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Abstract

The aim of this paper is to propose a new method to construct pullback exponential attractors with

explicit fractal dimensions for non-autonomous infinite dimensional dynamical systems in Banach

spaces. The approach is established by combining the squeezing properties and the covering of

finite subspace of Banach spaces, which generalize the method established for autonomous systems

in Hilbert spaces [Eden A., Foias C., Nicolaenko B. and Temam R., Exponential Attractors for

Dissipative Evolution Equations, John Wiley Sons, 1994 ]. The method is especially effective for non-

autonomous partial functional differential equations for which phase space decomposition based on

the exponential dichotomy of the linear part or variation techniques are available for proving squeezing

property. The theoretical results are illustrated by applications to several specific non-autonomous

partial functional differential equations, including a retarded reaction-diffusion equation, a retarded

2D-Navier-Stokes equation and a retarded semilinear wave equation. The constructed exponential

attractors possess explicit fractal dimensions which do not depend on the entropy number but only

on some inner characteristics of the studied equations including the spectra of the linear part and the

Lipschitz constants of the nonlinear terms and hence do not require the smooth embedding between

two spaces in previous work.
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1 Introduction

For dissipative dynamical systems generated by partial differential equations or delay differential equa-

tions, the phase space is generally not locally compact. One main technique to analyze the complex

dynamics of these systems is to find the largest bounded invariant set of the system which is closed

and attracts all bounded sets in the phase space, i.e., the global attractor. Moreover, if one can prove

that the global attractor has finite dimension, so that, even though the initial phase space is infinite-

dimensional, the dynamics, reduced to the global attractor, is, in some proper sense, finite-dimensional

and can be described by a finite number of parameters. Therefore, the existence and dimension esti-

mations of global attractors for infinite dimensional dynamical systems, especially for a large class of

parabolic partial differential equations and delay differential equations have drawn much attention from

pure and applied mathematics community during the past decades. See, for instance, the monographs

by Babin and Vishik [4], Hale [34], Ladyzhenskaya [40], Robinson [48] and Temam [52].

Nevertheless, it is pointed out in [28] and [29] that the global attractor has several drawbacks. First,

it may attract the trajectories slowly and, in general, it is very difficult, if not impossible, to express the

convergence rate in terms of the physical parameters of the problem. A second shortcoming is that the

global attractor may be sensitive to perturbations, which severely limits the application scope since the

systems are only approximations of real world models. Moreover, in many situations, global attractors

may not be observable in experiments or in numerical simulations because of its complicated geometric

structure and may fail to capture important transient behaviors. Hence, Eden, Foias, Nicolaenko and

Temam proposed in [26] the concept of exponential attractor where the theory was established based

on the squeezing property in Hilbert spaces which was then extended by Babin and Nicolaenko in [1] to

investigate exponential attractors of reaction-diffusion systems in an unbounded domain, and recently

generalized by Zhou and Zhao in [62] and [63] to investigate the random exponential attractors for non-

autonomous stochastic lattice systems with multiplicative white noise and stochastic semilinear wave

equation in Hilbert spaces. Generally speaking, an exponential attractor is a compact subset with finite

fractal dimension, which is positively invariant and attracts all bounded subsets at an exponential rate.

It is well known that if exponential attractors exists, then they contain global attractors. Although they

may be larger than the global attractors, they are more robust than global attractors under perturbations

due to the exponential rate of convergence. Hence, they play significant roles in investigating asymptotic

behavior of infinite dimensional nonlinear dynamical systems especially for those with fast convergence

rate.

There are many evolution equations arising from real world models defined in Banach spaces, such

as delayed differential equations [34] and delayed partial differential equations [57, 58, 59]. Therefore, one

natural question arise, how to construct exponential attractors for systems in Banach spaces? Efendiev,

Miranville and Zelik in [28] developed an alternative method and explicit construction of exponential

attractors for semigroups in Banach spaces by using the so-called smoothing property of the semigroup,
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which originates from Ladyzhenskaya [39] for proving the finite dimensionality of global attractors. The

main ingredient of their works is the following smooth property between two spaces

‖S (τ∗)U0 − S (τ∗)V0‖Z ≤ c ‖U0 − V0‖X ,

where Z is a second Banach space which is compactly embedded into X, which has to hold for some

τ∗ > 0 and on some bounded positively invariant subset of X. The method was then extended by

Czaja, Efendiev, Miranville and Zelik [20] to construct exponential and uniform attractors for systems

in Banach spaces, which has also been widely used to estimate the fractal dimension and construct

exponential attractors for deterministic [12, 20, 29, 30, 35, 46] and random systems [10, 41, 50, 55].

Although, this method is effective for systems in Banach spaces, the construction cannot provide

explicit bounds of the fractal dimensions since it depends on the choice of another embedding space

which may vary from space to space. Furthermore, the dimension estimation depends on the entropy

number between two spaces for which is generally quite difficult, if not impossible, to obtain an explicit

bound. Only for some specific examples can the explicit entropy number be obtained, see, for instance

[38, 53, 61]. Indeed, in the very recent works [35] and [46], the authors pointed out only for scalar

equations the entropy number of the embedding C ↪→ C1 is explicitly known, which yields an estimate

for the fractal dimension of the exponential attractors. Hence, one naturally wonders whether we can

construct exponential attractors with explicit bounds of fractal dimensions for systems in Banach spaces

that only depend on the inner characteristics of the system. In our recent work [36], we affirm this by

extending Eden, Foias, Nicolaenko and Temam’s work [26] to autonomous systems in Banach spaces

with applications to functional differential equations. In this paper, we go one step further to construct

pullback exponential attractors with explicit fractal dimensions of nonautonomous dynamical systems

in Banach spaces.

It should be pointed out that in [24], the authors also established exponential attractors in Banach

spaces with explicit bounds by the idea originated from Mané [44]. Their results are obtained under

the assumption that the semiflow is C1 and the linearized semiflow at every point inside the absorbing

ball can be split into the sum of a compact operator plus a contraction, which were further generalized

by [64] to relax the condition of existence of compact absorbing sets to existence of bounded absorbing

sets. Actually, squeezing properties are omnipresent in systems whose linear parts admit exponential

dichotomies, which plays significant roles in study invariant manifolds of nonlinear dynamical systems

while the verification of C1 smoothness may be tedious, especially for functional differential equations.

Therefore, in this paper, we establish a new method by combining the squeezing property proposed in

early work of [31] and the covering lemma of the finite dimensional subspace of Banach space established

in [44]. We do not need the strict restriction of the boundedness of derivative of the semiflow and we also

obtain explicit bounds on the dimension of the invariant set in Banach spaces. The main contributions

of this work are in the following three folds.

• Unlike the works [43, 47, 51], where the functional differential equations are recast into Hilbert
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spaces to study the dimensions of global attractors, we directly propose a construction procedure of

pullback exponential attractors in the natural spaces of functional differential equations, i.e., Banach

spaces.

• Compared with the recent works [35] and [46], where Banach spaces are taken as the phase spaces,

we derive explicit bounds on fractal dimensions of the constructed pullback exponential attractors that

only depend on the spectrum of the linear parts and the Lipschitz constants of the nonlinear parts while

not related to the entropy number.

• Different from the early works [24, 36, 64], where autonomous systems are studied, we inves-

tigated non-autonomous systems generated by different kinds of non-autonomous partial functional

differential equations in this work. Specifically, we will consider both non-autonomous linear part and

non-autonomous nonlinear part by semigroup approach or variational technique. Even more, the ap-

proach used here is quite different from [24, 64].

The outline of our paper is as follows. In Section 2, we recall basic notions and results from

the theory of infinite dimensional dynamical systems, introduce the notion of pullback exponential

attractors and propose the construction procedure of pullback exponential attractors. In Section 3,

we construct pullback exponential attractors for non-autonomous retarded reaction-diffusion equations.

We consider two situations, i.e., the non-autonomous effect appears in the linear part and the nonlinear

part respectively. For the former scenario, we prove the squeezing property under the assumption that

the process generated by the linear part admits an exponential dichotomy, while in the latter situation,

we adopt a variational technique. Indeed, even the existence of pullback attractors is new for the

non-autonomous retarded reaction-diffusion equations. Sections 4 and 5 are devoted to applications

of the theoretical results to the retarded 2D-Navier-Stokes equation and the retarded semilinear wave

equation by variational techniques, since for these two equations, it is quite difficult to show the linear

parts generate semigroups in the natural phase space. At last, we summarize the paper and point out

some potential directions for future research in Section 6.

2 Pullback exponential attractor

We first introduce some preliminaries for establishing our main results, including the definitions of

evolution process, pullback exponential attractors as well as some hypotheses.

Definition 2.1. A two-parameter set of mappings {U(t, s) : t, s ∈ R, t > s} acting on X, i.e., U(t, s) :

X → X for all real numbers t, s ∈ R with t > s, is said to be an evolution process on X if it satisfies

U(t, τ)U(τ, s) = U(t, s), ∀t, τ, s ∈ R, t > τ > s,

U(s, s) = IdX , ∀s ∈ R,
(2.1)

where IdX : X → X represents the identity map on X. Moreover, if

T ×X 3 (t, s, x) 7→ U(t, s)x ∈ X
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is continuous, where T := {(t, s) ∈ R× R | t ≥ s}, then it is called a continuous evolution process.

We now give the following definition of pullback attractor and pullback exponential attractors.

Definition 2.2. Let {U(t, s) : t, s ∈ R, t > s} be an evolution process in X. A family of nonautonomous

sets A = {A(t) | t ∈ R} is said to be the global pullback attractor for U if it satisfies the following

properties:

(i) A(t) ⊂ X is non-empty and compact for all t ∈ R,

(ii) A is strictly invariant, i.e.

U(t, s)A(s) = A(t) ∀t ≥ s, s ∈ R,

(iii) A pullback attracts all bounded sets, i.e. for every bounded subset D ⊂ X and t ∈ R,

lim
s→∞

distH(U(t, t− s)D,A(t)) = 0,

and A is minimal within the families of closed subsets that pullback attract all bounded subsets of X.

Definition 2.3. Let {U(t, s) : t, s ∈ R, t > s} be an evolution process in X. The family of non-empty

compact subsets M = {M(t) | t ∈ R} is called a pullback exponential attractor for the evolution process

{U(t, s) : t, s ∈ R, t > s} if

(i) M is positively invariant, i.e.

U(t, s)M(s) ⊂M(t) ∀t ≥ s.

(ii) the fractal dimension of the sections M(t), t ∈ R, is uniformly bounded, i.e.,

sup
t∈R
{dimf (M(t))} <∞,

where dimf (M(t)) <∞ is defined as

dimf (M(t)) = lim
ε→0

ln
(
NX
ε (M(t))

)
ln
(

1
ε

) ,

and NX
ε (M(t)) denotes the minimal number of ε-balls in X with centres in M(t) needed to cover A.

(iii) M exponentially pullback attracts all bounded sets, i.e. there exists a constant ω > 0 such that for

every bounded subset D ⊂ X and every t ∈ R

lim
s→∞

eωs distX(U(t, t− s)D,M(t)) = 0,

where distX(A,B) denotes the Hausdorff semi-distance defined by between A and B, defined as

distX(A,B) = sup
a∈A

inf
b∈B

d(a, b), for A,B ⊆ X.
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Definition 2.4. A family of time dependent bounded subsets B(t), t ∈ R is said to grow at most sub-

exponentially in the past provided

lim
t→−∞

RB(t)e
ςt = 0 ∀ς > 0,

where RB(t) denotes the diameter of B(t) ⊂ X.

As in the autonomous case, the existence of compact absorbing sets is the crucial property in order

to obtain pullback attractors. For the following result see [19].

Lemma 2.1. Let {U(t, s) : t, s ∈ R, t > s} be a two-parameter process, and suppose U(t, s) : X → X is

continuous for all t > s. If there exists a family of compact (pullback) absorbing sets {B(t)}t∈R, then

there exists a pullback attractor {A(t)}t∈R, and A(t) ⊂ B(t) for all t ∈ R. Furthermore,

A(t) =
⋃
D⊂X

bounded

ΛD(t),

where

ΛD(t) =
⋂
n∈N

⋃
s>n

U(t, t− s)D

For a finite dimensional subspace F of a Banach space X, denote by BF
r (x) the ball in F of center

x and radius r, that is BF
r (x) = {y ∈ F |‖y−x‖ ≤ r}. For later use, we introduce the following covering

lemma of balls in finite dimensional Banach spaces which was proved in [44].

Lemma 2.2. For every finite dimensional subspace F of a Banach space X, we have

N
(
r1, B

F
r2(0)

)
≤ m2m

(
1 +

r1

r2

)m
, (2.2)

for all r1 > 0, r2 > 0, where m = dimF and N
(
r1, B

F
r2(0)

)
is the minimum number of balls needed to

cover the ball of radius r1 by balls BF
r2(0) of radius r2 calculated in the metric space X.

For notation simplicity, we will write {U(t, s) : t, s ∈ R, t > s} simply as {U(t, s)} in the following.

In order to construct the pullback exponential attractor we need to impose the following assumptions

on the process {U(t, s)}.
(H1) For the process {U(t, s)} there exists a family of bounded sets B(t) ⊂ X, t ∈ R, that pullback

absorbs all bounded subsets of X. That is, for all bounded subsets D ⊂ X and all t ∈ R there exists

TD,t > 0 such that

U(t, t− s)D ⊂ B(t) for all s ≥ TD,t.

(H2) The family of bounded sets B(t) ⊂ X, t ∈ R is positively invariant, that is, U(t, s)B(s) ⊆ B(t)

for all t ≥ s.
(H3) There is a finite dimensional projection P (t) : X → P (t)X with finite dimension

Λ = dim{P (t)X} (2.3)
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and there are three positive numbers M1,M2,M3 and two constants λ0 and λ1 such that

‖P (t)U(t, s)ϕ− P (t)U(t, s)ψ‖ ≤M1e
λ0(t−s) ‖ϕ− ψ‖ (2.4)

and

‖(I − P (t))U(t, s)ϕ− (I − P (t))U(t, s)ψ‖ ≤ (M2e
λ1(t−s) +M3e

λ0(t−s)) ‖ϕ− ψ‖ (2.5)

for any t ∈ R and some s0 ≥ 0 and ϕ,ψ in B(t).

In the following, we are devoted to the construction of exponential attractors for the discrete

evolution process {U(n,m)}.

Theorem 2.1. Let {U(n,m)} be a discrete evolution process in X and the assumptions (H1)−(H3) are

satisfied for discrete times n,m ∈ Z. Moreover, we assume that the diameter of the family of absorbing

sets {B(n)}, n ∈ Z, grows at most sub-exponentially in the past, and there exists 0 < α < M1 such that

ζ := αeλ0 + M2e
λ1 + M3e

λ0 < 1. Then, there exists a pullback exponential attractor {M(n)} for the

semigroup {U(n,m)}, and the fractal dimension is bounded by

dimf A ≤
ln Λ + Λ ln(2 + 2M1

α )

− ln(αeλ0 +M2eλ1 +M3eλ0)
<∞. (2.6)

Proof. 1) Covering of U(n, n−m)B(n−m). We construct the covering of U(n, n−m)B(n−m) by

inductively defining a family of sets Wm(n) in m ∈ N+ that depend on the time instant n ∈ Z and

satisfy the following properties
(W1) Wm(n) ⊂ U(n, n−m)B(n−m) ⊂ B(n),

(W2) ]Wm(n) ≤ Nm,

(W3) U(n, n−m)B(n−m) ⊂
⋃
u∈Wm(n)BζmRB(n−m)

(u),

(2.7)

where ]Wm(n) represents the number of elements of Wm(n).

We first consider the case m = 1, i.e., we construct a covering of the image when U(n, n−1)B(n−1).

Denote by RB(i) := supu∈B(i) ‖u‖X , i = n −m,n − (m − 1), · · · , n − 1, then for any u1 ∈ B(n − 1), we

have B(n− 1) ⊂ BRB(n−1)
(u1). For any u ∈ B(n− 1) ∩B

(
u1, RB(n−1)

)
, it follows from (H3) that

‖P (n)U(n, n− 1)u− PU(n, n− 1)u1‖ ≤M1e
λ0RB(n−1), (2.8)

and

‖(I − P (n))U(n, n− 1)u− (I − P (n))U(n, n− 1)u1‖ ≤ (M2e
λ1 +M3e

λ0)RB(n−1). (2.9)

By Lemma 2.2, we can find y1
1, . . . , y

n1
1 such that

BP (n)X

(
PU(n, n− 1)un,M1e

λ0RB(n−1)

)
⊂

n1⋃
j=1

BP (n)X

(
yj1, αe

λ0RB(n−1)

)
(2.10)

with

n1 ≤ Λ2Λ

(
1 +

M1

α

)Λ

, (2.11)
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where Λ is the dimension of P (n)X and we have denoted by BP (n)X(y, r) the ball in P (n)X of radius

r and center y. Set

uj1 = yj1 + (I − P (n))U(n, n− 1)u1 (2.12)

for j = 1, . . . , n1 and W 1 = {u1
1, u

2
1, · · · , u

n1
1 }. Then, for any u ∈ B(n−1)∩B

(
u1, RB(n−1)

)
, there exists

a j such that∥∥∥U(n, n− 1)u− uj1
∥∥∥ ≤ ∥∥∥P (n)U(n, n− 1)u− yj1

∥∥∥+ ‖(I − P (n))U(n, n− 1)u− (I − P (n))U(n, n− 1)u1‖

≤
(
αeλ0M1 +M2e

λ1 +M3e
λ0
)
RB(n−1)

≤ ζRB(n−1).

(2.13)

indicating (W3) is satisfied for m = 1. Furthermore, it is clear from the definition of W 1 that it satisfies

(W1) and (W2). This completes the proof of the case m = 1.

Assume that the sets W l(n) satisfying (2.7) have already been constructed for all m ≤ l and n ∈ Z,

i.e., there exists covering

U(n, n− l)B(n− l) ⊂
⋃

u∈W l(n)

BζlRB(n−l) . (2.14)

We construct in the sequel the covering of W l+1(n) satisfying (2.7). By the process property and the

induction hypothesis (W3), we have

U(n, n− (l + 1))B(n− (l + 1)) = U(n, n− 1)U(n− 1, n− 1− l)B(n− 1− l)

⊂
⋃

u∈W l(n−1)

U(n, n− 1)BζlRB(n−l−1)
(u). (2.15)

In other words, U(n, n− (l+ 1))B(n− (l+ 1)) can be covered by
⋃
u∈W l(n−1) U(n, n− 1)BζlRB(n−l−1)

(u).

We construct in the following a covering of
⋃
u∈W l(n−1) U(n, n− 1)BζlRB(n−l−1)

(u).

Let ul ∈W l(n− 1). It follows from induction hypothesis (W1) that ul ∈W l(n− 1) ⊂ U(n− 1, n−
1 − l)B(n − l − 1) ⊂ B(n − 1). Therefore, for any u ∈ B(n − 1) ∩ B

(
ul, ζ

lRB(n−l−1)

)
, it follows from

(H3) that

‖P (n)U(n, n− 1)u− P (n)U(n, n− 1)ul‖ ≤M1e
λ0ζ lRB(n−l−1), (2.16)

and

‖(I − P (n))U(n, n− 1)u− (I − P (n))U(n, n− 1)ul‖ ≤ (M2e
λ1 +M3e

λ0)ζ lRB(n−l−1). (2.17)

By Lemma 2.2, we can find y1
l , . . . , y

nl
l such that

BPX

(
P (n)U(n, n− 1)un,M1e

λ0ζ lRB(n−l−1)

)
⊂

nl⋃
j=1

BP (n)X

(
yjl , αe

λ0ζ lRB(n−l−1)

)
(2.18)

with

nl ≤ Λ2Λ

(
1 +

M1

α

)Λ

, (2.19)
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where Λ is the dimension of P (n)X and we have denoted by BP (n)X(y, r) the ball in P (n)X of radius

r and center y. Set

ujl = yjl + (I − P (n))U(n, n− 1)ul ∈ U(n− 1, n− 1− l)B(n− 1− l) (2.20)

for j = 1, . . . , nl. Then, it follows from (2.16)-(2.18) that, for any u ∈ B(n − 1) ∩ B
(
ul, ζ

lRB(n−l−1)

)
,

there exists a j such that∥∥∥U(n, n− 1)u− ujl
∥∥∥ ≤ ∥∥∥P (n)U(n, n− 1)u− yjl

∥∥∥+ ‖(I − P (n))U(n, n− 1)u− (I − P (n))U(n, n− 1)ul‖

≤
(
αeλ0 +M2e

λ1 +M3e
λ0
)
ζ lRB(n−l−1) = ζ l+1RB(n−l−1).

(2.21)

This implies that
⋃
u∈W l(n−1) U(n, n − 1)BζlRB(n−l−1)

(u) is covered by balls with radius ζ l+1RB(n−l−1)

and centers {u1
l , u

2
l , · · · , u

nl
l } and hence (W3) holds. Denote the new set of centres by W l+1(n). From

the induction hypothesis, we have ]W l(n) ≤ [Λ2Λ
(
1 + M1

α

)Λ
]l, which yields ]W l+1(n) ≤ nl]W

l(n) ≤
[Λ2Λ

(
1 + M1

α

)Λ
]l+1 and proves (W2). By construction the set of centres W l+1(n), we can see W l+1(n) ⊂

U(n, n− (l + 1))B(n− (l + 1)), which concludes the proof of the properties (W1).

2) Construction of random exponential attractor for {U(n,m)}. We define E1(n) := W 1(n)

and set

Em+1(n) := Wm+1(n) ∪ U(n, n− 1)Em(n− 1), m ∈ N+. (2.22)

Then, if follows from the definition of the sets Em(n), the properties of the sets Wm(n) and the positive

invariance of the absorbing set B(n) that the family of sets Em(n),m ∈ N+ satisfies

(E1) U(n, n− 1)Em(n− 1) ⊂ Em(n), Em(n) ⊂ U(n,m)B(m),

(E2) Em(n) =
⋃n
i=0 U(n, n− i)Wm−i(n− i), ]Em(n) ≤

∑n
i=0(Λ2Λ

(
1 + M1

α

)Λ
)i,

(E3) U(n,m)B(m) ⊂
⋃
u∈Em(n)BζnRB(u).

Based on the family of sets Em(n), we define M(n) :=
⋃
m∈N+ Em(n) and show that it yields an

exponential attractor for the semigroup {U(n,m)}.
Positive invariance of M(n). It follows from property (E1) that, for all l ∈ Z, we have

U(l + n, n)
⋃
n∈Z

Em(n) =
⋃
n∈N+

U(l + n, n)Em(n) ⊂
⋃
n∈N+

En+l ⊂
⋃
n∈N+

Em(n+ l). (2.23)

Thanks to the continuity property in (H1), we can take closure in both sides of (2.23), giving rise to

U(l + n, n)M(n) := U(l + n, n)
⋃

m∈N+

Em(n) =
⋃

m∈N+

U(l + n, n)Em(n) ⊂
⋃

m∈N+

Em(n+ l) =M(n+ l).

(2.24)

Compactness and finite dimensionality of M(n). We prove in the sequel that the set M(n)

is non-empty, precompact and of finite fractal dimension. It follows from (E1) that, for any l ∈ Z and

m ≥ l + 1,

Em(n) ⊂ U(n, n−m)B(n−m) ⊂ U(n, n− l)U(n− l, n−m)B(n−m) ⊂ U(n, n− l)B(n− l).
(2.25)
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Thus, for any l ∈ Z, we have

⋃
m∈N+

Em(n) =
l⋃

m=0

Em(n) ∪
∞⋃

m=l+1

Em(n) ⊂
l⋃

m=0

Em(n) ∪ U(n, n− l)B(n− l). (2.26)

Since ζ < 1, for any given ε > 0, there exists l ∈ Z such that

ζ l+1RB(n−l) ≤ ε < ζ lRB(n−l+1), (2.27)

which combined with the fact

U(n, n− l)B(n− l) ⊂
⋃

u∈W l(n)

Bε(u), (2.28)

indicates that the estimate of the number of ε-balls in X needed to cover
⋃
m∈N+ Em(n) is

Nε

 ⋃
m∈N+

Em(n)

 ≤ ]( l⋃
m=0

El

)
+ ]W l ≤ (l + 1)]El + (Λ2Λ

(
1 +

M1

α

)Λ

)l

≤ 2(l + 1)2[Λ2Λ

(
1 +

M1

α

)Λ

]l.

(2.29)

This proves the precompactness of
⋃
m∈N+ Em(n) in X, which directly implies the closure M(n) :=⋃

m∈N+ Em(n) is compact in X since X is a Banach space.

It follows from (2.27) and (2.29) that the fractal dimension of the set M(n) can be estimated by

dimfM(n) = lim sup
ε→0

lnNε(M(n))

− ln ε

≤ lim sup
l→∞

ln[2(l + 1)]2 + ln[Λ2Λ
(
1 + M1

α

)Λ
]l

−l ln ζ − lnRB(n−l+1)

=
ln Λ + Λ ln(2 + 2M1

α )

− ln ζ + ς
<∞,

(2.30)

for any ς > 0, where the last inequality follows from the assumption that RB(n−l+1) grows at most

sub-exponentially in the past. Due to the arbitrariness of ς > 0, we have

dimfM(n) ≤
ln Λ + Λ ln(2 + 2M1

α )

− ln ζ
<∞. (2.31)

3) Exponential attraction ofM(n). It remains to show that the setM(n) exponentially attracts

all bounded subsets of X at time n ∈ Z. It follows from assumptions (H1) that, for any bounded subset

D ⊂ X, there exists an nD,n ∈ Z such that U(k, k − l)D ⊂ B(k) for all l ≥ nD,n and k ≤ n. If
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l ≥ nD,n + 1, that is l = nD,n + n0 with some n0 ∈ N, then

distX (U(n, n− l)D,M(n)) = distX

(
U(n, n− l)D,

∞⋃
m=0

Em(n)

)

≤ distX

(
(U(n, n− n0)(U(n− n0, n− n0 − nD,n)D,

∞⋃
m=0

Em(n)

)

≤ distX

(
(U(n, n− n0)B(n− n0),

∞⋃
m=0

Em(n)

)
≤ distX ((U(n, n− n0)B(n− n0), En0)

≤ ζn0RB(n−n0) ≤ ce−ωn

(2.32)

for some constants c ≥ 0 and ω > 0, since ζ < 1. This completes the proof.

By adopting the same procedure as the proof of Theorem 3.2 in [12], we have the following results

about the existence of exponential attractors for evolution process in Banach spaces.

Theorem 2.2. For the evolution process {U(t, s)} on the Banach space X and assume that hypothesis

(H1)-(H3) hold and conditions of Theorem 2.1 hold. Then, there exists a pullback exponential attractor

M(t) for the evolution process {U(t, s)}, and the fractal dimension is bounded by

dimf A ≤
ln Λ + Λ ln(2 + 2M1

α )

− ln(αeλ0 +M2eλ1 +M3eλ0)
<∞. (2.33)

Remark 2.1. By (2.33), we can see the fractal dimension of the pullback exponential attractors con-

structed in theorem 2.2 depends on the parameter α. Generally, if we take α ↑ M1 and assume

M1e
λ0 + M2e

λ1 + M3e
λ0 < 1, then for all α ∈ (0,M1), we have αeλ0t0 + M2e

λ1t0 + M3e
λ0t0 < 1

and hence we get an α-independent estimation

dH ≤
− ln Λ− Λ ln 4

ln(2eλ0t0 + 2M2eλ1t0 + 2M3eλ0t0)
. (2.34)

3 Retarded reaction-diffusion equation

This section is devoted to the existence of pullback exponential attractors for nonautonomous retarded

reaction-diffusion equations with asymptotically autonomous linear part or nonautonomous nonlinear

part.
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3.1 Asymptotic autonomous linear part

We first consider the following nonautonomous retarded reaction-diffusion equation on bounded domain

with Dirichlet boundary condition and asymptotically autonomous linear part
∂
∂tu(t, x) = a(t, x) ∂2

∂x2
u(t, x)− c(t, x)u(t, x)− l(t, x)u(t− r, x) + f(u(t− r, x)), 0 ≤ x ≤ π, t ≥ 0,

u(t, 0) = u(t, π) = 0, t ≥ 0,

u(t, x) = φ(t, x), 0 ≤ x ≤ π,−r ≤ t ≤ 0.

(3.1)

where a, c, l ∈ Cµb (R+, C[0, π]) , µ ∈ (0, 1), the space of uniformly bounded, µ-Hölder continuous C[0, π]-

valued functions, a(t, x) ≥ a0 > 0 and

a(t, x)→ 1, c(t, x)→ c, l(t, x)→ l

uniformly for x ∈ [0, π] as t → ∞. Let H = L2(0, π) with inner product (ξ, η) =
∫ π

0 ξ(x)η(x)dx,

norm ‖ξ‖H = [
∫ π

0 ξ2(x)dx]1/2 for any ξ, η ∈ H and X = C([−r, 0], H) the continuous function from

[−r, 0] to H endowed with the supremum norm ‖φ‖X = supθ∈[−r,0] ‖φ(θ)‖H for any φ ∈ X. Let D =

W 2,2(0, π) ∩W 1,2
0 (0, π) be endowed with the usual norm. Set

A(t)ϕ = a(t, ·)ϕ′′ + c(t, ·)ϕ and Aϕ = ϕ′′ − cϕ

for ϕ ∈ D and t ≥ 0. On X we further define

L(t)φ = −l(t, ·)φ(−r) and Lφ = −lφ(−r),

and define AU : X → X by

AUφ = Aφ(0) + Lφ (3.2)

for any φ ∈ X. It follows from [57] that the characteristic values of the linear part AU are the roots of

the following characteristic equation

n2 −
(
λ+ c+ le−λr

)
= 0, n = 1, 2, · · · . (3.3)

Since AU is compact, it follows from [57, Theorem 1.2 (i)] that the spectrum of AU is point spectrum,

which we denote by %1 > %2 > · · · with multiplicity n1, n2, · · · , where %1 is defined as

%1 = max
{

Reλ : n2 −
(
λ+ c+ le−λr

)
= 0
}
, n = 1, 2, · · · . (3.4)

In the following, we always assume that l − c < 1 and it follows from [57, Lemma 1.13, p. 73] that

if c > 0, l > 0 and l − c < 1, then %1 < 0. By the results in [49, p. 3541], the evolutions process

S(t, σ) : R×R×X → X defined by S(t, σ)φ = uφt (·, σ) with uφ(t, σ) being the solution of the following

linear part of (3.1) {
du(t)
dt = A(t)u(t) + L(t)ut

uσ = φ
(3.5)
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which admits an exponential dichotomy with a two dimensional stable subspace, that is, there exist a

positive constants K and a negative constant β < 0, and a m dimension projection operators P (t) :

X → Xm, s ∈ R and Q(t) = I − P (t) : X → X⊥m, t ∈ R such that

‖Q(t)S(t, s)‖ = ‖S(t, s)Q(s)‖ ≤ Keβ(t−s), t ≥ s. (3.6)

Moreover, by definition of %1, there exist positive constants −γ < %1 and K0 such that

‖S(t, σ)φ‖X < K0e−γ(t−σ)‖φ‖X (3.7)

for all t ≥ σ. We assume that f satisfies the following global Lipschitz condition.

Hypothesis A3 ‖f (φ1)− f (φ2)‖ ≤ L ‖φ1 − φ2‖ for any φ1, φ2 ∈ X.
It follows from Theorem 2.6 in [57] and some standard contraction techniques, one can see under

assumption Hypothesis A3, the non-autonomous nonlinear equation (3.1) admits a solution uφ(t, σ)

for any t ∈ [σ−r,∞), which is also continuous with respect to the initial condition and can be represented

as

uφt (·, σ) = S(t, σ)φ+

∫ t

σ
S(t, s)X0f(uφs (·, σ))ds, t ≥ 0, (3.8)

where X0 : [−r, 0] → B(X,X) is given by X0(θ) = 0 if −r ≤ θ < 0 and X0(0) = Id, where B(X,X) is

the family of bounded linear operators on X.

Define the non-autonomous evolution process generated by (3.1) by Φ(t, σ)φ = uφt (·, σ) for any

φ ∈ X, which is continuous for any t ≥ σ. In the following, we construct exponential attractors for

Φ(t, σ). By similar techniques as those in the proof of Theorem 3.1 from [37], we can see that Φ(t, σ)

admits a family of positively invariant absorbing sets B(σ) for any σ ∈ R, implying (H1) and (H2) hold.

Theorem 3.1. Assume that Hypothesis A4 as well as Hypothesis A3 hold, K0 < 1 and K0Lf−γ <
0. Then, the dynamical system Φ admits an invariant absorbing set B(σ) defined by

B(σ) = {φ ∈ C|‖φ‖X ≤
1

1−K0
[
K0f(0)

γ
+

1

γ −K0Lf
]}. (3.9)

Subsequently, we prove the squeezing property of Φ, i.e., (H3) holds.

Theorem 3.2. Let P be the finite dimensional projection defined by (3.6), K,β, γ and K0 being defined

by (3.6) and (3.5) respectively and assumptions of Theorem 3.1 hold. Then, we have

‖P (t)Φ(t, σ)ϕ− P (t)Φ(t, σ)ψ‖X ≤ 2e(K0Lf−γ)(t−σ) ‖ϕ− ψ‖X (3.10)

and

‖(I − P (t))Φ(t, σ)ϕ− (I − P (t))Φ(t, σ)ψ‖X ≤ (Keβ(t−σ) +
KLfK0

−γ + Lf − β
e(Lf−γ)(t−σ)) ‖ϕ− ψ‖X

(3.11)

for any t ≥ 0 and ϕ,ψ ∈ B.
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Proof. For any ϕ,ψ ∈ X, denote by y = ϕ− ψ and wt(·, σ) = Φ(t, σ)ϕ− Φ(t, σ)ψ = uϕt (·, σ)− uψt (·, σ).

Then it follows from (3.10) that

wt(·, σ) = S(t, σ)y +

∫ t

σ
S(t, s)X0[f(uϕs )− f(uψs )]ds, t ≥ 0. (3.12)

Taking projection I − P (t) on both sides of (3.12) leads to

‖(I − P (t))wt(·, σ)‖X =‖(I − P (t))S(t, σ)y +

∫ t

σ
(I − P (t))S(t, s)X0[f(uϕs )− f(uψs )]ds‖X

≤Keβ(t−σ)‖y‖X + LfK0

∫ t

σ
e−γ(t−s)‖(I − P (t))ws‖Xds.

(3.13)

Multiplying both sides of (3.13) by eγ(t−σ) implies

eγ(t−σ)‖(I − P (t))wt(·, σ)‖X ≤Ke(β+γ)(t−σ)‖y‖X + LfK0

∫ t

σ
eγ(s−σ)‖(I − P (t))wt(·, σ)‖Xds. (3.14)

Applying the Gronwall inequality, we have

eγ(t−σ)‖(I − P (t))wt(·, σ)‖X ≤‖y‖X [Ke(β+γ)(t−σ) +
KLfK0

β + γ − LfK0
(e(β+γ)(t−σ) − eLfK0)], (3.15)

indicating that

‖(I − P (t))wt(·, σ)‖X ≤‖y‖X [Keβ(t−σ) +
KLfK0

β + γ − LfK0
(eβ(t−σ) − e(K0Lf−γ)(t−σ))]

≤‖y‖X [Keβ(t−σ) +
KLfK0

−γ + LfK0 − β
e(K0Lf−γ)(t−σ)].

(3.16)

Hence, the second part holds with λ0 = LfK0 − γ, λ1 = β, M2 = K and M3 =
KLfK0

−β−γ+LfK0
.

Subsequently, we prove the first part. Since S(t, σ)y = P (t)S(t, σ)y + (I − P (t))S(t, σ)y, we have

‖P (t)S(t, σ)y‖X ≤‖S(t, σ)y‖X + ‖(I − P (t))S(t, σ)y‖X . (3.17)

Taking projection P (t) on both sides of (3.12) and on account of (3.17) yields

‖P (t)wt(·, σ)‖X =‖S(t, σ)y‖X + ‖(I − P (t))S(t, σ)y‖X +

∫ t

σ
‖P (t)S(t, s)X0[f(uϕs )− f(uψs )]ds‖X

≤(K0e
−γ(t−σ) +Keβ(t−σ))‖y‖X + LfK0

∫ t

σ
e−γ(t−s)‖Pwt(·, σ)‖Xds

≤(K0 +K)e−γ(t−σ)‖y‖X + LfK0

∫ t

σ
e−γ(t−s)‖Pwt(·, σ)‖Xds.

(3.18)

Multiplying both sides of (3.18) by eγ(t−σ) implies

eγ(t−σ)‖Pwt(·, σ)‖X ≤(K0 +K)‖y‖X + LfK0

∫ t

σ
eγ(s−σ)‖Pwt(·, σ)‖Xds. (3.19)
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Applying again the Gronwall inequality,

eγ(t−σ)‖Pwt(·, σ)‖ ≤(K0 +K)‖y‖XeLfK0(t−σ), (3.20)

indicating that

‖Pwt(·, σ)‖ ≤(K0 +K)‖y‖Xe(LfK0−γ)(t−σ). (3.21)

Hence, the first part holds by taking M1 = (K0 +K) and λ0 = LfK0 − γ.

By Theorem 2.2, we have the following results about existence of a pullback exponential attractor

M(t) for the nonlinear dynamical system Φ generated by (3.1).

Theorem 3.3. Let P be the finite dimensional projection defined by (3.6), K,β, γ and K0 being defined

by (3.6) and (3.5) respectively and assumptions of Theorem 3.1 hold. Moreover, assume there exists

α > 0 such that ζ := αe(LfK0−γ) +Keβ +
KLfK0

−γ+LfK0−β e
(LfK0−γ) < 1. Then, (3.1) admits an exponential

attractor M(t) whose fractal dimension satisfies

dimfM(t) ≤
lnm+m ln(2 + 2(K0+K)

α )

− ln(αe(LfK0−γ) +Keβ +
KLfK0

−γ+LfK0−β e
(LfK0−γ))

<∞. (3.22)

We have the following special case about the fractal dimension of global attractorM(t) in the case

m = 1.

Corollary 3.1. Let P be the finite dimensional projection defined by (3.6), K,β, γ and K0 being defined

by (3.6) and (3.5) respectively and assumptions of Theorem 3.1 hold with m = 1. Moreover, assume

there exists α > 0 such that ζ := (α + K)e(LfK0−γ) + Ke%1 < 1. Then, (3.1) admits an exponential

attractor M(t) whose fractal dimension is bounded as

dimfM(t) ≤
ln(2 + 2(K0+K)

α )

− ln[(α+K)e(LfK0+%1) +Ke%1 ]
<∞. (3.23)

3.2 Nonautonomous nonlinear term

Subsequently, we consider the situation in which the nonautonomous effect comes from the nonlinear

term, i.e., the following nonautonomous initial boundary value problem with delay

∂
∂tu(x, t) = ∂2

∂x2
u(x, t)− au(x, t)− bu(x, t− r) + f(t, u(x, t− r)) + h(x), 0 ≤ x ≤ π, t ≥ τ,

u(0, t) = u(π, t) = 0, t ≥ τ,
u(x, t) = φ(t)(x), 0 ≤ x ≤ π, τ − r ≤ t < τ,

u(x, τ) = u0(x), 0 ≤ x ≤ π.

(3.24)

Here, a, b are positive constants, f is the nonlinear delayed forcing term and h(x) is the time independent

and spatial dependent external force. The uniform attractors of (3.24) on unbounded domain when the

nonautonomous term does not depend on ut has been investigate in [54]. Here, we restrict ourselves to
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the domain [0, π] and pay attention to the existence as well as the topological dimensions estimation of

pullback attractors.

Due to the nonautonomous effect accurses in the nonlinear term of (3.24), we do not use the

semigroup approach as Section 4.1.1 but adopt the variational one developed in [9]. We first introduce

more notations that will be used in the remaining of this section. Let C∞0 (0, π) be the space of smooth

function on (0, π) with compact support. Set V = {u ∈ C∞0 (0, π) : div u = 0} and denote by H the

closure of V in L2(0, π) with inner product (·, ·) defined by (u, v) =
∫ π

0 u(x)v(x)dx and norm | · |
defined by |u| = (u, u)1/2 for any u, v ∈ L2(0, π). Let V be the closure of V in H1

0 (0, π) with scalar

product ((·, ·)) defined by ((u, v)) =
∫ π

0
∂u
∂x

∂v
∂x dx and norm ‖ · ‖ defined by ‖u‖ = ((u, u))1/2 for any

u, v ∈ H1
0 (0, π). Denote by LH = L2([−r, 0], H). By the standard theory of Soblev spaces, one can see

V ⊂ H ≡ H ′ ⊂ V ′, where H ′ and V ′ are the dual spaces of V and H respectively and the injections

are dense and compact. Denote by 〈·, ·〉 the duality pairing between V and V ′ and X = C([−r, 0], H)

with the usual supremum norm ‖ · ‖X . Set D(A) = H2 ∩ V , then Au = P̃∆u,∀u ∈ D(A), (P̃ the

ortho-projector from L2(0, π) onto H.

Let 0 < µ1 < µ2 < · · · < µm < · · · be the eigenvalues of −A with eigenfunctions e1, e2, · · · , em, · · · .
Denote by Vm = span{e1, e2, · · · , em} and V ⊥m = span{em+1, em+2, · · · } the finite dimensional space

spanned by {e1, e2, · · · , em} and its orthogonal complement respectively. Let Pm : V → Vm be the finite

projection of V onto Vm defined by

Pmφ = Σm
i=1(φ, ei)ei, (3.25)

for any φ ∈ V . Then we have µm+1|(I − Pm)v| ≤ ‖v‖ = (−Av, v) and µ1|v| ≤ ‖v‖ = (−Av, v) for any

v ∈ H, indicating that

(Av, v) = −‖v‖ ≤ −µm+1|(I − Pm)v| (3.26)

and

(Av, v) = −‖v‖ ≤ −µ1|v| (3.27)

for any v ∈ V . Let CV = C0([−r, 0];V ) be the space of continuous function from [−r, 0] to V equipped

with the usual supremum norm. Similar to [22, 16], we define the following m-dimensional projector

P = P̂m in CV by

Pφ = (Pφ)(θ) =
m∑
k=1

e−µkθ (φ(0), ek) ek ≡ e−AθPmφ(0), (3.28)

from CV onto CVm , based on the projection operator Pm. It follows from (3.28) that

‖Pφ‖X ≤ e−µ1r|Pmφ(0)| (3.29)

and

‖(I − P )φ‖X ≤ e−µm+1r|Pmφ(0)| (3.30)

16



Remark 3.1. By [22, 16], P is the spectral projector of the infinitesimal generator A of the linear

semigroup Tt in CV defined by

Tt[u] ≡ ut(θ) =

u(t+ θ), if t+ θ > 0

u0(t+ θ), if t+ θ 6 0

with u(t) being the solution of (3.24) with a = b = 0, f(t, u(x, t− r)) ≡ 0.

For notation simplicity, denote by g(t, ψ) = −bψ(−r) + f(t, ψ(−r)) for ψ ∈ X and thus, (3.24) can

be rewritten in the following abstract form on H{
d
dtu(t) = Au(t)− au(t) + g (t, ut) + h, t ≥ τ,
u(τ) = u0, u(t) = φ(t− τ), t ∈ [τ − r, τ).

(3.31)

Now, we can analyze problem (3.31) for a more general functional g by imposing the following

assumptions, similarly as it was done in [9]. Let us consider g : R×X → H satisfying:

Hypothesis A4 For all ξ ∈ X, g(·, ξ) : R→ H is measurable.

Hypothesis A5 For all t ∈ R, g(t, 0) = 0,

Hypothesis A6 There exists Lg > 0 such that ∀t ∈ R,∀ξ, η ∈ X

|g(t, ξ)− g(t, η)| 6 Lg‖ξ − η‖X .

Hypothesis A7 There exists m0 > 0, Cg > 0 such that for all l ∈ [0,m0] , τ 6 t, u and v ∈ C([τ −
r, t];H), the continuous function space from [τ − r, t] to H, the following inequality holds∫ t

τ
els|g (s, us)− g (s, vs) |2 ds 6 C2

g

∫ t

τ−r
els|u(s)− v(s)|2 ds.

Following similar techniques as [23, Theorem 2.3] and [54, Theorem 8], we have the following results on

the existence of solutions.

Lemma 3.1. Assume that Hypothesis A4−A7 hold. Then, for each τ ∈ R
(i) for any φ ∈ X, there exists a solution u(·) to problem (3.24) with u ∈ L2(τ − r, T ;H)∩L2(τ, T ;V )∩
L∞(τ, T ;H) ∩ C([τ − r, T ];H),∀T > τ ,

(ii) for any φ ∈ C([τ − r, T ];V ), problem (3.24) admits a strong solution

u ∈ L2 (τ, T ;H) ∩ C([τ − r, T ];V ), ∀T > τ.

It follows from Lemma 3.1 and [9, Theorem 9] that the family of mappings U(t, τ) : X → X defined

by

U(t, τ)φ = ut(·; τ, (φ(0), φ)) (3.32)

is a continuous process for any φ ∈ X and any τ 6 t. For later analysis, we also introduce the product

space MH = H × LH , which is a Hilbert space with associated norm

‖(u0, φ)‖2MH
= |u0|2 +

∫ 0

−r
|φ(s)|2 ds, for (u0, φ) ∈MH . (3.33)
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Then, we can define the corresponding process on MH as

S(t, τ) (u0, φ) = (u (t; τ, (u0, φ)) , ut (·; τ, (u0, φ))) , for (u0, φ) ∈MH , τ 6 t.

Following Remark 7 in [9], we also consider the family of mappings Ũ(·, ·) : MH → LH defined as

Ũ(t, τ) (u0, φ) = ut (·; τ, (u0, φ)) , for (u0, φ) ∈MH , and τ 6 t.

Observe that

U(t, τ)φ = Ũ(t, τ)(φ(0), φ) for any t > τ, and any φ ∈ X.

In this way, we then have that the process S(t, τ) can be rewritten as

S(t, τ) (u0, φ) =
(
u (t; τ, (u0, φ)) , Ũ(t, τ) (u0, φ)

)
.

Moreover, define the linear mapping j by

j : φ ∈ X 7→ j(φ) = (φ(0), φ) ∈ H ×X.

This map is obviously continuous from X into H ×X and into MH . Noticing that for all (u0, φ) ∈MH

it holds that Ũ(t, τ) (u0, φ) ∈ X provided that t > τ + r, we then can write

S(t, τ) (u0, φ) = j
(
Ũ(t, τ) (u0, φ)

)
, for (u0, φ) ∈MH , t > τ + r.

It follows from Theorem 9 in [9] that the above defined U(t, τ) : X → X and S(t, τ) : MH → MH are

both continuous processes for t ≥ τ .

Using similar arguments in [9], we have the following results concerning existence of global pullback

attractors of (3.1), implying (H1) and (H2) hold. For readers’ convenience, we provide an outline of

the proof here. Details can be found in [9].

Theorem 3.4. Assume that Hypothesis A4−A7 hold for any τ 6 t with m0 > 0 and l+ 1 + 2Cg −
2(µ1 + a) < 0. Then, there exists a unique uniformly bounded pullback attractor {A(t)}t∈R for the

process U(t, τ).

Proof. We first show the existence of a family of bounded absorbing sets {B(t)}t∈R of Ũ(t, τ) in X. By

[9, Definition 10], it suffices to prove that for any bounded D̃ ⊂MH and t ∈ R, there exists TD̃(t) such

that for all s > TD̃(t) it holds Ũ(t, t − s)D̃(t) ⊂ B(t). Let D̃ be bounded in MH , that is, there exists

d > 0 such that

|u0|2 + ‖φ‖2X 6 d2, for all (u0, φ) ∈ D̃. (3.34)

Take (u0, φ) ∈ D̃, τ ∈ R and denote as usual u(·) = u (·; τ, (u0, φ)). Taking inner product on both sides

of (3.31) and on account of (3.27) we have

1

2

d

dt
|u|2 = (Au, u)− a(u, u) + (g (t, ut) , u) + (h, u)

6 −(a+ µ1)|u|2 +
1

2Cg
|g (t, ut)|2 +

Cg
2
|u|2 +

1

2
|h|2 +

1

2
|u|2

(3.35)
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implying that
d

dt
|u|2 6

1

Cg
|g (t, ut)|2 + (Cg + 1− 2(a+ µ1)) |u|2 + |h|2 . (3.36)

Choose l ∈ (0,m0) such that l + 2Cg − 2(µ1 + a) < 0. Then

d

dt

(
elt|u(t)|2

)
= lelt|u(t)|2 + elt

d

dt
|u(t)|2

6 elt[(l + Cg + 1− 2(µ1 + a))|u(t)|2 +
1

Cg
|g (t, ut)|2 + |h|2].

(3.37)

Integrating from τ to t(≥ τ),

elt|u(t)|2 − elτ |u0|2 6
∫ t

τ

els

Cg
|g (s, us)|2 ds+

∫ t

τ
els |h|2 ds+

∫ t

τ
els (l + Cg + 1− 2(µ1 + a)) |u(s)|2 ds

6Cg

∫ τ

τ−r
els|φ(s− τ)|2 ds+

elt |h|2

l
+

∫ t

τ
ems (l + 2Cg + 1− 2(µ1 + a)) |u(s)|2 ds

6
elt |h|2

l
+ Cge

lτ

∫ 0

−r
|φ(θ)|2 dθ.

(3.38)

Thus,

|u(t)|2 6
|h|2

l
+ d2 (1 + Cg) e

−l(t−τ), for all t > τ. (3.39)

Taking t > τ + r, we have for θ ∈ [−r, 0]

|u(t+ θ)|2 6 d̃2 (1 + Cg) e
−l(t+θ)elt

6
|h|2

l
+ d2elr (1 + Cg) e

−l(t−τ).
(3.40)

Setting time t− s instead of τ and denoting u(·) = u (·, t− s, ·) lead to

‖Ũ(t, t− s) (u0, φ) ‖X = ‖ut‖2X 6
|h|2

l
+ d2 (1 + Cg) e

l(r−s) for all t, and s > r. (3.41)

Therefore, there exists sufficient large TD̃(t) such that for all s > TD̃(t) it holds

d2 (1 + Cg) e
l(r−s) ≤ |h|

2

l
,

implying that the balls B(t) = BX

(
0, 2 |h|

2

l

)
form an absorbing family of bounded sets for the mappings

Ũ(t, τ). By [9, Lemma 11], we can see {B(t)}t∈R is a family of absorbing sets for U(t, τ) in X.

By taking the inner product of (3.31) with ∆u and using similar techniques as those in the proofs of

Theorem 15 and Corollary 16 in [9], there exist positive constants ρV , β1, β2 such that, for any bounded

set D ⊂ CH and for the above absorbing time TD̃(t) corresponding to the set {B(t)}t∈R, it follows

‖U(t, t− s)φ‖2CV = ‖ut(·; t− s, j(φ))‖2CV = max
θ∈[−r,0]

‖u(t+ θ; t− s, j(φ))‖2 6 ρ2
V ,∫ t+θ2

t+θ1

|Au(σ; t− s, j(φ))|2 dσ 6 β1 |θ2 − θ1|+ β2,
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for all s > TD + 1 + r, t ∈ R, φ ∈ D, and θ1, θ2 ∈ [−r, 0]. In particular, the family {B2(t)}t∈R, where

B2(t) = B2 = BCV (0, ρV ), is absorbing for the process U(·, ·). Moreover, the family {BS(t)}t∈R, where

BS(t) = BCV (0, ρV )×BL2
V

(
0, h1/2ρV

)
, is absorbing for S(·, ·).

Apparently, the above defined {B2(t)}t∈R is a family of bounded sets in CV , which is also (uniformly)

absorbing for Ũ(·, ·). Set B̃2 = j (B2), then, there exists T̃B̃2
= TB2 +1+h > 0 such that Ũ(t, t−s)B̃2 ⊂

B2 for all t ∈ R, and all s > T̃B̃2
. Now, for each t ∈ R, consider the set

B3(t) =
⋃

s>T̃ ′
B̃2

Ũ(t, t− s)B̃2 ⊂ B2 ⊂ CV .

Thus, {B3(t)}t∈R is a family of uniformly bounded sets in CV which is (uniformly) absorbing for Ũ(·, ·).
By similar techniques as those in the proof of Theorem 17 from [9], each B3(t) is relatively compact in

X, then
{
B3(t)

}
t∈R

(where the closure is taken in X) is a family of compact absorbing sets in X for

Ũ(·, ·). Consequently, it is also a family of compact (uniform) absorbing sets for the process U(·, ·) in X,

which ensures the existence of the pullback attractors {A(t)}t∈R for the process U(t, τ). The uniqueness

of these attractors holds since they are uniformly bounded.

Theorem 3.5. Let P be the m dimensional projection on X defined by (3.28) and assume C2
g + 1 −

2(µ1 + a) > 0. Then, we have

‖PU(t, τ)ϕ− PU(t, τ)ψ‖X ≤ 2
(
C2
g r + 1

)
e(C2

g+1−2(µ1+a))(t−τ)‖ϕ− ψ‖X (3.42)

and

‖(I − P )U(t, τ)ϕ− (I − P )U(t, τ)ψ‖X 6 e−µm+1r
(
C2
g r + 1

)1/2
e
C2
g+1−2(µm+1+a)

2
(t−τ)‖ϕ− ψ‖X ,

(3.43)

for any t ≥ τ , and ϕ,ψ in {A(t)}t∈R, where µ1, µm+1 and Cg are defined in (3.26) and Hypothesis A7,

respectively.

Proof. For any two initial conditions ϕ,ψ ∈ CV , denote by u(·) = u (·; τ, ϕ) and v(·) = u (·; τ, ψ) the

corresponding solutions to (3.31) with initial time τ ∈ R respectively. Moreover, denote by y = ϕ − ψ
and w(t) = uϕ(t)− uψ(t). It follows from (3.31) that

d

dt
w(t) = Aw(t)− aw(t) + g (t, ut)− g (t, vt) . (3.44)

Denoting by wm(t) = (I − Pm)w(t) and multiplying both sides of (3.31) by wm(t) lead to

1

2

d

dt
|wm(t)|2 = (Aw(t), wm(t))− a(w(t), wm(t)) + (g (t, ut)− g (t, vt) , w

m(t)) . (3.45)

Keeping in mind that (Awm, wm) = −‖wm‖ ≤ −µm+1|(I − Pm)w|, then we have

1

2

d

dt
|wm|2 6 −(µm+1 + a)|wm|2 + |g (t, ut)− g (t, vt) ||wm|

6 −(µm+1 + a)|wm|2 +
1

2
|g (t, ut)− g (t, vt) |2 +

1

2
|wm|2.

. (3.46)

20



Integrating both sides of (3.46) from τ to t,

|wm(t)|2 − |wm(τ)|2 6
∫ t

τ
|g (s, us)− g (s, vs)|2 ds+

∫ t

τ
(1− 2(µm+1 + a)) |wm(s)|2 ds

6 C2
g

∫ t

τ−r
|wm(s)|2 ds+

∫ t

τ

(
C2
g + 1− 2(µm+1 + a)

)
|wm(s)|2 ds

6 C2
g‖ϕ− ψ‖2LH +

∫ t

τ

(
C2
g + 1− 2(µm+1 + a)

)
|wm(s)|2 ds.

(3.47)

Consequently, for any t > τ , we have

|wm(t)|2 6 C2
g‖y‖2LH + ‖u0 − v0‖2 +

∫ t

τ

(
C2
g +

1

2
− (µm+1 + a)

)
|wm(s)|2 ds

6 C2
g‖y‖2LH + ‖u0 − v0‖2 +

∫ t

τ

(
C2
g + 1− 2(µm+1 + a)

)
|wm(s)|2 ds.

(3.48)

The Gronwall lemma implies now, for any t > τ ,

|wm(t)|2 6
(
C2
g |y|2LH + ‖u0 − v0‖2

)
e
∫ t
τ (C

2
g+1−2(µm+1+a))ds. (3.49)

Assume that t > τ + r. Then t+ θ > τ for any θ ∈ [−τ, 0] and it follows from (3.26) that

‖(I − P )U(t, τ)ϕ− (I − P )U(t, τ)ψ‖2X = ‖Pwmt ‖2X 6 e−2µm+1r
(
C2
g r + 1

)
‖ϕ− ψ‖2Xe(C2

g+1−2(µm+1+a))(t−τ)

(3.50)

and, thus,

‖(I − P )U(t, τ)ϕ− (I − P )U(t, τ)ψ‖X 6 e−µm+1r
(
C2
g r + 1

)1/2
e
C2
g+1−2(µm+1+a)

2
(t−τ)‖ϕ− ψ‖X (3.51)

This completes the proof of the second statement.

Now, we concentrate on the first part. Repeating the same procedure of the above proof but

replacing wm by w and (Aw,w) = −‖w‖ ≤ −µ1|w| gives rise to

‖wt‖X 6 e−µ1r
(
C2
g r + 1

)1/2
e
C2
g+1−2(µ1+a)

2
(t−τ)‖ϕ− ψ‖X . (3.52)

By state decomposition, we have

‖Pwt‖X = ‖wt − (I − P (t))wt‖X 6 ‖wt‖X + ‖(I − P )wt‖X (3.53)

Incorporating (3.51) and (3.52) into (3.53) leads to

‖PU(t, τ)ϕ− PU(t, τ)ψ‖X 6 2e−µ1r
(
C2
g r + 1

)1/2
e
C2
g+1−2(µ1+a)

2
(t−τ)‖ϕ− ψ‖X . (3.54)

Therefore the first part holds, which completes the proof of the theorem.

Theorem 3.5 implies (H3) holds with M1 = 2e−µ1r
(
C2
g r + 1

)1/2
,M2 = e−µm+1r

(
C2
g r + 1

)1/2
,M3 =

0, λ0 =
C2
g+1−2(µ1+a)

2 , λ1 =
C2
g+1−2(µm+1+a)

2 . Hence, by Theorem 2.2, we have the following results about

existence of a pullback exponential attractorM(t) for the nonlinear dynamical system U(t, τ) generated

by (3.24).
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Theorem 3.6. Let P be the finite dimensional projection defined by (3.28), µ1, µm+1 and Cg are defined

in (3.26) and Hypothesis A7 respectively and assumptions of Theorem 3.4 hold. Moreover, assume

there exists α > 0 such that ζ := αe
C2
g+1−2(µ1+a)

2 + e−µm+1r
(
C2
g r + 1

)1/2
e
C2
g+1−2(µm+1+a)

2 < 1. Then,

(3.24) admits a pullback exponential attractor M(t) whose fractal dimension has an upper bound

dimfM(t) ≤
lnm+m ln(2 +

4e−µ1r(C2
gr+1)

1/2

α )

− ln(αe
C2
g+1−2(µ1+a)

2 + e−µm+1r
(
C2
g r + 1

)1/2
e
C2
g+1−2(µm+1+a)

2 )

<∞. (3.55)

4 Retarded 2D-Navier-Stokes equations

In this section, we are concerned with the existence of pullback exponential attractors for the following

delayed 2D-Navier-Stokes equation on an open bounded domain Ω ⊂ R2 with regular boundary Γ,

∂u
∂t − ϑ∆u+

∑2
i=1 ui

∂u
∂xi

= f −∇p+ g (t, ut) in (τ,+∞)× Ω,

div u = 0 in (τ,+∞)× Ω,

u = 0 on (τ,+∞)× Γ,

u(t, x) = φ(t− τ, x), t ∈ [τ − r, τ ], x ∈ Ω.

(4.1)

Here, u is the velocity field of the fluid, ϑ > 0 is the kinematic viscosity, f is a nondelayed external

force field, p is the pressure, τ ∈ R is the initial time, g is another external force with some hereditary

characteristics and φ the initial datum in the interval of time [−r, 0] with r being a fixed positive

number, representing the time delay. In the case t = τ , i.e., at the initial time, the initial velocity field

is u(τ, x) = φ(0, x). The investigation of retarded Navier-Stokes problems dates back to [7, 8], where

the authors studied the existence and asymptotic behavior of solutions. In [9], they further established

the existence of pullback attractors. Recently, Qin and Su [47] studied the Hursdorff dimension of

Navier-Stokes-Voigt equations with a distributed delay, they recast the equation in a Hilbert space and

directly adopted the approach proposed in [17] and [31]. Here, we directly deal with the problem in the

natural phase space, i.e., the Banach space. Moreover, we also consider the nonautonomous case.

Notation in this section are the same as those in Section 3.2 but with a general domain Ω and

the state in two dimensional space. For instance, V =
{
u ∈ (C∞0 (Ω))2 : div u = 0

}
and H denotes the

closure of V in
(
L2(Ω)

)2
. Other notation can be found in Section 3.2 and [9]. Let b : V × V × V → R

be a trilinear form defined by

b(u, v, w) =
2∑

i,j=1

∫
Ω
ui
∂vj
∂xi

wj dx ∀u, v, w ∈ V.

Set B : V × V → V ′ by 〈B(u, v), w〉 = b(u, v, w) and B(u) = B(u, u) ∀u, v, w ∈ V . Denoting D(A) =

H2 ∩ V , then Au = −P̃∆u,∀u ∈ D(A), (P̃ being the ortho-projector from
(
L2(Ω)

)2
onto H). Hence,

(4.1) can be recast in the following abstract form{
d
dtu(t) + ϑAu(t) +B(u(t)) = f(t) + g (t, ut) in D′ (τ,+∞;V ′) ,

u(τ) = u0, u(t) = φ(t− τ), t ∈ (τ − r, τ).
(4.2)
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Denote X = C0([−r, 0];H), LH = L2(−r, 0;H) and L2
V = L2(−r, 0;V ). By [23, Theorem 2.3] and

[9, Theorem 17,Corollary 16], we have the following existence of solutions as well as pullback attractors

of (4.1), indicating (H1) and (H2) of Theorem 2.2 hold.

Lemma 4.1. Assume that f ∈ L2
loc (R;V ′), g : R×X →

(
L2(Ω)

)2
such that hypotheses Hypothesis A4-

Hypothesis A7 hold. Then, the following statements hold.

(I) For each τ ∈ R and φ ∈ CV , there exists a unique solution u to (5.2) which belongs to the space

C0([τ − r,+∞);V ).

(II) Let U(t, τ) : CH → CH be defined by U(t, τ)φ = ut(·, τ, φ) for all τ 6 t and φ ∈ C0([τ − r, t];H)

and µ1 is the first eigenvalue of the operator A. If m0 > 0 and ϑµ1 > Cg, then there exist a positive

constant ρV and a unique uniformly bounded pullback attractor {A(t)}t∈R, which is inside BCV (0, ρV ),

the absorbing ball in CV with center 0 and radius ρV .

Let Vm and P being defined by (3.25) and (3.28) in Section 3.2, then we have the following results

concerning the squeezing property.

Theorem 4.1. Let P be defined by (3.28), µ1, ρV be given in Lemma 4.1. Assume assume that ϑµ1 > Cg

and there exists c′0 > 0 such that C2
g + c′0ρV − ϑµ1 + 1 > 0. Then, we have

‖PU(t, τ)ϕ− PU(t, τ)ψ‖ ≤ e−µ1r(C2
g r + 1)1/2e

(C2
g+c
′
0ρV −ϑµ1+1)

2
(t−τ)‖ϕ− ψ‖X (4.3)

and

‖(I − P )U(t, τ)ϕ− (I − P )U(t, τ)ψ‖ ≤ e−µm+1r(C2
g r + 1)1/2e

(C2
g+c
′
0ρV −ϑµ1+1)

2
(t−τ)‖ϕ− ψ‖X , (4.4)

for any t ≥ τ , and ϕ,ψ in A(t), where µ1, µm+1 and Cg are defined in (3.26), (3.27) and Hypothesis A7

respectively.

Proof. For any two initial conditions ϕ,ψ ∈ A(t), denote by u(·) = u (·; τ, ϕ) and v(·) = u (·; τ, ψ) the

corresponding solutions to (4.2) with initial time τ ∈ R respectively. Moreover, denote w(t) = u(t)−v(t).

It follows from (4.2) that

d

dt
w(t) + ϑAw(t) +B(u(t))−B(v(t)) = g (t, ut)− g (t, vt) . (4.5)

Multiply both sides of (4.2) by w(t) and take into account that B(u(t)) − B(v(t)) = B(w(t), u(t)) +

B(v(t), w(t)), then

1

2

d

dt
|w(t)|2 + ϑ‖w(t)‖2 + b(w(t), u(t), w(t)) + b(v(t), w(t), w(t)) = (g (t, ut)− g (t, vt) , w(t)) . (4.6)

Keeping in mind that (Av, v) = −‖v‖ ≤ −µ1|v|, we have

1

2

d

dt
|w|2 + ϑ‖w‖2 6 c0|w|‖u‖ ‖w‖+ |g (t, ut)− g (t, vt) ||w|

6
1

2
c′0|w|2‖u‖2 + ϑ‖w‖2 +

1

2
|g (t, ut)− g (t, vt) |2 +

1

2
|w|2,

. (4.7)
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and therefore, noticing that u(t) ∈ A(t), we have ‖u(t)‖2 ≤ ρV , and

|w(t)|2 − |w(τ)|2 6
∫ t

τ
|g (s, us)− g (s, vs)|2 ds+

∫ t

τ

(
c′0‖u(s)‖2 − ϑµm+1 + 1

)
|w(s)|2 ds

6 C2
g

∫ t

τ−h
|u(s)− v(s)|2 ds+

∫ t

τ

(
C2
g + c′0ρ

2
V − ϑµ1 + 1

)
|w(s)|2 ds

6 C2
g‖ϕ− ψ‖2LH +

∫ t

τ

(
C2
g + c′0ρ

2
V − ϑµ1 + 1

)
|w(s)|2 ds.

(4.8)

Consequently,

|w(t)|2 6 C2
g‖ϕ− ψ‖2LH + ‖u0 − v0‖2 +

∫ t

τ

(
C2
g + c′0ρ

2
V − ϑµ1 + 1

)
|w(s)|2 ds, ∀t > τ. (4.9)

The Gronwall lemma implies now for any t > τ ,

|w(t)|2 6
(
C2
g‖ϕ− ψ||2LH + ‖u0 − v0‖2

)
e
∫ t
τ (C

2
g+c′0ρ

2
v−ϑµ1+1)ds. (4.10)

Assume now that t > τ + r, then t+ θ > τ for any θ ∈ [−τ, 0] and it holds

|w(t+ θ)|2 6 (C2
g r + 1)e

∫ t
τ (C

2
g+c′0ρV −ϑµ1+1)ds‖ϕ− ψ‖2X

6 (C2
g r + 1)e(C

2
g+c′0ρV −ϑµ1+1)(t−τ)‖ϕ− ψ‖2X .

(4.11)

Thus, by (3.30), we have

‖(I − P )wt‖2X 6 e−2µm+1r(C2
g r + 1)e(C

2
g+c′0ρV −ϑµ1+1)(t−τ)‖ϕ− ψ‖2X , (4.12)

implying that

‖(I − P )wt‖X 6 e−µm+1r(C2
g r + 1)1/2e

(C2
g+c
′
0ρV −ϑµ1+1)

2
(t−τ)‖ϕ− ψ‖X . (4.13)

Now, we concentrate on the first part. By (3.29) and (4.11), we have

‖Pwt‖X = e−µ1r(C2
g r + 1)1/2e

(C2
g+c
′
0ρV −ϑµ1+1)

2
(t−τ)‖ϕ− ψ‖X . (4.14)

Therefore the first part holds, which completes the proof of the theorem.

Theorem 3.5 implies (H3) holds with M1 = e−µ1r(C2
g r + 1)1/2,M2 = e−µm+1r(C2

g r + 1)1/2,M3 =

0, λ0 = λ1 =
(C2

g+c′0ρV −ϑµ1+1)
2 . Hence, by Theorem 2.2, we have the following results about existence of

a pullback exponential attractor M(t) for the nonlinear evolution process U(t, τ) generated by (4.2).

Theorem 4.2. Let P be the finite dimensional projection defined by (3.28), µ1, µm+1 and Cg defined in

(3.26), (3.27) and Hypothesis A7 respectively and assumptions of Lemma 4.1 and Theorem 4.1 hold.

Moreover, assume there exists α > 0 such that ζ := (α + e−µm+1r(C2
g r + 1)1/2)e

(C2
g+c
′
0ρV −ϑµ1+1)

2 < 1.

Then, (4.2) admits a pullback exponential attractor M(t) with fractal dimension satisfying

dimfM(t) ≤
lnm+m ln(2 +

2e−µ1r(C2
gr+1)1/2

α )

− ln(α+ e−µm+1r(C2
g r + 1)1/2)− (C2

g+c′0ρV −ϑµ1+1)

2

<∞. (4.15)
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Remark 4.1. In [Theorem 6.2, [47]], the authors investigated dimensions of global attractors of the

following 2D Navier-Stokes-Voigt equations with a distributed delay

d
dtu− v∆u− α2 d

dt∆u+ (u · ∇)u+∇p = f(x) + g (ut) , (x, t) ∈ Ω0,

div u = 0, (x, t) ∈ Ω0,

u(x, t)|∂Ω = ϕ, ϕ · n = 0, (x, t) ∈ ∂Ω0,

u(x, 0) = u0(x), x ∈ Ω,

u(x, t) = φ(t), (x, t) ∈ Ωh,

(4.16)

by recasting (4.16) into a Hilbert space and adopting the method established in [17]. The upper bounds

of the Hausdorff and fractal dimensions of A they gave is

C
1/2
3 αλ

1/2
1 |Ω|1/2

(2πν)1/2
(
ν
α −

2v
α2λ1

− 2l0
λ1

)1/2

 ‖f̄‖2
v +

2C2
2

λ1
Cg‖ϕ‖2L∞(∂Ω)

v − 2C1C2λ
−1
1 ‖ϕ‖L∞(∂Ω) − 3Cgλ

−1
1

+ C2‖ϕ‖2L∞(∂Ω)

1/2

+ 1, (4.17)

which do not depend on the time delay. In the case α = 0, (4.16) degenerates to (4.1). However, in this

case, (4.17) is not well defined since zero appears in the denominator, which means that the method in

[17] may be ineffective for obtaining dimensions of (4.1). Moreover, compared with (4.17), our results

depend on the time delay τ , which shows the characteristic of the equation.

5 Retarded semilinear wave equations

This section is dedicated to dimension estimations of pullback attractors for the following retarded

semilinear wave equation defined on an open bounded domain Ω ⊂ Rn, n ≥ 1, with a smooth boundary

∂Ω = Γ 

∂2u

∂t2
+ β

∂u

∂t
−∆u− g (t, ut) = f, t > τ

u|Γ = 0, t ≥ τ − r,

u(x, t) = φ(x, t− τ), x ∈ Ω, t ∈ [τ − r, τ ]

∂u

∂t
(x, t) = ψ(x, t− τ), x ∈ Ω, t ∈ [τ − r, τ ].

(5.1)

Here, β is a positive constant, f + g (t, ut) is the source intensity which may depend on the history of

the solution, φ is the initial datum on the interval [τ − r, τ ] where r > 0, and, as usual, ut is defined for

θ ∈ [−r, 0] as ut(θ) = u(t+ θ) as well. The existence of global unique solutions and pullback attractors

of (5.1) have been studied in [6] and [32] respectively. In the present work, we go a step further to

establish explicit dimensions estimation of the pullback attractors. The notation in this subsection have

the same meaning as those of Section 4.1.2 but with the domain being Ω. Thus, problem (5.1) can be
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written as a second order differential equation in H.
u′′ + βu′ +Au− g (t, ut) = f, t > 0,

u(t) = φ(t− τ), t ∈ [τ − r, τ ],

u′(t) = ψ(t− τ), t ∈ [τ − r, τ ].

(5.2)

We first introduce more notations. Let Y be H or V , denote by CY the space C0([−τ, 0];Y ) with the

sup-norm, i.e., ‖φ‖CY = supθ∈[−τ,0] ‖φ(θ)‖Y , for φ ∈ CY . Given another Banach space (Z, ‖ · ‖Z) such

that the injection Y ⊂ Z is continuous, we denote by CY,Z the Banach space CY ∩ C1([−τ, 0];Z) with

the norm ‖ · ‖CY,Z defined by

‖φ‖2CY,Z = ‖φ‖2CY +
∥∥φ′∥∥2

CZ
, for φ ∈ CY,Z .

We will use the spaces CD(A), CV , X,CV,H and CD(A),V in our analysis. Apart from Hypothesis A4-

Hypothesis A7, we impose one more hypothesis on the function g : R×X → H.

Hypothesis A8 g ∈ C1 (R×X;H), and there exists C > 0 such that, for any (t, ξ) ∈ R×X the

Fréchet derivative δg(t, ξ) ∈ L (R×X,H) satisfies

‖δg(t, ξ)‖L(R×X,H) ≤ C (1 + ‖ξ‖X)

By the results in [32] and [6], we have the following ones.

Lemma 5.1. Assume that f ∈ L2
loc(R, H), φ ∈ CV,H and g satisfies Hypothesis A4-Hypothesis A7.

Then, for any τ ∈ R, there exists a unique solution u(·) = u(·; τ, φ) to problem (5.1) such that u ∈
C0([τ − r,∞);V )∩C1([τ − r,∞);H). If in addition f ′ ∈ L2(τ, T ;H) for all T > 0, φ ∈ CD(A), φ

′ ∈ CV ,

then

u ∈ C0([τ,∞);D(A)) ∩ C1([τ,∞);V ).

In addition, suppose that Hypothesis A8 holds and 2
√

2µ
−1/2
1 Cg < min

{
β
4 ,

µ1
2β

}
. Then, there exists a

family {B(t)}t∈R of bounded sets in CV,H which is uniformly pullback (and forward) absorbing for the

process U(·, ·).

Let Vm and Pm be defined in Section 3.2. Replace V and H by Vm and Hm gives the definiton of

CVm,Hm , which is a finite dimensional subspace of the Banach space CV,H . Define P̃m : CV,H → CVm,Hm .

Then we have the following results about the squeezing property.

Theorem 5.1. Let P be the finite dimensional projection P̃m on CV,H . Assume that Hypotheses A4−A7

hold for any τ 6 t with m0 > 0, Hypothesis A8 holds and 2
√

2µ
−1/2
1 Cg < min

{
β
4 ,

µ1
2β

}
. Then there

exists a constant γ > 0 such that

‖PU(t, τ)ϕ− PU(t, τ)ψ‖CV,H ≤ e
−µ1r (1 + λ−1

1 C2
g r
) 1

2 e
γ
2

(t−τ)‖φ− ψ‖CV,H (5.3)
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and

‖(I − P )U(t, τ)ϕ− (I − P )U(t, τ)ψ‖CV,H ≤ e
−µm+1r

(
1 + µ−1

1 C2
g r
) 1

2 e
γ
2

(t−τ)‖φ− ψ‖CV,H , (5.4)

for any t ≥ τ + r, and ϕ,ψ in A(t), where µ1, µm+1 and Cg are defined in (3.26), (3.27) and

Hypothesis A7 respectively.

Proof. Let φ, ψ ∈ CV,H be two initial data for our problem (5.2), and let τ ∈ R be an initial time.

Denote by u(·) = u(·; τ, φ) and v(·) = u(·; τ, ψ) the corresponding solutions to (5.2). Then, it follows

from [6, Lemma 3.1], there exists a constant γ > 0 which does not depend on the initial data and time,

such that for all t ≥ τ + r

‖ut − vt‖2CV,H ≤
(
1 + µ−1

1 C2
g r
)
eγ(t−τ)‖φ− ψ‖2CV,H , (5.5)

implying that

‖ut − vt‖CV,H ≤
(
1 + µ−1

1 C2
g r
) 1

2 e
γ
2

(t−τ)‖φ− ψ‖CV,H . (5.6)

Thus, by (3.30) and (3.29), we have

‖(I − P )wt‖2CV,H 6 e−µm+1r
(
1 + µ−1

1 C2
g r
) 1

2 e
γ
2

(t−τ)‖φ− ψ‖CV,H , (5.7)

and

‖Pwt‖CV,H = e−µ1r
(
1 + µ−1

1 C2
g r
) 1

2 e
γ
2

(t−τ)‖φ− ψ‖CV,H . (5.8)

Therefore the first part holds, which completes the proof of the theorem.

Theorem 5.1 implies (H3) holds withM1 = e−µ1r
(
1 + µ−1

1 C2
g r
) 1

2 ,M2 = e−µm+1r
(
1 + µ−1

1 C2
g r
) 1

2 ,M3 =

0, λ0 = µ1 = γ
2 Hence, by Theorem 2.2, we have the following results about existence of a pullback ex-

ponential attractor M(t) for the nonlinear evolution process U(t, τ) generated by (5.2).

Theorem 5.2. Let P be the finite dimensional projection defined by (3.28), γ and Cg are defined in

(3.26), (3.27) and Hypothesis A7 respectively and assumptions of Lemma 5.1 and Theorem 5.1 hold.

Moreover, assume there exists α > 0 such that ζ := (α + e−µm+1r
(
1 + λ−1

1 C2
hr
) 1

2 )e
γ
2 < 1. Then, (5.2)

admits a pullback exponential attractor M(t) whose fractal dimension has an upper bound

dimfM(t) ≤
lnm+m ln(2 +

2e−µ1r(1+µ−1
1 C2

gr)
1
2

α )

− ln(α+ e−µm+1r
(
1 + λ−1

1 C2
hr
) 1

2 )− γ
2

<∞. (5.9)

6 Summary

In this paper, we established a new framework to construct exponential attractors for infinite dimensional

nonautonomous dynamical systems in Banach spaces with explicit fractal dimension. To our best

knowledge, there are two kinds of methods can be used to investigate exponential attractors of infinite
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dimensional dynamical systems, the first one is due to Eden, Foias, Nicolaenko and Temam [26], which

depends on squeezing property and phase space decomposition and is established for PDEs in Hilbert

spaces. Here, we extended this method to nonautonomous case in Banach spaces. The other well

known method, which is also effective for constructing exponential attractors in Banach spaces was

firstly proposed by Efendiev, Miranville and Zelik which depends on smoothing property and compact

embedding of the systems between two spaces [28, 30]. Compared with their woks, the method here does

not need the smoothing property and the entropy number of the embedding between two spaces but

requires to some extend appropriate conditions on the spectrum gap and the Lipschitz constant of the

nonlinear term. As pointed out in Constantin and Foias in [17], the dimensions estimation by squeezing

property method may not be optimal and the more accurate method should be the Lyapunov exponents

method which depends on computing traces of some linear operators generated by the linearization of the

equations, requiring quasi-differentials of the underlying systems. Nevertheless, the method requires the

smooth inner product of the Hilbert space geometric structure. How to extend this method to Banach

spaces deserves much more effort since the Lyapunov exponents for evolution equations in Banach spaces

may be not easy to obtain.

The constructed exponential attractors possess explicit fractal dimensions which do not depend on

the entropy number but only on inner characteristics of the studied equations. The method shows a

wide applicability to infinite dimensional dynamical systems generated by partial functional differential

equations, including the retarded reaction diffusion equations, the retarded 2D-Navier-Stokes equations

and the retarded semilinear wave equations. They maybe also available for investigating topological

dimensions of attractors for neutral partial functional differential equations, the infinite delay case as

well as some other evolution equations with certain squeeze properties in Banach spaces.

In the applications, we only consider partial functional differential equations on bounded domain.

Actually, there are many real world process evolution on infinite domain, such as the mature population

of species living in an infinite habitat. In such a scenario, the Laplace operator has a continuous

spectrum, H1(Rn) is not compactly embedded in L2(Rn) and the solution semiflow do not have absorbing

sets that are compact in the original topology, causing the method developed here no longer effective

and new techniques should be established. This will be studied in an upcoming paper.

The definition of pullback attractors generally means which states in the infinite past will evolute

to the given present state. Indeed, from causality perspective, we are more interested about what

present states will evolute to in the future. The effective tools for describing the future evolution of

nonautonomous system are the uniform attractor and uniform exponential attractors, which will also

be studied in the near future.

Generally, random effects are omnipresent in mathematical modelings.Therefore, one anther ques-

tion is, whether there are exponential attractors with explicit fractal dimension for partial functional

differential equations perturbed by random effect, i.e. the stochastic partial functional differential equa-

tions(SPFDEs)? Indeed, even under what conditions do SPFDEs generate random dynamical systems
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have not been perfectly tackled needless to say the state decomposition and exponential dichotomy.

This problem also deserves much effort in the future.
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