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Abstract

The objective of this paper is to study a stochastic epidemiological model with infinite Lévy measure and relapse. Using stochastic
tools, we prove the existence and uniqueness of global positive solution. Moreover, we also show the extinction and persistence in
mean of the disease by the use of Kunita’s inequality instead of Burkholder-Davis-Gundy inequality for continuous diffusions. The
numerical behaviour of the considered model is analyzed to understand the impact of environmental transmission on the spread of
human and zonotic tuberculosis in Morocco.
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1. Introduction

Before, epidemiology was only interested in infectious and epidemic diseases, with the appearance of studies
on noncommunicable diseases, epidemiology is considered as a scientific discipline that studies the frequency and
distribution of diseases in time and space, as will as the role of the factors that determine this frequency and this
distribution within human population. Mathematical modelling is one of the most important approach in epidemiol-
ogy. It has been used to analyze the spread of diseases [1, 2, 3, 4, 5, 6, 7] with the objective of limiting the extent
of infection by some form of control like vaccination and media coverage. Moreover, most epidemic models for the
transmission of infectious diseases based on the classical model given by Kermack and McKendrick [8]. For some
diseases, such as tuberculosis incomplete treatment can lead to relapse, the recovered individual become infectious
again [9, 10, 11, 12]. The resulting model called SIRI was formulated by Tudor [13], which consist of a system with
three compartments: susceptible, infected and recovered, labelled by S,I and R. The SIRI epidemiological model is
suitable for some recurrent diseases feature of animal and human, such as bovine tuberculosis and herpes [14, 15].
The World Organisation for Animal Health (OIE) states the bovine tuberculosis (BTB) is an endemic zoonosis caused
by Mycobacterium bovis (M. bovis), which infects many domestic animals and is transmitted to humans through
consumption of raw milk or meat from infected animals. In Morocco, bovine tuberculosis remains a major concern
impacting both animal and human health. The last national survey based on a skin tuberculin test was conducted in
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2004 and showed an individual prevalence of 18% and a herd prevalence of 33% [16]. A cross-sectional tuberculin
study conducted in the Sidi Kacem area in Morocco in 2012 showed an individual prevalence of 20.4% and a herd
prevalence of 57.7% [16]. In a review published in 2013, the proportion of zoonotic human tuberculosis (TB) among
all TB cases was estimated at 2.8% in Africa [16]. The World Health Organization states a worldwide median preva-
lence of 3.1% of M. bovis among human TB patients [16]. One previous study found that 17.8% of drug-resistant
TB among humans in Morocco was due to M. bovis. The main strategy to control (BTB) in Morocco is based on a
test and slaughter scheme. In 1997, Moreira and Wang [17], studied an SIRI model with general saturated nonlinear
incidence function. Blower [14] developed a compartmental model for genital herpes, assuming standard incidence
for the diseases transmission and constant recruitment rate. In Driessche and Zou [18] considered a more general SIRI
model and threshold property were obtained. See also Van den Driessche et al.[19] for an analysis of a related SEIRI
model. For other works see [12, 20, 21] and the references therein.

Motivated by the works of Privault and Wang[22] and Caraballo et al.[10], in this paper, a deterministic SIRI
disease can be modeled as follows:

dS (t) = [Λ − βS (t)I(t) − µS (t)]dt,
dI(t) = [βS (t)I(t) − (µ + γ)I(t) + δR(t)]dt,
dR(t) = [γI(t) − (µ + δ)R(t)]dt,

(1.1)

where, Λ, β, µ, δ, γ are all positive constants, S (t) is the number of the individuals susceptible to the disease, I(t) are
the infected members and R(t) represents who have recovered from the infection at time t ∈ R+. In this model,
the parameters have the following features: Λ is the total number of the susceptible, β is the disease transmission co-
efficient, µ represents the natural death rate, γ represents the rate of recovery from infection and δ is the rate of relapse.

The basic reproduction number [23, 24] for this system is given by

R0 =
Λβ(µ + δ)

µ2(µ + γ + δ)
.

It is defined as the average number of secondary infections produced by an infected case in a population where some
individuals are no longer susceptible to infection. The deterministic model (1.1) has been discussed by Vargas-De-
León in [25]. He proved that the equilibrium of (1.1) in the deterministic case has been characterized by R0.

If R0 ≤ 1, the system (1.1) admits a disease free equilibrium

E0 =

(
Λ

µ
, 0, 0

)
,

and it is globally asymptotically stable, this means that the endemic disease will not appear.

If R0 > 1, E0 becomes unstable, and there exists a globally asymptotically stable endemic equilibrium

E∗ = (S ∗, I∗,R∗) =

(
Λ

µR0
,
µ

β
(R0 − 1),

µγ

β(µ + δ)
(R0 − 1)

)
,

which means that the disease will be persistent. Considering stochasticity in an SIRI model is important because it
allows for the incorporation of random fluctuations in the disease transmission process. This is particularly relevant
when dealing with real-world epidemic situations, where factors such as human behavior, environmental conditions,
and chance events can lead to unpredictable variations in the spread of the disease. Stochastic SIRI models enable
a more realistic representation of the inherent uncertainty in disease dynamics, which can impact the effectiveness
of control measures and the persistence of the epidemic. By accounting for stochastic effects, these models provide
valuable insights into the potential outcomes of an epidemic and the associated risk factors, aiding in the development
of more robust public health strategies. That is way we must use the stochastic differential equation with Lévy jump
due to the heavy-tailed nature of Lévy distributions, which allows for the representation of rare but impactful events
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in the disease transmission process. Unlike other types of jumps, Lévy jumps can capture extreme events that may
significantly influence the dynamics of an epidemic, making them more suitable for modeling rare but influential
phenomena such as super-spreading events or large-scale behavioral changes. This is particularly relevant in the
context of infectious disease dynamics, where rare events can have a disproportionate impact on the spread and
persistence of the disease. The heavy-tailed nature of Lévy distributions enables the SIRI model to account for these
rare events, providing a more comprehensive understanding of the potential outcomes of an epidemic. Therefore,
sudden changes in the form of jumps can impose a more realistic behavior for dynamical processes and the control of
the disease. Next, we let the Lévy noise act on the transmission rate as follows :

β→ β + σḂ(t) + J̇(t),

where, B(t) is a standard Brownian motion defined on a complete filtered probability space (Ω,F , (Ft)t≥0,P) such
that (Ft)t≥0 satisfying the usual conditions. X(t−) is the left limit of X(t), σ > 0 is the intensity of Brownian motion
which is independent of the Lévy jumps J(t) =

∫ t
0

∫
R∗ C(z)Ñ(dt, dz), where Ñ(dt, dz) = N(dt, dz) − λ(dz)dt is the

compensator of a Poisson counting process with characteristic measure λ on R∗ = R\{0}, C : R∗×Ω→ R, is bounded
and continuous with respect to λ and is B(R∗) ⊗ Ft-measurable where B(R∗) is a σ-algebra with respect to the set
R∗. In this paper, we work in the general setting of infinite Lévy measures λ on R∗. All processes are defined on
(Ω,F , (Ft)t≥0,P). Under these hypotheses, we propose the following system :


dS (t) = [Λ − βS (t)I(t) − µS (t)]dt − σS (t)I(t)dB(t) −

∫
R∗

S (t−)I(t−)C(z)Ñ(dt, dz),

dI(t) = [βS (t)I(t) − (µ + γ)I(t) + δR(t)]dt + σS (t)I(t)dB(t) +

∫
R∗

S (t−)I(t−)C(z)Ñ(dt, dz),

dR(t) = [γI(t) − (µ + δ)R(t)]dt.

(1.2)

This paper is organized as follows. In the next section, we site some mathematical tools which we use later. In section
3, we proved existence and uniqueness of a global positive solution. In section 4 and 5 we presented the sufficient
conditions to the extinction and persistence in mean. In the last section, we present some numerical results to support
our theoretical ones.

2. Useful mathematical tools

Now, we will define Kunita’s inequality [26], this replaces the Burkholder-Davis-Gundy inequality for continuous
martingales [27].

E
[

sup
0≤s≤t
|Ms|

p
]
≤ Cp E

[
〈M,M〉p/2t

]
, p > 1, (2.1)

where 〈M,M〉t is the quadratic variation of the continuous martingale (Mt)t∈R+
.

2.1. Kunita’s inequality
Theorem 2.1. Let Kt be a jump stochastic integral process defined by

Kt :=
∫ t

0

∫
R3\{0}

gs(z)(N(ds, dz) − λ(dz)ds), t ∈ R+,

of the predictable integrand (gs(y))(s,y)∈R+×R. For t ∈ R+ and p ≥ 2, we have

E
[

sup
0≤s≤t
|Ks|

p
]
≤ Cp

E
[∫ t

0

∫
R3\{0}

|gs(z)|pλ(dz)ds
]

+ E
(∫ t

0

∫
R3\{0}

|gs(z)|2λ(dz)ds
)p/2

 , (2.2)

where, Cp := 22p−2(
√

elog2 p/p + 8plog2 p).

Proof. The proof is founded in [26] (Theorem 4.4.23).
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2.2. Itô’s formula for Lévy-type stochastic integrals
Let b : [0,T ] ×Ω→ Rd and σ : [0,T ] ×Ω→ Rd×d be Ft-adapted processes such that

E
[∫ T

0

(
|b(s)|2 + |σ(s)|2

)
ds

]
< ∞,

and H,K : [0,T ] × (Rd \ {0}) ×Ω→ Rd predictable processes such that∫ T

0

∫
Rd\{0}

|K(s, z)|N(ds, dz) < ∞ and
∫ T

0

∫
Rd\{0}

|H(s, z)|2Ñ(ds, dz) < ∞, P-a.s.

We consider the process for 0 ≤ t ≤ T

X(t) = X(0) +

∫ t

0
b(s) ds +

∫ t

0
σ(s) dBs +

∫ t

0

∫
|z|≥1

K(s, z)N(ds, dz) +

∫ t

0

∫
|z|<1

H(s, z)Ñ(ds, dz).

Theorem 2.2. Let X = (Xt)t≥0 be a Lévy stochastic integral, then for any function f ∈ C2(Rd), with probability one
we have

f (Xt) − f (X0) =

∫ t

0
〈∂x f (Xs−), b(s)〉 ds +

∫ t

0
〈∂x f (Xs−), σ(s) dBs〉

+
1
2

∫ t

0
Tr(∂2

xx f (Xs−)σ(s)σ(s)∗) ds

+

∫ t

0

∫
|z|≥1

[
f (Xs− + K(s, z)) − f (Xs−)

]
N(ds, dz)

+

∫ t

0

∫
|z|<1

[
f (Xs− + H(s, z)) − f (Xs−)

]
Ñ(ds, dz))

+

∫ t

0

∫
|z|<1

[
f (Xs− + H(s, z)) − f (Xs−) − 〈H(s, z), ∂x f (Xs−)〉

]
ds λ(dz).

Proof. The proof is stated in [26] (Theorem 4.4.7).

2.3. Strong law of large numbers
Theorem 2.3. Let M = (Mt)t≥0 be a real-valued continuous local martingale vanishing at t = 0 ( Theorem1 of [28]).
Then,

lim
t→∞
〈M,M〉t = ∞ a.s. ⇒ lim

t→∞

Mt

〈M,M〉t
= 0, a.s.

and

lim sup
t→∞

〈M,M〉t
t

< ∞ a.s. ⇒ lim
t→∞

Mt

t
= 0, a.s.

More generally, if A = (At)t≥0 is a continuous adapted increasing process such that

lim
t→∞

At = ∞ and
∫ ∞

0

d〈M,M〉t
(1 + At)2 < ∞, a.s.

then,

lim
t→∞

Mt

At
= 0 a.s.

Proof. The proof of Theorem 2.3 is founded in [28] (Theorem 1).
4
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3. Global positive solution

Let f be an integrable function on [0, t], we denote

〈 f 〉t =
1
t

∫ t

0
f (s)ds, 〈 f 〉∗ = lim sup

t→∞

1
t

∫ t

0
f (s)ds, 〈 f 〉∗ = lim inf

t→∞

1
t

∫ t

0
f (s)ds, t > 0.

We assume that the jump coefficient C(z) in (1.2) satisfy the following assumption :

Assumption (H1) : C(z) is bounded, 1 + C(z) > 0, ‖C‖∞ <
µ
Λ

and
∫
R∗ C2(z)λ(dz) < ∞.

The next theorem ensures the existence and uniqueness of a global positive solution. Following the same steps of [29]
and [30], we can obtain the hereunder results.

Theorem 3.1. Under the assumption (H1), for any given initial value (S (0), I(0),R(0)) ∈ R3
+, the system (1.2) admits

a unique positive solution (S (t), I(t),R(t)), t ∈ R+ for all t ≥ 0 a.s.

Proof. By the assumption (H1), the drift and the diffusion are locally Lipschitz, then for any given initial value
(S (0), I(0),R(0)) ∈ R3

+, there is a unique local solution (S (t), I(t),R(t)) for t ∈ [0, τe), where τe is the explosion time.
To show that this solution is global, we need to show that τe = ∞ a.s. At first, we prove that (S (t), I(t),R(t)) do not
explode to infinity in a finite time. Let k0 > 0 be sufficiently large so that S (0), I(0),R(0) ∈ [ 1

k0
, k0]. For each integer

k ≥ k0, we define the stopping time:

τk = inf
{

t ∈ [0, τe) : S (t) <
(

1
k
, k

)
or I(t) <

(
1
k
, k

)
or R(t) <

(
1
k
, k

)}
,

where τk is increasing as k ↑ ∞. Set τ∞ = lim
k→∞

τk, whence, τ∞ ≤ τe a.s. If we can show that τ∞ = ∞ is true, then

τe = ∞ and (S (t), I(t),R(t)) ∈ R3
+ a.s. By absurd, assume that τ∞ < ∞, then there exist two constants T > 0 and

0 < ε < 1 such that P(τ∞ ≤ T ) ≥ ε. Thus there is an integer k1 ≥ k0 such that

P(τk ≤ T ) ≥ ε, ∀k ≥ k1. (3.1)

Consider the C2-function V : R3
+ → R+ as follows :

V(S , I,R) =

(
S − a − a log

S
a

)
+ (I − 1 − log I) + (R − 1 − log R), (3.2)

where a is a positive constant to be determined bellow and u − 1 − log u ≥ 0, for u ≥ 0. Applying the Itô formula (see
theorem 2.2) to the function V(S , I,R), denote X(t) = (S (t), I(t),R(t)), we obtain

dV(X(t)) = LV(X(t))dt +
∂V
∂S (t)

(−σS (t)I(t))dB(t) +
∂V
∂I(t)

σS (t)I(t)dB(t)

+

∫
R∗

[V(S (t−) − S (t−)I(t−)C(z); I(t−) + S (t−)I(t−)C(z))

−V(S (t−), I(t−))]Ñ(dt, dz).

It follows that,
dV(X(t)) = LV(X(t))dt + σ [I(t)(S (t) − a) + S (t)(I(t) − 1)] dB(t)

−

∫
R∗

[ln(1 + S (t−)C(z)) + a ln(1 − I(t−)C(z))]Ñ(dt, dz).
(3.3)

5
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Now, we calculate the infinitesimal operator LV

LV(X(t)) =
∂V
∂X

f (X(t)) +
1
2

tr
(
g>(X(t))

∂2V
∂X2 g(X(t))

)

+

∫
R∗

[V(S (t) − S (t)I(t)C(z); I(t) + S (t)I(t)C(z))

− V(S (t), I(t)) −
{
∂V
∂S (t)

(−S (t)I(t)C(z)) +
∂V
∂I(t)

S (t)I(t)C(z)
}]
λ(dz),

where,

f (X(t)) =


Λ − βS (t)I(t) − µS (t)

(βS (t) − (µ + γ))I(t) + δR(t)

γI(t) − (µ + δ)R(t)

 and g(X(t)) =


−σS (t)I(t)

σS (t)I(t)

0

 .
Then, we obtain

LV(X(t)) = (Λ + aµ + 2µ + γ + δ) − (µ + β)S (t) + (aβ − µ)I(t)

−
aΛ

S (t)
− δ

R(t)
I(t)
− γ

I(t)
R(t)

+
1
2

aσ2I2(t) +
1
2
σ2S 2(t)

+aM1(t) + M2(t),

where,

M1(t) = −

∫
R∗

[ln(1 − I(t)C(z)) + I(t)C(z)]λ(dz),

and

M2(t) = −

∫
R∗

[ln(1 + S (t)C(z)) − S (t)C(z)]λ(dz).

Choosing a =
µ
β
; taking into account that x − ln(1 + x) ≥ 0, ∀x > −1, one can obtain that

LV(X(t)) ≤ Λ + aµ + 2µ + γ + δ +
1
2

aσ2K2 +
1
2
σ2K2 + aM1(t) + M2(t).

In addition, by Taylor-Lagrange formula, we obtain

ln(1 − I(t)C(z)) = −I(t)C(z) −
I2(t)C2(z)

2(1 − θI(t)C(z))2 ,

where, θ ∈ (0, 1) is an arbitrary number. Then, by assumption (H1)

− [ln(1 − I(t)C(z)) + I(t)C(z)] =
I2(t)C2(z)

2(1 − θI(t)C(z))2 ≤
1

2(1 − Λ
µ
‖C‖∞)2

,

Similarly, we have

− [ln(1 + S (t)C(z)) − S (t)C(z)] =
S 2(t)C2(z)

2(1 + θS (t)C(z))2 ≤
1

2(1 + Λ
µ
‖C‖∞)2

≤
1

2(1 − Λ
µ
‖C‖∞)2

,

where, θ ∈ (0, 1) is an arbitrary number. Then,

6
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LV(X(t)) ≤ Λ + aµ + 2µ + γ + δ +
1
2

aσ2K2 +
1
2
σ2K2 +

a + 1
2(1 − Λ

µ
‖C‖∞)2

λ(R∗) := K̄.

Integrating both sides of (3.3) over [0, τk ∧ T ] and taking the mathematical expectation, we obtain

E[V(X(τk ∧ T ))] ≤ K̄T + V(X(0)) < ∞. (3.4)

Let Ωk = {τk ≤ T }. We have P(τ∞ ≤ T ) ≥ ε, then P(Ωk) ≥ ε, for k ≥ k1. On the other hand, from (3.2), we have

V(X(τk ∧ T )) ≥ 0, thus

E[V(X(τk ∧ T ))] = E[1Ωk V(X(τk ∧ T ))] + E[1ΩC
k
V(X(τk ∧ T ))]

≥ E[1Ωk V(X(τk ∧ T ))],

where 1Ωk is the indicator function of Ωk. It follows that,

V(X(0)) + K̄T ≥ E [1Ωk V(X(τk ∧ T ))]

≥ ε

[(
k − a − a ln

k
a

)
∧

(
1
k
− a − a ln

1
ak

)
∧ (k − 1 − ln k) ∧

(
1
k
− 1 − ln

1
k

)]
.

Letting k → ∞, we obtain

∞ > V(X(0)) + K̄T =∞,

which is a contradiction, so we must have τe = ∞ a.s. Consequently S (t), I(t) and R(t) are global positive solution to
the system (1.2). The proof is complete.

�

Theorem 3.2. All solution of the SIRI system (1.2) that initiate in R3
+ are bounded and enter into set

Γ = {(S , I,R) ∈ R3
+ : 0 < S (t) + I(t) + R(t) < Λ

µ
}.

Proof. Let N(t) = S (t)+ I(t)+R(t), (see [31] ) where (S (t), I(t),R(t)) SIRI system structure (1.2). Differentiating both
sides with respect to t, we have

dN(t)
dt

=
dS (t)

dt
+

dI(t)
dt

+
dR(t)

dt

= Λ − βS (t)I(t) − µS (t) + βS (t)I(t) − (µ + γ)I(t)

+ δR(t) + γI(t) − (µ + δ)R(t)

≤ Λ − µ(S (t) + I(t) + R(t)),

Which implies,

dN(t)
dt

≤ Λ − µN(t).

According to the comparison theorem, we obtain

0 < N(t) < N(0) exp(−µt) +
Λ

µ
,

as t → ∞, we have 0 < N(t) ≤ Λ
µ

. Therefore, all solution of the system structure (1.2) enter into the positivity invariant
set Γ = {(S , I,R) ∈ R3

+ : 0 < N(t) < Λ
µ
} as t → ∞. Thus the proof is completed.

�
7



Author / 00 (2024) 1–28 8

4. Extinction of the disease

Lemma 4.1. Let (S (t), I(t),R(t)), t ∈ R+ be the solution of the system (1.2) with any initial value (S (0), I(0),R(0)) ∈ Γ.
If the condition (H1) hold for some p > 1, then

lim
t→∞

S (t)
t

= 0, lim
t→∞

I(t)
t

= 0, lim
t→∞

R(t)
t

= 0, P-a.s.

Proof. Define X(t) := S (t) + I(t) + R(t). Applying the Itô formula to the function V(X(t)) = (1 + X(t))p, we obtain

dV(X(t)) = LV(X(t))dt +
∂V
∂S (t)

[−σS (t)I(t)]dB(t) +
∂V
∂I(t)

σS (t)I(t)dB(t)

+

∫
R∗

[V(S (t−) − S (t−)I(t−)C(z); I(t−) + S (t−)I(t−)C(z))

− V(S (t−), I(t−))]Ñ(dt, dz)

= LV(X(t))dt + p(1 + X(t))p−1[−σS (t)I(t)]dB(t) + p(1 + X(t))p−1σS (t)I(t)dB(t)

+

∫
R∗

[(1 + S (t−) − S (t−)I(t−)C(z) + I(t−) + S (t−)I(t−)C(z))p

− (1 + S (t−) + I(t−))p]Ñ(dt, dz)

= LV(X(t))dt,

Now, we calculate the infinitesimal operator LV , we obtain

LV(X(t)) = p(1 + X(t))p−1(Λ − µX(t)) +
p(p − 1)

2
(1 + X(t))p−2 2σ2S 2(t)I2(t)

≤ p(1 + X(t))p−1(Λ − µX(t)) +
p(p − 1)

2
(1 + X(t))p−2 σ2X2(t).

Factoring by p(1 + X(t))p−2, we obtain

LV(X(t)) ≤ p(1 + X(t))p−2
(
ΛX(t) − bX2(t)

)
, (4.1)

where, b = µ −
p − 1

2
σ2 > 0. Hence,

dV(X(t)) ≤ p(1 + X(t))p−2
(
ΛX(t) − bX2(t)

)
. (4.2)

For 0 < k < bp, we have
dektV(X(t)) ≤ L

[
ektV(X(t))

]
dt. (4.3)

Integrating both sides of (4.3) from 0 to t yields

ektV(X(t)) − V(X(0)) ≤

∫ t

0

[
keksV(X(s)) + eksLV(X(s))

]
ds (4.4)

Taking expectation on both sides of (4.4) yields

E
[
ektV(X(t))

]
≤ V(X(0)) + E

[∫ t

0
eks [kV(X(s)) + LV(X(s))] ds

]
. (4.5)

8
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Noting (4.1), we have

ekt
[
kV(X(t)) + ektLV(X(t))

]
≤ ekt

[
k(1 + X(t))p + p(1 + X(t))p−2(ΛX(t) − bX2(t))

]
≤ pekt(1 + X(t))p−2

[
−

(
b −

k
p

)
X2(t) + ΛX(t)

]
≤ pektA, t ∈ R+,

(4.6)

where,

0 < A := 1 + sup
x∈R+

xp−2
[
−

(
b −

k
p

)
x2 + Λx

]
< ∞.

Injecting (4.6) into (4.5), we obtain

ektE [(1 + X(t))p] ≤ (1 + X(0))p + E
[∫ t

0
peksAds

]

≤ (1 + X(0))p +
pA
k

ekt, t ∈ R+.

Then,

E
[
(1 + X(t))p] ≤ (1 + X(0))p

ekt +
pA
k
.

For 0 < k < bp, we have

lim sup
t→∞

E
[
(1 + X(t))p] ≤ pA

k
,

then there exists A0 > 0, such that
E [(1 + X(t))p] ≤ A0, t ∈ R+. (4.7)

Integrating both sides of (4.2) from τk to t, t > τk, where τ > 0 and k = 0, 1, 2, . . .,
we obtain ∫ t

τk
dV(X(s)) ≤ p

∫ t

τk
(1 + X(s))p−2(ΛX(s) − bX2(s))ds,

then,

(1 + X(t))p ≤ (1 + X(τk))p + p
∫ t

τk
(1 + X(s))p−2(ΛX(s) − bX2(s))ds.

Afterward,

sup
τk≤t≤τ(k+1)

(1 + X(t))p ≤ (1 + X(τk))p + p sup
τk≤t≤τ(k+1)

∣∣∣∣∣∣
∫ t

τk
(1 + X(s))p−2(ΛX(s) − bX2(s))ds

∣∣∣∣∣∣ .
Applying the expectation on the above inequality, we obtain

E
[

sup
τk≤t≤τ(k+1)

(1 + X(t))p
]
≤ E [(1 + X(τk))p] + B.

9
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we used the inequality (4.7), where, for some c > 0, we have

B := p E
[

sup
τk≤t≤τ(k+1)

∣∣∣∣∣∣
∫ t

τk
(1 + X(s))p−2(ΛX(s) − bX2(s)) ds

∣∣∣∣∣∣
]

≤ p E
[

sup
τk≤t≤τ(k+1)

∣∣∣∣∣∣
∫ t

τk
(1 + X(s))p−2 ΛX(s) ds

∣∣∣∣∣∣
]

≤ p E
[

sup
τk≤t≤τ(k+1)

∣∣∣∣∣∣
∫ t

τk
(1 + X(s))p−2 Λ(1 + X(s))2 ds

∣∣∣∣∣∣
]

≤ pΛ E
[

sup
τk≤t≤τ(k+1)

∣∣∣∣∣∣
∫ t

τk
(1 + X(s))p ds

∣∣∣∣∣∣
]

≤ c E
[

sup
τk≤t≤τ(k+1)

∫ t

τk
(1 + X(s))p ds

]

≤ c E
[∫ τ(k+1)

τk
(1 + X(s))p ds

]

≤ c E
[

sup
τk≤t≤τ(k+1)

(1 + X(t))p (τ(k + 1) − τk)
]

≤ cτ E
[

sup
τk≤t≤τ(k+1)

(1 + X(t))p
]
,

where, c = pΛ > 0. Therefor, we have

E
[

sup
τk≤t≤τ(k+1)

(1 + X(t))p
]
≤ E [(1 + X(τk))p] + c τ E

[
sup

τk≤t≤τ(k+1)
(1 + X(t))p

]
. (4.8)

We choose τ > 0, such that c τ < 1
2 . We combine (4.7) with (4.8), we obtain

E
[

sup
τk≤t≤τ(k+1)

(1 + X(t))p
]
≤ E [(1 + X(τk))p] +

1
2
E

[
sup

τk≤t≤τ(k+1)
(1 + X(t))p

]
,

then,

E
[

sup
τk≤t≤τ(k+1)

(1 + X(t))p
]
≤ 2A0. (4.9)

Let ε > 0 be positive. Applying Chebysheve’s inequality, we obtain

P
(

sup
τk≤t≤τ(k+1)

(1 + X(t))p > (τk)1+ε

)
≤

1
(τk)1+ε

E
[

sup
τk≤t≤τ(k+1)

(1 + X(t))p
]
≤

2A0

(τk)1+ε
< ∞,

for all k ≥ 1. According to Borel-Cantelli lemma, we obtain that for almost all ω ∈ Ω, the bound

(1 + X(t))p ≤ (τk)1+ε ,

holds for all but finitely many k. Then, there exists a k0(ω), such that whenever k ≥ k0(ω), we have

ln(1 + X(t))p ≤ ln(τk)1+ε ,

10
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we have ε > 0 and τk ≤ t ≤ τ(k + 1), then

ln(1 + X(t))p ≤ (1 + ε) ln(t).

It follows that,
ln X(t)
ln(t)

≤
1
p

+
ε

p
.

Let ε → 0, we obtain

lim sup
t→∞

ln X(t)
ln(t)

≤
1
p
, P − a.s, p > 1.

Set finite random time T = T (ω), for any small 0 < ζ < 1 − 1/p, we have

ln X(t) ≤

(
ζ +

1
p

)
ln(t), t ≥ T,

so,
ln X(t) ≤ ln(tζ+

1
p ), t ≥ T.

It follows that,
X(t) ≤ tζ+

1
p , t ≥ T.

Then,

lim sup
t→∞

X(t)
t

≤ lim sup
t→∞

tζ+
1
p

t
= 0,

It implies,

lim sup
t→∞

S (t)
t
≤ 0, lim sup

t→∞

I(t)
t
≤ 0, lim sup

t→∞

R(t)
t
≤ 0, P-a.s.

By the positivity of the solution, we get

lim
t→∞

S (t)
t

= 0, lim
t→∞

I(t)
t

= 0, lim
t→∞

R(t)
t

= 0, P-a.s.

The proof is completed.

�

Lemma 4.2. Let (S (t), I(t),R(t)), t ∈ R+ be the solution of the system (1.2) with any initial value (S (0), I(0),R(0)) ∈ Γ.
If (H1) hold for some p > 2, Then

i) lim
t→∞

1
t

∫ t

0

∫
R∗

ln (1 + S (s−)C(z)) Ñ(ds, dz) = 0, lim
t→∞

1
t

∫ t

0

∫
R∗

S (s−)I(s−)C(z)Ñ(ds, dz) = 0, P-a.s.

ii) lim
t→∞

1
t

∫ t

0
S (s)dB(s) = 0, lim

t→∞

1
t

∫ t

0
S (s)I(s)dB(s) = 0, P-a.s.

Proof. Denote

X1(t) :=
∫ t

0

∫
R∗

ln (1 + S (s−)C(z)) Ñ(ds, dz), X2(t) :=
∫ t

0

∫
R∗

S (s−)I(s−)C(z)Ñ(ds, dz),

and

X3(t) :=
∫ t

0
S (s)dB(s), X4(t) :=

∫ t

0
S (s)I(s)dB(s), t ∈ R+.

According to the Kunita’s inequality (2.2), for any p ≥ 2, there exists a positive constant cp, such that

E
[

sup
0≤s≤t
|X1(s)|p

]
≤ cp E

(∫ t

0

∫
R∗
|ln (1 + S (s)C(z))|2 λ(dz)ds

)p/2 + cp E
[∫ t

0

∫
R∗
|ln (1 + S (s)C(z))|p λ(dz)ds

]
.

11
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Applying Taylor-Lagrange formula, we obtain

|ln (1 + S (s)C(z))| ≤
Λ

µ

1 +
Λ‖C‖∞

2µ
(
1 − Λ

µ
‖C‖∞

)2

 |C(z)|.

Therefore, there is a positive constant Cp such that

E
[

sup
0≤s≤t
|X1(s)|p

]
≤ Cp tp/2

(∫
R∗

C2(z)λ(dz)
)p/2

+ Cp t
∫
R∗

Cp(z)λ(dz), (4.10)

where, Cp = cp

[
Λ
µ

(
1 +

Λ‖C‖∞
2µ

(
1− Λ

µ ‖C‖∞
)2

)
|C(z)|

]p

. Let ε > 0. By Doob’s martingale inequality, we have

P
(

sup
τk≤t≤τ(k+1)

|X1(t)|p > (τk)1+ε+p/2
)
≤

1
(τk)1+ε+p/2 E

[
sup

τk≤t≤τ(k+1)
|X1(t)|p

]

≤
Cp((τ(k + 1))p/2

(τk)1+ε+p/2

(∫
R∗

C2(z)λ(dz)
)p/2

+
Cpτ(k + 1)
(τk)1+ε+p/2

∫
R∗

Cp(z)λ(dz).

According to Borel-Cantelli lemma, we obtain that for almost all ω ∈ Ω

|X1(t)|p ≤ (τk)1+ε+p/2, τk ≤ t ≤ τ(k + 1),

Then, there exists a k0(ω), such that whenever k ≥ k0(ω), we have

ln |X1(t)|p ≤ ln(τk)1+ε+p/2,

we have ε > 0 and τk ≤ t ≤ τ(k + 1), then

ln |X1(t)|p ≤ (1 + ε + p/2) ln(t).

It implies that,
ln |X1(t)|

ln(t)
≤

1 + ε + p/2
p

=
1
2

+
1 + ε

p
, ε > 0, τk ≤ t ≤ τ(k + 1).

Letting ε → 0, yields

lim sup
t→∞

ln |X1(t)|
ln(t)

≤
1
2

+
1
p
, P − a.s, p > 2.

Then, there exists an a.s finite random time T̃ = T̃ (ω) for any small 0 < ζ̃ < 1
2 −

1
p , such that

ln |X1(t)| ≤
(

1
2

+
1
p

+ ζ̃

)
ln(t), t ≥ T̃ ,

so,
ln |X1(t)| ≤ ln(t

1
2 + 1

p +ζ̃), t ≥ T̃ .

It follows that,
|X1(t)| ≤ t

1
2 + 1

p +ζ̃ , t ≥ T̃ .

Then,

lim sup
t→∞

|X1(t)|
t

≤ lim sup
t→∞

t
1
2 + 1

p +ζ̃

t
= 0,

which implies,
12
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lim
t→∞

|X1(t)|
t

= 0, P-a.s.

Then,

lim
t→∞

X1(t)
t

= 0, P-a.s.

Following the same steps as above, one can obtain

lim
t→∞

X2(t)
t

= 0 P-a.s.

Notice that, X3(t) :=
∫ t

0
S (s)dB(s). Applying Burkholder-Davis-Gundy inequality (2.1), for any p ≥ 1, there exists

a positive constant Cp, such that

E
[

sup
0≤s≤t
|X3(s)|p

]
≤ Cp E

(∫ t

0
|X3(s)|2dr

)p/2
≤ Cp E

( sup
0≤s≤t
|X3(t)|2

)p/2 (∫ t

0
1 ds

)p/2

:= Cp tp/2 E
[

sup
0≤s≤t
|X3(t)|p

]
.

Combining the above inequality with (4.9), we obtain

E
[

sup
τk≤t≤τ(k+1)

|X3(t)|p
]
≤ 2A0Cp(τ(k + 1))p/2.

Let ε > 0. By Doob’s martingale inequality, we have

P
(

sup
τk≤t≤τ(k+1)

|X3(t)|p > (τk)1+ε+p/2
)
≤

1
(τk)1+ε+p/2 E

[
sup

τk≤t≤τ(k+1)
|X3(t)|p

]

≤
2A0Cp(τ(k + 1))p/2

(τk)1+ε+p/2 .

According to Borel-Cantelli lemma, we obtain that for all ω ∈ Ω

sup
τk≤t≤τ(k+1)

|X3(t)|p ≤ (τk)1+ε+p/2,

then,

|X3(t)|p ≤ (τk)1+ε+p/2, τk ≤ t ≤ τ(k + 1).

Then, there exists a k0(ω), such that whenever k ≥ k0(ω), we have

ln |X3(t)|p ≤ ln(τk)1+ε+p/2,

we have ε > 0 and τk ≤ t ≤ τ(k + 1), then

ln |X3(t)|p ≤ (1 + ε + p/2) ln(t).

Which implies,
ln |X3(t)|

ln(t)
≤

1 + ε + p/2
p

=
1
2

+
1 + ε

p
.

13



Author / 00 (2024) 1–28 14

Let ε → 0, we obtain

lim sup
t→∞

ln |X3(t)|
ln(t)

≤
1
2

+
1
p
, P − a.s, p > 2.

Then, there exists a finite random time T̄ = T̄ (ω) for any small 0 < ζ̄ < 1
2 −

1
p , such that

ln |X3(t)| ≤
(

1
2

+
1
p

+ ζ̄

)
ln(t), t ≥ T̄ ,

so,
ln |X3(t)| ≤ ln(t

1
2 + 1

p +ζ̄), t ≥ T̄ .

It follows that,
|X3(t)| ≤ t

1
2 + 1

p +ζ̄ , t ≥ T̄ .

Then,

lim sup
t→∞

|X3(t)|
t

≤ lim sup
t→∞

t
1
2 + 1

p +ζ̄

t
= 0,

this implies,

lim
t→∞

X3(t)
t

= 0, P-a.s.

By the same way, we have

lim
t→∞

X4(t)
t

= 0, P-a.s.

The proof is therefore completed.

�

We define the following quantities :

σe =
1
4

(σµΛ
)2

+
2

(1 + Λ
µ
‖C‖∞)2

∫
R∗

C2(z)λ(dz)

 , (4.11)

and

Re =
βΛ
µ

µ + σe

(
Λ
µ

)2 . (4.12)

In the next theorem, we establish sufficient conditions for the extinction of system (1.2).

Theorem 4.1. Let (S (t), I(t),R(t)) be the solution of system (1.2) with any initial value (S (0), I(0),R(0)) ∈ Γ. If the
following conditions Re < 1 and 2σe

Λ
µ
≤ β hold, then the disease goes out of the population exponentially with

probability one. That is to say

lim
t→∞
〈S 〉t =

Λ

µ
, lim

t→∞
I(t) = 0, and lim

t→∞
R(t) = 0, P-a.s.

Proof. Notice that,

I(t) + R(t) = I(0) + R(0) + β

∫ t

0
S (s)I(s)ds − µ

∫ t

0
(I(s) + R(s))ds

+ σ

∫ t

0
S (s)I(s)dB(s) +

∫ t

0

∫
R∗

S (s−)I(s−)C(z)Ñ(ds, dz).

14
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Applying the Itô formula for Lévy-type stochastic integrals to the function I(t) + R(t) 7→ ln(I(t) + R(t)), we obtain

ln(I(t) + R(t)) = ln(I(0) + R(0)) + β

∫ t

0

S (s)I(s)
I(s) + R(s)

ds − µt

−
1
2
σ2

∫ t

0

(S (s)I(s))2

(I(s) + R(s))2 ds + σ

∫ t

0

S (s)I(s)
I(s) + R(s)

dB(s)

+

∫ t

0

∫
R∗

ln
(

I(s−) + R(s−) + S (s−)I(s−)C(z)
I(s−) + R(s−)

)
Ñ(ds, dz)

+

∫ t

0

∫
R∗

{
ln

(
I(s) + R(s) + S (s)I(s)C(z)

I(s) + R(s)

)
−

S (s)I(s)C(z)
I(s) + R(s)

}
λ(dz)ds

≤ ln(I(0) + R(0)) + β

∫ t

0
S (s)ds − µt −

1
4

(
σµ

Λ

)2 ∫ t

0
S 2(s)ds

+ σ

∫ t

0
S (s)dB(s) +

∫ t

0

∫
R∗

ln(1 + S (s−)C(z))Ñ(ds, dz)

+

∫ t

0

∫
R∗

[ln(1 + S (s)C(z)) − S (s)C(z)] λ(dz)ds,

(4.13)

where we used the bound −(a + b)−2 ≤ −2−1(a2b2)−1 and X(t) ∈ Γ, t ∈ R+. Using the Taylor-Lagrange formula,
for some θ ∈ (0, 1) we obtain that

ln(1 + S (t)C(z)) − S (t)C(z) = −
C2(z)

2
(
1 + Λ

µ
‖C‖∞

)2 S 2(t). (4.14)

Hence,

ln(I(t) + R(t)) ≤ ln(I(0) + R(0)) + β

∫ t

0
S (s)ds − µt −

1
4

(
σµ

Λ

)2 ∫ t

0
S 2(s)ds

+ σ

∫ t

0
S (s)dB(s) +

∫ t

0

∫
R∗

ln(1 + S (s−)C(z))Ñ(ds, dz)

−

∫ t

0

∫
R∗

C2(z)

2
(
1 + Λ

µ
‖C‖∞

)2 S 2(s)λ(dz)ds.

This implies,

ln(I(t) + R(t))
t

≤ β〈S 〉t − µ −
1
4

(σµΛ
)2

+
2

(1 + Λ
µ
‖C‖∞)2

∫
R∗

C2(z)λ(dz)

 〈S 2〉t

+
1
t

[
ln(I(0) + R(0)) + σ

∫ t

0
S (s)dB(s)

]

+
1
t

∫ t

0

∫
R∗

ln(1 + S (s−)C(z))Ñ(ds, dz).

15
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Then,

ln(I(t) + R(t))
t

≤ β〈S 〉t − µ − σe〈S 2〉t +
M1(t)

t
+

M2(t)
t

, (4.15)

where,

M1(t) = ln(I(0) + R(0)) + σ

∫ t

0
S (s)dB(s) and M2(t) =

∫ t

0

∫
R∗

ln(1 + S (s−)C(z))Ñ(ds, dz).

Integrating from 0 to t on both sides of the system (1.2), we obtain∫ t

0
dS (s) =

∫ t

0

[
Λ − βS (s)I(s) − µS (s)

]
ds − σ

∫ t

0
S (s)I(s)dB(s)

−

∫ t

0

∫
R∗

S (s−)I(s−)C(z)Ñ(ds, dz).

It follows that,

S (t) − S (0) = Λt − β
∫ t

0
S (s)I(s)ds − µ

∫ t

0
S (s)ds − σ

∫ t

0
S (s)I(s)dB(s)

−

∫ t

0

∫
R∗

S (s−)I(s−)C(z)Ñ(ds, dz),

then,
S (t) − S (0)

t
= Λ − β〈S I〉t − µ〈S 〉t −

1
t
σ

∫ t

0
S (s)I(s)dB(s)

−
1
t

∫ t

0

∫
R∗

S (s−)I(s−)C(z)Ñ(ds, dz).

(4.16)

We denote that,∫ t

0
dI(s) = β

∫ t

0
S (s)I(s)ds − (µ + γ)

∫ t

0
I(s)ds + δ

∫ t

0
R(s)ds + σ

∫ t

0
S (s)I(s)dB(s)

+

∫ t

0

∫
R∗

S (s−)I(s−)C(z)Ñ(ds, dz),

then,
I(t) − I(0)

t
= β〈S I〉t − (µ + γ)〈I〉t + δ〈R〉t +

1
t
σ

∫ t

0
S (s)I(s)dB(s)

+
1
t

∫ t

0

∫
R∗

S (s−)I(s−)C(z)Ñ(ds, dz).

(4.17)

We have, ∫ t

0
dR(s) = γ

∫ t

0
I(s)ds − (µ + δ)

∫ t

0
R(s)ds,

then,
R(t) − R(0)

t
= γ〈I〉t − (µ + δ)〈R〉t. (4.18)

Combining (4.16) with (4.17) and (4.18), we obtain

S (t) − S (0)
t

+
I(t) − I(0)

t
+

R(t) − R(0)
t

= Λ − µ (〈S 〉t + 〈I〉t + 〈R〉t) .
16
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which yields

〈S 〉t =
Λ

µ
− (〈I〉t + 〈R〉t) + ϕ1(t), (4.19)

where, ϕ1(t) =
S (0)+I(0)+R(0)

µt −
S (t)+I(t)+R(t)

µt . Using Cauchy-Schwarz inequality and direct computation, we get

〈S 2〉t ≥ 〈S 〉2t =

[
Λ

µ
− (〈I〉t + 〈R〉t) + ϕ1(t)

]2

≥

(
Λ

µ

)2

− 2
(
Λ

µ
+ ϕ1(t)

)
〈I + R〉t.

(4.20)

Injecting (4.19) and (4.20) into (4.15), we obtain

ln(I(t) + R(t))
t

≤

µ + σe

(
Λ

µ

)2 (Re − 1) −
(
β − 2σe

Λ

µ

)
〈I + R〉t

+ ϕ2(t) +
M1(t)

t
+

M2(t)
t

,

(4.21)

where, ϕ2(t) = βϕ1(t) + 2ϕ1(t)〈I + R〉t. According to the Lemmas 4.1 and 4.2 and the boundedness of the solution to
system (1.2), we obtain

lim
t→∞

M1(t)
t

= 0, lim
t→∞

M2(t)
t

= 0, lim
t→∞

ϕ2(t) = 0, P − a.s. (4.22)

Then, for Re < 1 and β − 2σe
Λ
µ
≥ 0, we have from (4.21)

lim sup
t→∞

ln(I(t) + R(t))
t

≤

µ + σe

(
Λ

µ

)2 (Re − 1) < 0.

This implies,

lim
t→∞

(I(t) + R(t)) = 0, P-a.s.

By the positivity of I(t) and R(t), we obtain

lim
t→∞

I(t) = 0 and lim
t→∞

R(t) = 0, P − a.s. (4.23)

Furthermore, injecting (4.23) into (4.19), we arrive to the equality

lim
t→∞
〈S 〉t =

Λ

µ
, P-a.s.

The proof is therefore completed.

�

5. Persistence in mean of the disease

Next, we will consider stochastic persistence; that is, persistence in the means. Now, we give the definition of
persistence in the means.

Definition 5.1. The system (1.2) is said to be persistent in the mean, if
17
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lim inf
t→∞

1
t

∫ t

0
S (s)ds > 0, lim inf

t→∞

1
t

∫ t

0
I(s)ds > 0, lim inf

t→∞

1
t

∫ t

0
R(s)ds > 0, P-a.s.

For convenience, we denote

σp =
1
2

σ2 +
1

(1 − Λ
µ
‖C‖∞)2

∫
R∗

C2(z)λ(dz)

 , (5.1)

and

Rp =
βΛ
µ

µ + γ + σp

(
Λ
µ

)2 . (5.2)

Theorem 5.1. If Rp > 1, then for any initial value (S (0), I(0),R(0)) ∈ Γ, the solution (S (t), I(t),R(t)), t ∈ R+ of the
system (1.2) satisfies

lim inf
t→∞

〈S 〉t ≥ C1, P − a.s,

lim inf
t→∞

〈I〉t ≥ C2(Rp − 1), P − a.s,

lim inf
t→∞

〈R〉t ≥ C3(Rp − 1), P − a.s,

for some positive constants Ci, i = 1, 2, 3.

Proof. Integrating the first equation of the system (1.2) between 0 and t and using the boundedness of I(t), we obtain

S (t) − S (0) = Λt − β
∫ t

0
S (s)I(s)ds − µ

∫ t

0
S (s)ds − σ

∫ t

0
S (s)I(s)dB(s)

−

∫ t

0

∫
R∗

S (s−)I(−s)C(z)Ñ(ds, dz)

≥ Λt − β
Λ

µ

∫ t

0
S (s)ds − µ

∫ t

0
S (s)ds − σ

∫ t

0
S (s)I(s)dB(s)

−

∫ t

0

∫
R∗

S (s−)I(s−)C(z)Ñ(ds, dz)

≥ Λt −
(
µ +

βΛ

µ

) ∫ t

0
S (s)ds − σ

∫ t

0
S (s)I(s)dB(s)

−

∫ t

0

∫
R∗

S (s−)I(s−)C(z)Ñ(ds, dz).

Then,
S (t) − S (0)

t
≥ Λ −

(
µ +

βΛ

µ

)
〈S 〉t − σ

1
t

∫ t

0
S (s)I(s)dB(s)

−
1
t

∫ t

0

∫
R∗

S (s−)I(s−)C(z)Ñ(ds, dz).
(5.3)

18
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Rearranging the inequality (5.3) and we have

〈S 〉t ≥

(
µ +

βΛ

µ

)−1 [
Λ −

S (t) − S (0)
t

− σ
1
t

∫ t

0
S (s)I(s)dB(s) −

1
t

∫ t

0

∫
R∗

S (s−)I(s−)C(z)Ñ(ds, dz)
]
.

Taking inferior limit and using the Lemmas 4.1 and 4.2, we obtain

lim inf
t→∞

〈S 〉t ≥ Λ

(
µ +

βΛ

µ

)−1

:= C1 > 0, P-a.s.

Applying the Itô formula for Lévy-type stochastic integrals to the function I(t) 7→ ln I(t), we obtain

ln I(t) = ln I(0) + β〈S 〉tt − (µ + γ) t + δ

∫ t

0

R(s)
I(s)

ds −
σ2

2

∫ t

0
S 2(s)ds

+ σ

∫ t

0
S (s)dB(s) +

∫ t

0

∫
R∗

[ln(1 + S (s)C(z)) − S (s)C(z)] λ(dz)ds + M2(t).

Applying the Taylor-Lagrange formula, we get

ln(1 + S (t)C(z)) − S (t)C(z) = −
S 2(t)C(z)

2(1 + θS (t)C(z))2 ,

where θ ∈ (0, 1) is an arbitrary number. By assumption (H1)

(1 + θS (t)C(z))2 ≥ (1 − θS (t)C(z))2

≥

(
1 −

Λ

µ
‖C‖∞

)2

,

then,

−
S 2(t)C2(z)

2(1 + θS (t)C(z))2 ≥ −
S 2(t)C2(z)

2(1 − Λ
µ
‖C‖∞)2

.

Which implies,

ln(1 + S (t)C(z)) − S (t)C(z) ≥ −
C2(z)

2(1 − Λ
µ
‖C‖∞)2

S 2(t). (5.4)

Using the inequality (5.4), we have

ln I(t)
t
≥

ln I(0)
t

+ β〈S 〉t − (µ + γ) −
σ2

2
〈S 2〉t +

1
t
σ

∫ t

0
S (s)dB(s)

− 〈S 2〉t
1

2(1 − Λ
µ
‖C‖∞)2

∫
R∗

C2(z)λ(dz) +
M2(t)

t

≥ β〈S 〉t − (µ + γ) −
1
2

σ2 +
1

(1 − Λ
µ
‖C‖∞)2

∫
R∗

C2(z)λ(dz)

 〈S 2〉t

+
H1(t)

t
+

M2(t)
t

≥ β〈S 〉t − (µ + γ) − σp〈S 2〉t +
H1(t)

t
+

M2(t)
t

,
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where, H1(t) = ln I(0) + σ

∫ t

0
S (s)dB(s). Then,

ln I(t)
t
≥ β〈S 〉t − (µ + γ) − σp

(
Λ

µ

)2

+
H1(t)

t
+

M2(t)
t

, (5.5)

where, we used −S (t) > −Λ
µ

. Combining the first and the second equation of system (1.2) imply that

dS (t) + dI(t) = Λ − µS (t) − (µ + γ)I(t) + δR(t).

Integrating between 0 and t dividing by t, we obtain

S (t) − S (0)
t

+
I(t) − I(0)

t
= Λ − µ〈S 〉t − (µ + γ)〈I〉t + δ〈R〉t

≥ Λ − µ〈S 〉t − (µ + γ)〈I〉t.

Hence,

〈S 〉t ≥
Λ

µ
−
µ + γ

µ
〈I〉t + ϕ3(t), (5.6)

where, ϕ3(t) =
S (0)+I(0)

µt −
S (t)+I(t)

µt . Injecting (5.6) into (5.5), we obtain

ln I(t)
t
≥
βΛ

µ
−
β(µ + γ)

µ
〈I〉t + βϕ3(t) −

µ + γ + σp

(
Λ

µ

)2 +
H1(t)

t
+

M2(t)
t

.

Therefore,

β(µ + γ)
µ

〈I〉t ≥
βΛ

µ
−

µ + γ + σp

(
Λ

µ

)2 − ln I(t)
t

+ βϕ3(t) +
H1(t)

t
+

M2(t)
t

.

According to the Lemmas 4.1 and 4.2, we obtain

lim inf
t→∞

〈I〉t ≥ C2 (Rp − 1), P-a.s.

where, C2 :=
µ

β

(
1 +

σp

(
Λ
µ

)2

µ+γ

)
> 0.

From the third equation of system (1.2), we have

R(t) − R(0)
t

= γ 〈I〉t − (µ + δ) 〈R〉t,

rearranging, we get

(µ + δ) 〈R〉t = γ 〈I〉t −
R(t)

t
+

R(0)
t

.

By the Lemma 4.1, we obtain

lim inf
t→∞

〈R〉t ≥ C3 (Rp − 1), P-a.s.

where, C3 :=
γ

µ + δ
C2 > 0. The proof is completed.

�
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6. Numerical simulations

Numerical simulations of stochastic differential equations are very important in the study of real examples of epi-
demics diseases. we give some numerical simulations to support our obtained theoretical results of system (1.2). Now,
we describe the discretization scheme using the Euler-Maruyama method. According to model (1.2), we consider the
stochastic differential equation

dX(t) = f (X(t), t) dt + g(X(t), t) dW(t) +

∫
ξ

h(t, X(t−), z)pϕ(dz, dt), (6.1)

for t ∈ [0,T ], with initial condition X(0) = x(0), where f , g and h are the components of the drift, diffusion and jump
coefficients, respectively. Let W(t) be an Ft-adapted Wiener process and pϕ(dz, dt) be an Ft-adapted Poisson measure
with mark space ξ ⊆ R \ {0} (see [32]), with intensity measure ϕ(dz)dt = λF(dz)dt, where F(·) is a given probability
distribution function for the realizations of the marks. Then, the SDEs (6.1) can be written in integral from as:

X(t) = X(0) +

∫ t

0
f (X(s), s) ds +

∫ t

0
g(X(s), s) dW(t) +

∫ t

0

∫
ξ

h(s, X(s−), z)pϕ(dz, ds)

= X(0) +

∫ t

0
f (X(s), s) ds +

∫ t

0
g(X(s), s) dW(t) +

pϕ(t)∑
k=1

h(τk, X(τk), εk),

where, {(τk, εk), k ∈ {1, 2, . . . , pϕ(t)}} is the double sequence of pairs of jump times and corresponding marks generated
by the Poisson random measure. Next, we wish to solve the SDEs (6.1) on some interval of time [0,T ].
1- Temporal discretization: we divide the time interval [0,T ] into N equal subintervals of width ∆t > 0, we thus
obtain a sequence of times

0 = t0 < t1 < · · · < tN = T and ∆t = T/N.

2- Euler-Maruyama scheme: at each time step ti for 0 < i < N − 1, we update the approximate variables of the
model using the equations:

S (ti+1) = S (ti) + [Λ − βS (ti)I(ti) − µS (ti)]∆t − σS (ti)I(ti)∆Wi −

∫ ti

ti+1

∫
ξ

C(z)S (ti)I(ti)pϕ(dz, ds)

= S (ti) + [Λ − βS (ti)I(ti) − µS (ti)]∆t − σS (ti)I(ti)∆Wi −

pϕ(ti+1)∑
i=pϕ(ti)+1

C(εi)S (ti)I(ti).

I(ti+1) = I(ti) + [βS (ti)I(ti) − (µ + γ)I(ti) + δR(ti)]∆t + σS (ti)I(ti)∆Wi +

∫ ti

ti+1

∫
ξ

C(z)S (ti)I(ti)pϕ(dz, ds)

= I(ti) + [βS (ti)I(ti) − (µ + γ)I(ti) + δR(ti)]∆t + σS (ti)I(ti)∆Wi +

pϕ(ti+1)∑
i=pϕ(ti)+1

C(εi)S (ti)I(ti).

R(ti+1) = R(ti) + [γI(ti) − (µ + δ)R(ti)]∆t.

where,

- S (ti), I(ti) and R(ti) are the approximate values of the variables S , I and R resp. at time ti.
- The random variables ∆Wi = W(ti+1)−W(ti) are independent and identically distributed normal random

variables with expected value zero and variance ∆t .
- The terms [Λ − βS (ti)I(ti) − µS (ti)]∆t, [βS (ti)I(ti) − (µ + γ)I(ti) + δR(ti)]∆t and [γI(ti) − (µ + δ)R(ti)]∆t

represent the deterministic contributions of the model to the evolution of each variable.
- The terms −σS (ti)I(ti)∆Wi andσS (ti)I(ti)∆Wi represent the stochastic contributions (Brownian motion).
- pϕ(t) = pϕ(ξ, [0, t]) represents the total number of jumps of the Poisson random measure up to time t,

which is Poisson distributed with mean λt and εi ∈ ξ is the ith mark of the Poisson random measure
pϕ.

This process is repeated for all the time steps of the discretization until the final time tN is reached, thus producing an
approximation of the stochastic spread of the infection over the entire discretized time interval.
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6.1. Zoonotic tuberculosis in Morocco
in the following, we represent a simulation for transmission dynamic and elimination potential of zoonotic tu-

berculosis in Morocco [33]. The average lifespan of the Moroccan cattle is 6 years which yields to a death rate of
µ = 0.167 per year. The birth rate was estimated to be 0.177 using least squares method based on cattle population
data. From the endemic prevalence in cattle the transmission rate of bovine tuberculosis from cattle to cattle was
estimated to be β = 0.249. We choose δ = 0.1, γ = 0.2, σ = 0.2, σe = 0.01, and the jump intensity C(z) = 0.1

z
1 + z2

is considered, where z = 0.5.
In the following, using time step size ∆ = 10−2, with the initial condition (S (0), I(0),R(0)) = (0.7, 0.17, 0.13) and

parameters cited above. We note that the deterministic system (1.1) is extinct as R0 = 0.5105 < 1; on the other hand,
for the stochastic system (1.2) we can compute Re = 0.8741 < 1 and the condition 2σe

Λ
µ

= 0.012 < β = 0.249 of
Theorem 4.1 satisfied. Thus, the disease is extinct with probability one and the Figure 1 confirms it.

Figure 1: Illustration of extinction of the solution to the deterministic (1.1) and stochastic (1.2) systems respectively, the means, the empirical
means and the associated standard deviations using data of Example 6.1.
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Figure 2: Average over 1000 stochastic simulations of the Lévy jumps model and the associated standard deviations, using data of the Zoonotic
tuberculosis in Morocco.

6.2. Case study of tuberculosis in Morocco
In Morocco, tuberculosis (TB) is still a serious health risk. Thanks to its National Plan for Tuberculosis and the

assistance of both domestic and foreign partners, the kingdom has achieved significant strides in the management and
control of tuberculosis. The Tuberculosis (TB) incidence in Morocco was stable around 100 per 100.000 persons[34] .
In order to investigate the dynamics of TB in Morocco , we collect the data from the World Bank data for Tuberculosis
cases, Morocco population growth, natural death rate from 2000 to 2021.

6.2.1. Parameter estimation
We consider the time scale by years. However, since we have small data set on TB in Morocco we discretize

the data for each one year into 100 partitions. In this case, if the observations are h = 1/100. In order to illustrated
22
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a deterministic or stochastic differential equation, the approximate solution can be simulated using Euler Scheme
for Levy Driven Stochastic Differential Equations[35]. We consider a data set of TB cases in Morocco defined as
YT , {y0, y1, . . . , yT }, where the observation is up to a finite horizon T and yt , [S t, It,Rt]′ is a column vector in R3×1,
which represents the daily observed values at time t for the susceptible (S ), infected (I), and recovered individuals
(R). We need to estimate the unknown vector of parameters θ in the epidemic model. To this end, we consider the
predicted epidemic model ŷt(θ) defined by

ŷt(θ) , ŷt−1 + h

 Λ − βŜ t−1 Ît−1 − µŜ t−1

βŜ t−1 Ît−1 − (µ + γ)Ît−1 + δR̂t−1

γÎt−1 − (µ + δ)R̂t−1

,
where ŷ0(θ) = y0 as an initial condition at time 0. Using this Euler-Maruyama method to approximate the solution,
we calculate the quadratic cost

JT (θ) ,
T∑

t=0

‖It − Ît(θ)‖2.

Minimizing the quadratic cost J yields the non-linear least square estimator θe, where

θe , arg min
θ∈(0,∞)7

JT (θ).

Shows the estimated parameters derived from fitting the studied models to the provided cumulative case data for
Morocco from 2000 to 2021. The predicted R0 = 1.04634 [9] is as expected, greater than 1, which means the disease
will persist. In Fig. 3, we used the estimated parameter β and the parameters deduced from the data to illustrate the
patterns of the susceptible (S ), infected (I), and recovered individuals (R).

Parameter Description Value Source
Λ Recruitment rate 675104 year−1 Estimated from World Bank
µ Natural death rate 0.005 year−1 Estimated from World Bank
β Transmission rate 7.4059 × 10−9 year−1 Fitted
γ Recovery rate 0.2 year−1 [36]
δ Relapse rate 0.00001 year−1 [37]
S 0 Initial Susceptible population 28521577 World Data Bank
I0 Initial Infected population 32837 World Data Bank
R0 Initial Recovered population 6567 World Data Bank

Table 1: Table of parameters used in the numerical simulation.

In order to implement a stochastic simulation in 1, we set the stochastic volatility as σ = 4.3016 × 10−9.

6.2.2. Scenario of an extinction of Tuberculosis
In order to show that the stability equilibrium point for endemic TB Morocco cases can be subject to an extinction

of the disease while taking account the perturbation of the environment and since the basic reproduction number is
so close to the deterministic threshold. Hence, in Fig. 4, we simulate a prediction for next years. However, we set a
volatility of 4.3016 × 10−8.

6.2.3. Scenario of a persistence of Tuberculosis
In this case we set a basic reproduction number of R0 = 2.0926. Hence, we get the following simulation Fig. 5

for the deterministic and stochastic epidemic models.
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Figure 3: Estimated Infected population for Morocco from 2000 to 2021.

Figure 4: Stochastic and deterministic scenario for infected and recovered compartments in the next 40 Years.
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Figure 5: Stochastic and deterministic scenario for infected and recovered compartments in the next 40 Years.

6.3. Herpes simplex virus type 2
Herpes simplex virus type 2 (HSV-2) is a sexually transmitted infection that causes genital herpes. The virus

usually infects the genital tract or oral mucosa. It is a lifelong condition that can cause painful blisters or ulcers
that can recur over time. Most people have no symptoms or only mild symptoms, but the infection can be more
severe in people with suppressed immune systems, such as HIV-infected persons. In this example, we are interested
in presenting a simulation to illustrate the case of (HSV-2). For this we consider the same parameters presented in
[14]. Let Λ = 0.1, β = 0.2, µ = 0.05, σ = 0.2 and γ = δ = 0.2857. Then, the deterministic system is persistent as
R0 = 4.3219 > 1. Furthermore, for the stochastic system we have Rp = 1.0647 > 1, then according to Theorem 5.1
the system (1.2) is persistent and the disease becomes endemic, as Fig. 6 clearly support this result.

Figure 6: Illustration of persistence in mean of the solution to the deterministic (1.1) and stochastic (1.2) systems respectively, the means, the
empirical means and the associated standard deviations using data of Example 6.2.
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Figure 7: Paths of the solution to the stochastic system (1.2) with the parameter values as in Example 6.2 and δ = 0.14, 0.2 and 0.4.

6.4. Sensitivity index of the basic reproduction number R0

To gain a better understanding of the most effective strategies for preventing and controlling the spread of a disease,
we will now examine the impact of various parameters on the dynamics of the stochastic epidemic system through
sensitivity analysis. This analysis will provide valuable insights into which factors have the greatest influence on the
spread of the disease, enabling us to develop appropriate intervention strategies. In the following, we choose disease
parametrers as follows:

Table 2:
Λ β µ γ σ δ λ σp C(z) λ(R∗)

0.177 1.2 0.167 0.2 0.2 0.1 0.5 0.044 0.06 1

6.4.1. Sensitivity index of R0 with respect to relapse parameter
In order to assess the impact of changes in the relapse rate on the spread of the disease, we will analyze the

sensitivity index of the basic reproduction number R0, in relation to the relapse parameter δ. This analysis will help
us understand how variations in the relapse rate affect the overall spread of the disease. The normalized forward
sensitivity index of R0, which depends differentiably on a parameter δ, is defined as:

∂R0

∂δ

δ

R0
=

γδ

(µ + δ)(µ + γ + δ)
.

The positive sign of the sensitivity index indicates that as the relapse parameter increases, the basic reproduction
number R0 also increases. This, in turn leads to the persistence of the disease within the population over time. The
following figure represents a variation of the relapse parameter δ = 0.14, 0.2 and 0.4. By observing Fig. 7, we can
conclude that as the relapse rate increases, there is an increase in the number of infected individuals.

6.4.2. Sensitivity index of R0 with respect to recovery parameter
Now, we examine the sensitivity index of the basic reproduction number R0 with respect to the recovery parameter

γ. Then, the recovery sensitivity parameter is given by:

∂R0

∂γ

γ

R0
= −

γ

µ + γ + δ
.

The negative sensitivity index indicates that an increase in the recovery parameter will result in a decrease in the basic
reproduction number R0, which ultimately leads to the extinction of the disease in the population. The next figure
illustrates a variation of the recovery rate γ = 0.09, 0.18 and 0.22 with parameters values as in example 6.2. From Fig.
8, it is noticeable that increasing the recovery rate is associated with a decline in the number of infected individuals.
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Figure 8: Paths of the solution to the stochastic system (1.2) with the parameter values as in Example 6.2 and γ = 0.09, 0.18 and 0.22.

Conclusion. In this work, we have formulated an SIRI epidemic model with disease relapse, driven by correlated
Brownian motion and Lévy jump components with infinite characteristic measure λ(R∗) = ∞. The analysis of the
stochastic system (1.2) shows the existence and uniqueness of global positive solution. We present new solution
estimates using Kunita’s inequality for jump processes rather than Burtholder-Davis-Gundy inequality for continuous
diffusions in the key Lemmas 4.1 and 4.2. In theorem 4.1 we proved that the disease goes to zero exponentially with
probability one wherever Re < 1, this means that the endemic disease will disappear in the population. Moreover, as
long as Rp > 1, the epidemic disease will be persistent.
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Nonlinear Analysis: Hybrid Systems 27 (2018) 29–43.
[30] Y. Liu, Y. Zhang, Q. Wang, A stochastic sir epidemic model with lévy jump and media coverage, Advances in difference equations 2020 (1)
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