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A B S T R A C T   

In the rapidly expanding field of e-commerce logistics, the optimisation of last-mile delivery solutions is para-
mount. This paper introduces a novel methodology that addresses this challenge by generating approximate 
Pareto fronts in a hybrid truck-drone delivery system. Specifically, we examine a generalized single truck multi- 
drone problem that allows multi-visit flight missions and rendezvous points distinct from launch locations. Our 
goal is providing decision-makers with a portfolio of optimal routing solutions that balance service time and 
environmental impact, criteria that are increasingly shaping decision-making in this domain. To achieve this, we 
introduce a bivector coding scheme inspired by flow-shop scheduling problems and implement a Simulated 
Annealing algorithm. This algorithm features an advanced stopping mechanism, negating the need for manual 
adjustments by utilizing a distinctive blend of a domination rate and a Kalman filter. Importantly, our framework 
employs an iterated greedy search algorithm to evolve from initial solutions towards identifying non-dominated 
solutions sets, which are then ranked using a hypervolume coefficient. To validate our methodology, we conduct 
a sensitivity analysis on two different size instances using a full factorial design of experiments. Our analysis 
reveals crucial insights into the impact of the number of drones, their autonomy, and their flight speed settings. 
From it, we conclude that it is a robust and adaptable framework for its practical application for obtaining Pareto 
fronts solutions among which picking the ultimate routing to be implemented.   

1. Background 

The explosion of e-commerce logistics has led to increasing demands 
for contactless delivery (Lin, 2020), thereby pushing small package 
couriers to incorporate autonomous transport technologies, such as 
unmanned aerial vehicles (UAVs) or drones. While the regulatory 
framework starts to allow the hybrid truck-drone delivery service that 
companies such as Amazon and UPS have been largely preparing (Sha-
varani et al., 2018), their investments in new resources are being care-
fully revised, with their focus more and more on the flexible 
implementation of routing plans adapted to their logistics decision 
making. 

While last-mile delivery has been by far the most important research 
stream on hybrid truck-drone logistics problems, certain features need to 
be added for more realistic routing planning decisions. For instance, we 
need to consider an active role for ground vehicles, assuming that they 
can also deliver packages to customers – see, e.g. (Murray & Chu, 2015; 
Ha et al., 2018; de Freitas and Penna, 2020; Dell’Amico et al., 2022) – 
instead of treating trucks only as supporting vehicles that solely act as 

mobile depots – see, e.g. (Karak & Abdelghany, 2019) and (Ferrandez 
et al., 2016). Despite the use of a drone’s capability launching from/ 
coming back to a truck while it is moving from one customer location to 
another has been recently suggested (Li et al., 2022; Marinelli et al., 
2018; Masone et al., 2022; Schermer et al., 2019), safety issues persuade 
us on the convenience of avoiding this policy. Instead, we consider the 
case in which the truck launches drones and moves to a different 
customer location taken as a rendezvous point as the more promising 
trend for transforming last-mile logistics into a brand-new joint delivery 
service. Known as the hybrid synchronised truck and drone delivery 
model (Moshref-Javadi et al., 2023), this modality serves to alleviate 
overcrowded airspace and reduce the chance of accidents (Rojas Viloria 
et al., 2021). Along with this safety requirement, the redesign of the 
truck multi-drone service we consider here is aimed not only at the ef-
ficiency of the system itself, but also at the reduction of pollution, level 
of emissions, carbon footprint, and the issues on fuel availability that are 
within the current agenda of many states (singularly, within the Euro-
pean Union). 

The problem of pairing drones with traditional delivery trucks was 
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first devised by Murray and Chu (2015) as the Flying Sidekick Travelling 
Salesman Problem (FSTSP), which was extended by (Raj & Murray, 
2020) to the use of an arbitrary number of heterogeneous UAVs that can 
be deployed from the depot or the delivery truck. Our research is also 
devoted to study the multi-drone case but while (Raj & Murray, 2020) is 
limited to drones that are serving one solely customer per fly, we assume 
a more general version of the hybrid truck-drone research stream: multi- 
visit flight missions, truck and drone allowed for serving each customer 
location, and rendezvous at different points than that of launches 
(Gonzalez-R et al., 2020). 

Our approach exhibits certain similarities with recent work (Poiko-
nen & Golden, 2020; Luo et al., 2021; Gu et al., 2022; Leon-Blanco et al., 
2022). Poikonen & Golden (2020) presented an interesting Travelling 
Salesman Problem (TSP) with multiple drones with consideration of 
adjustable speeds and battery consumption rate as a function of the 
payload, although they assumed the truck serves solely as a mobile 
depot which does not deliver packages to customers. Luo et al. (2021) 
have addressed a problem like ours, although their computational 
experience is severely limited by the number of drones in the fleet (only 
two drones per truck). Gu et al. (2022) have recently applied a variable 
neighbourhood descendant procedure to address instances of up to 200 
customers in a last-mile delivery. However, while our study concerns a 
multi-objective approach, these authors aimed at minimising a simple 
weighted combination of objectives comprised of fixed vehicle costs and 
cumulative duration costs of both truck routes and drone trips. Finally, 
Leon-Blanco et al. (2022) is the most connected work to the one we 
present here. Therein, the authors stated the Truck-Multi-Drone Team 
Logistics Problem (TmDTL) which is solved by using multi-agent sys-
tems for large problem instances, but with a single objective criterion: 
minimisation of makespan – that is, the time elapsed until the comple-
tion of the service. 

In this research we cope with the TmDTL but, aside from minimising 
makespan, we are also minimising the truck usage as a cost driver of the 
economic impact due to its consumption of energy or/and manpower 
factors. Since we assume that the truck travels at a constant speed, the 
added cost driver can be viewed as a truck mileage minimisation crite-
rion which fits to both, electric trucks (usage as a driver of the electrical 
battery life-cycle consumption) or trucks with combustion engines 
(usage as a driver of the level of emissions). Besides, as in other hybrid 
truck-drone literature (Moshref-Javadi et al., 2020; Luo et al., 2021), we 
assume a constant UAV to truck speed ratio when studying the design of 
the brand-new joint delivery service with our bi-objective approach. 
Another assumption made is that the decision maker (DM) needs from 
applying a posteriori multi-optimisation approach (Zajac & Huber, 
2021), namely, their interest is in being given a Pareto optimal set from 
which they will ultimately choose the final solution to implement. 

In short, this paper covers DM’s decision on how to best exploit a 
truck along with a variety of drones by choosing the number of drones 
and their operational settings while considering the current vectors 
guiding the sector: the quality of the service provided but also the 
environmental impact of implementing the routing. To this aim, we have 
devised a novel methodology capable of providing trade-off solutions in 
a reasonable time. This is reached by applying a combination of inno-
vative heuristic solution evolution methods to estimate Pareto-efficient 
solution sets by using an iterated greedy heuristic globally guided by 
simulated annealing. 

The remainder of the paper is as follows. Section 2 is devoted to 
shortly presenting our problem description and then proceeding to 
detail a novel vector-based coding of the routing solutions which poses 
our TmDTL problem as a permutation flow-shop scheduling problem. 
Section 3 revises related work, both on the drone routing and in multi- 
objective optimisation (MOO) contexts. Section 4 presents our approach 
to the methodology. As the computational experience presented in 
Section 5 shows, this method dramatically reduces the cost in time and 
resources for estimating Pareto fronts for the challenging bi-objective 
TmDTL instances. Section 6 discusses the results of our experiments 

along with two post hoc analyses on the effect that the parameter setting 
has on the Pareto fronts. Finally, Section 7 is devoted to drawing con-
clusions and further research lines. 

2. Problem description and solution coding 

The problem at hand is to determine the best set of routes to serve 
several customers for both total service time and truck usage time in a 
logistics system, where a fleet of drones with limited autonomy works 
collaboratively with a truck. In our approach, the collaborative work 
between the drone fleet and the truck is defined by the fact that both can 
serve customers (nodes) equally, so all nodes could be served by either 
type of vehicle, in addition to the fact that both the truck and drones are 
considered to start the service at a start node and conclude the service at 
an end node. Therefore, the difference between the two types of vehicles 
lies in two factors: travel autonomy and displacement speed. 

As far as autonomy is concerned, commercial drones, for the most 
part, and in the current state of the art, obtain the energy necessary to 
perform their functions from the electrical energy contained in batteries, 
which they therefore necessarily charge. The amount of energy these 
batteries can store defines the autonomy of the drone that equips them, 
so this autonomy is limited. As a relatively novel idea, this is solved by 
using the truck as a mobile battery exchange station, since the autonomy 
of the truck is considered infinite since it is much greater than the au-
tonomy of the drones. 

To make these battery exchanges possible, in which any number of 
them can occur, we adopt the realistic assumption that they must 
necessarily happen at some node, where the drone and the truck meet. 
This will imply that at the nodes where the encounter occurs, the vehicle 
that arrives first will be forced to wait for the other. Any nodes where the 
drone-truck meeting occurs are called “synchronisation nodes”. After 
the drone and the truck meet at a certain synchronisation node, the 
autonomy of the drone is fully recovered. Fig. 1 shows graphically an 
example of the problem introduced for the case of two drones. Cus-
tomers are visited by the truck or by one of the two drones, with syn-
chronisation occurring at nodes 5 and 8 for drones 1 and 2, respectively. 
After every synchronisation, the drones can choose to stay parked on the 
truck (travelling with no autonomy consumption until the next node to 
be visited by the truck) or to take off to keep performing deliveries. 

Once the drones parked on the truck arrive at the next node, they can 
take off to start a new service route or stay parked on the truck for any 
number of trips. In this context, it may also happen that part of the drone 
fleet on the truck is never used, so a correct sizing of the fleet is 
necessary. 

In this context, assuming that the speed of the drone can be 
considered superior to that of the truck, we follow (Gonzalez-R et al., 
2020) and (Moshref-Javadi et al., 2020) and consider that the speed of 
the drones is higher than the speed of the truck. Furthermore, our 
assumption of drones’ constant speed neglects operational features that 
are beyond the scope of our study, e.g., drone energy consumption in 
landing and take-off manoeuvres. 

As a result, to sum up, we can establish the following list of rules, 
which we call visit assumptions:  

1) All vehicles meet at the first and last nodes of the list, as they are 
assumed to be the necessary beginning and end nodes for the com-
plete service.  

2) Any vehicle can serve any node and all nodes must be served.  
3) If a node is served solely by a drone, no other drone can serve it as 

well.  
4) If a node is served by a truck, any number of drones can meet the 

truck at that node and fully recover its autonomy. From this point on, 
there are two possibilities for any drone:  
a) Take off again to continue to serve the nodes.  
b) Stay landing on the truck without consuming any autonomy until 

the truck reaches its next node. 
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5) The battery exchange time is negligible compared to the mission 
time, so it has been neglected.  

6) Meeting at a node necessarily involves a waiting time, as all vehicles 
will have to wait until the last minute to reach that node. These 
waiting times do not consume any autonomy for any drone, nor 
indeed for the truck. Therefore, hovering is not considered.  

7) Autonomy of the truck is assumed to be not limited, namely, truck 
technology allows the completion of all potential routes within the 
set of locations, no matter its length. 

The above assumptions make TmDTL a very combinatorial problem 
whose resolution easily leads to a great computational burden. To 
mitigate the latter, we need to define novel solution coding as a key part 
of the process of obtaining efficient solutions. In the following, we 
present a novel codification scheme capable of reducing the combina-
torial space of solution search. Specifically, the codification scheme is 
extensively used in an IG heuristic, similar to what was done by Gon-
zalez-R et al. (2020) but generalised to a multi-drone context for 
providing trade-off solutions in a reasonable time. 

2.1. Solution coding 

First, we need to define the coding of the solution as a key part of the 
process of obtaining efficient solutions. 

Each solution is defined by a combination of two vectors: nodes 
vector (πn) and modes vector (πm). The indexes of both vectors are a key 
characteristic, as they are used to point within both vectors sequentially 
to define a specific solution. πn or nodes vector is an integer list where 
every integer is a node number, and the list index defines the evaluation 
order. An example of a nodes vector for five nodes would be πn =

[0, 3, 1,2, 4]. On the other hand, πm or modes vector is an integer list 
where each integer value represents a visit mode number, and where the 
list index defines the evaluation order as well. An example of a modes 
vector for five nodes would be πm = [7, 2,4, 3,7]. The modes vector 
codification is one of the value proposals of our method. Every visit 
mode defines how its index-corresponding node in the nodes vector is 
visited. 

First, to define the visit modes, we need to define how synchroni-
sation works and how feasible solutions are constructed. These visiting 
modes are defined below. 

For a defined number of drones k, we create a binary matrix of visit 
mode, where the number of columns will be k+1 (for the truck), which 
is equal to the number of total vehicles, and where the number of rows is 

equal to the sum of as many different binary combinations as possible for 
the number of total vehicles (2k+1). In this binary matrix, 1 means that a 
specific vehicle visits a node and 0 means that it does not. Taking this 
into account and according to the problem description, we must not use 
some of the visit mode rows, as they do not obey our visit assumptions. 
For the case of two drones, we must delete row 1, as it would be a no- 
visit and all nodes must be visited (visit assumption 2), and row 7, as 
it would imply that two different drones serve the same node without a 
truck (visit assumption 3). These cases (rows 1 and 7 of Table 1) are 
highlighted in bold. 

To obtain the vector of coded modes, it is necessary to merge the 
values of drones and truck columns for every row to get a binary value 
(binary merge) and then convert every binary visit mode into a decimal 
value (decimal codification), as shown in Table 1. Finally, all these 
values build a list called the visit modes options vector. In this example, 
this vector is [1, 2, 3, 4, 5, 7]. Note that every odd value, apart from 1 
defines a meeting mode, where any number of drones meet the truck at a 
certain node. 

Now that the vector of options for visit modes has been created for a 
certain number of drones, we can say that any feasible vector of modes 
must start and finish with the maximum value of the vector of modes (7 
in this example), as it indicates that all vehicles meet at its index- 
corresponding node of the vector node, and this is mandatory for the 
first and last values of this vector (visit assumption 1). Additionally, any 
possible combination of the decimal values contained in the visit modes 
options vector defines a different but not necessarily feasible solution, as 
it may not fulfil the autonomy constraints. For example, see in Fig. 2 the 
corresponding solution that nodes vector πn = [0,3, 1,2, 4] and modes 
vector πm = [7, 2,4, 3, 7] are coding in a case with two drones and five 
nodes. In this example, all vehicles meet at the starting node, 0 (7 in 
binary: 111), node 3 is visited by drone 1 (2 in binary: 010), node 1 is 

Fig. 1. Collaborative logistics example of a truck and two drones and synchronisation diagram.  

Table 1 
Visit modes matrix. Example for two drones and five nodes.  

Row Num. Drone 2 Drone 1 Truck Binary merge Decimal cod. 

1 0 0 0 000 0 
2 0 0 1 001 1 
3 0 1 0 010 2 
4 0 1 1 011 3 
5 1 0 0 100 4 
6 1 0 1 101 5 
7 1 1 0 110 6 
8 1 1 1 111 7  
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visited by drone 2 (4 in binary: 100), node 2 is visited by drone 1 and 
truck (3 in binary: 011) and all vehicles meet at the end node, 4 (7 in 
binary: 111). 

In this type of problem, a binary matrix has been commonly used to 
define when a given vehicle visited a given node. This, which from a 
mathematical approach is not a major problem, is a slowing factor when 
carrying out spatial searches based on heuristics since each possibility 
requires the handling of a list of a length of, in our case, the number of 
drones +1, which exponentially increases the time required to handle 
each list as the drone number increases. Therefore, this efficient coding 
scheme is suitable for handling such a problem whose complexity in-
creases with the size of the instances. Taking into account the elimina-
tion of unfeasible modes, the number of modes that will arise from a 
given combination of k drones is 2k + k, so with one drone 21 +1 = 3 
options would be handled, with two drones 22 +2 = 6 options would be 
handled, with three drones 23 +3 = 11 options would be handled, and 
so on. In these same cases and with a binary matrix, the first case would 
imply three lists of two bits (six elements vs three), in the second case six 
lists of three bits (18 elements vs six) and in the third case 11 lists of four 
bits (44 elements vs 11). The search complexity reduction is, therefore, 
of k+1 order, and so is the computational time reduction as well. 

The presented coding scheme is highly beneficial for generating a set 
of initial solutions that constitute the initial Pareto front, which is 
further evolved for the best estimate set until a no progress state is 
identified. 

3. Related work 

3.1. Multi-objective optimisation in drone routing problems 

In the drone routing context, multi-objective optimisation models 
are mostly aimed at minimising a function that aggregates the given 
objectives to identify a single preferred solution. Such approaches are 
mostly based on objectives that are in conflict and compete among them. 
Guerriero et al. (2014) tackle the deployment of drones to film a live 
sports event throughout a MILP model minimising the number of drones 
and the distance travelled along with the commitment to soft time 
windows whereas di Puglia Pugliese & Guerriero (2017) address a multi- 
truck multi-drone problem aimed at the minimisation of completion 
time, also considering the existence of differentiated time windows at 
each customer. Coelho et al. (2017) propose an evolutionary approach 
based on using weighted sum functions in fitness allocation when 
tackling the problem of a heterogeneous fleet of drones with capacity 
and autonomy constraints that, supported by static charging stations, 
are routed to pick up packages from one node and deliver them to 

another. Indeed, they generate multiple solutions: first solving the stated 
MILP including the charging station constraints and then solving the 
subsequent MOO employing a metaheuristic termed Multi-Objective 
Smart Pool Search (Coelho et al., 2016). 

Unlike the above works, one could assume that the decision maker 
needs to be given a Pareto optimal set from which it selects one final 
solution. Wang et al. (2020) apply such a method when proposing a non- 
dominated sorting genetic algorithm to solve a bi-objective FSTSP which 
minimises completion time and operational costs, although referring to 
a single-truck-single-drone setting which poses a lesser combinatorial 
burden than the TmDTL, more even owing to their assumption on single- 
customer per flight delivery. Tavana et al. (2017) apply it when 
approaching a cross-docking setting where some small items are deliv-
ered by drones from a supplier directly to a customer, while other items 
are delivered by trucks through the cross-docking system that is located 
between a supplier and a customer: since drone deliveries are faster, 
they seek a trade-off of drones scheduling costs and the time savings it 
provides. Omagari & Higashino (2018) study a bi-objective drone de-
livery problem with travelling distance and delivery time minimisation, 
to decide at which node the drone is launching, which nodes it visits, and 
at which rendezvous node it reconnects with the truck. The authors do 
not estimate the Pareto front but use the provisional ideal point method, 
where a point where the search would lead is first estimated. This makes 
the calculation of the entire Pareto front unnecessary. When compared 
to our TmDTL problem, the following differences arise: their drone 
unary load capacity leads to serving one customer per drone flight, 
whereas we need to consider a multi-drop approach; the rendezvous 
points are predefined, while in our problem it can be any service node; 
and the truck must have the drone when the truck returns to the depot, 
while in our case there is no depot, but equally the truck can complete its 
route without waiting for the drones. Ramirez-Atencia et al. (2017) 
address a mission planning problem involving a team of UAVs and a set 
of Ground Control Stations (GCS), modelled as a Constraint Satisfaction 
Problem (CSP), which they solved employing a multi-objective genetic 
algorithm, therein using a performance indicator pairing distance and 
makespan. Finally, Ramirez Atencia et al. (2019) addressed the same 
problem with a MOO for which an estimation of the Pareto optimal 
frontier is inferred to get a portfolio of solutions (mission plans) differ-
ently, albeit optimally balancing the considered conflicting objectives: 
the fuel consumption, the makespan, the cost of the mission, or the 
number of UAV or GCS to employ and different risk factors that could 
compromise the mission. Like them, in our research work, we are con-
cerned with the provision of a decision-making tool for a real-life 
application in which it is necessary to find a good solution and not the 
complete space of possible solutions. To this aim, we determine multiple 
Pareto optimal solutions by concurrently optimising the multiple ob-
jectives to obtain a set of non-dominated solutions according to a certain 
performance indicator. 

3.2. The performance indicator guiding the shortlist of Pareto solutions 

Regarding MOO performance indicators, (Audet et al., 2021) have 
analysed a total of 63 performance indicators partitioned into four 
groups according to their properties (cardinality, convergence, spread 
and distribution) and also present applications for them. Noticeably, the 
authors state that “The hypervolume indicator and some closely related 
metrics are the only known unary indicators to be strictly monotonic”. In 
particular, the dominated hypervolume (or S-metric) is a commonly 
accepted quality measure for comparing approximations of Pareto fronts 
generated by multi-objective optimisers (Beume, 2009). Given a set of 
points, the S-metric figure is calculated as a sum of exclusive hyper-
volumes (see Fig. 3), and each exclusive hypervolume is calculated by 
limiting the underlying set with a contributing point and subtracting the 
hypervolume of the modified set from the inclusive hypervolume of the 
contributing point (While et al., 2012; Demir et al., 2019). 

According to (Petchrompo et al., 2022), the hypervolume indicator 

Fig. 2. Example solution scheme (two drones, five nodes).  
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can measure both the convergence and diversity of Pareto’s optimal 
solution, with the rationale that a solution set is the most diverse when 
the space covered by its members and a selected reference point is 
maximised. Despite the merits of the hypervolume indicator being well 
recognised, putting it in place necessarily implies embedding it within 
an optimisation algorithm, generating well-distributed sets of solutions 
efficiently. 

Noticeably, the search procedures to find solutions that yield better 
trade-offs are computational efforts whose stops need to be instructed. A 
study of the algorithm search stopping criteria used in drone-assisted 
routing problems heuristic-based approaches shows that the most 
common criteria are threefold: using a stopping criterion that considers 
that a certain number of iterations have been performed without finding 
any improvement in the solution; using a maximum number of iterations 
without considering any other factor, as in (Yan et al., 2021) or 
(Almuhaideb et al., 2021); or using a maximum computation time 
without considering any other factor. There are also algorithms in which 
two criteria are used simultaneously for stopping, such as Zhou, Zhang, 
Shi, Liu, and Huang (2018), which jointly employs a maximum number 
of iterations without improvement and a maximum number of itera-
tions, and (Luo et al., 2021), where a maximum computation time and a 
maximum number of iterations without improvement are jointly 
employed with the application of a coefficient. 

The effect of different stopping criteria on MOO is an open research 
stream, but, according to Abu Doush et al. (2021), the use of the Kalman 
filter applied on an indicator to determine a ’no progress state’ is still 
competitive against other more commonly used stopping criteria for 
multi-objective evolutionary algorithms, such as running average or 
online convergence detection applied on hypervolume. Let us briefly 
explain that the Kalman filter is an efficient recursive filter that is 
typically exploited for estimating the internal state of a linear dynamical 
system from a series of noisy measurements. In our context, its useful-
ness is in gaining evidence that a variable (chosen as an indicator) is 
stabilised around a reference, thereby indicating that the computational 
effort of inspecting that variable over time should be saved. 

3.3. Concluding remarks 

Once clarified that we are not interested in estimating the entire 
Pareto optimal frontier – what is considered neither meaningful nor 
computationally practical (Dasdemir et al., 2020) – but in drawing a 
shortlist of Pareto optimal solutions, this subsection outlines the novel 

methodology we propose for addressing the multi-objective TmDTL 
problem since the proposed methodology can better adapt to the pro-
posed problem than existing methods. 

The novelty is threefold. First, we create a solution coding that 
presents the TmDTL as a permutation flow-shop problem, which is 
highly efficient for the iterative generation of solutions. Second, taking 
advantage of this better formulation, the resolution is adapted to the 
Multi-Objective Iterated Greedy Search (MOIGS) algorithm (Framinan & 
Leisten, 2008). Third, we present a novel integrated environment in 
which the makespan (the total time to complete the task of serving all 
existing nodes) and the total truck time (proportionally related to CO2 
emissions and labour cost) are integrated into the hypervolume indi-
cator (chi, Demir et al., 2019), which is used as a guide for efficient 
frontier construction, along with a Kalman filter-based stopping crite-
rion (Martí et al., 2016). 

4. The BOA-KS methodology 

The BOA-KS methodology comprises the following steps:  

• Step 1. Initialisation. In this step, the global parameters of the system 
and the instance data are read.  

• Step 2. Generation of the initial solutions set (Bunch-SG algorithm). 
This step generates a spread of the Pareto front using in its process 
the LocalSIS algorithm for each objective.  

• Step 3. Estimation of the Pareto frontier (BO-LocalS algorithm), for 
which using the concept of the MOIGS method used in a flow-shop 
problem (Framinan & Leisten, 2008), has been transformed in a 
novel way to solve the proposed routing problem. 

According to the notation presented in Table 2, we provide a track of 
the key input variables involved in each of the components of BOA-KS. 
The details of each of the steps are shown below in Table 3. 

4.1. The LocalSIS algorithm to generate initial solutions 

The LocalSIS algorithm explores the best way to obtain ranked so-
lutions using a generic objective function, consisting of the performance 
measure Z and penalisation in the case of solution infeasibility. Although 
the calculation method is explained later, the basic procedure consists of 

Fig. 3. Hypervolume indicator (Adapted from Demir et al., 2019).  

Table 2 
Variables and their use as input in the algorithms.     

Algorithms where the variable 
is an input 

Notation Variable (V)/ 
Parameter 
(P) 

Description LocalSIS Bunch- 
SG 

BO- 
LocalS 

πn V Nodes vector X   
πm V Modes vector X   
k P Number of drones X X X 
V P Visit modes X  X 
Ti P Initial temperature X   
Te P End temperature X   
ΔT P Temperature 

gradient 
X   

Nbun P Number of initial 
solutions for every 
objective function  

X  

PS P Pareto scale  X X 
Πk P Set of non- 

dominated initial 
solutions   

X 

SGAmin P Stopping criteria 
indicator limit   

X 

d P Number of 
positions to be 
stolen   

X  
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objectifying the degree of non-compliance with the restrictions P 
affected by a penalty factor α. Therefore, OF can be calculated as OF =

Z+ α⋅P. 
Specifically, the threat of LocalSIS consists of three steps: (i) 

‘destruction and construction’, (ii) ‘local search’, and (iii) ‘decision’. The 
latter may result in two-fold: either a better solution is found, or a non- 
improved solution is obtained. In both cases, we get into another 
LocalSIS loop, either with a better solution or with a ’mutation’ per-
formed on the best of the search loop solutions found so far.  

• Phase 1: Solution Destruction and Construction Phase (SDCP). The 
SDCP is an initialisation based on the destruction and construction of 
the input solution. Two random intermediate positions i and j from 
the input solution are selected as initial and final indexes to consider 
sub-arrays in both the nodes and modes vectors and reverse them. 
There is a limiting rule on the index’s selection: neither the initial nor 
the final position of any vector can be selected.  

• Phase 2: Local Search Phase (LSP). The second step starts with a 
random swap among two positions, p and q, in the nodes vector 
(again, the first and last positions are not eligible for the swap). Then, 
a solution generation loop is executed, using the recently swapped 
nodes vector in combination with every possible mode from the visit 
modes options vector in the position of the modes vector. By using a 
memory variable, we guarantee that the same swap is not performed 
twice for the same input, saving computation time. 

• Phase 3: Decision Phase (DP). The third step chooses the next solu-
tion to be evaluated as a tentative initial point to relaunch the local 
search. If an improved solution arises from the second step, this 
would be the re-entry solution; otherwise, the local search step was 
unfruitful, and we decide that the re-entry solution is a ’mutation’ 
performed on the best solution found so far. These ‘mutated’ vari-
ables are defined with superscript mt. Randomly, this mutation can 
be accepted and sent as an input solution for the LSP. If the mutation 
is not able to improve the initial solution, the initial solution is 
considered again. 

The algorithm is guided by a standard stochastic simulated annealing 
(SA) algorithm, starting at temperature Ti. The solution construction and 
destruction phases are performed by the SDCP() function. The function 
calculate OF() takes as input the vectors of nodes πn and modes πm and 
returns a tuple formed by the value of both the objective function and 
the value of the penalisation P for non-compliance with the constraints. 
OFl and Pl store each evaluated objective function and penalisation 
respectively within the same global iteration. 

Algorithm 1 LocalSIS Pseudocode.  
Input:πn ,πm,k,V,Ti,Te,ΔT 
Output: Improved (πn ,πm)

1:calculate OF(πn,πm)→(O,P)# Returns the objective function and penalisation 
2:(πn ,πm)→(πo

n,πo
m)# The original input solution is saved apart 

3:while True do:# No solution without penalisation has been generated 
4: (πo

n,πo
m)→(πn ,πm)

5: Ti→T 
6: O→OFbest 

7: O→OF′ 
8: M = false# Auxiliary variable: if false, actual solution is not a mutation 
9: while T > TeorM do:# End temperature has not been reached or the actual solution is 

a mutation 
10: if notM:# The actual solution is not a mutation 
11: SDCP(πn , πm)→(π′

n, π′
m) # Solution construction and destruction phase (Phase 

1) 

(continued on next column)  

(continued ) 

12: end if 
13: while True do: # Local Search Phase (Phase 2) 
14: node random swap(π′

n)→(π″
n,p)

15: random mode permutation(π′
m)→(π″

m)

16: OFl = {}# OFs list creation or reset 
17: Pl = {}# Penalisations list creation or reset 
18: for m in V: # Mode intensification search 
19: m→π″

m[p]
20: calculate OF

(
π″

n, π″
m
)
+ = (OFl ,Pl) # Add to lists 

21: end for 
22: min LSP(OFl)→(OFmin ,π″

n ,π″
m)

23: if OFmin < OF′: 
24: (π″

n,π″
m,OFmin)→(π′

n,π′
m,OF′)

25: else: 
26: (π″

n,π″
m,OFmin)→(πmt

n ,πmt
m ,OFmt)

27: break 
28: end if 
29: end while 
30: if OF′ < OFbest : # Decision Phase (Phase 3) 
31: (π′

n,π′
m,OF′)→(πn ,πm,OFbest)

32: M = false 
33: else if Mistrue:# The SA has been executed using a mutation and no improvement 

has been found 
34: (πn,πm)→(π′

n ,π′
m)# Select again as input solution that which generated the 

mutation 
35: M = false 

36: else if e
−
OFmt − OF

T > random(0,1): 
37: (πmt

n ,πmt
m ,OFmt)→(π′

n ,π′
m,OF′)

38: M = true 
39: end if 
40: T = T − ΔT 
41: end while 
42: calculate OF(πn , πm)→(OF,P)
43: if P = {∅}: 
44: break 
45: end if 
46:end while 
return (πn,πm)

Finally, although the generation of a bunch of solutions will require a 
variety of executions of the LocalSIS routine, it is worth noting that 
running the LocalSIS aimed solely at a single criterion is not the better 
strategy for the Pareto front estimation for the bi-criteria TmDTL. 
Despite the multiple feasible and non-feasible solutions that are found 
when executing the LocalSIS procedure, only one feasible solution re-
mains: the best that could be obtained with the established objective 
function and parameters. Thus, using a single criterion would be a 
wrong strategy that would heavily reduce the Pareto front spread and 
would result in a sort of solutions that easily could dominate each other, 
which would invalidate the dominated solutions from being part of the 
Pareto front, thereby reducing the number of solutions contained in the 
initial Pareto front as well. In short, aside from wasting time on 
computing and not improving solutions, the arising front would be of 
poor quality. 

4.2. The Bunch-SG algorithm for creating a set of initial solutions 

In what follows, we detail the upper control designed to invoke the 
LocalSIS in a manner that increases the quality of the future estimation 
of the Pareto front of our bi-objective TmDTL problem launching the 
search for a bunch of solutions at both extremes of the front. To this aim, 
we use a weighted sum objective function out of these two: 

OF1 = T + β1⋅e  

OF2 = Tt + β2⋅e  

where: 
OF1 First objective function. 

Table 3 
Phase 1 example for i = 1 and j = 3   

Input solution Output solution 

Nodes vector πn = [0,3,1,2,5,4] π′
n = [0,2,1,3,5,4]

Modes vector πm = [7,2,4,3,1,7] π′
m = [7,3,4,2,1,7]
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OF2 Second objective function. 
T Total completion time. 
Tt Total truck time. 
β1 First penalisation factor for excess time for drone autonomy. 
β2 Second penalisation factor for excess time for drone autonomy. 
e Total autonomy time excess. 
Note that since we are executing the Bunch-SG algorithm either 

using OF1 or OF2, we only use a single variable “excess” and try to obtain 
feasibility by penalising its contribution. The correct values of β1 and β2 
must be considered so that they penalise sufficiently and exercise the 
admissibility search function of the solutions required in each objective 
function. In this regard, we must remark that since both objective 
functions are of the same order, we set both at the same value β = β1 =

β2. 
Bunch-SG – see pseudocode in Algorithm 2 – has been designed to 

spread the Pareto front and create multiple solutions that are not 
dominated by each other. The number of drones k, the number of initial 
solutions n, and the Pareto scale PS are set to start the procedure, which 
subsequently updates the dominances on a list called Πk. In an inner 
loop, a second list, Πs, is devoted to storing temporal solutions that arise 
for each number of drones. The specific strategy to spread the Pareto 
fronts is as follows.  

• First, OF1 is chosen as the performance criterion for executing 
LocalSIS for n times. Along it, every new solution is stored in Πs. 
Second, OF2 is selected and LocalSIS is run n times, again storing any 
new solution in Πs. 

• Once both objective functions have been explored, the resulting so-
lutions set Πs dominance is checked, and the dominated solutions are 
deleted.  

• The Πs set of dominant solutions for the current number of drones k is 
added to the set of the dominant solutions, Πk. 

This is repeated until k is reached, when a check on the number of 
solutions contained in Πk is made. The above is repeated till k is reached. 
Then, there is a check on the number of solutions contained in Πk. If any 
of the solutions sets’ length is bigger than PS, a user-defined scaling is 
applied so that an uniformly sized set of only PS elements is generated 
for every number of drones. 

Algorithm 2 Bunch-SG Pseudocode.  
Input: k,Nbun,PS 
Output: Πk set of non-dominated initial solutions 
1:Πk = {} 
2:for 1 to k: 
3: Πs= {} 
4: OF1 is selected as the performance criterion 
5: for 1 to Nbun: 
6: A random solution (πn, πm) is generated 
7: LocalSIS is run for the current objective function 
8: if current solution not in Πs: 
9: current solution →Πs 

10: end if 
11: end for 
12: OF2 is selected as the performance criterion 
13: for 1 to Nbun: 
14: A random solution (πn , πm) is generated 
15: LocalSIS is run for the current objective function 
16: if current solution not in Πs: 
17: current solution →Πs 

18: end if 
19: end for 
20: Πk dominance is checked and corrected for k 
21: Πk sets are scaled according to PS 
22:end for 
return Πk  

The set of the dominant solutions Πk, which contains a different set of 
dominant solutions for every number of drones considered, is now the 
input for the last part of this methodology, which aims to generate an 
estimate of the Pareto front as explained below. 

4.3. The BO-LocalS algorithm for Pareto front estimation 

In (Gonzalez-R et al., 2020), the coded TDTL problem is identified as 
similar to typical permutation problems, so the authors propose an 
adaptation of an iterative greedy search algorithm (IG) that was used 
efficiently to minimise the completion time of tasks in permutation 
problems. As our codification to the TmDTL problem is based on the 
TDTL bivector codification but from a multi-drone and bi-objective 
approach, we can consider it comparable to a bi-objective permutation 
flow-shop scheduling problem, too. 

Framinan & Leisten (2008) solved multi-objective permutation flow- 
shop problems employing the MOIGS algorithm, concluding that it was 
highly efficient and outperformed the best heuristics so far. As the 
MOIGS algorithm has not been beaten in its field, we consider it a perfect 
basis for developing a specific algorithm for our problem. However, 
since the MOIGS algorithm was formulated for a pure permutation flow- 
shop problem, a deep adaptation to the coding scheme of our targeted 
TmDTL problem has been attained, giving rise to a novel algorithm that 
we call BO-LocalS (Bi-Objective Local Search). The idea behind this can 
be outlined as follows:  

• Bunch-SG is launched, creating a set of non-dominated solutions Πk 

for every k number of drones. Each one of these solutions 
(
π1

k , π2
k ,⋯

)

is subsequently sent to the next step.  
• A d integer number of randomly selected nodes is removed from the 

vector of nodes of the current solution and stored in vector D, one at a 
time, using the function select random nodes. Their index- 
correspondent modes are also removed from the modes vector, too. 

• The remaining nodes and modes combinations are kept in the solu-
tion: this solution is now partial, as some of its nodes are not 
included. The create partial solutions() function generates a set of 
partial solutions, which are stored in Πr.  

• Each stolen node in D is then taken and inserted in all possible slots of 
its correspondent partial solution in Πr using the create solution()
function. In every insertion, all possible visit modes are assigned to 
the index-correspondent position in the modes vector and used to 
generate new complete solutions, which are provisionally appended 
to the set denoted by NWS after being evaluated by using the 
calculate OF() function.  

• When the whole algorithm iteration ends for the current original 
solution, the provisional solution dominance is checked using the 
evaluate dominance() function. Then, all non-dominant solutions in 
NWS are removed. The remaining solutions are set to the non- 
dominated set NDSk and NWS is emptied. Then, the iteration be-
gins again with the next solution.  

• This iteration continues until all solutions are processed for every 
number of drones in Πk.  

• Every time iteration of a k number of drones iteration ends, the 
dominance of NDSk is checked again, as the generated solutions by 
different partial solutions may have overlapped. When all non- 
dominant solutions are removed from NDSk, the remaining set of 
solutions is scaled according to the defined PS.  

• Pareto scale length using the scale solutions() function. Then, the 
iteration for the next number of drones begins. 

Algorithm 3 BO-LocalS Pseudocode.  
Input:Πk,k,V,PS,SGAmin ,d 
Output:NDSk Pareto front solutions 
1:NDSk = {}

2:while SGAmin < SGAvalue do: # Check stopping criteria according SGA 
3: for 1 to k: # For every number of drones 
4: for every complete solution in Πk: 
5: NWS = {}

6: select random nodes(complete solution,d)→D 
7: create partial solutions(complete solution,D)→ Πr 

8: for every partial solution in Πr : 

(continued on next page) 
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(continued ) 

9: for every slot in partial solution: 
10: for every mode in V: 
11: create solution(mode, slot,partial solution)→current solution 
12: calculate OF(current solution)→OF 
13: NWS += (OF,current solution) 
14: end for 
15: end for 
16: end for 
17: dominated solutions = check dominance(NWS)
18: NWS = NWS.delete(dominated solutions)
19: NDSk += (NWS) 
20: end for 
21: end for 
22: dominated solutions = check dominance(NDSk)

23: NDSk= NDS k.delete(dominated solutions)
24: scaled solutions = scale solutions(NDSk,PS)
25: SGAvalue = SGA(NDSk)

26:end while 
return NDSk  

Notice that the above tasks are iteratively executed to the point at which 
we consciously decide that it does not deserve further computational 
efforts (see Algorithm 3). We have designed a stopping criterion 
mechanism, computed by the function SGA(), from Sánchez, Gonzalez, 
Andrade, which is based on a domination rate combined with a Kalman 
filter in a way similar to (Martí et al., 2016). Specifically, let chi be the 
coefficient of hypervolume indicator in use, which we set to the per-
centage evolution of the hypervolume given a contributing point p set at 
(0,0). The percentage of improvement in this indicator is computed at 
function SGA() to give rise to a value which is compared to a selected 
threshold value SGAmin. In this study, we consider SGAmin = 1% to infer 
that the chi indicator has reached the desired stability. 

We refer the reader to Fig. 4 for an example of a BO-LocalS execution. 
Noticeably, while the chi indicator is highly unstable in the first itera-
tions of the BO-LocalS algorithm, it tends to stabilise after a certain 
number of iterations. Finally, the chi improvement is confused with 
noise and is assumed to be in a nonevolving state. 

Importantly, the described mechanism establishes a reliable and 
adaptable stopping criterion for the BO-LocalS algorithm without the 
need for manual adjustment. Therefore, the BO-LocalS can remain to 
refine the Pareto front estimation with subsequent good solutions that 
are non-dominated. 

4.4. BOA-KS limitations 

As a tailored algorithm, the main limitations of BOA-KS are related to 
the TmDTL problem description as well as the usual limitations of MOO 
frameworks. These can be summarised as follows: 

• Related to the problem description nature. As previously justi-
fied, the current algorithm is designed to work only under the 
following conditions:  
o Number of vehicles: Only one truck and any number of drones.  
o Vehicle autonomies: The truck has unlimited autonomy, while 

the drones do not.  
o Vehicle speeds: Constant for both types of vehicles.  
o Additional factors: Wind and acceleration are neglected.  
o Synchronisation time: Battery exchange time is neglected. 

• Related to the nature of multi-objective optimisation. Re-
searchers and practitioners always count on the presented drawbacks 
when developing new multi-objective algorithms and 
methodologies:  
o chi metric: Using a hypervolume-based metric for MOO has some 

pitfalls, such as scalability limitations (solved by Pareto Scale), 
difficulty in interpretation, lack of diversity assessment, and 
sensitivity to the scale and range of the objectives.  

o Pareto Dominance: Pareto dominance relationships may not 
capture certain complex relationships between objectives such as 
compromises and nonlinear interactions.  

o Lack of a single solution: Although this can be adjusted using the 
PS parameter, by not counting single solutions, DMs may find it 
difficult to select solutions from a Pareto optimal solution set.  

o Difficulty in Decision Making: The choice of the most suitable 
solution from the optimal Pareto set often involves subjective 
preferences and trade-offs, which may be difficult for the DM. 
Additional tools and methods to assist decision making can help 
make better informed decisions.  

o Computational Complexity: The search for multiple Pareto 
optimal solutions requires the exploration of a larger solution 
space, the evaluation of multiple objectives, and the handling of 
compromises. This increased complexity can limit the scale and 
complexity of problems that can be effectively solved in a 
reasonable time frame.  

o Limited Knowledge of the True Pareto Front: In many practical 
applications, the true Pareto front is unknown and difficult to 
obtain. This makes it difficult to accurately assess the performance 
of the algorithm. Approximation techniques or substitute models 
are often used to estimate Pareto fronts, which can generate 
additional uncertainties. 

Additionally, and as a drawback of the flexibility of the algorithm, 
the technological parameters such as drone autonomy and vehicle speed 
need to be manually selected by the DM to configure the system. Despite 
these limitations, BOA-KS remains a valuable approach to tackling the 
problem at hand. 

5. Computational study 

The present study aims to facilitate the efficient operation of a truck 
in conjunction with drones, considering both the quality of the service 
provided and the environmental impact of the route application in a 
combined delivery with drones. For this purpose, we have used the usual 
statistical methodology in experimentation, the DOE (Design of Exper-
iments) as well as two post hoc analyses. The study has focused on the 
analysis of two cases that differ in size, according to the number of 
customers served. The experiments have been set up and executed on an 
Intel Core i7 CPU 930 @ 2.80 GHz and 12 GB of RAM computer. 

The instances chosen to perform the experimental study are the 20 
nodes (small-size instance with one depot and 19 customers) and 100 
nodes (medium-size instance with one depot and 99 customers) ob-
tained from the uniform instances 61_n_20 and 91_n_100, respectively, 
from Agatz, Bouman, and Schmidt (2018) as representative for the more 
stringent scenarios. 

Fig. 4. BO-LocalS Execution: Evolution of chi (red) and Kalman filter esti-
mator (grey). 
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5.1. Design of Experiments (DOE) 

The study is focused on assessing, from an applied point of view, the 
effect that modifying the number, speed, and autonomy of drones has on 
the performance of the system. 

Drone autonomy is defined as the product of the mean truck arc time 
among all paths in the network multiplied by the drone autonomy factor 
(Daf ), as in Gonzalez-R et al. (2020). In addition to being instance- 
dependent, autonomy levels are a value of the intensity of the drone’s 
“multi-trip” feature. 

The speed of the drones (Dsf ) is defined as proportional to truck 
speed, according to the drone speed factor, as done by Gonzalez-R et al. 
(2020). Again, this parameter favours the possibility that the drone visits 
a larger number of customer nodes before its next rendezvous with the 
truck. 

The size of the drone fleet (k) defines the number of drones available 
for the delivery mission. It is defined by the user. This factor is the main 
source of complexity for the algorithm, as it defines the number of de-
livery agents able to simultaneously deliver goods or travel on the truck. 

The response variable is chi, as the indicator can measure the quality 
of the different Pareto front approximations. 

To reach conclusions, each instance is analysed performing a full 
factorial DOE. To estimate the nonlinearity of the response, two factors 
at three levels and one factor at four levels were used for each experi-
ment (see Table 4). 

5.2. Results 

The main results obtained in the experiments are shown below. First, 
Tables 5 and 6 show the ANOVA statistical analysis, which indicates 
which factors (and/or interactions) have a significant impact on the 
response variable (chi) and which factors’ influence is not distinguish-
able from the error term. Factors and interactions among factors that are 
meaningful are marked with an asterisk (*) and highlighted by the 
p-values. According to the methodology and the selected level of sig-
nificance (5 % in our study), those factors (or interactions) with p < 0.05 
are considered meaningful. Note that the values of the F-ratio indicate 
the factors (or interactions) with greater influence, showing a relative 
score of importance in the system performance. 

This analysis suggests that all main factors and interactions are 
meaningful in the small-scale scenario. 

Therefore, in the medium-scale instance, the main factors (Dsf and k) 
have a significant impact on the response variable, but most interaction 
terms are not statistically significant. Furthermore, Figs. 5 and 6 show 
the marginal means plots, which provides a visual representation of how 
the levels of each factor influence the response (chi) on average, 
allowing for an assessment of non-linearity. 

6. Results discussion 

According to the ANOVA results (Tables 5 and 6), drone speed (Dsf )

and number of drones (k), as well as their interaction, have a significant 
impact on the response (chi) at the specified levels in the instances 
studied. However, changes in autonomy levels (Daf ) do not have a 
meaningful impact on system performance in the medium-scale sce-
nario, nor any of the interactions containing this factor. 

This result is much more evident in the marginal means chats in both 
instances (Figs. 5 and 6), where the effect on the response is much lower 
in the autonomy factor (Daf ) than in the rest of the factors, i.e. drone 
speed Dsf and number of drones k). Far from being unexpected, this is a 

Table 4 
DOE configuration table.  

Factor Description Levels 

Daf Drone autonomy factor {2,3,4}
Dsf Drone speed factor {2,3,4}
k Number of drones {1,2,3,4}

Performance indicator Description 

chi Coefficient of Hypervolume Indicator 

DOE configuration Order of data collection Random  

Design 36-run Full Factorial  
Replications 5  
Total trials 180  
Alpha level 0.05  

Table 5 
Small-scale instance. ANOVA analysis.  

Source SS DF MS F- 
ratio 

I- 
hat 

p-value 

Daf 2,204E + 07 2 1,102E +
07 

14,42 * <0,001 

Dsf 1,588E + 09 2 7,940E +
08 

1039 * <0,001 

k 2,199E + 09 3 7,330E +
08 

959 * <0,001 

Daf x Dsf 1,859E + 09 4 4,647,000 6,079 * <0,001 
Daf x k 3,052E + 09 6 5,087,000 6,655 * <0,001 
Dsf x k 6,584E + 09 6 1,304E +

08 
143,6 * <0,001 

Daf x Dsf x k 4,670E + 09 12 3,892,000 5,092 * <0,001 
Within 

(error) 
1,101E + 08 144 764,300    

TOTAL 4,673E þ
09 

179      

Table 6 
Medium-scale instance. ANOVA analysis.  

Source SS DF MS F-ratio I- 
hat 

p-value 

Daf 3,298E + 08 2 1,649E +
08 

2,512  0,085 

Dsf 1,247E + 11 2 6,235E +
10 

949,8 * <0,001 

k 2,535E + 11 3 8,451E +
10 

1287 * <0,001 

Daf x Dsf 1,748E + 08 4 4,371E +
07 

0,6658  0,617 

Daf x k 5,036E + 08 6 8,393E +
07 

1,279  0,271 

Dsf x k 7,308E + 10 6 1,218E +
10 

185,5 * <0,001 

Daf x Dsf x k 1,202E + 09 12 1,002E +
08 

1,526  0,121 

Within 
(error) 

9,453E + 09 144 6,565E +
07    

TOTAL 4,630E þ
11 

179      

Fig. 5. Small-scale scenario. Marginal means response averages plot.  
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common effect when the density of nodes (number of nodes for the same 
area) is increased. 

Therefore, in scenarios with a larger number of nodes, the combi-
natorial possibilities for autonomous actions may become less signifi-
cant compared to scenarios with fewer nodes. This can lead to the 
following observation: for the same service area, the importance of the 
autonomy factor is greater when dealing with smaller numbers of cus-
tomers or nodes. As the size of the instance grows, the potential 
improvement from increasing autonomy becomes less significant. 

Above results highlight the sensitivity of the chosen performance 
indicator to changes in the factor levels. In smaller instances, even slight 
changes in factors can lead to a significant percentage of performance 
improvement, whereas in larger instances these changes may have, 
comparatively, a minor impact. 

Further insights with practical implications for decision making are 
connected to the number of customers to serve. In the case of a small 
number of customers, increased levels of autonomy may produce greater 
performance improvements during the optimisation process. In contrast, 
in the case of a large number of customers, the impact of autonomy 
variations is expected to be relatively lower. 

6.1. Post hoc analysis on the effect of speed and number of drones 

According to Figs. 5 and 6, the decreasing effect on (chi) with higher 
levels of drone speed (Dsf ) and number of drones (k) suggests that 
increasing these factors beyond a certain point may not result in a 
proportional improvement in system performance. Furthermore, the 

latter is also observed when studying the effects graph in Fig. 7. 
Comparing levels 3 and 4 for Dsf when k = 3, it can be stated that 

Dsf = 3 is technologically more efficient since almost the same result is 
obtained while consuming fewer resources. 

This observation highlights the practical importance of proper se-
lection of both the speed and number of drones. Since blindly increasing 
the speed and/or number of drones does not always lead to the desired 
improvements in the system performance, there may be an optimal 
balance that achieves the desired performance without an unnecessary 
allocation of resources. 

6.2. Post hoc analysis on the service time (T) and the total truck time (Tt) 

The chosen response variable chi is a quality metric that assesses the 
proximity of solutions to the ideal and unattainable point where the 
problem is solved with zero resource consumption. Smaller values of chi 
indicate better solutions, this is, closer to this ideal point. The Pareto 
fronts obtained by the proposed methodology represent trade-offs be-
tween the two objectives under study, i.e., service time and total truck 
time. Indeed, these fronts depict the set of non-dominated or estimated 
Pareto-optimal solutions, where improving one objective comes at the 
expense of the other. 

Moreover, understanding the shape of these fronts provides deeper 
insights into the trade-offs between conflicting objectives and is essen-
tial for effective decision-making when considering real-world param-
eters like total service time (T) and total truck time (Tt). 

Fig. 6. Medium-scale instance. Marginal means response averages.  

Fig. 7. Small-scale instance effects plot for Dsf and k factors.  Fig. 8. Medium-scale experiment Pareto fronts for k = 1  
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First, we will analyse Fig. 8, where the graphical representation of 
the Pareto fronts of all combinations of the factors Daf and Dsf for the 
case of a drone (k = 1) can be found. The following facts jump out:  

1. As would be expected after the analysis already performed of the 
influence of the factors on chi, rising the level of the Dsf factor rep-
resents a large overall improvement in the Pareto fronts obtained, 
which is visually evident in the distinguishable division between the 
fronts corresponding to the different levels of this factor. 

2. However, far from the ideal Pareto fronts represented in the litera-
ture and having a curvilinear shape, the obtained fronts are relatively 
straight and represent a much lower variability in T compared to Tt . 
This effect is accentuated in cases where Dsf is higher.  

3. The closest point to the far right indicates a high increase in Tt , while 
not having a great impact on T. 

Point 2 leads to the following result: It is possible to achieve large 
reductions in truck time (along with emissions and fuel usage) while 
obtaining small increases in total service time, and this trade-off is even 
more accentuated as the drone speed becomes higher than the truck 
speed. Noticeably, the ability to reduce truck time while maintaining a 
relatively small increase in total service time allow companies to 
transform their logistics operations towards energetic efficiency. 

Point 3, on its side, gives us the following result: greedily pursuing a 
total service time reduction increases the risk of having a great negative 
impact on total truck usage. Since increasing total truck usage means 
increased fuel consumption and maintenance costs, it is a driver of 
higher economic and environmental costs within logistics operations. 

When analysing Fig. 9, where the same fronts are represented for the 
case of four drones (k = 4) the shape of the Pareto fronts is closer to 
those normally represented in the literature (knee shape). In this rep-
resentation, as the use of four drones implies a great logistic advantage, 
nearly half of the fronts are reduced to a single point, where the results 
are T = 119,Tt = 119 time units. This point could be considered a 
unique efficient adjustment for the multi-objective problem. 

The managerial lesson on this occasion would be as follows: making 
use of a higher number of drones leads the Pareto front shape closer to 
those in the literature (Choachaicharoenkul & Wattanapongsakorn, 
2020) where the search algorithms generate natural ’knee zones’, closer 

to the origin. This behaviour becomes even more evident as higher 
values for the factors are chosen, that is, as greater availability of re-
sources is considered. 

Besides, the Tt value for the points located in the knee zones is 
approximately the same. Therefore, the efficient configuration and 
management of multiple drone fleets is the main enabler of improve-
ment. In fact, for each combination of factors and while their levels are 
increased, this continuous improvement is obtained by the decrease of 
the T value, as solutions capable of taking advantage of the system 
possibilities of using multiple drones lead to a best-fit synchronisation, 
leading to solutions where the truck waiting times are minimised. 

To have a better image of how this enormous change is possible in 
the shapes and values of the Pareto front, Fig. 10 represents how the 
level variation in factor k while maintaining the same combination for 
the rest of the factors (Dsf = 2,Daf = 2) influences on the Pareto front 
shape. 

7. Conclusions and future research 

This paper proposes an MOO methodology for supporting DMs on 
how to best exploit a general version of the hybrid truck multi-drone 
problem referred to as TmDTL: multi-visit flight missions, truck and 
drone allowed for serving each customer location and rendezvous at 
different points than that from launches. 

When addressing the TmDTL problem from the operational point of 
view, the focus is evolving from the sole consideration of the quality of 
service (makespan) to also adding the environmental impact (truck 
time) of implementing the routing. The proposed methodology applied 
to the bi-objective has shown to be useful in providing DMs with a 
spread front of good solutions among which they should pick the ulti-
mate routing to be implemented. 

One of the limiting aspects of Pareto front estimations is the 
computational effort required. In our research, we have applied a novel 
solution coding which turns the routing problem into a permutation 
flow-shop scheme. This transformation has allowed us to use, for the 
very first time in the multi-drone research stream, a greedy-based heu-
ristic to drastically improve the quality of the solutions. Moreover, 
inspired by the state of the art of previous MOO research, we propose the 
so-called Bi-Objective Algorithm with Kalman Stop (BOA-KS) consisting 
of a global optimisation scheme using an SA algorithm, along with an 
innovative use of a Kalman filter indicator as a stopping criterion (self- 
triggered mechanism) to get an evolutionary path to transit from the 

Fig. 9. Medium-scale instance Pareto fronts for k = 4  Fig. 10. Medium-scale instance Pareto fronts for Daf = 2, Dsf = 2  

P.L. Gonzalez-R et al.                                                                                                                                                                                                                          



Expert Systems With Applications 243 (2024) 122809

12

good initial solutions to the generation of estimated Pareto fronts for the 
problem at hand. Furthermore, the number of solutions on the Pareto 
front can be adjusted by the DMs as an input parameter. 

The proposed methodology has allowed to perform a DOE in two 
instances of different sizes, to assess the impact of different operations 
factors such as values of drone autonomy, as well as different values of 
drone speed and fleet size, using the chi indicator as response variable. 

The study shows that the marginal profit from adding additional 
resources (i.e., drone fleet size, drone autonomy, and flight speed) is 
scale decreasing, in all the cases. Regarding drone autonomy (Daf ) the 
smaller the number of customers to be served in the same area (i.e., the 
higher density of customers), the more significant this factor becomes. 
Therefore, efficient optimisation in this type of environment is decisive. 

As expected, an increase in fleet size (k) leads to a general 
improvement in performance. However, according to the experiments, it 
usually results in a greater reduction in service time (makespan) rather 
than in truck time. An important aspect to be considered by the DM is 
drone speed (Dsf ), since the increase in this factor results in a greater 
reduction in environmental impact (truck time), rather than in service 
time (makespan). Furthermore, a deep search for a reduction in truck 
time might ultimately lead to a negative impact on total service time. 

The present work was conceived with the idea of covering a need for 
decision making in complex last-mile MOO problems. Once we have 
given rise to this first level of MOO route planning, our future work aims 
at incorporating operational features like uncertainty, that is, uncertain 
truck and/or drone travel times or balanced use of the batteries in the 
system. Robust planning is still an open issue, therefore evolving our 
methodology for providing robust delivery services is a natural future 
research line. 
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