
Expert Systems With Applications 243 (2024) 122809

Available online 6 December 2023
0957-4174/© 2023 The Author(s). Published by Elsevier Ltd. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).

A bi-criteria approach to the truck-multidrone routing problem

Pedro L. Gonzalez-R a,*, David Sanchez-Wells a,c, José L. Andrade-Pineda b

a Department of Industrial Engineering and Management Science, School of Engineering, University of Seville, Camino de los Descubrimientos, s/n, Seville 41092, Spain
b Robotics, Vision & Control Group, School of Engineering, University of Seville, Camino de los Descubrimientos, s/n, Seville 41092, Spain
c Indaero Emergy Group, C/Espaldillas Diez, 10, Seville 41500, Spain

A R T I C L E I N F O

Keywords:
Multi-drone-truck logistics
Multi-objective
Makespan
Truck mileage
Last-mile delivery

A B S T R A C T

In the rapidly expanding field of e-commerce logistics, the optimisation of last-mile delivery solutions is para-
mount. This paper introduces a novel methodology that addresses this challenge by generating approximate
Pareto fronts in a hybrid truck-drone delivery system. Specifically, we examine a generalized single truck multi-
drone problem that allows multi-visit flight missions and rendezvous points distinct from launch locations. Our
goal is providing decision-makers with a portfolio of optimal routing solutions that balance service time and
environmental impact, criteria that are increasingly shaping decision-making in this domain. To achieve this, we
introduce a bivector coding scheme inspired by flow-shop scheduling problems and implement a Simulated
Annealing algorithm. This algorithm features an advanced stopping mechanism, negating the need for manual
adjustments by utilizing a distinctive blend of a domination rate and a Kalman filter. Importantly, our framework
employs an iterated greedy search algorithm to evolve from initial solutions towards identifying non-dominated
solutions sets, which are then ranked using a hypervolume coefficient. To validate our methodology, we conduct
a sensitivity analysis on two different size instances using a full factorial design of experiments. Our analysis
reveals crucial insights into the impact of the number of drones, their autonomy, and their flight speed settings.
From it, we conclude that it is a robust and adaptable framework for its practical application for obtaining Pareto
fronts solutions among which picking the ultimate routing to be implemented.

1. Background

The explosion of e-commerce logistics has led to increasing demands
for contactless delivery (Lin, 2020), thereby pushing small package
couriers to incorporate autonomous transport technologies, such as
unmanned aerial vehicles (UAVs) or drones. While the regulatory
framework starts to allow the hybrid truck-drone delivery service that
companies such as Amazon and UPS have been largely preparing (Sha-
varani et al., 2018), their investments in new resources are being care-
fully revised, with their focus more and more on the flexible
implementation of routing plans adapted to their logistics decision
making.

While last-mile delivery has been by far the most important research
stream on hybrid truck-drone logistics problems, certain features need to
be added for more realistic routing planning decisions. For instance, we
need to consider an active role for ground vehicles, assuming that they
can also deliver packages to customers – see, e.g. (Murray & Chu, 2015;
Ha et al., 2018; de Freitas and Penna, 2020; Dell’Amico et al., 2022) –
instead of treating trucks only as supporting vehicles that solely act as

mobile depots – see, e.g. (Karak & Abdelghany, 2019) and (Ferrandez
et al., 2016). Despite the use of a drone’s capability launching from/
coming back to a truck while it is moving from one customer location to
another has been recently suggested (Li et al., 2022; Marinelli et al.,
2018; Masone et al., 2022; Schermer et al., 2019), safety issues persuade
us on the convenience of avoiding this policy. Instead, we consider the
case in which the truck launches drones and moves to a different
customer location taken as a rendezvous point as the more promising
trend for transforming last-mile logistics into a brand-new joint delivery
service. Known as the hybrid synchronised truck and drone delivery
model (Moshref-Javadi et al., 2023), this modality serves to alleviate
overcrowded airspace and reduce the chance of accidents (Rojas Viloria
et al., 2021). Along with this safety requirement, the redesign of the
truck multi-drone service we consider here is aimed not only at the ef-
ficiency of the system itself, but also at the reduction of pollution, level
of emissions, carbon footprint, and the issues on fuel availability that are
within the current agenda of many states (singularly, within the Euro-
pean Union).

The problem of pairing drones with traditional delivery trucks was

* Corresponding author.
E-mail addresses: pedroluis@us.es (P.L. Gonzalez-R), davsanwel@alum.us.es (D. Sanchez-Wells), jandrade@us.es (J.L. Andrade-Pineda).

Contents lists available at ScienceDirect

Expert Systems With Applications

journal homepage: www.elsevier.com/locate/eswa

https://doi.org/10.1016/j.eswa.2023.122809
Received 16 November 2022; Received in revised form 8 September 2023; Accepted 30 November 2023

mailto:pedroluis@us.es
mailto:davsanwel@alum.us.es
mailto:jandrade@us.es
www.sciencedirect.com/science/journal/09574174
https://www.elsevier.com/locate/eswa
https://doi.org/10.1016/j.eswa.2023.122809
https://doi.org/10.1016/j.eswa.2023.122809
https://doi.org/10.1016/j.eswa.2023.122809
http://crossmark.crossref.org/dialog/?doi=10.1016/j.eswa.2023.122809&domain=pdf
http://creativecommons.org/licenses/by/4.0/

Expert Systems With Applications 243 (2024) 122809

2

first devised by Murray and Chu (2015) as the Flying Sidekick Travelling
Salesman Problem (FSTSP), which was extended by (Raj & Murray,
2020) to the use of an arbitrary number of heterogeneous UAVs that can
be deployed from the depot or the delivery truck. Our research is also
devoted to study the multi-drone case but while (Raj & Murray, 2020) is
limited to drones that are serving one solely customer per fly, we assume
a more general version of the hybrid truck-drone research stream: multi-
visit flight missions, truck and drone allowed for serving each customer
location, and rendezvous at different points than that of launches
(Gonzalez-R et al., 2020).

Our approach exhibits certain similarities with recent work (Poiko-
nen & Golden, 2020; Luo et al., 2021; Gu et al., 2022; Leon-Blanco et al.,
2022). Poikonen & Golden (2020) presented an interesting Travelling
Salesman Problem (TSP) with multiple drones with consideration of
adjustable speeds and battery consumption rate as a function of the
payload, although they assumed the truck serves solely as a mobile
depot which does not deliver packages to customers. Luo et al. (2021)
have addressed a problem like ours, although their computational
experience is severely limited by the number of drones in the fleet (only
two drones per truck). Gu et al. (2022) have recently applied a variable
neighbourhood descendant procedure to address instances of up to 200
customers in a last-mile delivery. However, while our study concerns a
multi-objective approach, these authors aimed at minimising a simple
weighted combination of objectives comprised of fixed vehicle costs and
cumulative duration costs of both truck routes and drone trips. Finally,
Leon-Blanco et al. (2022) is the most connected work to the one we
present here. Therein, the authors stated the Truck-Multi-Drone Team
Logistics Problem (TmDTL) which is solved by using multi-agent sys-
tems for large problem instances, but with a single objective criterion:
minimisation of makespan – that is, the time elapsed until the comple-
tion of the service.

In this research we cope with the TmDTL but, aside from minimising
makespan, we are also minimising the truck usage as a cost driver of the
economic impact due to its consumption of energy or/and manpower
factors. Since we assume that the truck travels at a constant speed, the
added cost driver can be viewed as a truck mileage minimisation crite-
rion which fits to both, electric trucks (usage as a driver of the electrical
battery life-cycle consumption) or trucks with combustion engines
(usage as a driver of the level of emissions). Besides, as in other hybrid
truck-drone literature (Moshref-Javadi et al., 2020; Luo et al., 2021), we
assume a constant UAV to truck speed ratio when studying the design of
the brand-new joint delivery service with our bi-objective approach.
Another assumption made is that the decision maker (DM) needs from
applying a posteriori multi-optimisation approach (Zajac & Huber,
2021), namely, their interest is in being given a Pareto optimal set from
which they will ultimately choose the final solution to implement.

In short, this paper covers DM’s decision on how to best exploit a
truck along with a variety of drones by choosing the number of drones
and their operational settings while considering the current vectors
guiding the sector: the quality of the service provided but also the
environmental impact of implementing the routing. To this aim, we have
devised a novel methodology capable of providing trade-off solutions in
a reasonable time. This is reached by applying a combination of inno-
vative heuristic solution evolution methods to estimate Pareto-efficient
solution sets by using an iterated greedy heuristic globally guided by
simulated annealing.

The remainder of the paper is as follows. Section 2 is devoted to
shortly presenting our problem description and then proceeding to
detail a novel vector-based coding of the routing solutions which poses
our TmDTL problem as a permutation flow-shop scheduling problem.
Section 3 revises related work, both on the drone routing and in multi-
objective optimisation (MOO) contexts. Section 4 presents our approach
to the methodology. As the computational experience presented in
Section 5 shows, this method dramatically reduces the cost in time and
resources for estimating Pareto fronts for the challenging bi-objective
TmDTL instances. Section 6 discusses the results of our experiments

along with two post hoc analyses on the effect that the parameter setting
has on the Pareto fronts. Finally, Section 7 is devoted to drawing con-
clusions and further research lines.

2. Problem description and solution coding

The problem at hand is to determine the best set of routes to serve
several customers for both total service time and truck usage time in a
logistics system, where a fleet of drones with limited autonomy works
collaboratively with a truck. In our approach, the collaborative work
between the drone fleet and the truck is defined by the fact that both can
serve customers (nodes) equally, so all nodes could be served by either
type of vehicle, in addition to the fact that both the truck and drones are
considered to start the service at a start node and conclude the service at
an end node. Therefore, the difference between the two types of vehicles
lies in two factors: travel autonomy and displacement speed.

As far as autonomy is concerned, commercial drones, for the most
part, and in the current state of the art, obtain the energy necessary to
perform their functions from the electrical energy contained in batteries,
which they therefore necessarily charge. The amount of energy these
batteries can store defines the autonomy of the drone that equips them,
so this autonomy is limited. As a relatively novel idea, this is solved by
using the truck as a mobile battery exchange station, since the autonomy
of the truck is considered infinite since it is much greater than the au-
tonomy of the drones.

To make these battery exchanges possible, in which any number of
them can occur, we adopt the realistic assumption that they must
necessarily happen at some node, where the drone and the truck meet.
This will imply that at the nodes where the encounter occurs, the vehicle
that arrives first will be forced to wait for the other. Any nodes where the
drone-truck meeting occurs are called “synchronisation nodes”. After
the drone and the truck meet at a certain synchronisation node, the
autonomy of the drone is fully recovered. Fig. 1 shows graphically an
example of the problem introduced for the case of two drones. Cus-
tomers are visited by the truck or by one of the two drones, with syn-
chronisation occurring at nodes 5 and 8 for drones 1 and 2, respectively.
After every synchronisation, the drones can choose to stay parked on the
truck (travelling with no autonomy consumption until the next node to
be visited by the truck) or to take off to keep performing deliveries.

Once the drones parked on the truck arrive at the next node, they can
take off to start a new service route or stay parked on the truck for any
number of trips. In this context, it may also happen that part of the drone
fleet on the truck is never used, so a correct sizing of the fleet is
necessary.

In this context, assuming that the speed of the drone can be
considered superior to that of the truck, we follow (Gonzalez-R et al.,
2020) and (Moshref-Javadi et al., 2020) and consider that the speed of
the drones is higher than the speed of the truck. Furthermore, our
assumption of drones’ constant speed neglects operational features that
are beyond the scope of our study, e.g., drone energy consumption in
landing and take-off manoeuvres.

As a result, to sum up, we can establish the following list of rules,
which we call visit assumptions:

1) All vehicles meet at the first and last nodes of the list, as they are
assumed to be the necessary beginning and end nodes for the com-
plete service.

2) Any vehicle can serve any node and all nodes must be served.
3) If a node is served solely by a drone, no other drone can serve it as

well.
4) If a node is served by a truck, any number of drones can meet the

truck at that node and fully recover its autonomy. From this point on,
there are two possibilities for any drone:
a) Take off again to continue to serve the nodes.
b) Stay landing on the truck without consuming any autonomy until

the truck reaches its next node.

P.L. Gonzalez-R et al.

Expert Systems With Applications 243 (2024) 122809

3

5) The battery exchange time is negligible compared to the mission
time, so it has been neglected.

6) Meeting at a node necessarily involves a waiting time, as all vehicles
will have to wait until the last minute to reach that node. These
waiting times do not consume any autonomy for any drone, nor
indeed for the truck. Therefore, hovering is not considered.

7) Autonomy of the truck is assumed to be not limited, namely, truck
technology allows the completion of all potential routes within the
set of locations, no matter its length.

The above assumptions make TmDTL a very combinatorial problem
whose resolution easily leads to a great computational burden. To
mitigate the latter, we need to define novel solution coding as a key part
of the process of obtaining efficient solutions. In the following, we
present a novel codification scheme capable of reducing the combina-
torial space of solution search. Specifically, the codification scheme is
extensively used in an IG heuristic, similar to what was done by Gon-
zalez-R et al. (2020) but generalised to a multi-drone context for
providing trade-off solutions in a reasonable time.

2.1. Solution coding

First, we need to define the coding of the solution as a key part of the
process of obtaining efficient solutions.

Each solution is defined by a combination of two vectors: nodes
vector (πn) and modes vector (πm). The indexes of both vectors are a key
characteristic, as they are used to point within both vectors sequentially
to define a specific solution. πn or nodes vector is an integer list where
every integer is a node number, and the list index defines the evaluation
order. An example of a nodes vector for five nodes would be πn =

[0, 3, 1,2, 4]. On the other hand, πm or modes vector is an integer list
where each integer value represents a visit mode number, and where the
list index defines the evaluation order as well. An example of a modes
vector for five nodes would be πm = [7, 2,4, 3,7]. The modes vector
codification is one of the value proposals of our method. Every visit
mode defines how its index-corresponding node in the nodes vector is
visited.

First, to define the visit modes, we need to define how synchroni-
sation works and how feasible solutions are constructed. These visiting
modes are defined below.

For a defined number of drones k, we create a binary matrix of visit
mode, where the number of columns will be k+1 (for the truck), which
is equal to the number of total vehicles, and where the number of rows is

equal to the sum of as many different binary combinations as possible for
the number of total vehicles (2k+1). In this binary matrix, 1 means that a
specific vehicle visits a node and 0 means that it does not. Taking this
into account and according to the problem description, we must not use
some of the visit mode rows, as they do not obey our visit assumptions.
For the case of two drones, we must delete row 1, as it would be a no-
visit and all nodes must be visited (visit assumption 2), and row 7, as
it would imply that two different drones serve the same node without a
truck (visit assumption 3). These cases (rows 1 and 7 of Table 1) are
highlighted in bold.

To obtain the vector of coded modes, it is necessary to merge the
values of drones and truck columns for every row to get a binary value
(binary merge) and then convert every binary visit mode into a decimal
value (decimal codification), as shown in Table 1. Finally, all these
values build a list called the visit modes options vector. In this example,
this vector is [1, 2, 3, 4, 5, 7]. Note that every odd value, apart from 1
defines a meeting mode, where any number of drones meet the truck at a
certain node.

Now that the vector of options for visit modes has been created for a
certain number of drones, we can say that any feasible vector of modes
must start and finish with the maximum value of the vector of modes (7
in this example), as it indicates that all vehicles meet at its index-
corresponding node of the vector node, and this is mandatory for the
first and last values of this vector (visit assumption 1). Additionally, any
possible combination of the decimal values contained in the visit modes
options vector defines a different but not necessarily feasible solution, as
it may not fulfil the autonomy constraints. For example, see in Fig. 2 the
corresponding solution that nodes vector πn = [0,3, 1,2, 4] and modes
vector πm = [7, 2,4, 3, 7] are coding in a case with two drones and five
nodes. In this example, all vehicles meet at the starting node, 0 (7 in
binary: 111), node 3 is visited by drone 1 (2 in binary: 010), node 1 is

Fig. 1. Collaborative logistics example of a truck and two drones and synchronisation diagram.

Table 1
Visit modes matrix. Example for two drones and five nodes.

Row Num. Drone 2 Drone 1 Truck Binary merge Decimal cod.

1 0 0 0 000 0
2 0 0 1 001 1
3 0 1 0 010 2
4 0 1 1 011 3
5 1 0 0 100 4
6 1 0 1 101 5
7 1 1 0 110 6
8 1 1 1 111 7

P.L. Gonzalez-R et al.

Expert Systems With Applications 243 (2024) 122809

4

visited by drone 2 (4 in binary: 100), node 2 is visited by drone 1 and
truck (3 in binary: 011) and all vehicles meet at the end node, 4 (7 in
binary: 111).

In this type of problem, a binary matrix has been commonly used to
define when a given vehicle visited a given node. This, which from a
mathematical approach is not a major problem, is a slowing factor when
carrying out spatial searches based on heuristics since each possibility
requires the handling of a list of a length of, in our case, the number of
drones +1, which exponentially increases the time required to handle
each list as the drone number increases. Therefore, this efficient coding
scheme is suitable for handling such a problem whose complexity in-
creases with the size of the instances. Taking into account the elimina-
tion of unfeasible modes, the number of modes that will arise from a
given combination of k drones is 2k + k, so with one drone 21 +1 = 3
options would be handled, with two drones 22 +2 = 6 options would be
handled, with three drones 23 +3 = 11 options would be handled, and
so on. In these same cases and with a binary matrix, the first case would
imply three lists of two bits (six elements vs three), in the second case six
lists of three bits (18 elements vs six) and in the third case 11 lists of four
bits (44 elements vs 11). The search complexity reduction is, therefore,
of k+1 order, and so is the computational time reduction as well.

The presented coding scheme is highly beneficial for generating a set
of initial solutions that constitute the initial Pareto front, which is
further evolved for the best estimate set until a no progress state is
identified.

3. Related work

3.1. Multi-objective optimisation in drone routing problems

In the drone routing context, multi-objective optimisation models
are mostly aimed at minimising a function that aggregates the given
objectives to identify a single preferred solution. Such approaches are
mostly based on objectives that are in conflict and compete among them.
Guerriero et al. (2014) tackle the deployment of drones to film a live
sports event throughout a MILP model minimising the number of drones
and the distance travelled along with the commitment to soft time
windows whereas di Puglia Pugliese & Guerriero (2017) address a multi-
truck multi-drone problem aimed at the minimisation of completion
time, also considering the existence of differentiated time windows at
each customer. Coelho et al. (2017) propose an evolutionary approach
based on using weighted sum functions in fitness allocation when
tackling the problem of a heterogeneous fleet of drones with capacity
and autonomy constraints that, supported by static charging stations,
are routed to pick up packages from one node and deliver them to

another. Indeed, they generate multiple solutions: first solving the stated
MILP including the charging station constraints and then solving the
subsequent MOO employing a metaheuristic termed Multi-Objective
Smart Pool Search (Coelho et al., 2016).

Unlike the above works, one could assume that the decision maker
needs to be given a Pareto optimal set from which it selects one final
solution. Wang et al. (2020) apply such a method when proposing a non-
dominated sorting genetic algorithm to solve a bi-objective FSTSP which
minimises completion time and operational costs, although referring to
a single-truck-single-drone setting which poses a lesser combinatorial
burden than the TmDTL, more even owing to their assumption on single-
customer per flight delivery. Tavana et al. (2017) apply it when
approaching a cross-docking setting where some small items are deliv-
ered by drones from a supplier directly to a customer, while other items
are delivered by trucks through the cross-docking system that is located
between a supplier and a customer: since drone deliveries are faster,
they seek a trade-off of drones scheduling costs and the time savings it
provides. Omagari & Higashino (2018) study a bi-objective drone de-
livery problem with travelling distance and delivery time minimisation,
to decide at which node the drone is launching, which nodes it visits, and
at which rendezvous node it reconnects with the truck. The authors do
not estimate the Pareto front but use the provisional ideal point method,
where a point where the search would lead is first estimated. This makes
the calculation of the entire Pareto front unnecessary. When compared
to our TmDTL problem, the following differences arise: their drone
unary load capacity leads to serving one customer per drone flight,
whereas we need to consider a multi-drop approach; the rendezvous
points are predefined, while in our problem it can be any service node;
and the truck must have the drone when the truck returns to the depot,
while in our case there is no depot, but equally the truck can complete its
route without waiting for the drones. Ramirez-Atencia et al. (2017)
address a mission planning problem involving a team of UAVs and a set
of Ground Control Stations (GCS), modelled as a Constraint Satisfaction
Problem (CSP), which they solved employing a multi-objective genetic
algorithm, therein using a performance indicator pairing distance and
makespan. Finally, Ramirez Atencia et al. (2019) addressed the same
problem with a MOO for which an estimation of the Pareto optimal
frontier is inferred to get a portfolio of solutions (mission plans) differ-
ently, albeit optimally balancing the considered conflicting objectives:
the fuel consumption, the makespan, the cost of the mission, or the
number of UAV or GCS to employ and different risk factors that could
compromise the mission. Like them, in our research work, we are con-
cerned with the provision of a decision-making tool for a real-life
application in which it is necessary to find a good solution and not the
complete space of possible solutions. To this aim, we determine multiple
Pareto optimal solutions by concurrently optimising the multiple ob-
jectives to obtain a set of non-dominated solutions according to a certain
performance indicator.

3.2. The performance indicator guiding the shortlist of Pareto solutions

Regarding MOO performance indicators, (Audet et al., 2021) have
analysed a total of 63 performance indicators partitioned into four
groups according to their properties (cardinality, convergence, spread
and distribution) and also present applications for them. Noticeably, the
authors state that “The hypervolume indicator and some closely related
metrics are the only known unary indicators to be strictly monotonic”. In
particular, the dominated hypervolume (or S-metric) is a commonly
accepted quality measure for comparing approximations of Pareto fronts
generated by multi-objective optimisers (Beume, 2009). Given a set of
points, the S-metric figure is calculated as a sum of exclusive hyper-
volumes (see Fig. 3), and each exclusive hypervolume is calculated by
limiting the underlying set with a contributing point and subtracting the
hypervolume of the modified set from the inclusive hypervolume of the
contributing point (While et al., 2012; Demir et al., 2019).

According to (Petchrompo et al., 2022), the hypervolume indicator

Fig. 2. Example solution scheme (two drones, five nodes).

P.L. Gonzalez-R et al.

Expert Systems With Applications 243 (2024) 122809

5

can measure both the convergence and diversity of Pareto’s optimal
solution, with the rationale that a solution set is the most diverse when
the space covered by its members and a selected reference point is
maximised. Despite the merits of the hypervolume indicator being well
recognised, putting it in place necessarily implies embedding it within
an optimisation algorithm, generating well-distributed sets of solutions
efficiently.

Noticeably, the search procedures to find solutions that yield better
trade-offs are computational efforts whose stops need to be instructed. A
study of the algorithm search stopping criteria used in drone-assisted
routing problems heuristic-based approaches shows that the most
common criteria are threefold: using a stopping criterion that considers
that a certain number of iterations have been performed without finding
any improvement in the solution; using a maximum number of iterations
without considering any other factor, as in (Yan et al., 2021) or
(Almuhaideb et al., 2021); or using a maximum computation time
without considering any other factor. There are also algorithms in which
two criteria are used simultaneously for stopping, such as Zhou, Zhang,
Shi, Liu, and Huang (2018), which jointly employs a maximum number
of iterations without improvement and a maximum number of itera-
tions, and (Luo et al., 2021), where a maximum computation time and a
maximum number of iterations without improvement are jointly
employed with the application of a coefficient.

The effect of different stopping criteria on MOO is an open research
stream, but, according to Abu Doush et al. (2021), the use of the Kalman
filter applied on an indicator to determine a ’no progress state’ is still
competitive against other more commonly used stopping criteria for
multi-objective evolutionary algorithms, such as running average or
online convergence detection applied on hypervolume. Let us briefly
explain that the Kalman filter is an efficient recursive filter that is
typically exploited for estimating the internal state of a linear dynamical
system from a series of noisy measurements. In our context, its useful-
ness is in gaining evidence that a variable (chosen as an indicator) is
stabilised around a reference, thereby indicating that the computational
effort of inspecting that variable over time should be saved.

3.3. Concluding remarks

Once clarified that we are not interested in estimating the entire
Pareto optimal frontier – what is considered neither meaningful nor
computationally practical (Dasdemir et al., 2020) – but in drawing a
shortlist of Pareto optimal solutions, this subsection outlines the novel

methodology we propose for addressing the multi-objective TmDTL
problem since the proposed methodology can better adapt to the pro-
posed problem than existing methods.

The novelty is threefold. First, we create a solution coding that
presents the TmDTL as a permutation flow-shop problem, which is
highly efficient for the iterative generation of solutions. Second, taking
advantage of this better formulation, the resolution is adapted to the
Multi-Objective Iterated Greedy Search (MOIGS) algorithm (Framinan &
Leisten, 2008). Third, we present a novel integrated environment in
which the makespan (the total time to complete the task of serving all
existing nodes) and the total truck time (proportionally related to CO2
emissions and labour cost) are integrated into the hypervolume indi-
cator (chi, Demir et al., 2019), which is used as a guide for efficient
frontier construction, along with a Kalman filter-based stopping crite-
rion (Martí et al., 2016).

4. The BOA-KS methodology

The BOA-KS methodology comprises the following steps:

• Step 1. Initialisation. In this step, the global parameters of the system
and the instance data are read.

• Step 2. Generation of the initial solutions set (Bunch-SG algorithm).
This step generates a spread of the Pareto front using in its process
the LocalSIS algorithm for each objective.

• Step 3. Estimation of the Pareto frontier (BO-LocalS algorithm), for
which using the concept of the MOIGS method used in a flow-shop
problem (Framinan & Leisten, 2008), has been transformed in a
novel way to solve the proposed routing problem.

According to the notation presented in Table 2, we provide a track of
the key input variables involved in each of the components of BOA-KS.
The details of each of the steps are shown below in Table 3.

4.1. The LocalSIS algorithm to generate initial solutions

The LocalSIS algorithm explores the best way to obtain ranked so-
lutions using a generic objective function, consisting of the performance
measure Z and penalisation in the case of solution infeasibility. Although
the calculation method is explained later, the basic procedure consists of

Fig. 3. Hypervolume indicator (Adapted from Demir et al., 2019).

Table 2
Variables and their use as input in the algorithms.

Algorithms where the variable
is an input

Notation Variable (V)/
Parameter
(P)

Description LocalSIS Bunch-
SG

BO-
LocalS

πn V Nodes vector X
πm V Modes vector X
k P Number of drones X X X
V P Visit modes X X
Ti P Initial temperature X
Te P End temperature X
ΔT P Temperature

gradient
X

Nbun P Number of initial
solutions for every
objective function

X

PS P Pareto scale X X
Πk P Set of non-

dominated initial
solutions

X

SGAmin P Stopping criteria
indicator limit

X

d P Number of
positions to be
stolen

X

P.L. Gonzalez-R et al.

Expert Systems With Applications 243 (2024) 122809

6

objectifying the degree of non-compliance with the restrictions P
affected by a penalty factor α. Therefore, OF can be calculated as OF =

Z+ α⋅P.
Specifically, the threat of LocalSIS consists of three steps: (i)

‘destruction and construction’, (ii) ‘local search’, and (iii) ‘decision’. The
latter may result in two-fold: either a better solution is found, or a non-
improved solution is obtained. In both cases, we get into another
LocalSIS loop, either with a better solution or with a ’mutation’ per-
formed on the best of the search loop solutions found so far.

• Phase 1: Solution Destruction and Construction Phase (SDCP). The
SDCP is an initialisation based on the destruction and construction of
the input solution. Two random intermediate positions i and j from
the input solution are selected as initial and final indexes to consider
sub-arrays in both the nodes and modes vectors and reverse them.
There is a limiting rule on the index’s selection: neither the initial nor
the final position of any vector can be selected.

• Phase 2: Local Search Phase (LSP). The second step starts with a
random swap among two positions, p and q, in the nodes vector
(again, the first and last positions are not eligible for the swap). Then,
a solution generation loop is executed, using the recently swapped
nodes vector in combination with every possible mode from the visit
modes options vector in the position of the modes vector. By using a
memory variable, we guarantee that the same swap is not performed
twice for the same input, saving computation time.

• Phase 3: Decision Phase (DP). The third step chooses the next solu-
tion to be evaluated as a tentative initial point to relaunch the local
search. If an improved solution arises from the second step, this
would be the re-entry solution; otherwise, the local search step was
unfruitful, and we decide that the re-entry solution is a ’mutation’
performed on the best solution found so far. These ‘mutated’ vari-
ables are defined with superscript mt. Randomly, this mutation can
be accepted and sent as an input solution for the LSP. If the mutation
is not able to improve the initial solution, the initial solution is
considered again.

The algorithm is guided by a standard stochastic simulated annealing
(SA) algorithm, starting at temperature Ti. The solution construction and
destruction phases are performed by the SDCP() function. The function
calculate OF() takes as input the vectors of nodes πn and modes πm and
returns a tuple formed by the value of both the objective function and
the value of the penalisation P for non-compliance with the constraints.
OFl and Pl store each evaluated objective function and penalisation
respectively within the same global iteration.

Algorithm 1 LocalSIS Pseudocode.
Input:πn ,πm,k,V,Ti,Te,ΔT
Output: Improved (πn ,πm)

1:calculate OF(πn,πm)→(O,P)# Returns the objective function and penalisation
2:(πn ,πm)→(πo

n,πo
m)# The original input solution is saved apart

3:while True do:# No solution without penalisation has been generated
4: (πo

n,πo
m)→(πn ,πm)

5: Ti→T
6: O→OFbest

7: O→OF′
8: M = false# Auxiliary variable: if false, actual solution is not a mutation
9: while T > TeorM do:# End temperature has not been reached or the actual solution is

a mutation
10: if notM:# The actual solution is not a mutation
11: SDCP(πn , πm)→(π′

n, π′
m) # Solution construction and destruction phase (Phase

1)

(continued on next column)

(continued)

12: end if
13: while True do: # Local Search Phase (Phase 2)
14: node random swap(π′

n)→(π″
n,p)

15: random mode permutation(π′
m)→(π″

m)

16: OFl = {}# OFs list creation or reset
17: Pl = {}# Penalisations list creation or reset
18: for m in V: # Mode intensification search
19: m→π″

m[p]
20: calculate OF

(
π″

n, π″
m
)
+ = (OFl ,Pl) # Add to lists

21: end for
22: min LSP(OFl)→(OFmin ,π″

n ,π″
m)

23: if OFmin < OF′:
24: (π″

n,π″
m,OFmin)→(π′

n,π′
m,OF′)

25: else:
26: (π″

n,π″
m,OFmin)→(πmt

n ,πmt
m ,OFmt)

27: break
28: end if
29: end while
30: if OF′ < OFbest : # Decision Phase (Phase 3)
31: (π′

n,π′
m,OF′)→(πn ,πm,OFbest)

32: M = false
33: else if Mistrue:# The SA has been executed using a mutation and no improvement

has been found
34: (πn,πm)→(π′

n ,π′
m)# Select again as input solution that which generated the

mutation
35: M = false

36: else if e
−
OFmt − OF

T > random(0,1):
37: (πmt

n ,πmt
m ,OFmt)→(π′

n ,π′
m,OF′)

38: M = true
39: end if
40: T = T − ΔT
41: end while
42: calculate OF(πn , πm)→(OF,P)
43: if P = {∅}:
44: break
45: end if
46:end while
return (πn,πm)

Finally, although the generation of a bunch of solutions will require a
variety of executions of the LocalSIS routine, it is worth noting that
running the LocalSIS aimed solely at a single criterion is not the better
strategy for the Pareto front estimation for the bi-criteria TmDTL.
Despite the multiple feasible and non-feasible solutions that are found
when executing the LocalSIS procedure, only one feasible solution re-
mains: the best that could be obtained with the established objective
function and parameters. Thus, using a single criterion would be a
wrong strategy that would heavily reduce the Pareto front spread and
would result in a sort of solutions that easily could dominate each other,
which would invalidate the dominated solutions from being part of the
Pareto front, thereby reducing the number of solutions contained in the
initial Pareto front as well. In short, aside from wasting time on
computing and not improving solutions, the arising front would be of
poor quality.

4.2. The Bunch-SG algorithm for creating a set of initial solutions

In what follows, we detail the upper control designed to invoke the
LocalSIS in a manner that increases the quality of the future estimation
of the Pareto front of our bi-objective TmDTL problem launching the
search for a bunch of solutions at both extremes of the front. To this aim,
we use a weighted sum objective function out of these two:

OF1 = T + β1⋅e

OF2 = Tt + β2⋅e

where:
OF1 First objective function.

Table 3
Phase 1 example for i = 1 and j = 3

Input solution Output solution

Nodes vector πn = [0,3,1,2,5,4] π′
n = [0,2,1,3,5,4]

Modes vector πm = [7,2,4,3,1,7] π′
m = [7,3,4,2,1,7]

P.L. Gonzalez-R et al.

Expert Systems With Applications 243 (2024) 122809

7

OF2 Second objective function.
T Total completion time.
Tt Total truck time.
β1 First penalisation factor for excess time for drone autonomy.
β2 Second penalisation factor for excess time for drone autonomy.
e Total autonomy time excess.
Note that since we are executing the Bunch-SG algorithm either

using OF1 or OF2, we only use a single variable “excess” and try to obtain
feasibility by penalising its contribution. The correct values of β1 and β2
must be considered so that they penalise sufficiently and exercise the
admissibility search function of the solutions required in each objective
function. In this regard, we must remark that since both objective
functions are of the same order, we set both at the same value β = β1 =

β2.
Bunch-SG – see pseudocode in Algorithm 2 – has been designed to

spread the Pareto front and create multiple solutions that are not
dominated by each other. The number of drones k, the number of initial
solutions n, and the Pareto scale PS are set to start the procedure, which
subsequently updates the dominances on a list called Πk. In an inner
loop, a second list, Πs, is devoted to storing temporal solutions that arise
for each number of drones. The specific strategy to spread the Pareto
fronts is as follows.

• First, OF1 is chosen as the performance criterion for executing
LocalSIS for n times. Along it, every new solution is stored in Πs.
Second, OF2 is selected and LocalSIS is run n times, again storing any
new solution in Πs.

• Once both objective functions have been explored, the resulting so-
lutions set Πs dominance is checked, and the dominated solutions are
deleted.

• The Πs set of dominant solutions for the current number of drones k is
added to the set of the dominant solutions, Πk.

This is repeated until k is reached, when a check on the number of
solutions contained in Πk is made. The above is repeated till k is reached.
Then, there is a check on the number of solutions contained in Πk. If any
of the solutions sets’ length is bigger than PS, a user-defined scaling is
applied so that an uniformly sized set of only PS elements is generated
for every number of drones.

Algorithm 2 Bunch-SG Pseudocode.
Input: k,Nbun,PS
Output: Πk set of non-dominated initial solutions
1:Πk = {}
2:for 1 to k:
3: Πs= {}
4: OF1 is selected as the performance criterion
5: for 1 to Nbun:
6: A random solution (πn, πm) is generated
7: LocalSIS is run for the current objective function
8: if current solution not in Πs:
9: current solution →Πs

10: end if
11: end for
12: OF2 is selected as the performance criterion
13: for 1 to Nbun:
14: A random solution (πn , πm) is generated
15: LocalSIS is run for the current objective function
16: if current solution not in Πs:
17: current solution →Πs

18: end if
19: end for
20: Πk dominance is checked and corrected for k
21: Πk sets are scaled according to PS
22:end for
return Πk

The set of the dominant solutions Πk, which contains a different set of
dominant solutions for every number of drones considered, is now the
input for the last part of this methodology, which aims to generate an
estimate of the Pareto front as explained below.

4.3. The BO-LocalS algorithm for Pareto front estimation

In (Gonzalez-R et al., 2020), the coded TDTL problem is identified as
similar to typical permutation problems, so the authors propose an
adaptation of an iterative greedy search algorithm (IG) that was used
efficiently to minimise the completion time of tasks in permutation
problems. As our codification to the TmDTL problem is based on the
TDTL bivector codification but from a multi-drone and bi-objective
approach, we can consider it comparable to a bi-objective permutation
flow-shop scheduling problem, too.

Framinan & Leisten (2008) solved multi-objective permutation flow-
shop problems employing the MOIGS algorithm, concluding that it was
highly efficient and outperformed the best heuristics so far. As the
MOIGS algorithm has not been beaten in its field, we consider it a perfect
basis for developing a specific algorithm for our problem. However,
since the MOIGS algorithm was formulated for a pure permutation flow-
shop problem, a deep adaptation to the coding scheme of our targeted
TmDTL problem has been attained, giving rise to a novel algorithm that
we call BO-LocalS (Bi-Objective Local Search). The idea behind this can
be outlined as follows:

• Bunch-SG is launched, creating a set of non-dominated solutions Πk

for every k number of drones. Each one of these solutions
(
π1

k , π2
k ,⋯

)

is subsequently sent to the next step.
• A d integer number of randomly selected nodes is removed from the

vector of nodes of the current solution and stored in vector D, one at a
time, using the function select random nodes. Their index-
correspondent modes are also removed from the modes vector, too.

• The remaining nodes and modes combinations are kept in the solu-
tion: this solution is now partial, as some of its nodes are not
included. The create partial solutions() function generates a set of
partial solutions, which are stored in Πr.

• Each stolen node in D is then taken and inserted in all possible slots of
its correspondent partial solution in Πr using the create solution()
function. In every insertion, all possible visit modes are assigned to
the index-correspondent position in the modes vector and used to
generate new complete solutions, which are provisionally appended
to the set denoted by NWS after being evaluated by using the
calculate OF() function.

• When the whole algorithm iteration ends for the current original
solution, the provisional solution dominance is checked using the
evaluate dominance() function. Then, all non-dominant solutions in
NWS are removed. The remaining solutions are set to the non-
dominated set NDSk and NWS is emptied. Then, the iteration be-
gins again with the next solution.

• This iteration continues until all solutions are processed for every
number of drones in Πk.

• Every time iteration of a k number of drones iteration ends, the
dominance of NDSk is checked again, as the generated solutions by
different partial solutions may have overlapped. When all non-
dominant solutions are removed from NDSk, the remaining set of
solutions is scaled according to the defined PS.

• Pareto scale length using the scale solutions() function. Then, the
iteration for the next number of drones begins.

Algorithm 3 BO-LocalS Pseudocode.
Input:Πk,k,V,PS,SGAmin ,d
Output:NDSk Pareto front solutions
1:NDSk = {}

2:while SGAmin < SGAvalue do: # Check stopping criteria according SGA
3: for 1 to k: # For every number of drones
4: for every complete solution in Πk:
5: NWS = {}

6: select random nodes(complete solution,d)→D
7: create partial solutions(complete solution,D)→ Πr

8: for every partial solution in Πr :

(continued on next page)

P.L. Gonzalez-R et al.

Expert Systems With Applications 243 (2024) 122809

8

(continued)

9: for every slot in partial solution:
10: for every mode in V:
11: create solution(mode, slot,partial solution)→current solution
12: calculate OF(current solution)→OF
13: NWS += (OF,current solution)
14: end for
15: end for
16: end for
17: dominated solutions = check dominance(NWS)
18: NWS = NWS.delete(dominated solutions)
19: NDSk += (NWS)
20: end for
21: end for
22: dominated solutions = check dominance(NDSk)

23: NDSk= NDS k.delete(dominated solutions)
24: scaled solutions = scale solutions(NDSk,PS)
25: SGAvalue = SGA(NDSk)

26:end while
return NDSk

Notice that the above tasks are iteratively executed to the point at which
we consciously decide that it does not deserve further computational
efforts (see Algorithm 3). We have designed a stopping criterion
mechanism, computed by the function SGA(), from Sánchez, Gonzalez,
Andrade, which is based on a domination rate combined with a Kalman
filter in a way similar to (Martí et al., 2016). Specifically, let chi be the
coefficient of hypervolume indicator in use, which we set to the per-
centage evolution of the hypervolume given a contributing point p set at
(0,0). The percentage of improvement in this indicator is computed at
function SGA() to give rise to a value which is compared to a selected
threshold value SGAmin. In this study, we consider SGAmin = 1% to infer
that the chi indicator has reached the desired stability.

We refer the reader to Fig. 4 for an example of a BO-LocalS execution.
Noticeably, while the chi indicator is highly unstable in the first itera-
tions of the BO-LocalS algorithm, it tends to stabilise after a certain
number of iterations. Finally, the chi improvement is confused with
noise and is assumed to be in a nonevolving state.

Importantly, the described mechanism establishes a reliable and
adaptable stopping criterion for the BO-LocalS algorithm without the
need for manual adjustment. Therefore, the BO-LocalS can remain to
refine the Pareto front estimation with subsequent good solutions that
are non-dominated.

4.4. BOA-KS limitations

As a tailored algorithm, the main limitations of BOA-KS are related to
the TmDTL problem description as well as the usual limitations of MOO
frameworks. These can be summarised as follows:

• Related to the problem description nature. As previously justi-
fied, the current algorithm is designed to work only under the
following conditions:
o Number of vehicles: Only one truck and any number of drones.
o Vehicle autonomies: The truck has unlimited autonomy, while

the drones do not.
o Vehicle speeds: Constant for both types of vehicles.
o Additional factors: Wind and acceleration are neglected.
o Synchronisation time: Battery exchange time is neglected.

• Related to the nature of multi-objective optimisation. Re-
searchers and practitioners always count on the presented drawbacks
when developing new multi-objective algorithms and
methodologies:
o chi metric: Using a hypervolume-based metric for MOO has some

pitfalls, such as scalability limitations (solved by Pareto Scale),
difficulty in interpretation, lack of diversity assessment, and
sensitivity to the scale and range of the objectives.

o Pareto Dominance: Pareto dominance relationships may not
capture certain complex relationships between objectives such as
compromises and nonlinear interactions.

o Lack of a single solution: Although this can be adjusted using the
PS parameter, by not counting single solutions, DMs may find it
difficult to select solutions from a Pareto optimal solution set.

o Difficulty in Decision Making: The choice of the most suitable
solution from the optimal Pareto set often involves subjective
preferences and trade-offs, which may be difficult for the DM.
Additional tools and methods to assist decision making can help
make better informed decisions.

o Computational Complexity: The search for multiple Pareto
optimal solutions requires the exploration of a larger solution
space, the evaluation of multiple objectives, and the handling of
compromises. This increased complexity can limit the scale and
complexity of problems that can be effectively solved in a
reasonable time frame.

o Limited Knowledge of the True Pareto Front: In many practical
applications, the true Pareto front is unknown and difficult to
obtain. This makes it difficult to accurately assess the performance
of the algorithm. Approximation techniques or substitute models
are often used to estimate Pareto fronts, which can generate
additional uncertainties.

Additionally, and as a drawback of the flexibility of the algorithm,
the technological parameters such as drone autonomy and vehicle speed
need to be manually selected by the DM to configure the system. Despite
these limitations, BOA-KS remains a valuable approach to tackling the
problem at hand.

5. Computational study

The present study aims to facilitate the efficient operation of a truck
in conjunction with drones, considering both the quality of the service
provided and the environmental impact of the route application in a
combined delivery with drones. For this purpose, we have used the usual
statistical methodology in experimentation, the DOE (Design of Exper-
iments) as well as two post hoc analyses. The study has focused on the
analysis of two cases that differ in size, according to the number of
customers served. The experiments have been set up and executed on an
Intel Core i7 CPU 930 @ 2.80 GHz and 12 GB of RAM computer.

The instances chosen to perform the experimental study are the 20
nodes (small-size instance with one depot and 19 customers) and 100
nodes (medium-size instance with one depot and 99 customers) ob-
tained from the uniform instances 61_n_20 and 91_n_100, respectively,
from Agatz, Bouman, and Schmidt (2018) as representative for the more
stringent scenarios.

Fig. 4. BO-LocalS Execution: Evolution of chi (red) and Kalman filter esti-
mator (grey).

P.L. Gonzalez-R et al.

Expert Systems With Applications 243 (2024) 122809

9

5.1. Design of Experiments (DOE)

The study is focused on assessing, from an applied point of view, the
effect that modifying the number, speed, and autonomy of drones has on
the performance of the system.

Drone autonomy is defined as the product of the mean truck arc time
among all paths in the network multiplied by the drone autonomy factor
(Daf), as in Gonzalez-R et al. (2020). In addition to being instance-
dependent, autonomy levels are a value of the intensity of the drone’s
“multi-trip” feature.

The speed of the drones (Dsf) is defined as proportional to truck
speed, according to the drone speed factor, as done by Gonzalez-R et al.
(2020). Again, this parameter favours the possibility that the drone visits
a larger number of customer nodes before its next rendezvous with the
truck.

The size of the drone fleet (k) defines the number of drones available
for the delivery mission. It is defined by the user. This factor is the main
source of complexity for the algorithm, as it defines the number of de-
livery agents able to simultaneously deliver goods or travel on the truck.

The response variable is chi, as the indicator can measure the quality
of the different Pareto front approximations.

To reach conclusions, each instance is analysed performing a full
factorial DOE. To estimate the nonlinearity of the response, two factors
at three levels and one factor at four levels were used for each experi-
ment (see Table 4).

5.2. Results

The main results obtained in the experiments are shown below. First,
Tables 5 and 6 show the ANOVA statistical analysis, which indicates
which factors (and/or interactions) have a significant impact on the
response variable (chi) and which factors’ influence is not distinguish-
able from the error term. Factors and interactions among factors that are
meaningful are marked with an asterisk (*) and highlighted by the
p-values. According to the methodology and the selected level of sig-
nificance (5 % in our study), those factors (or interactions) with p < 0.05
are considered meaningful. Note that the values of the F-ratio indicate
the factors (or interactions) with greater influence, showing a relative
score of importance in the system performance.

This analysis suggests that all main factors and interactions are
meaningful in the small-scale scenario.

Therefore, in the medium-scale instance, the main factors (Dsf and k)
have a significant impact on the response variable, but most interaction
terms are not statistically significant. Furthermore, Figs. 5 and 6 show
the marginal means plots, which provides a visual representation of how
the levels of each factor influence the response (chi) on average,
allowing for an assessment of non-linearity.

6. Results discussion

According to the ANOVA results (Tables 5 and 6), drone speed (Dsf)

and number of drones (k), as well as their interaction, have a significant
impact on the response (chi) at the specified levels in the instances
studied. However, changes in autonomy levels (Daf) do not have a
meaningful impact on system performance in the medium-scale sce-
nario, nor any of the interactions containing this factor.

This result is much more evident in the marginal means chats in both
instances (Figs. 5 and 6), where the effect on the response is much lower
in the autonomy factor (Daf) than in the rest of the factors, i.e. drone
speed Dsf and number of drones k). Far from being unexpected, this is a

Table 4
DOE configuration table.

Factor Description Levels

Daf Drone autonomy factor {2,3,4}
Dsf Drone speed factor {2,3,4}
k Number of drones {1,2,3,4}

Performance indicator Description

chi Coefficient of Hypervolume Indicator

DOE configuration Order of data collection Random

Design 36-run Full Factorial
Replications 5
Total trials 180
Alpha level 0.05

Table 5
Small-scale instance. ANOVA analysis.

Source SS DF MS F-
ratio

I-
hat

p-value

Daf 2,204E + 07 2 1,102E +
07

14,42 * <0,001

Dsf 1,588E + 09 2 7,940E +
08

1039 * <0,001

k 2,199E + 09 3 7,330E +
08

959 * <0,001

Daf x Dsf 1,859E + 09 4 4,647,000 6,079 * <0,001
Daf x k 3,052E + 09 6 5,087,000 6,655 * <0,001
Dsf x k 6,584E + 09 6 1,304E +

08
143,6 * <0,001

Daf x Dsf x k 4,670E + 09 12 3,892,000 5,092 * <0,001
Within

(error)
1,101E + 08 144 764,300

TOTAL 4,673E þ
09

179

Table 6
Medium-scale instance. ANOVA analysis.

Source SS DF MS F-ratio I-
hat

p-value

Daf 3,298E + 08 2 1,649E +
08

2,512 0,085

Dsf 1,247E + 11 2 6,235E +
10

949,8 * <0,001

k 2,535E + 11 3 8,451E +
10

1287 * <0,001

Daf x Dsf 1,748E + 08 4 4,371E +
07

0,6658 0,617

Daf x k 5,036E + 08 6 8,393E +
07

1,279 0,271

Dsf x k 7,308E + 10 6 1,218E +
10

185,5 * <0,001

Daf x Dsf x k 1,202E + 09 12 1,002E +
08

1,526 0,121

Within
(error)

9,453E + 09 144 6,565E +
07

TOTAL 4,630E þ
11

179

Fig. 5. Small-scale scenario. Marginal means response averages plot.

P.L. Gonzalez-R et al.

Expert Systems With Applications 243 (2024) 122809

10

common effect when the density of nodes (number of nodes for the same
area) is increased.

Therefore, in scenarios with a larger number of nodes, the combi-
natorial possibilities for autonomous actions may become less signifi-
cant compared to scenarios with fewer nodes. This can lead to the
following observation: for the same service area, the importance of the
autonomy factor is greater when dealing with smaller numbers of cus-
tomers or nodes. As the size of the instance grows, the potential
improvement from increasing autonomy becomes less significant.

Above results highlight the sensitivity of the chosen performance
indicator to changes in the factor levels. In smaller instances, even slight
changes in factors can lead to a significant percentage of performance
improvement, whereas in larger instances these changes may have,
comparatively, a minor impact.

Further insights with practical implications for decision making are
connected to the number of customers to serve. In the case of a small
number of customers, increased levels of autonomy may produce greater
performance improvements during the optimisation process. In contrast,
in the case of a large number of customers, the impact of autonomy
variations is expected to be relatively lower.

6.1. Post hoc analysis on the effect of speed and number of drones

According to Figs. 5 and 6, the decreasing effect on (chi) with higher
levels of drone speed (Dsf) and number of drones (k) suggests that
increasing these factors beyond a certain point may not result in a
proportional improvement in system performance. Furthermore, the

latter is also observed when studying the effects graph in Fig. 7.
Comparing levels 3 and 4 for Dsf when k = 3, it can be stated that

Dsf = 3 is technologically more efficient since almost the same result is
obtained while consuming fewer resources.

This observation highlights the practical importance of proper se-
lection of both the speed and number of drones. Since blindly increasing
the speed and/or number of drones does not always lead to the desired
improvements in the system performance, there may be an optimal
balance that achieves the desired performance without an unnecessary
allocation of resources.

6.2. Post hoc analysis on the service time (T) and the total truck time (Tt)

The chosen response variable chi is a quality metric that assesses the
proximity of solutions to the ideal and unattainable point where the
problem is solved with zero resource consumption. Smaller values of chi
indicate better solutions, this is, closer to this ideal point. The Pareto
fronts obtained by the proposed methodology represent trade-offs be-
tween the two objectives under study, i.e., service time and total truck
time. Indeed, these fronts depict the set of non-dominated or estimated
Pareto-optimal solutions, where improving one objective comes at the
expense of the other.

Moreover, understanding the shape of these fronts provides deeper
insights into the trade-offs between conflicting objectives and is essen-
tial for effective decision-making when considering real-world param-
eters like total service time (T) and total truck time (Tt).

Fig. 6. Medium-scale instance. Marginal means response averages.

Fig. 7. Small-scale instance effects plot for Dsf and k factors. Fig. 8. Medium-scale experiment Pareto fronts for k = 1

P.L. Gonzalez-R et al.

Expert Systems With Applications 243 (2024) 122809

11

First, we will analyse Fig. 8, where the graphical representation of
the Pareto fronts of all combinations of the factors Daf and Dsf for the
case of a drone (k = 1) can be found. The following facts jump out:

1. As would be expected after the analysis already performed of the
influence of the factors on chi, rising the level of the Dsf factor rep-
resents a large overall improvement in the Pareto fronts obtained,
which is visually evident in the distinguishable division between the
fronts corresponding to the different levels of this factor.

2. However, far from the ideal Pareto fronts represented in the litera-
ture and having a curvilinear shape, the obtained fronts are relatively
straight and represent a much lower variability in T compared to Tt .
This effect is accentuated in cases where Dsf is higher.

3. The closest point to the far right indicates a high increase in Tt , while
not having a great impact on T.

Point 2 leads to the following result: It is possible to achieve large
reductions in truck time (along with emissions and fuel usage) while
obtaining small increases in total service time, and this trade-off is even
more accentuated as the drone speed becomes higher than the truck
speed. Noticeably, the ability to reduce truck time while maintaining a
relatively small increase in total service time allow companies to
transform their logistics operations towards energetic efficiency.

Point 3, on its side, gives us the following result: greedily pursuing a
total service time reduction increases the risk of having a great negative
impact on total truck usage. Since increasing total truck usage means
increased fuel consumption and maintenance costs, it is a driver of
higher economic and environmental costs within logistics operations.

When analysing Fig. 9, where the same fronts are represented for the
case of four drones (k = 4) the shape of the Pareto fronts is closer to
those normally represented in the literature (knee shape). In this rep-
resentation, as the use of four drones implies a great logistic advantage,
nearly half of the fronts are reduced to a single point, where the results
are T = 119,Tt = 119 time units. This point could be considered a
unique efficient adjustment for the multi-objective problem.

The managerial lesson on this occasion would be as follows: making
use of a higher number of drones leads the Pareto front shape closer to
those in the literature (Choachaicharoenkul & Wattanapongsakorn,
2020) where the search algorithms generate natural ’knee zones’, closer

to the origin. This behaviour becomes even more evident as higher
values for the factors are chosen, that is, as greater availability of re-
sources is considered.

Besides, the Tt value for the points located in the knee zones is
approximately the same. Therefore, the efficient configuration and
management of multiple drone fleets is the main enabler of improve-
ment. In fact, for each combination of factors and while their levels are
increased, this continuous improvement is obtained by the decrease of
the T value, as solutions capable of taking advantage of the system
possibilities of using multiple drones lead to a best-fit synchronisation,
leading to solutions where the truck waiting times are minimised.

To have a better image of how this enormous change is possible in
the shapes and values of the Pareto front, Fig. 10 represents how the
level variation in factor k while maintaining the same combination for
the rest of the factors (Dsf = 2,Daf = 2) influences on the Pareto front
shape.

7. Conclusions and future research

This paper proposes an MOO methodology for supporting DMs on
how to best exploit a general version of the hybrid truck multi-drone
problem referred to as TmDTL: multi-visit flight missions, truck and
drone allowed for serving each customer location and rendezvous at
different points than that from launches.

When addressing the TmDTL problem from the operational point of
view, the focus is evolving from the sole consideration of the quality of
service (makespan) to also adding the environmental impact (truck
time) of implementing the routing. The proposed methodology applied
to the bi-objective has shown to be useful in providing DMs with a
spread front of good solutions among which they should pick the ulti-
mate routing to be implemented.

One of the limiting aspects of Pareto front estimations is the
computational effort required. In our research, we have applied a novel
solution coding which turns the routing problem into a permutation
flow-shop scheme. This transformation has allowed us to use, for the
very first time in the multi-drone research stream, a greedy-based heu-
ristic to drastically improve the quality of the solutions. Moreover,
inspired by the state of the art of previous MOO research, we propose the
so-called Bi-Objective Algorithm with Kalman Stop (BOA-KS) consisting
of a global optimisation scheme using an SA algorithm, along with an
innovative use of a Kalman filter indicator as a stopping criterion (self-
triggered mechanism) to get an evolutionary path to transit from the

Fig. 9. Medium-scale instance Pareto fronts for k = 4 Fig. 10. Medium-scale instance Pareto fronts for Daf = 2, Dsf = 2

P.L. Gonzalez-R et al.

Expert Systems With Applications 243 (2024) 122809

12

good initial solutions to the generation of estimated Pareto fronts for the
problem at hand. Furthermore, the number of solutions on the Pareto
front can be adjusted by the DMs as an input parameter.

The proposed methodology has allowed to perform a DOE in two
instances of different sizes, to assess the impact of different operations
factors such as values of drone autonomy, as well as different values of
drone speed and fleet size, using the chi indicator as response variable.

The study shows that the marginal profit from adding additional
resources (i.e., drone fleet size, drone autonomy, and flight speed) is
scale decreasing, in all the cases. Regarding drone autonomy (Daf) the
smaller the number of customers to be served in the same area (i.e., the
higher density of customers), the more significant this factor becomes.
Therefore, efficient optimisation in this type of environment is decisive.

As expected, an increase in fleet size (k) leads to a general
improvement in performance. However, according to the experiments, it
usually results in a greater reduction in service time (makespan) rather
than in truck time. An important aspect to be considered by the DM is
drone speed (Dsf), since the increase in this factor results in a greater
reduction in environmental impact (truck time), rather than in service
time (makespan). Furthermore, a deep search for a reduction in truck
time might ultimately lead to a negative impact on total service time.

The present work was conceived with the idea of covering a need for
decision making in complex last-mile MOO problems. Once we have
given rise to this first level of MOO route planning, our future work aims
at incorporating operational features like uncertainty, that is, uncertain
truck and/or drone travel times or balanced use of the batteries in the
system. Robust planning is still an open issue, therefore evolving our
methodology for providing robust delivery services is a natural future
research line.

CRediT authorship contribution statement

Pedro L. Gonzalez-R: Conceptualization, Formal analysis, Visuali-
zation, Supervision. David Sanchez-Wells: Methodology, Software,
Writing – original draft. José L. Andrade-Pineda: Investigation, Re-
sources, Data curation, Writing – review & editing.

Declaration of competing interest

The authors declare that they have no known competing financial
interests or personal relationships that could have appeared to influence
the work reported in this paper.

Data availability

Data will be made available on request.

Funding

This work was supported by the University of Seville [Own Plan
Predoctoral Training Programme, reference VII PPIT-2022-II.2] as part
of the DESLOGA project, along with funding from the OMICRON project
(European Union’s Horizon 2020 research and innovation programme
under grant agreement No 955269).

References

Abu Doush, I., El-Abd, M., Hammouri, A. I., & Bataineh, M. Q. (2021). The effect of
different stopping criteria on multi-objective optimization algorithms. In Neural
Computing and Applications, 1London: Springer. https://doi.org/10.1007/s00521-
021-05805-1.

Agatz, N., Bouman, P., & Schmidt, M. (2018). Optimization approaches for the traveling
salesman problem with drone. Transportation Science, 52(4), 965–981. https://doi.
org/10.1287/trsc.2017.0791

Almuhaideb, S., Alhussan, T., Alamri, S., Altwaijry, Y., Aljarbou, L., & Alrayes, H. (2021).
Optimization of truck-drone parcel delivery using metaheuristics. Applied Sciences
(Switzerland), 11(14). https://doi.org/10.3390/app11146443

Audet, C., Bigeon, J., Cartier, D., Le Digabel, S., & Salomon, L. (2021). Performance
indicators in multiobjective optimization. European journal of operational research,
292(2), 397–422. https://doi.org/10.1016/j.ejor.2020.11.016

Beume, N. (2009). S-Metric Calculation by Considering Dominated Hypervolume as
Klee’s Measure Problem. Evolutionary Computation, 17(4), 477–492. https://doi.org/
10.1162/evco.2009.17.4.17402

Choachaicharoenkul, S., & Wattanapongsakorn, N. (2020). Post Pareto-optimal ranking
algorithm for multi-objective optimization using extended angle dominance. Expert
Systems with Applications, 158. https://doi.org/10.1016/j.eswa.2020.113446

Coelho, B. N., Coelho, V. N., Coelho, I. M., Ochi, L. S., Haghnazar, K. R., Zuidema, D.,
Lima, M. S. F., & da Costa, A. R. (2017). A multi-objective green UAV routing
problem. Computers and Operations Research, 88, 306–315. https://doi.org/10.1016/
j.cor.2017.04.011

Coelho, V. N., Coelho, I. M., Coelho, B. N., Cohen, M. W., Reis, A. J. R., Silva, S. M., …
Guimarães, F. G. (2016). Multi-objective energy storage power dispatching using
plug-in vehicles in a smart-microgrid. Renewable Energy, 89, 730–742. https://doi.
org/10.1016/j.renene.2015.11.084

Dasdemir, E., Köksalan, M., & Tezcaner Öztürk, D. (2020). A flexible reference point-
based multi-objective evolutionary algorithm: An application to the UAV route
planning problem. Computers and Operations Research, 114. https://doi.org/
10.1016/j.cor.2019.104811

de Freitas, J. C., & Penna, P. H. V. (2020). A variable neighborhood search for flying
sidekick traveling salesman problem. International Transactions in Operational
Research, 27(1), 267–290. https://doi.org/10.1111/itor.12671

Dell’Amico, M., Montemanni, R., & Novellani, S. (2022). Exact models for the flying
sidekick traveling salesman problem. International Transactions in Operational
Research, 29(3), 1360–1393. https://doi.org/10.1111/itor.13030

Demir, I., Ergin, F. C., & Kiraz, B. (2019). A New Model for the Multi-Objective Multiple
Allocation Hub Network Design and Routing Problem. IEEE Access, 7, 90678–90689.
https://doi.org/10.1109/ACCESS.2019.2927418

di Puglia Pugliese, L., & Guerriero, F. (2017). Last-Mile Deliveries by Using Drones and
Classical Vehicles. In A. Sforza, & C. Sterle (Eds.), Optimization and Decision Science:
Methodologies and Applications (Vol. 217, pp. 557–565). Springer International
Publishing. https://doi.org/10.1007/978-3-319-67308-0.

Ferrandez, S. M., Harbison, T., Weber, T., Sturges, R., & Rich, R. (2016). Optimization of
a truck-drone in tandem delivery network using k-means and genetic algorithm.
Journal of Industrial Engineering and Management, 9(2), 374–388. https://doi.org/
10.3926/jiem.1929

Framinan, J. M., & Leisten, R. (2008). A multi-objective iterated greedy search for
flowshop scheduling with makespan and flowtime criteria. OR Spectrum, 30(4),
787–804. https://doi.org/10.1007/s00291-007-0098-z

Gonzalez-R, P. L., Canca, D., Andrade-Pineda, J. L., Calle, M., & Leon-Blanco, J. M.
(2020). Truck-drone team logistics: A heuristic approach to multi-drop route
planning. Transportation Research Part C: Emerging Technologies, 114, 657–680.
https://doi.org/10.1016/j.trc.2020.02.030

Gu, R., Poon, M., Luo, Z., Liu, Y., & Liu, Z. (2022). A hierarchical solution evaluation
method and a hybrid algorithm for the vehicle routing problem with drones and
multiple visits. Transportation Research Part C: Emerging Technologies, 141(March).
https://doi.org/10.1016/j.trc.2022.103733

Guerriero, F., Surace, R., Loscrí, V., & Natalizio, E. (2014). A multi-objective approach
for unmanned aerial vehicle routing problem with soft time windows constraints.
Applied Mathematical Modelling, 38(3), 839–852. https://doi.org/10.1016/j.
apm.2013.07.002

Ha, Q. M., Deville, Y., Pham, Q. D., & Hà, M. H. (2018). On the min-cost Traveling
Salesman Problem with Drone. Transportation Research Part C: Emerging Technologies,
86, 597–621. https://doi.org/10.1016/j.trc.2017.11.015

Karak, A., & Abdelghany, K. (2019). The hybrid vehicle-drone routing problem for pick-
up and delivery services. Transportation Research Part C, 102(September 2018),
427–449. https://doi.org/10.1016/j.trc.2019.03.021

Leon-Blanco, J. M., Gonzalez-R, P. L., Andrade-Pineda, J. L., Canca, D., & Calle, M.
(2022). A multi-agent approach to the truck multi-drone routing problem. Expert
Systems with Applications, 195. https://doi.org/10.1016/j.eswa.2022.116604

Li, H., Chen, J., Wang, F., & Zhao, Y. (2022). Truck and drone routing problem with
synchronization on arcs. Naval Research Logistics, May 2021, 1–18. 10.1002/
nav.22053.

Lin, C. (2020, March 17). Delivery Technology Is Keeping Chinese Cities Afloat Through
Coronavirus. Harvard Business Review. https://hbr.org/2020/03/delivery-
technology-is-keeping-chinese-cities-afloat-through-coronavirus.

Luo, Z., Poon, M., Zhang, Z., Liu, Z., & Lim, A. (2021). The Multi-visit Traveling Salesman
Problem with Multi-Drones. Transportation Research Part C: Emerging Technologies,
128(April), Article 103172. https://doi.org/10.1016/j.trc.2021.103172

Marinelli, M., Caggiani, L., Ottomanelli, M., & Dell’Orco, M. (2018). En route truck-
drone parcel delivery for optimal vehicle routing strategies. IET Intelligent Transport
Systems, 12(4), 253–261. https://doi.org/10.1049/iet-its.2017.0227

Martí, L., García, J., Berlanga, A., & Molina, J. M. (2016). A stopping criterion for multi-
objective optimization evolutionary algorithms. Information Sciences, 367–368
(November 2017), 700–718. 10.1016/j.ins.2016.07.025.

Masone, A., Poikonen, S., & Golden, B. L. (2022). The multivisit drone routing problem
with edge launches: An iterative approach with discrete and continuous
improvements. Networks, December 2021, 1–23. 10.1002/net.22087.

Moshref-Javadi, M., Hemmati, A., & Winkenbach, M. (2020). A truck and drones model
for last-mile delivery: A mathematical model and heuristic approach. Applied
Mathematical Modelling, 80. https://doi.org/10.1016/j.apm.2019.11.020

Moshref-Javadi, M., Van Cauwenberghe, K. P., McCunney, B. A., & Hemmati, A. (2023).
Enabling same-day delivery using a drone resupply model with transshipment

P.L. Gonzalez-R et al.

https://doi.org/10.1007/s00521-021-05805-1
https://doi.org/10.1007/s00521-021-05805-1
https://doi.org/10.1287/trsc.2017.0791
https://doi.org/10.1287/trsc.2017.0791
https://doi.org/10.3390/app11146443
https://doi.org/10.1016/j.ejor.2020.11.016
https://doi.org/10.1162/evco.2009.17.4.17402
https://doi.org/10.1162/evco.2009.17.4.17402
https://doi.org/10.1016/j.eswa.2020.113446
https://doi.org/10.1016/j.cor.2017.04.011
https://doi.org/10.1016/j.cor.2017.04.011
https://doi.org/10.1016/j.renene.2015.11.084
https://doi.org/10.1016/j.renene.2015.11.084
https://doi.org/10.1016/j.cor.2019.104811
https://doi.org/10.1016/j.cor.2019.104811
https://doi.org/10.1111/itor.12671
https://doi.org/10.1111/itor.13030
https://doi.org/10.1109/ACCESS.2019.2927418
https://doi.org/10.1007/978-3-319-67308-0
https://doi.org/10.3926/jiem.1929
https://doi.org/10.3926/jiem.1929
https://doi.org/10.1007/s00291-007-0098-z
https://doi.org/10.1016/j.trc.2020.02.030
https://doi.org/10.1016/j.trc.2022.103733
https://doi.org/10.1016/j.apm.2013.07.002
https://doi.org/10.1016/j.apm.2013.07.002
https://doi.org/10.1016/j.trc.2017.11.015
https://doi.org/10.1016/j.trc.2019.03.021
https://doi.org/10.1016/j.eswa.2022.116604
https://doi.org/10.1016/j.trc.2021.103172
https://doi.org/10.1049/iet-its.2017.0227
https://doi.org/10.1016/j.apm.2019.11.020

Expert Systems With Applications 243 (2024) 122809

13

points. Computational Management Science, 20(1), 22. https://doi.org/10.1007/
s10287-023-00453-3

Murray, C. C., & Chu, A. G. (2015). The flying sidekick traveling salesman problem:
Optimization of drone-assisted parcel delivery. Transportation Research Part C:
Emerging Technologies, 54, 86–109. https://doi.org/10.1016/J.TRC.2015.03.005

Omagari, H., & Higashino, S.-I. (2018). Provisional-Ideal-Point-Based Multi-objective
Optimization Method for Drone Delivery Problem. International Journal of
Aeronautical and Space Sciences, 19(1), 262–277. https://doi.org/10.1007/s42405-
018-0021-7

Petchrompo, S., Coit, D. W., Brintrup, A., Wannakrairot, A., & Parlikad, A. K. (2022). A
review of Pareto pruning methods for multi-objective optimization. Computers and
Industrial Engineering, 167(December 2021), 108022. 10.1016/j.cie.2022.108022.

Poikonen, S., & Golden, B. (2020). Multi-visit drone routing problem. Computers &
Operations Research, 113, Article 104802. https://doi.org/10.1016/j.
cor.2019.104802

Raj, R., & Murray, C. (2020). The multiple flying sidekicks traveling salesman problem
with variable drone speeds. Transportation Research Part C: Emerging Technologies,
120, Article 102813. https://doi.org/10.1016/j.trc.2020.102813

Ramirez Atencia, C., del Ser, J., & Camacho, D. (2019). Weighted strategies to guide a
multi-objective evolutionary algorithm for multi-UAV mission planning. Swarm and
Evolutionary Computation, 44(June 2018), 480–495. 10.1016/j.
swevo.2018.06.005.

Ramirez-Atencia, C., Bello-Orgaz, G., & R-Moreno, M. D., & Camacho, D.. (2017). Solving
complex multi-UAV mission planning problems using multi-objective genetic
algorithms. Soft Computing, 21(17), 4883–4900. https://doi.org/10.1007/s00500-
016-2376-7

Rojas Viloria, D., Solano-Charris, E. L., Muñoz-Villamizar, A., & Montoya-Torres, J. R.
(2021). Unmanned aerial vehicles/drones in vehicle routing problems: A literature
review. International Transactions in Operational Research, 28(4), 1626–1657. https://
doi.org/10.1111/itor.12783

Schermer, D., Moeini, M., & Wendt, O. (2019). A hybrid VNS/Tabu search algorithm for
solving the vehicle routing problem with drones and en route operations. Computers
and Operations Research, 109, 134–158. https://doi.org/10.1016/j.cor.2019.04.021

Shavarani, S. M., Nejad, M. G., Rismanchian, F., & Izbirak, G. (2018). Application of
hierarchical facility location problem for optimization of a drone delivery system: A
case study of Amazon prime air in the city of San Francisco. The International Journal
of Advanced Manufacturing Technology, 95(9–12), 3141–3153. https://doi.org/
10.1007/s00170-017-1363-1

Tavana, M., Khalili-Damghani, K., Santos-Arteaga, F. J., & Zandi, M. H. (2017). Drone
shipping versus truck delivery in a cross-docking system with multiple fleets and
products. Expert Systems with Applications, 72, 93–107. https://doi.org/10.1016/j.
eswa.2016.12.014

Wang, K., Yuan, B., Zhao, M., & Lu, Y. (2020). Cooperative route planning for the drone
and truck in delivery services: A bi-objective optimisation approach. Journal of the
Operational Research Society, 71(10), 1657–1674. https://doi.org/10.1080/
01605682.2019.1621671

While, L., Bradstreet, L., & Barone, L. (2012). A fast way of calculating exact
hypervolumes. IEEE Transactions on Evolutionary Computation, 16(1), 86–95. https://
doi.org/10.1109/TEVC.2010.2077298

Yan, M., Yuan, H., Xu, J., Yu, Y., & Jin, L. (2021). Task allocation and route planning of
multiple UAVs in a marine environment based on an improved particle swarm
optimization algorithm. Eurasip Journal on Advances in Signal Processing, 2021(1).
https://doi.org/10.1186/s13634-021-00804-9

Zajac, S., & Huber, S. (2021). Objectives and methods in multi-objective routing
problems: A survey and classification scheme. European Journal of Operational
Research, 290(1), 1–25. https://doi.org/10.1016/j.ejor.2020.07.005

Zhou, T., Zhang, J., Shi, J., Liu, Z., & Huang, J. (2018). Multidepot UAV routing problem
with weapon configuration and time window. Journal of Advanced Transportation,
2018. https://doi.org/10.1155/2018/7318207

P.L. Gonzalez-R et al.

https://doi.org/10.1007/s10287-023-00453-3
https://doi.org/10.1007/s10287-023-00453-3
https://doi.org/10.1016/J.TRC.2015.03.005
https://doi.org/10.1007/s42405-018-0021-7
https://doi.org/10.1007/s42405-018-0021-7
https://doi.org/10.1016/j.cor.2019.104802
https://doi.org/10.1016/j.cor.2019.104802
https://doi.org/10.1016/j.trc.2020.102813
https://doi.org/10.1007/s00500-016-2376-7
https://doi.org/10.1007/s00500-016-2376-7
https://doi.org/10.1111/itor.12783
https://doi.org/10.1111/itor.12783
https://doi.org/10.1016/j.cor.2019.04.021
https://doi.org/10.1007/s00170-017-1363-1
https://doi.org/10.1007/s00170-017-1363-1
https://doi.org/10.1016/j.eswa.2016.12.014
https://doi.org/10.1016/j.eswa.2016.12.014
https://doi.org/10.1080/01605682.2019.1621671
https://doi.org/10.1080/01605682.2019.1621671
https://doi.org/10.1109/TEVC.2010.2077298
https://doi.org/10.1109/TEVC.2010.2077298
https://doi.org/10.1186/s13634-021-00804-9
https://doi.org/10.1016/j.ejor.2020.07.005
https://doi.org/10.1155/2018/7318207

	A bi-criteria approach to the truck-multidrone routing problem
	1 Background
	2 Problem description and solution coding
	2.1 Solution coding

	3 Related work
	3.1 Multi-objective optimisation in drone routing problems
	3.2 The performance indicator guiding the shortlist of Pareto solutions
	3.3 Concluding remarks

	4 The BOA-KS methodology
	4.1 The LocalSIS algorithm to generate initial solutions
	4.2 The Bunch-SG algorithm for creating a set of initial solutions
	4.3 The BO-LocalS algorithm for Pareto front estimation
	4.4 BOA-KS limitations

	5 Computational study
	5.1 Design of Experiments (DOE)
	5.2 Results

	6 Results discussion
	6.1 Post hoc analysis on the effect of speed and number of drones
	6.2 Post hoc analysis on the service time (T) and the total truck time (Tt)

	7 Conclusions and future research
	CRediT authorship contribution statement
	Declaration of competing interest
	Data availability
	Funding
	References

