall show that in this allocation

the collective rationality property holds.

For any S C N we have

(264) 'U(S) = Cijy + - 4 C’iqjq>
where i1, ...,14,J1, .- ., jq are distinct members of S. Then
(265) Zy‘ Z Z 2 yll '+y;q +le'1 +Z£1 2 Ciyjy 7+ Cigjg ZU(S)’

€S m+jES

which concludes that (y'; 2/) € C(N,v).

In the following section we analyze a class of games that generalizes the Assignment

Games.
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2.3.4 Transportation games

A Transportation Game is defined by a 5-tuple (P, A, B, p, q) where:

e P is the set of supply nodes.

e () is the set of demand nodes.

B is the matrix of profits (b;; is the profit generated when transporting one unit
fromi e PtojeqQ).

p is the vector of offers (p; is the amount of material that player ¢ € P offers).

q is the vector of demands (d; is the amount of material that player j € () demands).

The characteristic function of a Transportation Game (N,v), where N = P U Q
and B, p, q are defined as before, is given by the optimal value of the following linear

program:

max Z Z bijxij
i€Ps j€Qs
8.t Z Ty <pi Vi€ Pg
(2.66) j€Qs
inj <gqg VJjEQs
i€ Pg

1'”20 Vieps,VjEQS

where Ps = PN S, Qs = QN S. That is, each coalition plays the game only with the
arcs and nodes completely owned by them. By taking p;, = ¢, =1Vie P, j € Q
we obtain an Assignment Game. So, the reader may note that the class of Assignment
Games is included in the class of Transportation Games. For a more detailed description
of Transportation Games (TG for short) see [59] or [60]. In those works some properties

of TG are proven, among them we underline the following:

Proposition 2.3.1 TG are 0-normalized.

That means that no player wants to act individually, as they would receive no payoff at
all if they did.
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Proposition 2.3.2 TG are totally balanced.

From this result we conclude that it is always possible to find core allocations in Trans-

portation Games.

Proposition 2.3.3 Let (N, v) be a Transportation Game. For every A € [0,+00), the

game (IV, Av) is a Transportation Game.

This result states that the multiplication times a non-negative scalar is a closed operation

in Transportation Games.

2.3.5 Shortest Path Games

From a Shortest Path Problem, see Section 1.5, in [23] the class of shortest path games
is introduced as follows. Consider a shortest path problem o whose nodes are owned by
a finite set of players N according to a map o : X — N, such that o(z) = ¢ means that
player i is the owner of node z. For any path P connecting a source and a sink, o(P)
denotes the owners of the nodes in P (only paths connecting a source and a sink are
considered). Suppose that the transportation of a certain good from a source to a sink
of ¢ produces an income g and a cost given by the length of the path that was used.
Suppose also that a coalition S C N can transport the good only through paths owned by
its members (a path is owned by a coalition S if o(P) C S). A Shortest Path cooperative
situation o is any 4-tuple (o, N,o0,g). With o it is associated the game (N,v,) whose

characteristic function v, is given by:

g—Lg if S owns a pathin 0 and Lg < g

0 otherwise

(2.67) Ve = {

for every S C N, where Lg is the length of the shortest path owned by S. A Shortest Path
Game is any such game (N, v,) associated with a shortest path cooperative situation o.

SPG denotes the class of shortest path games.

In [23] the relationship between SPG and monotonic games, see Definition 2.1.4, is



88 CHAPTER 2. TU-GAMES

studied. If we denote by MO the class of monotonic games with finite set of players, the

following result holds:

Theorem 2.3.4 The class of Shortest Path Games and the class of Monotonic Games

coincide.

In the same paper it is shown that, in general, SPG are not totally balanced and

some conditions for SPG to have non-empty core are given.

2.3.6 Minimum Cost Spanning Tree Games

Let G = (N U {0}, A) be a graph. We define a minimum cost spanning tree (MCST)
game over (7 as the cooperative game (N,v) such that v(S) = >, p. cq, Where T is a
minimum cost spanning tree in the complete graph made out of the nodes S U {0}, see
Section 1.6.

Bird, [5] proposed the following cost allocation rule. For each i € N, let z; be the
amount that ¢ has to pay. Then z; is equal to the cost of the edge incident upon i on the
unique path from 4 to 0 in T, where 7" is a minimum cost spanning tree over (G. Since
there could be more than one minimum spanning tree, this way of dividing costs leads, in
general, to more than one allocation. The following result shows the quality of the bird

cost allocation scheme.

Theorem 2.3.5 Let (N,v) be a MCST game. Let z be a Bird allocation for (NV,v).
Then z € C(N,v).

Proof. See [5] ' o
This theorem shows that MCST games are totally balanced.

Once defined linear programming games and some of its more important subclasses,

we finish the chapter by introducing an extension of classical cooperative games.
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2.4 Multicriteria Cooperative Games

We might find games in which the payoffs that coalitions receive are valued in a k-
dimensional space, that is, players have different objectives to maximize in the same
cooperative TU-game. This kind of games arise when players consider how to allocate
among them the undominated outcomes obtained as solutions to the corresponding mul-
ticriteria optimization problem. For a description of multicriteria optimization see [14]

and for a complete guide on multicriteria games see [18].

The idea of multicriteria cooperative games is formalized in the next definition.

Definition 2.4.1 (Multicriteria game) A combinatorial multicriteria cooperative game
is a pair (N,V), where N = {1,2,...,n} is the set of players and V is a function which
assigns to each coalition S C N a finite subset V(S) of R¥, the characteristic set of
coalition S, such that V(@) = {0}.

Vectors in V(S) represent the payoffs, in terms of k criteria, that the members of
coalition S can guarantee by themselves. If the characteristic functions in these games
are set-to-set maps instead of the usual set-to-point maps, the arising class of cooperative
games is a subclass of the so called Set Valued TU games that have recently been explored

in [17]. Let us see an example of a Set Valued TU game.

Example 2.4.1 Consider a game with three players whose payoffs are measured with
respect to two criteria. The characteristic function of this multicriteria combinatorial

game 1is given in the following table:

O e G G0

The goal of a scalar TU-game is to allocate in a fair way the value obtained by the

grand coalition. Quite frequently, in the set-valued case, there is more than one element
(efficient outcomes) that may be considered to be divided among the players; and the

question is how an achievable vector 2V € V(IN) will be fairly allocated.

An allocation in a multicriteria combinatorial cooperative game consists of a payoft

matrix X € RF¥*" The 5* column, X¢, represents the payoffs of the " player for each
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criteria; therefore X* = (1, %0, ...,z )" are the payoffs for player i. The j** row, X, is
an allocation of the total amount obtained in each criteria; X; = (15, zqj, ..., 2™) are the

payoffs for each player corresponding to criteria 5. The sum X* = Z X" is the overall
i€S
payoff obtained by coalition S.

Definition 2.4.2 (Multicriteria allocation) An allocation of the combinatorial mul-

ticriteria cooperative game (N, V) is a matriz X € R**™ such that X~ = Z X' e V(N).
ieN
The set of allocations of the game is denoted by I*(N,V).

As in the classical TU-games, we look for allocations satisfying some properties such as
collective rationality, that is, the core. Allocations in the core provide, to every player or
coalition, payoffs that are not worse than any of those that they can guarantee on their
own. To simplify, in the following X¥ £ V(S) means that there is no 2° € V(S) such
that X7 <28, j=1,2,...,k, and X5 # 25,

Definition 2.4.3 (Dominance core) The dominance core of a combinatorial multicri-
teria game (N, V') is the set of allocations, X € I*(N,V), such that X* L V(S)V S C N.
We will denote this set as C(N,V; £).

As long as C(N,V;«£) # 0, it is possible to find dominance core allocations by a

k
scalarization method. For each vector A\ € A={AeR*); >0,5=1,...,k, Z)\j =1},
Jj=1

and any vector zV € V(N), we define the scalar game (N,vi" ) as the game whose

characteristic function is given by:

268) v (0)=0, v (S)= max X255, VSCN,S£0, v (N)=x2V

25ev(S)
We will denote by C(NV, vf\N) the core of this scalar game, that is,

(2.69) C(N,vf") ={z e R, Y 2t =22, 2(8) > i (S),V S C N}.

iEN

The next result states that for some 2V € V(N) it is possible to find dominance

core allocations of multicriteria games from core allocations of the corresponding scalarized
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game.

Theorem 2.4.1 Let A € A and 2 € V(N) verifying that A2V #£ 0. If z = (z!,...,2") €
C(N,v;"), then X € C(N,V; %), where X* = ZxzV, Vi€ N.

AtzN

The proof of this result can be seen in [17], but we include it for its applicability in

searching for core allocations in multicriteria games.

Proof. Let A € A and let 2V be a vector in V(N) such that A’z" # 0 and
z € C(N,vi).
Now consider the matrix X € R¥*" whose columns are:

X'= 52" VieN.

Let us prove first that X € I*(N,V).

n i

2.70 XN = Y NN X eI*N,V).

Let us prove now that X is an allocation in the core. If X ¢ C(N,V; £), then there
would exist a coalition S C N and a vector 2° € V() such that Xf < 3]5, j=12,...,k,
- X5 # 25, Therefore X'X5 < A*Z° and the following chain of inequalities
(2.71)

A S>)\t’\S th’ th___1_§S_>\t N:$S>,UZN S} = max )\tZS,
L Y >0 (8) = e

1€S
would hold, which is a contradiction. a

The following result for the existence of the dominance core is automatically derived from

the previous theorem.
Corollary 2.4.1 3X e A, 2N e V(N): C(N,v3") # 0= C(N,V; £) #0.

Example 2.4.2 From Example 2.4.1, consider the vector 2" = (3,5)' € V(N) and A =
(0.2,0.8). The scalar game (N, v ) is:

| s [n]eleluals|es] V]
|7 (9) | 0.8 2 2 4.6
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As x = (1,2,1.6) is an allocation in C(N,vi" ), the matriz

15 30 24
— 23 23 23
(2.72) X = 25 50 40 |

23 23 23

constructed as in the previous theorem, is a dominance core allocation for the multicriteria

combinatorial game.

In some situations the order assumed by the players could be stronger than the dom-
inance. In such situations the coalitions would only accept payoffs that are at least as

high as what they can obtain by themselves in every coordinate.

So, given x,y € R*, we say that

(2.73) rryer>yVvi=1,... k.

Under such conditions, we define the preference core as follows:

Definition 2.4.4 (Preference core) The preference core of a combinatorial multicrite-
ria game (N, V), denoted by C(N,V; =), is the set of allocations X € I*(N, V) such that
X5 =25V 25 e V(9).

Analogously to the dominance core, an existence theorem for the preference core

can be stated from the associated scalar games.

Theorem 2.4.2 Let Ay,..., \; be the extreme points of A. One has that

(2.74) CN,V;=)#0e 32V e V(N) : C(N,vi)#0Vi=1,... k

Proof. See [17] g

Once cooperative games have been introduced, in the following chapter we will study
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possible ways of allocating the benefits generated by the grand coalition in the class of

Linear Production Games.



Chapter 3

New allocations in Linear

Production Games

In Section 2.3.1 the class of Linear Production Games was introduced. Now a natural
question arises: how to divide the profit made by the grand coalition among the players.
The following sections present two ways of doing so. The first one is the so-called Owen
set, see [47]. The second one is a new allocation, specifically created for linear production

games in this thesis, named Extended Owen set.

3.1 The Owen set

In this section we describe a well-known solution concept for LP games: the Owen set.
Although it will be proven that the Owen set consists of core allocation, several questions
on the fairness of such allocations are proposed. To begin with, let us introduce some

notation that will be useful in the following.

Definition 3.1.1 Let (A, B,c) € L. The feasible regions of problems P(N) and D(N),
see equations 2.36 and 2.37 in Section 2.8.1, are denoted by

Fuax(A, B,c) = {z € R : Az < b}

(3.1)
Fuin(A,B,c) :=={y € R} : yA > c}

95
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respectively. The optimal values of problems P(N) and D(N) are denoted by

Umax (A4, B, ¢) '=max{cz : € Fihax(4, B,¢)}

3.2
(3:2) Umin(A, B,¢) ;= min{yb : y € Fin(4, B,¢)}

respectively, and the set of optimal solutions to P(N) and D(N) by

max(A, B, ¢) :={x € Frnax(A, B,¢) : ¢ = vmax(4, B, ¢)}

0]
3.3
(3:3) Omin(A, B,c) :={y € Fuin(A, B,¢) : yb = vmin(A, B,¢)}

In the rest of the chapter we will search for ways of dividing the profit generated by

the common action of all players, v(/N), among the agents: the so-called solution rules.

Definition 3.1.2 A solution rule ¢ on L is a map assigning to every game (A, B,c) € L

a subset of R™. Each member of such subset is an allocation.

A well-known solution rule for cooperative games is the core, see Section 2.2.2. Every
allocation in the core of a game distributes the general benefit among the players in such
a way that no group of players can obtain a better payoff by acting separately from the

rest of players. Mathematically, for every game (N, v) its core is defined as the set
(3.4) Core(N,v) ={z € R": 2(N) =v(N),z(S) > v(S) VS C N},

where 2(S) = }". o ; for all S. One well accepted solution rule specific for linear pro-

duction games is that introduced by Owen [47], and named Owen set.

Definition 3.1.3 Let (A, B,c) € L. The Owen set of (A, B,c) is

(3.5) Owen(A, B,c) :={yB : y € Omin(4A, B,c)}.

In [47] it is proven that for every (A, B,c) € L, Owen(A, B,c) C Core(A, B, c). That is
to say, given an allocation in the Owen set of a LP game, no coalition of players can obtain
a better payoff by acting on their own than the payoff they receive from this allocation.

The following example shows how to calculate the Owen set of a given LP game.

Example 3.1.1 Consider the game (A, B, c) € L where
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The corresponding dual problem D(N) is

min 2y, + 4y, +y3

s.t.: + >1
(37) n Y2 =
Yo + Y3 > 2
Y1,Y2,y3 = 0

It can be checked that Oyin(A, B,c) = {(1,0,2)}. So, Owen(A, B,c) = {(1,0,2)B} =
{(3,0,1)}.

This allocation is in the core of the game but, is it a “fair” allocation? Note that
player 2 receives nothing for this allocation but, without his resources, players 1 and 3

cannot make any benefit at all. So, the Owen allocation gives null payoff to players that

are absolutely necessary to obtain the mazimum benefit v(N).

What happened in Example 3.1.1 is a general drawback of linear production games. It
comes from the fact that, by the Complementary Slackness theorem, see [4], if there is some
surplus of resource 7 in an optimal solution z* € Opax (A4, B, ¢) (meaning (Az*); < b;), then
yF =0V y € Omin(A, B, c). This means that only players owning resources that generate
no surplus have the chance of receiving a positive payoff from Owen allocations. This
fact could make players get rid off their surplus so that the corresponding dual variables
are not forced to be null and they have the possibility of receiving a positive reward from

allocations in the Owen set.

The following section presents a new solution concept on LP games that avoids the

drawbacks mentioned in the previous example.
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3.2 The Extended Owen set

In this section a new allocation for linear production games is presented, named the
Extended Owen set (EOwen for short). It is based on the idea that players owning
resources that produce surplus in the optimal production plan can get rid of them. Let
(A,B,c) € L and z* € Opax(A, B, c) one solution to the corresponding problem P({N).
The coordinates of z* define the amount of consumption goods to be produced. Now
consider the linear production game in which each player k reduces the amount of its

resource ¢ so that the total amount of this resource owned by all agents is (Az*);.

For any optimal solution z, let B be the updated amount of resource ¢ owned
by agent k, satisfying that 0 < B% < By, and >, B% = (Az);. Consider the vector
b® € R™ where b7 = (Az); = > ;_, BL.

So, for every £ € Omax(A4, B,¢) a new linear production game (A, B*,c) € L is
defined. Its corresponding problems P*(S) and D*(S) are:

max cx
(3.8) s.t.. Az < B%eg P*(S)
x>0

min yB%eg
(3.9) st yA>ec D*(S)
y=>0

where (eg)r =1V k € S and zero otherwise.

Definition 3.2.1 Given a LP game (A, B,c) and x € Onax(A, B, ¢), the set of all possible

reduced resource-player matrices associated to x is

(3.10) B(A,B,z) = {B*:0 < Bf, < By, B = (Az);,Y i € R,k € N}.

k=1

The LP game (A, B®,c) is called the reduced game of (A, B, c) associated to x.
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Building reduced resource-player matrices

Note that b = B”ey and that for a given z € Opax(A, B, ¢), there might be infinitely
many ways of obtaining matrix B* as defined before. The problem of building an appro-
priate matrix in B(A, B, z) deserves a whole research by itself. One logical way to do so
is by minimizing the total cost. Suppose that player k has to pay 7 monetary units for

each unit of resource ¢, for all k € N, ¢ € R. Thus, B” is given by one optimal solution to

T n
min E E Tik Bk

i=1 k=1
n

(3:11) > BL=b VYieR

0<BZ <ByVieRkeN.

Due to the fact that the previous linear program is separable in r different knapsack
problems in their continuous version, it is easy to check that one optimal solution to this

problem can be calculated as follows.

For any resource i € R, the player that can buy resource i at the cheapest price keeps
all his resource. Later, the player buying ¢ at the second cheapest price remains with all
his resource. Continue this process until we have reached bf units of resource i. The other

players have to get rid of their amount of resource 1.

Nevertheless, it is usual that all players buy any given resource at the same price.
In such case we build B® following the proportional rule, that is, all players get rid of

their resources in equal proportions. Thus, one has that

bz sz

3.12 Bf =
( ) ik b

Let us see that B* built this way is a reduced resource-player matrix associated to z.

1) 0<B; <L sz trivial

(3.13) 2) ZBZZ Z e = _bL ZB"’“ = l;—fb, = b7 = (Ax);.
k=1
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In the rest of the section, we will assume for any (A, B, ¢) that B® is one reduced resource-
player matrix of B(A, B, z).

Basic results

Before going on, we present some technical results that will be useful in the rest of the

section.

Lemma 3.2.1 Let (A, B,c) € L. Then

L. Umax(A, B, ¢) = Umax(A, B®,¢) ¥V 2 € Onax(A, B, ¢).
2. Unmin(A, B,¢) = Umin(A, B*,¢) V 2 € Opax(4, B, ¢).

3. Omax(4,B,) = | Oumax(A4,B%0).

2€0max(A,B,c)

4. Omin(A, B, C) C ﬂ Omin(A, Bx, C).

£EO0max(A,B,c)
Proof.

L. Trivial, since x is solution to P*(N) V x € Onax(4, B, ¢).

2. Trivial from the Complementary Slackness theorem. Take zOna (A, B,c). If y €
Onin(A, B, ¢) one has that y; =0V i : (Az); < b;. Therefore,

(3.14) v # 0= b7 = b; = by = b%y.
Since vmax(A, B, ¢) = Umax (A4, B%, ¢), the result follows.
3. First consider Z € Opax(A4, B, c). Trivially Z € Opax(A, B%, c). Then

(3.15) Te U Omel(4, B 0).

2*E€0max{A,B,c)
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Now consider T € U Omax(A, B® ,c). Then, there exists z* such that
*€0max(4,B,c)

T € Opax(A, B®, c). Thus

(3.16) Z>0 = T € Onax(A, B, ¢).
€T = Vnmax(A, B®", ¢) = vmax(A, B, )

4. Let § € Onin(A, B,¢) and T € Opax(A, B, c). Applying the Complementary Slack-
ness theorem and the Duality theorem, we have that

(3.17) J6° = b = & = vmax(A, B, ) = vmax(4, B%,¢) = vmin(A4, B%,¢).

Trivially § € Fpin(A, B, ¢), since problems D and D? have the same constraints.
Thus, we conclude that § € Opmin(A, B, c) and the result follows.

O

It often happens that there is only one optimal production plan for a given LP
process (A, B, c), that is, Omax(A4, B, c) = {z}. In the rest of the section we will focus on

such subclass of L.

Definition 3.2.2 L is the subclass of L = {(A, B,c) € L: Omax(A, B,c) = {z}}.

The Extended Owen Set

From the previous definitions, a new solution rule for our linear production games is
presented. It is based on the idea of not taking into account the surplus generated. Later

on we calculate allocations of the (only) reduced game.

Definition 3.2.3 Let (A, B,c) € L. The Extended Qwen set of (A, B,c) is

(3.18) EOwen(A, B,c) = {y"B” : y* € Onin(A, B®,¢), {2} = Omax(4, B,c)}.
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A direct consequence of this definition gives us an alternative definition of the Ex-

tended Owen set.

Proposition 3.2.1 EOwen(A, B, c) = Owen(A, B*,c) for all (A, B,c) € L, where {z} =
Omax(4, B, ¢).

Proof. Let (A, B,c) € L and {2} = Opax(A, B, c). By the definitions of the Extended

Owen set and the Owen set one has

(3.19) EOwen(A, B,c) = {yB* : y € Opmin(A, B*,¢)} = Owen(A, B, c).

The following proposition proves that the name Extended Owen is meaningful, as

the Extended Owen set of our linear production games contains the classical Owen set.
Proposition 3.2.2 Let (4, B,c) € L. Then

(3.20) QOuwen(A, B,c) C EOwen(A, B, c).

Proof. Let (A, B,c) € L and v € QOwen(A, B, c). Then there exists § € Omin(4, B, ¢)
such that v = yB. By Lemma 3.2.1, we deduce that § € Omin(A, B*,c), where {z} =
Omax(A, B, ¢). ’

By the Complementary Slackness theorem, (Az); < b; = ,_, Bit = Ui = 0. Then,
ify; #0= (Az); =b; = > ,_, Bit = B}, = Bix. Thus we have that

T T
(3.21) Y= Bux=Y BBx= > BBL=> BB,
i=1 50 5 #0 i=1
which implies that v = yB*. Then v € EOwen(A, B, c). ‘ O
The following example shows that in general the Owen set is a “proper” subset of

the Extended Owen set, that is, there are allocations in EQwen that are not in the Owen
set.
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Example 3.2.1 Consider the linear production game (N,v) arising from the linear pro-

duction process (A, B, ¢) where

| 10 100 )
(3.22) A=|lo1|,B=]l010 ,c=<1>.
1 2 00 4

Equation 3.23 shows the linear programming problems corresponding to the game (A, B, c).

One can check that Onax(A, B,c) = {z = (1,1)}.

max 21, + zo )
min Yy + Y2 + 4ys

s.t. 1 <1 ; > 2
s.t.:
Yo+ 2y3 > 1
.731‘|'233'2 §4 >0
o1, 20 >0 U1,Y2,Y3 =

Consider now the reduced game (A, B®, c) associated to x, where

(3.24) B =

o O =
O = O
w o o

It is easy to see that y* = (3/2,0,1/2) € Omin(A, B®,c). In Equation 3.25 one can see

the linear programming problems associated to (A, B, c).

max 2z, + Z .
min y; +y2 + 3y3

s.t. 11 <1 ; > 2
S.T..
Yo+ 2y3 > 1
w1+2x2§3 >0
21,79 >0 Y1,Y2,Y3 =

From y®, we deduce that

(3.26) a = y*B® = (3/2,0,3/2) € EOwen(A, B,c).
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One may check that o cannot be an Owen allocation for (A, B,c), as Y5 = 0V § €
Omin(4, B, c) and, therefore, y3 = 0V v € Owen(A, B,c). This concludes that the OQwen

set is a proper subset of the Extended Owen set.

The following proposition proves that for the reduced games the Extended Owen Set and

the Owen Set coincide.
Proposition 3.2.3 Let (4, B,c) € L and {2} = Omax(A, B, c). Then one has that

(3.27) EOQwen(A, B®,c) = Owen(A, B®,c).

Proof. Let (A, B,c) € L and {2*} = Omax(A, B, c). Tt is easy to see that Opmay (4, B, c) =
{z*} (trivially 2* € Omax(A, B, c) and, if there were more solutions, then they would be
in Opax (A, B, ¢), which is a contradiction because (4, B, c) € L.) Therefore (A, B*,¢c) €

*

L. 1t is clear that (B*")*" = B*".

Thus, one has that

EOQOwen(A, B*",c)

{7(B”)" : 7 € Omin(A, (B*)7,¢), {T} = Omax(4, B, 0)}
{9(B”)" : § € Omw(4, (B¥)*",0)}

= {yB" :4 € Omin(A, B, )}

= {UB” : 7 € Onin(A, B¥ ,¢)} = Owen(A, B* ,c).

(3.28)

Il

O
As a corollary to this proposition one can state that in linear production games where all

the resources are completely used, the Extended Owen Set coincides with the Owen Set.

The following proposition proves that allocations in the Extended Owen set dis-

tribute exactly v(N) among the players.
Proposition 3.2.4 Let (4,B,c) € £ and v € EQuwen(A, B, c). Then 7 is efficient.

Proof. Let v € FOwen(A, B,c) then there exists § € Onin(4, B%, c), where {z} =
Omax(A, B, c), such that v, = >~ 7:B% V k=1,...,n. We have that
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(3.29) YN =Y =Y > GBL=) Ty Bi=D) Gibi ="
k=1 k=1 =1

k=1 i=1 i=1

Since ¥ € Omin(A, B% ¢) and {z} = Onax(A, B, c), we know that yb® = cx = v(N). That
concludes that v(N) = v(N). O

The following example shows that allocations in the Owen Set might not be indi-

vidually rational.

Example 3.2.2 Consider the LP game (A, B, c) where

10 1.5 0 05 )
(3.30) A= 1 1 , B = 3 1 0 ,c=< )
01
The problem P(N) corresponding to (A, B,c) is

max x;+ 2y
st 11 <2
(3.31) Ttz <4
To <1
z;>0,t=1,2,3

and one may check that Opa (A, B,c) = z* = (2,1). From this solution, consider the

reduced game (A, B, c) where

15 0 05
(3.32) B¥ =\ 225 075 0
1 0 0

calculated by the proportional rule.
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The corresponding linear program D (N) is:

min  2y; + 3y2 + Y3
st ity >1
Ya+ys =2
y; > 0,i=1,2,3

(3.33)

One has that y* = (0,1,1) € Omin(A, B¥,c). From this vector, we obtain the allocation

(3.34) o =y* B® = (3.25,0.75,0) € EOwen(A, B, c).

On the other hand, it is easy to see that v({1}) = 3.5. Then we conclude that

ar; < v({1}), and therefore a is not individually rational.

We have given the definition of this new solution set for LP games and some if its proper-
ties. The following step will be to provide an axiomatic characterization of such solution

set.

3.2.1 Axiomatic characterization

In this section we characterize the Extended Owen set in the class £. Note that for the
case in which B® = B, that is to say, linear production games in which all the resources are
used in the optimal production plan, EFOwen and Owen coincide, see Proposition 3.2.3.
Therefore we will use the same axioms that characterize the Owen set for LP games in
[24]:

Definition 3.2.4 (Axiom 1) A solution concept ¢ over L satisfies one person efficiency
if (A, er,¢) = {vmin(A, er,c)} for all (A,er,c) € L.

One person efficiency says that if there is only one agent owning one unit of all resources,
then the solution concept assigns to him the maximal profit that can be made from his

resource bundle.

The second axiom demands that the solution concept remains invariant if the units

in which the resources are measured change.
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Definition 3.2.5 (Axiom 2) A solution concept ¢ on L satisfies rescaling if

(3.35) @(HA,HB,c) = ¢(A,B,c) ¥ H € RY" diagonal with positive diagonal entries,

—~

for all (A,B,c) € L.

The following property states that if the resources are shuffled among the agents,

then the solution rule changes in the same way.

Definition 3.2.6 (Axiom 3) A solution concept ¢ on L satisfies the property of shuffle
if for all H € Ry™™ with Hey = ey, and for all (A, b,c) € L, the following equality
holds:

(3.36) w(A,B,c)H = ¢(A, BH,c).
where (A, B,c)H = {aH : a € ¢(A, B,c)}.

The fourth axiom assumes that the players agree that the profit is divided according
to a vector a € ¢(A, I,,,c). Afterwards player k takes his payoff oy, and leaves. Suppose
that his resource can be used by the other agents for a price ay per unit. Then, a solution
rule satisfies consistency if the restriction of a to agents N \ {k} is a solution to the

xeduced linear production game.

Definition 3.2.7 (Axiom 4) A solution concept satisfies consistency if for all (A, Iy, c) €
L withr =n > 2 and for all o € @(A, Iy, c) one has that (A_ge,Ink,C) € L and
ok € O(A_ke,In\i,C) for all k € N, where ¢; = ¢; — ayAgj for all j € P and Ay,

denotes the matriz resulting after deleting row k from matriz A.

The consistency axiom has to do with the special case in which every player owns exactly
one unit of exactly one resource, and different players own different resources. Therefore
we can identify the set of resources with the set of players in an appropriate way, Iy

denoting the identity matrix of dimension n = r.

The last axiom we will use to characterize the Extended Owen set is deletion. Dele-
tion says that if a production technology is not needed to make the maximal profit v(N),

then we can delete this technology, the outcomes of the old situations being also outcomes
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in the new game.

Definition 3.2.8 (Axiom 5) A solution concept ¢ over L satisfies deletion if for all
(A, In,c) € L and for all J C P such that vmin(Ae—y, IN,c—7) = Umin(A, In, ), then
©(A, In,c) C o(Ae_y,In,c_;), where Ae_; denotes the matriz resulting after deleting

column j, ¥ j € J, from matriz A.
After those axioms, we characterize the Extended Owen set as follows.

Theorem 3.2.1 If ¢ satisfies one person efficiency, rescaling, shuffle, consistency and
deletion over the reduced game (A, B®,c), where {z} = Onax(A4, B, ¢), then ¢(A, B,c) =
EOwen(A, B, c) for all (4, B,c) € L.

Proof. Take (A, B,c¢) € L, and suppose that »(A, B, c) satisfies the Axiom 1-5
in (A,B% c). Then, see [24], p(A, B,c) = Owen(A, B*,¢). Since EOwen(A,B,c) =
Owen(A, B*, c), see Proposition 3.2.1, the result follows. O

3.2.2 Extended Owen set and independent agents

The case in which matrix B is square and diagonal, that is, when each player owns
only one resource and different players own different resources, is special. Three main
characteristics of the Extended Owen allocations must be underlined for this subclass of

linear production games:

1. For all € Oy.x(A, B,c), B(A, B,z) consists of only one matrix. Such matrix
is obtained when all players get rid of their corresponding resource until no more

surplus is produced.

2. Allocations in the Owen Set are individually rational.

Proposition 3.2.5 Let (A, B,c) € L such that By = 0V i # k (each resource is
owned by only one player, and each player owns only one resource). The allocations

in FOwen(A, b, c) are individually rational.
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Proof. Let (A, B,c) € L under the conditions of the proposition, and v €
EOwen(A, B,c). We have to prove that v, > v({k}). Consider the two possible

cases:

e v({k}) = 0. The result is trivial.

e v({k}) > 0. Then there exists a consumption good j that can be produced
only from resource k, that is, Ay; # 0 and A;; = 0V i # k. Therefore
o({k}) = Beke;.

Since v € FEOwen(A, B,c) there exist § € Omin(A, B* ,c), where {z*} =
Omax(A, B, c), such that v, = 7xB%. It is easy to check that Bf, = B
(because there can be no surplus of resource k in an optimal solution, as such

resource can always be used to produce product j and generate benefit).

We have that

(3.37) Az c= Y Gidy > ¢ = Gy 2 6 = G 2 7
i=1 kj
On the other hand,
~ Dzt~ C;
(3.38) Y& = U Bk = Y Bri 2 ZJkak = v({k}).

ki

3. If all resources are necessary to produce each product, we have that allocations in
the Extended Owen set are core allocations. This comes from the fact that in such

games v(S) = 0, and trivially « > 0 for every Extended Owen allocation a.

3.2.3 Multiple production plans and the Extended Owen solu-

tion

It might happen that a linear production problem has more than one optimal production
plan. In such case, the definition of the Extended Owen set must be broadened. There



110 CHAPTER 3. NEW ALLOCATIONS IN LINEAR PRODUCTION GAMES

are different possibilities to tackle this problem. Consider a linear programming game

(A, B,c) and {z',...,2*} the extreme optimal solutions to the corresponding P(N).

Extension 1

The first approach to define the Extended Owen solution in the complete class of linear
production games is based on the idea of finding allocations belonging to the Owen sets
of all reduced games associated to extreme optimal solutions to P(/N). Thus, a formal

definition of such solution concept is the following:

Definition 3.2.9 Let (A, B,c) € L and {z',...,z¥} the extreme optimal solutions to
P(N). The Ezxtended Owen 1 set of (A, B,c) denoted by EOwenl(A, B,c) is the set

(3.39) EOuwenl(A, B,c) = ﬂ Owen(A, B ¢).

t=1

The first consequence of the definition is that the name given to this solution concept
is meaningful, that is to say, allocations belonging to the Owen set of a given linear

production game are also allocations in the Extended Owen 1 set.

Proposition 3.2.6 Let (A, B,c) € L. Then one has that

(3.40) Owen(A, B,c) C EQwenl(A, B, c).

Proof. Let (A, B,c) € £ and {z',... 2%} the extreme optimal solutions to the corre-
sponding P(N). Consider a € Qwen(A, B, c). By definition, we have that

(3.41) Jy € Omin(A,B,c): a=yB.

By Lemma 3.2.1 we deduce that

(3.42) 3y €[\ Omin(A, B™ ) : a« = yB.

t=1
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Let z* be an extreme solution. It must be proven that a € Owen(A, B® ,c). Trivially

we have that y € Owen(A, B*",c). Applying that y; # 0 implies (Az*); = b;, having this
way that Bfﬁc = By V k, one has

s T
(3.43) ay = Z%Bik = Z yiBix = Z y;BE = Zyi CVk=1,..,n
i=1 i1 #0 i1yi£0 i=1

Therefore, o = yB*" which implies that o € Owen(A, B*,c) and the result follows. O

The following example shows that in general the Owen set is a proper subset of the
Extended Owen 1 set.

Example 3.2.3 Consider the LP game (A, B, c) with the following data:

10
(3.44) A=|11], B=
01

— O =
o)

I
TN
—_
N———

—_— O =
O O

The corresponding problems P(N) and D(N) are

max I +<x
' ’ max  2y; + 3y2 + 2y3

S.tl..
(3.45) 21+ 25 <3 P(N) e = D(N)
Y2 t+ys=>1
T2 <2 >0
21,75 > 0 Y1,Y2,Y3 2

One has that the extreme optimal solutions to P(N) are {z* = (1,2),2* = (2,1)} and

that Omin(A, B, ¢) = {y = (0,1,0)}. Therefore, Owen(A, B,c) = yB = {a = (0,3,0)}.
Consider now the two reduced games arising from the optimal solutions to P(N),

(A,B* c) and (A, B** c) where B*' and B are calculated following the proportional

rule, that is,
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05 0 05 1 0 1
(3.46) B =] 0 3 0 |, B =| 0 3 0
1 0 1 05 0 0.5

The corresponding problems D* (N), t = 1,2 are

max Yy + 3y2 + 2y; max 2y; + 3y2 + ys
g >1 s.t.: +1ys > 1
(3.47) Stz by =t pen
Yo t+ys =1 Yatys =1
Y1, Y2,y3 > 0 Y1,Y2,%3 >0

It is easy to see that y* = (1,0,1) € Omin(A, B* ,c) t = 1,2. Therefore, we have that:
(3.48) y*B* = (1.5,0,1.5) € Owen(A,Bxl,c), y*B””2 = (1.5,0,1.5) € Owen(A, B“z,c).

Then, by definition, (1.5,0,1.5) € FEOwenl(A, B,c). But we know that OQwen(A, B, c)
consists only of the allocation (0,3,0). Then we conclude that Owen(A, B,c¢) & EQwenl(A, B, c).

The following result shows that the Extended Owen 1 set and the Extended Owen set
given in previous sections coincide on the class L.
Proposition 3.2.7 Let (A, B,c) € L. Then one has that

(3.49) EOQuwenl(A, B,c) = EOwen(A, B, c).

Proof. Let (A, B,c) € L, then Omax(A, B,c) = {z*}. Therefore, applying the definition
of EOwenl and Proposition 3.2.1, :

(3.50) EOwenl(A, B, c) = Owen(A, B*,c¢) = EQwen(A, B, c).
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Now we prove that allocations in the Extended Owen 1 set are efficient, that is, they

distribute all the benefit made by the grand coalition.
Proposition 3.2.8 Let (A, B,c) € L and a € EQwenl(A, B,c). Then « is efficient.

Proof. Let (A,B,c) € £ and a € EOwenl(A, B,c). Assume that {z',...,z%} are
the extreme optimal solutions to P(N). Then we have that o € Owen(A, B*,c) V t =
1,...,w. In particular, let z* € {z!,..., ¥}, we have that o € Owen(A4, B*,c). There-
fore, there exists y € Opin(A, B*', ¢) such that o = yB® . Thus,

(3.51)
a(N) = Zak = ZZyiBﬁ; = ZinBﬁg = Zyibf* = yb® = ca* = v(N).
k=1 k=1 i=1 =1 k=1 i=1
And the result follows. O

Now another possible way of defining the Extended Owen set for the whole class of linear

programming games is presented.

Extension 2

The second extension of the Extended Owen set for general linear programming games to
be considered is based on the idea of choosing one optimal solution to P(N) and a vector
which is an optimal solution to all problems D’”t(N), t=1,...,w. By Proposition 3.2.1,
we know that there exists such vector (at least the solutions to D(N)). In the rest of the
section we will prove that such solution set strictly contains the Extended Owen 1 set, it

is a natural extension of the Extended Owen set on Z and consists of efficient allocations.

Definition 3.2.10 Let (4, B,c) € L and {z',...,2"} the extreme optimal solutions to
P(N). The Extended Owen 2 solution of (A, B,c) is

(3.52) EOwen2(A, B,c) = {§B% : § € [ ) Onin(A, B*,¢), T € Omax(4, B,c)}.

t=1

The following result shows that the Extended Owen 2 set contains the Extended

Owen 1 set.
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Proposition 3.2.9 Let (A, B,c) € £. Then one has that

(3.53) EQuwenl(A, B,c) C EOQwen2(A, B, c).

Proof. Let (A, B,c) € £ and a € EOwenl(A, B,c). Then
(3.54)

a € ﬂOwen(A, B’”t,c) =ac€ ﬂ{thzt 1 y' € Omin(A4, B™, 0)}

t=1 t=1

:HyeﬂOmm(A,B’”t,c):azyth Vi=1,...,w

t=1

=3Jye€ ﬂOmin(A,B’”t,c), Jz*e{z!,...,2"¥}:a = yB* = a € EOwen2(4, B,c).

t==1

O
As a direct consequence of this proposition and Proposition 3.2.6, we have that the Owen

set is also a subset of the Extended Owen 2 set.

Corollary 3.2.1 Let (A, B,c) € L. Then one has that

(3.55) Owen(A, B,c) C EOwen2(A, B, c).

The following example shows that the Extended Owen 2 set and the Extended Owen 1
set do not coincide, that is, the Extended Owen 1 set is a proper subset of the Extended

Owen 2 set.

Example 3.2.4 Consider the LP game (A, B, c) where

111 2 11 .
110 10 2

(3.56) A= , B= 0 ye=| 1
101 021 ,
011 8 3
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The corresponding problem P(N) is

max I+ T+ I3
st T+ aat+x3<4
T+ 22 <3
T +23<3
o +x3<3
z;>0i=1,23.

(3.57) P(N)

the optimal extreme solutions to P(IN) being
(3.58) ' =(2,1,1), 2° = (1,2,1), * = (1,1,2).

The corresponding reduced resource-player matrices B*, calculated by the proportional

rule, are

(3.59) B = , B* =

O N
e " =
O =N =
Niw O = BN
i Wik O =
O Wi N =
W
i O Wiy N
W N O =
[ B I N

Let us now analyze the reduced games (A, B* ,c), t = 1,2, 3. Their corresponding problems
D*(N) are

min 4y; + 3ys + 3ys + 2y,
st yi+yt+ys>1
(3.60) ity t+ys>1 D* (N)
Bitys+ys=>1
y; > 0i=1,23,4.



116 CHAPTER 3. NEW ALLOCATIONS IN LINEAR PRODUCTION GAMES

min  4y; + 3y2 + 2y + 3ys
st y1+yatys; =1
(3.61) Y1+yt+ys>1 D (N)
Btys+ys>1
y>0i=1,234.

min 4y, + 2ys + Jys + 3y
st: ypr+ye+ys>1
(3.62) Y1ty +tys =1 D*(N)
Y1+ys+ys>1
y;, >207=1,23,4.

It is easy to see that Omm(A, B*,c) has two extreme points, {(1,0,0,0),(0,3,3,3)} for
any t = 1,2,3. Therefore we have that the extreme points of the three Owen sets of the

reduced games are

Owen(A, B* ,¢) = {y*B* :y' € Omm(A,le,C)} {2,1,1,(1,3, )}
(3.63) Owen(A, B“2,c) = {yQB“Z : Y2 € Omin(A4, sz,c)} {(2,1,1), (?‘1 % é)}
Owen(A, Bza, C) - {y3Bz3 : y3 € Omin(A7 BZSaC)} {(2 1 1)’ (1 217- %)}

Now let us calculate an allocation in EQwen2(A, B, c). We know thaty = (0, 3, 3, 2) €
N>_, Omin(A, B* ,¢) and &' is an extreme optimal solution to P(N). Therefore the allo-
cation o = yB*" = (1, 2, $) € EOwen2(A, B, c). Let us check that o ¢ EOwenl(A, B, c).
Otherwise, we would have that o € Owen(A, B*,c). Let us see that such assertion is a

contradiction.

o € Owen(A,B*,c)=33e(0,1]: 8(2,1,1) + (1 - B 13 =«

127
B0 L siita-g =2 ==

This concludes that o ¢ Owen(A, B®,¢) and, consequently, a ¢ (:_, Owen(A, B* c) =
EOwenl(A, B, c).
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The next result states that the Extended Owen 2 set and the Extended Owen set coincide

on the class L.

Proposition 3.2.10 Let (A, B,c) € L. Then

(3.65) EOQwen2(A, B, c) = EQwen(A, B, c).

Proof. Let (A, B,c) € L. Then w =1 and Omax(A, B, ¢) = {z'}. Therefore,

EOwen2(A, B,c) = {§B% : § € [ | Omin(A, B” ), & € Omax(4, B, )}
t=1

= {yB* :y € Omin(A, B*, ¢)} = Owen(A, B* ,¢) = EOwen(A, B, c).

(3.66)

Following the same reasonings we did for EQwenl, now we prove that allocations

in the Extended Owen 2 set are efficient.
Proposition 3.2.11 Let (A4, B,c) € £ and a € FOwen2(A, B, c). Then a(N) is efficient.

Proof. Consider (A4, B,c) € L and o € EOwen2(A, B,c). Then there exists y €
N2, Omin(A, B*,¢) and z* € {z',...,2*} such that a = yB*". Therefore
(3.67)

(V) =Y o= uBy =
k=1

r
k=1 i=1 =

y Y BL =Y yb = yb” =ca® = v(N).
k=1 i=1

i=1

Extension 3

The third definition for the Extended Owen set in a general linear production game is
based on the idea of joining the Owen sets of all reduced games associated to extreme

optimal solutions to P(NN). Thus, a formal definition of such solution concept is:
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Definition 3.2.11 Let (A, B,c) € L and {z',...,z"} the extreme optimal solutions to
P(N). The Extended Owen 3 set of (A, B,c) denoted by EOwen3(A, B, c) is the set

(3.68) EOwen3(A, B, c) = | ] Owen(4, B*, ).

t=1

As we did before, we firstly show that the two solution concepts aforementioned are
included in the Extended Owen 3 set.

Proposition 3.2.12 Let (A4, B,c¢) € L. Then

(3.69) EOQwen2(A, B,c) C EOwen3(A, B,c).
Proof. Let (A, B,c) € L and o € EQwen2(A, B, c). Then

dye ﬂOmin(A,BIt,c), o e{z!,...,2*}:a=yB*

3.70 =t . .
(8.70) =3Jz*e{z',..., 2%}, y € Onin(4,B* ,¢c): a =yB*

= a € Owen(A, B* ,c) = a € EOQwen3(A, B, ¢).

O
A trivial corollary to this proposition states that both the Owen set and the Extended
Owen 2 set are subsets of the Extended Owen 3 set.

Corollary 3.2.2 Let (A, B,c) € L. Then

(3.71)  Owen(A, B,c) C EOQwen3(A, B,c), EOwenl(A, B,c) C EOwen3(A, B, c).

It is also interesting to see that the Extended Owen 2 set and the Extended Owen
3 set do not coincide, as shown in the following example. In other words, the Extended

Owen 2 set is a proper subset of the Extended Owen 3 set.
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Example 3.2.5 Consider the LP game (A, B, c) where

| 111 1
(3.72) A=B=|110], e¢=]1
011 1

The corresponding problem P(N) is

max =+ Iy+ T3

4 st i+t <3
(3.73) 1+ 29 <2
To + 23 <2

z; >204i=1,2,3

The optimal extreme solutions to P(N) are {z' = (2,0,1),2% = (1,0,2),2% = (1,1,1)}.

From those solutions, we obtain the corresponding reduced resource-player matrices:

11 1 1 1 1 111
B74) B =111 0o |, B=|o05050]|, B =110
0 05 0.5 0 1 1 01 1

Problem D*' (N) is

min 3y, + 2y + 2y3
st 1ty >1
(3.75) w+p+y3>1 DT (N)
Y1+ys 21
y; >0, i=1,2,3.

One has that y* = (0,1,1) is an optimal solution to D* (N). Therefore, a! = y' B =
(1,1.5,1.5) € Qwen(4, B® ,¢) = o' € EOwen3(A, B* ,c).
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One can see that problems D**(N) and D**(N) are

min 3y; + Y2 + 2y3 min 3y + 2y + 2y3
st y1+y>1 st 1ty 21
(3.76) yi+y+y3>1 D*(N) vi+us+y3>1 DU(N)
y1t+ys =1 y1+ys=>1
y; >0, i=1,2,3. y: >0, i=1,2,3.

The only solution in ﬂleOmm(A, B* . ¢) isy = (1,0,0), and therefore we have that
EOwen2(A, B,c) = {(1,1,1)}. Then we conclude that o! ¢ EOwen2(A, B,c) and, as a
consequence, EOwen3(A, B,c) & EOwen2(A4, B, c).

To follow the same reasonings we did for the Extended Owen 1 and Extended Owen 2
sets, we prove now that the Extended Owen 3 set and the Extended Owen set coincide

on L.

Proposition 3.2.13 Let (A, B,c) € L. Then

(3.77) EOQuwen(A, B,c) = EOwen3(A, B, c¢).

Proof. Let (A, B,c) € L and o € EOwen3(A, B,c). Let 2! be the only solution to

P(N). Then,

3 y & mOmiﬂ(Aﬂ th>c)v T € {xl,“_’xw} : CY:Z/BI*

3.78 t=1 1 .
(3.78) & 3y € Onin(A,B* Jc), z* € {2'} : a = yB”

& 3y € OmulA, B* 0),: a = yB* & a € EQwen(A, B, ¢).

Analogously as we did for EQwenl and EQwen2 the following result is proven.

Proposition 3.2.14 Allocations in FOwen3(A, B, ¢) are efficient for all (4, B,¢) € L.
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To summarize this section, due to the fairness problems that the Owen allocations
might present, three different modifications of the Extended Owen set defined for L have
been proposed for the whole class of linear production games £. Those three solution sets
satisfy

e Owen(A, B,c) C EOwenl(A, B,c) C EOwen2(A, B,c) C EOwen3(A, B, c)
V (A, B,c) € L. This gives us the idea that, if the Owen solution is not acceptable
we try to allocate the benefits by using the Extended Owen 1 solution. If this new
allocation is not acceptable yet, we allocate following an allocation in the Extended
Owen 2 set. If this allocation is not accepted by the players, we calculate a Extended
Owen 3 allocation.

o In general one has that
(3.79)
Owen(A, B, c) 2 EOwenl(A, B,c) 2 EOwen2(A, B, c) 2 EQwen3(A, B, c).

Meaning that the three new solution concepts presented do not coincide.
e For any (A, B,c) € L we have that

EOwen(A, B,c) = EQwenl(A, B, c) = EOwen2(A, B, c)

(3.80) :
= EOwen3(A, B, c) = Owen(A, B*",c),

where {z*} = Onax(A, B, c). This properties state that the three new solution sets
defined for the whole class of linear production games are extensions of the Extended
Owen set defined for the class L.

Once defined the extensions to the Owen set on LP games, let us see now how to apply

this solution set to another class of linear production games: Flow Games.

3.3 Application to Flow Games

We begin this section by showing an example of the Owen set in a Flow game to motivate

the need to apply the Extended Owen solution to Flow Games.
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Example 3.3.1 Consider the flow game described in Ezample 2.5.1 The Qwen solution,
which is a core allocation, results from the optimal solutions to the dual problem Dy, see

Problem (2.45). One optimal solution to such problem is:
(3.81) y = (1,1,1,0,0,0).
Therefore, the corresponding Owen solution s

(3.82) (3,1,6),

where the it" component of this allocation is equal to yb(i).

The interpretation the Owen solution is the following: those variables with optimal value
in the dual program equal to 1 give us the minimum cut of the graph, so every player
who does not own any of the arcs participating in the minimum cutset shall receive
nothing after the Owen allocation. This seems to be unfair since those players having
an excess in the capacity of their arcs will have an associated dual variable equal to
0 (this comes from the Complementary Slackness Theorem, see [4]). In the following
section the Extended Owen set is applied to Flow Games, trying this way to avoid the

above-mentioned problems.

Now we introduce some notation for the rest of the section. Given is a Flow Game
(N,v). From the vectors b(i), ¢ = 1,...,n, that help us to formulate Flow Games as Linear
Programming Games, we define the matrix B € R*" as the matrix whose columns are
the vectors b(1),...,b(n).

Then we can define the characteristic function of a flow game from the linear program

max p-zx
(3.83) P(S) s.t.: x < Beg
zH =0

x>0
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where p € R and H € R'*" are as defined in Section 2.3.2. Analogously, its dual program
D(S) is

min yBeg
(3.84) ‘ D(S) st: y+Hz>p
y=>0

So, a Flow Game can be represented by (p, B, H). We shall denote the set of optimal
solutions to P(N) and D(N) by Onax(p, H, B) and Ouin(p, H, B) respectively.

Let us remember that each solution to P(N) z* € O,a:(p, H, B) defines an opti-
mal feasible source-to-sink flow, and that each optimal feasible solution to D(N) y* €

Omin(p, H, B) leads us to an allocation in the core of the game, of the form v = y*B.

The set consisting of all the allocations obtained from optimal solutions of D is the

well-known Owen Set, defined for Flow Games as follows:

(3.85) Owen(p, B,H)={y=y"B : y* € Omin(p,H,B)}.

Now we follow a similar reasoning as we did for LP games. Let (p, H,B) be a
flow game, * € Onax(p, H, B) and y* € Ouyin(p, H, B). By the Complementary Slackness
:‘,,Theorem (see [41]), we know that if c;, the capacity of the j** arc, is strictly higher than
:cj, the amount of material running through the arc j, (¢; > ;), then y; = 0. That is,
the owner of this arc will not receive anything for this arc in the Owen allocation. That
means that, if a player does not own any of the arcs participating in the minimum cut,
then he/she will not receive anything. We already know that this allocation is in the core
of the game, but is it always an admissible allocation? To overcome this problem, we
make use of the Extended Owen solution introduced before for LP games and apply it to

Flow games.

The coordinates of x* define the amount of material that runs through each arc in an
optimal source-to-sink flow. We now consider the flow game in which every arc k reduces
its capacity until x}. Such game is denoted by (p*, B*, H*). This way, we ezpect to allow
arcs that do not participate in the minimum cutset to have an allocation different from

zero, because now their respective dual variables are not forced to be zero.
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Let us now interpret for Flow Games the five axioms we used to characterize the Ex-

tended Owen set for Linear Production games.

One person efficiency (Axiom 1) means that if there is only one agent owning all arcs
and the capacity of each arc is one, then the solution concept assigns to him the maximal
amount of units that can be sent from the source to the sink. The second axiom, rescaling,
demands that the solution concept remains invariant if the units in which the capacities
are measured change. Axiom 3, shuffle, states that if the arcs are shuffled among the

agents, then the solution rule changes in the same way.

The fourth axiom, consistency, assumes that the players agree that the‘proﬁt is
divided according to a vector a € ¢(A, I,,,c). Afterwards player k takes his payoff o) and
leaves. Suppose that the arcs that player & owned can be used by the other agents for a
price oy per unit of capacity. Then, a solution rule satisfies consistency if the restriction
of a to agents N\ {k} is a solution to the reduced flow game. The consistency axiom has
to do with the special case in which every player owns exactly one arc with capacity one,
and different players own different arcs. Therefore we can identify the set of arcs with
the set of players in an appropriate way. Axiom 5, deletion, says that if an arc is not
needed to make the maximal profit v(/N), then we can delete this arc from the network,

the outcomes of the old situations being also outcomes in the new game.

Therefore the following theorem follows.

Theorem 3.3.1 Let (p, B, H) be a Flow Game, with only one optimal flow from the
source to the sink. Let z* be such optimal source-to-sink flow. If ¢ satisfies one person
efficiency, rescaling, shuffle, consistency and deletion over the only reduced flow game
(p*, B*, H*), then ¢(p, B, H) = EOwen(p, B, H).

Let us see an example of the Extended Owen set in Flow Games.

Example 3.3.2 Consider the flow game (N,v) as depicted in Figure 8.1 with N =
{1,2,3}. Over the arcs, two numbers are represented: the first one corresponds to the

mazimum capacity of that arc, the second one being the player owning the arc.

Let us list the arcs as follows: arc joining nodes 1 and 2 is arc 1, the one that joins
1 and 3 is arc 2, (2,3) is named as arc 3, (2,4) is arc 4 and (3,4) is arc 5. Then, this
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Figure 3.1: Flow Game.

game s generated by:

300 1
2 00 1
(3.86) B=|lo010],p=]0
00 2 0
005 0

and H 1is the corresponding flow conservation matriz.

There is only one optimal flow, =* = (3,2, 1,2, 3), where z} denotes the flow running
through arc i, i = 1,...,5. One can see that there are two minimum cutsets separating
the source and the sink, arcs {1,2} and arcs {2,3,4}. From that, we conclude that the
Onin(p, H, B) is the convez hull of {y',v*} = {(1,1,0,0,0),(0,1,1,1,0)}. Therefore, the

Owen set for this game is any convex combination of the allocations

(3.87) ol =y'B=(50,0), o® =y*B=(21,3).
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From the only optimal flow x* we generate the corresponding reduced Flow Game
(p, B*", H), which is described in figure 3.2. The B® matriz of such reduced game is

Figure 3.2: Reduced Flow Game.

(3.88) B=

O O O N W
o O = O O
w N O o O

There are three minimum cutsets for this Flow Problem, {1,2}, {2,3,4} and {4,5} (note
that, as expected, the two minimum cutsets of the flow problem (p, B, H) are also minimum
cutsets of the reduced flow problem (p, B*, H).) Therefore, Owin(p, B* , H) is the convez
hull of the three points:

(3.89) {v', 4% v*} = {(1,1,0,0,0),(0,1,1,1,0),(0,0,0,1,1)},

having this way that the Extended Owen set of our Flow Game is the any convex combi-
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nation of the following three allocations:
(3.90) {y'B” B ,4*B”} = {(5,0,0), (2,1,3),(0,0,5)}.

The reader may check that, as we already knew, the Owen set is a subset of the FExtended
QOwen set for this Flow Game.



Chapter 4
Supply Chain Games

In this chapter we study a model of cooperation over a Supply Chain Problem which
arises when, over a graph, a group of nodes offers certain commodity, other nodes require
it and a third group of nodes does not need this material nor offer it but is strategically
relevant to the distribution plan. The delivery of one unit of material to a demand
node generates a fixed profit, and the shipping of the material through the arcs has an
associated cost. Such problem is defined in the first section of this chapter. We show that
in that framework cooperation is beneficial for the different parties. We prove that such
a cooperative situation, which will be called a Supply Chain Game, is totally balanced by
finding a fair allocation (in the core of an associated cooperative game). The chapter also
shows the relation between these cooperative games and other well-known games: Linear
Production, Flow, Assignment, Transportation and Shortest Path games. Later on we
will introduce some solution concepts specifically applied to our new class of games, to
later finish the chapter by showing the natural extension of Supply Chain Games to the

multicriteria case.

4.1 Supply Chain Problem: definition and formula-

tion

The classical transportation problem, see Section 1.3, arises when an optimal distribution

plan must be determined in order to transport a product on a network, in which there are

129



130 CHAPTER 4. SUPPLY CHAIN GAMES

some nodes offering that product and others that need it. There is an arc joining each
node that can produce material with each node demanding it. This problem assumes that
the transport of one unit of material from a supply node i to a demand node j gives rise
to a profit of b;; monetary units. The goal is to maximize the overall profit generated

when covering the total demand.

The problem we now deal with is a generalization of the transportation problem.
Let G = (N, A) be a directed network, where N = {1,...,n} is the set of nodes and
A C N x N is the set of arcs of the graph. Each node ¢ € N has two scalar numbers,
b; and k;, associated with it. If b; is positive we shall say that ¢ is a supply node, if it is
negative node i is a demand node and if b; = 0 node i is a transfer node. So, b; is the
amount of offer or demand that node 7 has. If 7 is a supply node, k; is interpreted as the
necessary cost for node i to produce one unit of material. On the other hand, if 7 is a
demand node, k; represents the profit that will be generated at node ¢ if one of its unit of
demand is satisfied. If i is a transfer node k; is set to 0. We shall denote each arc of A by
the ordered pair constituted by its initial node and its final one. That is, arc (i, j) joins
nodes i and j in this direction. Each arc (7, 7) has a scalar number ¢; € R associated
with it, which is interpreted as the necessary cost to transport one unit of the material
trough the arc (4,7). Additionally, the capacity of some of the arcs might be bounded
from above. Let hi; € (0,+00] be the capacity of arc (¢,7). Note that arcs are allowed
to have unbounded capacity. Thus, the problem consists of finding a feasible distribution

plan maximizing the total benefit. See the following example.

Example 4.1.1 Let us consider the transportation network given in Figure 4.1. By each
node there is a 2-dimensional vector. Its first coordinate is the amount of material that
this node can produce or its demand (b;). The second coordinate is the unitary cost to
produce one unit of material at node i, if © is a supply node (b; > 0), or the unitary
profit after having one of the node i’s units of demand satisfied, if ¢ is a demand node
(b; < 0). On every arc there is a vector. The first component of such vectors is the cost
of the corresponding arc, its capacity being the second component of the vector. Those
data constitute a Supply Chain Problem (SChP for short), the goal being to maximize the

general profit. From now on we will omit h;; on those arcs with h;; = +o00.

Note that in this model it is not necessary to cover all the demand nor to launch
all the offer available. The demand of a node j will be satisfied if and only if there is a
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(5,2) (-1,15)
2 (6,3) 4
| (2,10)
2.5 (4, +00) (1,3)
(3,1) (3, +00) (5,2) (-2,10)
(6, +00) ™~ (1,4)
(2, +00)
(1,1)
3 ) 5
(-4,9) (1, (-1,11)

Figure 4.1: Transportation Network

‘profitable path from a supply node i to a demand node j and node ¢ has some material

“available.

Now, we define our supply chain problem formally. Consider a directed graph G' =
(N, A), two vectors b,k € R™ and two matrices C € R™" and H € (R; U {+00})"*",
where c;; is the unitary cost of transporting one unit from node ¢ to node j and h;; is the

capacity of arc (4, 7).

Consider the following sets:
(4.1) P={ieN:b>0}, Q:={ie N:b; <0}, R:={ieN:b=0}
These sets are called supply set, demand set and transfer set, respectively. It is clear that
(4.2) PUQUR=N, PNQ=PNR=QNR=0,

that is, P, @, R are a partition of N.
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Definition 4.1.1 Given a directed network (N, A), where N is the set of nodes, |N| = n,
and A is the set of arcs A C N x N, two matrices C € R™™ and H € (Ry U {4+o00})™*",
a supply-and-demand vector b € R™ and the cost-profit vector k € R™, a Supply Chain
Problem is the 6-tuple

(4.3) (N, A,C, bk, H).

Example 4.1.2 In the transportation network described in Ezample 4.1.1, the corre-

sponding supply chain problem is defined as

(4.4) (N,A C,b k, H)
where
(4.5) N ={1,2,3,4,5,6},

(4.6) A=1{(1,2),(1,3),(1,5),(2,1),(2,3),(2,4), (2,5),(2,6), (3,5), (5,3), (5,6), (6, 4)},

- 2 6 - - - 10 400 — 40 -

2 — 3 6 4 5 — 40 3 2 +4oo

- - — -1 = - - _ -
(4.7) C= , H= ,

- -1 - - 1 - - 2 - = 4

- - -1 - - - - - 3 = _
(4.8) b=(3,5,—-4,-1,-1,-2), k=(1,2,9,15,11,10).

Now we are going to formulate our SChP as a linear program. Let z; be the
amount of transported material from i to j. A feasible distribution plan must satisfy
several conditions:

e Supply nodes cannot create more material than they offer. Thus, the amount of
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material leaving from each supply node should not be higher than the amount of
material that it can offer; that is, the amount of material leaving from a supply
node, from now on it will be called outgoing flow of material, minus the amount of
material that comes to it, from now on incoming flow of material, must be less than
or equal to what this node can produce. Besides, supply nodes should not keep new
material. Thus we have that:

JEN:(i,j)eA JEN:(ji)EA

¢ Demand nodes must not receive more than what they require: the amount of in-
coming flow minus the amount of outgoing flow must be less than or equal to their
demand. Further, demand nodes do not have the capability to create new material.

In terms of z;; one has that:

(4.10) 0< Y zmi— Y, z; < -b VieQ.

JEN:(j,)EA JEN:(i,j)EA

e The incoming flow and the outgoing flow must be the same for every transfer node,
that is, transfer nodes can not neither create material nor keep material. Mathe-

matically we have:

(4.11) > wmy- > zi =0 VieR

JEN:(i,j)EA JEN:(j1)€A

o Besides, we must ask for the flow to be non-negative and respect the capacity

constraints

(4.12) 0<ai; <hgyV(i,j) €A

Now that the constraints that a distribution plan must satisfy to be feasible have
been created, let us study the objective function that a feasible distribution plan must

maximize to be optimal. We create such a function step by step:

e The general benefit obtained, that is, the total demand covered at each node of
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() times the benefit that is generated in this node, must be maximized. Let us
consider i € ). The total demand of material that is covered after the distribution

plan (z;;),5ea at node 1 is:

(4.13) Yoom - Y,

JEN:(ji)eA JEN:(i,j)€A

that is, the amount of incoming material minus the amount of outgoing material at
i € . Thus, we maximize the total demand covered by the distribution plan times
the benefits, that is

(4.14) Skl >0 zai— D> my

1€Q JEN:(ji)EA JEN:(i,j)EA

The costs of producing material are to be minimized. That is, for each node i € P

we have to minimize the total amount of material that is produced at node ¢,

(4.15) Z Tij — Z iy

JEN:(1,j)EA JEN:(70)€A

times its unitary cost. Thus, in the objective function we minimize

(4.16) Skl DY wi— > aw

i€P JEN:(i,j)€A keN:(ki)eA

e The transport through each arc is a cost, so we shall minimize

(i,7)€A
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Therefore, our objective function is to maximize

Sk Y ai- 3 ay)-

(4.18) | QR \jeN(jiea JEN:(i)eA
Skl Y mg - ) mup| - Y cumy
i€p JEN:(i,5)eA JEN:(j,i)eA (ij)eA

Expression (4.18) can be summarized as

SUREEED S B DRI SR I pres
i€ PUQ JEN:(Ji)EA JEN:(i,7)€EA (i,7)€EA
Taking into account that k; = 0 for all ¢ € R, our objective function can be expressed as
(420) Zk, Z Ty — Z Ty | — Z CijTij.
1EN JEN:(41)EA JEN:(i,7)€A (4,7)EA

In the expression above we have that:

Shl Y - ¥

€N JEN:(4,1)EA JEN:(i,5)€A
SRS VIS 3/
(4.21) i€EN  jeN:(ji)eA €N jEN:(i,j)eA
S Y R - Y Y koo X ka- Y ke
1EN jEN:(j,i)eA i€EN jeN:(i,j)eA (4,p)eA (i,5)€A
= Y kg — Y k= Y (k—k)ey
(i.5)€A (i,5)eA (i,7)eA

To summarize, given a Supply Chain Problem (N, A, C, b, k, H), its optimal distribution
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plans are given by optimal solutions to the linear program (4.22).

(i.7)eA
s.t. Z Ty — Z zj; < b VieP
FEN:(i,f)EA JEN:(j,i)eA
Ty — Z Ty < 0 VieP
JEN:(ji)eA JEN:(i,5)EA
(4.22) oomi - >, w < - VieQ
JEN:(ji)EA JEN:(i,5)EA
zy — Y, ®; <0 Vieq
JEN:(1,j)€EA JEN: (4 i)€A
Tij — Z Tj = 0 VieR
JEN:(1,5)€EA JEN:(4,1)€EA

0<uzy;<h; V(§jeA

Example 4.1.3 The formulation of the SChP in Example 4.1.1 as a linear programming

problem is
max (2—1—2)z2+(9—1—-6)z13+ (11 —1 —2)zy5+
(1=2—2)zs + (9 — 2 — 3)z23 + (15 — 2 — 6)zast
(11— 2 — 5)za5 + (10 — 2 — 4)zag + (11 — 9 — 1)zs5+
(9 =11 — Dass + (10 — 11 — 1)zse + (15 — 10 — 1)ag
st: 0<xig+ 213+ 215 — T2y <3 (i=1)
0 < z91 + Toz + Tog + Tas + T2 — T12 <5 (i=2)
(4.23) 0 < 13+ To3 + T53 — X35 <4 (i=3)
0 < x4 + T4 <1 (i=4)
0 < 215 + Xos + T35 — Ts3 — Tse <1 (i=5)
0 < Zog + Tsg — Tes <2 (i=06)

T12 £ 10, 721 £33, T94 <3, To5 <2
T35 <2, T53 <2, Tue < 4, Tey <3
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and one can see that an optimal solution is given by the distribution plan:
(4.24) T15 = 3,23 = 4,296 = 1,56 = 2,264 = 1, z;; = 0 in any other case.

This distribution plan generates a profit of 41 monetary units. In Figure 4.2 this optimal
distribution plan is shown. Only those arcs that send material are depicted, the respective

amount of material running through each arc being expressed on them.

(5,2) (-1,15)

(3,1)

(-4,9) (-1,11)

Figure 4.2: Optimal distribution plan.

In the previous example all the demand was covered, but this is not a general characteristic
of our problem. There exist Supply Chain Problems where an optimal distribution plan
may not satisfy all the demand, or not launch all the material that supply nodes have, or

both things, as we can see in the following example.

Example 4.1.4 One can check that the distribution plan z12 = 2,293 = 0,713 = 0 s
optimal in the Supply Chain Problem described in Figure 4.8 (note that all arcs have

unbounded capacity). Nevertheless, the supply node 1 keeps one surplus unit and the
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demand node 3 is still demanding another unit after the optimal distribution plan has
been taken. This is because of the fact that the necessary cost to send one unit from node

1 to node 3 plus the cost of ki is higher than the benefit that this unit would generate, ks.

(-2,10)

(3,2) (1 [12] 3) (-1,8)

Figure 4.3: Supply Chain Problem.

In the previous example the demand at some nodes in @ was not completely satisfied
and there still was some material available and paths to transport it from nodes in P.
Situations like this may not arise when the goal of the network is to satisfy basic needs
such as medical care, educational centers, etc. That is why we can say that in the Supply

Chain problem presented, the active agents are “selfish”.

4.2 Supply Chain Games

Once we have defined our Supply Chain Problems, we are interested in studying the
possible cooperation that may arise when the nodes are controlled by different agents
having conflicting objectives. So, given a Supply Chain Problem (N, A,C,b,k, H) we
naturally define the corresponding Supply Chain Game as follows.

The set of players is N = {1,...,n}, every node is owned by one player and each
player is associated with the only node that it owns. Then, to avoid a more complicated
notation, we shall denote the player that owns node ¢ by ¢ as well. Thus, we shall
have supply players, demand players and transfer players, depending on the kind of node
they own. In other words, the set of players N is divided into the set of supply players
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P = {i € N :b > 0}, the set of demand players @ = {i € N : b; < 0} and the set of
transfer players R = {i € N : b; = 0}.

Now we have to define v, the characteristic function of the game,

v: 2V 5 R

(4.25) S = u(S)

That is to say, we need to find the maximum profit that each group of players can make

by acting on their own, without taking into account what the rest of players do.

For each S C N a distribution subnetwork (S, Ag, Cs, bs, ks, Hs) can be created,

where:

o Asg = (S x S)N A, meaning that only those arcs having both endpoints in the

coalition S are considered.

o (g, Hg, bg and kg are the restriction of C, H, b and k to S, respectively.

In the same way, the offer, demand and transfer sets of S are defined as:
(4.26) Ps=PnNS, Qs=QNS, Rs=RNS.

The subnetwork above has at least one optimal distribution plan that gives us the max-
imum profit that the coalition S can generate. Such a value is given by the optimal

solutions to the following linear program, which will from now on be called Pr(S).
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(4.27)

max

s.t.

Dk —ki—cy)ay =

(i,j)€As

E ZL‘i]‘

J€S:(i,j)EAs

E Tjs

jES:(j,1)€As

E T4

JES:(4i)EAS

S
jESZ(iaj)EAS
>
JES:(i,5)EAs
0 <z < hy;
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- 2
jeS(ji)EAs
- 2
jesi(ij)eAs
-
]ES‘(Z>J)6AS
-2
JES:(ji)eAs
- 2
JES(JJ')GAS

V (Zvj) € AS

fs(x)

Ty < b Vi€ Ps

i <

~bi Vie Qs (Pr(S5))

l‘ijf 0 ViePs

0 VieQs

0 Vi€ Rsg

Then, we define the cooperative game with transferable utility associated with the Supply
Chain Problem (N, A,C, bk, H) as follows:

Definition 4.2.1 Given is (N, A,C,b,k, H) a Supply Chain Problem. The Supply Chain
Game (SChG for short) associated with this problem is the cooperative game with trans-
ferable utility (N,v) where v(S) is given by the optimal value of Problem (4.27) for all
S CN.

The following example shows a SChG.

Example 4.2.1 Let us consider the Supply Chain Game (N,v) arising from the Supply

Chain problem described on Figure 4.4, whose arc capacities are not bounded from above.

One can check that the values of the characteristic function of the game (N,v) are

S {1 {2 | {5 [ {12} | {13} | {23} | {1.23}
wS)| ol ol o] o 8 3 8

(4.28)

The first result from the definition of Supply Chain Games is that they are well defined.

Proposition 4.2.1 Given is (N,v) the Supply Chain Game defined from the 6-tuple
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(2,3) (1 3] 3) (-2,10)

Figure 4.4: Transportation Network
(N,A,C,b,k, H). One has that V.S C N, v(S) is well defined and nonnegative.

Proof. Given S C N, let us consider Z;; = 0V (i,j) € Ag. The distribution plan
T = (Tij)(i.j)eas 18 feasible, since it trivially satisfies the constraints of the corresponding
linear program Pr(S). So, we conclude that v(S) is well defined. Besides, the objective
function of Pr(S) takes value 0 in z = 7, so v(S) (the optimal value) is greater than or
equal to 0. g
In following sections we will study some properties that SChG satisfy as well as their
relation with some known games presented before: Flow Games, Transportation Games
and Shortest Path Games.

4.3 Properties of Supply Chain Games

In this section certain properties about Supply Chain Games are presented. The first one

we are to prove is that they are O0-normalized, see Definition 2.1.1.

Proposition 4.3.1 Supply Chain Games are 0-normalized.

Proof. Let (N,v) be a SChG. Given ¢ € N, it is clear that Ay, the arcs that ¢ owns,
is the empty set. That is, the objective function of problem Pr({:}), see Problem (4.27),
is the function identically null. Then we conclude that v({z}) = 0. O
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Another property of the class of SChG is the superadditivity, (Definition 2.1.2).
Proposition 4.3.2 Every Supply Chain Game is superadditive.

Proof. Let (N,v) be the SChG arising from the SChP (N, A,C, b, k, H). Let S, T C N
such that SNT = 0. We have to prove that v(S) + v(T) <v(SUT).

Let z° and 27 be two optimal distribution plans for the coalitions S and T, respectively,
that is, fs(2°) = v(S) and fr(zT) = v(T), where f; denotes the objective function of
problem Pr(L), see Equation (4.27), for all L C N.

We define the following distribution plan for the coalition S U T

S if (i,5) € Asg
(4.29) 2" = () € Asur ¢ aly =1 2T if (i,5) € Ar

ij ij
0 otherwise

By definition

(4.30) Asor = AN ((SUT) x (SUT)).

Let us see that z* is feasible for Pr(SUT). To do so, we have to prove that:

1. Z :c;-*j - Z .’L‘;l <b Vi€ Psyr.
FJESUT:(4,5)EA JESUT:(j,1)€A

2. > - Y. ;<0 ViePsr
jESUT:(ji)eA JESUT:(i,5)EA

3. > xm— > ay<—b VieQsur
jeSUT:(ji)eA jESUT:(i,5)€A

4 > ap— Y <0 VieQsur
JESUT:(1,j)€A JESUT:(j,i)eA

5. Z T — Z z;; =0 Vi€ Rsur.
JESUT:(3,7)EA JESUT:(4,i)EA

6. 0< xfj < hij i (Z,]) € Agur.
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We prove (1), the proof of (2)-(5) being analogous.

L] Let'LE PSUT'

* *
E Ty — E L

JESUT:(1,7)€A keSUT:(k,i)eA
(431) N . * * m*
= Lij Ty + Zij ki
j€8:(1,7)eA keS:(ki)EA JeT:(3,j)EA keT:(ki)eA

It is clear that Psyr = PsU Pr and Ps N Py = 0 . Let us suppose that ¢ € Pg, the
other case is analogous. Then

(4.32) x;(j:{x” ifjes

0 otherwise

and Equation (4.31) becomes

(4.33) dYoow- ) <,

JES:(1,7)EA keS:(ki)eA
since ¥ is feasible for Pr(S).

Clearly 0 < z}; < hy; V (i,4) € Asur.

Thus, z* is feasible for Pr(S UT). By the optimality of v(SUT) in Pr(SUT) one
has that fsur(z*) <v(SUT).
Besides, it is easy to check that fsur(z*) = fs(x®) + fr(zT). Then we conclude that

(4.34) v(S) +v(T) = fs(2®) + fr(z") = four(z") Sv(SUT).

By joining the nonnegativity property of v with the fact that the game is superad-
ditive, we conclude that Supply Chain Games are monotonic.

Proposition 4.3.3 Let (V,v) be a Supply Chain Game. (N,v) is monotonic.
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Another desirable property of cooperative games is the convexity, see Definition
2.1.5. Unfortunately Supply Chain Games are not convex in general, as shown in the

following example.

Example 4.3.1 Let us consider the Supply Chain Problem described in Figure 4.5 and
its corresponding Supply Chain Game (N,v), N = {1,2,3}.

(1,1)

Figure 4.5: Transportation Network

The values of the characteristic function are:

S (| {2 | {3} | {12} | {18} | {23} | {123}

(4.35)
wS)l ol o ol o 6 6 10

Taking S = {3}, T ={1,3}, i = 2, we get that
(4.36) v(SU{i}) —v(S)=6-0>4=10-6 =v(TU{i}) —v(T).

Since S C T, we conclude that the game (N,v) is not conver.

The following step is to prove that SChG have non-empty core. We will prove that in
two different ways. The first one is by means of the Shapley-Bondareva’s theorem, that is,
by proving that the class of SChG is totally balanced. An alternative proof, in following

sections, will give us a core allocation for any SChG.
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Theorem 4.3.1 Supply Chain Games are balanced.

Proof. Let (N,A,C,b,k,H) be a Supply Chain Problem and (N,v) its associated
Supply Chain Game. Let {S,...,S,} be a balanced collection and let {y1,...,y,} be its
balancing weights (that is, Z y; =1V i€ N). In order to prove the balancedness of

J:€ES;

(N,v) we have to prove that Zylv(Sl) < v(N).

=1

Given z' an optimal distribution plan for S', [ = 1,...,r, we have that
(4.37) v(S) = > (kj — ki — cy)al;.
(ivj)EASl

Let us consider the map &' : A — {0,1} such that:

. if (i,7) € As
4.38 s, y=4 0 W ’
( ) (i,9) { 0 otherwise

vi=1,...,r.

Let z* be a distribution plan for the complete network, defined as follows:
(4.39) oy =Y 61, j)al;.
=1

We shall see that z* is feasible for Pr(/N), that is to say, that z* is feasible for the whole
network. To do that, it must be checked:

1. zj; > 0. Clearly by its definition. Besides,

(4.40) a2l = 00, j)7l <hy Y 0,0 =hy Y, ¥ <hy ) y=hy
=1 =1

1:(i,7)€As, li€S)

Note that {l: (¢,5) € Ag,} C {l:1i € Si}.
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2. Z T = Z z;; <b; Vi€ P. To prove so, let i € P.
JEN:(i,5)€A JEN:(ji)EA
(4.41)
T T
D D D W () AR W S A At
JEN:(i,5)eA JEN:(ji)EA JEN:(i,j)€A I=1 JEN:(Gi)EA I=1
=Z( S faly — Y, 8G9k
=1 jeN:(i,j)eA JEN:(j,i)eA
B S ST ST
l: €8 JGS[t(i,j)EASl jGSl:(j,’L')EASl
= wl > e — D )<y whi=bi ) w=be
1 1€8; J€SI(i,j)EAs, Jj€S1(44)€As, I 1€8; I: 1€8;

And we conclude that the inequality holds.

3. Analogously to (2) we prove that

Z T — Z ;<0 VielP

JEN:(j,1)€A JEN:(1,5)€A
= >, wp<—b VieQ.
4.49 JEN:(ji)€A jEN:(i,j)EA
(4.42) Ty — Z ;<0 Vied.
JEN:(i,j)€EA JEN:(j)eA
Z Ty = Z ;=0 VieR
JEN:(i,j)eA JEN:(40)€A

From (1), (2) and (3) we conclude that the distribution plan z* is feasible in the linear
program Pr(N) that defines the value v(N).

On the other hand,

Zylv(Sl):Zyl > (kj—ki -zl = > Z/f — k; — cip) @y

=1 (i,))€As, (i,5)€As, =1
W43) = Y ks~ ki e)aldi ) = Y Oy — ki — ) Y0, 5)
(i,5)€A =1 (i,5)€A =1
= Z (kj — ki — cij)zi; = fa(a™) < v(N).

(1,5)€A z* is feasible in Pr(N)
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We have proven that Zylv(S’l) < v(N) for any balanced collection {Si,...,S,} with
. =1
balancing weights (yi,...,%,). Thus, we can assure that the game (/V,v) is balanced. U

Since every subgame of a Supply Chain Game is also a Supply Chain Game, we can

state that every Supply Chain Game is totally balanced.
Theorem 4.3.2 Supply Chain Games are totally balanced.

As a consequence of the theorem above, and applying the Bondareva-Shapley theo-

rem, see Theorem 2.2.1, the main result of this section follows:

Theorem 4.3.3 Supply Chain Games have non-empty core.

To finish this section the structure of the class SChG is studied, in terms of additivity

and multiplication by a scalar.

It can be shown that, if (N, v) and (N, w) are two Supply Chain Games, (N, v+w) is
not, in general, a SChG. One can find an example in [59], page 51. There it is shown that
the addition of two Transportation Games is not, in general, a TG. Since TG C SChG,

as will be shown in Section 4.4.2, the result follows.

But it can be proven that the multiplication by a non-negative scalar is a closed
operation for SChG.

Proposition 4.3.4 Given is a Supply Chain Game (N,v). One has that for every A €
[0,00) the game (N, \v) € SChG.

Proof. Since (N, v) is a SChG, there must be a Supply Chain Problem (N, A, C,b, k, H)
such that (IV,v) is the associated game to (N, 4, C, b, k, H). It is not difficult to see that
the Supply Chain Problem (N, A, \C, b, Ak, H) generates the game (N, Av), which proves
the proposition. (I
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4.4 Supply Chain Games and the state of the art

In this section the class of SChG is compared with other well-studied cooperative games:
Maximum Flow Games, Linear Programming Games, Transportation Games, Assignment
Games and Shortest Path Games.

4.4.1 Flow Games, Linear Programming Games and SChG

Another interesting conclusion from the balancedness of Supply Chain Games is that
SChG are both Flow Games (FG for short) and Linear Programming Games (LPrG for
short). This is due to the fact both the class of FG and the class of LPrG have been
proven to be equivalent to the class of totally balanced games, see [34] and [12]. This

leads to the following result.

Proposition 4.4.1 SChG C FG and SChG C LPrG.

One would like the reverse inclusion to be true, having this way that the class of
SChG is equivalent to the class of totally balanced games. This not true, see the following

example.

Example 4.4.1 Consider the game (N,v) such that N = {1,2} and v(i) = 1 i =
1,2,v(N) = 3. Trivially this game is totally balanced, take the core allocation (1.5,1.5) as

instance.

On the other hand, this game satisfies that v(i) > 0 for all players. Then (N,v) ¢
SChG, since SChG have been proven to be 0-normalized, see 4.5.1, that is, v(i) = 0 V i.

To conclude this section, remark that SChG ¢ FG and SChG & LPrG.

4.4.2 Transportation Games and SChG

Now we are going to see that the class of Transportation Games (TG for short) is included

in the class of Supply Chain Games.

Proposition 4.4.2 Transportation Games are Supply Chain Games.
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Proof. Let (N,v) be a TG defined from the Transportation Problem (P, Q, B,p,q). If
we consider the following data:
(4.44)

R:®7 C: _Bv ]C-_-—07 b: ((p‘t)ZEP?(—QJ)JEQ)) A: PXQ, N: PUQ7H: (+Oo)nxn

then the Supply Chain Game (N, v') defined from the Supply Chain Problem (N, A, C, b, k, H)
is equivalent to the transportation game (N, v) arising from the transportation problem
(P,Q, B,p,q) as defined in Section 2.3.4. Let us prove it.

e N=PUQUR=PUQ=N.

e The value of v/(S) is given when we maximize the following function

(445) Z (k'] — k)i - Cij)l'ij

("’)J)EAS

subject to the constraints

(446) Z Ty — Z Tj3 S bi Vie PS
J€S:(4,7)€As JES:(ji)EAS

(4.47) >oomp— Y, @ <0 ViePs
JES:(ji)EAs JE€S:(3,7)EAs

(4.48) Z Ty — Z zi; < —b Viels

FES:(4i)EAs Jj€S:{(i,j)€As

(4.49) > oay - ) @ <0 VieQs

J€S:(3,))EAs JES:(4,i)€As

(4.50) > zy - >, =0 Vi€Rs

JjES:(i,j)EAs JE€S:(41)EAs
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Taking
(452) kIZOVZ, cl]:_b’ua A:PXQ

the objective function (4.45) above changes into

(453) max Z Z bijwij-

i€Pg jEQs
For each ¢ € Py one has that:

(4.54) {1€8S:(i,j) e As} = {j € Q}
(4.55) {j€S:(5,1) e As} =0.

Then, constraints (4.46) become

(4.56) > i <p ViePs

Jj€EQs

Analogously inequalities (4.48) change into

(4.57) Z zi; < ¢ Vj€EQs,

1€ Pg

and due to Ag = Ps X Qs we get that Equation (4.51) becomes
(4.58) zy; >0 ViePs, VieQs.

Constraints (4.47) and (4.49) are redundant, and restriction (4.50) disappears as
R =0.
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So, the problem we have to solve in order to find the value v/(S) is

max Z Z bij i

i€Pg jEQs
s.b.: inj <p; Vi€ Ps
(4.59) J€EQs
Y wi<q VjieQs
1€ Pg

LL‘ijZO Vieps,\VIjEQS

which is the problem we have to solve to calculate v(S). So, we conclude that
v'(S) = v(S) for all S C N.

O
The reciprocity of the previous theorem is not true, that is, there are Supply Chain Games

that are not Transportation Games. Let us see an example.

Example 4.4.2 Let us consider the SChG as depicted in Figure 4.6.

(1,0) (0,0) (-1,3)

Figure 4.6: Supply Chain Game

One can see that v(N) = 1, and v(S) = 0V S # N. It is obvious that in a
Transportation Game with v(N) > 0, there exists a pair {i,j}, i € P, j € Q such that
v({i,5}) > 0. This does not happen in this example, so we conclude that (N,v) is not a
Transportation Game and, therefore, SChG € TG.

Since Assignment Games (AG for short) are a particular case of Transportation

Games, we conclude that Assignment Games are Supply Chain Games too.

Then, it can be concluded that TG & SChG and AG & SChG.
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4.4.3 Shortest Path Games and SChG

This section studies the relationship between Supply Chain Games and Shortest Path
Games. Since SChG have been proven monotonic, and in [23] it is shown that the class
of SPG coincides with the class of monotonic games (MO for short), we conclude the first

implication:
Proposition 4.4.3 SChG C SPG.

Proof. Immediate from the fact that MO = SPG and SChG are monotonic. O

Unfortunately the converse is not true, as we can see from the following example

borrowed from [23].

Example 4.4.3 Consider the shortest path game o given by N = {1,2}, g = 6 and X
and o as depicted in Figure 4.7.
1 1

(1)

Figure 4.7: Shortest Path Game

The characteristic function v for this game is

(4.60) v({1}h) =3, v({2}) =2, v({1,2}) = 4.
Clearly C(N,v) =0, so (N,v) cannot be a Supply Chain Game, since SChG are balanced.

Thus, the following result can be stated:
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Proposition 4.4.4 SPG ¢ SChG.

Nevertheless, a subclass of SPG can be included in the class of SChG.

Proposition 4.4.5 Consider Shortest Path Game o = (X, N, 0, g) where X = (N, A, L, s, 1)
and o(f) =i Vi€ N. If |[s| =1 or |[t| = 1 then o is a Supply Chain Game.

Proof. It is clear that, if |s| = 1, the objective for any profitable coalition is to send
the only unit of commodity from s to the nearest j € ¢. Analogously, if |t| = 1 then the
optimal transportation plan would be to find the closest ¢ € s to t and ship the unit that
i offers to ¢t. In both cases, by definition, that is the same objective as in SChG, and the

result follows. O

In [23] some conditions for SPG to have non-empty core are given. From Proposition

4.4.5 we have the following result.

Theorem 4.4.1 If |s| = 1 or |t| = 1, then the corresponding SPG is balanced.

Proof. Immediate from the fact that those SPG are SChG, which are balanced. ]

So far in this chapter a new class of games arising from a particular Supply Chain
Problem has been presented, named Supply Chain Games. This class of games proved
monotonic, superadditive and totally balanced. We also proved that SChG & FG,
SChG G LPrG, AG & SChG, TG ¢ SChG and SChG & SPG.

The following two sections keep analyzing SChG. The first one, Section 4.5, is de-
voted to study solution concepts in SChG. The second one, Section 4.6, analyzes the

multicriteria extension of our Supply Chain Games.
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4.5 Solution Concepts in Supply Chain Games

In this section several solution concepts for SChG are presented. We start by giving
allocations based on duality properties: the Owen set and the Extended Owen set. Af-
terwards we shall study the Shapley value in SChG and its properties. Later on two new
contributions are presented: another solution concept based on the proportional division

of the general profit and a way to sequentially allocate the benefits generated. To finish

the section, some experimental results are shown.

4.5.1 The Owen set

Since SChG have been proven to be Linear Programming Games (see Section 4.4.1), it

makes sense to apply the Owen solution to SChG, as defined in Chapter 3.

In SChG the characteristic function is given by the optimal value of the linear
problem (4.27). One can check that the dual problem of (4.27), which shall be called
from now on Dr(S) V S C N, is the following linear program:

min Z biui - Z bjUj + Z ’Uijhij

8.t.:

(4.61)

where A% = {(4,j) € As : hiyj < +00}. Note that variables v;; do not make sense when

hi; = +0o and that the above constraints are only valid for those pairs {4, j} such that

€Ps j€Qs (i,5)e A%

(us = t) = (uj —t5) +vi5 2 kj — ki — ¢
(ui =) + (uj — t;) + vy 2 kj — ki — ¢y
(u —t;) —uj+v; > kj —ki —cyj

—(u; —t;) — (u; — ;) + vy 2 kj — ki — cj5
—(u; — t;) + (u; — t;) + vy > kj — ki — 5
—(u; —t;) —uj v > kj — ki —cjj

ui = (uj — &) +vg 2k — ki — ¢

w4+ (u; — ) + vy >k — ki —cij

U — Uj + v >k — ki — ¢y

u,t; >20Vie PsUQs

vi; >0V (i,5) € AR

vV {i,j} € Ps x Ps
V {i,j} € Ps x Us
V {i,j} € Ps x Rg
V {i,j} € Qs x Ps
V{i,j} € Qs x Qs
V {i,j} € Qs x Rs
vV {i,j} € Rs x Ps
V{i,j} € Rs x Qs
vV {i,j} € Rs X Rg
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(i,7) € A.
Let us consider Problem (4.61) with S = N, and let ((u*);, (t*);, (v*)i;) be an optimal
feasible solution to it. We shall see that the allocation o = (a4, ..., a,) € C(N,v), where
* 1 * * -
(462) o; = Ibzlul + 5{ Z hijvij + Z hjivji} VieN.

Fi(i,g)eAR - j(j)eAR

1. First we see that such allocation is efficient.

(4.63)

= o= (bilui + { Y hgugt D havi})
iEN ieN j: (z j)e AR 7:0, 'L)EAR

=D b+ D—bj)u;f 5 hat g Y
P i€Q zeN jt (”)eAm zeN 3:(G)e AR

- Zblu Zb U + Z hz]'Uz] + Z h']zv]z
iEP jeqQ (z j)EAR (] i)e AR

= bl =Y bui+ > hyvh =v(N).
i€pP JjeQ (3,7)e AR

2. Now it will be proven that no coalition can improve the payoff they receive from «

by acting by themselves.

(4.64) «aS) =Za,~ :Z|b luf + = Z Z hi;j U—I— Z Z hjivj;.

€S = zES j:(i,5) e AR zeS Fi(Gi)e AR

Given ¢ € S, one has that {j : (4,5) € AR} C {j : (t,7) € AR} and {j : (j,9) €
ARY © {5 : (4,1) € AR}. It is also clear that h; v > 0V (i,7) € A® D A§. Thus,

ijVij =
we have that (4.64) is greater than or equal to

Z |bl|u:= + % Z Z hl] ij +5 Z Z h’ﬂvﬂ

€S i€S ji(i,)eAR ZGS 3 (N)GAIR
* * ]' *
(4.65) =D b - Z biui + 5 > v+ 5 > i
i€Pg €Qs (i,j)eAR (J)e A%
= Z bzuf - Z b,u;* + Z h,’j’U;-kj.
i€Pg i€Qs (4,5)€ AR

Let (u*5,*5,v*%) be an optimal solution to Dr(S). We obviously have that (u*,t*, v*)
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is feasible for Dr(S). Then we deduce that (4.65) is greater than or equal to

(4.66) Db = > b+ Y hyv =(S).

i€ Pg 1€Qs (i,j)eA%

Thus, we have proven that

(4.67) a(S)Yy>v(S)VSCN.

By joining (1) and (2) we conclude that « is in the core of the game. Let us see an

example of how to calculate the such allocation for Supply Chain games.

Example 4.5.1 Consider the SChP in Figure 4.8. One can check that the corre‘sponding

(2,1)

(2,3) (1 (6,6) 3) (-4,12)

Figure 4.8: Supply Chain Problem with Capacity Constraints

problem Dr(N) is:

min  2u; + 2ug + 4usz + 3via + 6viz + 3vas
st: (up—t1)—(ug —ta) + v >=1-3-3
(4.68) (up —t1) + (ug —t3) +v13 >=12-3 -6
(ug —t2) + (ug — t3) + Vo3 >=12—-1-2
Ut >0, v; >0
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and one optimal feasible solution is:

(4.69) uy =3, uy=8, uy =0, t]=t; =15 =0, v, =0, vi3 =0, vy3 = 1.

The following core allocation derives from that optimal feasible solution

o =3-2=6
(4.70) 0y =8-24+3(1-3)=175
03 =0-4+1(1-3)=15

Another interesting property of the Owen allocations is their computational effi-
ciency. Since (4.61) can be solved in polynomial time, (see [70]), we have a procedure

that provides a core allocation in polynomial time.

Theorem 4.5.1 An allocation in the core of Supply Chain Games can be computed in

polynomial time.

Proof. The above argument. O

The set consisting of every allocation obtained from an optimal solution of Dr(N)
following the process above is the well-known Owen Set, see [47], that was studied for
linear production games in Section 3.1. Let us now present a formal definition of the

Owen set for the class of Supply Chain games. We will use the following notation:

Let (N, A,C,b,k, H) be a SChG.

e Ouin(N,A,C,b,k, H) is the set of optimal solutions to the corresponding problem
Dr(N).

® Ouax(N,A,C, bk, H) is the set if optimal solutions to the corresponding problem
Pr(N).

The Owen set of a Supply Chain Game is:
(4.71)
Owen(N,A,C,b,k, H) = {a¥™ = (o*",...,a%") : (y,t,0) € Omin(N, A, C, bk, H)}

Pt 12
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where a?*" = b, + 310 i year Pigis + 5. iear hivsi . The Owen set is characterized
for the class of linear production games as the only solution concept satisfying the following

axioms, see [24]:

1. One person efficiency. It says that if there is only one agent owning one unit of
all resources, then a solution concept satisfying one person efficiency assigns to the

player the maximal profit that can be made from his resource bundle.

2. Rescaling. It means that the solution rule is independent of the units in which the

resources are measured.

3. Shuffle. This axiom says that if the resources are shuffled among the agents, then

the solution rule changes in the same way.

4. Consistency. This property has to do with the following situation: suppose that
the solution rule divides the profit according to a vector y, then agent i takes y;
monetary units and leaves. Afterwards his resource can be used by other players at
a cost of y; per unit. A solution concept satisfies consistency if the restriction of y

to the remaining agents is a solution to the reduced linear production process.

5. Deletion. It says that if a production technology is not needed to make the maximal
profit v(N), this technology can be omitted and the solutions to the old situation

are also solutions to the new game.

which are the same axioms we needed to characterize the Extended Owen set for linear
programming games. From the fact that the class of LP games coincide with the class
of totally balanced games, and SChG are totally balanced, it is clear that SChG C LP
games. Then, it is concluded that the Owen set for SChG satisfies all those properties.

Nevertheless, Owen allocations sometimes presents similar fairness problems as it does
in LP games, such as giving to a veto player, see Definition 2.1.6, a payoff equal to zero.

See the following example:

Example 4.5.2 Let us consider the Supply Chain Game given by the Supply Chain Prob-

lem in Figure 4.9. The characteristic function of this game 1s:
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Figure 4.9: Transportation Network

(4.72) S {1} {8 | {8} | {12} | {1,3} | {23} | {1,238}
w(S)| 0| 0| 0 0 0 5 6

One can check that the dual linear program Dr(N) for this game is:

max U + ug + 3U3

st: (ug—t1) — (ug —t) > —4
(’LL2 - tz) + (U3 — tg) 2 5

u,t; >204=1,2,3
The only optimal solution to this problem is
(4.74) u* = (1,5,0), t* = (0,0,0)
and the corresponding Owen allocation s
(4.75) v=(1,5,0).

Clearly vy is an allocation in the core of the game. But let us note that, even though player

8 is a veto player (v({1,2}) = 0), it receives nothing after this allocation (y3 =0).
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One could be tempted to think that all the possible allocations in the core of SChG
can be obtained from an optimal solution to the dual problem Dr(N). The following

example shows that this supposition is not true.

Example 4.5.3 Consider the SChG (N,v) in 4.5.2. It is easy to check that C(N,v) is
the convez hull of {(0,6,0),(0,0,6),(1,0,5),(1,5,0)}. Take the core allocation (0,6,0).
If this allocation came from an optimal solution to Dr(N), this solution would be (T, 1)
with @ = (0,6,0). The vector (u,t) is not even a feasible point in the dual problem for

any t € R3.

So, we deduce that there are core allocations that cannot be obtained from the opti-
mal solutions of the dual problem (4.61) for S = N, that is, Owen(N, A,C,b,k,H) #
C(N,A,C,b,k,H).

Computational Complexity

Now we prove that the computational cost to calculate one Owen allocation is polynomial

with respect to the number of players.

Theorem 4.5.2 Let (NV,v) be a SChG. Then the computational complexity for calcu-
lating one Owen solution is polynomial with respect to the number of players, and given
by

(4.76) O(n?).

Proof. To calculate one Owen allocation we have to solve Problem (4.61) with S = N.
This problem has (n + ¢) variables, where ¢ = |A|. That means that the computational
cost of calculating one solution to this dual program is O[(n+ ¢)], see Predictor-Corrector

algorithm. Afterwards we have to assign to each player their allocation, which can be

done in O(n).

If we suppose that ¢, the number of arcs, is O(n?), the computational complexity of
the Owen solution can be stated only in terms of the number of players, exactly O(n?).
O

In the following section we apply to SChG a solution concept that tries to solve the prob-
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lems of the Owen set expressed in Example 4.5.2, the Extended Owen set as introduced
in Section 3.2. Such solution concept was developed with the idea of solving the problem
arising when players do not send all the material they can offer (or do not receive all the
material they require) and their arcs do not use all their capacities. Note that a player i
in this situation receives nothing from Owen allocations, as the corresponding variables

Ui, Vij, U;; are null in any optimal solution to Dr(N).

4.5.2 The Extended Owen set

In this section, the Extended Owen solution is adapted to our Supply Chain Games. We
first start by defining the associated games to the optimal solutions of Pr(N).

Definition 4.5.1 Let (N, A,C,b,k,H) be a SChP and z* an optimal distribution plan.
We define the reduced game of (N, A,C, b, k, H) associated to z* by (N, A,C, b k, H*"),
where

b = Ej:(i,j)eA T — Ej:(j,i)eA T Vi €P
ki =iV (i,5) €A

Note that in each of those games, players reduce their demand or offer until the optimal
solution. They also make agreements to reduce the capacity of the arcs. This way, the

corresponding dual variables in Dr(N) are not forced to be zero.

Given those games, the Extended Owen set can be applied to the class of Supply
Chain Games. We will only introduce the Extended Owen set for SChG whose corre-
sponding SChP has only one optimal distribution plan. The extension to general SChG

can be done analogously to the line followed for linear production games.

Definition 4.5.2 Given a SChG (N,v) arising from a SChP (N, A,C,b,k, H), the Ex-
tended Owen set for such game is denoted by EOwen(N, A,C,b,k, H) and defined via

(478) {a”’t’”’“’* = (U, t, 'U) € Omin(N, A, C, bz*, k, Hz*), fL'* - Omax(N7 A7 Ca/b7 k’ H)}
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where

u x* * ]. z* z*
(4.79) ot = b+ o T hug Y B

Ji(ij)e AR Ji(7i)eAR
Just like for LP games, it is easy to see that
(4.80) EQuwen(N, A, C,b,k, H) = Owen(N, A,C, b, k, H* ).

Therefore, to calculate allocations in the Extended Owen set, one just needs to find

allocations in the Owen set of the corresponding reduced game. Let us see an example.

Example 4.5.4 Consider the Supply Chain Game in Example 4.5.2. The optimal dis-
tribution plan of the corresponding Supply Chain Problem is 7, = 1,273 = 0,25, = 1.
Therefore the corresponding reduced game associated to this distribution plan is given by
the SChP in Figure 4.10.

(4,1) (2,2)

(1,0) (-2,7)

Figure 4.10: Transportation Network

Note that now arcs (1,2) and (2,3) have reduced their capacities until 7, and s,
respectively, and that arc (1,3) does not exist any more (or it does exist but having ca-

pacity equal to zero.) Note as well that node 8 only demands 2 units of material. The
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corresponding dual problem of this reduced games is:

max u; + up + 2us

s.t.: (up —t1) — (ug — ta) +vip > —4
(ug —t2) + (ug — t3) + va3 > 5
Ui, b, vy 2> 0.

(4.81)

One optimal solution to this problem is u} = 0.5,u}y = 4.5,uj = 0.5, the other variables
being zero. The Extended Owen solution arising from this dual solution is (0.5,4.5,1),

which gives a positive payoff to all players.

In the following section another allocation for SChG is explored: the Shapley value.

4.5.3 The Shapley value

In previous sections we have discussed about the core of SChG, which is, in general, not
a unique point but a set. An alternative way to allocate the payoff generated by the
cooperation of the grand coalition is by an allocation rule, i.e., a criterion which assigns
to every SChG an allocation of the benefit to the players. One of the most important
allocation rules treated by the game theory literature is the Shapley value, see [22].

The Shapley value, denoted by ¢ from now on, is a solution concept in cooperative
games that always is a preimputation (¢(N) = v(N)), if the game is monotonic it is also
an imputation (¢; > v({i}) V 4) and if the game is convex then it is an allocation in the
core of the game (#(S) > v(S) V S). SChG have proved monotonic but not convex, thus
it can be concluded that ¢ is always an imputation of SChG. But in general it cannot be
stated that the Shapley value is a core allocation for SChG. A counterexample will show
that in general ¢ ¢ C(N,v) for every (N,v) € SChG.

We shall now provide an axiomatic characterization of the Shapley value for the
class of Supply Chain Games based on some axioms related to the Supply Chain Problem
that gives rise to the game. Both these axioms and the proof of the characterization
are similar to those that Myerson used to characterize the Shapley value for games with

graph-restricted communication, see [42] and [43], and to those in [23].
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Axiomatic Characterization

Let us see first some previous definitions.

Given a Supply Chain Problem (N, A,C,b, k, H), we say that:

e i€ N and j € N are adjacent in B C A if and only if (,5) € B.

e i€ Nand j € N are connected in B C A if and only if there exists {ig,...,ir} C N
such that (ix_1,%) € BYk=1,...,1, =1, i, = J.

i€ N and j € N are unconnected if they are not connected.

A node is isolated in B if it is not an endnode of any arc in B.

Vie N,V BCA, B_is the set of arcs of B which do not have ¢ as an endnode,

l1.e..

(4.82) B_;={a=(j,k) € B/ i+#jandi#k}.

e (N,vp) is the Supply Chain Game (N, B,Cg,b,k, Hg), where Cg and Hp are the
restrictions of C' and H to B.

That is, (N, vg) is the Supply Chain Game where only the arcs in B are available.

An allocation rule over the class SChG is a map ® : 24 — R™ that assigns‘ to every
SChG an allocation of the general benefit. For every B C A, ®;(B) is the allocation

proposed by ® for player 7 in the game (N, vg). The following axioms are considered:

1. Efficiency (EFF). @ is said to satisfy EFF fif,

(4.83) > ®(B) =vp(N) VB CA

iEN

Efficiency means that the allocation rule allocates all the benefit generated by the

cooperation of all players.
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2. Trrelevant Player Property (IPP). @ is said to satisfy IPP if, for all B C A the
following equality

(4.84) ®;(B) =0

holds V 7 € N isolated in B. The irrelevant players property states that irrelevant

players (those that are isolated nodes) should not receive anything.

3. Fairness for Unconnected Players (FUP). ® is said to satisfy FUP if, for all B C A
and for all 4, 7 € N unconnected in B, then

(4.85) ®;(B) — ®i(B-;) = ©;(B) — 9;(B-i).

Fair treatment for unconnected players states that, for any pair 4 and j unconnected

in B, 1 must gain or loose when j leaves the same as j gains or looses when i leaves.

4. Fairness for Adjacent Players (FAP). ® is said to satisfy FAP if, for all B C A and
for all a = (4, j) € B the next equality

(4.86) ®:(B) — (B \ a) = ®;(B) — (B \ a)

holds. Fairness for adjacent players means that, when an arc is added or deleted,

the players owning its endnodes benefit or suffer equally.

The following result provides an axiomatic characterization of the Shapley value

from the previous four axioms.

Theorem 4.5.3 In Supply Chain Games, there exists a unique allocation rule ¥ satisfy-
ing EFF, IPP, FUP and FAP. It is given by

(4.87) U,(B) = ¢;(vp)
for all B C A and all i € N, where ¢ denotes the Shapley value.

Proof. Let ¢ be the Shapley value. Let (N, A, C, b, k) be a Supply Chain Problem and

(N, v) its corresponding game. The proof consists of two parts. In the first one we shall
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prove that the Shapley value satisfies the four axioms above. In the second part we shall

prove that there can be only one allocation rule satisfying those axioms.

1. Let us first see that the Shapley value satisfies those four properties.

o ¢ satisfies EFF and IPP because it is always efficient and satisfies the dummy
player property.

e Let us see that the Shapley value satisfies FUP. Let B C A, ¢,j € N discon-
nected in B. We define the TU-game (N, w) with w = vg —vp_, —vp_,. For
all S C N\ {4,;j} one has that

(4.88) w(SU{i}) = vp(S U {i}) — vp_.(SU {i}) — vs_, (S U {i}).

It is true that

— vp_,(SU{i}) = vp(9), since in both cases the coalition S acts without the
arcs of 4, due to the fact that i ¢ S.

— vp_,(SU{i}) = vp(SU{i}), since i ¢ SU {j}.
So, (4.88) becomes

(4.89) vp(S U {i}) = vg(S) — va(S U {i}) = —vp(S).

Analogously we deduce that w(S U {j}) = —vg(S).

Hence, players 7 and j are symmetric in w and, by the symmetry of the Shapley
value, ¢;(w) = ¢;(w). Thus, from the linearity of ¢ we have that

(4.90) ¢i(ve) — di(vs_,) — di(vs_,) = ¢;(vB) — ¢;(vp_,) — ¢;(vn_;)

and, since ¢;(vp_,) = ¢;(vp_,) = 0, because the Shapley value satisfies the

irrelevant player property, we get that

(4.91) ¢i(ve) — ¢i(vs_,) = ¢j(vs) — ¢;(vs_,),

what proves that ¢ satisfies FUP.
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e Let us see that ¢ satisfies FAP. Consider B C A, a = (¢,j) € B. We have to
prove (4.86).

(a) If ¢ = j the result is obvious.

(b) Suppose that ¢ # j and define the TU-Game (NN, w) where
(4.92) W = VUp — UB\a-
IfSCNandi¢gSorjé¢sS,clearly
(4.93) vB(S) = vp\a(S) = w(S) =0,

(since S cannot use arc a in any case). Hence, players ¢ and j are symmetric
in (N, w). From the symmetry of the Shapley value, we get that ¢;(w) =
¢;(w). From the linearity of the Shapley value one has that

(4.94) ¢i(vB) — di(vp\a) = ¢i(vB — VB\G) = pi(w) VieN.
Joining these equalities we get that
(4.95) ¢i(vB) — di(vp\a) = i(w) = ¢;(w) = ¢;(vs) — ¢;(vB\a),

as we wanted to prove. So Equation (4.86) holds and we conclude that ¢
satisfies the Fairness of Adjacent Players property.

2. Suppose that there exist R! and R? two different allocation rules satisfying EFF,
IPP, FUP and FAP. Let B C A the minimal set such that R'(B) # R*(B). Let M
be the set

(4.96) M = {i € N / iis not isolated in B}.
Let us prove that M has at least two elements.
e Since R! and R? satisfy IPP we have that

(4.97) R!(B)=R}B)=0 Vie N\ M.
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Hence, if M = 0 then
(4.98) RYB)=R}B)Vie N= R'(B)=RB) !

e Also, if M = {i}, one has that R}(B) = R2(B) =0V j # 4, since R' and R’
satisfy IPP. Due to the fact that R! and R? satisfy EFF, one gets that
(4.99)
RY(B) =Y R}(B)=wvs(N) =Y _ R}B)= R}(B) = R'(B) = R*(B) !!!
JEN jEN
So, we have proven that |[M| > 2.

Let i,5 € M. It can happen that:

e 4,7 are adjacent in B = 3a € B : a= (i,j). Hence, since R! and R? satisfy

FAP,
RY(B) — RY(B\ a) = R}(B) — R}(B\ a)
(4.100) R}(B) — R}(B\a) = R?(B) — RJZ-(B \ a)
B is minimal = 0B\ = R}(B\ a)
Ri(B\a)= R}(B\a)

This concludes that R}(B) — R2(B) = R}(B) — Ri(B).

e i,j are not adjacent but they are connected in B, 3 {ig,...,%} @ (lk—1,%) €
BYk=1..,q i=1, j=1, If werepeat the previous step ¢ times, we
obtain
(4.101) R}(B) — R}B) = R;(B) - RJZ.(B).

e 4, j are not connected in B, since R! and R? satisfy FUP we have that:

Ri(B) — Ri(B-;) = R}(B) — Rj(B_)
(4.102) Rz'Q(B) - R?(B-—j) = RJZ(B) — RJZ(B_,')
zl(B—J = R?(B—j)

B is minimal =
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which implies that R}(B) — R?(B) = R}(B) — R?'(B)-

Then R}(B) — R}(B) = R}(B) — R}(B) = c € R for all ¢, j € M. We have that:

(4.103)
> "RL(B) = vp(N)
= 0= (R(B)-R{(B)) = > (Ri(B)—Ri(B)) = c|M|.
Z Ri(B) _ UB(N) keN keMm

It follows that
(4.104) c=0= R\(B)=RXB) Vi€ M,
and we already knew that R}(B) = R?(B) Vi € N\ M, so we conclude that

(4.105) RY(B) = R*(B)!M!

By joining (1) and (2) the proof is finished. 0
Supply Chain Games are monotonic, so we assure that the Shapley value is an imputation
of the game, but they are not, in general, convex, so there is no theoretical reason to
assure that ¢ € C(N,v). Example 4.5.5 shows a SChG in which ¢ is not a core allocation.
Nevertheless, due to the properties satisfied by the Shapley value, it is a well considered

solution concept.

Example 4.5.5 Consider the Supply Chain Problem described in Figure 4.11. One can
see that the distribution plan

(4.106) Tos =4, T31 =1, 230=3

s optimal and gives a profit of 14 units. The Shapley value is
(4.107) ¢ = (2,5.166, 3.25,0.0833, 3.5).
In this case, ¢ ¢ C(N,v), since

(4.108) v({1,2,3,5}) =14 =z({1,2,3,5}) = 13.9166.
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(-4,13)

Figure 4.11: Transportation Network

As a remark, note that the previous example gives a second SChG that is not convex. This

comes from the fact that in convex games the Shapley value is always a core allocation.

Computational Complexity

We can state the following result:

Theorem 4.5.4 Let (IV,v) be a SChG. Then the computational complexity for calculat-

ing Shapley value is exponential with respect to the number of players, and given by

(4.109) O(n?2").

Proof. In order to calculate the Shapley value one has to know the characteristic
function of the game, that is to say, one has to solve O(2") linear programming problems.

Calculating v(.S) implies solving a linear programming problem with j constraints and g;
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variables, where j = |S| and ¢; = |As|. Again supposing that ¢; = O(j?), one has that
the effort to calculate v is given by:

(4.110) Z (7)0(;’2) = O(n?2").

i=1 J

Note that Predictor-Corrector algorithm complexity has been used to develop that for-
mula.

After calculating v we have to allocate to each player their payoff, according to
the formula of the Shapley value. But this operation does not increase the theoretical
complexity of the final calculation. (]
Besides not giving stable allocations in general, the main problem with the Shapley value
is the necessary computation time, since we have to calculate the value of the characteristic
function for every coalition. In our special case of supply chain game, that means solving

a number of linear programs which is exponential with respect to the number of players.

Thus, we need to look for other solution concepts of easier calculation. At the same
time such solutions must satisfy good properties. In the following section we shall explore
an allocation rule based on optimal distribution plans over the complete graph of the

Supply Chain Problem associated to the game.

4.5.4 Arc-Proportional solution

Due to the fact that the Owen solution, provided in previous sections from the dual
program, gives rise to “fairness” problems, even though it is an allocation in the core, and
that in order to work out the Shapley value we need to know the complete characteristic
function of the game, which is not always computationally possible, we are going to
propose in this section a new solution concept: the Arc-Proportional solution. This
solution is a generalization of the Arc-Equality Solution given in [59] for Transportation

Games.

We start by giving its definition.

Definition 4.5.3 Let (N, A,C,b,k, H) be a Supply Chain Problem, and let =* be an op-
timal distribution plan. Let (N,v) be the associated game. The allocation y(z*) of the
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game (N, v) is:

(4.111)  ~(z*) = % > (% - cij) zy + % > (%—z—; - cj,) al, VieN

J:(ig)eA J:(4i)eA

where

(4.112) L) = Y (kj—k)a, TE")= ) =

(i,j)eA (4,)eA
The Arc-Proportional set is:

(4.113) Q= {y(z*) : z* is optimal for Pr(N)}.

L(z*) and T'(z*) are interpreted as the benefit without taking into account the transporta-
tion costs after the distribution plan z* and the total amount of material transported
between nodes, respectively. Note that both in L(z*) and T'(z*) the material might be
counted more than once, if it flows through different arcs from a supply node to a demand
node. From now on, we may refer to v, L and T instead of v(z*), L(z*) and T(z*) as

long as it is clear which the optimal distribution plan z* is.

Let us see now that the Arc-Proportional set as defined above is a generalization of the

Arc-Equality set for Transportation Games as proposed in [59].

Given a Transportation Game (P, Q, B, p, q), the Arc-Equality set for this game is:
(4.114) |
1 1 1 1
AI(P,Q,B,p,q) = {5 Zbljﬂlj, g anjunj; 2 Zbﬂun, SRR Zbim,uim L€ 0}
Jjeq JjeQ ieP i€P
where €2 is the set of optimal transport plans for the transportation problem associated
to the game.

In previous sections we saw that the transportation game (P,Q, B, p,q) coincides
with the Supply Chain Game (P UQ,P x Q,—B,(p,q),0, H) where h;; = 400 V i €
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P, j €@. Since

(4.115) {j:6,7))ePxQy={jeQ}, {j:(,))ePxQ}=0 VieP

and L = 0, the Arc-Proportional solution results, for i € P,

(4.116)

1 L L 1 1 .

7:(65)EPXQ 7:(J)EPXQ JEQ JjeQ

Analogously, for every j € @ we have

(4.117)

1 L . 1 L . 1 . 1 .
d; = 2 Z (T - cij) T+ 2 Z (:_f - cji) Tji = 75 Z%Cu’ ) injbij'
i:(4,7)EPXQ i:(j ) EPXQ €Q i€Q
Since both solutions coincide, we conclude that the Arc-Proportional solution proposed for

the class of Supply Chain Games is a generalization of the Arc-Equality solution proposed

for the class of Transportation Games in [59].

Proposition 4.5.1 The Arc-Proportional solution proposed for SChG is an extension of

the Arc-Equality solution proposed for Transportation Games.

Proof. The discussion above. ]

Now we are going to see some properties that the Arc-Proportional solution satisfies.

Properties

In this section we explore some properties for the Arc-Proportional solution. It will
be shown that it is an efficient allocation, that is, a preimputation. We shall also see
that, under certain conditions, it is an imputation, that is, an allocation satisfying the
individual rationality property. To finish this section we shall give some conditions for

the Arc-Proportional solution to be in the core.

Proposition 4.5.2 (Efficiency) Given is (N,v) a Supply Chain Game. V v € Q(N,v),
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~ is efficient.

Proof. Let (N, A,C,bk,H) be a Supply Chain Problem, and (IV,v) its associated
game. Let z* be an optimal distribution plan for the problem (N, A, C, b, k, H) and 7 its

associated Arc-Proportional allocation. We have to prove that Z v = v(N).
i=1

(4. 118)
n
22% Z Z U_Z Z cwx”-i-z Z TJZ—Z Z CjiTy;
i=1 j: (w)EA 1~1 Ji(i,)eA i=1 ji(j,i)€A i=1 j:(j,i)eA
W S ST D SR TR S S
(i,7)€A (3,7)€A (] 1)EA (40)€eA (z,] JEA (i,7)EA
Since z Ty (4.118) becomes
(i,5)€A

(4119) 2L-2 > ahey =2 Y (ki—k)aly—2 > cyal =2 Y (k—ki—cy)al

(i.5eA (ii)eA (i.f)eA (i.j)eA

From the optimality of 2* we conclude that
(4.120) > yi=v(N
i=1

(i
Unfortunately, this solution concept does not always satisfy the individual rationality

property, as we can see in the following example.

Example 4.5.6 Consider the Supply Chain Problem described in Figure 4.12 and let
(N,v) be its associated Supply Chain Game. One has that an optimal transportation of
this Supply Chain Problem is

(4.121) Ty =05, Ty =1, T3 =05, x5 =5, z; = 0 otherwhise.

The maximum profit generated by the grand coalition is 25 units.
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(4,0)
2
l
1
L2
0,0) (D / \ %) (00)
—{7}
5 [14] 4
(_5710) (3a0)

Figure 4.12: Supply Chain Game

Let us calculate v4(z*).

(4.122) V4= — C42)Tgo

=3 e

(

[N

The values of L and T are

L= a35(ks — ks) + 2io(ka — ka) + 233(ks — k) + 73y (k1 — k2)
(4.123) = 5(10 — 0) + 1(0 — 0) + 5(0 — 0) + 5(0 — 0) = 50
T= 5+14+5+5=16

Thus,

1 —
(4.124) 7= 5(50/16 —5)1 = —3?’2—9 = —0.9375 < v({1}),

and therefore this arc-proportional solution does not satisfy the individual rationality prin-

ciple.
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The following result assures that if the material does not have “to take a long way”
from the supply nodes to the demand nodes upon the optimal distribution plan, then
the associated Arc-Proportional solution satisfies the individual rationality principle. In
other words, if there are too many transfer nodes from the supply nodes to the demand

nodes, the Arc-Proportional solution might be individually irrational.

Proposition 4.5.3 Let (N,v) be the Supply Chain Game defined from the Supply Chain
Problem (N, A,C,b,k, H), and let z* be an optimal distribution plan. If the following
condition

- ) L(z")
(4.125) V(,j)€A o #0= @) > ¢y
holds, then the associated Arc-Proportional solution 7(z*) satisfies the individual ratio-

nality property.

Proof.

. 1 . [ L(z*) 1 . { L(z%) ‘
@) =g 3 (i ) 03 T (e )

Ji(i,j)€A J7ieA
Since zj; > 0 and % —¢;; > 0V (4,7), we conclude that
(4.127) vi(z*) > 0=v({i}) VieN.
O

The Example 4.5.6 does not contradict this result, since cqo = 5 > 3.125 = ;Ei:;

The previous proposition gives us a sufficient condition for the Arc-Proportional
solution to satisfy the individual rationality property, but this condition is not necessary,
as we see in the following example.

Example 4.5.7 Consider the transportation network as depicted in Figure 4.13, where
k = 5. One has that the unique optimal distribution plan is z}, = v3;3 = v34 = 1. Thus,
we have that

(4.128) L) =5, T(a*) =3 = 2&) _ g
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(1,1) (0,0) (0,0) (-1,6)

O—1—0—2—G@—/—_1—®
Figure 4.13: Transportation network

L(z*)
T(z*)

does not hold. Nevertheless, the Arc-Proportional solution associated to this transportation

For instance, co3 = 2, then co3 > and the condition mentioned in Proposition 4.5.3

18:

(4.129) Ae*) = ( ).

b

| =
W =

1
76)

| =

Obviously we have that v;(z*) > v({i}) = 0 for all i € N. Then, we deduce that the

previously given condition is not a necessary condition.

The Arc-Proportional solution is not unique, since there could be more than one optimal
distribution plan. If we are asked to give a unique allocation, any convex combination of

all possible Arc-Proportional solutions is a logical approach. See the following example.

Example 4.5.8 Consider the supply chain game described in Figure 4.14.

(0,0)

Figure 4.14: Supply Chain Problem

One can see that the distribution plan

4.130 Ty=1, o =1
12 23



178 CHAPTER 4. SUPPLY CHAIN GAMES
is optimal and gives rise to the Arc-Proportional allocation

(4.131) v =(0.25,0.5,0.25).

On the other hand, the distribution plan

(4.132) i3 =1

is also optimal for the described Supply Chain Problem, and generates the Arc-Proportional

allocation
(4.133) v*(0.5,0,0.5).

So, an allocation rule could be, for example, just the average between the two Arc-

Proportional solutions we have found, that is

1,
(4.134) 7= 37 +77) = (0.375,025,0.375).

Another property that Arc-Proportional solutions could be desirable to have is the

symmetry. That is, equal players should receive equal payoffs.

Definition 4.5.4 A solution concept U for SChG is said to satisfy the property of sym-
metry if ¥V i,5 € N such that b; = b;, k; = k; and ci; = ¢k and ¢, = ;i for all k € N,
we have that

(4.135) te¥Y(Nw)=37T : T,=z. Vre N\ {i,j}, Ti =z, T; = 2.

Proposition 4.5.4 The Arc-Proportional solution satisfies the symmetry property.

Proof. Clear from the definition of the Arc-Proportional solution. a
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So, we have that if two players are equal in the Supply Chain Problem, then the

Arc-Proportional solution gives them the same opportunities.

It is also trivial to prove that Arc-Proportional solutions satisfy the property of
irrelevant players (IPP). That is, y(:) =0V v € AP.

Proposition 4.5.5 Let (N,v) be a SChG and v € Q(N,v). Then ~ satisfies IPP.

Another desirable property for AP is the symmetry between groups, that is, P and

@ should receive the same.

Definition 4.5.5 A solution concept on SChG, ¥, is said to satisfy the property of equal
treatment between groups if for all (N,v) € SChG and for all z € ¥(N,v), one has that

z(P) = 2(Q).

Unfortunately this desirable property is not true in general for the class of Supply Chain

Games, as we can see in the following example.

Example 4.5.9 In Example 4.5.6, one Arc-Proportional solution is

(4.136) v = [10.625,4.375,8.125, —0.9375, 2.8125],
thus
(4.137) v(P) = 4.375 + (—0.9375) # 2.8125 = 4(Q).

One could be interested in checking if AP satisfies the property of Fairness for Adjacent

Players, see (4.86). The following example shows that this is not true in general.

Example 4.5.10 Let us consider the Supply Chain Game arising from the Supply Chain
Problem in Figure 4.15.

There ezists only one optimal transportation, T3 = T3z = 1, and the associated

arc-proportional solution is:

(4.138) v(A) = (2,2, 4).



180 CHAPTER 4. SUPPLY CHAIN GAMES

(1,1) (1 {3} 2) (-1,11)

(0,0)

Figure 4.15: Supply Chain Problem

If we deleted arc (3,2) from the picture, 13 = 1 would be the only optimal transportation,

and the arc-proportional solution v in this case would have the form:
(4.139) v(A\ (3,2)) = (3.5,3.5,0).
Therefore, we have that:

Y2 (A) — 12(A\(3,2)) =2-35=—15

(4.140)
v3(A) — 75(A\ (3,2)) =4 -0 =14

Thus, the Arc-Proportional solution does not satisfy the property of fairness for

adjacent players, unlike the Shapley value.

Another property that the Shapley value has is the fairness for unconnected players,
FUP see Equation (4.85). Unfortunately this is not satisfied by the Arc-Proportional

solution, as we see in the following example.

Example 4.5.11 Consider the example in Figure 4.16. We have that players 1 and 3

are not connected.

From this problem, the arc-proportional solution results

(4.141) v(4) = (0,8, 16,8)
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(1,1) @ (-2,11)

(4,1) (® (-411)
Figure 4.16: Supply Chain Problem
from the only optimal transportation x3; = x34 = 2. So, we have that

(4.142) 71(A) =0, 13(A) = 16.

If we remove players 1 or 3 from the game, we can check that
(4.143) v3(A1) = 16, 71(A-3) = 3.

Thus, we have that
(4.144)

So, we conclude that FUP is not true for AP in the class of Supply Chain Games.

Another interesting property is the following:

Definition 4.5.6 A solution concept ¥, for SChG, is said to satisfy the standard prop-
erty for two players if for all (N,v) € SChG such that |N| = 2, ¥(N,v) is a unique point
and U;(N,v) = 21 for all s € {1,2}.
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Proposition 4.5.6 The Arc-Proportional solution satisfies the standard property for two

players.

Proof. Immediate from the Arc-Proportional solution definition. d

In the following section we shall see several conditions for the Arc-Proportional

solution to be a core allocation.

Stability conditions

We have seen that, in general, the Arc-Proportional set is not in the core. Nevertheless
we will show that, under several conditions, there are Supply Chain Games for which the

AP set is a subset of the core.

In some supply chain situations where we have a certain number of supply nodes,
transfer nodes and demand nodes, it is common to find that any supply node is directly
connected to any demand node and that the transportation costs are quite similar from
one arc to another. It is also common to find that the costs of production are similar in
every supply node and the profits are similar in the demand nodes as well. Under these

circumstances several results about the stability of the Arc-Proportional solution hold.

The following theorem proves that, under five conditions, the arc-proportional so-
lution is a core allocation for Supply Chain Games. Condition 1 says that each supply
node is directly connected by one arc to every demand node. Condition 2 states that the
costs of sending one unit of material from a supply node to a demand node are constant.
The third condition assures that shipping units via transfer nodes is not optimal. The
forth condition says that the total amount of demand equals the total amount of material
available. Condition 5 states that the costs of producing material and the benefits after

receiving them are not dependent upon the nodes.

Theorem 4.5.5 Let (N, A,C,b, k, H) be a Supply Chain Problem satisfying:

L. {(i,j) ;1€ PjeQ} C A
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2. Cij:CViGP,jEQ.

3. ¢y > g V(i,5) € A\{(i,§) :i € P,j e Q}.

4. b=0
i=1
5. klzk‘]\V/ZEP, ]CJ:kIQVJEQ

Let (N,v) be the associated Supply Chain Game. Then we have

(4.145) Q(N,v) C C(N,v).

Proof. Under the conditions above, it is easy to see that supply nodes send all their
material directly to demand nodes without passing through transfer nodes in any opti-
mal distribution plan. Thus, v (the arc-proportional solution associated to the optimal

transportation z*) is:

1 . L L
(4.146) Vi = 5{ Z %‘(T — ) + Z 1(T c;i)} VieN.
JEN:(1,5)EA JEN:(ji)EA
We have that
- Y - Z “Y,
(4.147) (2eA & &2 by
P CREE R NI
i.)EA i€P jeQ i€P

Thus, if i € P, (4.146) results

1 . 1 . 1
(4.148) 5 Z zijk — ) = 5(k —¢) | Z 7y = 5k — o),
JEQ:(4,5)eA JEQ:(4,5)€A

—=b;

and if i € Q) (4.146) becomes
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(4.149) % 3 x;i(k—c):%(k—c) ) xfj:—%(k—c)bi.

JEP:(ji)EA JEP:(ji)EA

=—b;

So, we conclude that

(4.150) 3= 5k = bl Vi€ N,

Now we shall see that v is in the core of the game.

n
e Obviously Z v; = v(N), because the Arc-Proportional solution is always efficient.

i=1

e Let S be a coalition of N. On the one hand, since the members of S send as much

as they can from Pg to (Jg, we have that

(4.151) v(S) = (k—c)min{)_b,— > _ b;}.

1€ Ps J€Qs
On the other hand
(4.152)
1 1
VS =D w= DI wm+ > w= Zi(k”c)br‘r > —5(k = c)b;
€S i€ Pg jE€EQs ke€Rg i€ Pg j€Qs
=0
1 1 <
=5(k=c) Y bt 3k =)~ D b))
) i€ Pg J€Qs 1
> s (k—c) min{z by, — Z b} + 5k —0) min{Z b, — Z b;}
i€ Pg j€Qs i€Ps J€Qs
= (k—c)min{> b, — > _ b} =v(S),

1€Pg 1€Qs

and that concludes the proof.

Now, we see that the second condition of the theorem above is necessary.
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Example 4.5.12 Let us consider the Supply Chain Game associated with the Supply
Chain Problem described in Figure 4.17. Then, one Arc-Proportional solution is

(4.1) (O [T} (3) (-5,11)

(1) @) 7] (o) (-2,11)
Figure 4.17: Supply Chain Problem

(4.153) ' v = (21.75,4.125,19.375,1.75),
and it is not in the core of the game, since
(4.154) v({2,4}) = 5.875 < 6 = v({2,4}).

But this does not contradict the theorem before, since in this ezample the condition (2)
does not hold (one can check that (1), (3), (4) and (5) hold).

The conditions in Theorem 4.5.5 can be relaxed and the arc-proportional solution keeps

being a core allocation, as we see in the following theorem.

Theorem 4.5.6 Let (N, A,C,b,k, H) be a Supply Chain Problem and (N, v) its associ-

ated game. Suppose that the following conditions are satisfied:

1. r}gl%({k —cit < (1+¢) glxlg{k — ¢}, where k = ko — k.
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d b= b

2.2+2= min e Jels
SGCPUQ min{y b, — Y b;}
Ps,Qs #0 eFs 1€
i=1
4. PxQC A

5. cn > mi?x{cij} - m&n{cij} V (k1) € (P x P)u(Q x Q).
1
6. cr > —émgx{cij}\f(k,l) ke RorleR.

Then

(4.155) Q(N,v) € C(N,v).

Proof. Let (N, A,C,b,k,H) be a SChP and (N, v) its associated SChG.
+ — ~ = mi —Cis
Let vy € AP(N,v), c" = r}gl)?é({k Cij}y € 11;1)(18% i}

From conditions (5), (6), we have that the optimal distribution plan consists of
shipping all the material directly from the nodes in P to the nodes in ). Then, for all
S C N one has that

(4.156) 1(8) =2(Ps) +7(@s) 2 3 Yo — 3 Yo

i€ Pg J€Qs

That comes from the fact that

C—biViEP,

8| =

1
(4.157) =g Y (k—cyhbi2

J{iJ)EA

and analogously

1
(4158) v = —*2‘C_bj V] €Q.
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Besides, from (4), (5) and (6), we have that

(4.159) v(S) < ct min{z b, — Z b;}.

i€Ps J€Qs
Let S be a coalition of N. If Ps = 0§ or Qg = 0, then
(4.160) o(S) = 0 < +(S),

since the conditions for y to have the individual rationality property hold, then v(S) >
0 V.S € 2V, Let us study the case in which Pg and Qg are not empty.

Let S be a coalition such that SN P # ) and SN Q # 0. We know that

(4.161) v(S) <c* min{z b, — Z bj} <(1+e¢)c min{z b, — Z b;}.

i€Pg J€Qs i€Ps JEQs

From condition 2, we have that

(4.162)
Sh-Yt NI
e=—-1+4+- min iefs 7€Qs < —1+4= €hs jeQs ,
2 gcpuq@ |min{d b,-> b} 2 | min{Y_bi,— 3 b}
PS QS ?éw 1€Pg Jj€Qs i€Ps j€Qs

then, (4.161) is less than or equal to

b= b

<l1-1+1 i€Ps  j€Qs e min{Ycp, biy — Xjeqq bi)
(4.163) min{} b, = ) b}
) i€ Pg JEQs
=5 (Q_bi= Y b) <),
1€Pg J€EQs
0

Condition (5) assures that the cost of sending material from a node in P to a node in @
via another node in P or () is higher than sending it directly from P to (). From condition
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(6) we know that it is cheaper to send directly from P to () than to send via any node of
R.
To finish this section, see in the following example that the fifth condition is neces-

sary.

Example 4.5.13 Consider the Supply Chain Problem as depicted in Figure 4.18.

/:P (-1,150)

(1) (-4,150)

Figure 4.18: Supply Chain Problem

[4o L
(2]

We have that:

Y obi— ) b

(4.164) min i€ deQs _min{§ 676947 §} _9
S¢PUQ min{Zbi,—ij} 1'2°2°1°4°1°3’3 4
Ps,Qs #0 e s

So, we get that

=>€—1
=3

| ©

(4.165) 242 =

Let us see which of the conditions of Theorem /.5.6 are satisfied:
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max{k —¢;;} =120 — 42 =78
(4.166) PxQ = (1+€)70 =78.75> 78
gug{/c — ¢} =120 -50 =70
X

and we conclude that (1) holds.

o Obuviously, Zb,» =0, so we have that (8) holds.
€N

o P x@QC A, then we have condition (4).

e But (5) does not hold, because

(4.167) Ilglxag{cij} -~ melg{cij} =50—-42=8 & c3.

o (6) is trivially satisfied because there is no transfer node in this example.

So, the only condition of Theorem 4.5.6 that is not satisfied is (5). One can see that the

Arc-Proportional solution of this example is
(4.168) v = (58,87,104.5,133.5),
which does not belong to the core, since

(4.169) v({2,4}) = 234 > 220.5 = v({2,4}).

Computational Complexity

To finish this section we show the computational complexity to calculate one Arc-Proportional

solution.

Theorem 4.5.7 Let (N, v) be a SChG. Then the computational complexity for calculat-
ing one Arc-Proportional solution is polynomial with respect to the number of players,

and given by

(4.170) O(n?).
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Proof. To calculate one Arc-Proportional solution we first have to generate an opti-
mal distribution plan, which implies solving a linear programming problem with g = |A|
variables and n constraints. The effort in this step is O[(n + q)], where n is the number
of players (nodes) and g is the number of arcs of the corresponding SChP. After that, we
have to calculate the payoff of each player, which is done in O(n?) steps. Again consider-
ing that ¢ = O(n?), the result follows. O

4.5.5 Sequential Solutions

In previous sections we saw an “easy”’ procedure to build an allocation in the core by
solving the dual linear program. It is known that, if a node remains with an excess
of material after an optimal distribution plan has been taken, then its associated dual
variable is null in the optimum, and that means that this player receives nothing from
the Owen allocation. Analogously, any player that does not get all its demand satisfied,
would not receive anything after the allocation taken from the dual program. To avoid
that, each supply node could choose to offer less units of material so that they can send
all their supply, and analogously each demand node could require less material so that
none of their demand is unsatisfied. Then, we propose the following way of allocating

costs.

Given is a Supply Chain Problem (N, A,C, b, k, H) and (N, v) its associated game.
Let z = min{|b;] : b; # 0}. We first consider the game G only changing that every supply
node offers z units and every demand node asks for z units. After solving this problem,
the vector b and the matrix H are updated, decreasing the offers, demands and capacities
according to the optimal distribution plan that has been chosen in the previous step. So, it
might happen that, after the optimal distribution plan has been done, some supply nodes
become transfer nodes (since their original supplies are over) and some demand nodes
become transfer nodes (since their original demands are completely satisfied). It could
also happen that some arcs have their capacity reduced. Then the new z is calculated

and this process is repeated until there is not more profitable material to transport.

Notice that, if in every game G* an allocation rule is calculated, we can propose as

a final allocation the sum of all these allocations, as we will see in following examples.
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But first, let us see in a formal way how this sequential process works.

Givenis G° = (N, A, C, b, k, H) a Supply Chain Problem and (N, v) its associated game.
Set [ =1and y € R*, y =0 and go to 1.

1. Let 2/ = max{|b;| : b; # 0}. Consider the SChP G! = (N, A, C,b', k, H) where:

o If b, > 0 then b = 2.
o If b; < 0 then b}, = 2.
e If b, = 0 then bl = 0.

Consider (N, v') the associated game to G'.

o If o/(V) = 0, STOP.
e If v!(N) > 0 then we calculate an optimal distribution plan z! for G* and an
allocation of (N, '), denoted by 3. Then we update b and H:

— For all i € N do,
if b > 0, then b, = b; — (3.5 574 T — Djgirea Tii)-
if b; < 0, then b; = b; + (3, ;ea Thi = 2jiig)ea z.).
* For all j € N, if h;; # 400 then h;; = hy; — xﬁj

Set y = y + ¢ and go to step 1.

It is easy to find examples in which the final allocation, y, does not allocate all
the possible benefit that the grand coalition could have obtained in the original

game (N, v). To avoid such drawback we normalize and propose as final allocation

_ _vN)
y - ZiEN yiy'

Note that, depending on the allocation calculated at each step, y', we obtain different

allocations. So, there can be defined:

e Sequential Owen Solution, if an Owen allocation is calculated in each step.

o Sequential Extended Owen Solution, if an Extended Owen allocation is calculated

in each step.
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e Sequential Arc-Proportional solution, if an AP allocation is calculated in each step.

o Sequential Shapley Value, if the Shapley value is calculated in each step.

Example 4.5.14 Let us consider the Supply Chain Problem in Figure 4.19. The char-

(1,2)

Figure 4.19:
Supply Chain Problem

acteristic function of the associated Supply Chain Game is v({1,3}) = 6, v({2,3}) =

5, v({1,2,3}) = 9 and null for any other coalition. One Qwen allocation for this game is

(0,1,8).

Let us find a Sequential Owen solution and a Sequential Arc-Proportional solution.
2! = 1 and the game G' is depicted in Figure 4.20. We have that the characteristic
function for this game is v'({1,3}) = 3, v'({2,3}) = 5, v!({1,2,3}) = 5 and zero

otherwise. One Owen solution y' for this game is
(0,1,4)
and one Arc-Proportional solution ! is

(0,2.5,2.5).
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(1,2)

Figure 4.20: Supply Chain Problem

The optimal transportation is z33 = 1 and zero for the other arcs. Then, we set by =

1-1=0andb; =—-2+1= -1, leaving b; as it was.

Then, 22 = 1 and our new problem, G2, is shown in Figure 4.21. The characteristic

(0,2)

Figure 4.21: Supply Chain Problem

function of G* is v*({1,3}) = 3, v%({1,2,3}) = 4 and zero otherwise.

We get that
y? = (4,0,0), ~%=(1.25,2,0.75).
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The optimal transportation is 3, = 1, so now we setby =2—1=1andb; =-1+1=0.
One can check that the problem G* is not profitable, so the algorithm is over. Then, the

proposed allocations after this process are:
y=y' +y*=(4,1,4), y=7"+7"=(1.254.5,3.25)

Since in this case y(N) = v(N) = v(N) we do not have to normalize the allocations y

and .

Unfortunately, the sequential process explained above does not always keep the properties
of the allocations that originate it. See for instance in the following example that a
Sequential Owen Solution might not be included in the core of the corresponding SChG,
even though the Owen set is always included in the Core of SChG.

Example 4.5.15 Consider the SChG (N, v) arising from the SChP in Figure 4.22. One

(-1,14)

Figure 4.22: Supply Chain Problem
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can see that the dual program of the game resulting in the first step of the process to build

the Sequential OQwen set is

min Y +y2 + Y3+ ya
st y1+y. =4
(4.171) bty > 8
Ya+y2 29
¥, >0V i,

One feasible optimal solution to this problem is the vector y' = (6,0,2,5). It is not difficult

to check that after this step the process is over, resulting in the allocation
(4.172) v =(6,0,2,5).

Take coalition S = {1,2,3}. One has that v(S) = 12, but y(S) = 8. We conclude that
v ¢ C(N,v) and prove that, in general, the Sequential Qwen set is not a subset of the
core of SChG.

4.5.6 Experimental results

The computational complexities calculated before only reflect the performance of the
corresponding algorithm in the most pathological instances. In order to compare the
time expenses to calculate those three allocations it is more appropriate to perform some

experiments, as shown in this section.

Some experimental results on the speed and quality of the solution concepts proposed
for SChG are presented. The experiments were performed by building random Supply
Chain Problems (N, A,C,b,k, H). The number of players n varied from 3 to 10, 100
instances of each case being performed. To build each SChP, random numbers were

generated as follows:

e For each pair of nodes (i, ), there is an arc joining 7 and j in this direction with

probability %

e For each arc (4, j), its associated cost, ¢;;, follows a uniform random variable between
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1 and 5.

e For each arc (2, j), its associated upper bound, h;, follows a uniform random variable

between 6 and 10.

e For each node i, its demand or supply b; is randomly generated and varies from -10
to 10.

e For each node 7 € @), its unit profit k; follows a uniform random variable between 6
and 10.

e For each node ¢ € P, its unit cost of production k; follows a uniform random variable

between 1 and 5.

For each SChP, the corresponding SChG was generated and the three allocations
presented in this work (Shapley value, Owen solution and Arc-Proportional solution) were
calculated. For each of those allocations their computational time was calculated and it
was checked if they belonged to the core of the corresponding game. It goes without

saying that the Owen solution always belongs to the core of the game.

Those experiments were run by using the mathematical software Maple 7 in a Pen-
tium IV computer (frequency 3.06 GHz). Table 4.1 summarizes the results obtained. The

Players | Time Shapley | Time Owen | Time AP | Core Shapley [ Core AP |
3 0.03353 0.00848 0.00854 99% 93%
4 0.12226 0.01683 0.01217 86% 1%
5 0.39523 (.03048 0.02207 66% 57%
6 1.27179 0.05362 0.04142 81% 35%
7 3.62249 0.08243 0.06557 72% 29%
8 10.95464 0.13888 0.10615 67% 29%
9 27.63470 0.19014 0.13953 74% 13%
10 86.98020 0.29885 0.23429 46% 20%

Table 4.1: Experimental results.

first column of Table 4.1 shows the number of players of the random games considered.
The second, third and fourth ones are the average time in seconds spent to calculate the

Shapley value, one Owen solution and one Arc-Proportional solution, respectively. The



4.6. MULTICRITERIA SUPPLY CHAIN GAMES 197

last two columns show the frequency of Shapley values and Arc-Proportional solutions

that belong to the core of the corresponding games.

Figure 4.23 shows the comparison between the average times spent by the three

allocations calculated.

Figures 4.24 show the evolution of the computational time needed to calculate each
allocation. Due to the high differences between the computational times of the Shapley
value and the other two solutions calculated, we show two different charts. The first one
regards the Shapley value and shows the evolution of the average time needed to find it
depending on the number of players. The second one compares the increase in time of
one Owen solution (the upper line) and one Arc-Proportional solution (the lower line).
In Figure 4.25 it is shown the frequency of times in which the Shapley value (the upper
line) and the Arc-Proportional solution (the lower line) belong to the core depending
on the number of players of the corresponding game. From the experimental results
we can say that the computational time to calculate the Shapley value is much higher
(not comparable with) than the necessary time to calculate the Owen solution or the
Arc-Proportional solution. The Arc-Proportional solution compared favorably with the
Owen solution in terms of computational costs. Regarding the quality of the allocations,
the Shapley value proved to be more often a core allocation than the Arc-Proportional
solution. It is well known that the Owen allocations always belong to the core of the

.corresponding game.

Due to the fact that there is no best allocation in the two criteria studied simultane-
ously (speed and balancedness), there is no worst allocation in the two criteria either, the
decision of which allocation to choose remains open and would depend on our priorities:

speed or fairness.

4.6 Multicriteria Supply Chain Games

In this section the class SChG is extended to the multicriteria case. To begin with,
a short review of a multicriteria cooperative game studied in the literature is given in
Section 4.6.1. Afterwards in Section 4.6.2 the multicriteria version of our supply chain

games is presented. Later on, the multicriteria versions of the transportation games and
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assignment games is presented in Section 4.6.3. To finish the section, an application of
the multicriteria minimum cost spanning tree game to a class of stochastic spanning tree

games is shown.

4.6.1 Multi-criteria minimum cost spanning tree games

This section presents the multi-criteria minimum cost spanning tree games as introduced
n [16]. Such games are a natural extension of the classical minimum cost spanning tree
(MCST) games as presented in Section 2.3.6. The natural difference with MCST games is
that the cost associated to an arc is a vector instead of a single number. Let G = (Ny, A)
be the complete graph with set of nodes Ny = N U {0} and set of arcs denoted by A.
Each arc has an associated vector of costs. Let a” = (af,...,a?) denote the vector cost
of using arc (7, j) € A. A Pareto-minimum cost spanning tree for a given connected graph
is a spanning tree that has Pareto-minimum costs among all possible spanning trees [14].

Here a formal definition:

Definition 4.6.1 Let G = (Ny, A) be a complete graph. The associated Pareto-minimum
cost spanning tree game is the pair (N,V) where N is the set of players and V' is the
characteristic function, given by

(4.173) V(S)=  min > el

Ts,: spanning tree =
(i)eA

for every non-empty coalition S C N and V(0) = 0, where Er,, is the set of arcs of the

spanning tree Ts,, which contains Sy = SUO, and min stands for the Pareto-minimization.

Example 4.6.1 Consider the multi-criteria MCST game (N,V), borrowed from [16],
arising from the graph in Figure 4.26. It is not difficult to check that the characteristic
function of this game is:

S {1} {2} {3}, {2,3} {1,2} {1,3} N
1 p

v(s) ! t
3 2 5 3 5 ' 6 6 ' 5

There are two Pareto-minimum cost spanning trees: one corresponding with (2,6)* €
V(N), which consists of the arcs (0,2),(1,2) and (2,3); and the one corresponding to
(4,5)" € V(N), which consists of the arcs (0,2), (1,2), (1, 3).
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Bird rule, see [5] and Section 2.3.6, can be extended to the multi-criteria MCST game by
allocating to each player the cost vector of the edge incident upon it on the unique path
between 0 and the player’s node, in the corresponding Pareto-minimum cost spanning

tree.

Regarding the existence of dominance core allocations, in [16] the following result is

proved:

Proposition 4.6.1 Let Ty be a Pareto-minimum cost spanning tree of a complete graph
with associated cost vector z¥ € V(N). Then the corresponding vectorial Bird’s cost

allocation is in the dominance core of the game.

This automatically implies that the dominance core of multi-criteria MCST games is

non-empty.

But sometimes, players may want to accept allocations if they pay less than any
of the worths given by the characteristic set. In such conditions, players would only
accept allocations in the preference core of the game, see Section 2.4. Due to the fact
that the order that defines the preference core is stronger than the order that defines
the dominance core, it is not assured in general that multi-criteria MCST games have

non-empty preference core.

In order to characterize those multi-criteria MCST games with non-empty preference

core, consider a vector Z € R* and the scalar games defined as follows:

Definition 4.6.2 The scalar l-component minimum cost spanning tree game (I =1,2,...,k)
associated to % is a pair (N,vf) where N is the set of players and v is the characteristic
function defined by

1. v(0) = 0.

2. For each non-empty coalition S C N,

(4.174) v?(S)=  min > e,

Ts,: spanning tree
0 .
(1.5)€Erg,

where Erg is the set of arcs of the spanning tree T, that contains the set of nodes
So=SuU0.
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3. vi(N) =1z

A necessary and sufficient condition for the non-emptiness of the preference core of multi-

criteria MCST games is given in the following theorem.

Theorem 4.6.1 The preference core is non-empty if and only if there exists at least one

2N € V(N) such that all the scalar [-component games (NN, va) are balanced.

Proof. See [16]. O

4.6.2 Multicriteria Supply Chain Games

Suppose that we are given a set of players N = {1,...,n} that represent the nodes of a
graph G = (N, A), where A is the set of arcs. The philosophy of this games is the same
as in the Supply Chain Games presented in Chapter 4 with two differences:

e The shipping of one unit along the arc (i,j) has an associated vector of costs
(¢, c;), not as in SChG where every cost is an scalar. Let C denote the
[ x |A|-matrix of all the k-dimensional cost vectors.

o Analogously, each unit of satisfied demand after a transportation generates not a
scalar profit k; but a vector profit (kj,... ,kj) for each 7 € @, and the production

of one unit of the good has an associated cost vector (k},...,kl) Vi€ P.

The rest is as in SChG, that is, each player owns one node in which there is an associated
scalar b;, which is ¢ player’s available supply of the item (if b; > 0) or 7 player’s required
demand for the item (if b; < 0). If b; = 0, then player ¢ does not have any supply of the
item and he does not require it either, we call it a transfer player. This situation gives
rise to a Multicriteria Supply Chain Game (MSChG for short).

The formulation of this kind of multicriteria games is as follows. For every coalition
S C N, let Ag denote the set of arcs in the partial graph Gs = (S, As), As = AN(S x S).

Coalition S induces a multicriteria supply chain problem, namely:
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max (f§(2),..., f5(x))

s.t.: Z Tij — Z T < b Vie Ps

Jj€S:(4,5)€As keS:(ki)eAs
Z Tpi — Z z; < 0 ViePs
keS:(ki)EAs JES:(i,j)EAs
(4.175) Z Tpi — Z r; < —b; VieQs (MPr(S))
keS:(ki)EAs jES:(i,j)EAs
Z Tij — Z Ty < 0 VieQs
JESHi,f)EAS keS:(ki)EAs
Z Ty — Z l']ci:O V'LGRS
jES:(ij)EAs keS:(ki)eAg

0<uzy; <hy VY(ij)€ As

where fi(z) = Z (k! — ki —ci;)zi; Vt=1,...,1. Problem (4.175) will be denoted as

(i.5)€As
M Prg.

The meaning of the constraints of the problem is the same as in SChG. They indicate
that the total outgoing flow of a supply node can not be more than the incoming in the
node flow plus the amount available, and in a demand node the total incoming flow cannot
be more than the demand required plus the outgoing flow. For any transfer node, the
outgoing flow must be equal to the incoming flow. This problem is always feasible, since

the transportation z = 0 satisfies the constraints, as in the unidimensional SChP.

Problem M Ps can be written as:

max QsTs
(4.176) st.. Hgzg < b(S)
.’L‘ij Z 0

where g represents the flow through the arcs (i, j) € As. Matrices Qs and Hg and vector

b(S) are chosen so that they express Fs and the constraints in (4.175).

If x5 is an efficient solution to M Ps, z(zs) = Qsxs denotes the corresponding vector

of results in the criteria space. Let e(M Pg) denote the set of efficient solutions of problem
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M Ps, and consider the whole set of non-dominated outcomes in the criteria space
(4177) Z(Mps) = {Z(.’L‘s) € RF . Z(CI)S) = Qsl‘s, Tg € €(MP5)}

Since (4.175) is always feasible, we have that Z(MPs) # 0 for all S C N.

It is now possible to introduce the multicriteria supply chain game (N, A, C, b, K),
where N = {1,...,n}, AC N x N, C e RAX! peR", K € R"™, as a combinatorial

multicriteria game with characteristic function:
(4.178) V(S)=Z(MPs)VSCN.

Example 4.6.2 Let us consider the multicriteria network in Figure 4.27. The costs asso-
ciated to the arcs are represented as a bi-dimensional vector on them. The 2-dimensional
vector k; represents the two-objective unitary benefit or cost, respectively. Thus, the for-

mulation of this problem as a multiobjective linear program is:

(4.179)
max (—2212 + 2213 + 623 + 3T24 — 3T34, —3T12 + 2713 + Toz + Taa — T3a)
st 0< o +23<4
0 <3+ Tag —T12 < 2 MPy
0< T3+ T3 —T34 <1
0 <z +x34 <5
2,20 V(i,j) €A

To calculate the characteristic function of the game, one has to work out the efficient
solutions for the multicriteria linear programs associated to each coalition S C N. Such
characteristic function is given by the non-dominated solutions of the corresponding M Ps

problems.

We are now interested in obtaining allocations in the core of the multicriteria supply
chain game. To this end, we propose an specific approach for the model that we are
analyzing in this section, which is based on the special structure of our supply chain
problem. It also takes advantage of Isermann’s results about duality in multiple objective

linear programming [33]. We will prove that allocations in the dominance core can be
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obtained from the dual of the supply chain problem for the grand coalition.

By introducing n slack variables, problem M Pg can be represented as:

max (szs
(4.180) st: Hg = b(S)
Ty Z 0

where Hg differs from Hg in the columns associated to the slack variables. Isermann’s
dual problem for (4.180) is

min Ds(Us) = Usb(S)

(4.181)
s.t.: US € JS
where
(4.182) Js={Us € RIS / UsHsw < Qsw for no w € ]RIQSH"}.

Theorem 4.6.2 Let z* be an efficient solution to the multicriteria supply chain problem
for the grand coalition M Py. There exists a solution of the dual problem U* such that
z(z*) = Dy(U*). In addition, matrix Y € R™>*", Y, = U%b;, r=1,...,l, 1 € N, is an
allocation in the dominance core of the multicriteria combinatorial game (N, A, C, b, K).

Proof. We have to prove that Y obtained as explained in the theorem has the efficiency

property and is coalitionally rational.

1. Let us prove that Y is efficient. Given an efficient solution z* of the supply chain
problem for the grand coalition, M Py, Proposition 5 in [33] guarantees that there
exist a feasible solution for its dual, U* € R**" such that Qz* = U*b. Therefore, Y
allocates Qz* € V(N). So, the efficiency of Y is proven.

2. Now, we are going to prove that matrix Y is an allocation in the dominance core
of the multicriteria supply chain game. First, we will prove that V S € 2V, Ug is
dual feasible for MPs. As U* is dual feasible for M Py, # w € RI4s1*™ guch that
U*Hw < Quw. Consider U and suppose that it is not dual feasible for (4.180).
Hence, 3 w® € RM4s1*™ such that UfHsw® < Qsw®. Now, consider w such that
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Wy = wfj, for 4,5 € S, and 0 otherwise. U*Hw < Quw holds, what contradicts the

fact that U* is dual feasible for (4.180).

Now, if U} is a feasible solution of the dual problem for coalition S, it follows from
Lemma 3 in [33], that U$b(S) < Qsz% does not hold for any feasible 22, in particular
for the elements in V(5).

a

As a consequence of this result, it is possible to obtain allocations of elements of V(N)
in the dominance core of the supply chain game since they correspond to feasible basic
solutions of M Dy. Remark that if a maximizing multicriteria linear problem is bounded

from above, it has at least one feasible basic solution which is efficient.

Another way of obtaining allocations in the dominance core of the game is by scalar-

ization. See the following example.

Example 4.6.3 To calculate one allocation in the dominance core of the multicriteria
SChG arising from Ezample 4.6.2, we will make use of the construction explained in
Theorem 2.4.1. It can be checked that the vector zN = (8,4) € V(N), i.e., it is a non-
dominated feasible solution to Problem (4.179). Consider the scalarization that gives equal
importance to both criteria, that is, A = (0.5,0.5). From this vector a SChG (N,v?) arises.
It can be seen that the corresponding problem Pr(N) of this game is:

max —2.5T13 + 2213 + 3.5293 + 2294 — 2234
st 0<zp+1x13<4
0 < Zo3+ Ty — 732 <2
0<zTi3+T93 734 <1
0<Ty+z34<5
zi; >0 V(i,j) €A

(4.183)

The core allocation of the game (N,v*) we need to build the dominance core allocation
of the game (N, V') will be one Owen allocation. To do so the dual problem of the above-
expressed LP problem is needed. Such problem is:
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min 4y + 2y, + 2y3 + 4y,
s.t.. (yl - tl) — (yg — tg) > —-2.5

(y1 —t1) + (y3 —t3) > 2
(4.184) (y2 —t2) + (ys — t3) 2 3.5
(y2 —t2) + (ya —ts) 2 2

—(ys —t3) + (ya — t4) = =2
v, >0 Vi

One optimal feasible solution to Problem (4.184) is

(4.185) y* = (0,2,2,0).

This solution leads to the Owen allocation

(4.186) v=1(0,4,2,0).

It goes without saying that v € Core(N,v*). Then, we build the vectors

Yi
2N

4.187 -
. ( ) X AzN

which are meant to be the rows of the final allocation. Thus, the dominance core allocation

results
0 0
16/3 8/3
4.188 X = € C(N,V; £).
(4.188) o a3 | SCVVi
0 0

4.6.3 Multicriteria Transportation Games

A particular instance of the class MSChG is the multicriteria transportation game induced
by the multicriteria transportation problem. Moreover, when the offers and demands are 1

and -1 for each of the nodes of the two partition sets, respectively, one gets the multicriteria
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assignment game.

As in the transportation game, in the multicriteria transportation game the set of
players, N = {1,...,n} is partitioned into two disjoint subsets P and () containing each
one m and m’ players, respectively. Here, the members of P will be called origin players,
and the members of Q) destination players. Each origin player ¢ € P has a positive integer
number of units of a certain indivisible good, p;, and each destination player j € @
demands a positive integer number of units of this good, g;. Sending of one unit from
origin player ¢ to destination player j produces a [-dimensional profit (c}j,cfj, . ,cﬁj)’ .
Let C € R™*™" denote the array of all the I-dimensional profit vectors.

For every coalition S € N = PUQ, consider Ps = SN P and Qs = SN Q. For each

S C N we define the multicriteria transportation problem, T given by:

max < Z Cllrj(L‘,'j y ey Z cﬁj:cij)
i€ Pg,j€Qs i€Ps,jEQs
8.t.: Z 2y <pi ViePs
JjEQs
Y zi>q VieQs
i€ Ps
Zij Z 0

(4.189)

It is easy to see that T is a particular case of M Ps, (just take k; = 0 and C = B),

and therefore our results on supply chain games can be applied.

An assignment game is a particular case of the transportation game. To model
the assignment problem, the set of players, N = {1,...,n}, is also partitioned into two
disjoint subsets M and M’ containing each one m and m’ players and the supplies and
demands are 1 and -1, respectively, for each of the nodes of the two partition sets. Now,
the values of the variables are z;; € {0, 1}, and represent whether player ¢ € M is assigned

to player j € M'.
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Figure 4.23: Computational time.
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Figure 4.24: Evolution in time.
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Figure 4.27: Multicriteria Supply Chain Problem



Chapter 5
Diameter Games

In this chapter a new class of cooperative games is presented, named Diameter Games.
It is proved that diameter games are balanced. Two well-known solution concepts, the
Shapley value and the nucleolus, are studied for this class of games. In general there is no
efficient way of calculating neither the Shapley value nor the nucleolus. However, we show
that for our special class of games both solution concepts can be computed in polynomial
time. Additionally, we also prove that the nucleolus of a diameter game can be obtained

by solving a continuous linear programming problem.

5.1 The game

Given a tree graph G = (N U vy, A), where v, is a distinguished node called the root of

the tree we define the characteristic function v over all possible coalitions of N via:
(5.1) v(S) :=d(SU{w})VSCN,

where d(L) denotes the diameter of the set L over the tree G, for all L C N Uvy. The
diameter of a set of nodes L over a tree is the maximum distance between two nodes of
L. Note that v(@) = 0.

Once we have defined the set N and the characteristic function v over IV, we define

the diameter game I" = (N, v). Such a game satisfies the following properties:

211
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o I' is well defined, since v(S) = d(S U {vp}) is well defined over the tree G.
e Trivially v(S) >0 for all S € N and v(0) = 0.

e Since the function diameter is submodular on a tree, see [67], the game T" is convex,
that is, v(SUT) + v(SNT) <wv(S) + v(T).

e A direct consequence of the convexity is that the game is subaditive, that is, for all
S,T C N such that SNT = 0 one has v(SUT) < v(S) + v(T).

In the following section it is shown that the core of diameter games is always non-empty.

5.2 The core

Given the game I' = (N, v), which is a cost game, the core of T is defined as:

(5.2) C(N,v):={z €R" : z(S) <v(S)VSCN, v(N) =)z},

iEN

where 2(S) = . ¢ z;. Let us see that C(N,v) # 0 for every diameter game (N, v).

Theorem 5.2.1 Given is a tree graph G and (N, v) the diameter game defined over G.
Then, C(N,v) # 0.

Proof. Let (N,v) be a diameter game. In Corollary 3 of [19], it is proved that if the

function v is submodular and weakly increasing, then C(N, ) 5 @, where
(5.3) o(S) = min{z v(E;)|E; € 2V V j, E}s partition S}V S C N.
J

In {19] it is also proved that v = 7 if and only if v is subaditive.

Since v is submodular and weakly increasing, one has that C(N,v) # 0. From the
fact that v is subaditive, we deduce that ¥ = v and consequently C(N,v) # 0. O
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Now we present a core allocation for diameter games, based on the idea that the total

cost of the grand coalition may be payed by the players that give the diameter of the tree.

Given a diameter game (NN, v), the following events could happen:

1. If there exists a € N such that v(N) = d(a,vy) = d, where d(3, j) is the distance
from i to j over the tree G, for all 4,5 € N U vy, then the following allocation

0 i#a

(5.4) T = (Ti)ien, Ti= { o(N) i=a

is an allocation in the core of the game.

(a) 2(N) =2 ien 2 = d=v(N).

(b) Given S C N,
i) If a € S, then 2(S) = d = d(a,vy) < d(SU{wo}) = v(5)
ii) If a ¢ S then z(S) = 0 < v(S).
In both cases we have that z(S) < v(S).

From 1) and 2) we conclude that z € C(N,v).

2. If there exist a,b € N such that v(N) = d(a, b) = d, the following allocation

0 i# a,b
(55) T = (xi),-eN, XT; = —davo) d i=a

d(a,vp)+d(bvo)

b —d i=b
d(a,vp)+d(b,vo)

is a core allocation.

(a) z(N) = d(a, 55;?5()17 vo) d+ d(a,ljio()b-fs()b,vo) d=d=uv(N).
(b) Given S C N
i) If both a and b are in S, then z(S) = d(a,b) < d(SUwvp) = v(S).
ii)Ifae Sandb¢ S, z(S) = —2a0)__ 4(q b) < < o Hevol - (d(a,vo) +

d(a,vp)+d(bvo) — d(a,vo)+d(b,vg)

d(vg, b)) = d(a,vp) < d(SUwvp) = v(S).
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and therefore z € C(N,v).

Besides, it is interesting to underline that the calculation of the previous core al-
locations is extremely fast, if we compare with the calculation of a core allocation for a
general game, for which we need to solve a linear programming problem with n variables

and O(2") constraints.

Therefore, we have the following theorem:

Theorem 5.2.2 An allocation in the core of Diameter Games can be obtained in linear

time.

Proof. The result can be proved by taking into account that the complexity to find the
diameter of a graph tree of n nodes is O(n), see [39], and that the allocation, after the

diameter is found, is done in constant time. W

But not only finding allocations in the core of a game is interesting. In general,
checking if a given allocation is in the core is a NP-hard problem. Nowadays, several
classes of games have been proven to have special characteristic: checking membership in
the core is polynomial. Due to the special structure of the class of diameter games, one

can state the following result:

Theorem 5.2.3 Checking membership in the core of diameter games can be done in

polynomial time.

Proof. Given a diameter game (/V,v) and an allocation of this game x, the proof of the
result is trivial taking into account that one only has to check if z(T'(s, 7)) < v(T(3,j))
for all 4,5 € N, where T(i, ) is the minimum subtree containing i and j. Note that for
all § C T'(4, ), such that 7, j € S, one has that v(S) = v(T(i, 7)), and z(S) < z(T(3, j))

and, therefore, all those coalitions need not be checked. g
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5.3 The Shapley value

Given that v is submodular, one has that the game (N, v) is convex. Thus the Shapley
value is always an allocation in the core of the game. Recall that the Shapley value is the

allocation ¢ = (¢1,...,d,) given by

(5.6) ¢ = Z M(U(S U {i}) —v(S5)) VieN,

!
SCN-{i} n

where s = |S|. In principle, assuming that the characteristic function is already known,
to calculate ¢ it is necessary an exponential number of basic operations with respect to
the number of players. In the rest of the section we show that, for diameter games, ¢ can

be calculated in polynomial time.

Firstly we will provide two polynomial algorithms to calculate the Shapley value of
a diameter game on a general tree. Later on we will show that such calculation can be

done faster when the tree that generates our diameter game is linear.

General tree

Note that for each possible value of v(S U {i}) — v(S) there can be more than one combi-
nation of coalitions and players giving us this value. Given i € N, let us distinguish the

following cases depending on the coalition S € N — {i}:

e S =0, then v(SU {i}) = d(i,w), v(S) = 0.
o v(SU{i}) =d(vo,i) =3Tj€S5 : v(S)=d(J,vo)
o v(SU{i}) =4d(i,j), j € S. Now we can have two possibilities:

1. v(S)=4d(j,w), j€S.
2. o(S) = d(j, k), j,k € S.
e v(SU{i}) = d(j,k) j,k € SU{w} = v(S) = d(j,k) = v(SU {i}) —v(S) =0,

and we do not have to take this case into consideration to do the calculation of the

Shapley value.
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Note that in order to enumerate the previous cases, we made use of the fact that if
v(SU{i}) = d(1,7),5 € SU{u}, then v(S) is given by the distance from j to another
point of S U {ve}. Making use of the previous properties, the following algorithm to

calculate the Shapley value is proposed.

Algorithm 1

Givenisi € N.

1. Set ¢; := % d(vo,1) (the marginal contribution of player i to the empty coalition

times its coefficient in the Shapley Value.) This step can be done in constant time.
2. For all j € N — {i}, do:
(a) if v({i,5}) = d(vo,%) let S7 be the set
(5.7) 87 ={keN—{i5} : v({i,5,k}) = d(i, ) and v({j, k}) = d(j vo)}.
Clearly, V L C S! we have that
(5.8) v(L U {5} U {7}) = d(v, %) and v(L U {j}) = d(vo, 7).

That means that all marginal contributions of 7 to coalitions L U {j} are equal
to d(vo, %) — d(vg, ). Thus the coefficients of the Shapley value for all L U {j}
such that L C Sf only depend on their cardinality.

Then, we set

1871

(59 = @+Z('Sj'> E+ DU == DV 465, 0) = d(j, wo)).

n!

To build S? we need O(n) steps.
(b) if v({1,j}) = d(i, ), let 57 be

(5:10) 8] ={ke N —{i,5} : v({i,5,k}) = d(3, j) and v({},k}) = d(j,v)}.
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Following the same reasoning as in (a), we set

157

1) bmae (1) L= =2 ) -

n!

S7 can be built with complexity, as in case (a), O(n).

(¢) For all {k} Cc N —{i,5} do:
if v({4,,k}) = d(3,) and v({j, k)} = d(j, k), let S?* be the set
(5.12)
SIF={le N—{i,5,k} : v({i,jk1}) = d(,j) and v({j, k,1}) = d(j, k)}.

For the same reason as in the two previous steps, we set

(513) @ ¢1+Z('SJ ) 2= ) — s,

n!
S9* takes O(n?) operations.

Since steps (a), (b), (c) have to be done for all j € N — {¢}, the complexity of step
2 is O(n®).

Note that in all other possible coalitions, v(S U {i}) = v(S), and therefore they are not

relevant for the Shapley value.

Since the effort to calculate ¢; is O(n3) for each i = 1,...,n, the total complexity
of the proposed algorithm to find the Shapley allocation is O(n?).

Let us see an example of how to calculate the Shapley value of a diameter game by

means of the previously described algorithm.

Example 5.3.1 Find in Figure 5.1 a tree graph with a root, vo, and four other nodes.
The distances between each other are represented over the corresponding arcs. From this
tree the diameter game (N, v) can be built, where N = {1,2,3,4} and the values of v are

expressed in the following tables:
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S |u(s) S (S S v(S)
(13 | 4 (1,9 7 (1,28 | 7
{2} | 1 {1,4}] 8 {1,2, 4} | &
3y | 3 (2,3} 3 (1,84 | 8
{4} 4 {2, 4}y 4 {2, 3, 4} 5
(1,24 5 (3, 4| s (1,28 4}] 8

Let us calculate the Shapley value corresponding to the first player.

1. d(’Uo,l) = 4, ¢i = 1.

2. Now we analyze how player j = 2 contributes to ¢;.
(5.14) v(1,2) =5, d(1,2) = 5= Case 2.b.
It can be checked that St = (). Then

2! 4
(5.15) b= ¢+ 5(d(1,2) —d(w,2) = 1+ 3 = 3.
o There is no k € N — {1,2} such that d(1,2,k) = d(1,2) and v(2,k) = d(2, k).

3. Now we analyze how player j = 3 contributes to ¢;.

(5.16) v(1,3) =17, d(1,3) = 7= Case 2.b.
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It is easy to see that S? = {2}. Therefore

2! 2'

2
S
T *3

(5.17) ¢ =¢i+ (3 3

7)(d(1,3) —d(v,3)) =
o There is no k € N —{1,3} such that d(1,3,k) = d(1,3) and v(3,k) = d(3, k).
4. Now we analyze how player j = 4 contributes to ¢;.

(5.18) v(1,4) = 8, d(1,4) = 8 = Case 2.b.

It can be checked that S} = {2}. Thus

20 2 4 8

(519) 6= ¢+ (5 + )AL —d(u,4) =2+ 7 = =.

o We have that d(1,4,3) = d(1,4) and v(4,3) = d(4,3), and k = 2 does not
satisfy such conditions. It is easy to see that Si2 = {2}. Therefore,

2'1' 3'0' 11

620) b= gt (G + )L - d43) = . = T
Then we conclude that ¢; = ?1 The other components of the allocation are calculated
analogously. The Shapley value results:
11135
21 = (== 2. Z %y
(521) 6=(3.5353)

Algorithm 2

The second algorithm we propose calculates the possible values of the diameter and
enumerate all coalitions whose characteristic function take each of those values. The

values that the diameter can take depend on each possible pair of nodes i, j.

In the first phase of the algorithm v({¢,j}) (i and j not necessarily distinct) is
calculated for each pair of nodes i,5 € N. The cost of this step is O(n?). Let T(3, j)
be the minimal subtree containing ¢, j and vy and let N(i,j) be the number of nodes
different from i and j in T'(3, j). Now we calculate v({s, j, k}) for all k ¢ T'(4, j). Therefore
the complexity of the algorithm is increased to O(n?).
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Afterwards the contribution of each value of the diameter to the Shapley value is
computed. To do so we count the number of times in which node k is part of the coalitions
that give such value of the diameter. For each pair ¢, 7 such value is denoted by C(i, 7)

and given by the formula

N(i,5) ..

r n!
(5.22) Cli,5) =9 Nan .
Z:O: (N(;,z)) (r+1)l(n —n(!r+ 1) - 1)! i—

This calculation is done in linear time. Thus so far the complexity of the algorithm is
O(n3).
After having calculated C(i, j) for each pair of nodes of the tree, the Shapley value

of a given player k is:

(5.23) ¢= Y. Cl {54k —v({i})

4,JEN kT (i,5)
The complexity of this step is O(n), and therefore the complexity of the algorithm remains
O(n?).

5.3.1 Linear trees

The special case of a linear tree is that when every node (including the root) has at most
one son. That means that for every i € N we only have to perform steps 1 and 2(a), the
latter only for the ancestors of node i. The calculation of the Shapley value following the

previous algorithm leads to this formula:

(5.24)
o (k-1 (s+ )l(n—s—2)! 1
=22 < ) , (d(i,v0) — d(k, v0)) + — d(i,wo), Vi€ N,
k=1 s=0 n n

Take into account that we have ordered the graph in the following way: (vo,1,2,...,n),

where 1 is the only son of vy and k is the only son of k — 1, for k from 2 to n. The

following example shows how to compute the Shapley value for a diameter game when
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the tree under consideration is linear.

Example 5.3.2 In Figure 5.2 it is depicted an instance of a linear tree. The calculations
of the Shapley value for the corresponding diameter game, according to Formula 5.24,

result in:

(5.25) 6 =(1,2,3,4).

HLE{2-o0—3BH [a—(w)

Figure 5.2: 4-node linear tree.

5.4 The nucleolus

Another well-known solution concept is the nucleolus, see [22] or [48].

From its definition, to calculate this allocation we have to solve the following linear

program:
min o
(5.26) st. z(S)—a<v(S) VSN
' Z(N) = v(N)

In this problem there are O(2") constraints and n + 1 variables. That means that the
computational effort to calculate the nucleolus is exponential with respect to the number
of players. But for diameter games the number of constraints can significantly be reduced

to O(n?).
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Given the tree G = (N U vy, A), there exist at most ("}') different values of the
characteristic function v, that is, the possible pairs we can build from the nodes of G.
Note that ("}') = 22 O(n?).

For all S} € S, C N such that ¢,j € ), and v(S;) = v(S,) = d(i,J), it is easy to

see that
(5.27) z(S;) —a < v(S;) = z(S1) — a < v(S)).

That assertion comes from the fact that v(S;) = v(S2) and x; > 0 Vi.

Thus, given a pair i, j € NU{vo}, we look for S*7 the biggest coalition of N satisfying
that v(S) = d(¢,7) and 4,5 € S U {v}, keeping the constraint z(5*7) — a < v(S*’) and
deleting all the constrains related to the subsets of S%/. Therefore, we have to solve this

new and smaller linear program:

min ¢«
(5.28) st z(S¥) —a <v(SY) V() € NU{v}
2(N) = o(N)
;>0 Vi

There is no theoretical reason to ensure that the solution to the previous program is
unique. So, in general we have as a solution a value o' and a set of allocations X!. For
the optimal value a! we have a set of coalitions, B!, satisfying that z(S) — o' = v(S) for

all S € B'. In this case we would proceed by solving the following linear program:

min o
(5.29) st. (%) —a <v(SY) V(i,j) € NU{vy} and S ¢ B!
z(N) = v(N)
z € X!

If the solution of this problem, (a?, X?) is such that X? is only one point, then this

point is the nucleolus. Otherwise we proceed in an analogous way as we did before, until
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the we find a unique solution. This process is assured to be finished in, at most, n steps.

To summarize, and taking into account that the complexity for solving linear pro-

gramming problems can be bounded by a linear function on the number of variables, the

complexity of this algorithm can be bounded by O(2%) . (n — 1) - n - (n+ 1)) = O(nS).
p y g y B

Let us now describe the algorithm in a more structured way:

Algorithm
Set L = . For i from 1 to n do.

1. Look for every k such that v({s, k}) = d(4,v,). Let S' be the set S* = {k € N —{i}:
v({i, k}) = d(4,v) } U {i}.

2. For j from ¢+ 1 to n do:
if u({3,5}) = d(3, 5), then L = LU{(4,j)} and S = {k € N —{i,5} : v({¢,4,k}) =
(i, )} U {i, ).

Solve the linear problem:

max o
st z(S) —a <d(i,vg) VieN
(5.30) (SW) —a <v(SY) V (i,j) €L
z(N) = v(N)
>0 Vi

If that problem has unique optimal solution then this is the nucleolus. Otherwise, we
solve the previous problem over the set of optimal solutions and repeat the process until
we get a unique optimal solution. This process is ensured to be finished in, at most, n

steps. O

Let us now see an example of how to calculate the nucleolus of a diameter game.

Example 5.4.1 Consider the diameter game in Ezample 5.3.1. Let us compute the nu-

cleolus of such game by means of the algorithm just described.

e i=1,d(1,v) = 4. Now we have to perform steps 1 and 2.
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k=2 v(1,2)=5#d(l,v)=>2¢S5"
(5.31) k=3 v(l,3)=7#£d(l,u)=3¢S8" =5 ={1}.
k=4, v(1,4) =8 #d(l,u) =4 ¢ S

2. Now for all j from 2 to 4:

j=2
Zgizizz }=>{1,2}eL
k=3, v(1,2,3) =7 #d(1,2) L §12= (12)
k=4, v(1,2,4) =8 # d(1,2) ’
j=3
v(1,3) =7
(5.32) d(1,3):7}:>{1’3}€L

k=2, U(1a2’3):7:d(1’3) $81’3={172)3}
k=4, v(1,3,4) =8 # d(1,3)

j=4
(1, 8 }:;>{1,4}€L
d(1,4) =8
k) y U(]-; a4) = = ( ’4) = 51’4 - {17273)4}
k= y ’U(l, ) =8= ’ )

e i =2 d(2,u9) = 1. Now we have to perform steps 1 and 2.

k=1, v(1,2) =5 #d(2,v) = 1 ¢ S5*
(5.33) k=3, v(23)=3#£d2,u)=>3¢5> =5 ={2}.
k=4, v(2,4) =4 #d(2,v) =>4¢5°
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2. Now for j = 3,4:

j=3

e ¢ =3, d(3,v) = 3. Now we have to perform steps 1 and 2.

1.

k=1, v(1,3)=7#d(3,0)=>1¢5°
(5.35) k=2 v(2,3)=3=d(3,v) =>2€S53
k=4, v(3,4) =5#d(3,u) =>4 ¢ S*

v(2,3) =3

4(2.3) = 2 } = {1,2} ¢ L
k=1, v(1,2,3) =7 # d(2,3)
k=4, v(2,3,4) =5 # d(2,3)
v(2,4) =4

d2.4) = 3 } ={2,4} ¢ L

k=1, v(1,2,4) =8 # d(2,4)
k=3, v(2,3,4) =5 # d(2,4)

2. Now we only have to check j = 4:

j=4

(5.36)

e i=4,d(4,v9) = 4. For i =4 we only have to perform step 1.

1

k=1, v(1,4) =8 # d(4,v)) = 1 ¢ 5*
(5.37) k=2, v(2,4) =3 =d(4,9) =>2¢€ 5
3, v(3,4) =5#d(4,v) =3¢ 5*

v(3,4) =5
d(3,4) =5
k=1, v(1,3,4) = 8 # d(3,4)
k=2 v(2,34) =5=d(23)

= {3,4} €L

} = $%3 = {23}

} = §%4 = {2,4}

= 5° ={2,3}.

} = 531 = {23,4}

= 5% = {2,4}.

225
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Therefore, the linear programming problem to solve in order to calculate the nucleolus

of our diameter game 1s:

min «
st T—a<d (S'={1})
T —a<l1 (5?2 ={2})
Ty+ 13 —a<3 (S* ={2,3})
To+z4—a<4 (St = {2,4})
(5.38) T+ —a<h (S1? = {1,2})
T+ +z3—a<7 (S ={1,2,3})
T+ T+ T3tz —a<8 (S ={1,234})
To+xz3+zs—<5 (834 = {2,3,4})
T+ T+ T3+24=38
z; >01=1,23,4.
The only optimal solution to this linear program is
(5.39) a" =0,z =4,z5=1z5=2,2;, = 1.

Therefore, the nucleolus of our diameter game is (4,1,2,1).

Besides, we can state that finding the nucleolus of a diameter game can be done just

by solving one linear programming problem.

Theorem 5.4.1 The nucleolus of a diameter game can be calculated by solving a linear

programming problem with O(n*) variables and constraints.

Proof. The Nucleolus (a*, z*) corresponds to the lexicographical minimization of ex-
cesses. Therefore, there exists a permutation o, which is denoted by (e), such that (a*, z*)

is the lexicographical minimum with respect to (e) on the a-variables (excesses).

First of all, we prove that for the permutation (e), (a*, z*) is the unique minimum
of (1,8,6%,...,6"1,0)(a,x) on P = {(a, z) € (R™,R") : 2(S) — as < v(S),S C N}.

Take z € ext(P) — {(a*,z*)}, where ext(P) denotes the set of extreme points of set
P, and let r € {1,2,...,n°} be such that af = 2; for k < r and af > 2 for k£ > r. For



5.4. THE NUCLEOLUS 227

any § > 0 we have that
(5.40)
(1,6,82,...,6" 1 0)(a*,2*) — 2! =61 (a} = 2z,) + Soror! 6% (ker — 2k41)
=g — %)+ Xhs o 8 (kg1 — 2k41)]
= 6"1K(9)

Note that X(6) — (o — 2,) > 0 when § — 0. This implies that the above scalar
product is positive for all § < 6(z) (6(2) depends on the extreme point z). Consider
6* = min{d(z) : z € ext(P) — {(o*,2*)}}. Hence, for all § < §* one has that

(5.41) (1,6,6%,...,6"" 1 O)[(a*,2*) — 2] >0 V z € ext(P) — {(a*, z*)}.
However, for z = (a*, z*) it takes null value. Thus,

(5.42) (o, z*) = argmin{(1,6,6,...,6""1,8)2 : z € ext(P)}
' = argmin{(1,6,62,...,6" 1, 0)(e, 2) : (o, x) € ext(P)} ¥V & < §*.

Now we have to prove that the problem

min 375" S
(543) s.t.: Q(0) Z Ot(l) Z v Z Un2_1)
(o,z) € P

can be written as a linear programming problem so as to apply the above argument.
Consider the following linear programming problem

min Yy oo ‘-1 (6 — &) (at; + Z" "1dk,

s.t.: dki 2 O — tl' v ’L, k.

.'E(Tk) — O S d(Tk) vV k.
z(N) =d(T).

(5.44)

where T is the coalition corresponding to ax. The objective function and the first
group of constraints represent the ordered weight sum of the values Z:i(; ' §iaysy, where
Q) = 01y 2 -+ > oqn2_yy. Notice that this tool is the formulation in [46]. It is appli-

cable to here because we consider the convex case of the weighted ordered average, i.e
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69 > 6 > ... > §""~1. This formulation, together with the fact that for the permuta-
tion (e), (o, z*) is the unique minimum of (1,4,62,...,6"" 1, #)(a, x)* on P, proves that
computing the nucleolus of a diameter game is equivalent to a continuous linear program

with O(n*) variables and constraints. a

To conclude the chapter, note that the extension of diameter games to general graphs
can be done in a natural way, and the algorithm proposed for calculating the Shapley value

and the nucleolus would still be valid.



Chapter 6
Multidimensional Assignment games

In this chapter a new class of cooperative games, named Multidimensional Assignment
games (MDA games), is presented. Such class of games arises from the combinatorial
optimization problem known as Multidimensional Assignment problem. The class of
MDA games is, in general, non-balanced. Nevertheless, totally balanced subclasses of
MDA games are found. Due to the NP-hardness of the MDA problem, we make use of

approximation algorithms to give allocations in MDA games.

6.1 Multidimensional assignment problem

A w-dimensional assignment problem consists of w pairwise disjoint sets, named N*, N2, ...

of the form

(6.1) NE={% .. i) k=1,...,w.

The assignment of agents {i!,...,i*}, where i* € N*¥ V k, results in a benefit equal
to a;1 . ;w units. In such a case we say that agents {3, ...,i*} are associated. The problem
that arises when we want to associate the elements of N, N2 ..., N* so that the total
benefit obtained is maximized is a MDA problem of dimension w, or just a w-dimensional

assignment problem.

This situation can be described by a linear programming problem. Let us consider

229

w
7N i
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the variables 4 . € {0,1} V¥ € N*¥ j = 1,...,w, zg_,» = 1 if the assignment
(i1, ...,1*) is made and zero otherwise. The linear program that solves the MDA problem
is:

max E e E a1, wlil w

ite N1 weENY

s.t.: Z Z T e <1 v il e Nt

i2€N2 wWeNw

(6.2) Z }: Z ---inlmi.‘,g1 ViFe Nk, 1<k<w

ileN1 tk—1le Nk—1 jk+1g Nk+1 we Nw

PRI DTS e N

ileNl iw—leral

Ty €{0,1} V(... Y)

To summarize, a w-dimensional assignment problem is denoted by its sets of agents

and the vector of benefits

(6.3) (N',...,N";q).

Let us sec an example of such a situation:

Example 6.1.1 Suppose that we have two factories, two warehouses and two shops. We
know that if factory i, warehouse j and shop k are associated, they together produce a
benefit of a;jx. We also know that both factories, warehouses and shops can be associated
with only one of the others, that is, only one factory with only one warehouse with only

one shop. The benefits a;jx are shown in Table 6.1

G111 | Q112 | Q121 | @122 | Q211 | G212 | G221 | (G222

Table 6.1: Table of benefits.

So, the formulation of this problem as a linear program is:
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max 3%1;1 + 4%112 + 2T191 + 5T192 + 2T211 + 62212 + OT21 + 4222
s.t.. Ty + Zie + Taz + T122 < 1

Zo11 + To12 + Toz1 + Tozp <1

Zi11 + T2 + Tany + T2 < 1

T121 + Ti22 + Tazy + T2 S 1

2111 + T121 + Tonn + Tapy <1

Tz + Ti22 + Togz + Togp <1

Tk € {0,1} Vi,5,k=1,2

One optimal feasible solution to the relazed problem of (6.4) is the vector

1
)07 a_70
2 ]

N =
[ SR

1
(65) [530)0)

which leads to a value in the objective function equal to 2.

If we solve the problem taking into account the integer constraints, we obtain the

solution
(6.6) T1i2 = Tooy = 1, Ty = 0 otherwise

which produces an objective function value equal to 9.

Thus, their optimal associations are:

e Factory 1, warehouse 1 and shop 2.

o Factory 2, warehouse 2 and shop 1.

MDA problems are known to be NP-hard problems except in the trivial case w = 1
and the classical assignment problem w = 2. This fact will make us use approximation
algorithms to efficiently allocate benefits in the arising MDA games, as we explain in

following sections.
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6.2 Multidimensional Assignment Games

Let us consider a w-dimensional assignment problem (N!,... N*;a). Suppose that the
agents interacting in the MDA problem have conflicting objectives but, at the same time,
they all want to maximize their respective benefits. Thus, a cooperative game, G = (N, v),

naturally arises.

The set of players N is obtained as
(6.7) N =N'U..-UN".

In order to calculate the characteristic function of this game, the maximum benefit that
each coalition can make by themselves has to be calculated. For each S C N we define

the following sets:
(6.8) NE=N*NSYk=1,...,w

Thus, v(S) is defined as the value of the following linear program:

E E Qg1 w1, w

HeN}  weNy

s.t.: Z Z T, qw < 1 \7/7,1 € Ngv

2eN2  VENY

(6.9) v i* € NE, P
PSRRI DEEED DEND DIEES B

“ENé k- 1€N’“ 1 ’”’16Nk+1 Zwer

Z e Z T, 4w S 1 V iw € Ng}

iteN}  u-lengT!

Tl 4w € {O, 1}

Definition 6.2.1 Let (N,v) be such that N = N'U---UNY with NNNN =0V i#j

and v(S) is obtained from (6.9). Then (N,v) is a w-dimensional assignment game.

The first conclusions we deduce from the definition of MDA games are:
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Proposition 6.2.1 Let (N,v) be a multidimensional assignment game. Then v is well

defined and nonnegative.

Proof. Obvious from its definition. O

The following property shows that, in MDA games players are forced to make agree-

ments.

Proposition 6.2.2 MDA games are 0-normalized by (w-1)-groups, where w is the size
of the associated MDA problem. That means that v(S) =0V §:|S| < w.

Proof. Obvious. O

Proposition 6.2.3 MDA games are monotonic.

Proof. Let S € T C N. Since the vector z* that gives the maximum value of Problem
6.9 for coalition S is also feasible in the corresponding problem for coalition T', we have
that v(S) < o(T). O

Proposition 6.2.4 MDA games are superadditive.

Proof. Let S,T C N such that SNT = §. We have to prove that v(S)+v(T) < v(SUT).

Let 25 and z7 an optimal vector for problems Pg and Pr, respectively. Define the

SuU

variable vector z5YT as follows:

if (i'...9%) € Nix -+ x N¥
(6.10) i =19 2f . i (i'..¥) € NP x - x N§

0 otherwise.

It is easy to check that variables z5°T are feasible for problem Psyr. Since v(N UT) is
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the optimal value of problem Psyr, one has that

W(SUT) > S @it T
(i1, i®)ENL XX NE, 1
§ suT E SuT
= ailmiwxilmim + ail...’i“’xi]..,i"’

(6.11) (i1 %) ENL X X NE (i1, i )ENL X X NE
= Z a¢1m,-w:vf1“_iu, + Z ail...i‘”x;‘q.“i‘”
(81, i")ENE X X N¥ (i1,..,i®)ENL X x N¥
=v(S) +v(T)
This concludes the proof. 0l

Now we show an example of a MDA game to clarify concepts.

Example 6.2.1 Let us consider the Example 6.1.1. The corresponding MDA game is
constructed as follows. Players 1 and 2 are factories 1 and 2 respectively. Players 3 and
4 are warehouses 1 and 2 and players 5 and 6 are shops 1 and 2. A way of allocating the
profit among the players could be by considering the dual problem of the program (Py),
that is, building the so called Owen set, see [47]. Such a linear problem is:

min Y1+ Y2 +Ys + Ys + Ys + Ve
st p+ys+ys >3
Y1 +ys+ys = 4
Y1+ Ys+ys = 2
(6.12) Y1+ Ys+Ys 29
Y2+ ys +ys 2> 2
Y2+ys+ys =6
Yo+ ys+ys 295
Yo+ ys+ys =4

One optimal feasible solution to (6.12) is the vector

(6.13) ﬁ&&%§ﬂ

which leads to a value of the objective function equal to -159. So, the allocation arising from
this solution cannot be taken since it is not feasible (it allocates 9.5 units while the great

coalition only gets 9 units). One could think of normalizing this allocation so that it is
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feasible, multiplying it in this case by the factor %. This leads to the allocation
(6.14) [1.42105,2.84211,0,0.473684,1.42105, 2.84211].

Unfortunately this allocation is not in the core of the game, since the coalition {2,3,6}
gets a payoff equal to 5.68 units from the allocation above, while if they act on their own

they can get 6 units.

If we add the integer constraints, the solution to (6.12) is
(6.15) (1,3,0,1,2,3

with an objective value equal to 10, strictly higher than v(N). Following a similar rea-
soning as before, we check that the normalization of this allocation does not produce an

allocation in the core.

As the Duality Theorem, see [4], does not satisfy for integer linear programming, we

cannot apply the Owen solution to M DA games.

6.3 Balancedness of Multidimensional Assignment Games

In this section we show that M DA games can have empty core. First we need the following

lemma.

Lemma 6.3.1 Let (N,v) be a w-dimensional assignment game. The following two prob-

lems are equivalent.

min z(N) (P)
st z(S)>v(S)VSCN
(6.16)
min z(N)
st Tat T Zaa. g V(e i) €N X X N (F,)
z;, >0Vie N
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Proof. As the objective function of both problems is the same, it is enough to prove

that for any « € R" the following implication holds:

(6.17) z feasible for P, < z feasible for P,

1. = Trivial.

2. < Let z be feasible for P,, that is, T + -+ + T > ap .. V (i, %) € N x

---x N" and all its components are nonnegative. For all S C N, v(S) = Z;’.:l a; g
where zf are distinct members of S forall k=1,...,w,5=1,...,q. Then
(6.18) ,U(S) - Z;}':l a/ijl-‘..i;-” S ZZ:I x’i; +... xl}ﬂ
< Zz’es z; = z(5)
This concludes that z is feasible for P, and the result follows.
O

The following example shows an MDA game with empty core.

Example 6.3.1 It is well-known that for every cooperative game (N, v), the optimal value
of Problem (6.19) is less than or equal to v(N) if and only if C(N,v) = .

(6.19) min z(N)
st: z(S)>v(S)VSCN, S#N
Applying Lemma 6.3.1, the corresponding Problem (6.19) to the MDA game in

Example 6.2.1 is the following linear program:
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min x; +z3 +x3 +T4 +T5 +Tg

s.t.. I +x3 +xs >=3

T +z3 +rg >=4

i) +z4 +Zs >=2

(6.20) z1 +T4 +z6 >=5
Ty 4T3 +z5 >=2

Ty I3 +xg >=26

T +x4 x5 >=9

T3 +24 +xg >=4

An optimal solution to (6.20) is

9 1 3
(6.21) a:l:3,552:§,x3:0,w4:—2—,x5:0,z6:§

with an optimal value equal to 129, which is strictly higher than v(N) = 9. Then we

conclude that this game has an empty core.

6.3.1 A balanced subclass

Although we have seen that MDA games can have empty core, it is possible to define

subclasses of these games that contain only balanced games.

Definition 6.3.1 An MDA problem (N*,...,N¥ A) is said to be separable if for all
(i',...,4%) € N* x -+ x N¥ there exist af .y V k= 1,...,w — 1 such that ap, v =

w—1
k=1 aikik-\*—l .

The definition of separable MDA games follows naturally.

Definition 6.3.2 Let (N,v) be a MDA game. We say that (N,v) is separable if the
underlying MDA problem is separable.

A direct consequence of the definition of separable MDA games is that they can be

divided into classical assignment games. The following lemma proves that assertion.
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Lemma 6.3.2 Let G = (N',..., N¥;v) be a separable w-dimensional assignment game.
From G, w — 1 classical assignment games can be created, G; = (N!' U N2 v1), ... |
Gu-1 = (N¥"1U N¥ v*~1) satisfying that

(6.22) wi v*(N*F U N*1) = o(N).
k=1

Proof. For each game G}, v* is defined as the classical assignment game with benefits
afkik+1 \V/ ik € Nk,Zk+l S Nk+l, V k = 1,...,11}—-— 1.

The value of v*{ N¥U N**1) is obtained from the optimal value of the following linear

programming problem:

i€ENk jeNk+1
s.t. Z xfj <1Vie NF
(6.23) (Pk) JENk+
> @ <1Vje N
teENk

zf € {0,1} Vie N¥ je N1

On the other hand, the value of v(/N) is computed after solving the following linear

programming problem:

(6.24)

max E N E A, wl;l gw

ileN? WENY

s.t.: Z Z Ta e <1Vile N,

i2eEN2 WwENW

(P) oo 3 Y Y w1V eEN 1<k<w

iteNt i’“‘leN’C'1 ik+1€Nk+1 WENW

Yoo Y zaw <1V eN®

ilenN? woleNw—1

za g € {0,1} V (i}, ...,i%) € NI x ... x N¥
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Let (—ffkik+1)(ik,ik+l)€]vkXNk+1 be an optimal solution to Problem (6.23)Vk =1,...,w—
1. For all (i%,...,i*) € N' x --- x N¥, define

w—1
(6'25) Tip qw = Hffkikﬂ-
k=1

Let us see that (Tj )@, iwjeNtx-.xnw s an optimal solution to Problem (6.24).

Suppose that there exist ;1 ;u feasible variables for Problem (6.24) such that

(6.26) Z Z A iwTit, gw > Z Z Qi ot v

ileN? WENY leNt weNw

Due to the separability of (IV,v), we have that

‘ w—1
(6.27) Z Z A1, g Tit, g0 = z Z (Z 1 )Tir_jw-

ileN1 WENY ilenNt IYENY k=1
Since Tin_yw =1 & fi?,,ci,,m =1V k, one has that the equation above is equal to
w—1
} : }: E: P—
(628) aikik+1 xikik-i—l .
k=1 ¢kc Nk jk+1g Nk+1
Define the following variables for each k and V i¥ € N* ik+1 € N*+1;

1af 3@, Rk ) s T ke e = 1

0 otherwise

(629) fv\fkikﬂ — {

One can check that, for all k, these variables are feasible for Py. Following an analogous

reasoning as in (6.28), one has that

w—1
- k ~k
(6.30) _S_ T E gt qw il 4w = E E E Qi ik 1 Tk k1
k=1 ik Nk

ileNt? wENY jh+lg Nk+1
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This implies that

w—1

(6.31) Z 1;9 k+1$z’°z’€+1 > Z Z Z ak ik k+1$2k k1.

k=1 ke Nk jh+1lgNk+1 k=1 jke Nk jk+lg Nk+1

From Equation (6.31), we deduce that there exists k* € {1,...,w — 1} such that

k* ~k* k* =k
(6.32) E E Qgiow er g1 Dgee om g1 > E E Qe g 11 Tier gt 1

ik*ENk i’“*+1€N’“*+1 ik*eNk* ik*+1€N’“*+1

which is a contradiction because variables ff,fzk +1 are optimal for Py.. This contradiction

proves that variables (ZT;1 )1, sw)entx..xyw are optimal for problem P.

Thus, one has that

w—1
v(N) = Z Z Qit wTil gw = Z Z (Zafkikﬂ)ffil...iw

zleNl WENY leN1 WENY k=1
(6.33) w—1
k k+1
:E E E akk+1xklc+1 N UN )
k=1 jkc Nk jk+1c Nk+1 k=1

which concludes the proof.

Now we give two different proofs to show that separable MDA games are balanced.

Theorem 6.3.1 Let (N,v) be a separable MDA game. One has that (N, v) is totally
balanced.

Proof.  Let (NV,v) be the separable game arising from the separable MDA problem
(N',...,N¥;a). Consider the games Gy, ...,Gy_1 as defined in Lemma 6.3.2.

Let k € {1,...,w — 1}. Since G is a balanced game, applying Lemma 6.3.1, we
have that the value of Problem (6.34) is less than or equal to v*(N* U N**1). Consider
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the following linear programming problem:

min E x;
iENFUNFK+L

s.t. T + T > afkikﬂ Y (Z'k,l'lc+1) e (Nk X Nk+1) (Pr)
z; 20 Vie NFUNH

(6.34)

Rename the variables of problems Py as follows:

e Problem G, z; = 22 V i € N? and let the others unchanged.

e Problem Gy, z; =z} Vi€ N* and z; = zZ Vie NF forallk=2,...,w—2.
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e Problem Gy_1, 7; = ' Vi € N*~! and let the variables belonging to players in N*

unchanged.

Thus, problems P, ..., P,_; can be expressed as:

iENT iEN?

st xp+ x?z > a,}li'é’ v (i17i2) € (Nl X N2) (P1)
;>0 VieN!
z2>0 Yie N?

min Z 3311 =+ Z 3%2
iENK iENk+1

(6.35) s.t.: wzlk + w?k.,.x > afkikﬂ v (ik»ik+1) € (Nk x Nk+1) (Pk)

z >0 Vie N*
22 >0 Vie Nk

min Z a:} + Z Z;
ieNw—1 iEN®

st @l Faw >aiTh, V(EYTL) e (NYTE X NY) (P, )
>0 Vie Nv!

z; >0 Vie NY
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The above-mentioned problems can be combined in one problem of the form:

min Y mpte+ > dhtahtoo+ Y @

ileNt ke Nk wENY

stz +axh >al, V(iL,32) € (N x N?)
ol +ali > ak o, VEE ) e (NP X N VE=2,.. . ,w—1
Thoor + Tpw > a1, V(1974 4Y) € (N¥7! x N¥)
r; >0Vie N, 22>0Vie N?
o} >0Vie Nk 22 >0Vie NMIVEk=2 ... w—1
z}>0Vie N7l 2, >0Vie NV

(6.36)

The value of Problem (6.36) is equal to the sum of the values of problems P,. After a bit

of algebra, the set of constraints of Problem (6.36) can be expressed as:
(6.37) T+ 58?2 + 113}2 + 30123 4+t x,:ilw—l + T 2> Clilliz + a?zis + 4+ a;ﬁ,_—lliw

for all (s',...,#*) € N! x ... x N¥, plus the nonnegativity constraints of the objective

variables. Taking into account that
(6.38) ahp + aps + o+ a = an W V(. Y) € NP X x NY

and making z;# = zj, + 27, we get that the value of Problem (6.36) is equal to the value

of the linear program:

min Y, A~
(639) s.t.: Tl + oo+ Tyw Z ail,m’iw V(il, - ,iw) c Nl X oo X Nw (P)

For every linear programming problem @, let us denote its optimal value by I(Q).
We have that:
w—1 -1

D UP) <) F(NEU N = y(N)

k=1 1

g

(6.40) I(P)

&
If
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Then we conclude that I(P) < v(N). This together with Lemma 6.3.1 concludes that the
core of (N, v) is non-empty. d
Now a second theorem shows the balancedness of separable MDA games. Besides, the

proof of this theorem provides us with a procedure to calculate core allocations.

Theorem 6.3.2 Let (N,v) be a separable w-dimensional assignment game. (N,v) is

balanced.

Proof. Let Gy = (N* U N*¥*1 v*) k =1,...,w — 1 be the corresponding assignment
games in which G can be divided, see Lemma 6.3.2. One has that, for each k, the

corresponding linear programming problem that gives the value of v*(N* U N*+1) is:

max E E a oy k+1113 ki1

ke Nk k+1g Nk+1
s.t.: Z T <1V i e NF
(6.41) Nk (Pr)
Z 2 < 1V FH g NFH

keNk
2hse >0V ik € NF FF1 ¢ NFH1

Consider the dual of the Program (6.41), which is

Z yilk Z yfw

(6.42) 1k€Nk 2k+1€N1c+1 (Dy)
s.t.: yzk -+ y1k+1 > a ikgk+1 V ( % k+1) € Nk Nk+1

Generally, there is no nonnegativity restriction on the dual variables. It is not difficult
to see that any minimizing vector for (6.42) with all components nonnegative is a core
allocation for the game Gy, forall k = 1,...,w—1, see [48]. Let (T, Uies1 )(i* it+1)e Nk x Nb+1
be such a vector. Denote by I(D;) the value of Problem (6.42). By duality I(Dy) =
,Uk(Nk U Nk+1).

Now consider the linear programming problem arising after summing up the ob-
jectives functions of problems G} and joining their sets of constraints. Such a problem

is:
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w—1
Gaz TR 2w D Wi+ D ek

ileN1 k=2 ke Nk WENY
Coa 2 k &kt k k+1 _
St Y+ Y 2 Qe V(5T ENFXNTIVE=1,...,w—1

The value of this problem is equal to S"47, {(Dy). One optimal solution is the vector con-

stituted by all optimal solutions to problems Dy, for all k, that is, (?ﬁg ) g?k+1)(ik,ik-{-l)yk:l’m’w.

Taking into account that 3 p— ak 4 = ap g, and after a bit of algebra, Problem

(6.43) can be transformed into:

w=1
min Y gk Y. > h+yd)+ > vk

(6.44) itenNt k=2 ike Nk wENY
' w—1
sbeoyp o+ Z(y}k + oY)ty > an V(. 0Y) ENY X x NP
k=2

Consider the following variables:

i ifi e N*
(6.45) vi=< yi+y? ifieNk k=2... w-1
y? ifi e Nv

Then, Problem (6.44) can be expressed as:

w
i 355 e
(6.46) o=t e
s.t.: ZyikZai1min(i1,...,iw)€N1X'--XN"’
k=1
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Consider the vector § whose coordinates are defined as follows:

Tn =Tn vVile Nt
(6.47) U =T+ 72 ViFENr k=2, w—-1
Tpw = Yow Viv € Nv
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From the reasoning above one deduces that the vector 7 is optimal for Problem
(6.46). That means that > . ¥, = v(N). Let us see that this vector also defines an

allocation in the core.

For any § C N, we have
(6.48) v(S) = A gy o+ Qi w,

where 4} ...1%, ..., il

gLy are distinct members of S. Then

DU 2T+ ATyt AT+ + T
(649) ieS ¢ ¢

A%
o

iyt e = v(S)

and we conclude that (g) € Core(N, v).

Now we show an example of a separable MDA game.

Example 6.3.2 Consider a 3-dimensional assignment game where N*

{1,2},N? =

{3,4},N® = {5,6}. The benefits of each possible association are shown in the following

table:

(¢4, 4%,4%) 1 {1,3,5} | {1,3,6} | {1,4,5} | {1,4,6}

;14243 3 5 4 4

(6.50)

(¢4,4%,4%) || {2,3,5} | {2,3,6} | {2,4,5} | {2,4,6}

414243 4 6 3 3

In Figure 6.1 a picture of this game is shown.

The mazimum benefit of the grand coalition is 10 units, and it is reached when the
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@

Figure 6.1: Separable 3-dimensional assignment game, G.

associations (1,4,5) and (2,3,6) are made.

One can see that this 3-dimensional assignment game is separable. The correspond-

ing coefficients af,cikﬂ k = 1,2 are shown in the following table:

(a4,42) || {1,3} | {1,4} | {2,3} | {2,4}
ah, || 1 3 2 2

(6.51)

(i2,3%) || {3,5} | {3,6} | {4,5} | {4,6}
A%y 2 4 1 1

Figure 6.2 shows the two assignment games in which our game can be divided. Two

core allocations for games Gy and Gy obtained from their respective dual problems are:

(652) 71 = (7117721773{’741) = (3727070)) 72 = (73772)7?773) = (47 17070)
Making v =~} i=1,2, v, =} +72i=3,4 and v, = 72 i = 5,6 (the same reasoning as

in the proof of Theorem 6.3.2), those two allocations result in the following allocation for

the original 3-dimensional assignment game:

(653) v¥= (")/1,")/2,...,’76) = (3,2,4,1,0,0).
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Figure 6.2: 2-dimensional assignment games, G; and Ga.

It can be checked that, indeed, = € Core(G).

One could be tempted to think that all balanced MDA games are separable. This assertion
is not true. As an example take the game in the example above with only one change,
make a135 = 2. It is easy to prove that this is not a separable game and, on the other
hand, the allocation (4,3,3,0,0,0) is in the core of the game.

6.4 Approximation algorithms

Due to the fact that in general MDA games are not balanced, the search for other alloca-
tions with good properties such as the Shapley Value, see [62], becomes more important
than in games where we can efficiently find core allocations. But in games arising from
LP problems that cannot be optimally solved in real time, just like MDA problems, the
calculation of the Shapley value becomes extremely hard. Note that to compute such a
value we need to know the characteristic function, that is, we have to solve Problem (6.9)
for every coalition, in other words, we have to solve O(2") MDA problems (each of them
is NP-hard.) This is enough argumentation to look for other techniques to allocate the
benefits generated after an MDA game among the players. To avoid the NP-hardness
of the underlying LP problems, we will make use of approximation algorithms. For a

detailed description on approximation algorithms see [70].
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In the following sections we propose a mechanism to allocate benefits, that is, we

give a vector (z,...,Z,) such that z; is the payoff of player 7, Vi € N.

Given a MDA problem, we define its set of associations as the set
(6.54) S={s:s={i"..., "}, i* € N*VEk=1,... v}

Let us define the benefit of association s € S, a(s), to be the benefit generated after the

association of the players in s, that is, a(s) = a; . So, the MDA Problem (6.2) can be

.....

formulated as:

(6.55) st Y <1 VieEN
s . 1€S

ys € {0,1} VseSs

6.4.1 The greedy allocation

The greedy strategy naturally applies for allocating benefits in multidimensional assign-
ment games. The procedure runs as follows. Consider (N, v) a MDA game. Iteratively
select the most profitable association and remove the members of such association. Repeat
this process until all players have been assigned or there are no more possible associa-
tions.When an association s € S is chosen, its benefit is distributed equally among the
players that constitute s. Thus, we set z; = a(s)/w Vi € s for every association s selected

in the greedy algorithm. A pseudocode of this allocation procedure is:
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Greedy allocation.
1. z2=0,C=N
2. Repeat.
Let a(s) be the benefit of association s.
For each i € s set z; = a(s)/w.

C—C\s.

Until no more associations are found.

3. Output x.

Find the most profitable association in C, say s.
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For a fixed w-dimensional assignment problem, the value of the solution computed

by the process above approximates the optimal solution within a factor of w, that is,

(6.56) V(OPT) < wV(GREEDY),

where V(OPT) denotes the value of the optimal solution and V(GREEDY) denotes the
value of the solution returned by the greedy algorithm. The proof of this result can be

found in [9]. Besides, in [53] it is shown that this approximation factor cannot be improved

by a better analysis of the game. Let us see the example that proves it.

Example 6.4.1 Consider a d-dimensional assignment problem in which the only associ-

ations that produce a positive profit are shown in the following table:

Association Benefit
(1, 2, ... ,d) 1+ ¢
(1, d+2, ... ,2d) 1
(2d + 1, 2, ... ,8d) 1
(dd +1,dd + 2, .. ,dd+d)| 1
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Denote W(G) and W(OPT) the values of the solutions generated by the Greedy algo-
rithm and the optimal one respectively. It is easy to check that W(G) = 1+¢, W(OPT) =
d. Then, one has that:

(6.57) W(OPT) = W(G).

1+¢

Letting € — 0 concludes that the given upper bound cannot be improved.

The complexity of the greedy algorithm for MDA problems has been proven to be

O(nlogn), see [9]. After those arguments, the following result follows.

Theorem 6.4.1 Let = = (3,...,2,) be the greedy allocation for a MDA game (N, v)

arising from a w-dimensional assignment problem. The following assertions hold:

1. z is a preimputation of (N, v).

2. z satisfies the individual rationality principle.

3. ) < 2(N) < w(N).
4. z can be computed in polynomial time.

Example 6.4.2 Suppose that we have a data set corresponding with the possible asso-
ciations between three factories and three shops (for the sake of brevity we consider a
2-dimensional assignment problem). The three factories will be players 1,2 and 3 respec-
tively, and the three shops will be players 4,5 and 6. We assume that the benefits generated
by all the possible associations are those shown in Table 6.2. The first coordinate of the

vectors represents the factory and the second one represents the shop.

Association || (1,4) | (1,5) | (1,6) | (2,4) [ (2,5) | (2,6) | (3.4) | (3,5) | (3,6)
Benefit 17 |16 | 2 | 6 | 1 | 2 | 2 | 3 | 4

Table 6.2: Possible associations and their benefits.

The greedy allocation would divide the benefits as follows:
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e It firstly takes the association that gives the highest profit. This association is (1,4)

with a value of 17 units. Then we set 3 = x4 = %

e Secondly, it takes the most profitable association that does not include neither player

1 nor player 4. This association is (3,6), which generates 4 units. Then we set

.’E3:$6=2.

o To finish, the association (2,5) is made. Then the benefits of players 2 and 5 are
1

Tg — Ty — 3¢
Note that this mechanism has not allocated the mazimum profit that could be gener-

ated by the grand coalition, as it is based on an approximation algorithm.

6.4.2 A generalization of the greedy allocation

In this section we present another way of allocating benefits in MDA games. It is based
on the polynomial time heuristic algorithm K — SGT'S as presented in [52]. We need a

previous definition.

Definition 6.4.1 Let (N,v) be a MDA game. We say that a group of m associations

{s1,...,8m} 1s feasible if no player i belongs to more than one of them.

The approach to allocate the overall benefit will be as follows. We iteratively pick
the feasible ‘group of K € N associations {s},..., s%} that maximizes the sum of benefits.
Whenever a set of K associations is picked, we set the payoff of every player included
in one of the associations as the proportional part of the allocation to which it belongs.
Then we remove {sj,...,s}} from the set A as well as every association that contains
one of the players in the set {s], ..., s%}. We repeat the process until one of the following

events happens:

1. S is the empty set

2. we cannot find a feasible group of K associations and A is not the empty set.

In the latter case, we reduce the size of the groups to K — 1 and repeat the process until

S is the empty set.
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The procedure given above has a lot of similarities with the classical greedy algo-
rithm. The main difference is that in this case we do not pick the best association but
the group of K best pairwise disjoint associations. The greedy algorithm guarantees an
approximation factor of O(logn), see [70]. Although so far we have not succeeded in find-
ing an approximation factor for this algorithm, experimental results given in [52] suggest
that the quality of the solution given for the algorithm when K > 1 is better than the
algorithm in the case K = 1, that is, than the classical greedy approach.

Example 6.4.3 Consider the data in Ezxample 6.4.2. The semi-greedy procedure de-

scribed in this section, with K = 2, would proceed as follows:

1. It first takes the pair of associations that mazimizes the sum of benefits and does
not have any player in common (one factory cannot be in both associations, nor can
one shop). It can checked that such a pair is {(1,5),(2,4)}. So, we set 1 = z5 =

12(“3:8, x2=x4=g:3.

2. After having performed step 1, there are no pairs of associations having empty in-
tersection with the two associations previously chosen. So we reduce to K —1 = 1.
There is only one association eligible to be part of the same solution as {(1,5),(2,4)}.
It is (3,6) with a value of 4. Then we set T3 =35 =2, zg = 3 = 2.

One can check that this procedure allocates more benefit among the players than the
procedure based on the classical greedy algorithm. Nevertheless, this cannot be guaranteed
m general, that is, there are examples of MDA games in which the SGTS solution gives a
higher value than the 2-SGTS value.

Analogously as in Theorem 6.4.1, we can state the following result for the K-greedy

allocation as described in this section.

Theorem 6.4.2 Let K € N, K > 1 and let z = (z1,...,,) be the K-greedy allocation
for a MDA game (N, v) arising from a w-dimensional assignment problem. The following

assertions hold:

1. z is a preimputation of (N, v).
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2. z satisfies the individual rationality principle.

3. = can be computed in polynomial time.

In this chapter a new class of cooperative games extending the classical assignment
games has been presented. Such class of games, named MDA games, proved totally
balanced. Since the integer linear programming problems that give rise to this class
of games are mathematically termed NP-hard, the use of approximation algorithms is
needed. A class of approximation algorithms, named K-SGTS, had successfully been
used to solve MDA problems and, based on them, two allocations have been introduced

for this class of games which can be computed in polynomial time.
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