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Introduccion

Un problema importante en mecénica de fluidos consiste en la eleccién adecuada de las
condiciones de frontera. Una hipdtesis cominmente aceptada es que si la frontera del dominio
es impermeable entonces un fluido viscoso se adhiere completamente a ella. Esta hipdtesis
se usa habitualmente en diferentes estudios tedricos asi como en experimentos numéricos.
Suponiendo que u = u(z) es la velocidad del fluido en z €  C R?, la completa adherencia
(o condicién de no deslizamiento) se escribe

u(z) = 0 sobre z € 5. (1)

La hipétesis de completa adherencia no fue siempre aceptada en el pasado ya que la
mayoria de los efectos de una frontera rugosa en fluidos viscosos no pueden ser descritos en
detalle usando esta condiciéon. Por ello, Navier propuso una condicién frontera de desliza-
miento con friccion. Suponiendo la frontera impermeable estd claro que la componente
normal de la velocidad debe ser nula. A esta condicién se anade la ecuacién correspon-
diente al equlibrio de fuerzas pero escrita solamente para la componente tangencial. Para
fluidos gobernados por las ecuaciones de Stokes o de Navier-Stokes la condicién de Navier o
condicién de deslizamiento viene dada por

u-v =0, T(%—pl/+7u):050bre89, (2)
donde p es la presion, v el vector normal unitario exterior a 9€2, T' la proyeccion ortogonal
sobre el espacio tangente a 92 y v > 0 es el coeficiente de friccién. Esta condicién ofrece
mas libertad y parece proporcionar soluciones fisicamente mas aceptables ya que refleja la
interaccién entre el fluido y la frontera de €. Teniendo en cuenta que pr es ortogonal al
espacio tangente a 0f2, la segunda ecuacién de es equivalente a

T (? i w) o, (3)

y por tanto la condiciéon de Navier o condicion de deslizamiento se puede también escribir

como 3
u-v=0, a_u + ~yu proporcional a v sobre 0f2. (4)
v



Ha habido diversos intentos en la literatura de proporcionar una rigurosa justificacion de
la condicién de adherencia. Para ello, suponiendo un fluido gobernado por un sistema de
Stokes o de Navier-Stokes en un dominio suficientemente rugoso €2., donde el parametro ¢
corresponde a la amplitud de las rugosidades (como una aproximacién oscilante del dominio
ideal ), y verificando la condicién de deslizamiento sobre la frontera rugosa I'., se puede
probar que en el limite cuando ¢ tiende a cero, la solucién satisface la condicion de adheren-
cia . Es decir, se puede probar que las condiciones de deslizamiento sobre una superficie
rugosa se transforman asintéticamente en condiciones de adherencia cuando la amplitud de
las rugosidades tienden a cero, suponiendo que la energia de las soluciones estd uniforme-
mente acotada y que hay suficiente rugosidad en la frontera oscilante. Desde un punto de
vista fisico, esto justifica matematicamente que se suela imponer la condicién de adherencia
para fluidos viscosos.

La anterior afirmacién fue probada en [22] para un fluido tridimensional con una frontera
descrita por la ecuacion

r3 = —eW (%, %) V(z1,22) € w, (5)

donde w un conjunto abierto acotado de R? y ¥ una funcién regular periédica tal que
Span ({V¥(Z') : 2/ € R*}) =R?, (6)

o equivalentemente tal que no se verifica W(z1, 20) = U(z1) 0 W(21, 29) = ¥(22). Generaliza-
ciones de este resultado han sido obtenidos para el caso periddico en [9] y [I0]. Ademds, este
tipo de resultados han sido extendidos en [12] a una frontera no periédica

g = O (v1,22) V(v1,22) € w, (7)

suponiendo que @, converge x-débil a cero en W (w) y es tal que el soporte de la medida
de Young asociada a V®. contiene dos vectores no lineales independientes.

La homogeneizacion del sistema de Navier-Stokes ha sido estudiada también en [15] para
dominios rugosos muy generales, donde en particular no se impone estructura periodica.

Nuestro objetivo en la presente memoria ha sido estudiar la relacion entre las condiciones
de Navier y de adherencia para rugosidades més débiles que las consideradas en [22]. La
descripcion por capitulos de nuestros resultados es como sigue:



Capitulo 1.

A lo largo de esta introduccién, los puntos z de R? se van a descomponer como (7', x3)
con ' € R?, 3 € R. También usamos la notacién 2’ para denotar un vector genérico de R2.
En este capitulo vamos a considerar una frontera oscilante I'. descrita por

T

e femwaeanmine s ()} o, @

con ¢, > 0 un infinitésimo de ¢, i.e. lim. 0./ =0, ¥ € W>*°(R?) no negativa y periédica
de periodo el cubo unidad Z' = (—=1/2,1/2)> y w C R? es un conjunto abierto, conexo,
acotado y con frontera lipschitziana.

Tomando

l,/
—)<x3<1}, Q=wx(0,1), 9)
€

estudiamos el comportamiento asintotico de un fluido viscoso gobernado por el sistema de

Stokes o de Navier-Stokes en €). que satisface la condicién de Navier sobre la frontera rugosa
I..

Qez{x:(ac’,x3)€w><R:—5€\I/(

,,,,,,

Figure 1: Dominio €. definido por (9).

Por simplificar, en este resumen nos vamos a limitar a comentar los resultados obtenidos en
el caso del sistema de Stokes en (). imponiendo la condicién de Navier sobre I', y la condicién
de adherencia en el resto de frontera 0€). \ I'c, es decir, nuestro problema se escribe

( —Au. +Vp. = fen

div u, = 0 en €2,
ou (10)

us - v = 0sobre I'., —— + ~yu. paralelo a v sobre I',

ov
u. =0 sobre 0Q. \ T',,




con 7y > 0, v el vector normal unitario exterior a . en I'. y f una funcién de L*(£2.)3 (en el
Capitulo 1 se consideran segundos miembros més generales).

Se prueba que el sistema posee una tnica solucion (u., p.) € H'(2.)3x LZ(€.) (donde
L3(£2.) denota el espacio de funciones L*(€).) de integral nula en €).) y ademds, existe C' > 0,
que no depende de ¢, tal que

uell 103 + Ipell20) < €, Ve > 0. (11)

Nuestro objetivo es estudiar el comportamiento asintético de las sucesiones u. y p.. Se
prueba

Teorema 0.1 La solucion (u.,p.) de (@) satisface
ue —u en H'(Q)?, p. —p en L*(Q), (12)
donde (u,p) satisface
—Au+Vp=fenQ
divu =20 en ()
u =0 sobre 0Q\ T,
ug =0 sobre I' = w x {0},

que también satisface una condicion frontera para la componente tangencial del tensor de
esfuerzos que depende del limite

(13)

Oe
A=lim— € [O, +oo]. (14)
e—0 g3
Concretamente se tiene
i) Si A =0, entonces
Osu' +yu' =0 sobre I (15)

it) Si A € (0,400), entonces definiendo (&,Ef’), i =1,2 como una solucion de

(—A P+ V.3 =0 enR?x (0, +00)
div,¢' =0 en R? x (0, +00)
Gy(2',0) + 0, 0(2) = 0, 9,(6")(2,0) =0 (16)
&'(.,z), §(.,23) periddicas de periodo Z'

| D.¢' € LX(Z' x (0,+00))>?, § € L*(Z' x (0,+00)),
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y R c R2><2 por

se tiene
Ozu' +yu' + NRu' =0 sobreT. (18)

it1) Si A = +o00, entonces definiendo
W = Span({VV(Z): 2 € Z'}), (19)

se tiene
u € Wt sobre T,  Osu' +~yu' € W. (20)

Observacién 0.2 Para A = 0, el Teorema muestra que la rugosidad de I'c es muy
pequena y por tanto la solucion (ue,pe) de se comporta como si I'. coincidiera con la
frontera plana I'. Para A € (0,400) (talla critica), la condicion frontera que satisface el
limite u de u. sobre el espacio tangente a T' contiene el nuevo término N2Ru'. El efecto de
la frontera I'; no es despreciable en este caso, haciendo aparecer en el limite este término de
friccion. Finalmente, para X\ = +oo la rugosidad de 'y es tal que el limite u de u. no sélo
satisface la condicion uz = 0 sobre I', sino que también la velocidad tangencial sobre I, u/,
es ortogonal a los vectores VU (Z'), con 2/ € Z'. En particular, si el espacio W definido por
tiene dimension 2, entonces u satisface la condicion de adherencia u = 0 sobre I'. Esto
extiende al caso donde

lim — =0, lim— = +o0,
los resultados obtenidos en [22] para . = e.

Observacion 0.3 El caso A € (0, +00) se puede considerar como el general, tomando A que

tiende a cero o a infinito en (18| se obtiene Y respectivamente.

Observaciéon 0.4 La demostracion del Teorema se basa en el método “unfolding”, [5],
[20], [27], que estd muy relacionado con el método de convergencia en dos-escalas, [1I], [41],

3.

Se puede ademds probar el siguiente resultado de convergencia fuerte (resultado de cor-
rector)

Teorema 0.5 En las condiciones del Teoremal0. 1|, se tiene



i) St A =0 o0 +oo, entonces

lim <||Ue||H1(Qg\Q)3 + IPell 20 + llue = ullmr @) + [P — P||L2(Q)> =0 (21)

ii) Si A € (0,400), entonces, tomando (&,Zj’), 1 = 1,2 como una solucion de y
definiendo . y p. por

tie(2) = u(z) + AVE (', 008" (D) + (e, 05(3))
(22)

v

pta) = o) + 2= (@' 007 (D) + el OF(2)).

se tiene (suponiendo u suficientemente regular)
tim (el @0 + 9l z2@ae) + e = ellmap + lpe = Pellzze) = 0. (23)

Observaciéon 0.6 Los resultados obtenidos en este capitulo estdn publicados en [25].

Capitulo 2.

Nuestro objetivo en este capitulo es mejorar el resultado de corrector probado en el
Teorema |0.5| obteniendo una estimacién entre la solucién (ue, p.) de y su corrector. Nos
hemos centrado en el caso A € (0,+00) que, como ya hemos comentado (in Remark [0.3]
puede considerarse como el caso general y donde el problema es méas complejo debido a la
aparicion de términos frontera en el corrector. En este capitulo suponemos que €., I', estan
dados por

/
Q. = {x = (2, 23) Ew xR —Asglll(x—) <y < 1},
£
3 x
.= {a: = (2),23) EwxR: a3 = —)\62\11(—)} :
£
con A € (0,400).

Nuestro principal resultado es el siguiente Teorema.

Teorema 0.7 Suponemos que la funcion u definida por —@ pertenece a H*(Q)3, con
s > 3/2. Entonces, la solucion (u.,p.) de (10) y las funciones ., p. definidas en (29)
satisfacen

el ooy + 1Pl z2@a) + [Jue — Gl i@y + [Ipe — Pell2@) < Ce. (24)
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Para probar el Teorema [0.7, a la hora de estimar la diferencias u. — . y p. — Pe, nos
encontramos con el problema de que . y p. solo estan definidas en €2 y no en €).. Para
salvar esta dificultad aplicamos el cambio de variables t = n.(z), con 7. : Q. — Q dado por

FAe2P(Z
ne(x) = | 2, 3 53 (f) ., VYzeQ,
1+ Ae2W(%)

a las funciones 1., p., obteniendo las funciones
ui(x) = t-(n-(z)), pi(x) =pP-(n:(2)), (25)

que tienen la ventaja de estar definidas en €).. Usando estas funciones probamos la siguiente
estimacion,

lue — ulll @y + 1P — pillr2n) < CVE, (26)
que implica .

Capitulos 3 y 4.

A partir de ahora, por coherencia con la notacién usual en dominios delgados, vamos a
considerar € como la altura del dominio, lo que implica que el periodo de las rugosidades se
notard por r.. El objetivo de los Capitulos 3 y 4 es extender los resultados obtenidos en el
Capitulo 1 al caso de un fluido viscoso en un dominio delgado de altura €. Concretamente,
el Capitulo 3 corresponde a una publicacién en una Nota CRAS (]|26]) donde se considera la
ecuacion de Stokes y donde los resultados se presentan sin demostracion. En el Capitulo 4
consideramos la ecuacion de Navier-Stokes, aqui las demostraciones si seran detalladas.

Similarmente a lo que hicimos en el caso de un dominio de “altura fija” nos limitaremos,
a fin de simplificar la exposicién en esta introduccion, al caso de la ecuacion de Stokes.

Definimos el dominio rugoso Q" y la frontera rugosa I'*" por

Qihin: {x_(l’/,l’?,) cwxR: =60 (2) <$3<8} (27)

Te

Fihin — {.CE — (:L‘/’x?’) cwxR: T3 = _53\11 (2) } ) (28)

Te

donde los pardametros r., . son positivos y satisfacen las siguientes relaciones



Esta geometria describe un dominio delgado de altura e (en la direccién z3) y de una
capa oscilante de altura ||¥||«d. (observar que d. << ¢) con oscilaciones de periodo 7., que
es mucho mas pequeno que € y mucho mas grande que 9.

Consideramos f = (f’, f3) que solo depende de las componentes 2/, f = f(2'), es decir, no
va a depender de la altura. En realidad, puesto que el grosor del fluido es delgado, para una
funcién suficientemente regular que depende de (2, z3) se entiende que f(a',x3) ~ f(2/,0).
También se pueden considerar funciones de la forma f(z2', z3/¢).

g

[

v 1

i 2 =
o

P o+ ot

Figure 2: Dominio delgado Q" definido por (27)
Asf, para f = (f', f3) € L*(w)?, similarmente a (10, consideramos el problema de Stokes

( —Au. + Vp. = f en Q"

divu. =0 en Q7"

. A, ,
u. - v =0 sobre """ 5 + yu. paralelo a v sobre "
v

u. = 0 sobre 9\ Tthin,

\

Probamos que (29)) posee una tnica solucién (u., p.) € HY(QM")3 x L2(QHin). Ademaés,
se tienen las siguientes estimaciones

f lu|*dx < Ce*, ][ |Du|*dx < Ce?, ][ Ip:|*dz < C. (30)
Qghzn Qghzn Qghzn

El objetivo es estudiar el comportamiento asintético de u. y p. cuando € tiende a cero.
Para este propédsito, como es usual, usamos una dilatacién en la variable x3 para tener las
funciones definidas en una conjunto abierto de altura fija. Es decir, definimos @, € H'(Q2)3,
p. € L3(Q2) por

Ue(y) = u(y',eys), P(y) = p(v',cys), ect.yeq, (31)

y probamos

12



Teorema 0.8 Sea (u.,p.) € HY(QM")3 x LE(QM") la solucidn del sistema de Stokes y
sean T, P definidas por (31)). Entonces, existen v’ € H'(0,1; L?(w))?, w € H*(0,1; H }(w))
yp € L3(Q), p independiente de la componente en altura ys, tales que

Ye 0 en HY(Q)?, “; (v/,0) en H'(0,1; L2(w))?, “i;j‘ —w en HX0,1; H (W) (32)
3 € €
B = p en LX), (33)
donde, dependiendo de los valores de A\ypin definido por
O
= i 212
>\thm - ll_{% T?/Q € € [07 +OO]7 (34)

las funciones v', w y p estdn dadas por

(1) St Mpin = 0, la funcion p es solucidn de

—div,, ((% +(1+ 7)‘1) (Vyp — f’)) =0 en w,

. (35)
<(§ +(1+ 7)1) (Vyp — f’)) v =0 sobre dw,
la funcidon v' viene dada por
V) =5 0+ (L)) (Vypl) — FO)). pedye  (36)

2

y la distribucion w = 0.

(i1) Si Ainin € (0,+00), entonces definiendo R por (L7)), se tiene que la funcién p es la
solucion de la ecuacion de Reynolds
1
—div,, ((gl—i— (L + NI+ N R) ) (Vyp— f’)) =0 enw,
37)
1 (
((51 + (L+ NI+ NwinR) ™ ) (Vyp— f’)) v =0 sobre dw,

la funcion v' estd dada por

/ —1 / 10
V) = U (a4 (101 830B) ) (Type) — £0). pet yeQ
(38)
y la distribucion w

Y3
w(y) = —/ divyv(y',s)ds en Q. (39)
0

13



(111) Si Mpin = +00, entonces denotando por Py 1 la proyeccion ortogonal de R? sobre el
ortogonal de W definido por , se tiene que la funcion p es la solucion del problema
de Reynolds

_divy ((%I L 7)1PWL> (Vyp - f’)) —0 enw o

((%] +(1+ ’7>_1pr> (Vyp — f’)) v =0 sobre Ow.

La funcion v’ estd dada por

ys — 1 -
V)= YD (4 (1497 B) (Vo) - ). ectyeQ ()
y la distribucion w viene dada por @

Observacién 0.9 El parametro My, en el Teorema Juega un papel similar al de A\
definido en el Teorema |0.1], es decir si Apin = 0, se tiene que la rugosidad es demasiado
suave y no tiene efecto en la solucion, M\pin = 00, la rugosidad es tan fuerte que hace que
en I', v' pertenezca al ortogonal del espacio W definido por (@) El caso \pin, € (0, 400)
es el caso critico donde la rugosidad no es tan fuerte como para tmplicar una condicion
de adherencia en el limite pero si lo suficientemente para hacer aparecer un término de
friccion. Observamos que tomando ¢ = 1 en , los pardmetros A\ definido por (14) y
Atnin definido por (34) coinciden (porque en r. denota en realidad el tamano del periodo
que se denotaba por € en ) En el caso de dominios delgados que estamos estudiando
en este capitulo, la expresion de Apnin depende no solo de los pardmetros d., r. que definen
I'. sino también de la altura ¢ de €).. FEsto se debe al hecho de que lejos de la frontera
rugosa el comportamiento del fluido es diferente al comportamiento del fluido estudiado en
el Capitulo 1.

Observacién 0.10 La prueba del Teorema[0.§ se basa en la idea usada en el Capitulo 1, es
decir el “unfolding method”, que se usa para estudiar el comportamiento del fluido cerca de

[, junto con el cambio de variables (31) que se usa para estudiar su comportamiento lejos
de T';.

Finalmente, en el siguiente teorema damos resultados de corrector para la velocidad y la
presion.

Teorema 0.11 Sean (u.,p.) € H(QH)3 x L2(QHi) [a solucién del sistema de Stokes (29)
y (Ue, pe) definidas por . Suponemos también que existe el limite Ay, dado por .

Entonces,

14



i) Si Mnin = 0 0 +00, definiendo ™, ph™ por

athn(z) = <6zv'(:v %),O) ;o phin(x) = p(a’)  ec.t. x e Qtin (42)
se tiene .
lim = (/ |Us|2dx + / lue — ﬁihm|2da:) =0 (43)
e=0¢g Qo \(wx (0,¢)) wx(0,¢)
1 . .
lim = (/ |D(uE — raih'm)|2dx + / |D(U€ . ﬁxihm>|2dl’) _ 07 (44)
sve A\@x(0,)) wx(0,¢)
1 .
lim — (/ pe|*dx + / pe — ﬁghmﬁdx) = 0. (45)
=08 \Ja.\(wx(0,e)) wx(0,¢)
ii) Si Anin € (0,400), las afirmaciones —— siguen verificandose reemplazando
“thin
a™™ por

a0 a) = (201, 220,0) 4 a2 (03 CE) + o 0P )

,rc‘f
Capitulo 5.

En los capitulos anteriores nos hemos ocupado de fronteras rugosas peridédicas. El pre-
sente capitulo esta dedicado al estudio de fronteras mas generales. Nuestros resultados se
encuentran relacionados con los obtenidos en [I5] donde se obtiene el problema limite del
problema para una sucesién de dominios §2. bastante general. En nuestro caso nos
centraremos en sistemas elipticos, especialmente en el sistema de la elasticidad lineal, con
condiciones de contorno mas generales que las consideradas hasta ahora.

Consideramos una sucesiéon de conjuntos abiertos Lipschitz ©,, C RY, que convergen a
un conjunto abierto Lipschitz {2 C R en el siguiente sentido: Para todo p > 0, existe ng € N
tal que para todo n > ny,

O ={reQ:d@,00) <p}CcQ C{zeR:dxzQ) <p}= o (46)

También consideramos un tensor de cuarto orden A con coeficientes en Loo(ﬁ), donde
Q es un conjunto abierto regular tal que Q C Q C RV, es decir A € L®(Q)M*NxMxN " qe

manera que
/ADu Dvdx—/ Z Z Amyﬁaaua 8?)6 dz,
xz

4,j=1 a,f=1

15



esté correctamente definido para toda u, v en H'(Q)™ y tal que existe a > 0 satisfaciendo
oz||v\|§{1(9n)M < / ADv: Dvdr, VYove HY(Q,)™, con v(z) € V,(z),
Qp

donde para cada x € ©,,, denotamos por V,,(x) un cierto subespacio vectorial de R™. Obser-
var que en el caso N = M, si para x € 0f),, tomamos como V,,(z) el espacio tangente a 92,
en z, la condicién v(x) € V,,(x) implica la condicién de impermeabilidad vv = 0 sobre 0f2,,.
Al tomar en este capitulo subespacios vectoriales V,, arbitrarios estamos trabajando en un
marco que recoge una gran diversidad de problemas de homogeneizacion.

Entonces, consideramos el problema de homogeneizacion

u, €V, eqt. Q,

/ ADu,, : Dvdx:/ fn- de—i—/ G, :Dvdz, Vv e H(Q)M, veV, eqt. Q,
Q Q, Q

i (47)
donde f, y G, son sucesiones acotadas en L*(Q,)M y L2(9,)"*N respectivamente, que
convergen a algtin f € L*(Q)M y G € L2(Q)M*N en el siguiente sentido

n

fo— fin LX(Q*YM, G, — Gen L*(Q MV  Vp>0. (48)
y G, tal que
lim lim sup/ |G |?dx = 0. (49)
=0 poco Qu\QP™

El principal resultado de este capitulo es el siguiente teorema

Teorema 0.12 FExisten una subsucesion de n, que continuaremos denotando por n, una
medida de Radon p en € que se anula en conjuntos de capacidad nula, una funcion p-medible
R:Q — Myyxn tal que

Y

RE-€>0, |RE -0 < B(RE-€)2(Rn-n)%, VEneRY, p-ect O

para algin 3 > 0 y una aplicacion V. de Q en el conjunto de subespacios lineales en RV,
satisfaciendo

al|v]|3. S/ADU:Dvdx+/Ru~ud,u
HHOM = g a (50)

Voe H' (M, v(z) € V(z) e.qt. z € Q,
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tal que para todo p > 0 las soluciones de convergen débilmente en HY(QP )M a la
solucion unica u del problema variacional

(

uwe H(QM, weV eqt Q, /Ru-udu<+oo
)

/ADu:Dvdm+/Ru-vdu:/f-vdx+/G:Dvdx (51)
Q Q Q Q

Voe H(QM, veV eqt. Q, /Rv'vd,u<+oo.
Q

\

La subsucesion de n, la medida p y las aplicaciones R y V' no dependen de f,, G,, f y G.

Observacién 0.13 Mads generalmente mostraremos que el problema es estable por ho-
mogeneizacion.
Suponiendo que existe un subconjunto cerrado C,, tal que V,, = {0} en C,, V,, = RY en

02, \ C, y V,, arbitrario en 9, \ Cy,, el problema puede escribirse como

—div(ADu, — G,) = fn en Q,\ C,
u, = 0 sobre Cy, (52)
Up € Vyy, (ADu, — G,) v e V> sobre 9Q, \ C,

con v el vector normal unitario exterior a §, sobre 0f),. Observar que en el caso €, = )
y Vi, = {0} sobre 09, el problema es el cldsico problema de homogeneizacion para
ecuaciones elipticas lineales en dominios que varian con condiciones tipo Dirichlet. En este
caso, el término Rup que aparece en la ecuacion limite es lo que, en la terminologia de D.
Cioranescu y F. Murat, es conocido como el término extrano (ver por ejemplo [18], [19],
[25], [30], [32], [34), [35)], [36], [37], para la homogeneizacion de problemas elipticos lineales
y no-lineales en dominios variables con condiciones tipo Dirichlet). Tomando C, = 0, el
problema permite incorporar distintas condiciones frontera. En este caso es simple
comprobar que en , la medida p estd concentrada en 0Q y que V.= RY en Q. Por lo
tanto se puede escribir (al menos formalmente) como el siguiente problema con una
condicion de Fourier generalizada

—div(ADu —G)=f en

Ru-udp < +oo, u€V sobre dQ, (ADu— B)v+ Rup € V* sobre 05).
o9

En particular, para V, = RY en Q,, y V,, tomando solamente los valores {0} y RY sobre la
frontera, el problema corresponde a la homogeneizacion de un problema eliptico en €2,
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donde imponemos una condicion tipo Dirichlet sobre un subconjunto de la frontera variable
y una condicion de tipo Neumann sobre el resto de la frontera. FEste problema ha sido
estudiado en [16)], [1T7]. Una diferencia entre este trabajo y las referencias mencionadas
para la homogeneizacion de problemas de Dirichlet es que la hipotesis de elipticidad
impuesta a los operadores estd escrita en forma integral en lugar de forma puntual. Esto es
mds conveniente en particular para el sistema elasticidad lineal, donde el tensor solo depende
de la parte simétrica de la derivada, caso que serd estudiado como ejemplo en el Capitulo 5,
mostrando como nuestros resultados se aplican aqui suponiendo

Q. ={(2,ay) eRY: 2/ €w, 0 <ay < ()}
con w Lipschitz y 1, una sucesion acotada en W (w).

Como hemos dicho anteriormente un resultado similar al del Teorema [0.12, para la ho-
mogeneizacién del sistema de Navier-Stokes en dominios rugosos satisfaciendo la condicion
de deslizamiento sobre la frontera, ha sido obtenido en [I5]. Los resultados en [I5] se basan
en una teorema de representacién integral que aparece en [33] y que se encuentra adaptado
al uso de técnicas de I'-convergencia. Andlogamente nuestro resultado estd basado en una
variante de este teorema de representacion mas adaptado a técnicas de H-convergencia. El
resultado que aparece en [33] es vélido para funcionales convexos y permite por tanto traba-
jar con EDPs no lineales. Nuestra variante se refiere a funcionales cuadraticos y por lo tanto
solo es valido para EDPs lineales, pero tiene la ventaja de que no supone que el funcional sea
convexo y asi, el término de difusion de la EDP no tiene que ser necesariamente simétrico.
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Abstract.

For an oscillating boundary of period and amplitude £, it is known that the asymptotic
behavior when ¢ tends to zero of a three-dimensional viscous fluid satisfying slip boundary
conditions is the same as if we assume no-slip (adherence) boundary conditions. In the
present paper we consider the case where the period is still € but the amplitude is . with
d: /e converging to zero. We show that if o, /5% tends to infinity, the equivalence between
the slip and no-slip conditions still holds. If the limit of d./c2 belongs to (0, +oc) (critical
size) then we still have the slip boundary conditions in the limit but with a bigger friction
coefficient. In the case where 6./ £2 tends to zero the boundary behaves as a plane boundary.
Besides the limit equation, we also obtain an approximation (corrector result) of the pressure
and the velocity in the strong topology of L? and H* respectively.
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1.1 Introduction

For a viscous fluid in a three-dimensional domain such that its boundary is covered by
microscopic periodic asperities, it has been proved that to impose slip or no-slip conditions
on the boundary is asymptotically equivalent. From a physical point of view, this justifies
that no-slip (adherence) conditions on the boundary are usually imposed for viscous fluids.
The above assertion was proved in [12] for a boundary described by the equation

Ty = —6\11(%, %) V(zq,x2) € w, (1.1)

with € > 0 devoted to converge to zero, w a bounded open set of R? and ¥ a smooth periodic

function such that
Span({VU¥(y') : ¢ € R*}) = R?. (1.2)

These results have been generalized in [6] to a non-periodic boundary
3 = O (v1,22) V(v1,22) € w, (1.3)

assuming that ®. converges x-weakly to zero in W1*°(w) and it is such that the support of
the Young’s measure associated to V@, contains two non-linear independent vectors.

In the present paper, we are interested in the case of a weak rugosity described by
Tr1 To

2}, (14)

I, = {x: (x1,29,23) Ew X R: x5 =—0.V(
e’ €

where 6. > 0 satisfies

and where U is periodic and smooth. Remark that the assumptions imposed in [6] are not sat-

isfied in this case. Indeed, if ®.(z1,22) = —0. ¥ (%, 22), then VO, (11,79) = —%V\I/(%l, =)

converges strongly to zero in L>(w)?.
Taking

DB cm<t1}, Q=wx (1), (15)

Q. = {x: (x1,29,23) Ew xR : —5E\I/<
e €

we will show that the following result proved in [I2] for 6. = ¢ still holds if 0./e? tends to
infinity

Theorem 1.1 Ifu,. is a sequence in H'(Q.)® which satisfies the slip condition u.v = 0 on T,
(v denotes the unit outward normal to Q. on I'z) and it is such that ||uc| g1 (0.3 is bounded,
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then the weak limit u = (u1, us, us) of u. in H*(Q)3 (which exists at least for a subsequence)
satisfies

2
U3($1,$270) =0, Zui($1,$2,0)8i‘1’<y1>y2) =0 a.e (331,33’273/17%) €w x R

i=1

Applying this result to a viscous fluid in €2, and assuming , we deduce that the slip and
no-slip conditions on I'. are asymptotically equivalent in this case. However, we prove that
this result does not hold if the limit A of d./2 belongs to (0, 4+00). Indeed, if u, is a solution
of the Navier-Stokes system, satisfying Navier’s law on I'.

([ —puAu, + Vp. + (ue - V)u. = f in Q.
div u, = 0 in €,
Tu, (1.6)
usv =0 on I';, a—u—i—ﬂyTu6 =0onl,
ov
us =0 on 90\ T,

\

where T is the orthogonal projection on the tangent space to I'.; p > 0, v > 0, and f
belongs to L5 (w x (—1,1))3, then the weak limits u = (uq, ug, uz) of u. in H(Q)? and p of
p. in L*(92) (which exist at least for a subsequence) are also a solution of the corresponding
Navier-Stokes system in €2 satisfying Navier’s law on {z3 = 0}

uz =0 on {z3 =0}, —W + y(u, up) + N R(ui,uz) = 0 on {x3 =0}, (1.7)

3

where R is a nonnegative symmetric squared matrix of order 2 which does not depend on
A. In this case we do not have the adherence condition in the limit but the rugosity is
large enough to enlarge the friction coefficient in the limit from I to vI + \2R. If is
satisfied then R is positive, and then, taking A converging to infinity in we recuperate
the adherence condition u = 0 on {z3 = 0}.

When 6./ e3 converges to zero we prove that the rugosity is so small that it has not any
effect in the limit problem. In this case, the boundary condition on {z3 = 0} satisfied in the
limit problem is just

us =0 on {x3 = 0}, _ Ol uz) + v(ug,uz) = 0 on {x3 = 0}.
03

Besides obtaining the limit problem of we get a corrector (i.e. a strong approxima-
tion) of u. and p. in H*(.)? and L?(£2.) respectively.

The homogenization of problem has also been studied in [9] for a very general
choice of €2, in particular it is not imposed a periodic structure for 9€).. These results of
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[9] can be applied for Q. given by , giving the existence of a family of vector spaces
{V(21,22) } 21,09)e € {x3 = 0}, a finite positive Borel measure 7 in {3 = 0}, absolutely
continuous respect to the capacity, and a symmetric positively Borel function A in {z3 =
0} valuated in the symmetric nonnegatives matrices, such that, up to a subsequence, u.
converges weakly in H'(Q)? to a solution u of the variational problem

(
we HY(Q)?, divu=0inQ, wu(ry,12,0) € V(z1,29) in w, / lu?dT < 400

{ws=0}

,u/Du:Dvdx—i-/[(u-V)u}vdx—i—v/ uvd:z:+/ AuvdT:/fvd:z;,
Q Q {z3=0} {z3=0} Q

Yo e HY(Q)?, dive=0inQ, ov(x,12,0) € V(zy,20) in w, / lv|?dr < +o0.
{as=0}

\

The results of the present paper give the value of the spaces V(z1,x2), the measure 7 and
the matrix A according to the value of A = lim. 4./ e3:

o If A = +00, then V(zy,29) = Span({V¥(y) : v € R?})* x {0}, A=0.

e If A € (0,400), then V(x1,25) = R?*x {0}, 7 is the usual surface measure corresponding
to the plane boundary {z3 = 0} and A(z1, z2,0){ = A R(z1, 72, 0)¢ for € € R? x {0}.

o If A\ =0, then V(z;,75) =R?* x {0}, A=0.

So, our work provides in particular an example where the measure 7 and the matrix A, whose
existence is proved in [9], are different of zero. Another example giving A and 7 different of
zero has been obtained in [7] and [8], where analogously to (1.8)), €2, is defined by

ng{x:(xl,xQ,xg)waR: o <ﬂ) <£L’3<1}, (1.8)
€

with W nonnegative, periodic of period 1, and not constant. In this case V' (z1,x2) = {0} X
R x {0}, 7 is the usual surface measure corresponding to {x3 = 0} and

Az, x9,0)6 =7y </0 V14|V (y)2dy — 1) ¢, for £ € {0} x R x {0}.

We remark that this example has a different nature of the one given in the present paper.
Indeed, in [7] and [8] the terms A and g which appear in the limit problem of are due
to the fact that the surface element measure /1 + |W/(%)[2dz dz,, corresponding to the
oscillating boundary in ., does not converge to the surface element dzx;drs on {x3 = 0}
but to fol V14 |¥'(y)|?dy dxidxs. However, in the case where I'. is described by , the

surface element \/ 1+ i—%\\lﬂ (%) [*dz1dxs converges to dridrs.
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The proof of the results corresponding to the present paper is based on an original
adaptation of the unfolding method ([5], [10], [14]) which is very related to the two-scale
convergence method ([I], [17], [18]). The unfolding method is a very efficient tool to study
periodic homogenization problems where the size of the periodic cell tends to zero. The
idea is to introduce suitable changes of variables which transform every periodic cell into a
simpler reference set by using a supplementary variable (microscopic variable).

Although our main interest in the present paper is to study the asymptotic behavior of
(1.6)), with €. described by and 0. /e converging to zero, in the last section of the paper
we complete the work showing that if the limit of 0. /e is strictly positive (and possibly +00),
then Theorem still holds. The proof of this result is also obtained by using the unfolding
method.

The results of the present paper can be extended for dimension 2 using essentially the
same proof. In fact, the results obtained for the Stokes problem hold in arbitrary dimension
(taking the second members converging in the convenient spaces). It is important to mention
that the exponent 3/2 which appears in the critical case does not depend on the dimension.

As we have mentioned above, the present paper is devoted to study the asymptotic
behavior of a viscous fluid near a periodic oscillating boundary on which we consider slip
conditions. A related problem was considered in [2] assuming that the solution is periodic
with the same period of the boundary. We also refer to [3] for the case of Fourier’s conditions.

In both works [2] and [3] the boundary is supposed to be described by (1.1J).

1.2 Notation

The elements x € R? will be decomposed as x = (', x3) with 2/ € R? z3 € R.

By Y, we denote the unitary cube of R? Y’ = (—%, %)2, and by @ the set @ =Y x
(0, +00). For every M > 0 we write Qu =Y x (0, M).

We use the index § to mean periodicity with respect Y, for example LF(Y”) denotes the

~

space of functions u € L7, .(R?) which are Y'-periodic, while L7(Q) denotes the space of

loc

functions u € L2 (R? x (0,+00)) such that

loc

[ ) dy < +o0, uly + K, y3) = Uly), VK € Z%, ae. y € R? x (0, +00).
Q

For a bounded measurable set © C RY, we denote by L2(O) the space of functions of
L*(©) with zero mean value in ©.
We denote by € and §. two positive parameters devoted to tend to zero such that

limé. = 0, lim — = 0.
e—0 e—0 g
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For a fixed bounded Lipschitz open set w C R? and a function ¥ € WﬁQ’OO(Y’ ), ¥ >0in
Y’ we denote

/
Q=wx(0,1), ng{xeR:S: T € w, —(55\IJ(£)<:1:3<1}
£

/
F:CUX{O}, Fez{l'ERgi CE',E(,U, ,1U3:—66\Ij(£)}
IS

We denote by v the outside unitary orthogonal vector to 2. on 9€). and by T the or-
thogonal projection from R? to {v}*+ (or equivalently, the tangent projection on T').

Our aim in the present paper is to study the asymptotic behavior of a viscous fluid in €2,
which satisfies a slip boundary condition on I'.. For this purpose we will use an adaptation
of the method introduced in [5] to the study of periodic homogenization problems. It is now
known as the unfolding method. We refer to [10], [13], [14], [I7] for different applications of
this method and its relation with the two-scale convergence method of G. Neguetseng and
G. Allaire ([1], [18]).

In order to apply the unfolding method, we will need the following notation.

For k' € 72, we denote

CF=ck'+eY', QY =Q.Nn(C" x (—o0,1)).
We define k : R? — Z? by
Kz =k o2 eCV.

Remark that x is well defined up to a set of zero measure in R? (the set Upez20CF).
Moreover, for every € > 0, we have

7 1t / k'
K(—)=kK <2 eCl.
£

For a.e. 2’ € R? we define C.(2') = C¥ such that 2/ € C¥'.
For every p > 0, we take

w, = {z € w: dist(z,0w) > p}

and
L.={KeZ*:CF¥nuw, #0}.

We define by V the space of functions v : R? x (0, +00) — R such that
ve H(Qu), YM >0, VieL(Q)
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It is a Hilbert space endowed with the norm || - ||y defined by
01% = 0l 22 oy + 1VO 205

We denote by O, a generic real sequence which tends to zero with € and can change from
line to line.
We denote by C' a generic positive constant which can change from line to line.

1.3 Main Results

In this section we describe the asymptotic behavior of a viscous fluid in the geometry ().
described in Section [1.2] and satisfying slip conditions on I'.. The proof of the corresponding
results will be given in the next section.

Our first result is referred to the Stokes system. Namely, let us consider a sequence
(ue,p.) € HY Q)3 N L*(9.), which satisfies

—Au. + Vp. = f. — div G, in §Q.
div u, = 0 in Q. (1.9)

0T u,

—TG.v—Tg.=0on I},
ov

u.v =0 on I,

The second members f. € L5(Q.)3, G. € L*(Q.)**3, g. € L*(I'.)® are assumed to satisfy

148 0 + Gl + lgellso < €, ¥e >0, (1.10)
and
lim <|f€|§ + |G6|2> dz =0, Vs>0. (1.11)
¢—0 {z3<se}

Remark 1.2 Condition implies that, up to a subsequence, there exist f € Lg(Q)?’,
G e L*(Q)**3, g € L*(T')* such that

/

fof i L8(Q)P, G.—G in L2(Q)¥3, gs(x’,—ée\lf(%)) g in AT (1.12)

Observe that we are not imposing any boundary conditions on 9. \ I'. in (1.9). We are
interested in the behavior of (uc,p.) near I'. and this does not depend on these boundary

conditions. However these conditions are necessary to obtain an existence and uniqueness
result of solution of problem ([1.9). In this way, we have
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Theorem 1.3 We consider f. € L3()%, G. € L*(Q.)%3 and g. € L2(T'.) which satisfy
. Then, adding one of the following conditions

)

u: =0 on 09 \ T.. (1.13)
i1)
w 1S a rectangle,
0
U, ;E — pv — G.v are periodic of period w with respect to x', (1.14)
v

u: =0 on {1} X w,

problem has a unique solution (u.,p.) i H' ()3 x LE(Q.). Moreover, there erists
C > 0, which does not depend on ¢, such that

[uell 02 + [[Pell 200 < C. (1.15)

Instead of supposing some boundary conditions on 92, \I';, Theorem below describes the
asymptotic behavior of a solution (u., p.) of such that holds. Indeed, next Propo-
sition asserts that it is enough to assume the existence of u. € H'(Q)?, with ||u.|| g1 (o)
bounded such that

/ (Du. — G.) : Dvdx = fovdr, Yo e Hy(Q)?, with dive =0 in Q.
€ QE
div u, = 0 in €,
T
u =0 on I, % —TG.v—Tg. =0o0nTI,.
\ 14

Proposition 1.4 We consider f. € L3 ()3, G. € L2(Q.)>3 and g. € L*(I'.)3 which satisfy
and a sequence u. € H'(Q.)* such that ||uc| g(a.)s is bounded and

/ (Du. — G.): Dvdr = | fovdr, Yove Hy()?, with dive =0 in Q..

£ QS

Then, there exists a unique p. € LE(Q.), such that u. satisfies
—Au, + Vp, = f. — div G, in §Q..

Moreover ||pe||12(q.) 15 bounded.
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Our main result referred to the asymptotic behavior of the solution of ([1.9)) is given by the
following Theorem.

Theorem 1.5 We consider f. € L3(Q)*, G. € L*(Q.)%3 and g. € L*(T.)® satisfying
1.10), (1.11) and such that there exist f € L5(Q), G € L2(Q)*3, g € LX(I)3, which

satisfy 41.12). We also assume (ue,p.) is a solution of (@ such that holds. Then,
there exists (u,p) € H'(Q)? x L3(Q) such that, up to a subsequence,

u, —u in H'(Q)*,  p. —p in L*(Q). (1.16)

The pair (u,p) satisfies the Stokes system

—Au+Vp=f—divG in
(1.17)
diwu =0 in Q.
Moreover, denoting (this limit exists at least for a subsequence)
.0
A = lim — € [0, +o0], (1.18)

e—0 g3

it also satisfies the following boundary condition on "

uz =0 onT
(1.19)
—0su' + (Geg) —g' =0 onT.

i) If A\ =0, then

i) If A € (0,+00), then defining ((El,q”) c V3 x Lg(@), i =1,2 as a solution of

(—AP'+VG =0 inR2xR"
divg =0 in R2x RY

- (1.20)
¢ = 0;¥ on R* x {0}
| —85(¢") =0 onR? x {0},
and R € R**? by
Riy= [ D3 0Py, vije{L2) (1.21)
Q
we have
uz =0 onl
(1.22)
—0su' + N Ru' + (Ge3z) —g' =0 onT.
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iii) If A\ = +oo, then defining
W = Span({(V¥(y'),0): v € Y'}U{e3}), (1.23)
and Q the orthogonal projection from R to W=, we have

we Wt onT
(1.24)
—03Qu + QGe3 — Qg =0 onT.

The matrix R which appears in problem (1.22) is defined throughout a solution (&7 q") of

(1.20). The following Proposition ensure the existence and uniqueness of solution of this
problem. Tt also gives some smoothness properties for (¢¢,g%). In particular it shows that
D¢’ is uniquely defined and then that the matrix R is well defined.

Proposition 1.6 There exists a unique solution (&5\1, q%) of problem (1.29) in ((V/R)2 X \7) X
Lg(@)) Moreover, for every r € [2,4+00), one has

HD(bi”L’“(@)3><3 + ”inHLr(@) < Fo0. (1.25)

Remark 1.7 From Lemma 4 in [4|] (see also [16] for related results) we can easily show that
every solution (¢',q"), i = 1,2, of (1.20) is in CEO(Q)S x C3°(Q) and there exists a unique
solution in ((V/R)? x V) x L%(@)) Moreover, for every o € NV and every z > 0 there exist
two positive constants C o, T (the last one does not depend on o or z) such that

DG |(y) + | DG|(y) < Coe™™, Yy € R?x (2,+00).

Remark 1.8 For A = 0, the boundary conditions on I, , in the limit problem of
are the same we would find if I'c does not vary with €, i.e. in this case the rugosity of
['. is very slight and the solution (u.,p.) of behaves as if Iz coincides with the plane
boundary I'. For 0 < A < +oo (critical size), the boundary condition satisfied by the limit u
of u. on the tangent space to I' contains the new term N>Ru. The effect of the rugosity of
the wall T'; is not worthless in this case. Finally, for A = 400 the rugosity of I'c is so strong
that the limit u of u. does not only satisfies the condition uz = 0 on I', but it is also such
that its tangent velocity on I, v/, is orthogonal to the vectors VVU(y'), for every y' € Y'. In
particular, if the linear space spanned by {VVY(y') : vy € Y'} has dimension 2 (this holds if
and only if ¥ is not constant in any straight line of R?, see [12]), we get that u satisfies the
adherence condition w = 0 on I', i.e. although we have imposed a slip condition on I'., the
rugosity forces u to satisfy a no-slip (adherence) condition on I'. This result extends to the

case where 5 5
lim — = 0, lim — = 400,
e—0 £ e—0 €2



the results obtained in [12] for 0. = e (see also [G] for the nonperiodic case).
The limit equation corresponding to the critical size X € (0,4+00) can be considered
as the general one. In fact, if \ is tending to zero or +00 in we get and

respectively.

Remark 1.9 Ifin Theorem we also assume that one of the conditions or (1.14
holds, then, assuming that there exists the limit A\ given by 1.15), we deduce that (1.16
holds without extracting any subsequence. Moreover, if is satisfied, then u = 0 on
OO\ T, while if 15 satisfied, then wu, % — pv — Gv are periodic with respect to x' and
u=0 on {1} xw.

Theorem gives an approximation of (u.,p.) in the weak topology of H'(Q)3 x L?(Q).
Assuming that the second members f., G. and g. of (1.9) satisfy

|f€|g is equiintegrable in €2, (1.26)

G. converges strongly to G in L*(2)**?, (1.27)

let us now obtain an asymptotic expansion of (Du.xq., peXq.) Which converges in the strong
topology of R? (corrector result).

Theorem 1.10 We consider f. € L3(Q.)3, G. € L*(Q.)%*3 and g. € L*('.)® which satisfy

(L.10), and and are such that there exist f € Ls(Q)3, G € L2(Q)*3 and
g € L*(T")? which satisfy and (L.27).

Let (uc,p.) € HY(Q.)3 x L*(Q.) be a solution of which satisfies and it is such
that there exists (u,p) € H'(Q)? x L?() which satisfies (1.16). We also assume that there
exists the limit A\ given by . Then, we have

lim (/ |u.|*dx +/ |ue — u]Qda:) = 0. (1.28)
=0 \Ja.\0 Q

i) If A =0 or +oo, then, for every ¢ € Cl(w x (—1,1)) we have

lim (/ | Duc|*¢ dx +/ |D(u. — u)ﬂodm) =0, (1.29)
=0 \Ja\0 Q

lim </ |2 dx +/ Ip- — p|*p dx) = 0. (1.30)
=0 \Ja\0 Q
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iii) If X € (0,400), then, taking (',G%), i = 1,2 as a solution of (T.20) and definin
) g 9
U:wx (R?x(0,400)) = R3 and p: w x (R? x (0, +0)) — R by

a2, y) = —Auy (2, 0)0" (y) — Ao (2, 0)02(y), (1.31)

pla’y) = —dui(2',0)q" (y) — dua(a’, 0)3* (y), (1.32)

for a.e. (2',y) € w x (R* x (0,+00)), we have for every ¢ € Cl(w x (—1,1))

1 z |
lim / Dugzgpda:—i—/’DuE—Du——Dﬂx’,— odr | =0, 1.33
H()(QE\Q' | ) ZZDE ) (1.33)
! / | |2d+/ —“(’“”")2 dr | =0 (1.34)
1m De| P ax Pe — P — p\r, — Y axr = U. .
=0\ Jaa Q Ve €

Remark 1.11 [f in Theorem we also assume that (ue,p.) satisfies one of the assump-

tions or , then in (1.29), (1.50), (1.33) and , we can take ¢ = 1.

As a consequence of the results given above for the Stokes system, we can now describe the
asymptotic behavior of the Navier-Stokes system posed in €2.. To simplify the exposition we
assume that the second member are fixed functions. The case of varying second members
fe» G< and g, is analogous.

Theorem 1.12 Forpu >0,y >0 and f € L5 (wx(—1,1))3, we consider a solution (u., p.) €
HY(9.)3 x L*(Q.) of the Navier-Stokes system

;

—pAue + Vpe + (ue - V)ue = f in Q.

div u, =0 in Q.

(1.35)

u =0 on I'.
0T,
\ 81/

which satisfies . Then, up to a subsequence, we have with (u,p) solution of the
Navier-Stokes system

+~yTu. =0 on I',,

{ —puAu+Vp+ (u-Vu=f inQ (1.36)

divu =0 in .
Defining \ by (this limit exists up to a subsequence), we also have
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i) If \ =0, then

uz =0 onT
(1.37)
—Osu' +yu' =0 onT.

Moreover , hold for every ¢ € CHw x (—1,1)).
i) If A € (0,400), then

uz3 =0 onT
(1.38)
—03u/ +yu' + NRu' =0 onT,

with R defined by . Moreover, defining u, p by , we have (1.35),
for every p € CHw x (—1,1)).

iii) If A = 400, then defining W by and Q as the ortogonal projection from R? onto
W we have

wue Wt onl
(1.39)

—03Qu+~yQu =0 onT.
Moreover, (1.29), hold for every ¢ € CHw x (—1,1)).

Remark 1.13 Assuming also that (ue,pe) satisfies one of the boundary conditions given by
([1-13) or ({1.14)) there exists at least a solution of the Navier-Stokes system (1.35). Moreover,
this solution satisfies and thus, Theorem can be applied. In this case, we can

take o = 1 in (1.29), (1.30), (1.33), (T.57).

1.4 Proof of the results of Section 1.3,

Proof of Theorem It is a simple consequence of Proposition [I.4] and Lax-Milgram
theorem. g

Proof of Proposition It follows from Statement ii) in Proposition below. O

Proposition 1.14 There exists a constant ¢ > 0 such that for every ¢ > 0 (small enough),
we have

i) There exists a linear continuous operator L. : L3(2.) — Hy(Q.)? with ||L.| < ¢, such
that
divL.(h:) = he inQ., Yh.€ L3(Q.).
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i) If (. € H () satisfies
(C,v) =0, VYove Hy(Q)? with dive =0 in S, (1.40)
then, there exists a unique p. € Lg(Qg) with (. = Vp. in Q.. Moreover
1Pell 20y < ellCella-1(00)3- (1.41)
i) HY(Q.) is continuously injected in L°(Q.) with

Huf-:HLG(QE) S CHuEHHI(QE)v \V/UE € H1<QE) (142)
Proof. Along the proof, we use the application 7. : 2. — ) defined by

1
e - ! 1 L 7 .
7e(z) (x 1 +55\11(%)>

In order to prove i) we remark that using the change of variables z = 7.(z), the equation
divu, = h, in €.,
is equivalent to

% Z3 — 1 / \I/(Z—l)

0, ()VU(Z) + S Ted

div i = h. 0,1
1V U (Z)+€1—|—(55‘I/(%) 3 Ye

05 0:3(2) inQ, (1.43)
where we have denoted 7. (2) = u. o 7 1(2), he(2) = he o= (2).

Now, since 2 is Lipschitz, it is well known that there exists a linear continuous operator
L: L) — HL(Q)? such that

divL(h)=h inQ, Yhe L3(Q).
The Banach fixed point theorem implies that for € small enough and every h € L3(2) the

problem

!

5 z3 — z' ‘I’(z—) ~ 1 3
—r(n ——a V() + o) g ) HY(Q),
" ( TR TE ( )+ Trow(Z) ] e 0(2)

has a unique solution which we denote by R.h. The operator R, defined in this way is linear
and satisfies

Rl (0 < L] (HhHLQ +C—HR Mm@ >
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1.e.

L
| Reb gy < — 2

< Ta_E”LH||h||Lg(Q)7 Vhe Lg(Q),

where C only depends on W.
This proves that R. is continuous with norm uniformly bounded for ¢ small enough.
Taking into account that u. = R.h. solves 1' we get the proof of i) just taking

L.he = (Rs(hs ° 77;1)) 0N, Vhe€ L?)<Q€)7

and using that 7., n-! are respectively bounded in Wh*(Q.)? and W1 (Q)3.

Let us now use statement i) to prove ii). For this purpose, given (. € H~(£.)% which
satisfies (1.40), we have that (. o L. € Lg(€).)" and thus, there exists p. € L3(Q.) which
satisfies

||p€||Lg(QE) = ||¢c o LEHL%(QE)’ < C||Ce||H*1(QE)3

and
(C., Lohe) = —/ pehodx, Yh. € L3(SL).
Qe

Since (. vanishes on the functions with zero divergence, we have
(Ceyue) = (¢, Le(divue)) = —/ pdivu. dz, Vu. € Hy(Q.)®.

This proves that Vp. = (. in .. The uniqueness of p. is immediate from the fact that every
distribution with zero gradient in €2, is constant. This finishes the proof of ii).

The proof of iii) is immediate using that H'() is continuously imbedded in L°(€) and
the change of variable z = n.(z) which transforms €. in €. O

In order to prove Theorem let us introduce an adaptation of the unfolding method
(see e.g. [B], [10], [13], [14], [17]), which is strongly related to the two-scale convergence
method ([1], [18]). For this purpose, given (u.,p.) € H*(.)? x LE(Q.) and p > 0, we define
(asaﬁe) by

~

(2, y) = u(er(=) + ey, eys3) (1.44)

H\m|%

p-(z',y) = pa(éﬁ'(;) + ey’  ey3), (1.45)

for a.e. (¢/,y) € w, Y., with

~ Oc
Y.={yeY xR: —E\D(y') <ys < 1/e}.
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Remark 1.15 For k' € 7Z? the restriction of (u.,p.) to C* x Y. does not depend on ', while
as function of y it is obtained from (u.,p.) by using the change of variables

/ /
,  x' —¢ck _ a3

— = 1.46
Yy c ) Y3 c ) ( )

which transforms QF into Y..

In order to study the asymptotic behavior of (u.,p.) near I';, let us study the asymptotic
behavior of (u.,p.) in w, x Qu, for every M > 0. We will need the following previous
Lemma.

Lemma 1.16 Letv. € L*(w) be a sequence which converges weakly to a function v in L*(w).
For p, we define v. € L*(w,) by

1

v.(2) = —2/ ve(2)d7, a.e 7' €w,

9 Ce(z")

Then we have:
i) For every 7" € R?, the sequence w. defined by
ey = P ) =)
NG

converges to zero in the sense of distributions in w,.

i) If the convergence of v. is strong, then v. converges strongly to v in L*(w,).

Proof. In order to prove i), we use that for every ¢ € C2°(w,) and € > 0, small enough, we
have

/wpva(l'/ + sr\/’;— Ua(xl)@($/)d$/:[up Ua(\/zg/) <€l2 /cs(z[f(x, —er') — gp(x')]dx’) dz

where, since ¢ is Lipschitz, the right-hand side tends to zero.

Statement i7) easily follows using that the sequence v”* € L?(w),) defined by
1
o™ (') = —2/ v(')dz, ae 2 €w,
E Cg(rﬂ’)
converges strongly to v in L*(w,) and the inequality
19: = 02| L2(w,) < [lve = vl r2()-
Ul

The following Lemmas describe the asymptotic behavior of (., p.) given by (|1.44)), (1.45)),
when (u.,p.) € H'(Q:)? x L3(€.) satisfies (1.15)).
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Lemma 1.17 Let p. € L(Q.,) be with bounded norm. Then, up to a subsequence, there
exists p € L*(w x Q) such that the sequence D. defined by (1.45)) satisfies

Vepe = P in L*(w, x Qur), Y M, p > 0. (1.47)

Proof. For every p, M > 0, the definition of p. proves

/ VERPd dy < Z/Q D (e(K + /), eys) 2 dy
w M

o XQM Kel, .
" (1.48)
<Y [ p@Pde< [ Ipfd
Kel,. % Qe

Thus, v/2p. is bounded in L?(w, X @ ) for every p, M > 0, and so, using a diagonal procedure,
there exists p such that (1.47)) holds. Taking into account in (|1.48)) the semicontinuity of the
norm for the weak convergence, we deduce

/ p*dx’ dy < liminf [ |p.|? da,

prQM e—0 Qe

for every p, M > 0 and thus, the monotone convergence theorem shows that p belongs to
L} (w x Q). O

Lemma 1.18 We consider a sequence u. € H'(2.)3 with bounded norm, such that u.v =0
on T'. and such that (it always holds for a subsequence) there erists v € H'(Q)? with u,.

converging weakly to u in H(Q)3. Then, the third component us of u vanishes on T.

Moreover, if we also assume that there exists the limit A given by and that \ belongs
to (0,400], we have

i) If X\ = 400, then
(2, 0)VP(y') =0 ae (2,y) €wxY' (1.49)

i) If X € (0,400), then there exists U € L*(2;V3) with
us(2',y',0) = =AVU () (2',0), ae (2',y)€wxY, (1.50)
such that for every p, M > 0, the sequence u. defined by satisfies

%ag — T in LP(w, H'(Qu)?). (1.51)

Besides, if divu. =0 in €2, then
div, 0 =0 inw x Q. (1.52)
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Proof.
Step 1. Let us first prove that uz vanishes on I'.
Since u.v = 0 on T, for every ¢ € Cl(w x (—1,1)) we have

/ u5V¢dx:—/ divu. ¢ dx. (1.53)
Qe Qe

3 >
/ uVodr| < (/ |u5|2dx) (/ |ch\2dx) — 0,
2.\0 . Q.\Q
; ;
/ divu.pdr| < (/ |div u,|? da;) </ || dm) — 0,
2.\ Q. 2.\0

and the weak convergence of u. to u in H*(2)? we can pass to the limit in (1.53) to deduce

/qupdx:—/divugodx,
Q Q

/uggodx’ =0, VypeCllwx(-1,1)),
r

which proves uz3 = 0 on I'.

Using

and then

Step 2. Let us obtain some estimates for the sequence u. given by ((1.44)).
For p, M > 0, the definition ([1.44) of u. proves for every € > 0 small enough

/ Dyt (2!, y)Pda’dy < € Z / |Du(e(K' + '), eys)|*dy
wpXQn1 kel Y’ x(0,M)
(1.54)
< Z / |Du5|2dx§5/ |Du.|*dz < Ce.
ke, Qe
On the other hand, defining
1
u.(x') = —2/ us(7',0) dr = / u.(x',y,0)dy, (1.55)
g Ce(z) ’
and using the inequality
/A [u.(2', y) — u.(2')|* dy < CM/ Vi > dy, ae. 2’ €w,, (1.56)
M M
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where C'); does not depend on ¢ and taking into account(|1.54)), we deduce that

N R
U. = % is bounded in L2(w,; H(Q1r)?), V¥p, M > 0. (1.57)

Thus, there exists u : w X @ — IR3, such that, up to a subsequence,

U. =7 in 2w, H'(Qu)?), Yp,M >0, (1.58)
and then )
Dyi. — Dyu in L*(w, x Qu)*®, Vp, M > 0. (1.59)

NG
Passing to the limit by semicontinuity in inequalities (1.54]) and (1.56)) (this latest one after

integration in w,), we get

/ |DyulPda’dy < C, /  [a]Pda’dy < Cy,
wpXQnp wpXQ M

and then, by the arbitrariness of p and M
u € L*(w; V). (1.60)
Moreover, if we also assume that divu. = 0 in )., then by definition ((1.44) of u., we have
divyu, = 0 in w, X @, which together to 1} proves
div,i =0 inwx Q. (1.61)
Step 3. Let us prove that u is Y'-periodic in 3.
We observe that by definition (1.44]) of u., for every p, M > 0, we have

~ 1 - 1 11
Ug(ﬂfl +57$27 _§7y2ay3) = U,E(I'/, 5»?/2793)7 a.e. ($,7y2ay3) € Wy X <_§7 5) X (Oa M)

Therefore the sequence [75 satisfies

—te (1 + &, 29) + ()
NG

By (1.55) and u. bounded in L*(T")® we can apply Lemma i) to deduce that the right-
hand side of this equality tends to zero in the sense of distributions in w,. Therefore, passing
to the limit in ((1.62)) by (1.58]), and taking into account the arbitrariness of p and M we get

1

~ N 1 11
u(xla _§7y27y3) - u($/7 §7y27y3) =0 ae (x/7y27y3) S Wo X (_57 5) X R.

~ 1 ~ 1
Us(xl + &,T2, =35, Y2, y3> - Us(xla —73/2,193) =

5 5 (1.62)
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Analogously, we can prove

1

~ - 1 11
u<x/ay17 __7y3) - u(xlayla —793) =0 ae. (Ilvyhy?)) € Wy X (_57 5) x R.

2 2

These equalities prove that @ is periodic with respect to Y.

Step 4. Using the compact embedding of H'(2) into L?(T") and Lemma ii), we have
that @. converges strongly to u(z’,0) in L*(w,)?, for every p > 0. Thus, by (1.57)), we deduce

(2, y) — u(e,0) in L*(Q; H'(Qu)?), Y M,p>0.

(1.63)

Step 5. For p > 0, using the change of variables ([1.46)), which defines ., in the equality

u.v =0 on ['., we get

J. N . R e )
— EV\IJ(y/)u’E(:E’,y’, —;\If(y’)) —u.3(2',y, —E\Il(y’)) =0 ae inw,xY"

Thanks to (1.64]) and (1.54), we have then

0 N .
;V\If(y’)u;(:c’, y',0) + a.3(2, v, O)‘ =

/0
—%y(y)

1
5.\z2 [ [° _ ’
SC(_) [ 1oa ot ae (@) ew,x Y
€ —%=w(y)

Taking the power two, integrating in w, x Y’ and using ({1.54)) we then deduce

J- N R
EV\P(y/)@gu;(x/, y',t) + Osu. 3(2', t)‘ dt

2

e N N
[ By 0+ Bl 0) de'dy < O,
wp XY’ €
which implies
53 AV / / -~ / /
_V‘I;<y )UE(SL’ Y 70) + u€,3(‘7j Y 70)
wp XY’ €

2

-/ (%\If(z’)a;(x',z',m+ag,3<x’,z',o>) 02| di'dy < C6..

£
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Dividing by ¢, and taking into account that VW has mean value zero in Y’ we get

/w,,xY’

55 NS (55 / u, (xlv Zla O) — U, (ZC/) /
s \I/ _ & qj 13 13
VU0 - % [ o (HEED :

(1.65)

aE,S (xlv y/7 O) - aE,S (l’/)

NG

Depending on the values of A, we deduce:

If A = 400, statement @ shows that 35 VW (y/)u.(2’, 4/, 0) is bounded in L?(w, x Y”),
for every p > 0 and then that VU (y')u.(2/, ', 0) tends to zero in L*(w, x Y”), for every p > 0.
By , this proves assertion i) in the proof of Lemma m

If A € (0,+00), we can pass to the limit in (1.65) to deduce ([1.50)) O

Proof of Theorem (1.5, Thanks to (1.15]), there exist a subsequence of ¢, still denoted by
e, and (u,p) € HY(Q)? x L*(Q2) such that (1.16) holds.
On the other hand, we observe that (u.,p.) satisfies the variational equation

dx'dy’ < C’% — 0, Vp>0.

\

/ Du, : Dv, d:z:—/ pe divo, dr= fevedr+ G, : Dv, dx+/ g-v, dz’
c c Q- Qe - (1.66)

Vo. € HY(.)3, wvw=0 onT., v.=0o0ndN \T..

The proof of Theorem will be carried out using suitable test functions v, depending on
the values of A.

Step 1. We start with the most difficult case A € (0, +00) (critical size), which we will carry
out more in detail. R

We consider v € Cl(w x (=1,1))%, ¥ € Clw;C}(Q)*), with D,v(z',y) = 0 a.e. in
{ys > M}, for some M > 0, such that

v(@',x3) = v(2’,0) if 23 <0 v(@, Y, ys) =0(a',y/,0) ify; <0 (1.67)
v3(2’,0) =0, v3(2',y,0) = =AV¥(y)v' (2, 0). '
Besides, we take ¢ € C*°(R) such that
. 1 ) 2
C(z3) =1if 3 < 3 ((z3) =0 if x5 > 3 (1.68)
and R. > 0 such that
0 ?
R. — 0, R. (—3 - ) +e| — 0. (1.69)
£2
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Then, we define v, € H'(£2.)3 by
(Wl(a) = /() + VED (@', D))

ve3(x) = v3(z) + Ve

| +c<£€)w<§> ((A_f_) v’(x/,O)—%mx',%,o))].

Since v € Cl(w x (=1,1))3, v € C}(w; Cﬁl(@\)?’) and ((x3) = 0 if x5 > 2/3, the sequence
v, satisfies

U3(a’ 5) (z3)+

ve =0 on Q. \T.. (1.70)

Moreover, taking into account the properties (1.67)) of v and v, it is not difficult to check
that
vy =0 on .. (1.71)

Properties (1.70) and (1.71]) of v. allow us to take it as test function in (1.66)). To simplify

the calculus we will first estimate the derivative of v..
Taking into account that D,v = 0 a.e. in {y3 > M} and that ( =1 a.e. on {z3 < 1/3},

we have
1

NG
where, using that v, v and ¢ are bounded and have bounded derivatives, the function h, €
CY(€.)3*3 satisfies

Dv.(z) = Du(z) + —=D,d(z, g) + ho(z), (1.72)

1 1 h) 5. h)
h| < C C — ) |= - - - — | X{as<cRo1s
waseveecl(ghe e ) (-4 vl 4w

a.e. in Q.. Using that R. tends to infinity and that o,/ £2 is bounded, we get

\h|<0\/_+c[

5 .
8—% — )\' + 1} X{zs<2cRr.}, @€ 1N Q..

VE
Therefore, by (1.69), we have

/ h.]2dz < O. + CR. _o.. (1.73)

2
(6—3—)\> +e
€2
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Taking v. as test function in ([1.66)) and using that ||u.|| g3, [[Pellz2(0.) are bounded,
|[v: — v[|coq.ys tends to zero, (1.72) and (1.73), we get

/ (Du. : Dv — p.div v) dx + —/ Du, : D,jo(z ) pediv,o(z’, @) dx
Qe 3

(1.74)
:/ favdx—i-/ G.: (Dv—i— —D,v(z' z)) dx—l—/ g-vdo + O,.
Q. Q. Ve € B
In this equality we use that
1 z |? C 0,
Dv+ —D,o(2',=)| de < =|Q.\ Q| < C= < Oye,
[ [P Jepit D] de< Sloaai s o <ove
and that (1.11) and D, =0 a.e. in {ys5 > M} imply
/|G[) ) <(7</‘ |GFd)%H < Melp =0
v X — € €T X3 2 =
\/E {zz<Me}
Therefore, (1.74]) can be written as
/(Du6 : Dv — pdiv v d:zc—l——/ Du, : Dyv( ) pediv,v(z’ i)) dx
Q
:/fgvd:p—l—/ngDvdx—i—/ g-vdo + O,
Q Q e
which taking into account (L.12)), (1.16]) and (L.67)) proves
/(Du : Dv — pdiv v) dm—i——/ Du, : D,v(a, ;) pediv,v(a’ i)) dx
Q (1.75)

:/fvdx+/G:Dvdx+/gvd0+Oe-
Q Q r

In order to estimate the second term in ((1.75)), we introduce the sequences u., p. respectively
defined by ([1.44)) and (1.45)). By (|1.15)) and Lemmas|1.17/and |1.18| we can assume that there

exist p e L2(w x Q) and 1 € L?(w; V3) which satisfy (1.47), (1.50), (1.51) and (1.52),

\/_/ Du, : D,v(a, ) pediv,v(a’ 8)) dx

// ( D,u. : D, — \/ep.div,v ) dy da’

:/Awﬁjm;m%mww+@
wXQ
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Substituting in ([1.75)) we set

/ (Du: Dv — pdiv v) dzx +/ (Dyu : Dy — pdiv,v) da'dy
“ wxQ (1.76)

:/fvdx+/G:Dvdx+/gvda,
Q Q r

for every v € Cl(w x (—=1,1))3, v € C’g(w;Cﬁl(@)?’), with D,o(2',y) = 0 a.e. in {ys > M},
for some M > 0, and such that ((1.67) is satisfied. By density, this equality holds true for
every v € H'(Q)3, and every v € L?*(w; V?) such that

v=0o0ndQ\T,

v3(2',0) =0, 03(2',y,0) = =AVI(y)'(2',0), ae. (2/,¢y)€EwxY"

Let us now obtain an equation for v eliminating @ and p in ((1.76)). For this purpose, we take
v =0 in ((1.76). This proves that (u,p) (extended by periodicity to w x R? x (0, +00)) is a

solution of
(—Ai+V,p=0 in R*x R"

div,i =0 in R? x (0, +0c0)
(@, D) € V* x L(Q) (1.77)
uz(7',y,0) = AV (y)u'(z',0) on R* x {0}

[ —9,,t' =0 on R* x {0},

-~

a.e. in w. Defining (¢',77%), i = 1,2, by (1.20), we deduce by linearity and uniqueness
Dyi(x',y) = —A(ui(2',0) Dy (y) + ua(a’,0)Dyd*(y)) ae. in R? x (0,400),  (1.78)
1.79)

e’ y) = Mua(2',0)q" (y) + u2(2,0)3*(y)) a.e. in R? x (0, +00). (

Now, for v € H'(Q)?, with v = 0 on 2\ T, v3 = 0 on I', we take v and o(z',y) =
—A(v1(2/,0)¢' (y) + v2(a’,0)$*(y)), as test functions in (1.76). Taking into account (1.78

we get
/ Du : Dvdx —/p divedz + >\2/Ru’v’dm’
0 0 r (1.80)

—/fvdx—l—/G:Dvdx—l—/gvdx’.
Q Q r

By the arbitrariness of v, this proves that (u,p) is a solution of ([1.22]).
Step 2. The case A = 0.
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As in Step 1, we consider v € CH(w x (—=1,1))?, with v(2/, 23) = v(2/,0) if 23 <0, v3 =0
on I'. Then, for ¢ € C*(R) which satisfies (1.68]), we define v. € H*(w x (—1,1)) by

vi(z) = v'(2)
0. . T3 x

V. 3(2) = v3(x) — fC(?)V‘I’(g)U'(@-

The sequence v, satisfies v.v = 0 on I'; and v. = 0 on 99, \ I'.. We take v, as test function

in (1.66]). Using (1.11)), (1.12), (1.16) and that A = 0 implies

|D(v. —v)*dz — 0, |lv: —v||z=@.yz — 0, (1.81)
Qe

we can pass to the limit in (1.66|) to get

/Du:Dvdm—/pdivvdm:/fvda:—i-/G:Dvdx—i—/gvdx’
) Q Q 9) r (1.82)
Voe HY(Q)3 v3=0o0onT, v=0o0n 90 \T.

This is equivalent to ((1.19)).

Step 3. The case \ = +oc.
We consider v € CHw x (—1,1))3, with v(2/, 23) = v(2/,0) if z3 <0, v3 = 0 on ' and
such that
V(2 0)V¥(y) =0 ae. (2/,y) ewxY.

Observe that the properties of v imply that v =0 on I';; v = 0 on 0€. \ I'.. Taking v. = v
in (|1.66)), passing to the limit in ¢ and reasoning by density we get

/Du:Dvda:—/pdivvdx:/fvd:c—l—/G:Dvdx—l—/gvdx'
Q Q Q Q r

Voe H'(Q)?, v3=00onT, v=00n 9N\
V(2 0)VU(y) =0 ae (2,y) ewxY'
This is equivalent to (|1.24)). Il

Proof of Proposition To simplify the notation we just prove the result for the pair
(¢',q") which will be just denoted by (¢,q) (the case ¢ = 2 is completely analogous).
Step 1. Existence of ¢.
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The function (Eﬁ\ can be defined equivalently as the solution of the variational problem

b (V/RZXV, d3=0TonY x{0}, divé=0 inQ
/ADE: Dody =0 (1.83)
Q

Voe (V/RZ2xV, 93=00nY'x {0}, divi=0 inQ,
and then its existence and uniqueness follows from the Lax-Milgram theorem.

Step 2. Extension of (Z to R? and existence of the pressure q.
For ¢ € C((~00,0]) with ¢(0) = 1, 90) = 25(0) = 0 and ¢(t) = 0 if t < —1, we
extend ¢ to Y/ x R by

i) = D1y —ys) — 29 ()W ()

dys
52(34) = 52(% —Ys3)
O3(y) = —d3(y', —ys) + 2((ys) T (y),
a.e. in Y’ x (—00,0). Then, denoting by W the space of functions w : R* — R such that
e H (Y x (-M,M)), VM >0, Va&e LY xR)?
we have that </£ satisfies
peW?, divg=0 inY’' xR

[(D$+ H):Didy =0 (1.84)
Q

Vo e W, divo=0 inY’ xR,
where H is a matrix function defined by zero in Y’ x ((—o0, —1) U (0,400)) and by

d¢ d2C

d—%(?JB)V‘I’(?/) d—yg(ys)‘l’(@/)

H(y) =2 0 0 , YyeY' x(-1,0).

~C) V)~ ()0 0()

This implies (reasoning similarly to Lemma A.1 in [I1], see also [I5]) that for every ¢ €
H'(R?)3 with compact support and such that div ¢ = 0 in R?, one has

/3(D$+ H): D@dy =0,
R
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and so, there exists ¢* € L? _(R3) such that

loc
/ gdiv § = / (Dé + H) : D dy, (1.85)
R3 R3

for every ¢ € H'(R*)? with compact support.

Step 3. Let us prove that g* is periodic with respect to 3’ with period Y.
Since D¢ + H is periodic with respect to y’ with period Y, equation 1} implies that
for every € H'(R?)? with compact support we have

/Rs(ak(yl + 1,92, y3) — ¢ (y))div 3(y) dy = 0.

Using that for every h € L*(R®) with compact support and mean value zero there exists
$ € H'(R3)? with compact support and div @ = h in R?, we deduce that ¢* satisfies

[ @+ L) T @R dy =0
R
for every h € L?(R3) with compact support and mean value zero. This implies that there

exists ¢ € R satisfying

T+ Lys,y3) =7 (y) +¢ ae. y € R3. (1.86)
We define

&w=@$@+ﬂﬂwm$@+mgw,M%W=AE@@1

and, forn € N, p, : R — R by

S fo<s<1

1 if1<s<n
Pn(s) = .

n+l—s fn<s<n+1

0 ifs<OQors>n+1.

Then, for j € C°(R?), we take p(y) = (pn(y1)7(y2,v3),0,0) as test function in ([1.85). Using
&

~

the periodicity of D¢ + H and (|1.86)), we get
1
—nc/ ndys dys = / n {/ (@ (y) = (y1 + n,yg,yg))dyl} dys dys = / g divpdy
R2 R2 0 R3

n+1 R _
_ / B(un) / bV dys dysdy, = n / BV dys dys.
0 R2 R2
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for every 7 € C°(R?). This implies ¢ = div b in R?. Integrating this equality in (—
(t,t + 1), with ¢ > 0 and taking into account that b = (b, b3) is periodic of period
respect to yo we deduce

5:5) X
1 with

[SIES

c= / (bs(ya,t + 1) — bs(y2, 1)) dys,

[NIE

Integrating again for ¢t € (s, s+ 1) with s > 0, this implies

lc| < / 103 (Y2, y3)| dys dys < V2 </ 103(y2, y3) | dys dy3> ,
(FH.2)x(s,5+2) (

S 3)%(s,5+2)

for every s > 0. Since ||b3(y2, Y3) || £2((=1/2,1/2)xr) < +00, we conclude that ¢ = 0 and then by
(1.86) it follows @*(yy + 1,y2,y3) = ¢*(y), for a.e. y € R3. Analogously, ¢*(y1,v2 + 1,y3) =
7*(y), for a.e. y € R3. Thus ¢ is periodic with respect to y" with period Y.

Step 4. To finish the proof of Proposition[L.6] let us prove that we can choose a representative
q of ¢* (remark that ¢* is defined up to a constant) such that for every r > 2

||D¢A5||LT(Y'xR)3x3 + IVl (vrxr) < +00. (1.87)

This will imply that the pair (gg, q) satisfies the thesis of Proposition in R? x (0, 400)

(the uniqueness of (¢,q) in ((V/R)? x V) x L}(Q) is straightforward).
First we prove that for every r > 2 there exists C,. > 0 such that for any n € N,

DO ey s (—nmyyp<s + 1T = Gull ey (=)
(1.88)

< —=5 1Dl 122y x (—2n.2n))3x3 + Coll H || L 20y x (—20,20))3%3,
n 2r

where we have denoted )

~ 9,3
2n nY’x(

n g dy.

—n,n)
For n = 1, the proof of ((1.88) follows from Theorem 4.4, chapter 4, in [16], the general case
follows using a dilatation which transforms Y’ x (=1,1) in nY’ x (—n,n).

Using the periodicity with respect to 1’ of 5, ¢* and H we can write 1} as

| DA Lr (v (—nmy3xs + 1T = Gl Lr (v x (=nm))

2C, ~
(r—2) ||D¢||L2(Y’x(—2n,2n))3x3 + 207"||H||LT(Y’X(_Qn,2n))3X3.

n 2r

(1.89)
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This inequality implies that, up to a subsequence, there exists the limit ¢ of ¢* — g,. Passing

to the limit in n in (1.89)) we get (|1.87)). d
Proof of Theorem [1.10L

Step 1. Let us first prove ([1.28]).
The Rellich-Kondrachov theorem and ([1.16]) give that u. converges to w strongly in

L?*(©2)3. On the other hand, from (1.42)) and Holder’s inequality we have

2
lim lu.|*dz < lim sup <\|u€H%@(QE)3|QE \ Q]%) < limsup C6Z [Juc|| 71 (g, = 0. (1.90)
e—0 Q.\Q e—0 e—0

This proves that (1.28])) holds (for any value of A € [0, +o¢]).
In Steps 2, 3 and 4, let us prove the corrector result for Du. and p..

Step 2. We consider v, € H'(€Q.)? such that
vr =0 onl., |lvc|lgrayp < C, (1.91)

and such that there exists v € H'(Q2)® with v. converging weakly to v in H'(Q)3. By
Lemma the third component v of v vanishes on I', and if A = +oo it also holds
V(2 0)V¥(y) =0ae. (2/,y) ewxY'

Let us prove that for any ¢ € C}(w x (—1,1)), we have

lir% ( Du. : Dv. pdx — / pediv v. goda:)
e . if \=0,400, (1.92)

:/Du:Dvcpdx—/pdivvgpdx,
Q Q

liH(l) ( Du. : Dv. pdx — / pdiv v, <pd:c)
e : if A\ e (0,+00). (1.93)

:/Du:Dvgodx—/pdivvgod$+)\2/Ru’v’g0da:/,
Q Q r

where R is defined by (|1.21)).
For this purpose, given ¢ € C}(w x (—1,1)), we take v.¢ as test function in (1.9). This

gives

Du, : D(vego)dx—/pediv (vep)dz = | fevepdz+ | G. - D(vsw)dx—i-/ggvsgoda. (1.94)
Qe € Qe Qe e

Let us pass to the limit in each term of this equality.
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Using that f. converges weakly to f in L3 ()3, |f.|® is equiintegrable, v. converges to v
in measure in 2 and v, converges weakly to v in L5(2), we have that f.v. converges strongly
to fv in L'(Q). Therefore

/fgvggodx:/fvgodx+05. (1.95)
Q Q

On the other hand, by (L.11]), (1.42)), we get

fevepdr = O.. (1.96)
Q.\Q

Reasoning analogously with the second term of (1.94]), thanks to the strong convergence
of G. in L*(2)3*3, we have

G. : D(v.p)dx = / G : D(vyp)dx + O.. (1.97)
Q. Q

For the las term in ((1.94)), we use

, e 2
/ggvssada—/(gsvgw)(x’,—és\lf(%))\/H(;) V(D)) da.
I'e w
The inequality
7! 2 0 2
/ve(x',—és\ll(;))—vs(:c',()) d:z;’:/ /  Ozve(2', ) ds| da’

=6V (%)

(1.98)
< O, |05, |2 dz = O,

and the compact imbedding of H*(Q) into L?(T") give that v.(z/, —55\11(%/)) converges strongly
to v(z’,0) in L*(w)?.

Thus, the weak convergence of g.(z', —5.¥(%£)) to g(z) in L?(w)?, ¥ in WuQ’OO(Y’) and
d: /€ tends to zero, imply

/ g:=v-pdo = /gvgpda—i—Os. (1.99)
g r

As v, converges to v strongly in L?(2)? and p. converges to p weakly in L*(2), we have

/pEUEVgp dr = /vagp dr + O.. (1.100)
Q Q
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On the other hand, thanks to (1.42)) and (1.15))

/ p-v-Vdx
Q.\Q

which, together with (|1.100]), gives

< Ipell 2o llvell oy Vol sy = Ok,

/ psdiv(vggp)dx:/ pgdivvgtpd:c—l—/pUde:c—i—Og. (1.101)
. . Q

Finally, from the equality

Du. : D(v.p)dx = Du, : Dv. pdx + Du, : (v8 ® Vgp) dz,
Q. Q. Q.

the strong convergence of v, to v in L*(2)3, the weak convergence of Du, to Du in L?(£2)3*3

and that by (|1.42))

Du, : (v. ® V) du
Q.\Q

< [[Duel| p2oys<s l|ve |l Looys IV ll s @ays = O,

we derive

Du. : D(v.p)dx = [ Du.: Dv.pdx — / Du : (v® Vy)dz + O.. (1.102)
QE QE Q

By (1.94)), (1.95), (1.96)), (1.97), (1.99), (1.101)) and (1.102), we have then proved

e—0

lim ( Du, : Dv, pdx — / pdiv (ve)e dx) = —/ Du: (v®Ve)dz
Q. Q

€

+/va<pd:v+/fvgoda:+/G:D(vcp)dx+/gvcpdx.
Q Q Q r

But using vy as test function in the equation satisfied by the pair (u,p) (Theorem [1.5) we
have that the second member of the above equality is equal to

/Du:Dvgpdm—/pdivvgpdx it A =0,+00
Q Q
/Du:Dvgod:v—/pdivvgodx+)\2/Ru/v/g0dx/ if A € (0, 400).
Q Q r

This proves ((1.92)) and ((1.93)).
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Step 3. Let us prove ((1.29)), (1.33)).
Using v. = u. in Step 2 and taking into account that divu. = 0 in €, equalities (1.92)

and ((1.93)) give for every ¢ € C}(w x (=1,1)), ¢ > 0 in w x (—1,1),

liH(l] | Du ¢ dv = / |Dul*odx, if A =0,+o0, (1.103)
v Ja. Q

lim/ |Dua|290da::/|Du|2g0dx+)\2/Ru’u’god:E', if A € (0,400). (1.104)
0. Q r

e—0

Since u, converges weakly to u in H'(Q)3, equality (1.103) proves (1.29).
In order to prove ((1.33), we take r. > 0 such that

limr. =0, lim - = +o00, lim - | Dul*dz = 0. (1.105)
e—0 e—0 ¢ =0 € {z3<e}

Then we decompose

\Dua|290d93=/ |DU5|290d:B+/ |Du£]2¢dm—l—/ |Du.|*odr.  (1.106)
Qe Q:\Q {0

{xz3>re} <w3<re}

Let us estimate each term in the right hand side of (|1.106]).
Clearly

e—0

liminf/ | Du|*p dz > 0. (1.107)
Q:\Q

For the second term in the right side of (|1.107]), we use that for every p > 0 the weak
convergence of Du, to Du in L*(w x (p,1))*>*3 gives

e—0 e—0

liminf/ | Du|*p dx > liminf/ | Du|*p dx 2/ | Dul?p dz.
{ { {

T3>Te } z3>p} z3>p}
So we have
1iminf/ | Du|*p dx > sup/ |Dul*p dx = / |Dul?¢ dx. (1.108)
=0 {xz3>re} p>0 J{z3>p} Q

For the third term on the right hand side of (|1.106]), we take M > 0 and ¢ > 0 small
enough such that M < r./e. Defining u. by (1.44) and using the change of variables ((1.46))
and the uniform continuity of ¢, we get

[ ipupedas= [ |DCo)ele0)drdy +o.
Qn{xz<re} wxé% \/g

Ue |2
> D,(—)|"¢(2,0) dz'dy + O,
/wxéﬂl e |

(1.109)
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On the other hand, we saw in Step 1 in the proof of Theorem that u./+/e converges
weakly to @, defined by (1.31), in L? (wp; HY(Qw)?), for every p > 0. Therefore

e—0

liminf/ | Du|*p dx > Sup/ | Dyafe(a’,0) da’dy
{0 w

<:C3<T5} M>0 XQ <1 110)
:/ |D,i|*p(z,0) da'dy = /\Q/Ru/u/gp da’.
wXCA) r
By (1.104)), statements (1.106), (1.107)), (1.108]), (1.109) and (1.110) imply
lim |Du.|*¢ dx = 0, (1.111)
e—0 QE\Q
lim |Du. > dx = / | Du|?p dx (1.112)
e—0 Qn{zs>re} Q
and ~
lim |Du.|*o dx = lim/ ‘Dy(ﬁ)fcp(x’, 0) dx'dy
e—0 Qn{zs<re} ¢—0 wX@%g \/E (1 113)

— [ Dot 0)de'dy
wX@Q

From ((1.112)), (1.113) and the weak convergence of u. to u in H'(Q)? and of \/%Dyﬂa to
Dy in L*(w x Q)**3, for every M > 0, we obtain

lim |D(u. — u)|*pdx =0, (1.114)
=0 Jan{zs>re}
a 2
lim D, <% — @) o(2',0) dz'dy = 0. (1.115)

UJX@LE
Therefore, taking p > 0 such that p(x) = 0 if 2/ ¢ w, and using that u.(z’,y) does not
depend on 2’ in C¥ x Y, for every k' € I,., we get

( ~

1 U T
Du, — —/ D <—> (2, =)d7

/{O<x3<r5} ) 62 Ce(z') Y \/g €

1 u-(2,y) )
3 e\~ / /
=€ — D, | ——— —u(¢, dz

k’ezlpa/ATe e3 /Cé' y( Ve =)

2
</
UJX@T;

2
pdx

2
p(a',0) dy + O. (1.116)

1 ~ ~
—D,u. — Dyu

NG o(2',0)dz'dy + O, = O..

\
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This gives a corrector result for Du, in Q x {z3 < r.} (this type of correctors is usual when
we apply the unfolding method, see e.g. [10], [13], [14]).

Let us improve using the smoothness properties of . By , Holder’s inequal-
ity, (1.25) with r = 4, Lemma below and we have

u x 1 u x 2
D,|—)(\=)—= D (—) (', =)dZ| pdx
/{:L’3<rs} ! (\/g) € e? Ce(a') ! \/g <
C 2/ 1
¢ w@ 0 -5 [ wE 0| [DFO)] pds
c ; {za<re} e Jeuw) ’

1
wi (@, O)——/ ui(2',0)dz’
6(33')

/\

&2

™

2

21(/{%@

)

1

4 2 1
~ T 2

s0d5v> ( / \Dy¢’(—)|4<pdx>

{zg<re} €
4 2 4 1
d’ ( [ ’D dy>
Q
3

1
u;(2',0) — —2/ u;(2',0) dz’
g C. (")

IA

C

” Kel,.”C¢

Thus, (|1.116|) implies

1 x
Du. — —=D,u(z',=)| @dz = 0. (1.117)
/Qﬂ{m3<7“5} ve ! €
By (T111), (T.114), ([.117) and
. 1 L, x|
lim | Dul*dz = lim ~ ‘Dyu(x : —)‘ dx =0,
e—0 QN{zs<re} e=0¢€ QN{za>r:} €

(the second equality is immediate using the change of variables y = x/¢) we deduce ([1.33)).

Step 4. Let us now prove that ((1.30]) and (1.34)) hold.
For every € > 0, let L. : L3(€2.) — H;j(£2.)? be the linear continuous operator defined

in Proposition i), and let us denote v. = L.(p.). Then divv. = p. in 2., and thanks to
(1.15)) and Proposition i), we have

[vellzrg (002 < ILellllpellz2in < €5 Ve > 0. (1.118)
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Thus, it is not difficult to prove that there exist a subsequence of ¢, still denoted by e,
and v € H}(Q)3, with dive = p in €, such that v. converges weakly in H'(Q)? to v. Taking

this sequence v, in Step 2, equalities (1.92)) and (1.93)) give for every ¢ € Cl(w x (—1,1)),
p>0inwx (—1,1)

liné ( Du, : Dv, pdx — |p5|2g0da:)
e— Q.

Qe
/Du:Dvgodx—/]ngodx.
Q Q

lir% (/ Du, : Dv. pdx —/ |p5|2g0dx>
e— Q.

Qe
:/Du:Dvnpd;z:—/|p|2g0dx+)\2/Ru’v’goda:’.
Q Q r

if A =0, +00, (1.119)

if A€ (0,+00).  (1.120)

If A\ =0, +oo, (1.29), (1.118)) and the weak convergence of v. to v in H*(Q)3, give

lim/ DuE:DvEgpd:v:/Du:Dvgod:r,
Q. Q

e—0

and then, by (1.119)), we deduce
lim/ |p€|2g0dx:/ Ip|? o de. (1.121)
e—0 Q. Q

Since p. converge weakly to p in L*(Q), equality (1.121)) proves (1.30)).
If A € (0,+00), we apply Lemma to v. which gives the existence of © € L?*(£2;V?)

such that, as v = 0 on I, satisfies

U3(2’,y,0) = = AV (y )0 (2'0) =0 ae. (2/,y) € wx Y, (1.122)

.T/

and such that, up to a subsequence, the sequence v.(z',y) = U€<€/€(;)+€y/, eys) ae. (2',y) €

w, X Y, satisfies

1 .
7@ —vin L*(w,; H'(Qum)?), Vp, M > 0. (1.123)
S

In particular, taking into account that

.. . S
—div, 0. = Vep. inw, XY,

NG
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we deduce )
div;v =p inwxQ. (1.124)

Using ((1.29), (1.118)), the weak convergence of v. to v in H'(2)3, the change of variables
(1.46)), the uniform continuity of ¢ and ((1.123) we obtain

1
lim [ Du.: Dv.pdr = / Du : Dvpdx + hm/ —D,u(a, E) : Dv. pdx
Q Q. Ve €

e—0 Q. e—0

(1.125)
= / Du : Dvypdx +/ D,u : D,vp(a',0) da'dy,
Q wxQ
but by taking v as test function in (1.77]), (1.122)) and ([1.124)) , we deduce
/ Dy : Do p(a’,0)dx'dy = / |pI* (', 0) da'dy. (1.126)
wX@Q wx@Q

From ((1.120)), (1.125) and ({1.126)) we prove

lim / PP pde = / P2 pdz + / B2 o, 0) da’dy.
=0 Jq, Q wxO

This equality is analogous to (|1.104)) (recall that / Ru'v da' = / ) |D,i|? do'dy). There-
r wXQ
fore, reasoning as in Step 3, we deduce (|1.34]).

g

Lemma 1.19 There exists C > 0, such that for every t > 0 and every u € H*(tY’ x (0,t)),

we have )
/ lu(2’,0) —/ u(z',0)d?'|*dz < C (/ |Vu| dx) :
£y’ 1y’ 1Y% (0,t)

Proof. The result is well known for ¢ = 1. The general case follows using a dilatation
which transforms Y’ x (0,1) in tY” x (0, t).

0

Proof of Theorem [1.12, Clearly, we can always assume g = 1. On the other hand,
assumption ((1.15)) implies that up to a subsequence, there exist u € H'(Q)3, p € L2(Q) such

that (1.16|) is satisfied.
We define f. € Lg(QE)3 by f: = f — (u. - V)ue, and g. € L*(T.)3 as g. = —7u..
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By ([1.42)) and (1.15)), we have

(e - V)| < fuellsopll Duellzayses < ClDuclfaa e < C.

L% (Q.)3
This implies that (1.11)) (with G. = 0) and ([1.26) are satisfied. By the convergence in
measure of u,, this also implies

£ f—(u-V)u in L3 (Q)%.

The inequality

2

0
< 055/ |Osu. (', 1) |2dt
5

RIES)

/

[ue(2',0) — ue(a', _55\1;(%)”2 _

0
/ Osuc (', t)dt
5.0 (Z)

and the compactness embedding of H'(Q) into L?(T") proves that

/

ge (2, —55‘11(%)) — —qu(2’,0) in L*(w)?.

So, since (ue, pe) satisfies (1.35)) we can apply Theorems and to conclude Theorem
.12

g

1.5 The case where lim §./¢ > 0.

Although our main interest in the present paper is to study the asymptotic behavior of a
viscous fluid satisfying slip conditions on a boundary defined by x5 = —(55\1/(%/) whith . /e
tending to zero, we give in this section a simple proof of the fact that if lim% € (0, +o0],
then the main result established in [12] (for the case J. = €) still holds true. This is given
by the following Theorem.

Theorem 1.20 We consider Q., Q, I'. and I' defined as in Section [I.3. We assume U €
Wﬁl’oo(Y’) and

ims. =0, lim%e (0, +00]. (1.127)

e—0 e—0 &€

Then, for every sequence u. € H'(Q.)?, such that ||uc| g (q.)2 is bounded and satisfies u.v = 0
on T, we have that the weak limit uw = (u',u3) of u. in H*(Q)? (which exists at least for a
subsequence) satisfies

uz(2',0) =0, ' (2/,0)VI(y) =0, a.e (2',9) €wxY" (1.128)
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Proof. Let Y be defined by
V= {(y,ys) €Y' xR: —U(y) <ys <1}.
Similarly to | , for p > 0 we define 4. € L*(w,; Hl(?)3) by

x/

(2, y) = u. (gm(g) +ey,0.y3) ae. (2,y) €w, x Y,
where the function x is defined in Section [I.2} Using

5. 1
/ A <—2|Dy,aa|2+5—|ay3a€|2) dx’dyg/ | Du, [2dz
wp XY € € Q.

/ (2!, o, 0)2da’dy < / i (2/0) [2da
wp XY’ w

we have that 4. is bounded in L?(w,; H'(Y)?) and that D, . tends to zero in L2(w, x Y)?*3,
Therefore, extracting a subsequence if necessary, we can assume that there exists a function
u € L*(w,)? such that

and

e — @ in L(w,; HY(Y)?). (1.129)
On the other hand, since the weak convergence of u. in H'(£2.)? implies that u.(-,0) converges
strongly to u(-,0) in L?(w)?3, the two-scale limit of u.(-,0) (see e.g. [I], [I8]) coincides with
u(+,0). Since the limit given by the unfolding method coincides with the limit given by the
two-scale convergence (see e.g. [14], [17]), this means that 4.(2',y/,0) = ug(sfi(%’) +¢ey/,0)
converges weakly (in fact strongly) to u(-,0) in L*(w, x Y”)?. Using that the function @
which appears in ([1.129) does not depend on ¥, we then have

w(x') =u(2',0) ae. 2’ €w. (1.130)

Now, we remark that the equality u.v = 0 on I'. can be written as

)

55 ~/ / / / ~ / / / / /
— (o', =U(y))VU(y) + t.3(2", —T(y)) =0 ae. (2',y) €w, xY" (1.131)

If % converges to n € (0,400), passing to the limit in this equality by (1.129)) and (|1.130)),
and taking into account the arbitrariness of p, we conclude
nu' (', 0) VU (y') +uz(z',0) =0 ae 2’ €wxY' (1.132)

Taking the integral in 3’ € Y’ in this equality and using the periodicity of ¥, we get the first
equality in (1.128)) and then (|1.132)) gives the second equality in (({1.128)).
If % converges to +oo, (1.131]) implies that «/(z/,0)V¥(y') = lim u (2, =U(y))VU(y) =
£e—

0 in L?*(w x Y') and then the second equality in (1.128]). For the first one we reason as in
Step 1 of the proof of Lemma [I.1§

4
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Chapter 2

Estimates for the asymptotic
expansion of a viscous fluid satisfying
Navier’s law on a rugous boundary
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Abstract.

In a previous paper, we have studied the asymptotic behavior of a viscous fluid satisfying
Navier’s law on a periodic rugous boundary of period £ and amplitude ¢., with d. /e tending to
zero. In the critical size, §, ~ 5%, in order to obtain a strong approximation of the velocity
and the pressure it is necessary to consider a boundary layer term in the corresponding
ansatz. The purpose of the present paper is to estimate the approximation given by this
ansatz.

2.1 Introduction

For a smooth open set w C R?, and a smooth function ¥ periodic of period Y’ = (0,1)?, we
have studied in [15] (see also ([16]) for the case of a thin film) the asymptotic behavior of a
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viscous fluid in the domain €, C R? described by

Ty T
Q. = {(.Tl,l’g,l'g) D (71, 72) €W, —55\11(?1, ?2) < 1wy < 1},
where €, §. are two positive parameters such that €, §. and J. /¢ tend to zero. The boundary

condition assumed on the slightly rugous boundary I'.
T T2
I'.= {($1,$27$3) D (T1,72) Ew, T3 = —55‘1’(?; ?)}
was not the usual adherence condition but the Navier law
Ue
us -v=0onlY,, B parallel to v on I',,
v

where v denotes the unitary outside normal vector to 2. on I', and u. the velocity of the
fluid. Depending on the limit A of 6./ 63, it was proved the existence of three different regimes
in the behavior of the fluid.

If A = 400, the fluid behaves as if we imposed Dirichlet conditions not only for the
normal velocity on I'., but on the projection of u. on the linear space generated by the
vectors

{(ay1ql(y1?y2)7ay2\p(y173/2)>0) : (ylay2) < Y/} U {(0707 1)}

In particular, if this space agrees with R3 (which always holds, except if ¥ only depends of
one variable, i.e. W(y;,y2) = ¥(y1) or U(y1,y2) = ¥(y2)), the fluid behaves as if we imposed
the usual adherence condition u. = 0 on I'.. This gives a mathematical explanation of why
a viscous fluid adheres on the boundary. It can be due to the existence of micro-rugosities.
The result extends the one obtained in [I3] for §. = . See also [10] for a related result
relative to a non-necessarily periodic boundary.

If A € (0, +00), the boundary condition for the limit problem is

uz =0 on {z3 = 0}, —03u' + N Ru' = 0 on {z3 = 0},

where u = (u’, u3) € R? x R denotes the limit of u. and R is a nonnegative symmetric matrix
of dimension 2 x 2. In this case the rugosity is not so large to imply the adherence condition
in the limit but it makes to appear the friction term A\?Ru’ which is similar to the strange
term which appears in the homogenization of Dirichlet problems in varying domains (see e.g.
[18]). A related result has been obtained in [I1] for non-necessarily periodic boundaries.

If A = 0 the rugosity is so small that it has not effect on the limit.

The above result is proved using the unfolding method ([5], [12], [14], [17], [19]), which
is very related to the two-scale convergence method ([1], [20]).

The case A € (0,+00) can be considered as the general one. The other cases can be
obtained from this one passing to the limit in \.

66



For A = 0, 400 the velocity u. and the pressure p. converge strongly in the topologies of
H' and L? respectively to the solutions u, p of the limit problem. However, for A € (0, +00)
the convergence is only weak. To obtain a strong convergence it is necessary to add a
boundary term to the functions v and p. Namely, we have the approximation

() ~ u(x) = WE (S (D) + 0 (Duala)),

A4, 9, T
ple) ~ (@) = (@) + 7 D),

where the pairs (&,Zf‘), i = 1,2, are the solutions of a Stokes problem in R? x (0, +0c0)
(see below). Our purpose in the present paper is to obtain an error estimate for the
differences of u., p. and their respective correctors. We prove that they are of order /z in
the topologies of H' and L? respectively. The exact result is given in Theorem .

To finish this introduction we refer to [2], [3], [4], [6], [7], [8] and [9] to other results relative
to the behavior of viscous fluids in domains with rugous boundaries satisfying different
boundary conditions of the ones imposed in the present work.

(2.1)

2.2 Error estimates

The present section is devoted to state the main result of the paper, Theorem [2.3] which
estimates the difference between the left and right hand sides of .

We will decompose the points x of R? as x = (2/,x3). We also use the notation 2’ to
refer to a point in R2.

For a bounded connected smooth open set w C R?, a function ¥ € W2°°(R?) periodic of
period Y’ = (0,1)? and two nonnegative numbers A, e > 0, we define

) /
Q=wx(0,1), QE:{xGR:S: T € w, —)\53\11(2)<x3<1}
€

/
F:wx{0}7 F6:{$€R3: :L’,Ew, Ig:—Aé‘i\Ij(ﬁ)}
9

For f € L?(R?)3, let us consider the Stokes problem in €2,

—Au, + Vp. = f in Q. div u. = 0 in €,

2.2
us -v=0onlIY,, (22)

ou

—= parallel to v on Ty, u. =0 on 9Q, \ I, / pedr =0,
8]/ Q.

where v denotes the outside unitary normal vector to 2. on I'..
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The asymptotic behavior of (u.,p.) has been studied in [I5]. We denote by (&’QAZ),
¢ = 1,2, the unique solution of the Stokes problem

p

~AG+VG =0 nR2xRT, divg'=0 in R2x R*
</b\i(.,y3), 7'(.,y3) periodic, of period Y, for a.e. y3 € (0, 4+00)

- . 2.3
D¢ € L*(Y' x (0,+00))*3, g€ L*(Y' x (0, +00)) (2:3)
P =080 on R®x {0}, 93¢’ =030, =0 onR>x {0}, lim ¢ =0.
\ Y3—00
Then, we define the matrix R € R?*? by
Rij = /@Dy& D, dy, Vi, je{1,2} (2.4)

With these definitions, the following theorem is a consequence of the results proved in [I5].

Theorem 2.1 The solution (u.,p.) of converges weakly in H'(Q)? x L*(Q) to the
unique solution (u,p) of the Stokes problem

—Au+Vp=finQ, divu=01inQ
) (2.5)
us=0 onT, —0su'+NRu =0 onT, u=0 ondQ\T, /pdx—().
Q

Moreover, taking

i () = u() = WE (6 (D (@) + ¢ (S)ua(a)). (2.6)

pe(e) = pl0) = = (@ Qhun(e) + FCuala)), (27)

the following corrector result holds
lim (el @iz + 1Pl r2@an) + [lus = @ellm @y + 1P = pellz2()) = 0. (2.8)

Remark 2.2 In [15] the domain €. and the surface I'. are respectively defined by
/

/
QE:{xER3: z cw, —65\11(%)<I3<1}, FE:{J;ERE}: ¥ cw, :(:3:—55\11(%)},

where 0. is an infinitesimal with respect to €. As we explained in the introduction, the case
3

considered here, 6. ~ \e2 is the most interesting one (critical size). The other cases can be

obtained from this one taking A\ converging to zero or plus infinity.
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Our purpose is to estimate the differences u. — @, and p. — p.. Indeed, instead of working
with @, and p. which are only defined in €2, and not in €)., let us consider the functions

uz(z) = t(ne(x)), pi(z) = pe(ne(z)), ae z €y, (2.9)
where 7. : (). —  is given by

T Aes (Y
ne(z) = | 2, 3 832 (,E) , Vo e..
L+ A2 W (%)

Using these functions, we have the following theorem, which is the main result of the paper

Theorem 2.3 We assume that the function u defined by belongs to H*(Q)3, with
s > 3/2. Then, there exists a constant C > 0 such that the solution (u.,p.) of and the

functions ul, pt defined by satisfy
[ue = uZll (o + 1P = PZll 2.y < CVe. (2.10)
As a corollary we get the following improvement of ([2.8)).

Corollary 2.4 We assume that the function u defined by belongs to H*(Q)?, with
s > 3/2. Then, the solution (u.,p.) of and the functions u., p. defined by (2.6) and

satisfy

|well i s + 1Pl 2000) + e — Gellme)s + [Ipe — Pellr2) < CVe. (2.11)

2.3 Proof of the error estimates.

Let us prove in the present section Theorem and Corollary estimating the difference
between the solution (u., p.) of problem and the asymptotic expansions defined by
and , respectively.

Along this section, we denote by C' a generic constant which does not depend on ¢ and
can change from line to line.

To simplify the notation we will denote

Q=Y"x(0,+

where we recall that Y refers to the unitary cube (0,1)%. We will use the subindex £ to
denote periodicity with respect to Y’. For example, Lg(@) denotes the space of measurable
functions A in R? x (0, +00) such that for a.e. y3 € (0,400), h(.,ys3) is periodic of period Y’
and satisfies [|hl| 2, < +oc.

The following result giving some smoothness and decay at infinity properties of the
solution (¢, 7 of (2.3), is proved in [I7).
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Proposition 2.5 For every r € [1,+00), one has
IDG 1 @yons + 131 gy < +oo. (2.12)

Moreover, ((Z’, q") belongs to C’g’o(Q) X Cg’o(@\) and for every o € N3 and every 6 > 0, there
exist two positive constants Cs, and T (the last one does not depend on § or a) such that

DG (y)] + DG (y)] < Crae™™, Vy € R?x (5,+00). (2.13)
Other interesting property, we will need later, of the functions ((Z’, q') is given by the following
result.

Lemma 2.6 Let w € H*(2) be with s > 3/2. Then, there exists C > 0 such that for every
i=1,2, and every v € H'(Q)* with

/

v=0 ondQ\T, )\\/Ev'-Vy/\IJ(%)+vg =0 onT, (2.14)
one has
ﬁ/D(w&(%) Dvd:c——/wq dwvdw—l—)\Z/R”wvj dz'| < CVel|lvl|lm g
Q 9
(2.15)
Proof. For v € H'(Q)? satisfying ([2.14)), we have
Ve | D (wgg (g) :Dvdr — — / wg' (=) dive dz
0
~
= (=) ®@Vw) : Dvdr — : Vw) d
Ve [ (s )1w fﬁym>w®w>x
1 .
—i-%/ﬂé\z(g) (Vw -v) de + — / Dygb (wv)dr — — / 7'(=) div (wv) dz.
(2.16)

Let us estimate the right-hand side of this equality.
Since ¢ is in Lg°(Q)* and w belongs to H'(Q2), the first term on the right-hand side of

(2.16)) satisfies

\/E/Q (Zsf(g)@vu;) - Dvdz| < CVE|v]may. (2.17)

For the second term on the right-hand side of (2.16]) we use the decomposition
‘\/_/DygbZ t(v® V) dz

T , 1 1
D, )|l Vol ds'de+ — [ [

(2.18)

Dy&'(g)] ||| V| da’ dozs.



To estimate the two terms on the right hand side of this inequality, we use that due to
w in H*(Q), with s > 3/2, there exists ¢ > 0 such that for every z3 € [0,1] the function
Vuw(.,x3) € L?*°(w) and

/ |Vw (2, z3)|*™ da’ < C, Vase[0,1]. (2.19)

Analogously, since v belongs to H!(€)3, we have

/|v(x',x3)|2dx' < Ol Vs € (0,1). (2.20)

2(2+5)

Therefore, using that Dygbz belongs to L, (Q)?’X?’, we can estimate the first term on the
right-hand side of (2.18) by

Dygbz(g) [v]|Vw| dz’ das
wgn | T : o
/ ( yﬁbz )’ dm’) (/ |U|2dx') </|Vw|2+5dm') dxs
)
N =0
< (Cer+s Dy¢2(g>‘ d:):’d:p3> ||U||H1(Q)3 (2‘21)

1
1
= (e 53//
0 %w

) 2(2+9) 2(249)

_1 Ai F]

<< (< [ 03] dy> ol < CVElullmoy
Q

2(246) 3(249)
22
Dy¢ ‘ dy'dy3> V]| 71 ()3

To estimate the second term on the right-hand 81de of - we use - and the
exponential decay at infinity of quﬁz given by (2.13)). This gives

C /1 oy
< — | e = das|v]lm) < CVE|Y| iy
Ve J: @ )

Dyai(g)‘ ||| V| da’ dz
which substituted in (2.18]) and taking into account ([2.21]) proves

’%/ﬂpya(g) (v ®@ V) do

71
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A similar reasoning shows

\% [aE) w0 do

It remains to estimate the fourth and fifth terms on the right-hand side of (2.16]). For this
purpose, we use that (¢, g?) is a solution of (2.3). Taking into account that (2.14) and the
boundary condition ¢4 = 9;¥ on R? x {0} imply

< CVel[vllmy-. (2.23)

2 2
~. T ~:
A E (=) | =0 Q\T A E H(=)] =0 r
wo + Aw+/e <j:1 (e (€)> on Q\ T,  wus + Mwy/e (j:l Uy¢3(€)> onl,
easily shows

\/_/Dygbl D(wv) dx — —/ —)div (wv) dx
:_AZ(/ Dy¢ wv]¢f( d:z;—/” )div (wvjéﬁj( )> )

:—)\Z(/Dygbl : A( )®V(wv])>d93—/

_22/91)3/2%;) wv; ygb( )> dx.

Splitting the integral in €2 as the integral in w x (0, £) plus the integral in w x (g, 1) (as we did
in the estimation of the second term on the right-hand side of ([2.16} - using that w € H*(Q2),

with s > 3/2, that gbl ¢2 belong to VV1 T(Q) ,forevery r > 1, q belongs to L"(Q) for every
r > 1, and the exponential decay at mﬁmty of Dyél y¢2 and ¢* we easily show that

Z(/prg(g); (F(5) & Viw,)) dx—/ﬂZf(é)( (woy) - 3(5)) d )
< CVe|vlla -

It remains to estimate the last term in (2.24). Since v = 0 on dw x (0, 1), we can assume

(2.24)
7 (Vlwey) - 3(5)) d

(2.25)
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wv; = 0 extended by zero to R? x (0,1). Therefore, for a.e. 23 € (0,1) one has

y )
< ( / ) e

< Cellwv|| g1 ws e + Cvxsl|wo| grq)s.

N

(w)(o'szs) = [ (wey)(a’+ 2y, 0)dy

[NIE

(ws)(a'sz3) = [ (wop)a’+ =y .0) dy

/, ((wvj)(xl + 5y/7 LL’3) - (ij)<LL’, + 6y/7 0)) dy,

From this inequality and w in H*(2), s > 3/2, it is easy to check

1 ~ T ,
g/QDyng (g) wv, ygb](g)) dx—/FRZ-jwvj dx

1 ~ N
< E/Q y Dy@(g) : ((wvj)(g;’+5y"0)Dy¢J<§>) dy/dl'—/Fszij A
~. . % 1 N N %
+C<(/Q|Dy¢l(§)’2‘Dy¢](§)|2dl') —l—/()@ (/’Dy¢l(§)HDy¢J(§)|dx,) dx?»)HUjHHl(Q)

(2.27)
Using firstly the change of variables 2’ = 2’ + ey/, then the change y3 = x3/¢ and the
Y'-periodicity of ¢%, i = 1,2, we get

1 T Y, ; ~ T ,
E/Q . Dy¢ (g) : <(wv])(x +5y,0)Dy¢ (€)> dy' dx
1 /1 ~ T ) / o o
_ g/0 /R | D () <(’LUUj)(?L’ +ey ,O)Dyw(g)) dy' da’ das
1 /! o o
_! / /R [ PAE ) D - b ) (,0)
/ / Dy'(y) : Dyé (y) dy (wv;)(#', 0) d='
R2 JY'x

which, taking into account the definition 1) of R, property 1} of ngS", 1 = 1,2, and
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w € L*(I), gives

1 il / / Tl / /
—/ D,¢'(—) : <(wvj)(x +ey ,O)Dygb](—)) dy' dx _/Rijwvj dx

3

- - (2.28)
= // (2:400) 1 Dy¢" ()| 1 Dy¢ (y)| dy [wosl(2,0) da’ < Ce™= |[v; || 1 ()-
w ' X %,—i—oo

On the other hand, by using the change of variables y = x/¢ and (2.12)) with » = 4, we
obtain

/ D, & ()21, () Pdw < Ce / D, ()21 D, & (y)|2dy < Ct. (2.29)
Q € € Q

Finally, splitting the integral in (0, 1) as the integral in (0, ) plus the integral in (g,1), and

using again properties (2.12)) and (2.13)), we deduce
1 1
Z3 ~ T ~. T 2
[ 2 ([ Ipa@ine Sl
0 € w 5 €

1 1
€ 2 ~ . 2 ! .
< ([ Ba) ([ 0@ OR0dOPE) ve [ YRt <oy
0o € wx(0,6) 2 € e ¢

(2.30)
Thanks to (2.28]), (2.29) and (2.30)), estimate ([2.27)) reads
1 ~ X ~ T ,
~ [ D) <wvjpy¢7(g)) dr — | Rijwv;dr’'| < CVE|v; |- (2.31)
Q r
Using estimates (2.25)) and (2.31) in (2.24) we then deduce
1 ~ T 1 x 2
— | D,¢"(%) : D(wv d:r,'——/é\"—div wv) dr + A\ /Riwvda:’
7 [ DD Doy - — [ 3 E)div ) 3 R

S C\/EHU”Hl(Q)S

By (2.16)), (2.17)), (2.22)), (2.23), (2.32)), we conclude (2.15). O

We are now in position to prove the main result of this paper.

Proof of Theorem In order to estimate the differences u. —u? and p. — p?, the idea is
to show that (u?, p?) is the solution of a Stokes problem similar to (2.2)). This will be carried
out in Steps 1 and 2. As a consequence we will conclude in Step 3 the proof of Theorem [2.3
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Step 1. Using that the function u} satisfies the following boundary conditions of 02,

ul =0 on 00\ T

* Ne / iy ! / 2N1 ! '
ul v = / u(2,0)(¢") (—, 0)4uz(2’,0)(¢*)'(—,0) ) - VyyU(—) on I..
1+ 222V, 0 () g g g
(2.33)
Therefore, taking p € C*°([0,1]) such that p(0) =1, p(1) = 0 and defining
p(x3)\%e ~ T oy, T x
he(w) = — (@) +ua(@)(3)(2)) - V(%)
1+ 2]V, ()2
we get that similarly to the function w. defined by ([2.2)), the sequence
u = uz + (0,0, (he 0 7c))
satisfies
u =0 on 0 \Te, uw-v=0 onl.. (2.34)
Moreover, taking into account that
we easily deduce that the difference between u}* and u? can be estimated by
[uf* = ull . < CVe. (2.35)
Step 2. Let us prove that for every v € H'(.)? which satisfies
v=00n 0N \I'., v-v=0onT,, (2.36)
one has
/ (Du? : Dv — pidivv) dx — / fodz| < CVe|v||l .. (2.37)
c Q

For this purpose, we define f € L*(Q)? and o € H'(Q)?* by f = fon ' and & = von.!
respectively. Thanks to (2.36)), the function o satisfies (2.14]) (with v replaced by ©). Then,

using the change of variables z = 7.(z), and that the jacobian matrix D1, satisfies

1Dn. — 1| (038 < OV, (2.38)
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we get

/ (Du? : Dv —pidivv) de — | fode

€ QE

<

/ (D : Db — podiv) ds — / fode| + CVEl ol
Q Qe
Taking into account definitions (2.6]), (2.7]) of @. and p., the equation ({2.5)) satisfied by u and

(2.15)), we easily deduce
/ (Du? : Dv — pidivv) d:z:—/ fudx /ff)dz—/ fudx
Qe Q Qe
< [ Afeldo+ [ |fllo = oldz+ CVElollmay < OVEIlm .
0.\ Q

Qe
This proves (2.37)).
Step 3. By (2.2)) and (2.37), we have that

/ (D(ue — ) : Do — (p. — p)divo) da

€

< + CVellv| g .

< OVelvlla s, (2.39)

for every v € H'(£2.)? which satisfies (2.36)). This implies in particular that

IV (pe = P10y < C (VE+ llue — ulllma.y) - (2.40)
which by Proposition 4.1 in [15] gives
* 1 * *
po—pi [ e—pddr]| < C(WEH I aley) (241
2| Ja. 12(0.)

Using ’Ehat p. has zero integral in €., p has zero integral in €2, the functions ¢*, i = 1,2, are
in LZ(Q), the function u is in L>(£2)?, the change of variables z = 7.(z) and (2.38), we also

have
/Q (pe — p)dz| < C <¢E+Z/Q ]?(f)\m) <OVe,

and so, (2.41)) reads as
lpe = PXll 2o,y < C (Ve + llue — wlllmons) - (2.42)

On the other hand, since u}* satisfies (2.34]), we can take v = u. —u}* in (2.39)), which thanks
to ([2.35)) gives

/ (D(ue —ul) : D(ue —ul) — (pe — p2)div (ue — u})) dz

€

(2.43)
S C (\/EHUE — U:HHl(QE)S —+ 8) .
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Using that the functions u., u, and ggi, 1 = 1,2, have zero divergence, the change of variables

z = n.(z) and (2.38)), we get

/ |div(u6—u;)|2dx§0/ |divﬂ6|2dz—|—05/ |Dii|*dz
Qe Q Qe

2
sc;/ﬂ

Now, using for ¢+ = 1, 2 the decomposition

/Q 5¢(§)‘2|Dui(2)|2dz=/:[u &(S)\QIDui<2)\2dZ’d23+[/w

taking into account that thanks to w in H*(Q)?, with s > 3/2, there exists § > 0 such that

, (2.44)
| Du;(2)|?dz + Ce.

7

~ 2
G IDw(2)Pde! dzs,

/ |Du|*dy’ < O, Vz € (0,1),
wx{z3}

and the properties 1} and 1} of the functions </;§\i, 1= 1,2, we have

~ 2
/ 55| 1Duz)dz < -,
Q 9
which substituted in (2.44]) shows
| div (ue — ul)|| 120 < CVe. (2.45)

From , taking into account and , we easily deduce
[ue — uZlli(a.s < CVe.
This inequality and finally prove . U
Proof of Corollary . It is an easy consequence of and the inequality
[uZ a0y + 1Pl L2a00) + [[Ul = Gellm @) + IIpE = Pellrz@) < CVE,
which is simple to check. [
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Abstract.

We consider a viscous fluid of small height € on a periodic rough bottom I'. of period r. and
amplitude d,, §. < r. < &, where we impose the slip boundary condition. When ¢ tends to
zero we obtain a Reynolds system depending on the limit A of (d.1/€)/(rey/72). If A = 400,
the fluid behaves as if we would impose the adherence condition on I'.. This justifies why
this is the usual boundary condition for viscous fluids. If A = 0 the fluid behaves as if I'.
was plane. Finally, for A € (0, +00) it behaves as if I'. was flat but with a higher friction
coefficient.

Résumé.

Un fluide visqueux dans un domaine de faible épaisseur qui vérifie la condition de
glissement sur une frontiere legéerement rugueuse. On considere un fluide visqueux
de petite hauteur ¢ sur un fond rugueux I'., périodique de période r. et amplitude 6.,
). € r. < €, ou on impose la condition de glissement. Quand ¢ converge vers zéro on
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obtient un systeme de type Reynolds qui dépend de la limite A de (d.v/2)/(7=4/Tc). Si
A = 400, le fluide se comporte comme si on aurait imposé la condition d’adhérence sur I'..
Ceci justifie qu’on impose d’habitude cette condition pour un fluide visqueux. Si A = 0 le
fluide se comporte comme si I, était plate. Enfin, pour A € (0, +00), ¢’est comme si I, était
plate, mais avec un coefficient de frottement plus élevé.

Version francaise abrégée

Pour un fluide visqueux dans un ouvert de R3 & frontiere rugueuse, on sait que la condition
de glissement et la condition d’adhérence sont asymptotiquement équivalentes. Ceci donne
une justification mathématique de pourquoi on impose d’habitude la condition d’adhérence
pour les fluides visqueux. L’équivalence entre la condition de glissement et la condition
d’adhérence a été montré dans [I0] dans le cas d’une frontiere rugueuse de période ¢ et
amplitude e. Une extension a des frontiéres non-périodiques a été obtenue dans [8]. Dans
[11], il a été considéré le cas d'une rugosité faible, plus exactement, la frontiere est décrite par
une fonction périodique de periode £ mais avec amplitude d,, ou . tend vers zéro. Alors, il a
été montré que si d, /%2 tend vers I'infini, ’équivalence entre la condition de glissement et la
condition d’adhérence est maintenue, mais si d. /%2 converge vers zéro le fluide se comporte
comme si la frontiere était plate. Dans le cas ot 0. ~ €2 la rugosité n’est pas assez
grand pour impliquer la condition d’adhérence, mais elle est assez grande pour augmenter le
coefficient de frottement. Un resultat général sur la forme de la limite du systeme de Navier-
Stokes avec des conditions de glissement sur une frontiere non necessairement périodique a
été obtenue dans [7].

Dans cette Note, on généralise les résultats obtenus dans [I1] au cas d’'un domaine

d’hauteur €. Plus exactement, pour un ouvert borné Lipschitzien w C R? et une fonction
U € W2™(R?), périodique de période Z’' = (—1/2,1/2), on définit Q. par

loc
Qsz{x:(a:’,xg)waR: —6€\I/<f—;> <x3<5},

N \ o . ,rf:' . € LR B .
ou les parametres r., 6. vérifient lim — = 0, lim — = 0. Alors, on considére un fluide
e—0 & e—0 Te

satisfaisant le systeme de Stokes dans 2. et la condition de Navier (ou glissement) u.-v = 0,

ou .
—— parallel to v sur la frontiere rugueuse

ov ,
I, = {:13: (2, 23) Ew X R: 3= —5€q/(£)},
T

€
ou u. = (ul,uc3) est la vitesse et v la normal extérieure a Q. sur I'.. Pour simplifier on

impose aussi la condition d’adhérence u. = 0 sur 02 \ I'.. Notre but est d’étudier le
comportement asymptotique de ce systeme quand ¢ tend vers zéro. On obtient a la limite
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. Grace a ceci on déduit:

0-+/€
un systeme de type Reynolds qui dépend de A = lim Ve

e—0 TE\/E

Si A = +o00, le fluide se comporte comme si on aurait supposé I'. = {x3 = 0} avec la
condition de frontiere sur I', u. € W+ x {0}, d3ul € W avec W = {V,U(/) e R*: 2’ € Z'}.
En particulier, si W est de dimension 2, le fluide se comporte comme si on aurait imposé la
condition d’adhérence dans I',.

Si A = 0 on voit que la rugosité n’a pas d’effect a la limite.

Si A € (0,+00), le fluide se comporte comme si on aurait supposé I'. = {x3 = 0} avec
la condition de frontiere sur T, u.3 = 0, —udsul + A?Rul. = 0, avec p la viscosité du fluide
et R une matrix symétrique carrée non-negative de dimension 2 qui est définie positive sur
'espace WW. On observe que le nouveau terme A\*Rul c’est un terme de frottement. Cette
condition de frontiere peut étre considerée comme la condition générale puisque quand A
tend vers zéro ou +o00, elle donne les résultats antérieurs.

Ce résultat ressemble & celui qu’on a obtenu dans [I1] pour un fluide d’hauteur fixe, mais
la taille critique est différente de 0, ~ 22 qui serait la taille correspondante a [I1]. Ceci
vient du fait que loin de la frontiere rugueuse le comportement du fluid est différent. Dans
notre cas on montre que la vitesse est d’ordre €% et la pression est d’ordre 1 et ne dépend
pas de la profondeur (dans une prémiere approximation).

Pour finir on référence [I], [2], [4], [5], [6], [13], pour I’étude du comportement des fluides
visqueux dans des domaines a frontiere rugueuse, avec des conditions aux limites différents
de celles qu’on a considéré dans ce papier.

3.1 Introduction

For a viscous fluid in an open set of R? with a rugous boundary, it is known that if the normal
velocity vanishes on the boundary (slip condition), then the fluid behaves as if the whole
velocity vector vanishes on the boundary (adherence condition). This gives a mathematical
explanation of why it is usual for a viscous fluid to impose the adherence condition. The
equivalence between the slip and adherence conditions was proved in [I0] for a periodic rough
boundary of small period € and amplitude . An extension to non-periodic boundaries
was obtained in [8]. In [II] it was considered the case of a weak roughness, namely the
boundary was described by a periodic function of small period ¢ and amplitude 6., with
§./€ converging to zero. It was proved that if §./e%? tends to infinity, then the adherence
and the slip conditions are still equivalent, while if §./£%? tends to zero the fluid behaves
as if the boundary was plane. In the critical case 6. ~ %2 the roughness is not so large to
imply the adherence condition but it is enough to increase the friction coefficient. A general
result about the form of the limit equation for the Navier-Stokes system satisfying the slip
condition on a (non-necessarily periodic) rough boundary has been obtained in [7].
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Our aim in the present paper is to generalize the results in [I1] to the case of a domain
of small height . Namely, for a Lipschitz bounded open set w C R? and a function ¥ in
W2 (R?), periodic of period Z' = (—1/2,1/2)?, we define Q. by

loc

/
Q. = {ZL’Z<CL’/,ZL‘3) cwxR: =6V (2) < 13 <€}, (3.1)

Te

. C e . Te . e
where the parameters r., 0. are chosen non-negative and satisfying lim — = 0, lim — = 0.
We consider a fluid satisfying the Stokes systenr'in €., the Navier (oe-slipecondittetd)ron the

rough boundary
/
I, = {:L‘ = (2/,23) Ew xR : 23 =—06.¥ (2)} (3.2)
Te

.and (to simplify) the adherence conditjon on the rest of the boundary 92, \I'.. Qur purpose
is to study the asymptotic behavior of this system when ¢ tends to zero. 'We show that it

depends on
0. [e
A=lim—,/— €0, +00]. (3.3)
e—0 1, Te

If A = 400 and the space W = {V_U(2') € R?: 2/ € Z'} agrees with R?, then the fluid
behaves as if we impose the adherence condition on the whole 0€2..

If A =0, then the fluid behaves as if I'. agrees with the plane boundary {x3 = 0}.

If A € (0,4+00) the fluid behaves as if we had considered a plane boundary and added a
friction coefficient to the Navier condition (see Theorem [3.1] and Remark [3.3)).

This is analogous to the result proved in [I1] for a fluid with fixed height, but the critical
size is not 0. ~ r2/? which would be the expected size from [I1]. This is due to the fact that
far of the rugous boundary the behavior of the fluid is different from the corresponding one
in [IT]. Here one can show that the velocity is of order * while the pressure is of order 1
and does not depend on the depth (in a first approximation).

To finish this introduction we refer to [I], [2], [4], [B], [6], [13], for the study of viscous
fluids in rugous domains satisfying different boundary conditions from the ones considered
in the present paper.

3.2 Main results and some comments

Along this section, the points z of R? are supposed to be decomposed as x = (2/,x3) with
2’ € R?, 23 € R. We also use the notation 2’ to denote a generic vector of R?.
Given a bounded connected Lipschitz open set w C R? and ¥ € WQ’OO(R2), periodic of

loc

period Z', we define €. by (3.1) and T'. by (3.2)). Then, for f = (f’, f3) € L*(w)?3, we consider
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the Stokes system in €,

ue =0 on 09\ I, u.-v=0 onl,, e parallel to v on I.. (3.4)

{ —pAu. + Vp, = f in Q. divu, = 0 in Q.,
ov

Here v denotes the unitary outside normal vector to €. in I'. and p > 0 corresponds to
the viscosity of the fluid. It is well known that has a unique solution (u.,p.) €
HY(Q.)? x L) (LE(Q.) denotes the space of functions in L*(Q.) whose integral in Q.
is zero). Moreover, we can show the following estimates

][ lue|Pdx < Ce*, ][ | Du.|*dx < Ce?, ][ pe|?dx < C. (3.5)
Q. Q. Q.

Our aim is to study the asymptotic behavior of u. and p. when ¢ tends to zero. For this
purpose, as usual, we use a dilatation in the variable x3 in order to have the functions defined
in an open set of fixed height. Namely, we take Q = w x (0,1) and we define u. € H'(Q)3,
p= € L3(Q) by

:(y) = u(y' eys), Pe(y) =pe(y,eys), ae y e (3.6)

Then, our problem is to describe the asymptotic behavior of these sequences ., p.. This is
given by the following theorem which is the main result of the present paper.

Theorem 3.1 Let (u.,p.) € H' ()% x L3(€2.) be the solution of the Stokes system and
let ., p. be defined by (3.6). Then, there exist v € H'(0,1; L*(w))?, w € H*(0,1; H }(w))
and p € LE(Y), where p does not depend on y3, such that, up to a subsequence,

Ue . ﬁa . Ue,3 . —
— 0 in H*(Q)?, = (v,0) in H'(0,1; L*(w))?, S W H?(0,1; H Y (w)),
o (3.7)
pe —pin L2(Q), 2P i HTY(Q). (3.8)
€

According to the value of \ defined by , the functions v, w and p are given by:

(i) If X = 400, then denoting by Py,. the orthogonal projection from R? to the orthogonal
of the space W = {V V(') € R? : 2/ € Z'}, we have that v and p are given by

ys — 1
o) = LD (1l + ) (Tyn) = W) ey
, 1 , _ | ,
—divy §[ + Py | (Vyp—f) ) =0inw, gl +Pyr | (Vyp—f)-v=0 on dw.
Y3
Moreover, the distribution w is given by  w(y) = —/ divyv(y', s)ds, in . (3.9)
0
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(ii) If X € (0,+00), then defining (:b\z, 7'), i = 1,2, as solutions of the Stokes systems

G + V.G =0 inR®x (0,400), div.d =0 inR? x (0, +00),
¢5(2',0) + 0., 0(2) = 0, 04(¢")(2,0) =0,  ¢'(.,2), T (., 23) periodic of period Z',
D.¢' € L*(Z' x (0,400))3*3, ¢ € L*(Z' x (0, +0)),
and R € R¥? by Ry = u/ qugi : qugj dz, Vi,je{l,2}, we have
Z'x(0,+00)

v(y) = % <y3[ + ([+ %QR)_ > (Vyp(y') = '), ae yeQ,

<<1 A2\t
_diVy/ —]+ <.[ + —R) ) (Vy/p — f’)) =0 w,
3 p

1 XN
§[+([+—R> (Vyp—f")-v=0 on dw.
v

Moreover, the distribution w is given by .

where p satisfies

_ _(3/:%_1) N ()
(i) If A =0, then v(y) = 2 (Vyp(v') = f'(¥), ae yeQ,

0
where p satisfies  — Ayp = —divy f' in w, o _ f' v on dw.

ov

Moreover, the distribution w is zero.

Remark 3.2 An analogous result to Theorem is proved in [11] where it is studied the
Stokes and Navier-Stokes systems with the slip condition on a rough boundary for an open
set of R? of fized height. The functions (¢',q') are the same functions which appear in [11] to
describe the behavior of the velocity and the pressure near the rough boundary. Moreover, it
is proved there that D,¢", @' belong to L™(Z' x (0,400))**3 and L"(Z' x (0, +00)) respectively
for every r > 1 and have exponential decay at infinity.

Remark 3.3 For A = +oo, Theorem shows that u., p. behave as if in we had
assumed that T'. was the plane boundary {x3 = 0} and that the boundary condition on T'.
was

u. € Wt x {0} onT., OsulcW. (3.10)
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In particular, if W agrees with R* (which is true except if U(z1,25) does not depend on z
and/or z9) we deduce that the slip condition in 15 equivalent to the adherence condition
us =0 on {x3 = 0}.

For A\ € (0,400), Theorem shows that the asymptotic behavior of u. and p. is the
same that if I'. was the plane boundary {x3 = 0} and the boundary condition on I'. was

u.3=0 onT., —pdsul + NRu. =0 onT., (3.11)

i.e. although the roughness is not strong enough to deduce that the slip condition on I'. is
equivalent to , it is sufficient to provide the friction coefficient N2 Ru’. in (m

For A =0, the roughness is so weak that u. and p. behave as if I'. was plane.

The critical size X € (0,4+00) can be considered as the general one. In fact, the cases
A =0 and A\ = 400 can be obtained from this one by taking the limit when \ tends to zero
and infinity respectively.

Remark 3.4 In the cases A = 0 or 400, we can prove that the convergences in -(@
are strong. In fact, assuming w smooth enough (for example C?), we can show that defining
Ue, P by

us(x) = (€2v(x’, %), 0) , De(x)=px') ae xe,

1 1
we have —][ lue — . |*dz — 0, —][ |D(u. — u.)|*dx — 0, ][ Ipe — pe|*dx — 0.
et Ja. e? Jo. Qe

In the critical case A € (0,+00), the above assertion still holds replacing u. by

T

. (z) = <g%(x', %), o) NG <vl(93', 0)3' (=) + (2, 0)52(3)> .

Te Te

Remark 3.5 The proof of Theorem is based on the unfolding method ([3], [9], [12]).
For a.e. 7' € R?, we define k(z') € Z* by ' € k(z') + Z'. Then, to study the behavior of
(ue, pe) mear T'., the idea is to study the behavior of the sequences U, p. defined as

/ /

~ X —~ x
U5($,7 Z) = Ug (Taﬁ(r_) + TEZ,7TEZ3> ) pe<x,7 Z) = Pe (Tsﬁ(r_) + TsZ,7 T623> )
€ €

forae o' ew, 2 e€Z', —(0:)re)V(2) < z3 < 1/r.. This is similar to the idea used in [11)],
but here it is necessary to combine this change of variables with (@
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Chapter 4

Asymptotic behavior of the
Navier-Stokes system in a thin
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Abstract.

We study the asymptotic behavior of the solutions of the Navier-Stokes system in a thin
domain 2. of thickness e satisfying the slip boundary condition on a periodic rough set
I'. C 09), of period r, and amplitude 6., with §, < r. < €. We prove that the limit behavior
as € goes to zero depends on the limit A of (0.4/¢)/(rey/7z). Namely, If A\ = 400, the
roughness is so strong that the fluid behaves as if we had imposed the adherence condition
on I'.. If A =0, the roughness is too weak and the fluid behaves as if I'. was plane. Finally,
if A € (0,+00), the solution is strong enough to make appear a new friction term in the
limit.
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4.1 Introduction

The most usual boundary condition for a viscous fluid surrounded by an impermeable wall
is the adherence condition, which establishes that the velocity of the fluid vanishes on the
boundary. However, some other boundary conditions can be imposed which may seem more
adequate from a physical point of view. The slip or Navier’s boundary condition asserts that
the normal component of the velocity is zero (i.e. the fluid cannot across the wall) and that
the wall exerts a tangential friction force. Indeed, for a rugous boundary, it has been proved
that both adherence and slip conditions are equivalent. Thus, the adherence condition is
justified because of the existence of microasperities on the boundary.

The equivalence between the adherence and slip condition was proved in [9] for a rugous
boundary described by the equation

with € > 0 devoted to converge to zero, w a Lipschitz bounded open set of R? and ¥ a
smooth periodic function such that

Span({VV¥(7) : 2/ € R?}) = R% (4.1)

Imposing slip conditions of this boundary, it was shown that in the limit the velocity of the
fluid satisfies the adherence condition. These results were generalized in [I] to the case of a
non periodic boundary described by

ry ==V (z1,22) V(21,22) € w,

with W, Lipschitz functions such that the support of the Young’s measure associated to VW,
contains at least two independent vectors.

In [11] it was considered the case of a viscous fluid satisfying the slip condition on a
slightly rugous wall described by the equation
Ty x
= —2> V(x1,x2) € w,

I3:—(55\I/<€ -

with 0. /e converging to zero and ¥ smooth and periodic. It was proved that if J./ e2 tends to
infinity and holds, then the equivalence between the adherence and the slip conditions
still holds, while if ./ £2 tends to zero then the fluid behaves as if the boundary was plane.
The case 6. ~ £3 is the critical size where the roughness is not so large to imply the adherence
condition but it is enough to make appears a new friction force in the limit.

A general result about the form of the limit equation for the Navier-Stokes system sat-

isfying the slip condition on a (non-necessarily periodic) rough boundary has been obtained
in [9].
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Our aim in the present paper is to extend the results in [II] to the case of a domain
of small height . Namely, for a Lipschitz bounded open set w C R? and a function ¥ in
W2 (R?), periodic of period Z' = (—1/2,1/2)?, we will consider the open set Q. given by

loc
T, T
Q. = {x = (21,29,73) Ew X R: =6, ¥ (—1,—2) <x3< 5},
TE TE

where the parameters r., . are positive and satisfy

Assuming a viscous fluid governed by the Navier-Stokes equation and satisfying the slip
condition on the rough boundary

I, = {x:(:pl,xg,xg) CwxR:ag=-0.U (—,—)},

Te T¢

we show that its pressure and velocity are asymptotically equivalent to the solutions of a
Reynolds system which depend of the value of A given by

1) €
A= lim—=,/—.
e—0 Te Te

The role of A is similar to the one of the limit of d./r. in [I1]. Namely, we have:

e If A\ = oo and (4.1) holds, then the fluid behaves as if we imposed an adherence
condition.

e If A\ € (0, +00), then the roughness is not strong enough to give the adherence condition
in the limit but it is enough to obtain a friction force term in the limit.

e [f A = 0 the roughness is so weak that the fluid behaves as if the wall was plane.

We remark that in fact, for € = 1, A is the limit of 6./ 7“5% , which is coherent with [11].

As in [I1], the proof of our results is based on the unfolding method [4], [11], [16], but
here it is necessary to combine it with a rescaling in the height variable, in order to work
with a domain of height one.

The results obtained in the present paper were announced in [I2] for the case of the
Stokes system.

We finish this introduction refering to [2], [3], [5], [6], [7], [8], [I7], for the study of the
behavior viscous fluids in rugous domains satisfying different boundary conditions of the
ones considered in the present paper.
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4.2 Notation

The elements € R? will be decomposed as x = (2, x3) with =’ € R? 23 € R.

By Z’, we denote the unitary cube of R?, Z' = (—1,1)? and by Q the set Q = 7' x
(0, +00). For every M > 0 we write Qu = 7' x (0, M).

We use the index # to mean periodicity with respect Z’, for example Li(Z/ ) denotes

~

loc

functions @ € L? (R? x (0, +00)) such that

loc

the space of functions u € L, (R?) which are Z'-periodic, while L% (Q) denotes the space of

/A\ﬁ|2dz < oo, a(Z+K,z)=1a(z), VK €Z? ae z€R?x(0,+00).
Q

For a bounded measurable set © C RY, we denote by L3(0) the space of functions of L?(©)
with zero mean value in ©.
We denote by €, r. and 4, three positive parameters devoted to tend to zero such that

lim—= =0, lim— =0. (4.2)

For a connected Lipschitz open set w C R? and a function ¥ & Wioo(Z’ ), ¥ >0in Z/,
we define

Qaz{xERS: ¥ ew, —0.U (f—/) <a:3<1}, (4.3)
Q=N (wx (-00,0), Q=N (wx(0,+00)), (4.4)
I, = {:c eR?: 2 cw, x5 =—0.T <f—/> } , (4.5)
ﬁgz{yER?’: Y € w, —%ﬁl(y—,><y3<1}, (4.6)
fez{yERg’: y €w, ygz—%\ll <f—/)}, (4.7)
Q=wx(0,1), T'=wx{0}. (4.8)

We denote by v the outside unitary orthogonal vector to 2. on 0f)..

Our aim here is to study the asymptotic behavior of a viscous fluid in the thin domain
., which satisfies slip boundary condition on I'.. For this purpose we will use an adaptation
of the unfolding method [16]. We refer to [I1], [13], [I§] for other different applications of
this method and its relation with the two-scale convergence method of G. Nguetsend and G.
Allaire ([1], [19]). In order to apply the method, we will need the following notation.
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For k' € Z? and p > 0, we denote
k/ . / / k/ - k/
Cy =pk'+pZ', Q) =Q.N(C; x (—00,1)).
We define & : R? — Z2 by
k(z) =k o2’ eCV.
Remark that « is well defined up to a set of zero measure in R? (the set Upcz20CF).
Moreover, for every p > 0, we have

CC/ ’
/i<—>:k/<:>x/60§.
0

For a.e. ' € R* we define C,_(2’) as the cube C¥ such that 2’ € C¥
For every a > 0, we take

Wo = {7z € w: dist(z,dw) > a} (4.9)
and
L,. ={K €7*: C¥ Nw, # 0}.
We denote by V the space of functions ¢ : R? x (0, +00) — R such that
v € Hy(Qu), YM >0, VieIL4(Q)>
It is a Hilbert space endowed with the norm || - ||y defined by
181 = [802zrioy + 19502

We denote by O, a generic real sequence which tends to zero with ¢ and can change line
to line.
We denote by C' a generic positive constant which can change line to line.

4.3 Main results

In this section we describe the asymptotic behavior of a viscous fluid in the geometry €2,
described in Section and satisfying slip conditions on I'.. The proof of the corresponding
results will be given in Section [4.4]
We consider a sequence (u.,p.) € H'(Q.)> N L3(Q.), which satisfies
( _,UAua + vPa + (ua : v)ue = fe in Q€7
divu, =0 in €,

ou. E) (4.10)

+ —u. | = on I,
ov ¢

{ u. =0 onw x {1},

usv =0, T<
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where > 0, v > 0 are two fixed constants, and f. is defined by
fx)=f (m’, ﬁ) , a.e. x € ), (4.11)

€
for a given f € L*(w x (—1,1))%.
Because we are interested in showing that the behavior of the solutions of (u.,p.) close
to I'. does not depend on the boundary conditions imposed in 02, N (Jw x R), we have

preferred to not explicite any boundary conditions on this set. Adding some type of boundary
conditions to (4.10)) we have the following existence result of solution.

Theorem 4.1 We consider pn > 0, v > 0 and f. as above. Then, adding one of the following
conditions (some other conditions are also possible)

i

us =0 on 9. N (0w x R). (4.12)
ii)
Ou,
uv =0, T < 5 + /ﬁeug) =0 on 09, N (Ow x R), (4.13)
v

with k. > 0.

w 18 a rectangle,
Ou, (4.14)

5 p.v are periodic of period w with respect to x’.
v

problem has at least a solution (u.,p.) in H'(Q.)? x LE(Q.). Moreover, there exists
C > 0, which does not depend on €, such that

uE?

||DuEHL2(QE)3x3 + ||vp€HH_1(QE)3 < 083/2. (415)

In the following, instead of assuming some boundary conditions on 992, N (Ow x R), we
are going to focus in studying the asymptotic behavior of a solution (u.,p.) of which
satisfies . For this purpose, as usual, we use a dilatation in the variable x3 in order to
have the functions defined in the open set of fixed heigh Q. defined by . Namely, we

define . € H'(Q.)3, p. € L3(£.) as the functions obtained from u. and p., respectively, by
using the change of variables
x3
y=a =, (4.16)

that is ~

Ue(y) = ue(y'eys),  De(y) = p=(¥' cy3),  ae y € Q.. (4.17)
The goal becomes in describing the asymptotic behavior of these new sequences ., p.. This
is given in the following theorem.
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Theorem 4.2 Let (u.,p.) € H'(Q0)? x L3(.) be a solution of such that
holds, and let 1., p. be given by (4.17). Then, there exist @' € H'Y0,1;L*(w))? w €
H?*(0,1; H ' (w)) and p € HY(QY), which does not depend on yz and has null mean value
in 2, such that, up to a subsequence,

Ue . as ~ . Ue, 3 ~ . —
— 0in H(Q)?, = — (@,0) in H'(0,1; L*(w))®, == = w in H*(0,1; H ' (w)), (4.18)

£ 3
1. ., L, . R
gdwy/ (ar) + gaysu&g — 0 in L*(9), (4.19)
~ A OysPe 7 . rro1
pe — p in L*(Q), - fs in H (), (4.20)

and they satisfy .
—p0y 0+ Vyp = [ in €,
divy ' + Oy =0 in €, (4.21)
@'(1)=0, w(0)=w(l)=0.

Moreover, according to the value of the limit (it always exists at least for a subsequence)

A= tim 2 £ € [0, 400, (4.22)

=01 | T
u' satisfies the following boundary condition on I':
(i) If A = +o0, then defining
W = Span ({VV (') : 2/ € Z'}), (4.23)
and Py L the orthogonal projection from R? to W=, we have that @' satisfies

poy, @+~ € W, @ €Wt onT. (4.24)

-~

(it) If X € (0,400), then defining (¢',q') € V> x L3 (Z' x RY), i = 1,2, as a solution of

(—uA,G + V.G =0 in R2 x R,
div,d' = 0 in R? x R*,
$§ = 0.,V on R* x {0},

L 9.,(¢") =0 on R? x {0},

(4.25)
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and R € R**? by
R = u/ D.¢': D,¢? dz, Vi, je{1,2} (4.26)
Z'x(0,400)
we have that U’ satisfies
10y, + i + NRi' =0 onT. (4.27)
(111) If A =0, then we have that @ satisfies

poy, i+~ =0 onT. (4.28)

From (4.21), (4.24), (£.27) and (4.2§), as usual in the asymptotic study of fluids in thin
domains, it is easy to see that the limit pressure p is solution of a Reynolds problem. To
characterize completely the function p (and @', @) we need to impose additional boundary
conditions to the solutions of . In this sense we have the following result, which is an
immediate consequence of Theorem . For the sake of simplicity, we assume that f’ does
not depend on ys.

Corollary 4.3 Let (u.,p.) € H'(Q.)? x L2(Q.) be a solution of satisfying one of the
boundary conditions given by (f4.1 or 44.131). Let us assume that f' does not depend on
ys. Then, depending on the value of X defined by , the functions @', w, p given by
Theorem satisfy:

(i) If A = 400, then p is the solution of the Reynolds system

—divy ((é[ + (1 + %)_lpwl> (VyD — f’)) =0 inw,
(4.29)
((%[ + (1+ %>_1pr> (Vyp— f’)) v=0 on dw.

/

Moreover, w' and w are given by

) = U (4 (14 )R ) (Vi) - FW)) . ae e (430

Y3
w(y) = —/ divyt'(y', s)ds, a.e. y € Q. (4.31)
0
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(11) If A € (0,4+00), then p is the solution of the Reynolds system

—div,, 1I—l—((1—1—1).7—i->\—2R>1 (Vyp—f) ] =0 inw
T3 pooop " ’

-1 (4.32)
l1‘+((1+1)I+A—2R) (Vyb—f) | v =0 ondw
3 1 It Y '
Moreover, o' is given by
~/ (y3_ 1) g A2 - ~ ] Fri. !
= - 1 1+ =)+ — / — .e. Q
u'(y) o <y3 +(( +u) +uR (Vyp(y) (y)), a.e. y € £,
(4.33)
and W is defined by .
(111) If A =0, then p is the solution of the Reynolds system
( ) 1 N\ R .
—div,, 3 + 1+ ; (Vy/p — f) =0 in w.
(4.34)

<\ <<%+(1+%)_1> <Vy’ﬁ—f'>>V—0 on Ow.

Moreover, o' is given by

w'(y) = i <y§ + (1 + %>_ ) (Vyp() = F'(v), ae yeQ, (4.35)

and w 1s the null function.

Remark 4.4 An analogous result to Theorem is proved in [I1] where the Stokes and
Navier-Stokes systems are studied with slip conditions on a rough boundary for an open set
of R3. The functions ¢' and q' are the same functions which appear in [I11] to describe the
behavior of the wvelocity and the pressure near the rough boundary. Moreover, it is proved
there that D,¢%, ¢ belong to L™ (Z' x (0, +00))3*3 and L"(Z' x (0, +00)) respectively for every
r > 2 and have exponential decay at infinity. In particular it shows that the matriz R given

by (4.26)) is well defined.

Remark 4.5 For A\ = 400, Theorem shows that u., p. behave as if in we had
assumed that T'. was the plane boundary {x3 = 0} and that the boundary condition on T'.
was

u. € W x {0} onT., pdsul +~u. € W. (4.36)
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In particular, if W is R? (which is true up if (21, z2) does not depend on z, and/or z)
we deduce that the slip condition in 15 similar to the adherence condition u. = 0 on
xz3 =0 (or on the rough boundary T, ).

For A\ € (0,400), Theorem shows that the asymptotic behavior of u. and p. is the
same that if I'. was the plane boundary {x3 = 0} and the boundary condition on I'. was

U3 =0 onT., pdsul +~yu. +NRu. =0 onT,, (4.37)

i.e. although the roughness is not strong enough to deduce that the slip condition on I'. is
equivalent to , it is sufficient to provide the friction coefficient N2Ru’. in .

For A = 0, the roughness is so weak that u. and p. behave as if I'. was the plane boundary
x3 = 0 and the boundary condition on I'. was

u.3 =0 onT., posu.+~yu. =0 onT.. (4.38)

The critical size X € (0,4+00) can be considered as the general one. In fact, the cases
A =0, A =400 can be obtained taking from this one taking the limit when \ tends to zero
and infinity respectively.

Theorem is analogous to the result proved in [11] for a fluid with fized height. In

[11] the critical size is J. =~ rg/ 2, which agrees with the critical size in the present paper

5.e1/? r?/Q when € = 1. Remark that the expression for A does not only depend on
the parameters d., r. which define I'. but also on the height € of Q.. This is due to the fact
that far of the rugous boundary the behavior of the fluid is different from the corresponding
one in [11].

Remark 4.6 If in Theorem we also assume that one of the conditions - 4.1/
holds, then, assuming that there exists the limit A\ given by , we deduce that (4.18])-
(4.20) hold without extracting any subsequence.

The following theorem (corrector result) provides approximations of u., Du. and p. in
the strong topology of L?(€.).

Theorem 4.7 Let (u.,p.) € H*(.)3x L23(S2.) be a solution of (4.10)) such that (4.15]) holds,
and let ., p. be defined by ([A.17)). Let us assume that there exist ' € H'(0,1; L*(w))?, @ €

H?(0,1; H ' (w)) and p € L3(Q), where p does not depend on ys, which satisfy (4.18])-(4.20)).
We also assume that there exists the limit A given by (4.22)). Then, we have
(i)
lim i/ lucf2d + i/ (1o, — 20 2202 4 fueaf?) da ) =0, (1.30)
=0 55 Qg (3 85 Q; € Y c 6,3 ) .
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1 1
lim <- / Ip. 2 dz + — / ip. — p(a) 2 dx> o, (4.40)
e—0 \ € Q- £ Qj
for every n € CX(w).
(i1) If A =0 or +oo, then we have

1
hm—/ | Du|*dx = 0,

e—0 53

1
hm—/ <|Vu53\ + | Dl |* + |0pul () — £0y, U <x’,%) \2) ndx =0,

e—0 53

(4.41)

for every n € CX(w).

(iii) If X € (0 + o0), taking o', i =1,2, as a solution of [{.25) and defining @ : w x (R? x
RT) — R3 by
Az, 2) = =My (2, 0)0' (2) — Ala(2', 0)02(2), (4.42)
for a.e. (2,2) € w x (R* x RY), then we have

1
lim—/ | Du.|*dz = 0,
Qc

1
lim — / Vs~ Y[ v
of Ve JCyp ()

nml/ I (
ot
5

(4.43)

Ve Je, @)
o1 I3
i =5 /Q Oust, = <0yt (.72

for every n € CX(w).

Remark 4.8 Ifin Th,eorem we also assume that (ue, p.) satisfies one of the assumptions

—, then in , and we can take n = 1.

Remark 4.9 The last terms in for the corrector of Du. in QF is a kind of corrector
very usual when we apply the unfolding method (see e.g. [11)], [13], [16]). If we assume
additional smoothness properties for @', for instance that @' belongs to H'(2)? (this holds if
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fle HY ()2, see Corollary , then we can rewrite the last three equalities in as

1 2
lim—3/ Vuag—g\/_ 33( x) =0,
e—=0¢ QEL \/Te ’I"a

1 2
1im—3/ Do~ VD <x £>
e=0¢e° Jor \/Te Te

ndx =0,

1
lim —/ Oyt — €0y, U (IE ﬁ) - 6\/_ Dyt | ', x =0,
e—0 83 Q;" € \/E Te
for every n € CX(w).
4.4 Proofs of the results
Proof of Theorem It is a consequence of Proposition below. O

Proposition 4.10 There exists a constant ¢ > 0 independent of € such that if € is small
enough, then:

(1) If (. € H1(Q.)? satisfies
< (,we >=0, Yw. € Hy(Q)? with div(w.) =0 in ., (4.44)

then there exist pl € H' (), which does not depend on the variable x3 and has null mean
value in Q., and p® € L3(Q.) such that (. = Vpl + Vp? in Q. and

e2[pHl ey + 120 22y < ellCellmsaye. (4.45)
(ii) For every p. € L(S).) there exists v. € HY(Q.)? satisfying divv. = p. in Q. and

el o < <lpcllzzca. (4.46)

(iii) For every w. € H'(Q.) with w. =0 on w x {e}, we have
|we Loy < cf| Vwe| L2 .- (4.47)

To prove Proposition we need some previous lemmas.

Lemma 4.11 Let us denote by Q., with € > 0, the set

/

QEZ{;UERg IG&TYI —5\11( )<l’3<€}- (448)

€

There exists a positive constant ¢ independent of € such that if € is small enough, then:
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(i) For every p. € L3(Q.) there exists v. € H}(Q.)? satisfying
divv. = p. in Q. (4.49)

[vell 3 o2 < cllpellzzce.)- (4.50)
(ii) For every p. € L*(Q.) and every S. C Q. measurable, we have

’ Pe — ][ps dx
Se

(1ii) For every w. € H'(Q.) with w. =0 on €Y’ x {e}, we have

<c|1l+ |Q€| HVPEHH_I(QS)3- (4.51)
@) 5]

|we s (q.) < cllVwel|L2(q.)3- (4.52)

Proof. Along the proof we use the application 7. : Q. — R3 defined by 7.(x) = (2,23 +
he(z)) with
5.0 (E) (e —x
hata) = SR JE 2T,
e+ 55\11(;"—5)

which transforms Q. in the cube Y. = (0,¢)3. Tt is easy to check that h. satisfies

5. .
hel < 6., [Vahe| <CZ inQ., Ve>0, (4.53)

£

Given p. and using the change of variables y = n.(z), the equation
divv. = p. in Q,

is equivalent to
div, 0. = p. — He(0.) in Y, (4.54)

where we have denoted o.(y) = v.(n7 (v)), p-(y) = p-(n-'(y)) and
H.(0:)(y) = ay3{}::vx’ha(ns_l(y)) + 8y3®6,38w3h6<773_1(y))» a.e. y € Ye.

Since Y. is homothetic to the unit cube Y, it is well known that there exists a linear
continuous operator L. : L3(Y.) — H}(Y.)? such that

divL() =7 inYe, |Le(G)llmeny < Clillizen, V. € Li(Y2), (4.55)

with C' > 0 independent of . Thanks to (4.2), (4.53) and the Banach fixed point theorem,
we have that for e small enough there exists a unique @. € HJ(Y2)? satisfying the equation

Qbs = Le (ﬁs _][ Zv)sdy - He(@z—:) +][ He((;b€>dy>7
Ye Ye
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or equivalently
divype = pe — He(¢:) _][ (pe — Ho(¢e))dy inY.. (4.56)

Moreover, by (4.53) and (4.55)), @. satisfies

. 3 Oc .
9o < € (Wl + Sl )

i.e.
||95€||H5(y5)3 < Clpellr2v), Ve > 0 small enough. (4.57)

Let us check that v. € H(Q.)? defined by v.(z) = ¢.(n.(z)) satisfies the result. Using
the change of variables y = n.(z) in (4.56)), we obtain that v. satisfies

divo, = p. _][ (]55 - Ha(@a)) dy in Q..

Integrating this equality and using that p. € L2(€).), we deduce that the mean value in Y, of
Pe — H.(:) is zero, and therefore that v. satisfies . From , taking into account
that [|7:|lwreg.r < C and |0 |wiee(y,)s < C for some C which does not depend on ¢, we
deduce that v, also satisfies .

Inequality in case S. = . is an immediate consequence of property (i). The
general case follows easily from the previous one and the estimate

1 2
< — |p- — ][ peds| dx.

Pe ds _][ Pe ds
‘fe € |S | QS

The proof of (7ii) follows using again the change of variables y = n.(z) and that H'(Y;)
is continuously imbedded in L8(Y?), with |[@.]|1s(v.) < C||VWe||12(y.)3, for every w, € H'(Y)
with w. = 0 on {y3 = 0}, for some positive constant C' independent of ¢ (because Y. is
homothetic to V). d

2

Lemma 4.12 There exists C' > 0 such that, if € > 0 is small enough, then for every p. in
L2(92.) there exist pl € HY(Q.), which does not depend on the variable x3, and p° € L*(£2,)
such that

pe=pt+p in ., (4.58)

3
e2 ||Vl 2wy + 1Pl 2y < ClI VDl a-1(0.)2- (4.59)

Proof. Firstly, we assume that w is the rectangle of sides parallel to the coordinate axes given
by w = (0,a) x (0,b), for some a,b > 0, and we prove that there exist p! € H'(Q. N (w: X R))
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(see (4.9) for the definition of w,, with a > 0), which does not depend on the variable x3,
and p? € L*(Q. N (w. X R)) such that

pe=pi+p! in QN (w: xR), (4.60)

3
2| Vil 2oy + 1920 2 @enoexry) < ClIVP 11005 (4.61)
We take p. in L?(€.) and we denote by w. the solution of the Dirichlet problem

—Aw, =Vp. in Q., w. € HH(Q),

which satisfies

||w€HHé(Qs) = HVPEHH—l(QE)B- (4.62)
For every ¢ > 0, we define m{, m5 € N by
€ 3 € €
mi = max{m € N: omy € [0,a— 3]}, m; =max{my € N: gmy € (0,0 -]},

and we denote by G® the open subset of w given by

. e E . £ e .
G° = (5, 5gmi) x (5, 5ma)-

Observe that w. C G* C w,/s, for every € > 0. We denote by T¢ = {77} the triangulation of
G* which consists of the triangles whose vertices are either the points §m’, Sm’ 4 5(e1 +e2),
Sm/+ Seq, or the points Sm/, §m/+ 5 (e +e2), 5m' + Sey, for some m’ = (my,m2) € N? with
1 <m; <mé,i=1,2. Then we define p! as the unique element in H'(G¢) which is affine in
every triangle 7T of J° and satisfies
1€ _ ! 2 € 4 e
pg(ém) _]{2"1’ pe(s)ds, V¥m' e N” such that oM € G=.
2

We fix a triangle 77 of J°. We assume that the vertices of T} are the points $m/, Sm' +
S(e1 4 e2), M’ + Seq for some m' = (my,my) € N? with 1 < m; < m$, i = 1,2 (the case
where the Vertices/ are the points §m’, m' + 5(e1 +e2), 5m' + Sey is completely analogous).
Integrating in Q7" the inequality

£ € € € € € o
PG = pl (G’ + Senl? < 2pl(Sm') () P+ 2pu() —pl(Gm' + Sen), e e O,
applying (4.51)) twice with QZ_:”/ instead of Q). (observe that the set Q’snl is obtained from ().

by a displacement) and S. = Q2 and S. = QT'Fe we obtain
2 2

19 g 19
€3|pi(§m/) _p;(im/ =+ §el)|2 < C”VPEHZA(QQM)B <C ‘sz|2d5-
o’
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Since p! is affine in the triangle T¥, this inequality proves

al, | _«C
‘a—ps(x’) < —5/ \Vw.|*ds, a.e. ' €1TF,
$1 19 ":_n’
which gives
112
/ Op: dr' < % |V, [2ds.
e | 01 3 Jam!

The same reasoning but estimating now the difference between pl(5m’ + 5e;) and pl(5m’ +
S(e1 + e3)) provides the same bound for the integral of [Opl/ 8$2|2 in TE Summing these
estimates for every triangle 77 of J¢ and using (4.62)), we deduce

2 C
/G ‘V:p/pil dz’ < gvag.;H?{fl(Qs)g. (463)

To complete the demonstration of (4.60)) and (4.61)), it is enough to prove that p? = p. — p!
satisfies
192Ml 20y < ClIVDellg-1(02y5- (4.64)

Again we fix a triangle T} of J° and we assume that the its vertices are the points Vi = $m/,

Vo= 5m' + 5(e1 +e2), Vs = sm' + Sei. As pl is affine in T¢, it is easy to see that

Mw

pi(x A (2pl(V;), ae. 2’ €Ty,

J=1

for three no-negative functions Ay, A\g, A3 which satisfy

3
Z)\j(:v) =1, ae. x€T;.

j=

—_

Then, thanks again to (4.51)), we have

/ pe(a) — P ()P < S / p.(2) — pL(V)Pde

Q.N(TE xR) 1/ QN(TE xR)

<Z / pe(e) = pHV) e < 3V By s <3 [ Vs,
Qm

From (4.62), summing last estimate for every 77 we get (4.64)).
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Next we continue with the case w = (0,a) x (0,b), for some a,b > 0, but now we show
that (4.60) and (4.61)) still hold true if we replace w. by
w! = {r € w: dist(z,0w \ {22 = 0}) < e}.

Unlike w,, whose points are at a positive distance from dw, we have w? N dw # 0. To prove
the inequalities for w?, we consider the set
y £ € €
G*=(=,=m3) x (0, =
(5 Smi) % (0,5
and its triangulation T° = {TF} consisting of the triangles whose vertices are either the
points 5m’, sm' 4 5(e1 +e2), 5m' + Seq, or the points $m/, sm' + S(e1 +ez), M’ + Seq, for
some m' = (my, my) € N? with 1 < my < m5, 0 < my < m. Then we extend p! given above
to the set G in a such way that it is affine in every triangle of 7¢ and in the vertices on dw
it takes the values

ms),

p;(iml,o) —][ pe(s)ds, Vmy € {l,...,mi}.
2 Qg’mg

Now the decomposition and the estimates with G¢ are obtained following exactly the same
reasoning employed above with G*.

Finally, in order to prove the result in the case of an arbitrary smooth open set w, it is
enough to consider a system of local charts and apply the inequalities obtained when w is a
rectangle. O

Proof of Proposition 4.10

Given ¢ € H1(Q.)? satisfying (4.44), it is well known the existence of p. € L3(€2) such
that (. = Vp. in Q.. Then (¢) is an immediate consequence of Lemma applied to this
p-. Remark that

C
P2 + P2l r2(0n) < g||V(p§ + )| -1 (002

Statement (ii) follows easily from (i) and last estimate. Finally, to prove (i) it is enough
to consider a recovering of €. by subsets of the form (4.48|) and apply (4.52). O

Theorem gives the existence of at least a solution of problem (4.10) which satis-
fies (4.15). Applying Lemma we obtain the following estimate for p. which will be very
useful to obtain its limit behavior.

Corollary 4.13 Let (u.,p.) € H'(Q.)? x L(Q.) a solution of {4.10). If € is small enough,
then there exist p € H'(Q.), which does not depend on the variable x3 and has null mean
value in Q., and p? € LE(Q.) such that Vp. = Vp! + Vp? in H1(Q.)? and

3
1P .y < CVE, P2 20 < Ce?, (4.65)

with C' a positive constant independent of p. and €.
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The following two lemmas are compactness results for sequences u. € H'(£2.)3, p. €
L2(€).), not necessarily solutions of (4.10)), when we write them in the new variables (4.16]).

Lemma 4.14 Let u. be in H'(Q.)? such that u. =0 on w x {e}, u.v =0 on I'., and there

exists a constant C' independent of € satisfying

| Du,|*dx < Ce?, (4.66)
Qe

][ |div(u,)|*dr < Ce*. (4.67)
Qe

Let us define . € HYQ.)? by (4.17). Then, there exist @' € H'(0,1;L*(w))?, w €
H?*(0,1; H Y (w)) and 7 € L*(Q) such that

' (1) =0 in L*(w), @(0)=w(1)=0in H '(w), (4.68)
divy (@) + Oyyd = 7 in H'(0,1; H *(w)), '

and, up to a subsequence,

B0 HY(Q)P, S (@,0) in HY(0,1; L(@))?, "2 — @ in H?(0,1; H'(w)), (4.69)
g £ £

1R L

;dwy/ (a) + ;8%%73 — 7 in L7(Q). (4.70)

Moreover, if div(u.) =0 in Q., then T = 0.

Proof. Since u. vanishes on w x {€}, then Poincaré’s inequality and (4.66) imply wu. also

satisfies )
= | Ju|?dr < Ce.
e o

Applying the change of variables (4.16|) in this inequality, in (4.66]) and in (4.67)), we deduce
that @, defined by (4.17)) satisfies

1
/Q . |* < Ce, /Q (|vy,a€|2 + §|ay3ag|2> dx < C&?, (4.71)

J.

Therefore we deduce there exists @ € H(0,1; L*(w))?, with (1) = 0 in L?(w), # € L*(Q)
such that, up to a subsequence,

2

1
diVy/ (@/e) + gay3a5,3 dy < Ce*. (4.72)

% —0 in HY(Q), (4.73)
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- ain HY0,1; L*(w))?, (4.74)

1 1
gdivy/ (al) + gaysaaﬁ — 7 in L*(9). (4.75)

Dividing by &%, taking into account and , we deduce that 9,1, 3/e® is
bounded in H(0,1; H~!(w)). Since @, 3 = 0 on w x {1}, this implies that 4. 3/¢* is bounded
in H2(0,1; H*(w)) and therefore gives the existence of w € H?(0,1; H(w)), with w(1) =0
in H~1(w), such that, up to a subsequence,

U,

533 — @ in H2(0,1; H ' (w)), (4.76)
and
divy (@) + dy,w = 7 in Q. (4.77)

On the other hand, if we now divide by €2 and pass to the limit using and
([@.74), we get that 0yt = 0 in Q. As i3 = 0 on w x {1}, this implies that @3 = 0 in Q.

Now, we consider n € C°(w) and ¥ € C*®(R), with ¥(y3) = 9(0), for every y3 < 0.
Integrating by parts, thanks to the boundary conditions satisfied by u. (and therefore by
Ue), we get

1 5 1 N
/ ( L divy (3) + —a) 1) (s )y

3

-- / 0yt [ 0,000y

-2
Using that by (4.71)) and ( we have
a 1, 1, .
/Q b —|dy — 0, /Q . |?d1vy/(u;) + gay3u573|dy — 0,

we can write the previous equality as

[ (i @)+ S

e2

ala / Ue
:_/Q 5(21/)vyn7(y )19(y3)dy—/0< 33’77> (13 () Oy (y3)dys + O,

where O, tends to zero. Passing to the limit in this equality by means of (4.74]) and (4.76]),
we get

1 1
/ (divy @', 0) g1 (), 11 )9 (Y3)dys + / (Oys D, M) 111 (), 12 () (Y3) dy3
0 0

1
= —/Qﬂ'vyfn(y’)ﬂ(y?))dy—/ (W0, 1) 11 (), 13 () Os ¥ (Y3) Ay,
0
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which, by the arbitrariness of  and ¥, proves w(0) = 0 in H *(w).
Finally, if div(u.) = 0 in Q., then the sequence in the left hand side of (4.75) is equal to
zero, and thus # = 0 in €. U

Lemma 4.15 Let p!, p? be in H'(€.), L3(S2.) respectively, with p! independent of the vari-
able x5 and with null mean value in Q.. Let us also assume that there exists a constant
C > 0 such that

3
Il < CVe,  (IP2llizq.) < Ce?, (4.78)

for every € > 0, and let us define p! € H'(Q.), p° € L3(S%) by

) =piy), ) =2, eys), ae yeE Q.. (4.79)

Then there exist p* € HY(Q), which does not depend on ys and has null mean value in €,
and p° € LE(Q) such that, up to a subsequence,
2'50
pr—p'in H'(Q), = —~ 5 in L*(Q). (4.80)
€

Proof. Observe that p! and p! are obtained from p! and p? by using the change of vari-

ables (4.16). Applying this change in (4.78), we deduce that p! and p?/e are bounded in
HY(Q) and L*(Q) respectively, and then the result is immediate. d

The change of variables does not provide the information we need about the
behavior of u. in the part of . close to I'.. To prove Theorem [£.2], we introduce an adaptation
of the unfolding method (see e.g. [4], [11], [13], [16]), which is strongly related to the two-
scale convergence method, [I], [19]. For this purpose, given u. € H'(£.)3 and p > 0, we
define 4. by

/
(2, 2) = u. (rsli (£> + raz’,rgz;;) , (4.81)

Te
for a.e. (2/,2) € w, x Z., with

) 5.
Z€={Z,€Z/XRZ ——\I/(z’)<z3<£}.

Te Te

Remark 4.16 For k' € Z? the restriction of 1. to C’ffsl x 7. does not depend on x', whereas
as function of z it is obtained from u. by using the change of variables

.
ST TN (4.82)
TE T&

which transforms Q’ﬁ; into Z..
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We need the following result whose proof is equivalent to the one of Lemma 4.1 in [I1].

Lemma 4.17 Let v. € L*(w) be a sequence which converges weakly to a function v in L*(w).
For p > 0, we define v. € L*(w,) by

1
v.(2) = =8 o ve(n)dn', a.e 2’ €w,
£ re (T

Then we have:

(i) For every 7' € R?, the sequence w. defined by

we(2') = \/TEE(TJE(JC/ +r.7) —v.(2"))

converges to zero in the sense of distributions in w,.

(i) If the convergence of v is strong, then v. converges strongly to v in L*(w,).

Lemma 4.18 We consider a sequence u. € H'(2.)3 satisfying and u.v = 0 on
I.. We define . by ([4.17), and we assume that there exists @' € H'(0,1; L*(w))? such
that ©./* converges weakly to @ in H'(0,1; L*(w))? (by Lemmal{.14} this always holds for a
subsequence). We also assume that there exists the limit A given by and that \ belongs
to (0,+o0c]. Then we have

(i) If A = 400, then

W(2',0) VU () =0, ae (2,2)€ewxZ. (4.83)

(ii) If X € (0,+00), then there exists 4 € L?(Q; V) with
us(2’,2',0) = =AVU () (2,0), ae (2,2)€ewxZ, (4.84)
such that for every p, M > 0, the sequence u. defined by (4.81) satisfies

1
SN

D.i. — D, in L*w, x Qu)**%. (4.85)

Besides, if divu. =0 in €, then

divi=0 inwx Q. (4.86)
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Proof. We proceed in several steps.

Step 1. Let us obtain some estimates for the sequence 4. given by (4.81)).

For p, M > 0, the definition (4.81)) of @, and (4.66)) prove for every £ > 0 small enough

/ _|D. G Pda’dz < r? Z/ |Du.(r (K + 2'),r.25) [*dz
wpXQ M

k’GI Qum

< Z rs/ | Du| dx<r5/ |Du.|* dx < Cr.e®

k'elp e

On the other hand, defining

using the inequality
/ lie(2', 2) — Ue(2")Pdz < CM[ |D.a.’dz, ae. 2’ €w,,
Qum Qum

where C'); does not depend on ¢, and taking into account (4.87)), we deduce that

Sl o
U. = (e, 2) — % is bounded in L*(w,; H' (Qar)*), Vp, M > 0.

E\/ET:

Thus, there exists @ : w x @ — IR3, such that, up to a subsequence,
U, — 4 in L*(w,; HYQu)?), Vp, M >0,

and then .

ngzaa — D, in L*(w, x Qu)**®, Vp, M > 0.

(4.87)

(4.88)

(4.89)

(4.90)

(4.91)

(4.92)

By semicontinuity, these convergences and inequalities (4.87)) and (4.89)) (this latest one after

integration in w,) give

/ |D.a|*dx'dz < C, [a|*da’dz < Cyy,
prQM Q

wpXQur

and by the arbitrariness of p and M, once we prove the Z’-periodicity of 4 in 2z’ (Step 2),

then
i € L*(w; V).
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Moreover, if we also assume that divu. = 0 in )., then by definition (4.81)) of 4., we have
div,t. = 0 in w, X @, which together with (4.92) proves

div,i=0 inwxQ. (4.93)

Step 2. Let us prove that @ is Z’-periodic in 2.
We observe that by definition (4.81)) of ., for every p, M > 0, we have

1 1 11
Ue (T + 72, T, —§,z2,23) = Ue(x1, Ta, 5,2’2,,23), a.e. (2',29,23) € w, X <—§, 5) x (0, M),
which implies
~ 1 - 1 Ue(w1 + 7o, T2) — U ()
U - . U - — € )
s(a:l + 7e, To, 2722723) 5(.171,%2, 9’ 22, Zg) 8@

= — Ei / ae(yl + Tey, Y2, O) - as(y/, 0) dy/
re12 Jo, @) o2 .

Since 7. /e? is bounded in L*(I)3, we can apply Lemma[£.17}(i) to deduce that the right-hand
side of the above equality tends to zero in the distribution sense in w,. Therefore, passing
to the limit in the previous equation by , and taking into account the arbitrariness of
p and M we get

1 1 —-11
a(a, —5,22,,23) — a2, 5,2'2,,23) =0 ae (2/,22,23) €Ew, X <7, §> x R.
Analogously we can prove
iy 1 1 , 11
u($,z1,—§,23)—u(z,zl,§,23):0 a.e. (2',21,23) € w, X TRb) x R.

These equalities prove the periodicity of 4.

Step 3. Using the compact embedding of H(f2) into L?(T') and Lemma [4.17] (ii), we have
that @./e? converges strongly to (@' (2,0),0) in L*(w,)?, for every p > 0. Thus, by (4.2)) and
(4.90), we deduce
U (7', 2) - i ~
—= (@' (2,0),0) in L*(wy; H' (Qur)*), Vp, M > 0. (4.94)
Step 4. For p > 0, using the change of variables (4.82)), which defines ., in the equality
u.v =0 on I';, we get

de X Oe R de :
— =V (Z)al (:c’, 2, ——\If(z’)) — TUe3 <x’, 2, ——\Il(z’)) =0, ae inw,x Z. (4.95)

TE T& 3
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Thanks to (4.87)) and (4.95), we then have

5 2
/
(.UpXZ

VU (Z)al (2,2, 0) + a.3(2', 2, 0)| dz'da’
S —
wpxZ' J 222 w() Te

Te
58 ~ 12 / 3
<C— 0250 *dzdx” < Ce”,
wJ Qe

5. ?
=V U (2" )0, al (2, 2 t) + Doyt 5(2, 2/, 8)| dtdz'da’
TE

Te

which implies

/prZ’

0

VU2 al(a!, 2, 0) + ae3(2', 2, 0)
Te

2

Oc X X
—/ <—VZ/‘I’<T/)UI€(SEI,T/,O) - Ug’g(xl,T/,O)> dr'| da'dy < C&%..
z' \Te

Dividing by &3r., and taking into account that V¥ has mean value zero in Z' and (4.2)),
we get

65 ~/ /’ I’O 55 ~/ /7 /’O 5! /

/ _€ EVZ/\IJ(Z/>UE('I ZZ ) _ & Vz/‘IJ(T/> (UE(I T ) U’E(x )) dT,
wpX Z! Te Te e Te Jo EN/ET:

+a5,3(x', 2,0) — ties(a)) |
EN/ET:

Depending on the values of A, we deduce:

dr'dz < C% — 0, Vp>0.

£

(4.96)

If A = 400, statement (4.96) shows that f—i, /%VZ,\II(z’)M is bounded in L*(w, X
Z"), for every p > 0 and then that V¥ (z)d.(2', 2/, 0) tends to zero in L*(w, x Z'), for every

p > 0. By (4.94), this proves assertion (7) in the proof of Lemma [4.18|
If A € (0, +00), we can pass to the limit in (4.96)) to deduce (4.84)).

Lemma 4.19 Let p? be in L2(€.) satisfying

£

3
2

192 120 < Ce2,

and let us define p° by

/

(2, 2) = p° (rsm (x_) + ng’,r523> . forae (2)z2) €w, X Z..

£
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Then there exists p° € L*(w x @) such that, up to a subsequence,

\/Epg — % in L*(w, x Qu), Y M,p>0. (4.99)
EANE

Proof. For every p, M > 0, the definition of p? proves

YRGS O] A R USROS
w, M

o XQ kel
' (4.100)
< / (@) de < / W2 dr < O
k/EIp,E Qﬁ; Qe

and then there exists p° : w x @ — R such that 1} holds. From (4.100f), by semiconti-

nuity, we deduce
/ ~|pPda’ dz < C,
prQM

and for the arbitrariness of p, M > 0, this shows that p° belongs to L?(w x @) d

Proof of Theorem Thanks to and div(u.) = 0 in €., Lemma assures
the existence of @ € H'(0,1; L*(w))? and @ € H*(0,1; H™'(w)) satisfying (4.68)), (4.69) and
(4.70), with 7 = 0. By Corollary , there exist p! € H'(€.), which does not depend on
the variable z3 and has null mean value in ., and p? € L3(€.) such that Vp. = Vp! + Vp?
in H71(Q.)% and holds. Then, applying Lemma to these sequences, we have the
existence of p' € H'(Q), which does not depend on y3 and has null mean value in €, and
p° € L*(Q) such that holds for p, 0 defined by (4.79). Observe that, defining j = p',
then we have

o 1. 1. o
be=P W LQ), 0. = S0y B = Oy i HTH(Q). (4.101)

On the other hand, we remark that (u., p.) satisfies the variational equation

,u/ Du. : Dy, dx + /VpicpE dx — /pgdivgog dx + /(ua - V)uepe do+
Q. Qe Qe Qe

(4.102)

g/usQOE dr = fs@pe dl‘7 V(Ps € Hl(Qe)ga PelV/ = 0 on Fea Pe = 0 on aQE \ I'..
€ QS

The proof of Theorem [4.2) will be carried out using suitable test functions ¢, in (4.102)).
Step 1. We take ¢3 € Cl(w x (—1,1)) with supp(@s) C Q and define . € H'(2.)? by
1

pe(r) =0, 3= 5@3@/7 %) Vz € Q..
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It is immediate to check that we can take . as test function in (4.102)) which gives

~ T B T
o vf'uf,?’(x)vy'gpag(]:/’ ?3) dx + % / aw3u5,3<$)ay3903($/7 ?3) dx

€ Ja. IS
1 1 ; L3
5 [ @0l Dy ek 2 [ (e D) 0)peale’s ) do
1 .., T
= E 0. f573($)g03($ ’ ?3) dx.

Using the change of variables (4.16) in this equality, taking into account that thanks to
Holder’s inequality, (4.15)), (4.47) and ||@c3|[z) < C, we have

< ez | Ducll 2 yss e 3l ooy < . (4.103)

/ (ua : V)UE,SSEE,?) dx

€

then we obtain that @. and p? defined by (4.17)) and - 4.79) respectively satisfy

I /Q Ve 3(y)Vy @3(y) 0ly+§2 /Q Oy lic,3(1)Oyy P3(y) dy — / p; (y)0y, @3 (y) dy

£

:Lﬁ@@mw+@

Passing to the limit in this inequality, thanks to (4.69)) and (4.80)) we deduce

y3p —fg in 2.

This and (4.101)) give (4.20)).

Step 2. Case A € (0, +00).

This is the most difficult case and it will be developed in more detail.

We consider ¢' € Clw x (—1,1))%, ¢ € CHw;CHQ)?) with D.¢(2',2) = 0 ae. in
{#z3 > M} for some constant M > 0, such that

2y, y3) = @'(y,0) if y3 <0, o2, 2! z3) = p(a',2',0) if z3 <0,

(4.104)
AV (2 (Y, 0) + ¢s(a’, 2',0) = 0.
Besides, we take ( € C*°(R) satisfying
. 1 , 2
((s)=1lif s < 3 ((s)=01if s > 3 (4.105)
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and a sequence of positive numbers 7T, such that

T 1
lim =% = 0, T

=0. 4.1
e—0 ¢ e—0 5T =0 ( 06)

Then, we define ¢, € H'(Q.)? by
1 oe
oh(w) = =¢ ( ’ xs) +—=¢ (w’,£>é<ﬁ>
€ AET, Tre €

5{—; A !/ x T3 52 Al / T .',C/ L3
e = ’y — - ’ o Ui T )
pes(r) er, 3 (x 7‘6) ¢ ( £ ) Aer? 7\ v Te ‘ T

Using properties (4.104) of @' and ¢, it is not difficult to check that, for ¢ small enough,

e =00n 0 \Is, p.r=0o0nTl,,

which shows us . is a suitable test function for (4.102]).
Taking into account that ¢/, g& and U and their derivatives are bounded, that D,p =0

a.e in {23 > M} and properties (4.105) and (4.106]), we have

DSpa Zaya% ( ) > e; ®e3+ )\(;“ D.p (33,’ £) + hg(:v),

£ £

with h. € C°(Q.)>*? satisfying

52 52 04T, o4
/|h|dx<05< + =5+ 5+ 6)205,

er? &3z el 2r2T
which, by (4.15)) and (4.65|) easily gives
Du.(z) : Dp.(x / s U ( '(x’,ﬁ> dx
5

O
2
Aer? Ja.

Qe

_|_

Du.(z) : D, <x' —) dx + O, (4.107)

£

Oc o
/Spg(x) divp.(z) do = Ner? /QE p2(x) div,¢ (m/, 7%) dz + O..
Using again that ¢ and VW are bounded, thanks to (4.105]), we obtain

2 / 2 2 4
O R O Ol e
o\ |ETe Te € er Te Te 1.

r2 7’45
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which, by (4.15) and (4.65]), and taking into account that (4.11]) gives

/ folPde < e / Py < Ce,
e wx(—1,1)

proves
1 Y] 1 L3\ ~ / ﬁ
/f€ 908 - /Ef<x’8>go<x78>dx+067
/ egeds = w(wc—w(f g (!, —5—\If<r >>\/ I+ Elw )pdi’+ O, (4.108)

1
| vert@ewdr =1 [ e (¢ 2) de+o.
Qe € Ja. €

Reasoning as in (4.103)) but using now ||¢c| 1.y < C/e, we get
I > I
/ (ue - V)uep. dz| < ( |u€|4dx> ( |Du5|2d:v) < |g05|4dac) < Ces. (4.109)
e Qe Qe Qe
Taking . as test function in (4.102)), from (4.107)), (4.108) and (4.109) we obtain
x
62/ s 5 l( / dx—}- )\872/ DUg . <x/’r_€) dl‘
/V/p )@ (2, )d _ / (x) div,$ o2 do
c Aer? Jq. N "7,
/ 5 /

+4 [l 8 ()@ oV ))\/ ‘EIV‘I’( /))Ide

2
9 w Te Te

1 ~
= —/ I (:L", @) vy <:c', E) dr + O..
£ Jo. 5 5
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Using the change of variables (4.16|) in the terms with ¢’ and the change (4.82)) in the terms

with ¢, last equality provides

52/811 y390 (y)

(', 2) : D,p(2!, 2) dzda’

s oaf /
6 V ()@ (y) dy Aerg//sps r' 2) divp(x’, 2) dzdx
4.110
52 y/ 2 ( )
—/ ( ——‘1’( I e ()
Te 72 Te
/ ()@ (y) dy + O..
By (4.69), the compact imbedding of H*(£2) into L*(T') and the inequality
1. 6. (v 1. 2 0. 1.
/w 8_2u€ (9/7 —g‘I’ (75)) - gug(y',()) dy' < C; /Qa |§3yaus| dy, (4.111)
we have
Ly —é\lf Y — @/ (y,0) in L*(w)? (4.112)
2 e r. ) : .
Then, taking into account that by definition of A and (4.2]) we have
e de
lim 2<% = lim 2= = 1 / ¢'fPdy < C% =0
e—0 1 e—0 \/E ’ Qe\ﬂ - £ &

e\/eTre 23/2

and using (4.69)), (4.80)), (4.85), (4.99) and (4.112) we pass to the limit in (4.110]) and obtain

that @, p', p° and 4 satisfy
/8y3u )0y, @' (y )dy+u//Dux 2): D,p(2) 2) dzda’

—i—/Vy/ﬁl( y) dy — // (2, 2) div,p(a', 2) dzdx’
Q

v [wie = | Pt
Q)?) with D.¢(2/,2) = 0 a.e. in {z5 > M}

for every ¢’ € CHw x (=1,1))%, ¢ € CHw; C}(
for some constant M > 0, and such that (4.104)) is satisfied. By density, this equality holds
true for every @' € H'(Q2)? and every ¢ € L?(w;V?) such that

@'=0 on9Q\T, AV ()@ (2',0) + @3(2',2',0) =0 a.e. (2,

(4.113)

dewx 7.
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Let us now obtain a problem for @' and p' eliminating @ and p° in (4.113)). For this purpose,
we take ¢’ = 0 in (4.113)) which proves that (1, p°) (extended by periodicity to w x R? x R™)

is a solution of ) R
—uAN A+ V.p° =0 in R? x RT

div, i =0 in R? x R*

(@,p°) € V¥ x L3(Q) (4.114)
uz(2,2',0) = =AVU ()i’ (z/,0) on R? x {0}

0.,u =0 on R* x {0},

\

a.e. 2’ in w. Defining (ngﬁl, q'),i=1,2, by 1} we deduce by linearity and uniqueness

D.a(z', z) = =AM uy(2',0)D, 8" (2) + us(2',0)D.%(2)) ae. in R? x R,

- (4.115)
PO(2, 2) = Mui(2/,0)7" (2) + ua(2',0)3%(2)) a.e. in R* x RY.
Now, for ¢' € H'(Q)?, with ¢ = 0 on 9Q\ T, we take ¢’ and ¢(a', z) = =\ (@1 (2, 0)6!(z) +
Do, 0)52(2)), as test functions in (4.113), which by (4.115) gives
n [ aiongy+ [ V5 Fay ¥ [ R0 .0y
“ “ © (4.116)

+ / U@ do = / f'é'dy.
T Q

By the arbitrariness of ¢', this together with (4.68)) prove that @', 1w and p = p' is a solution

of (121) and (27,

Step 3. Case A = 0.
As in the previous step, we consider ¢’ € C}(w x (—1,1))?, with &'(2,x3) = &'(2’,0) if
r3 < 0. Then, for ¢ € C*(R) satisfying (4.105)), we define ¢. € H'(£2.)? by
1 O 8 '
o) =18 (1) o =2 (2) g ve (D),
€ € ETe T r

€ €

For every € > 0, the function ¢, satisfies p. = 0 on 9. \ T's, . = 0 on I'.. Then, taking
©. as test function in (4.102), passing to the limit, using that A = 0 implies

lim | &3
e—0 :

2
Dy, (x Z Oy, @ ( ) e; X es

der | =0, lim (5 |g0€,3(:c)\2d:c) =0,
e—0 Q.
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and reasoning by density, we get @', p satisfy
u/ 8y3ﬂ’8y3¢'dy+/vy/ﬁl cﬁ’dy—l—/vv'@' do = / f'3'dy, (4.117)
Q Q r Q

for every ¢’ € H'(Q)? with ¢’ = 0 on 9Q \ T, or equivalently that @', p = p' satisfy (4.21])
and (4.28).

Step 4. Case A\ = 4o00.
We now consider ¢’ € C®°(w x (—1,1))? such that @'(2/,x3) = ¢'(2/,0) if z3 < 0 and

P2, 0)VU () =0 ae. (2/,2) ewxZ. (4.118)

Observe that this choice of ¢ implies that ¢. defined by

1 XT3
/ — ~/ /’ — . — O,
P =7 (¢ 2) el
satisfies . = 0 on 9Q. \ I's, p.v = 0 on I'.. Taking ¢, as test function in (4.102)), passing
to the limit and reasoning by density, we get @/, p' satisfy (4.117)) for every ¢ € H'(Q)?
satisfying ¢’ = 0 on 9Q \ T and (4.118). It proves that @/, p = p' is a solution of (4.21])
and (E24).

Ul
Proof of Theorem [4.71
Step 1. From (4.2), (4.15), u. = 0 on w x {e} and Holder’s inequality, we get
/ lu.|*dx < Ced, |0, Pdz < Ce6,. (4.119)
Q- Qe

On the other hand, applying the change of variables (4.16), the Rellich-Kondrachov theorem
and (4.18)), we obtain

1
lim—/ () — 2 (e, ) 4 ey () ?) =
of €

e—0 55

This inequality and (4.119)) prove that (4.39)) holds for every value of A € [0, +o¢].
Step 2. We consider ¢. € H'(Q.)? such that

p. =0onwx{e}, @r=0o0nT;, ][ | D |?dr < Ce?, ][ |dive, [2dz < Ce?, (4.120)
Qe Qe
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pe H*0,1; H'(w)), £ € L*(Q) satisfying

and there exists ¢’ € H'(0, 1; L*(w))?,
=0in H Yw),
p0) =p1) = ) (4.121)

7'(1) =0 in L*(w),
divy (§') + 9y,p = € in H'(0,1; H(w)),

and the following convergences hold

3 <p5 ~/

%AOmH (Q)°, = — (#,0) in H(0,1; L*(w))?, @—\ﬁin H?(0,1; H Y (w)),

(4.122)

— ¢ in L*(Q), (4.123)

1. . 1.
E_zdlvy’<90/s) + gay:z@a,?)
= 906(?/78?/3) a.e. Yy c Q.

where @, is defined from ¢. using the change (4.16)), i.e. P-(y)
Let us prove that for any n € Cl(w), we have

1
lim ﬂ/ Du, : Dp.ndx — —/ pe divyren dx
=0 \ &3 Jqo g3 Ja
: c (4.124)
:lu/ai%al y395,77dy_/]5g77d97 lfA:Oa +OO7
Q Q
. i 1 .
lim ( — Du, : Dp.ndxr — — pe divyen dz
e—0 53 Q 53 Q
c c (4.125)

= ,u/ Oy W Oy @' dy — / pEndy+ N’ / Ru'¢'ndo, if X € (0,+00).
Q Q r
For this purpose, given n € Cl(w), we take ¢.n/e* as test function in (4.10]), and considering

the functions p!, p? given by Corollary , this gives

1 . 1 )
a Du.(x) : D(¢en)dx — g/ p;dlv (pen) do — 5_3/ pgdlv(gogn) dx
e e (4.126)

1
+— [ (e V)uependr + L wpndo = — | fependr.
£ Ja. € Jr. £ Ja.

Let us pass to the limit in each term of this equality

The change of variables and (| gives
1 ~Pe ~
—3/ fependz = / f=ndy = / f'émdy+ O..
€% Jot Q € Q

On the other hand, since n is bounded and thanks to (4.120]) and Poincaré’s inequality, we

have )
_3/ fapnde = O (4.128)
£ Q-

122
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Convergences (4.18)) and (4.122)), the compact imbedding of H!(Q) into L?(T") and esti-
mate (4.111)) (which also holds true with @, replaced by ¢.) prove (4.112]) and

1 dc !
_295:: <y/7 S 4 (y_)> @I(Iy/’ 0) n L2<W)2.
€ €

£

From this, as ¥ € W2>(Z’) and 6. /¢ tends to zero, we deduce

~€ ~€ 65 ! ~) ~
l/ usgogndJ:”y/ Yee V) (o~ %0 (L dx’+06:fy/u’90'77d0+05. (4.129)
et Jr. o \ &2 g2 € re r

Thanks to (4.15]), (4.120) and (4.47)), and using Holder’s inequality, we get

1

1 5
g S g||u5||L4(QE)3||Du5||L2(QE)3><3||Q0€||L4(QE)3 S 053. (4130)

/ (us - V)uepen de
Qe

Using Hélder’s inequality, (4.47)), (4.65), (4.120) and || Vn||z3(q.)» < Ce'/3, we obtain

1
= / pf;%vx/n dx

€

1
< =
= 23

. 19211 2200 19e | 20203 Varnll Lagnys = O (4.131)

Applying the change of variables (4.16)), from (4.20) and (4.122)), taking into account that
~ ~1 .
p=p, it follows

1

1 . ..
= +piw2VM de = /giwévy'n dy = /p ¢'Vyndy + O.. (4.132)
Q7 QZ Q

Since ¢. = 0 on w x {e}, then (4.15) and Poincaré inequality give ||¢e| 2(q-) < Ce26522,
This estimate together with (4.65]) prove

1 Oc
;/ PpiVam dx = 0.. (4.133)
o

C
< gHp;“LQ(Qs)HQOEHLZ(QE_) <C =

Finally, using again the change of variables (4.16)), by (4.18)), (4.122)), we deduce

1
& / | Duez (e @ Vo) d = / Oy’ (§'® Vyn) dy + O, (4.134)
o Q

whereas, by (4.15)) and (4.47)), we get

1
— Du, : (¢ ® Vym)dx

1
3 -3
g Q;

1
S IDu g ll9el s IVl e o < 85, (4135)

<
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By (4.127))-(4.135)), we have then proved

1
lim ﬁ/ Du. : Do.ndr — — pe divyrp.n dx
& Jo, 23

e—0
a (4.136)

= —,u/ga%a’ (@@ Vyn)dy — fy/

w

FFnde + / B &V, mdy + / Féndy.
Q Q

Since p € H'(Q) is independent of y3 and n € H}(w), from (4.121)), since 5(0) = p(1) = 0,

we obtain

1
[peVmdy == [ <divydin>uscme du [ Vb ondy
Q 0 Q

Z—/ﬁéndy—/vyfﬁ pn dy.
Q Q
Using ¢'n as test function in the equation satisfied by (@, p) (Theorem [4.2)), last equality

and (&.136) prove (&.124)-(E.125).
Step 3. Let us prove (4.41)), (4.43)). Using ¢. = u. in Step 2 and taking into account that

since divu, = 0 in . we have £ = 0, equalities (4.124) and (4.125) give, for every n € C}(w),
n>0in w,

lim ﬂ/ Du, : Dp.ndx = ,u/ Dy W' 0y, @' dy, if X =0,+00, (4.137)
0. 0

e—0 53

lim ﬂ/ Du, : Dp.ndr = u/ Oy W 0yy @' dy + N? / R’ @'ndo, if A € (0,+00). (4.138)
0. Q r

e—0 53

Since 1. /e converges weakly to zero in H(Q)3, 4. /e? converges to (@/,0) in H'(0,1; L*(w)?),

equality (4.137) proves (4.41)).
In order to prove (4.43), we take s. > 0 such that

lim 2 =0,  lim 2 = toc. (4.139)
e—0 ¢ e—=0 12
Then we decompose

1 2 1 2 1 2

— [ |Du.|’n dx = = |Duc|"n dx + — | Du.|"n dz

e Ja. e Joz & Jiws>s.)

1 (4.140)
+= | Du.|*n da.

€% J{o<zs<s:}

Let us estimate each term on the right-hand side of (4.140)).
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Clearly

1
liminf — | Du.|*n dz > 0. (4.141)
e—0 53 -

By (4.139)), using that . /e converges weakly to zero in H'(Q2)? and 4. /e* converges to
(@',0) in H*(0,1; L(w)?), for the second term on the right of (4.140]) we have for every 7 > 0

o1 1 5 1 5 5
lllgl_)lglf g |Du5|2n dr > / <_2|Dy’us|2 + _4|8y3u6’2) 77dy > / ’ay3ul|27] dy.
{z3>s:} {ys>7} € {ys>71}

So we have
1
lirsn_}glf = | Du|*n dx > sup/ 0,50 [*n dy = / 10,50 |*n dy. (4.142)
{z3>sc} >0 J{ys>1} Q

For the third term on the right of (4.140f), we take M > 0 and £ > 0 small enough such
that M < 2. Defining . by (4.81)) and using the change of variables (4.82)) and the uniform
continuity of n, we get

1

= |Du.|*n dv = / |D, ( te ) *nda'dz + O.
€ {0<z3<sc} wxQ se EVETe
5 (4.143)

i
> D, = 2ndx’dz + O..
/wx@M ‘ (6\/87’6) |

On the other hand, by (4.85]) we have that D,(—%=) converges weakly to D., with @ defined

NG

by ([#.42)), in L2(w x Qy)3*3, for every M > 0. Therefore

1
lim inf — |Du.|*n dz > sup |D,a|*n dx'dz
e—0 53 {0<x3<sc} M>0 wX@M
‘ (4.144)
= / |D.a|*nd'dz = \? / Ru't/'ndx’.
wXCA) r
By (4.138)), statements (4.140))-(4.144) imply
1
lim = /Q |Du|*n dx = 0, (4.145)
.1 2 /12
hII[l) = |Duc|*ndx = | |0y,u'|*ndy, (4.146)
e=0¢ {x3>s:} Q
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and

] N
lim —3/ |Du.|*n dx = lim |D, ( te ) ?nda’dz = / |D,a|*n da'dz.
e=-0¢g {0<z3<sc} &0 Q SVETe wxQ

wa% Q
(4.147)
From (4.146]), (4.147), the weak convergences of . /e to zero in H'(Q)3, of u./e% to (@',0)

in H'(0,1; L*(w)?) and of E\/;EDZ&5 to D.4 in L2(w, X Qp)¥*3, for every M > 0, we obtain

2

2
1 . x
iy [ [P = ot (102 wmed e =0 )
T3>8e i=1
: ae(x,7 Z) ~ / ? / /
lim D, | ——=— —u(2,2) || n(a')da'dz=0. (4.149)
e=0 Jx6.. SN

Therefore, taking p > 0 such that n(z') = 0 if 2’ ¢ w, and using that 4.(2', 2) does not
depend on 2’ in C¥ x Z', for every k' € I,., we get

1 U z
L Du(e) - ][ D. < ) (o', Ly
/{0<x3<58} 63 Cr (z) Ve Te

2
1 U (s, 2)

3 e\ YN /
=r — D —u(s',z) | ds
E%:/Ase T’?/2 /C,’fsl 2(8 ETe ( )

S\/
‘UX@Si

Te

By (4.139) we have

1
E\/ET:

2
. ~ T3
lim ~ § 9 /( ,7—) i "dx =0
e Jeoy [ N )T @ es) )

1 R T 2
lim —f D,u(¢', —)d¢'| n(2')dz =0,
20 Jras>sad 1 Te SOy () Te

and then, from (4.145)), (4.148) and (4.150)), we deduce (4.41)) and (4.43]).
Step 4. Let us now prove that (4.40]) holds.
For every € > 0, by Proposition (i) there exists ¢. € Hj(£2.)? satisfying
div . = p. = pL +p? in Q. (4.151)
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and, by (4.46) and (4.65)),

, Ve>0. (4.152)

Sl

16ell 3 (0.2 <

Thus, taking into account that ¢. = 0 on I';, (4.20)) and (4.151)), from Lemma applied to
the sequence £2¢. we deduce that there exists ¢’ € H'(0,1; L*(w)?) and § € H?*(0,1; H*(w))
satisfying ) ) ) )
F(0) = #(1) = 0in 12(w), 0(0) = (1) = 0 in H~'(w),

divy (¢') + 9,,0 = p in H*(0,1; H(w)),
and the following convergences hold

S (3 i)
€

£ — 0in H'(Q)3, ¢. — (¢,0) in HY(0,1; L*(w)?), — 6 in H*0,1; H'(w)),

(4.153)
. 1 -
diVy/(Q/E) + gay:sgba,fﬂ - 25 in LZ(Q)7

where as usual ¢. is defined from ¢. using the change of variables (1.16)), i.e. gzga(y) =
b-(y',eys) a.e. y € Q. Taking . = €2¢. in Step 2, equalities (4.124) and (4.125) give for
every n € CHw), n > 0 in w,

1
lim (ﬁ Du, : D¢.ndx — g/ Ipe|*n dm)
Qe

e—0
© Ja. (4.154)
—u [ di0,dndy~ [ pPady. VA€ D+l
Q Q
If A\ =0, 400, then (4.41)), (4.152)) and (4.153) give
1
lim—/ Du, : Dnggndx:/@ygv’ s @' dy,
e—0 ¢ Q. Q
thus, by (4.154), we deduce
1 .
iy~ [ Ip.Pady = [ 5Py (14.155)
=0e Ja. Q

which, using the change of variables (4.16) and that p. converges weakly to p in L2(f2),

proves (4.40)). R
If A € (0,400), we apply Lemma to e2¢. which gives the existence of ¢ € L*(Q; V?)

such that, as ¢’ = 0 on I, satisfies

ds(z,2,0) = = AV ()P (2/,0) =0 ae. (2,2) ewx Z, (4.156)
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/

and such that, up to a subsequence, ¢.(z', z) = gbg(rg/i(i)—i-?“ez’, rez3) ae. (2',2) € w,xZ.
r
satisfies )

JED.6. — D.gin L¥(w, x Q), Vp,M > 0. (4.157)
TE
In particular, taking into account (4.99)), (4.151) and
/ ) ]\/57‘51;1€|2 dr' dz < Z er?/A Ipt(re(K + 2'),re23)|* dz
w Qm

pXQNI k’EIp,s
< Z 5/ ]pi(a:)|2d$§5/|p;]2da:§062,
wel,. YO Qe

we deduce
\ /Edivzg6 = Erpl. 4+ \Erpd. — 0 in L*w, x Q)*, Vp,M >0,
TE

which gives R )
div,p =0 inw x Q. (4.158)

Using (4.43)), (4.152), (4.153]), the change of variables (4.82)), the uniform continuity of n and
(4.157)) we obtain

1
lim —
e—0 &

+lim/ = D.u(a, z)ds’ :Do.ndx = / Dy W Dy’ m dy (4.159)
e—0 Qe Te C?"g (:LJ) Te Q
+/ D.u(x, 2) : D.o(2, 2)n(x') do'dz,
wXQ
but taking 5 as test function in (4.114)), thanks to (4.156|) and (4.158)) we deduce
/ D.u: nggn dr'dz = / ﬁ) div,¢nda'dz = 0. (4.160)
wx@ WX@
Then (4.154)), (4.159) and (4.160) give
1 .
hr%—/ pe|? nda = / 1”0 dy,
e=be Ja. Q

which, by using the change of variables (4.16) and that p. converges weakly to p in L*(Q),
proves (4.40)).

/ Du, : Dp.ndx = / 0y, ' 0y, &' dy
Q. Q

g
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Chapter 5

The homogenization of elliptic partial
differential systems on rugous
domains with variable boundary
conditions
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Abstract.

The present paper is devoted to study the asymptotic behavior of a sequence of elliptic
systems posed in a sequence of rugous domains €2,,. The solutions are assumed to belong
to a vectorial space V,(z) depending on x € €,. This permits to consider several types
of boundary conditions posed in variables sets of the boundary and in particular contains
classical results for the homogenization of Dirichlet elliptic problems in varying domains.

5.1 Introduction

The goal of the present paper is to study the homogenization of a sequence of elliptic systems
on rugous domains. Namely, we consider a sequence of Lipschitz open sets €2, C RY, which
are converging to a bounded Lipschitz open set {2 C R in the following sense: For every
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p > 0, there exists ng € N such that for every n > ny,
{r €Q:d(z,00) < p} CQ, C{zeRY:d(z,9Q) < p}. (5.1)

We also consider a tensor bounded measurable function A from an open set O containing
strictly Q into Ty« n (the space of linear aplications from the space of matrices My« n into
itself), and a sequence of functions V,, from ,, into the set of linear subspaces of RY. We
assume that there exists a > 0, independently of n, such that

OzHUH%l(Qn)M < /Q ADv : Dvdz, VYve H' (Q,)M, with v(z) € V(x) for q.e. z € Q,.

n

Then, for two bounded sequences f,, and G,, in L?(Q,,)™ and L?(£,,)*¥ respectively, which
converge to some f € L*(Q)M and G € L?(Q2)M*Y in the sense that (5.17) and (5.18)) below
are satisfied let us study the homogenization problem

u, €V, q.e. in Q,

/ ADu,, : Dvdx:/ I "Ud.il?—l—/ Gn:Dvdx, Vv e HY(Q,)Y, v e V qe. in Q,,
n n Q’I’L

(5.2)
Our main result shows the existence of a subsequence of n, still denoted by n, a Radon
measure g in €2, a py-measurable function R : 2 — M, and an application V' from (2 into
the set of linear subspaces on RV, satisfying

RE-€ 20, |RE-n| < B(RE-)2(Ry-m)?, VEneRY, prae. in Q.
for some 3 > 0, and
O‘HUHJ%F(Q)M S/ADU ; Dvda:—i-/Rv‘vdu
Q Q

VYo e HY Q)M with v(x) € V(z) for q.e. 7 € Q,

(5.3)

such that for every p > 0 the solutions of (5.2)) converge weakly in H'({z € Q: d(z,09) < p})

to the unique solution u of the variational problem

(

ue H'(QM, uweV qe. in Q, /Ru-ud,u<+oo
Q

/ADu:Dvdm—i—/Ru-vd,u:/fmdw—i—/G:Dvdx (5.4)
Q Q Q Q

Yoe H(QM, v eV qe. in Q, /Rv-vd,u<—i—oo.
Q

\
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The subsequence of n, the measure p and the applications R and V' do not depend on f,,
G,, f and G. More generally, we will show that problem is stable by homogenization.

Assuming there exists a closed set C,, such that V,, = {0} on C,,, V, = R™ on Q, \ C,
and V,, arbitrary in 02, \ C,,, problem (j5.2]) can be written as

—div(ADu,, — G,) = f, in Q,\ C,
u, =0 on C, (5.5)
Uy € Vy, (ADu, — Gp)v € VnL on 09, \ C,

with v the outside normal vector to €, on 02,. For Q,, = Q, and V,, = {0} on 02 problem
is the classical homogenization problem for linear elliptic equations in varying domains
with Dirichlet conditions. In this case, the term Rup which appears in the limit equation
is what, in the terminology of D. Cioranescu and F. Murat, is known as the strange term
(see e.g. [T, [[§], [10], [13], [15], [I7], [18], [19], [20], for the homogenization of linear and
nonlinear elliptic problems in varying domains with Dirichlet conditions).

Taking C,, = 0, problem ({5.5) permits to incorporate several boundary conditions. In
this case it is simple to check that in , the measure p is concentrated on 02 and that
V =RM in Q. So, can be written (at least formally) as the following problem with a
generalized Fourier’s condition with by our main result is stable by homogenization

—div(ADu—G) = f inQ

Ru-udy < 400, uw €V, (ADu— G)v + Rup € V* on 09.
o9

In particular, for V,, = RM on Q, and V,, taking only the values {0} and R* on the boundary,
Problem corresponds to the homogenization on an elliptic problem in €2, where we
impose a Dirichlet condition on a varying subset of the boundary and a Neuman condition
on the rest. This problem has been studied in [5] and [6] assuming €2,, = Q.

One difference between the present work ant the references mentioned above is that here
the ellipticity assumption imposed to the operators is written in an integral form at
the place of a pointwise one. This is more convenient for systems and in particular for the
linear elasticity where the tensor only depends on the symmetric part of the derivative (see
Theorem [5.2 below).

Introducing €2,, at the place of €2 in Theorem allows us to work with rugous boundaries. In
this sense we refer to [4] where it is studied the homogenization of the Stokes system (Navier-
Stokes is also considered) with Navier’s conditions on the boundary on rugous domains

divu, =0 in €,

Uy - v =0 on 08, %:0 on 0f),,.
ov
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Remark that denoting by T'(x) the tangent space in a point z of the boundary of €2, the
equation for u, can be written as (compare with (5.19)))

u, € H*(Q)Y, divu, =0 onQ,, u, €T qe. ondQ,
Dun:Dvdx+/ un-vd:v:/ fn-vdx (5.6)
Qn Qn n

Voe H(Q,)Y, dive=0 onQ,, ve&T qe. ond,.

Assuming appropiate conditions on €, it is proved similarly to the existence of an
application V' from 92 into the set of linear subspaces of RY, with V(z) C T'(z) for every
x € 0f), a measure p on 0f), vanishing on the sets of zero capacity, and a p-measure function
R : 09 — RM*N gsuch that the limit problem of is given by

(

we H(Q)N, divu=0 onQ, u€V qe. ondf, /Ru-udp<+oo
o0

{ /Du:Dvdx—i—/u-vdx—l— Ruwdu:/f-vda:
Q Q o9 Q

Voe HY(Q)Y, dive=0 onQ, v€V qe. on S, /Rv-vdu<+oo.
80

\

Related results can be found in [1], [2], [3], [9], [1], [11], [12] and in particular some conditions
on the geometry of €, assuring that in the limit V(z) = {0} for every z € 02 This
permits to show that a for a sufficiently rugous boundary Navier’s condition implies the
usual adherence condition for viscous fluids, © = 0 on the boundary, and so mathematically
justifies that due to the existence of microrugosities, a viscous fluid adheres to the boundary

The results of [4] are based on an integral representation theorem which appears in [16].
Analogously the proof of our main result is based on a variant of this representation theorem
which we will give in section [5.4] Theorem [5.41 We remark that the result which appears in
[16] is valid for convex functionals and thus permits to work with nonlinear PDE. It is more
useful when we apply I'- convergence techniques in homogenization ([I4]). The variant we
present here assumes the functional quadratic and so it is only valid for linear PDE, but it
does not assumes that the functional is convex and so the diffusion term of the PDE has not
to be necessarily symmetric. It is more useful when we apply H-convergence techniques in
homogenization ([23]).

5.2 Notation

e The maximum of two numbers a, b, will be denoted by a V b.
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For two positive integers M, N, we denote by My;«n the space of matrices of order
M x N. We also define by M3, the space of symmetric matrices of order N x N.

The space of linear applications (tensors) from My, into itself is denoted by Tyrxn
and the space of linear applications from M into itself by T s.

The scalar product of two vectors a,b € RM is denoted by a - b and the scalar product
of two matrices A, B € My;«n by A : B.

We denote by Vj; the set of linear subspaces of R,
For a function u, we denote by e(u) the symmetric part of the derivative of w.

Let us denote by €2 a Lipschitz bounded open subset of RY and by Q another bounded
open subset of RY such that Q C Q. We recall the existence of a continuous linear

extension operator P : H'(O)M — H}(Q)M.
For p > 0 we denote

QO ={reQ:dz,d0) <p}, Q@ = {z e RY : d(2,Q) < p}.

We denote by M(Q) the space of Radon measures in 2.
For every Borel set E C Q we define the capacity of E (with respect to @) by

cap(E) = inf {[ IVul>dz: we HNQ), wu>1on aneighborhood of E} . (5.7)
Q

Remark that although this definition of capacity depends on 52, the fact that a subset
of 2 has capacity zero is independent of the choice of €.

We say that a property holds quasi everywhere (we write q.e.) in a set E C Q if it
holds in E'\ N with cap(/N) = 0.

A function v : @ — R is said to be quasi continuous if for every € > 0 there exists a set
A C Q with cap(A) < e such that the restriction of u to 2\ A is continuous. We recall
([22]) that every u € H'() admits a quasi continuous representative in Q which is
unique up to a sets of null capacity. Throughout this paper we shall use such a quasi
continuous representative to individuate an element of H'().

A subset E of Q is said to be quasi closed if for every € > 0, there exists a closed set
F. C E, such that cap(F \ F.) < e. A subset E of ) is said to be quasi open if Q \ F
is quasi closed.
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5.3 Homogenization Results

Along this section we consider a Lipschitz bounded open set 2 C RY and a sequence of
Lipschitz open sets ,, C RY such that for every p > 0 there exists ny € N satisfying

QO CcQ, C Vn > ng, (5.8)

Given a sequence of measures u, € M (ﬁn) which vanish on the sets of zero capacity, a

sequence of p,-measurable functions R, : €, — Mjyxn, such that there exists g > 0
satisfying

[SIE
[SIE

and a sequence of applications V,, : Q,, — Vs, we denote by D,, the space

D, = {v c H'(Q,)Y : v €V, qe. in Q,, / R,v-vdu, < —1—00} ) (5.10)

n

We assume there exists p,, converging to zero such

ol < on (10 + [ Ruvevdin ), e, (5.11)

n

We also consider a matrix function A € Loo(ﬁ; TMXN) guch that there exists o > 0 (which
does not depend on n) satisfying

oz||v|]%11(9n)M < /Q ADv : Dvdx +/Q R,v-vdy,, Yvée D,. (5.12)

In these conditions, our main result is the following homogenization theorem

Theorem 5.1 There exist a subsequence of n, still denoted by n, a measure p € M(2)
which vanishes on the sets of null capacity, a p-measurable function R : 2 — Mpyrxar, such
that

R(z)¢-€>0, VEERM peae z€Q, (5.13)

for some constant v > 0, and an application V : Q — Vy such that denoting by D the space

D= {vEHl(Q)M: veV ge in(Q, /Rv~vdu<—|—oo}, (5.15)
Q
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we have that for every f, € L*(Q,)M |, G, € L*(Q,)MN, f e L2(QM and G € L*(Q)M*V,
which satisfy

| foll L2y < C, (5.16)
ﬁl)il]% lim sup/Q - |G |?dx =0, (5.17)
fo— fin XM, G, — G in L*(Q° )N Vp>0, (5.18)

the unique solution u, of the variational problem
u, € D,

/ADun:Dvdx—l—/ Ry, -vdu, = f-vd:v+/ G :Dvdx, YveD,,
n n Qn n
(5.19)

converges weakly in H*(2"), for every p > 0, to the unique solution u of

ueD

5.20
/ADu:Dvdx+/Ru-vdu:/f-vdx+/G:Dvda:, Vv e D. (5:20)
Q Q Q Q

In order to give an example, where the assumptions of Theorem [5.1| are satisfied, we consider
the linear elasticity system on rugous domains.

Theorem 5.2 For a Lipschitz bounded domain w C RY"1 and a bounded sequence 1, in
W (w), which converges uniformly to zero, we denote by ), the open sets

Q,={z=(2,2y) eR"'xR: 2/ €w, O0<zy<l+y()} (5.21)

and by Q the open set Q = w x (0,1). We consider a tensor B € L®(Q;Tn.) (Q open,
Q C Q) such that there exists a > 0 satisfying

B(z)¢: € > alé)?, VEeMy,, ae zeQ. (5.22)

We consider a sequence of applications V,, = Q, — Vi such that V,(z',0) = {0} for every
x' € w. Then, there exists a subsequence of n, still denoted by n, a measure i € M () which
vanishes on the sets of null capacity, a p-measurable function R : Q — RM | such that

R(z):6>0, VEERM, peae x€Q, (5.23)

(NI
[SIE

R(x)¢ :n <y (R(x)¢:€)2 (R(x)n:n)?, YEneRY, p-ae zeQ, (5.24)
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for some constant v > 0, and an application V : Q — Vy, with V(2',0) = {0} for every 2’ €
w such that defining D by , we have that for every f, € L*(Q,)M | G,, € L*(Q,)M*V,
fe LM and G € L2(Q)M*N | which satisfy (5.16), and (5.18), the unique solution

u, of the variational problem

u, € H'(,), un €V, ge. in

/ Be(uy,) : e(v)dr = fn-vdx +/ G, :e(v)dx (5.25)
n QTL n

Vo e HY(Q,), veVy(z)ge inQ,

converges in H ("), for every p > 0 to the unique solution u of the variational problem

ueD

/QBB(U):6(v)dx+/QRu'UdM:/Qf-vdx+/QG:e(v)dx, Yo e D. (5:26)

Remark 5.3 Taking V,, = RY in Q,,, problem can be written as
—div (Be(u,) —G) = f inQ,
u, =0 onw x {0}

U, €V, (Be(u,) —G)-v €Vt on 09, \ (wx {0}),

This permits to study the behavior of a elasticity system in a rugous domain for several types
of boundary conditions. As interesting cases we highlight for example

1. 'V, taking only the values {0} or RN, this corresponds to assume that the elastic body
is fized in a variable portion of 0, \ (w x {0}) and it is free on the rest.

2. V() is equals to the tangent space to O, in the point x. This corresponds to a case
where the elastic body 1s surrounded by other one which is very rigid and then it cannot
penetrate it. Therefore, uniquely tangential deformations are possible on the boundary.

5.4 Proof of the results.

The proof of Theorem [5.1]is based in the next abstract result. As we said in the introduction
it is an adaptation to the H-covergence context of a result which appears in [16].

Theorem 5.4 We consider a linear subspace D C H'(Q)M N L>®(Q)™ and a non-negative

bilinear form v : D x D — M() such that
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i) For every ¢ € CY(Q) and every u,v € D, the functions ou, pv belong to D and

v(pu,v) = v(u, pv) = pv(u,v) in Q. (5.27)
it) There ezists 3 > 0 such that for every u,v € D,
1/2 1/2
I, o)l asy < Bllvw, w0, 0) 1o (5.28)

iii) There exists v > 1 such that for every u € D and every sequence u, € D converging
weakly to u in HY(Q)M, we have

ot )l asiy < Al ing (I, ) gy + B ) - (5:29)

Then, there exist V' : Q — Vi, u € M(Q), which vanishes on sets of capacity zero, and
R :Q — My«n, p-measurable, with

RE-€>0, VEERM, p-ae. in Q) (5.30)
RE-n< B(RE-€)* (R -m)*. V&neRY, p-ae inQ, (5.31)
such that denoting by D the space
E:{ueHl(Q)M: u€V ge inQ, /Ru-ud,u<+oo}, (5.32)
Q

we have
a) The space D is a Hilbert space endowed with the scalar product

1 —
(u,v)5 = (u, V) gr M + 3 /(R + RYu-vdu, Yu,v e D. (5.33)
0

b) The space D is a dense subspace of D and
v(u,v) = Ru-vdu Yu,v € D. (5.34)
Proof. The proof will be divided in two parts. In the first one we show the existence of

V :Q — Vy, p € M(Q), which vanishes on sets of zero capacity, and R : Q — My,
p-measurable, such that D is contained in the space

{uEHl(Q)M: u €V qe. in Q, /Ru-udu<+oo}
Q
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and ((5.34]) holds. In the second part we will show that D is dense in the space defined above.
Both parts will be divided in several steps.

FIRST PART.
Step 1. Let us take D as the completion of the space D endowed with the scalar product

(u,v)p = (u,v) gr(m + % /Q(dl/(u, v) + dv(v,u)). (5.35)

Taking into account that a Cauchy sequence in D is also a Cauchy sequence in H(Q)* and
the semicontinuity property we will prove that this completion can be carried out by
defining D as the space of functions u € H*(Q)™ such that there exists a Cauchy sequence
u, in D which converges to u in H'(Q2)™ and extending v to 7 : D x D — M(Q) by taking

U(u,v) = lim v(uy,,v,) in M(Q), (5.36)

where u,, v, € D are Cauchy sequences in D which converge in H*(Q)* to u and v respec-
tively.
Let us check that the definition of 7 is correct, i.e. that the limit in the right-hand side of
exists and it does not depend on the sequences u,,, v, chosen. In particular, we will
deduce that 7 is an extension of v.

The existence of the limit in easily follows by using the inequality

v (un, vn) — V(umvvm)HM(ﬁ) < [lv(u, — urmvn)HM(ﬁ) + [l (tm, vn — Um)”M(ﬁ)
1/2 1/2
< Bl = st = ) oy 100, 0) Gy

1/2 1/2
[0 (s ) 12 1 (0 = Vs 0 — Um)”Ag@),

which taking into account that w,, v, are bounded in D and so v(u,,u,), v(v,,v,) are
bounded in M (S2), implies that v(u,,v,) is a Cauchy sequence in M (£2).
To prove that the definition of 7 does not depend on the sequences u,,, v, considered, we

remark that if u,, @, are two Cauchy sequences in D which converge in H'(2)M to the same
function u, then (5.29)), u,, — @, converging to zero in H*(Q)M and (5.28)) give
[V (= Uy i — am“M(ﬁ)

< 'thg}f [V (un — U — (= ), un — Uy — (U, — ﬂm))HM(ﬁ) + Yl — ﬂm”?ﬂ(Q)M
< Climinf (|19 (un = tms = ) sy + 1 = T G = ) ey ) + et = T 31 o

Therefore, taking the limit in m, we get

V(U — Uy Uy — Up) — 0 in M (). (5.37)
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Using ((5.37) for u,, — u,, and v,, — ¥, and the inequality

[V (un, vn) — V(amgn)HM(ﬁ) < v (un =ty vn) | + [V (U, v — )|

~ ~ 1/2 1/2 ~ o~ 1/2 ~ ~ 1/2
< 8 (10t = st = ) ey 1, 0 gy 4 110G ) gy (0 = By = T )

we deduce that definition ((5.36]) of 7 does not depend on the sequences u,, v, chosen.
Step 2. Let us prove that D is a Hilbert space endowed with the scalar product

1 —
(u,v)5 = (4, v)groym + 3 (/dﬁ(v,u) + /dﬁ(u,v)) , Yu,veD

Q Q

and that D is dense in D. This will prove that D is the completion of D as we mentioned
in Step 1.

To prove the density we use that, by definition of D, for every v € D there exists a
Cauchy sequence u, in D which converges to u in H'(Q)™. Since definition (5.36)) of 7
implies

U(uy — uyup —u) = Jl_rgo V(U — Uy, Uy, — Upy) i M(Q),
we then have that w, converges to v in D.

In order to show that D is complete, we consider a Cauchy sequence u, in D. Since
this sequence is also a Cauchy sequence in H'(Q)M | there exists u € H*(Q)™ such that u,
converges to u in H'(Q2)™. On the other hand, thanks to the density of D in D, there exits
a sequence u, € D such that u, — @, tends to zero in D. Clearly, @, is a Cauchy sequence
in D which converges to u in H*(Q)™ and thus u € D. Using now that by definition of ¥

lim sup ||u,, — u||z = limsup ||u,, — u||y = limsup lim ||u, — Wy|p =0,
m—0o0

n—oo n—oo n—oo

we deduce that u, converges to u in D.

Step 3. Let us prove that in (5.29)), we can take v = 1. We consider a sequence w,, € D
which converges weakly to a function v € D in H'(Q)M and it is such that v(u,,u,) is
bounded (in other case clearly holds with 4 = 1). Then, u, is bounded in the Hilbert
space D and so there exists 4 € D such that, for a subsequence still denoted by n, u,
converges weakly in D to . Since u, also converges to u in H'(Q)M, we get that 4 = w.
Now, the semicontinuity of the norm for the weak topology in D implies that holds
with v = 1.

Step 4. Let us prove that for every u,v € D, the measure v(u,v) vanishes on the sets of
null capacity.
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By property (5.28)), it is enough to consider the case u = v. Because v(u,u) is a non-negative
Radon measure, we have

/ dv(u,u) = sup {/ dv(u,u): K C B compact}, vV B C Q, Borel
B K

and thus it is enough to show that every compact set K with null capacity satisfies

/K dv(u,u) = 0.

In this case, we know
cap(K) = inf{/~ IVo|?dx peC®Q), p=1inK, 0<p<lin ?2}
Q

So, if cap(K') = 0, there exists a sequence ¢, € C* Q) such that 0 < ¢, < 1in Q, ¢, =1
in K and ¢, converges to zero in H'(Q). From (5.29)), with v = 1, and ([5.27)), we have for
every k € N

[dtavtn) <tmint ( [t = guyona, (0 = g + 101 - sonmuuzw)
Q n—00 Q

= liTEr_lglf /(1 — on)idv(u,u) + Hgokqul(Q)M
a
<timint [ (1= gu)eddvu,u) + ol

— [ v, )~ timsup | ogtdv(u,n) + puuli .

Q n—00 Q

Thus, using that xx < ¢,p7, we get

/ d(u, ) < limsup / a2, 10) < | @rtl2 o
K Q

n—oo

which taking the limit in & proves the result.

Step 5. It is immediate to check that properties (5.27), (5.28) and (5.29)) still hold true

with D and v replaced by D and 7 respectively. Moreover T(u,v) vanishes on the sets of
capacity zero for every u,v € D. Let us prove that property can be improved in the
following way: For every ¢ € H*(Q) N L>®(Q) and every u,v € D N L>®(Q)M, the functions
©u, pv belong to D and

7(pu,v) = v(u, pv) = pv(u,v). (5.38)
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For this purpose, we use that for every ¢ € H'(Q)NL>®(Q), there exists ¢, € C'(Q) which is
bounded in L>®(£2) and converges to ¢ in H*(Q) and q.e. in Q. Taking into account that, for
every u € DNL®(Q)M, 7(u,u) is a bounded measure which vanishes on sets of null capacity,
we get that o, converges to ¢ in L*(Q, dv(u, u)), which by and @, u converging to pu
in HY(Q)M implies that ¢,u is a Cauchy sequence in D and therefore that pu belongs to D.

Now, for u,v € D, passing to the limit in v(p,u,v) = v(u, p,v) = @,v(u,v) we deduce
(15.38).

Step 6. Let us prove that 7(u,v) depends locally on the values of u, v in the sense that for
every u,v € DN L®(Q)M and every w € D, we have

/ A7 (u — v, w)| = 0. (5.39)
{u=v}

Thanks to (5.28) and ¥ bilinear, it is enough to show that every function u € D N L®(Q)M
satisfies

/ 45 (u, u) = 0. (5.40)
{u=0}

In order to prove (5.40), given £ > 0, we take ¢. € H'(Q) N L=(Q) as . = ¢/(|u| V &).
Then, by Step 4 the sequence u. = @.u is in D (remark that u. is the projection of u on the
ball of center zero and radius ¢). Clearly it converges to zero in L>°(Q)* and using that for
every 0 > € one has

2e 2e
|Du.| < [DulX{juj<s} + mIDUIX{ng} < 2|Dulx{ju<sy + F|DU|X{6§\U|}a

we easily deduce (taking the limit in € and then in §) that Du. tends to zero in L?(2)M*¥.

Thus, u. tends to zero in H'(2)™. On the other hand, by we have that 7(u.,u.) =
©*v(u,u) < 7(u,u) in Q, which proves that u. is bounded in D. Using that D is reflexive
and it is continuously embedded in H*(2)™, we then deduce that u. converges weakly to
zero in D. By Mazur’s theorem, we can then extract a sequence 1), of convex combinations
of the functions ¢, such that ¢.u converges strongly to u in D. Since ¢, = 1 q.e. in the set
{u =0} and . > 0 in Q, we get that also 1. = 1 q.e. in the set {u = 0} and ¢, > 0 in Q,
which implies

/ dv(u,u) < / [ P dv(u, u) < ||¢Eu||% — 0.
{u=0} Q

Step 7. Since H'(Q)M is separable and D is continuously embedded in H' ()M, we get
that D is separable. We denote by {z;} C D a countable dense subset of D. For q.e. z € )
we define

V(z) = span{z(x)}. (5.41)
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Clearly, we have

u(z) € V(z) for qe. v € Q, Yu € D. (5.42)
We also define
Vim={r€Q :dim V(z) =m}, 1<m<M, (5.43)
and
Visoim =42 € Viu(x) ¢ 2y, ..., 2, are linearly independent}, 1 <i; <...<ip. (5.44)
Denoting

= U Vi

m=1{1<i; <...<im}

we have that B o
u=0 qe inQ\Q, VueD. (5.45)

7777 im
p1(z) Uz
: =71 : (5.46)
em(z) Uzi,,
with Z the matrix of entries Z,, = z;, - 2;,. Since the functions z;,, ..., 2;  are in the algebra

HY(Q)M N L>*(Q)M, we have that the determinant of any squared submatrix of Z is in
HY(Q) N L>°(Q). Thus, denoting by d = det Z € H'(Q) N L>*()) we deduce that d(x) > 0
q.e. in V;, and

----- im

=
Na¥
S
—
a¥
I
[

(ws(x) - u(z))zi, (), qe x €V (5.47)

where the functions w, are in H'(Q2)™ N L>°(Q2)M and they do not depend on u.
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Taking now u,v € D N L=(Q)M and using (5.39), 7 bilinear and (5.38), we get

m

We define

By (5.28), (5.38) and the derivation measures theorem, we deduce that there exist hi;, €
L>®(Q, dug, ... 0), 1 < s,7 < m, such that

.....

I/(Zis7 Z717) = h7f.s7/7lj’ll ----- Tm *

Therefore, defining in V;, ... ;,.

s,r=1
which is a non-negative matrix p;, ... ;,-measurable function we get

U(u,v) = Ry i W=V iy 10V Yu,v € DN L®(Q)M. (5.49)

..... Tm )

Step 8. In order to obtain a representation of 7(u,v) in the whole of Q, it is enough to
consider Borel sets W;, ; C 'V, which are disjoint, and satisfy

---------- im

N

= U Wi

m=1{1<i1<...<im}

Defining then the measure p € M(Q)

w(B) = Z Z Wiy (BOAW,, i), VB CQ Borel

m=1 {1<{1<...<im}

N

R:Z Z Ry, ... im XWiy . im

m=1{1<i;1<...<im }

we conclude that o
(u,v) = Ru-vy, Yu,v€DNL®Q)M. (5.50)
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If u,v are not in L>°(2)M, then, we consider u,,,v, € D which respectively converge to u, v
in D. This means in particular that v(u,,v,) is a Cauchy sequence in M () and then that
Ru,, - v, is a Cauchy sequence in L}L(ﬁ) On the other hand, since u,, v, converge strongly
to u,v in HY(Q)M, we get that they converge to u,v in u-measure and so, we deduce that
Ru - v belongs to L},(€2) and

v(u,v) = lim D(u,,v,) = Ru-vp, Yu,v€ D. (5.51)

n—oo

Clearly, R is nonnegative and taking into account that (5.28)) and (5.27) imply

1 1
/Ru-vgpd,ug (/Ru-ugod,u) (/Rv-vgpdu) ,
Q Q Q

for every u,v € D and every p € C'(€Q, ¢ > 0, we can show that R satisfies (5.31)).

SECOND PART.
To prove that D is dense in

{uEHl(Q)M : u €V for qe. in Q, /Ru-ud,u<+oo}, (5.52)
Q

it is enough to show that the space D defined in the first part agrees with 1) Le. that
every function v € HY(Q)M with u(z) € V(z) qee. in Q and Ru-u € LY(Q,du) is in D.
By density, it easy to check that it is enough to consider the case where u also belongs to
L= (Q)M.

Step 9. Let us start by proving the following result we will need later: Assume w €
HY( Q)M N LM e HY(Q) N L>®(Q), ¢ > 0 in Q such that

w=0 qe in{¢ =0}, YweD, / Rw - wdp < +o0, (5.53)
Q

then w belongs to D.
To prove this result, we take 6 > 0. Since for £ > 0, the sets

Fo={zeQ: ¢(z) <e, Jw(z)] >4},

are quasi-closed and they are increasing in €, we get that

lli% cap(F;) = cap (ﬂ FE> = 0.

e>0
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Therefore, there exists a sequence @, € H&(ﬁ) such that 0 < ¢, <1 in Q, v, = 1 in F. and
¢- tends to zero in H} (). Using then that

(lw| —8)* (lw] —0)*
1— ¢ Yw = (1 — ) ———w,
Ut quvawva ™~ T
were (ol — 8)*
w —
4Ny e
belongs to H*(Q) N L*(€2) and ¢w belongs to D N H(Q), we deduce by Step 4 that
w| —0)"
1 poll=0",,

belongs to D. Moreover, taking into account that Rw - w belongs to L'(Q,dy) and that

@, tends to zero in H'(Q), we deduce that this sequence is bounded in D and converges to
(Jlw| = §)Tw/|w|. This implies that (Jw| — §)Tw/|w| belongs to D. Similarly, we can now

that (Jw| — &)*w/|w] is bounded in D and converges to w in H'(2) when d tends to zero,
to finally prove that w belongs to D.

Step 10. The ideas we use in the following are inspired in [I7]. We consider the space
Vi, ={y € HY(Q) : yu € D} (5.54)

endowed with the norm
112, = 11 + / 2| Duf2dz + / ¥*Ru - udp. (5.55)

It is very simple to check that V,, is a Hilbert space. Moreover, thanks to Step 4, for every
Y €V, N L®(Q) and every ¢ € HY(Q) N L>(), the function ¢ belongs to V.
Let us show that this implies the following property
Vi € V,NL>(Q), Yo € H'(Q) N L>() such that

— 2.56
M > 0, with |p| < M|y| q.e. in €, one has p € V,,. (5:56)

In order to prove ([5.56)) we first assume that there exists € > 0 such that ¢ vanishes q.e. on
{z €Q: |¥(z)| < e}, then, using that

. 2
=TV
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we get the result. In the general case we take

C(W—e)t
T T 7

which by the above proved is in V,, and converges qg.e. in €2 to ¢. Using then that ¢.u is

bounded in D we deduce ((5.56).
Step 11. Using Riesz’s Theorem, we define VeV, by

~

(¢7¢)Vu:/@dxv VQOEVZL
Q

or equivalently

/v;z}-vgpdx+/(|Du|2+1) deJr/Ru-quu:/@dx, VoeV, (557
Q Q Q Q

By 1' the functions ¢~ and (zﬂ —1)" belong to V,,. Taking them as test function in (5.57)
we show (as in the classical proof of the weak maximum principle) that ¢ satisfies

0<t¢ <1 qe. in . (5.58)
Moreover, let us show that 1[1 satisfies the following property:
If ¢ € V,, then ¢) = 0 qee. in {z € Q: ¢(x) =0} (5.59)
For this purpose we use that the space W of functions ¢ € V,, such that there exists f €
L>() with
oo = [ fods, Vel (5.60)
Q
is dense in V,,. This assertion is immediate by observing that if a function ¢ is such that
(¥, @)y, =0 for every ¢ € W, then ¢ is the zero function.

Moreover, if 1) belongs to W, then the classical proof of the maximum principle shows
that

N fllee@¥ < ¥ <[ fllim@¥ e in Q.
Therefore, ((5.59) holds for every v» € W and then, by density (use that the convergence in
V., implies convergence q.e. for a subsequence) for every ¢ in V.

Step 12. Let us show that @2 is strictly positive g.e. in 2*. Once this has been proved, Step
9 with w = u, ¢ = ¢ will imply that u belongs to D and then the proof of Theorem |5.4] will
be done.
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By , it is enough to show that Y is strictly positive q.e. in every set V;, .., ~with
1 <m < N. We reason by contradiction.

Let us first assume m = N. Denoting as in Step 6, Z the matrix of entries Z,, = 2, - 2is,
and by d the determinant of the non-negative matrix Z, we remark that since m = N, the
set Vi, ..., agrees with the set where d is strictly positive and therefore (]m holds true
not only for q.e. x € Vj, .., but for q.e. x € Q. Since the second member of 5_47D is and
element of D N L>(Q)™, this implies that du belongs to D, and therefore that d belongs to
V., which by will prove that zﬂ >0 qe. inV;

We now consider m < N and we assume by induction hypothesis that z[z >0 q.e. in

N
U U Vioy = {2 € Q¢ dimV(z) > m}.

J=m+1{1<iy,<i;}

1y ybm

For 1 <iy,--- <1y, we define u;, ... ;,, as the right-hand side of (which agrees with the
orthogonal projection of du on the space generated by z;,, - ,2;,,) and w = du — u;, ... ;

By the assumptions on u, the function w is in H*(Q)" N L>(Q)* and satisfies that Ruw-w
belongs to Li(Q) Since d@b belongs to V,, we also have that ww is in D. Moreover on the

set where 1/; vanish, we have

-If d =0 then w = 0.

-If d # 0, then z;,,---,2;, are linearly independent, and by the induction assumption
that dimV (z) < m. Therefore {¢) = 0} N {d > 0} is contained in V,.. ;. and so, by (5.47)
we also have w = 0.

We can then apply Step 9 with ¢ = ¢ to deduce that w and then that du is in D, which
by (5 shows that v is strictly positive q.e. on {d > 0} and in particular in Vi im0

In Theorem 5.4 . we have considered a set D contained in L>(2)™ but since in 5.19 we
are working with a systems of equations and not with a simple equation, it is well known
that even for f and G very smooth, the solutions of problem are not in general in
L=(Q)M. To overcome this difficulty, we will use the following Lemma which is based on
the ideas used in [20] (see also [10])

Proposition 5.5 We consider a sequence of Lipschitz bounded open sets 0, C RN such
that for every p > 0 there exists ng € N satisfying (@ a sequence of measures fi, € M (S, )
which vanish on the sets of Q,, of null capacity, a sequence of,u measurable functions R,

Q. — Muyxn, satisfying (.) a sequence of applications Vi, : Q, — Vy, and a matmx

function A € L‘X’(Q Tuxn) which satisfies for some a > 0. Defining D,, by ,
we assume there exist u, € D, u € H*(Q)M, S > 0, with

lim sup <||un|]%,1(9n)M +/ Ryuy, - uy, dun) < S, Uy —u in HY(QP M, Vp >0,
n—00 Qn
(5.61)
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and f € LX ()M, G € L2(Q)M*N  such that for every v, € D, v € HY(Q)M, with

lim sup <HU7LH§_I1(Q”)A{ +/ R,vy, - vy d,un) < 00, vy — v in H(Q )M, Vp>0,
228

(5.62)
we have

lim (/ ADu,, : Dvndm+/ R,u,, - Undp,n> = / f-vd$+/G : Dvdz. (5.63)
n— o0 . Q. Q Q

Then, for every nonnegative A and every positive integer k, we have

lim sup (/ | Du,, |*dx +/ ADu,, : Du,dx +/ Ru,, : u, d,un)
n—00 {Jun|>2kA} {Jun|>2kA} {lun|>2FA}

g (5.64)
SC(/ |f||u|dx+/ |G||Du|dm—l—%).
{lul>A} {Jul>A}
The constant C' in only depends on the applications R, and A.
Proof. We take A > 0 and k£ € N, thanks to (5.61) we have
k-1
/ | Du,, |*dz < S + O,, (5.65)
0 J {27 A< un|<27+1A}

where O,, tends to zero when n tends to infinity. Therefore, for every n € N there exists
Jn € {0,--- .k — 1} such that

S+ 0,
| Du,, |*dz < :: : (5.66)

/{anA<|un<2jn+1A}

Extracting a subsequence if necessary, we can also assume that j, converges to some
jef0,- k—1}

We consider a function ® € C<(RM) such that ®(S) = 0 if |s|] < 1, ®(s) = 1 if
Is|] >2,0<® < 1inRM and |V®| < 2 in RM. Using in (5.63) v, = ®(u,/(2"\))*u,,
v =®(u/(27A))*u, and taking into account

| D [®(un/(2A))up] — (up /(277 A))* Dy, | < 4| Dtin| X g2im Acfun|<2ininy, a-e. in

(5.67)

and ((5.66)), we have

. Up |9 . Up o )
hgl_igp (/ﬂn (I)(_an/\) ADu,, : Du, dr + /Qn (1)<2jnA) Ru,, - u, dun)
u u CS
< — )\2r. . )2 it
_/QCI>(2jA)f udx+/QG D[(I)(2jA) u| + =,
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which, using that analogously to (5.68)), we have
| D [®(un/ (2 A))un| — P(un /(27" A)) Duy| < 4D |X(2in A<jun|<2in+1a}s  a-€. iy, (5.68)

implies
h?j}ip (/Qn AD [CID(QZHA)un} : D [@(;Tn/\)un] dx + /Qn R [@(%)u] : [@(%)u} dun)
S/Qq)(z A “dx+/G D[ (2?/\)2 } %

(5.69)
Since

u
O(—)*f - udac+/G D |®(—)*u </ |f]|u\dx+0/ |G||Du| dz,
/Q 2A [ 2A ] {jul>A} {jul>A}
inequalities (5.68)), (5.69) and (5.12)) easily show (5.64). O

Taking in ((5.64) k& and then A tending to infinity,we immediately deduce from Proposition

Corollary 5.6 In the conditions of Proposition[5.5, we have

lim lim sup </ ADu,, : Du,dx +/ Ru,, : u, dun> = 0. (5.70)
M=o poo {|un|>m} {lun|>m}

Remark 5.7 Assuming u in L®(Q)M, the same proof used above shows that Proposition

nd then Corollary@ still holds true if we assume that f is only in L*(Q)N and that

.63) only holds when v is also in L°°()M.
Proposition 5.8 In the conditions of Proposition[5.5, we consider 7 > 0 and a nonnegative
sequence 6, such that

1
6p — 0, —2/ | Duy,|*dx — 0, (5.71)
611 QN{|un—ul>1}
and define @, € H'(Q,) N L>(Q,) by
1
L+ 0p|tn| + (7 — 0,) | Pul’

On = (5.72)

with Pu € H&((NZ) and extension of u to Q0 Then, @u, satisfies

lim lim sup (/ AD(ppuy) : D(ppuy,)dx —l—/
{lun|>m}

e n—oo {lun|>m}

R(pntn) = (@ntin) d,u,n> =0.
(5.73)
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Moreover, for every v, € H* ()M, v e HY(Q)M N L>®(Q)M which satisfy and
lim lim sup </ | Dv, |* dz + / Ru,, - vy, d,un) =0 (5.74)
T m—oo {lvn|>m} {lon|>m}

lim (/ AD(ppuy) : Du, dx +/ R.(pnuy) = v, d,un>
n—00 Q a,

we have

:/QW(A(WXWDU):Dv—ADu:(v@uDu))dx (5.75)

v v
—d GD | —| dx.
+/Qf [+ 7ld] “/Q [1+r|u|] v

Proof. Since by linearity, the sequence 7u, satisfies ((5.63) with f and G replaced by 7f
and 7@, it is enough to show the result for 7 = 1.

Estimate ([5.73]) is a simple consequence of ((5.70)).
In order to show (5.75)), we consider v,, and v which satisfy (5.62) and (5.74). Then, we

have

/ AD(ppuy) @ Du, dx —|—/ R (pnun) @ v, dpy,
' ! (5.76)
= / onADu, : Dv, dx +/ A(u, @ V,) : Du, dx +/ R (pnuy) : vp dpiy,.

n

Taking into account that

1 5, )
n=— " u! Du,, + ——— (Pu)'DPul , 5.77
Ve = TS un + (L= )2 [w“n tnt Ty ) “} (5-17)
we have
/A(un®Vgon):Dvndx
:_/ On A (u, ® ul,Duy,) : Dv, dx (5.78)
o, (L 0ulan] (L= S [Pl (@ tnDn) = Do '
1-9,

(un ® (Pu)'DPu) : D, dx.

— A
/Qn (14 Onlun| + (1 = 0n)[ Pul)?[ Pul

To estimate the first term on the right-hand side of ({refeqain2) we use that for every m > 0
we have

)
i A (uy, ‘D n)  Du, d
/Qn T ol + (L= o Pl g (i ® D) s D do
< Cméd, | Du,,||Dvy,| dx 4+ C | Duy, || Dvy,| dx.
{lun|<m} {lun|>m}
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Therefore, passing to the limit first when n tends to infinity and then when m tends to

infinity thanks to (5.70]) and (5.74)), we deduce

lim On A
n—00 Jq, (1 + 0n|un| + (1 — 6,) | Pul)?|un|

(un ® quDun) : Dv,, dx = 0. (5.79)

For the second term in ([5.78]), we use the decomposition

1-9
/Qn (14 8p|tn] + (1 — 8,)|Pul)2| Pul (un @ (Pu) u) : Duy, dx
1-90
- - A (u, @ (Pu)'DPu) : Dv, dx
/{un_pu|<1} (14 n|tin] + (1 — 6,)| Pul)2| Pul ( )

+/ L — 0 A
{Jun—Pul>1} (14 8y |un| + (1 — 6,) | Pu|)?| Pul

(un @ (Pu)'DPu) : Duv, dz.

Taking into account that the measure of 2,,\ 2 tends to zero, that w,, converges pointwise to u
a.e. in €, the weak convergence of v,, given in (5.62)), and that a.e. on the set {|u, —Pu| < 1},
we have

‘ 1—4, A
(1+ 5n|un| + (1 - 5N)|Pu|>2|Pu|

C|DPul

t

<

(un @ (Pu)'DPu)| < i TPy

we can use the Legesgue convergence dominte to prove that

1—9, A
(14 bnlun| + (1 = 6n) | Pul)?| Pul

(un X (Pu)tDPu) X{|un—Pul<1}

converges strongly in L2(Q)M*N which joining to the weak convergence of Dv,xq, to Dvxq
in L?(Q)M*N proves

li 1= 0 A
im
n—=00 iy, —Pu|<1} (1 + dnlun| + (1 = 6,)| Pul)?| Pul

(un ® (Pu)tDPu) : Dv,, dz

1
= — A(u®uDu) : Dvdz.
ISl )

By (5.71) we also have

1-94
= A (u,, @ (Pu)'DPu) : Dv, dz
‘/{unmzu (14 dnlun| + (1 = 6n)[ Pul)?| Pu| ( )
C
< — / | D Pul|Dv,|dx| — 0.
On |/ {un—Pul21}
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We have thus proved
1-94,

lim U, @ (Puw)DPu) : Dv, dz
A T ouunl & (= opapa (i @ (Pu)'DPu)

1
= | ————A(u®u'Du) : Dvdz,
ISl )

which joining to (5.78) and (5.79) permits to pass to the limit in the second term of (5.76])
to deduce

1
lim A(u, @ V) : Du, dx = / (

—  A(u®uDu) : Dvdz. 5.80
Jm [ o T e ) (5:80)

In order to estimate the sum of the first and second terms in (5.76]), we consider a number
e > 0 and we write

/ onADu, : Dv, dx + / R (pnuy) - vy dpiy,
Qn Q

+ g|v| 1+ elvy,|
(5.81)
Uy, v
ADu, : D |¢,———| d R, - | on———| duy,
+/ ¢ {“" T+e rnl] “/n ! {9" 1+arvnr] !
/ ADu,, : [ﬁ@)V@n] dx.

Let us estimate the right-hand side of this inequality. Thanks to ((5.74]) is immediate to show
that

oo elvn| vp, elvn| vy,
lim1 nwADu, : D | ——— | d R, (ppuy) - ———dp, | = 0. (5.82
fi Hiom sup (/*0 u {Hslvnl} +/ (Buttn) - T2, ) (5:82)

Assumption ((5.63) shows

U
i . - ’I’L. n—n dTL
,}520(/ ADuun [ |n|]d“/ B {*”Hemd “)

(5.83)
:/f- Y dg;+/GD[ Y ]dx
o (14 [u])(1 +¢fv]) 9 A+ [u)(X+e))]
for every € > 0. Finally reasoning as to prove (5.80]), we have
lim [ ADu,: |—2" @ Ve, | de
n—o0 Jg 1+ elvg]
" (5.84)

v

= | ADu: ® utDu] dzx,
/Q [(1 +e|v) (L + Ju])?|u|
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for every € > 0.
So, passing to the limit in ((5.81)) first when n tends to infinity and then when ¢ tends to
zero we deduce

lim (/ onADu, : Dvu, d:):+/ R, (onty,) - vy d,un)
Qn

o (5.85)
d:v—i—/GD[ ]d:c—/ADu:[%@utDu dx.
+ [ul Q (1 + [u])?[ul

[

By (5.80) and (/5.85)) we can pass to the limit in (5.76)) to deduce (5.75). O
Proof of Theorem [5.1} Let us divide the proof in five steps.
Step 1. We con51der fn € L2( DM f e LHQM, G, € LAH(Q,)MN G e L2(Q)M*N | which

satisfy (5.16), (5.17) and and v, € HY(Q, ) ;v € HY(Q)M which satisfy (5.62)) and

- Let us prove that in thls case

lim (/ fn-vndzx—l—/ G’n:Dvndaj) :/f-vd:v—i—/G’:Dvd:U. (5.86)
n—oo N Q, 0 Q

For this purpose, we take p > 0 and we decompose

fn~vndyc+/ Gn:Dvndx:/ fn-vndx—l—/ G,, : Dv,, dx
Qn n Qn\QP™ Qn\Q2P ™

+ fn'Und$+/ G, : Dv, dx.
Qe Qr

(5.87)

Using (5.18)), the weak convergence of v, to v in H*(2° )™ and the Rellich-Kondrachov
compactness theorem, we can pass to the limit in the two last terms of (5.87) to obtain

lim ( fn-vndx—l—/ Gn:Dvndx): f-vdx—i—/ G : Dvdzx.
n—0o0 Qe Qe Qr~ Qe

By (5.16)), (5.17), (5.18)) and (5.11)), we also have

/ fn-vndx+/ G, : Dv, dz
Q. \QP~ Q. \QP~

Therefore, passing to the limit in (5.87) first in n tends to infinty and then when p tends to

zero, we get ((5.86)).

lim lim sup = 0.

0 noco
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Step 2. We consider {h™}, { H*} countable dense subsets of L2(Q)™ and H!(Q)M*¥ respec-
tively. For every m, k € N, we denote by w™* the solution of the variational problem

m,k
w,"" € D,

/ ADw;”’k:Dvda:jL/ Rnw;”’k-vdun:/ h™ - vdx + H™: Dv,dx, YveD,,
Q,NQ Q,NQ

n n

(5.88)
Since ||w!™*||g1(q,) is bounded independently of n, a diagonal argument provides w™F €

H'(Q) and a subsequence of n, still denoted by n such that
w™F ™k in HY Q) Vm,k €N, (5.89)

This will be the subsequence which appears in the statement of Theorem [5.1 Let us prove
that for every f, € L*(Q,)M , G, € L*Q)MN, f e L} ()™ and G € L} (Q)M*N,

loc loc

which satisfy (5.16)), (5.17) and (5.18)), there exists u € H'(Q)M such that the unique
(519

solution u,, of ((5.19)) converges weakly to u in H1(2? )M for every p > 0 (without to extract
any subsequence). To prove this result, it is enough to take sequences h™i, H* which
converge weakly in L2(Q)M and L*(Q)M*Y respectively to f and G respectively. Then,
using u, — wy?™ as test functions in the differences of and @ (with m = m;,
k = k;) and passing to the limit in n on the right-hand side thanks to @, it is immediate
to show that

lim sup (||un — wZ‘j’ij?{l(Qn)M +/ Ry (un, — wy ")+ (uy, — w:?j’k”d,un)

n—oo Qn

< O (IIh™ = £z + 1H™ = GllZagyn )

This inequality implies that for every p > 0, every cluster point u of u,, in the weak topology
of HY(QX")M satisfies

llu — wmj’ijip(m—)M <C (Hhmj - f”%Q(Q)M + ™ — GHQLZ(Q)MXN) ;

which shows that u is the limit in H} _(Q)M of w™i*i, and so, it is unique.

Step 3. For the subsequence of n constructed in Step 2, we define by D the space of functions
in H'(Q)M N L*°(Q)M such that there exits a sequence u,, € D,, satisfying and
and such that there exist f € LY(Q)M, G € L?(Q)M*V | satisfying that for every v, € D,
ve HY Q)M N L>*(Q)M, which satisfies and (5.74)), we have (5.63).

We consider u € D and sequences and functions u,, € D,,, f € LY(Q)M, G € L>(Q)M*N
such as it appears in the definition of the elements of D. For v,, € D,,, v € HY(Q)MNL>(Q)M,
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which satisfies (5.62)) and (5.74)), we define A\, € M(R") by

M (B) = /Q L ADlw): Dlv) ot /

A, Du, : Dv, da:—i—/ Ry, v, diy,.
(Q\Q)NB

0.NB
Let us prove that there exists A € M(R”Y) such that
An = X in M(RM). (5.90)

Moreover, the measure A has support in ©, it only depends on u and v (i.e. it does not
depend on u,, v,, f and G) and for every ¢ € C°(Q), it satisfies

/QADU : D(vp)dz + /Qgpdx\ = /Qf ~vpdx +/QG :-D(vp) dx. (5.91)

To prove this result, we take ¢ € C>°(RY). Applying (5.63) with v, replaced by v,p, we
have

n—oo
n

3 lim (/ ADu, : Dv, pdx —|—/ ADu, : (v, ® Vo)dz +/ Ry, - v d,un>
fIn n (5.92)

:/Qf.wdx+/QG:D(w)dx,

but using (5.11)) and the Rellich-Kondrachov’s compactness theorem, it is simple to check
that

/ ADuy, : (v, ® Vp)dr — / ADu : (v® V) dx
0

n

/ ADu : Dvp)dr — / ADu : Dvpdz,
QN0 Q

and therefore (5.92) can be written as

3 lim / AD(u, —u) : Dv, pdx +
Q.N0

n—o0

ADu, : Dv, pdx + / Rouy, - v diy,
Qn\Q O

= / frvpde+ /(G— ADu) : D(vep) dz.
Q Q
which using also that

/ AD(u, — u) : Dvpdr — 0,
Q.0
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finally gives

n—00 A0 2\ Qn

3 lim (/ AD(u, — u) : D(v, —v) gpd:c+/ ADwu,, : Dv, goda:+/Rnun CUpp dun)
Q Q Q

- /Qf-vgpd;c—l—/Q(G— ADu) : D(vp)dz, V€ CP(RY)
(5.93)

This proves that there exists the limit A of A\, in the sense of the distributions. Since A\, is
bounded in M (RY) the limit holds in fact in the weak-* sense of the measures and so, X is
a measure which by has support in Q and satisfies . In order to prove that A
only depends on u and v, we consider other sequences and functions ., v,, ]?, G satisfying
similar properties to u,, v,, f and G. By , we have

/ AD(uy — i)+ Dty — iy )dar + / Rty — i) - (tn — 100 )t — 0,

n n

which immediately shows that

/ AD(u, —u) : Dv, pdx + / ADu, : Dv, pdx + / Ry, - v dpy,
Q2,NQ 2, \Q

Qn

— 0,

—/ AD(u, —u) : Dv, pdx +/ ADu, : Dv, pdx + / R, - v diy,
Q,NQ 2\ Q

n

for every ¢ € C%°(RY). This proves that A does not depend on u,, v,, f and G.

Step 4. For u,v € D, we denote by v(u,v) € M(2) the measure A relative to u and v given
in Step 3. Let us prove that the space D and the application v : D x D — M (RY) defined
in this way are in the conditions of Theorem [5.4]

It is very simple to check that v is bilinear. In the following, for u,v € D we consider
sequences and functions u,, v, € Dy, f,f € LM, G, G € L2 (Q)M*N in the conditions
which appear in the definition of the elements of D, relative to u and v respectively.

In order to prove (5.27), we consider ¢ € CYRY), then, for every 2, € D,, z €

HY Q)™ N L (Q)M satisfying (5.62)) and (5.74)), assumption (5.11]), the Rellich-Kondrachov’s
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compactness theorem and (5.63|) give

/ AD(unp) : Dv, dx + / R, (unp) - vy, dpy,

n Q

= / ADu, : D(v,) dz + / R, (unp) - vy, dpy,
Qn Q
—I—/ A(u, @ Vo) : Du, dx — / ADu,, : (v, ® V) dz
Qo Qn

—>/f~(vg0)dx+/G ; D(w)dm—i—/A(u@Vg&) : Dvdx—/ADu : (v ® Vo) du.

Q Q Q Q

This proves that ug belongs to D and that v(up,v) is the limit in the weak-* sense of the
measures of (,, defined as

(u(B) = /Q . A, D [(u, —u)p] : D(v, —v)dx

—|—/ AnD(unp) : Du, dx + / R, (unp) - vpdpy,
(Q\Q)NB

Q,NB

N /Q nQNB AnD{un = u) : Doy —v) pdr + / An((un —u) @ Vo) : D(v, —v)dx

Q,NQNB

—|—/ A, Du,, : Dv, ¢ dx + / Ap(u, ® @) : Du, dx + / R (unp) - vpdpy,
(Q\Q)NB (Q\Q)NB Q

QnNB

which is simple to check that agrees with v(u,v)p. Similarly, we can show that v(u,vy) =
v(u,v)p. This proves (5.27).

Inequality m is immediate from the definition of v, A in LC"’(SNI;‘.TMX ~), and the
second assertion in assumption ({5.9)).

Now, consider u € D and a sequence u™ € D which converges weakly to u in H'(Q)M.
For m € N, taking into account Remark [5.7]and Step 1, we have that u™/(1+€|u™]) belongs
to D, for every ¢ > 0. Moreover, taking a sequence u,' € D, associated to u™ such that

it appears in the definition of the elements of D, and d,, converging to zero and such that
(5.71)) holds, we have that the sequence u* = ¥"™=u!", with

dﬂnﬁ _ 1
T 14 Guum| 4 (e — 6,) | Pum|’

(Pu™ a prolongation of u™ to a function in Hg(2)M) belongs to D,, and satisfies

lim sup </ A, Dul™® : Dul™® dx +/ Ryup® - up® d,un> < +o00.
QnNA Q,

n—oo
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Then, for every ¢ € C*(Q), ¢ > 0 in Q, statement (5.63)) and

/ ADu : D [(u, — u™) ] dz — / ADu : D [(uy — up)¢] do
QN Q

prove

/ AD(up — ) D [( — u™)g] i + / Rty - (1t — u)ip i

o (i) fo a8

By (5.11) and the Rellich-Kondrachov compactness theorem, we have

m,e N . _ —um
/Qn ADu,, : ((uy, — up™®) @ Vo) dx /QADu. ((u 1—{—5\um\) ®V50) dx.

Moreover, the choice of 9,, easily implies

).

Thus, we easily deduce from (5.94])

Du™
AD(u, —u): [ Du, — —2— dx
/ (tn =) ( i +erPum|> ?

Dul?
AD n - D n — R — d Rn " " — m,e d . .
+/Qn\sz ! ( ! 1+6|Pum|> poTT / Un (U — ™) p dp (5.95)

S R (Gec E

which using that

(5.94)

2

Dm
Y dz — 0.

1
pums — — 2 pymg v | —
U T T o Pam] T ® [1+5|Pum|]

Du™
+/ ADu,, : (Dun — —”) @ dx +/ Rty - (ty — up"®)p dpy
2.\0 1+ e|Pum| a,

- [ o om0
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Using here Young’s inequality, the second assertion in (5.9)) and the definition of v, we have

n—oo

+/ ADu, : Duypdx + / Ryuy, - uypduy,
2\ o8

< v lim inf / AD{uy = u™) 2 D{uy' = u ><pdx
Q,NQ (

uéwdwuu)—1m1<LJmADWn—u%Ime—M¢dx

n—o0 1+ elum|)?
+/ ADu : Du? d +/ Ryu - unt p
71 L lomne Par T L mne P Chn
Ao (14 elum|)? g, (1+elum|)?

u™ u™
_|_/Qf (u——1+€|um|>g0dx—|—/ﬂ(G—ADu):D{(u——l_'_duml)gp} dx
m m um . _—um
<»y/ngdz/(u U )+/Qf- (u——1+€|um’>godx+/g(G—ADu).D{(u 1—|—5]um|)4 dz,

for a constant v which only depends on o, ||A| re@cviy,My)) and B. Taking the limit in
this inequality when ¢ tends to zero and then the liminf in n we conclude

/gpdu(u u) < ’yhmlnf/ edv(u™,u™),
Q

m—00

which proves that v also satisfies ([5.29)).

Step 5. Using Theorem |5.4] we know there exists a measure p € M (Q), which vanish
on the set of capacity zero, a p-measurable function R : © — My and an application
V : Q — Vy; such that defining the space D by (5.32) endowed with the norm defined by
, we have that D is dense in D and that (5.34)) holds. Let us prove that p, R and V
are in the conditions of the thesis of Theorem [5.4

We consider f, € L*(Q,)M, Gn e LX(Q)MN fe L (M and G € L} ()M,
which satisfy (5.16]), (5.17)) and (-18). Taking u, as the solution of problem (5.19), we can
apply Proposition |5.8 and With ¢ = 1 to deduce that for every 7 > 0, the function
u/(1+ 7|ul) is in D and satlsﬁes

U U
/QAD [—1+T|u|} .DvdI—i—/QR |:—1+T|U|:| cvdp

= / (; (A(u®u'Du) : Dv— ADu: (v® u'Du)) dz (5.96)

T rlull
v
D
/f M+AG L+mﬁd
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for every v € D. Using in this equality v = u/(1 + 7|u|) we deduce that

2
u u Uu
lim su +/R{ }[ }d < 400.
Hop<H1+T|uy wan Ja LTl [Tl ]

Therefore, since u/(1 + 7|u|) converges to u in H*(Q2)™ when 7 tends to zero and then in
capacity, we can apply the Vitali theorem to obtain that Ru - u belongs to L'(Q). This
proves that u belongs to D. Moreover, passing to the limit when 7 tends to zero in ,
we deduce that u satisfies

/ADu:Dvdx+/Ru-vdu:/f-vd:v—i—/GDvdyc,
Q Q Q Q

for every v € D and then by density for every v € D. This proves that u is the unique
solution of (5.20). O

Let us now give the proof of Theorem [5.2] first, we need to show that Korn’s constant
for €2, is bounded. This will be a consequence of the following results

Lemma 5.9 For every bounded open set O C RN~ which is star-shaped with respect to
every point of a ball, there exists a constant C > 0 such that for every ¢ € Wh>(0O), with
IVO| peoyv-1 < 1/(8diam(0)), 1/2 < ¢ < 3/2 in O, we have

1

- — pdx
[9s] Sy,

S C‘|vaH—1(19¢)N, Vp € L2(19¢), (597)
L2(9)

p

where we have denoted
Oy ={(a',zy) eRV ' xR: 2/ €0, 0<z, <o)}

Proof. Using a translation, we can assume that O is star-shaped with respect to a ball
B(0,p) C O. Then, taking € € (0, min{p, 1/8}) and ¢ in the assumptions of the Lemma, let
us show

¥4 is star-shaped with respect to every point of B((0,1/4),) C RV~ x R, (5.98)

which by Lemma 3.1 in Chapter 3 of [21] will prove the result.
Let us argue by contradiction. If (5.98)) is not true, then there exist (v, yy) € B((0,1/4),¢)
and two different points (2/, zx), (&', Zx) € 0V such that

(@ =y ey —yny) = N@ — 2/, 2y —zn) with A >0 (5.99)

164



If 2’ belongs to 0O, then, since O is star-shaped with respect to B(0, p), (5.99) implies
that 2’ = 2/, which gives the contradiction A\ = 0.

If 2" does not belongs to O, then xny = ¢(z'), which by & < ¢(2'), (5.99), yv < 1/4+¢€
and ¢(x') > 1/2 gives

o) = 0l) | in= (@) _ix—an _ox =y _ @)=y | Ud—e 1
|#/ —a'| T |&— 2 |z — /| |z — /| |2/ —y'| — diam(O) = 8diam(0O)’

in contradiction with ||[Vé|| e oyv-1 < 1/(8diam(0)).

4

Theorem 5.10 We consider a bounded connected open set w C RN™1 satisfying the uniform
exterior cone condition and a constant M > 0. Then, there exists a constant C' > 0 such
that denoting

O={(2,zn) eERV ! xR: 2’ cw, 0<¢) <y}, (5.100)

with ¢ € Wh®(w), 1/2 < ¢ < 3/2, [|[V| p(yn-1 < M, we have

1
H —— [ pdz < O\ Vpllu-repw, Vpe L*(O). (5.101)
|@| (C] L2(©)
Proof. Since w satisfies the uniform cone condition, there exist open sets Oy, - - - , Ok, which

are star-shaped with respect to every point of a ball, they have diameter less than 1/(8M)
and satisfy w = U*_,0;. Using then that © = U¥_,9J; with

9 ={(2,an) ERNIxR: 2'€0;, 0<a, <)}, 1<i<k

Lemma [5.9| and Theorem 3.1 in Chapter 3 of [2I] give the result. O

As a consequence, we have

Theorem 5.11 We consider a bounded connected open set w C RN™L satisfying the uniform
exterior cone condition and a constant M > 0. Then, there exists a constant C' > 0 such

that defining © by , with ¢ as in Theorem we have

ull ey < Clle(w)| 2@wxy, Yue HY(OW, w=0 onwx {0} (5.102)
Proof. Thanks to the equality
O3’ = Opeij(u) + Ojen(u) — dieju(u), Yue HY(O)W Vi jke{l,--- N},

J
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we can apply (5.100) to d;u’, 1 <i,5 < N to deduce

. 1 .
8-u’——/8-u’dz
foo - 1 2

where C' only depends on M and w. Applying also ((5.100)) to

< Clle(w)]|p2@yvxn, Yue H' ()N, (5.103)

L*(©)

. 1 ;
p:ul—@/@wdz.x, ie{l,-- N},

and taking into account (|5.103)), we have

TR ACCEE Bt -y A
|9!/ E] (& = @0) e = o "
1 ,
<C HVU —— [ Vu'dz < Clle(u)|| 2>y, i€ {l,---,N}
Ol Jo o

(5.104)
where xy denotes the center of mass of ©. Let us prove that these inequalities imply
(for another constant C'). We argue by contradiction: If is not true, then there exists
b € WH(w), 1/2 < ¢ < 3/2, [Vl pe@yn-1 < M, and u,, € H'(0,)", with ©,, defined
by for ¢ = ¢,,, such that

U, =0 on wx {0}, |unllgr,)~ =1, (5.105)

1
le(un) || L2@ ey < o (5.106)

Since ¢, is bounded in Wh*(w), we can assume that there exists ¢ € W*°(w) such that
¢, converges uniformly to ¢ in w. Defining © and ©°, p > 0, by with ¢ = ¢ and
¢ = ¢ — p respectively and using , we conclude the existence of u € HY(O)Y, with
u =0 on w x {0} such that

u, —u in HY(0°)N, Vp >0, (5.107)
which joining to (5.105) and |[(©, \ ©) U (© \ ©,,)| converging to zero implies that

1 1 1
Updz — — | udz, Du,dz — — [ Dudz,
[EH /e O] /@ O, /@ [S] /

and that the center of mass xj of ©,, converges to the of mass xy of ©. Therefore, ([5.106))
and inequalities ((5.103]), (5.104)) applied in ©,,, prove

5 e
Uy, — — [ udz— — [ Dudz(x — x0)
OlJe " 18l Je ’
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In particular, this implies that u is linear and since u = 0 on w x {0} we get that u is the
zero function. By ([5.108)), this proves that ||u,||g1(e,)v converges to zero in contradiction

with (5.105). O

By Theorem [5.11] we can now prove

Proof of Theorem By the uniform convergence to zero of the functions 1, is clear
that (5.8]) is satisfied. So, applying Theorem with u,, =0, and

£+ ¢
2 9

A= B (
it is enough to show that there exist & > 0 and a sequence p,, converging to zero such that

aHuH?{l(Qn)N < / Ae(u) : e(u)dr, Yuec HY(Q,)N, ueV,(z)qe. inQ, (5.109)

||u||%2(9n\9) < pn/Q Ae(u) : e(u)dr, YVue H(Q,)Y, ueV,(z)qe. inQ,.  (5.110)

Inequality (5.109)) is a simple consequence of (5.22), (5.102) and V,(z) = {0} for every
r €wx{0}.
In order to show ([5.110)), we use again that V,, = {0} in w x {0}, which gives that

) TN 2 1+ (z’) )
e o= ([ ot ) de) < (0 Wlm) [ owutel O

a.e. x € Q,, for every u € HY(Q,)N, with u € V,(2) q.e. in Q,. Integrating in Q, N {zy >
1 — e} with € > 0, we then get

/ lu(z, zn)Pde < C (||¢hn]| L) + €) / |Onul*d,
Qn{zn>1—c}

n

for every u € H'(Q,)", u € V,,(z) q.e. in Q,,. Thanks to (5.109) this proves (5.110). O
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