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Abstract. This paper is mainly concerned with limiting behaviors of invariant measures for neural4

field lattice models in random environment. First of all, we consider the convergence relation of5

invariant measures between the stochastic neural field lattice model and the corresponding deter-6

ministic model in weighted spaces, and prove any limit of a sequence of invariant measures of such7

lattice model must be an invariant measure of its limiting system as the noise intensity tends to zero.8

Then we are devoted to studying the numerical approximation of invariant measure of such stochastic9

neural lattice model. To this end, we firstly consider convergence of invariant measures between such10

neural lattice model and the system with neurons only interacting with its n-neighborhood, then we11

further prove convergence relation of invariant measures between the system with n-neighborhood and12

its finite dimensional truncated system. By this procedure, the invariant measure of the stochastic13

neural lattice models can be approximated by the numerical invariant measure of finite dimensional14

truncated system based on the Backward Euler-Maruyama scheme. Therefore, the invariant measure15

of deterministic neural field lattice model can be observed by the invariant measure of BEM scheme16

when the noise is not negligible.17

Keywords and phrases: Stochastic neural field lattice model; Weighted space; Nonlinear white18

noise; Invariant measure; Numerical invariant measure19

1 Introduction20

Lattice systems have wide applications in many areas, such as physics, biology sciences, pattern21

formation, etc. (see, for instance, [?, ?, ?] and the references therein). A system in reality is usually22

affected by uncertainty due to some external “noise”, stochastic lattice systems with linear and nonlinear23

noises thus were studied in [?, ?, ?, ?] for the unweighted spaces and [?, ?] for the weighted ones.24

Neural networks are receiving very much attention due to their importance in several interesting ap-25

plications, such as image processing, optimization problems, associative memory and pattern recognition26

[?, ?, ?, ?]. For neural networks system with time delay, convergence properties of the equilibrium point27

have been extensively investigated, see, e.g. [?, ?]. Recently, an integral model was proposed to take into28

account a finite transmission speed as a space-dependent retardation [?], which was well established in29

computational neuroscience and known as the neural field model. Continuous neural field models may be30

also used to describe the average activity of neural populations by nonlinear integro-differential equations31

[?]. In order to emphasize the discrete characters of neural networks, a neural field lattice model was con-32

sidered by Faye [?] and the existence and uniqueness of traveling front solutions were investigated. Such33

neural lattice model may not only be regarded as space discretization of a continuous neural field model,34
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but also extends the famous Hopfield neural networks with finite neurons in [?]. In reference [?], the35

neural field lattice system with switching effects was formulated as a differential inclusion on a weighted36

space of infinite sequences. Recently, the authors investigated the existence of invariant measures in a37

weighted space for the following neural field lattice model driven by nonlinear white noise in [?]:38 
dui(t) =

(
fi (ui) +

∑
j∈Zd

ki,jφ (uj) + gi

)
dt+ ε

(
λi (ui) + hi

)
dWi(t), t > τ,

ui(τ) = uτ,i,

(1.1)

where τ ∈ R, i = (i1, . . . , id) ∈ Zd, uτ := (uτ,i)i∈Zd is the initial data. Here ui represents the neural39

activity such as neural synapse of the ith node, ε ∈ (0, 1] is a parameter representing the noise intensity, fi40

: R→ R describes the attenuation of neural activity of the ith node, φ : R→ R is the activation function,41

ki,j describes the connection strength from the jth to the ith node, and the time independent functions42

gi and hi describe the external forcing at the ith location for the drift and diffusion. We also refer the43

reader to [?, ?, ?, ?, ?, ?, ?, ?, ?] for invariant measures of stochastic dynamical systems including lattice44

ones.45

When the noise intensity ε = 0, (1.1) becomes the following deterministic neural field lattice model:46 
dui(t) =

(
fi (ui) +

∑
j∈Zd

ki,jφ (uj) + gi

)
dt, t > τ,

ui(τ) = uτ,i.

(1.2)

We refer the reader to [?, ?, ?] for more results on deterministic neural lattice models and [?, ?] for47

invariant measures of deterministic or random dynamical systems. In this paper, we would like to observe48

numerically the invariant measure of (1.2) when the real world is regarded as intrinsically a little noisy.49

To this end, we will investigate the limiting behavior and numerical approximation of invariant measures50

of (1.1) from the following two aspects.51

The first goal is to establish the convergence relation of invariant measures for the stochastic neural52

field lattice system (1.1) in a weighed space as the noise intensity ε → ε0 ∈ [0, 1], which is called the53

zero-noise limits problem in the references [?] for ε0 = 0. Such problem goes back to Kolmogorov [?], and54

is also referred as stochastic stability in monographs [?, ?]. The limiting behavior of invariant measures55

of stochastic equations has been discussed, e.g., see [?, ?, ?, ?], where invariant measures in [?, ?] were56

considered in the Hilbert space l2 consisting of real-valued square summable bi-infinite sequences. We57

extend some results to a weighed space l2ρ. Such space satisfies l2 ⊂ l∞ ⊂ l2ρ and hence contains many58

infinite sequences whose components are bounded and traveling wave solutions. By carrying out a careful59

analysis, two results are obtained as follows: we are first concerned with the tightness of the set of all60

invariant measures of (1.1) in l2ρ which is proved by uniform tail-estimates of solutions in l2ρ and the61

technique of stopping times as stated in [?], and then we prove any limit of a sequence of invariant62

measures of (1.1) must be the invariant measure of the limit system. According to [?], if one accepts that63

the world is intrinsically a little noisy, then such zero-noise limits are the observable invariant measures,64

which represent idealizations of what we see.65

In order to make such observability computable, our second aim is to study the numerical invariant66

measure of (1.1). In [?], some computer aided estimates were used to approximate the stationary measure67

of a chaotic chemical reaction model with additive noise, and the estimation of numerical error was68

obtained by the method in [?]. Different from [?, ?], the Fourier approximation of invariant measures was69

investigated in [?]. One can also see [?, ?, ?] for numerical solutions and approximation of the invariant70

measures of finite dimensional stochastic differential equations. However, as far as we are aware, there71

is no result available for the numerical invariant measure of (1.1). Since the dimension of system (1.1)72

is infinite, we cannot discretize it directly to simulate by computer. To overcome this issue, we try to73

adopt the finite dimensional approximation method to deal with the numerical invariant measure of such74
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infinite dimensional system, which is different from the method in [?]. More precisely, we will investigate75

numerical approximation of invariant measures of (1.1) from the following three steps.76

Firstly, we consider the following case in which each neuron is only interacting with the neurons within77

its n-neighborhood:78 
dui(t) =

(
fi (ui) +

i+n∑
j=i−n

ki,jφ (uj) + gi

)
dt+ ε (λi (ui) + hi) dWi(t), t > τ,

ui(τ) = uτ,i,

(1.3)

where i ± n := (i1 ± n, . . . , id ± n) ∈ Zd. It is worth mentioning that [?] is devoted to investigating the79

existence and the upper semi-continuity of random attractors for Hopfield-type neural lattice model with80

local n-neighborhood interconnections among neurons. Different from [?], we are concerned with the81

convergence of invariant measures of (1.3) as n→ +∞. To this end, we first show the tightness of the set82

of all invariant measures of (1.3) for all n ∈ Z+ (see Lemma 5.2). Then we are going to prove the uniform83

convergence of solutions in probability. Due to different number of neurons and the weighted parameter84

ρ, the arguments in references [?, ?] cannot be used to verify it directly. In order to address this problem,85

we utilize some properties of ρ and the idea contained in the proof of [?, Lemma 4.2] to obtain the desired86

result (see Lemma 5.3). At last, we obtain any limit of a sequence of invariant measures of (1.3) must87

be an invariant measure of (1.1) as n→ +∞ (see Theorem 3.2).88

Secondly, we further consider the case in which the size of the neural network is finite. Noticing the89

total number of neurons we considered above is still infinitely large, then by truncating (1.3) directly, we90

obtain the following finite dimensional system91 
dui(t) =

(
fi (ui) +

i+n∑
j=i−n

ki,jφ (uj) + gi

)
dt+ ε (λi (ui) + hi) dWi(t), t > τ,

ui(τ) = uτ,i,

(1.4)

where i ∈ ZdN := {(i1, · · · , id) |i1, · · · , id ∈ {−N, · · · , 0, · · · , N−1, N}} andN ≥ n. It is worth mentioning92

that the idea of finite-dimensional approximations of equilibrium measures was firstly introduced in [?]93

for coupled map lattices. We apply such idea to consider finite-dimensional approximations of (1.3),94

and investigate the limiting behavior of invariant measures for (1.4) with respect to the number N of95

nodes. Similar to the above argument, we further prove the sequence of invariant measures of (1.4) must96

converge to an invariant measure of (1.3) as N → +∞ by the different proof from [?]. We would also like97

to point out that the limiting behavior of random attractors for (1.4) can be studied according to [?].98

Finally, we investigate the numerical invariant measure of (1.4). Notice that, the Euler-Maruyama99

(EM) method was applied to investigate numerical solutions and approximation of the invariant measures100

of stochastic differential equations in [?, ?], where both the drift coefficients and the diffusion coefficients101

are required to be globally Lipschitz continuous. However in the locally Lipschitz case, EM numerical102

solutions to stochastic differential equations fail to be ergodic (see [?] for more details). Therefore, the103

Backward Euler-Maruyama (BEM) method was used to approximate the invariant measure in [?, ?, ?]104

where the drift coefficients do not need to satisfy a globally Lipschitz condition. Following this approach,105

we construct numerical approximations of the invariant measure of (1.4) in l2ρ. More precisely, one first106

needs to establish the existence and uniqueness of the invariant measure of the BEM scheme. To achieve107

it, the asymptotically attractive property of the solution of the BEM scheme in l2ρ is proved under some108

additional conditions on λi, βi and ρi, which play key roles in the proof of Lemma 5.8. Then we show109

that the invariant measure of the BEM scheme converges to the invariant measure of (1.4) in the sense of110

Wasserstein distance (see Theorem 3.4). As a consequence, the invariant measure of the original neural111

lattice model (1.1) can be approximated by the invariant measure of BEM scheme (3.1) (see Theorem112

3.5).113
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In conclusion, the above convergence analysis shows that the invariant measure of zero-noise limit of114

(1.1) is numerically observable. These convergence relations between numerical invariant measure and115

invariant measures are given in Figure 1 below.116

Figure 1: Convergence paths of invariant measures.

The structure of the paper is as follows. In Section 2, we first introduce a weighted Hilbert space117

and some necessary assumptions, as well as we prove the existence and uniqueness of solutions and the118

existence of invariant measures of the underlying system. Then we present some main results in Section 3.119

Section 4 is concerned with the convergence of invariant measures for system (1.1) as the noise intensity120

ε→ ε0 ∈ [0, 1]. Section 5 is devoted to establishing the numerical approximation of thet invariant measure121

of (1.1). we first show that invariant measures of system (1.3) converge weakly to invariant measures122

of system (1.1) as n → +∞ in subsection 5.1. Then we prove that invariant measures of system (1.4)123

converge weakly to invariant measures of system (1.3) as N → +∞ in subsection 5.2. Finally, we present124

that the invariant measure of BEM scheme converges weakly to that of system (1.4) in subsection 5.3.125

Therefore, the invariant measure of (1.2) can be approximated by the invariant measure of BEM scheme126

(3.1).127

2 Preliminaries128

In this section, we first present some assumptions, and then introduce the well-posedness of solutions as129

well as the existence of invariant measures of systems (1.1), (1.3) and (1.4).130

2.1 Assumptions131

First, we introduce some preliminaries and necessary assumptions.132

(H1). Let ρ = (ρi)i∈Zd satisfy ρi > 0 for all i ∈ Zd and ρΣ :=
∑
i∈Zd

ρi < +∞.133

Consider the weighted space l2ρ :=
{
u = (ui)i∈Zd :

∑
i∈Zd

ρiu
2
i < +∞

}
with the inner product 〈u, v〉 :=134

∑
i∈Zd

ρiuivi for u = (ui)i∈Zd , v = (vi)i∈Zd ∈ l
2
ρ and norm ‖u‖ρ :=

√∑
i∈Zd

ρiu2
i . It is easy to show l2ρ is a135

separable Hilbert space. Next, we introduce some assumptions which have been presented in [?].136

(H2). There exists a constant κ > 0 such that
∑
j∈Zd

k2
i,j

ρj
≤ κ, ∀i ∈ Zd.137

(H3). For each i ∈ Zd, fi : R → R is continuously differentiable with fi(0) = 0 and locally bounded138

derivatives, i.e., there exists a non-decreasing function Lf (·) ∈ C
(
R+,R+

)
such that for any r ∈ R+ and139

i ∈ Zd, max
ρix∈[−r,r]

|f ′i(x)| ≤ Lf (r).140

(H4). For each i ∈ Zd, the state dependent nonlinear diffusion term λi : R → R is continuously141

differentiable, and there exists a non-decreasing function Lλ(·) ∈ C
(
R+,R+

)
such that for any r ∈ R+

142
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and i ∈ Zd, max
ρix∈[−r,r]

|λ′i(x)| ≤ Lλ(r).143

In addition, there exist a = (ai)i∈Zd ∈ l∞ and b = (bi)i∈Zd ∈ l2ρ such that for any x ∈ R, |λi(x)| ≤ ai|x|+bi.144

(H5). The activation function φ is globally Lipschitz continuous with Lipschitz constant Lφ, and145

there exists bφ > 0 such that for any x ∈ R, |φ(x)| ≤ Lφ|x|+ bφ.146

(H6). There exist α > 0 and β = (βi)i∈Zd ∈ l2ρ such that for any x, y ∈ R and i ∈ Zd, (x− y)(fi(x)−147

fi(y)) ≤ −α|x− y|2 + β2
i .148

For convenience, we define the operators F , K and Λ by F (u) = (fi (ui))i∈Zd , Λ(u) = (λi (ui))i∈Zd

and K(u) = (Ki (ui))i∈Zd with Ki (ui) :=
∑
j∈Zd

ki,jφ (uj) . Then K(u) is globally Lipschitz continuous by

(H5), and it follows from (H4) and (H6) that F (u) and Λ(u) satisfy locally Lipschitz condition, that
is, for any u, v ∈ l2ρ with ‖u‖2ρ ≤ R, ‖v‖2ρ ≤ R and R > 0,

‖F (u)− F (v)‖2ρ ≤ L2
f (2R

√
ρΣ)‖u− v‖2ρ, ‖Λ(u)− Λ(v)‖2ρ ≤ L2

λ(2R
√
ρΣ)‖u− v‖2ρ.

Similarly, define K(n)(u) =
(
K

(n)
i (ui)

)
i∈Zd

with K
(n)
i (ui) :=

i+n∑
j=i−n

k
(n)
i,j φ (uj) , then ‖K(n)(u) −149

K(n)(v)‖2ρ ≤ ρΣκL
2
φ‖u− v‖2ρ. In particular, denote FN (u) := (fi (ui))i∈ZdN

, GN := (gi)i∈ZdN
and KN (u) :=150 (

K
(n)
i (ui)

)
i∈ZdN

with K(n)
i (ui) :=

i+n∑
j=i−n

k
(n)
i,j φ (uj) .151

In order to rewrite the term (λi (ui) + hi) dWi(t) (i ∈ ZdN ) as a vector in l2ρ, we define Λi(u) =

(λi (ui)) ei and Hi = (hi) ei, where ei represents the infinite sequence with 1 at position i and 0 elsewhere.
Then Λ(u) =

∑
i∈Zd

Λi(u) and H =
∑
i∈Zd

Hi for every u ∈ l2ρ. Moreover, for all u, v ∈ l2ρ, there hold

‖Λ(u)‖2ρ =
∑
i∈Zd
‖Λi(u)‖2ρ and ‖Λ(u)− Λ(v)‖2ρ =

∑
i∈Zd
‖Λi(u)− Λi(v)‖2ρ .

2.2 Well-posedness of solutions and the existence of invariant measures152

Following the above procedures, (1.1), (1.3) and (1.4) can be rewritten respectively as:153 
du(t) = (F (u(t)) +K (u(t)) +G) dt+ ε

∑
i∈Zd

(Λi(u) +Hi) dWi(t),

u(τ) = uτ = (uτ,i)i∈Zd ,

(2.1)

154 
du(t) =

(
F (u(t)) +K(n) (u(t)) +G

)
dt+ ε

∑
i∈Zd

(Λi(u) +Hi) dWi(t),

u(τ) = uτ = (uτ,i)i∈Zd

(2.2)

and155 
du(t) =

(
FN (u(t)) +KN (u(t)) +GN

)
dt+ ε

∑
i∈ZdN

(Λi(u) +Hi) dWi(t),

u(τ) = uτ = (uτ,i)i∈ZdN .

(2.3)

With these assumptions as well as the discussion of Theorem 2.3 in [?], we have156

Theorem 2.1. Let (H1)-(H6) hold. Then, for any τ ∈ R and Fτ -measurable initial data uτ ∈ L2
(
Ω, l2ρ

)
,

the stochastic system (2.1) possesses a unique solution u ∈ L2
(
Ω, C

(
[τ, τ + T ], l2ρ

))
and satisfies, for all

t ≥ τ and almost ω ∈ Ω,

u(t) = uτ +

∫ t

τ

(F (u(s)) +K(u(s)) +G(s))ds+ ε
∑
i∈Zd

∫ t

τ

(Λi(u(s)) +Hi(s)) dWi(s).

5



Remark 2.1. As special cases of Theorem 2.1, for any τ ∈ R and initial data uτ ∈ L2
(
Ω, l2ρ

)
, systems157

(2.2) and (2.3) possess a unique solution u(n), uN,n ∈ L2
(
Ω, C

(
[τ, τ + T ], l2ρ

))
, respectively.158

Next, we introduce the existence of invariant measures for stochastic systems (2.1), (2.2) and (2.3).159

More details on the concept of invariant measure, one can see [?], so we omit it here.160

(H7). 2Lφ
√

2κρΣ + 4‖a‖2∞ < α.161

Theorem 2.2 ([?] Theorem 4.6). Let (H1)-(H7) hold. Then the stochastic system (2.1) has an invariant162

measure on l2ρ, that is, there exists a probability measure µε on l2ρ such that for any bounded and continuous163

function ϕ : l2ρ → R,
∫
l2ρ

(∫
l2ρ

ϕ(v)p(τ, u; t,dv)

)
dµε(u) =

∫
l2ρ

ϕ(u)dµε(u) for t ≥ τ .164

Remark 2.2. As an immediate consequence of Theorem 2.2, we obtain the stochastic systems (2.2) and165

(2.3) have probability measures µ(n), µN,n on l2ρ, respectively.166

3 Main results167

In this section, we will state the main results in this paper. We begin this section with the following168

theorem which shows the limiting behavior of invariant probability measures of system (2.1) as the noise169

intensity ε→ ε0 ∈ [0, 1].170

Theorem 3.1. Let (H1)-(H7) hold. If εn → ε0 ∈ [0, 1] and µεn ∈ Sεn , then there exist a subsequence171

εnk and an invariant measure µε0 ∈ Sε0 such that µεnk −→ µε0 weakly.172

This proof is contained in Section 4.173

Noting that the dimension of system (2.1) is infinite, it is natural to consider adopting the finite174

dimensional approximation method to deal with the numerical invariant measure of such infinite dimen-175

sional system. Firstly, we investigate the limiting behavior of invariant measures of system (2.2) as the176

interconnection parameter n → +∞. For that, we need extra assumptions on the connection strength177

ki,j and activation function φ:178

(H8). k(n)
i,j → ki,j as n→ +∞ in the sense that for every ε > 0, there exists N(ε) ∈ N such that for179

any n ≥ N(ε) and ∈ Zd,
∑
j∈Zd

(
k

(n)
i,j − ki,j

)2
ρj

≤ ε.180

(H9). φ can be bounded in the sense that there exists bφ such that for any x ∈ R, |φ(x)| ≤ bφ.181

Theorem 3.2 is concerned with the limiting behavior of invariant measure of (2.2) as n→ +∞, which182

is different from [?, Theorem 6.1] where the authors deal with the case ε→ ε0.183

Theorem 3.2. Let (H1)-(H9) hold, and µ(n) ∈ S(n), n ∈ Z+. Then there exist a subsequence {nk}+∞k=1184

and an invariant probability measure µ to (2.1) such that µ(nk) −→ µ weakly as k → +∞.185

This proof is contained in subsection 5.1. We will find, by Theorem 3.2, the invariant measure of (2.1)186

with infinite neighborhoods can be approximated by that of stochastic neural field lattice system with187

finite neighborhoods.188

Next, we further investigate whether invariant probability measures of (2.3) converge to invariant189

probability measures of (2.2) as the size N tends to infinity, which is important for numerical approxi-190

mations of invariant measures to (2.2).191

Theorem 3.3. Let (H1)-(H9) hold, and µN,n ∈ SN,n, N ∈ Z+. Then there exist a subsequence192

{Nk}+∞k=1 and a probability measure µ∗ such that µNk,n −→ µ∗ weakly as k → +∞. Furthermore, Lemma193

5.5 implies that µ∗ must be an invariant probability measure of (2.2).194
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This proof is contained in subsection 5.2.195

Let P(R2N+1) and P(l2ρ) denote the family of all probability measures on R2N+1 and l2ρ, respectively.
The Wasserstein distance between ν and ν̃ ∈ P

(
l2ρ
)
can be defined by

W2(ν, ν̃) :=
[

inf
π∈C(ν,ν̃)

∫
l2ρ×l2ρ

‖ν1 − ν2‖2ρπ(dν1, dν2)
] 1

2

,

where C(ν, ν̃) denotes the set of all couplings of ν and ν̃. In addition, any Borel probability measure196

ν on R2N+1 can be naturally extended to a Borel probability measure ν∗ on l2ρ. Then for any ν and197

ν̃ ∈ P
(
R2N+1

)
, the Wasserstein distance between ν∗ and ν̃∗ ∈ P

(
l2ρ
)
can be defined by W2(ν∗, ν̃∗) :=198

W2(ν, ν̃).199

Define the BEM scheme200 
Xk+1 =Xk +

(
FN (Xk+1) +KN (Xk+1) +GN

)
~ + ε

∑
i∈ZdN

(Λi(Xk) +Hi) ∆Wik,

X0 = x,

(3.1)

where k ≥ 0, ~ > 0 is step size, Xk := Xtk = Xk~, x = uN,nτ = (uN,nτ,i )i∈ZdN and ∆Wik = Witk+1
−Witk .201

Now, we are going to establish the existence and uniqueness of the invariant measure of the BEM202

scheme and approximation of such invariant measure to that of (2.3) in the Wasserstein metric. To this203

end, we further have the following assumptions.204

(H10). λi is globally Lipschitz continuous with Lipschitz constant Lλ.205

(H11). ε2L2
λ + 2

√
ρΣκLφ − 2α < 0 and 2

√
2ρΣκaφ − α < −

1

8
.206

Theorem 3.4. Let (H1)-(H11) hold, then we have

lim
~→0

W2(µN,n, µ~,N,n) = 0.

This proof is contained in subsection 5.3. Together with Theorems 3.2-3.4, we can obtain the following207

result.208

Theorem 3.5. Let (H1)-(H11) hold and βi = 0 for i ∈ Zd. Then the original neural lattice model (1.1)209

has a unique invariant measure µ, and lim
n→+∞

lim
N→+∞

lim
~→0

µ~,N,n = µ weakly.210

This proof is contained in subsection 5.3.211

Remark 3.1. Under Assumptions (H1)-(H11) and βi = 0 for i ∈ Zd, we can know the invariant212

measures of (1.2)-(1.4) and (3.1) are unique, respectively, which mean not only these invariant measures213

are ergodic, but also every sequence µεn → µε0 weakly as n → +∞ in Theorem 3.1, µ(n) → µ weakly214

as n → +∞ in Theorem 3.2, and µN,n → µ∗ weakly as N → +∞ in Theorem 3.3. In this sense, the215

unique invariant measure of (1.2) can be approximated by the invariant measure of BEM scheme (3.1)216

from Theorem 3.1 and Theorem 3.5.217

In addition, the unique physical measure was investigated for globally coupled Anosov diffeomorphisms218

in [?] based on the Lasota-Yorke inequalities. According to [?, Definition 2.1 and Remark 2.2] together219

with the ergodicity of µ, we need prove the absolute continuity of µ with respect to a Lebesgue measure to220

show µ is a physical measure, which will be one of our future works.221

Remark 3.2. As the dimension of the finite dimensional reduction goes to infinity, the problem of222

computing the related measure might become numerically impossible to solve. To this end, we will try223

to estimate the convergent rate of invariant measures in every step approximation by referring to [?]224

in the following work, by which the problem of computing the related invariant measures might become225

numerically possible to solve.226
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4 Proof of Theorem 3.1227

This section starts from the weighted tail estimate of solutions of system (2.1) below.228

Lemma 4.1. Let Assumptions (H1)-(H7) hold. Then, for every R > 0 and ε > 0, there exist T =

T (R, ε) > τ and N = N (ε) ≥ 1 such that the solution u satisfies, for all t ≥ T, n ≥ N and ε ∈ (0, 1],

E
( ∑
|i|≥n

ρi |ui (t, uτ )|2
)
< ε,

where uτ ∈ L2
(
Ω,Fτ ; l2ρ

)
with E

(
‖uτ‖2ρ

)
≤ R.229

Proof. Let ς : R → [0, 1] be a smooth function such that ς(s) =

 0, |s| ≤ 1;

1, |s| ≥ 2.
Given n ∈ N, define ςn

by ςnu =

(
ς

(
|i|
n

)
ui

)
i∈Zd

. By Itô’s formula, we deduce that for any t ≥ τ ,

‖ςnu(t)‖2ρ = ‖ςnuτ‖2ρ + 2

∫ t

τ

(ςnu(s), ςnF (u(s))) ds+ 2

∫ t

τ

(ςnu(s), ςnK(u(s))) ds

+ 2

∫ t

τ

(ςnu(s), ςnG) ds+ ε2

∫ t

τ

‖ςnΛ(u(s)) + ςnH‖2ρ ds

+ 2ε
∑
i∈Zd

∫ t

τ

(ςnu(s), (ςnΛi(u) + ςnHi)) dWi(s).

Then we obtain

d

dt
E
(
‖ςnu(t)‖2ρ

)
=2E ((ςnu(t), ςnF (u(t)))) + 2E ((ςnu(t), ςnK(u(t)))) (4.1)

+ 2E ((ςnu(t), ςnG)) + ε2E
(
‖ςnΛ(u(t)) + ςnH‖2ρ

)
.

By (H6), the first term on the right-hand side of (4.1) can be bounded as

E ((ςnu(t), ςnF (u(t)))) ≤ −αE
(
‖ςnu‖2ρ

)
+
∑
|i|≥n

ρiβ
2
i . (4.2)

For the second term on the right-hand side of (4.1), we derive by (H1), (H2) and (H5) that

E ((ςnu(t), ςnK(u(t)))) ≤ α

8
E
(
‖ςnu(t)‖2ρ

)
+

4

α
κ
(
L2
φE
(
‖u(t)‖2ρ

)
+ b2φρΣ

) ∑
|i|≥n

ρi. (4.3)

As for the third term on the right-hand side of (4.1),

E ((ςnu(t), ςnG)) ≤ α

8
E
(
‖ςn(u(t))‖2ρ

)
+

2

α
E
( ∑
|i|≥n

ρig
2
i

)
. (4.4)

For the last term on the right-hand side of (4.1), by (H4), we obtain

ε2E
(
‖ςnΛ(u(t)) + ςnH‖2ρ

)
≤ 4‖a‖2∞E

(
‖ςnu(t)‖2ρ

)
+ 4ε2

∑
|i|≥n

ρib
2
i + 2ε2

∑
|i|≥n

ρih
2
i . (4.5)

Combining (4.2)-(4.5) with (4.1) and then using Gronwall’s inequality, implies that

E
(
‖ςnu(t)‖2ρ

)
≤e−α2 (t−τ)E

(
‖ςnuτ‖2ρ

)
+

8

α
κL2

φ

∑
|i|≥n

ρi

∫ t

τ

e
α
2 (s−t)E

(
‖u(s)‖2ρ

)
ds (4.6)

+
4

α

∑
|i|≥n

ρi

(
β2
i +

2

α
g2
i + 2ε2b2i + ε2h2

i +
4

α
κb2φρΣ

)
.
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Since E
(
‖uτ‖2ρ

)
≤ R, we have for every ε > 0, there exists T1 = T1 (R, ε) > τ such that, for all t ≥ T1,

e−
α
2 (t−τ)E

(
‖ςnuτ‖2ρ

)
<
ε

3
. (4.7)

Applying Itô’s formula to (2.1) and taking expectation, we obtain that there exists T2 = T2 (R) > τ such
that for all t ≥ T2,

E
(
‖u(t)‖2ρ

)
≤e−α2 (t−τ)E

(
‖uτ‖2ρ

)
+

4

α

(
‖β‖2ρ +

ρΣb
2
φ

Lφ

√
2κρΣ + 2ε2‖b‖2ρ

)
+ C

(
‖G‖2ρ + ε2‖H‖2ρ

) ∫ t

τ

e
α
2 (s−t)ds,

from which there exists N2 = N2 (ε) ≥ 1 such that for all t ≥ T2 and n ≥ N2,∑
|i|≥n

ρi

∫ t

τ

e
α
2 (s−t)E

(
‖u(s)‖2ρ

)
ds ≤ sup

s≥τ
E
(
‖u(s)‖2ρ

) ∑
|i|≥n

ρi

∫ t

τ

e
α
2 (s−t)ds ≤ ε

3
. (4.8)

On the other hand, since β, b,H,G ∈ l2ρ, it follows from (H1) that there exists N3 = N3 (ε) ≥ 1 such that
for all n ≥ N3, ∑

|i|≥n

ρi
(
β2
i +

2

α
g2
i + 2ε2b2i + ε2h2

i +
4

α
κb2φρΣ

)
<
ε

3
. (4.9)

From (4.6)-(4.9), it follows that for every ε > 0, there exist N = max{N1, N2, N3} and T = max{T1, T2}230

such that E
( ∑
|i|≥2n

ρi |ui (t, uτ )|2
)
≤ E

(
‖ςnu(t)‖2ρ

)
< ε for all n ≥ N , t ≥ T and ε ∈ (0, 1].231

Let Sε be the collection of all invariant measures of (2.1) with ε ∈ (0, 1]. By Theorem 2.2 we see that232

Sε is nonempty. We now prove the union
⋃

ε∈(0,1]

Sε is tight.233

Lemma 4.2. Let (H1)-(H7) hold. Then
⋃

ε∈(0,1]

Sε is tight.234

Proof. Given ϕ ∈ l2ρ, denote ũε,n (t, ϕ) =
(
1[−n,n](k)uεk (t, ϕ)

)
k∈Z and ûε,n (t, ϕ) =

((
1− 1[−n,n](k)

)
uεk (t, ϕ)

)
k∈Z ,

where n ∈ N, 1[−n,n] is the characteristic function of [−n, n]. By Lemma 4.1, we find that for every
ε ∈ (0, 1), k ∈ N and ϕ ∈ l2ρ, there exist Tk = Tk (ε′, k, ϕ) > τ and nk = nk (ε′, k) ≥ 1 such that for all

t ≥ Tk and ε ∈ (0, 1], E
(
‖ûε,nk(t, ϕ)‖2ρ

)
≤ ε′

24k
.

On the other hand, by the estimates of solutions to (2.1), we obtain that

E
(
‖uε(t)‖2ρ

)
≤e−α2 (t−τ)E

(
‖ϕ‖2ρ

)
+

2(t− τ)

α

(
2‖β‖2ρ +

2ρΣb
2
φ

aφ

√
2κρΣ +

2

α
‖G‖2ρ

)
+ 4ε2‖b‖2ρ + 2ε2‖H‖2ρ.

Then, we see that there exist T1 = T1(ϕ) > τ and M independent of ϕ and ε, such that for all t ≥ T1 and235

ε ∈ (0, 1], E
(
‖uε(t, ϕ)‖2ρ

)
≤M. Following the procedure as stated in [?], we obtain the desired result.236

The next result is concerned with the convergence of solutions to (2.1) with respect to ε.237

Lemma 4.3. Let (H1)-(H7) hold. Then, for every bounded subset E in l2ρ, T > 0, σ > 0 and ε0 ∈ [0, 1],

lim
ε→ε0

sup
ϕ∈E

P
({
ω ∈ Ω | sup

τ≤t≤τ+T
‖uε(t, ϕ)− uε0(t, ϕ)‖ρ ≥ σ

})
= 0.

Proof. Following the stopping time idea in [?], we need only to prove

lim
ε→ε0

sup
ϕ∈E

P
({
ω ∈ Ω | sup

τ≤t≤τ+T
‖uε (t ∧ τεR, ϕ)− uε0 (t ∧ τεR, ϕ)‖ρ ≥ σ

})
= 0,
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where τεR = inf
t≥τ
{‖uε(t, ϕ)‖ρ ∨ ‖uε0(t, ϕ)‖ρ > R}, τεR =∞ if {t ≥ τ : ‖uε(t, ϕ)‖ρ ∨ ‖uε0(t, ϕ)‖ρ > R} = ∅.238

By applying Itô’s formula to uε(t, ϕ)− uε0(t, ϕ) and then taking expectation, we derive

E
(

sup
τ≤r≤t

‖uε(r ∧ τεR, ϕ)− uε0(r ∧ τεR, ϕ)‖2ρ
)

(4.10)

≤2E
(∣∣∣ ∫ t∧τεR

τ

(F (uε)− F (uε0), uε − uε0)ds
∣∣∣)+ 2E

(∣∣∣ ∫ t∧τεR

τ

(K(uε)−K(uε0), uε − uε0)ds
∣∣∣)

+
∑
i∈Zd

E
(∫ t∧τεR

τ

‖(ε− ε0)(Λi(u
ε0) +Hi) + ε(Λi(u

ε)− Λi(u
ε0)‖2ρds

)
+ 2|ε− ε0|E

(
sup
τ≤r≤t

|
∑
i∈Zd

∫ r∧τεR

τ

(Λi(u
ε0) +Hi, u

ε − uε0)dWi(s)|
)

+ 2εE
(

sup
τ≤r≤t

|
∑
i∈Zd

∫ r∧τεR

τ

(Λi(u
ε)− Λi(u

ε0), uε − uε0)dWi(s)|
)
.

For the first two terms on the right-hand side of (4.10), we have

E
(∣∣∣ ∫ t∧τεR

τ

(F (uε)− F (uε0), uε − uε0)ds
∣∣∣) (4.11)

≤Lf (2R
√
ρΣ)

∫ t

τ

E
(

sup
τ≤r≤s

‖uε(r ∧ τεR, ϕ)− uε0(r ∧ τεR, ϕ)‖2ρ
)
ds

and

E
(∣∣∣ ∫ t∧τεR

τ

(K(uε)−K(uε0), uε − uε0) ds
∣∣∣) (4.12)

≤√ρΣκLφ

∫ t

τ

E
(

sup
τ≤r≤s

‖uε(r ∧ τεR, ϕ)− uε0(r ∧ τεR, ϕ)‖2ρ
)
ds.

For the third term on the right-hand side of (4.10), we find

∑
i∈Zd

E
(∫ t∧τεR

τ

‖(ε− ε0)(Λi(u
ε0) +Hi) + ε(Λi(u

ε)− Λi(u
ε0))‖2ρds

)
(4.13)

≤4(ε− ε0)2E
(∫ t∧τεR

τ

(2R‖a‖∞ + 2‖b‖2ρ + ‖H‖2ρ)ds
)

+ 2ε2L2
λ(2R

√
ρΣ)

∫ t

τ

E
(

sup
τ≤r≤s

‖uε(r ∧ τεR, ϕ)− uε0(r ∧ τεR, ϕ)‖2ρ
)
ds.

By the Burkholder-Davis-Gundy inequality, we obtain the fourth term on the right-hand side of (4.10)

|ε− ε0|E
(

sup
τ≤r≤t

∣∣∣ ∑
i∈Zd

∫ r∧τεR

τ

(Λi(u
ε0) +Hi, u

ε − uε0)dWi(s)
∣∣∣) (4.14)

≤1

8
E
(

sup
τ≤r≤t

‖uε(r ∧ τεR, ϕ)− uε0(r ∧ τεR, ϕ)‖2ρ
)

+ C2
1 |ε− ε0|2E

(∫ t∧τεR

τ

(2R‖a‖∞ + 2‖b‖2ρ + ‖H‖2ρ)ds
)
.

Similarly, the last term on the right-hand side of (4.10) can be bounded by

2εE
(

sup
τ≤r≤t

∣∣∣ ∑
i∈Zd

∫ r∧τεR

τ

(Λi(u
ε)− Λi(u

ε0), uε − uε0)dWi(s)
∣∣∣) (4.15)

≤1

4
E
(

sup
τ≤r≤t

‖uε(r ∧ τεR, ϕ)− uε0(r ∧ τεR, ϕ)‖2ρ
)

+ ε2C3

∫ t

τ

E
(

sup
τ≤r≤s

‖uε(r ∧ τεR, ϕ)− uε0(r ∧ τεR, ϕ)‖2ρ
)
ds.
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By (4.10) and (4.11)-(4.15), we have that for all t ∈ [τ, τ + T ],

E
(

sup
τ≤r≤t

‖uε(r ∧ τεR, ϕ)− uε0(r ∧ τεR, ϕ)‖2ρ
)

(4.16)

≤2
[
2Lf (2R

√
ρΣ) + 2

√
ρΣκLφ + ε2L2

λ(2R
√
ρΣ) + ε2C3

]
·
∫ t

τ

E
(

sup
τ≤r≤s

‖uε(r ∧ τεR, ϕ)− uε0(r ∧ τεR, ϕ)‖2ρ
)
ds

+ 4(ε− ε0)2(2 + C2
1 )(2R‖a‖∞ + 2‖b‖2ρ + ‖H‖2ρ)T.

Then, by (4.16) and Gronwall’s inequality, we have

sup
ϕ∈E

P
({
ω ∈ Ω | sup

τ≤t≤τ+T
‖uε (t ∧ τεR, ϕ)− uε0 (t ∧ τεR, ϕ)‖ρ ≥ σ

})
≤4(ε− ε0)2(2 + C2

1 )(2R‖a‖∞ + 2‖b‖2ρ + ‖H‖2ρ)Te[4Lf (2R
√
ρΣ)+4

√
ρΣκLφ+2ε2L2

λ(2R
√
ρΣ)+2ε2C3]T → 0,

as ε→ ε0, as desired.239

Now we present a proof of Theorem 3.1.240

Proof of Theorem 3.1. By Lemma 4.2,
⋃

ε∈(0,1]

Sε is tight, which together with the fact µεn ∈
+∞⋃
n=1

Sεn241

implies that there exist a subsequence εnk and a probability measure µε0 such that µεnk −→ µε0 weakly.242

It follows from Lemma 4.3 and [?, Theorem 6.1] that µε0 is an invariant measure such that µε0 ∈ Sε0 .243

5 Numerical approximation of invariant measures for (2.1)244

This section mainly aims to obtain the numerical approximation of invariant measures for (2.1) by proving245

Theorems 3.2-3.4. More precisely, our analysis is divided into the following three subsections.246

5.1 Proof of Theorem 3.2247

To prove Theorem 3.2, we first present some results that are crucial to prove the convergence of the248

sequence of invariant measures.249

By (4.3) and (4.6) in the proof of Lemma 4.1, we conclude the following lemma.250

Lemma 5.1. Let (H1)-(H7) hold. Then for given ε ∈ (0, 1], the solution u(n) satisfies that for every
R > 0 and ε > 0, there exist T = T (R, ε) > τ and K = K (ε) ≥ 1 such that for all t ≥ T , k ≥ K and
n ∈ Z+,

E
( ∑
|i|≥k

ρi|u(n)
i (t, uτ ) |2

)
< ε,

where uτ ∈ L2
(
Ω,Fτ ; l2ρ

)
with E

(
‖uτ‖2ρ

)
≤ R.251

Let S(n) be the collection of all invariant probability measures of (2.2) with n-neighborhood. By252

Remark 2.2 we deduce that S(n) is nonempty. Moreover, from Lemma 4.2 and Lemma 5.1, the following253

result on weak compactness holds.254

Lemma 5.2. Let (H1)-(H7) hold. Then
⋃
n∈Z+

S(n) is tight.255

Next, we show the following result which is concerned with the convergence of solutions to (2.2) as256

n→ +∞.257
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Lemma 5.3. Let (H1)-(H6), (H8) and (H9) hold. Then for every bounded subset E in l2ρ, T > τ and
σ > 0,

lim
n→+∞

sup
ϕ∈E

P
({
ω ∈ Ω | sup

τ≤t≤τ+T
‖u(n)(t, ϕ)− u(t, ϕ)‖ρ ≥ σ

})
= 0.

Proof. Let τnR = inf
t≥τ

{
‖u(n)(t, ϕ)‖ρ ∨ ‖u(t, ϕ)‖ρ > R

}
. Applying Itô’s formula to u(n)(t, ϕ)− u(t, ϕ) and

then taking expectation, we obtain

E
(

sup
τ≤r≤t

‖u(n)(r ∧ τnR, ϕ)− u(r ∧ τnR, ϕ)‖2ρ
)

(5.1)

≤2E
(∣∣∣ ∫ t∧τnR

τ

(F (u(n))− F (u), u(n) − u)ds
∣∣∣)+ 2E

(∣∣∣ ∫ t∧τnR

τ

(K(n)(u(n))−K(u), u(n) − u)ds
∣∣∣)

+ ε2
∑
i∈Zd

E
(∫ t∧τnR

τ

‖Λi(u(n))− Λi(u)‖2ρds
)

+ 2εE
(

sup
τ≤r≤t

∣∣∣ ∑
i∈Zd

∫ r∧τnR

τ

(
Λi(u

(n))− Λi(u), u(n) − u
)
dWi(s)

∣∣∣).
Similar to (4.11), the first term on the right-hand side of (5.1) can be bounded by

E
(∣∣∣ ∫ t∧τnR

τ

(F (u(n))− F (u), u(n) − u)ds
∣∣∣) (5.2)

≤Lf (2R
√
ρΣ)

∫ t

τ

E
(

sup
τ≤r≤s

‖u(n)(r ∧ τnR, ϕ)− u(r ∧ τnR, ϕ)‖2ρ
)
ds.

After some calculations, we have for the second term on the right-hand side of (5.1)

E
(∣∣∣ ∫ t∧τnR

τ

(K(n)(u(n))−K(u), u(n) − u)ds
∣∣∣) (5.3)

≤E
(∫ t∧τnR

τ

‖u(n) − u‖ρ
[( ∑

i∈Zd
ρi

( j=i+n∑
j=i−n

ki,j(φ(u
(n)
j )− φ(uj))

)2) 1
2

+
(∑
i∈Zd

ρi

( j=i+n∑
j=i−n

(k
(n)
i,j − ki,j)φ(u

(n)
j )
)2) 1

2

+
(∑
i∈Zd

ρi(
∑
|j−i|>n

ki,jφ(uj))
2
) 1

2
]
ds
)

:=E
(∫ t∧τnR

τ

‖u(n) − u‖ρ
[
I1

1
2 + I2

1
2 + I3

1
2

]
ds
)
,

where I1 =
∑
i∈Zd

ρi

( j=i+n∑
j=i−n

ki,j(φ(u
(n)
j )− φ(uj))

)2

, I2 =
∑
i∈Zd

ρi

( j=i+n∑
j=i−n

(k
(n)
i,j − ki,j)φ(u

(n)
j )
)2

258

and I3 =
∑
i∈Zd

ρi

( ∑
|j−i|>n

ki,jφ(uj)
)2

.259

Together with (H1) and (H2), it follows that260

I1 ≤
∑
i∈Zd

ρi

[ j=i+n∑
j=i−n

k2
i,j

ρj
L2
φ

j=i+n∑
j=i−n

ρj(u
(n)
j − uj)2

]
≤ ρΣκL

2
φ‖u(n) − u‖2ρ. (5.4)

By (H8), we have that for every ε > 0, there existsN1(ε) > 0 such that for all n ≥ N1(ε),
∑
j∈Zd

(k
(n)
i,j − ki,j)2

ρj
≤261

ε, which together with (H1) and (H9) implies that262

I2 ≤
∑
i∈Zd

ρi

( j=i+n∑
j=i−n

(k
(n)
i,j − ki,j)2

ρj

j=i+n∑
j=i−n

ρjφ
2(u

(n)
j )
)
≤ ερ2

Σb
2
φ. (5.5)
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By (H1), for any ε > 0, there exists I(ε) > 0 such that
∑
|i|>I(ε)

ρi < ε. Choose N2(ε) = 2I(ε), then263

|j| > I(ε) if |j− i| > N2(ε) and |i| ≤ I(ε), and hence
∑
|j−i|>n

ρj < ε for n ≥ N2(ε). Then for any n ≥ N2(ε),264

I3 ≤
∑
i∈Zd

ρi

( ∑
|j−i|>n

k2
i,j

ρj

∑
|j−i|>n

ρjφ
2(uj)

)
≤
∑
i∈Zd

ρiκb
2
φ

∑
|j−i|>n

ρj ≤ 2ρΣκb
2
φε, (5.6)

which together with (5.3) and (5.4)-(5.6) implies that for all n > max{N1(ε), N2(ε)},

E
(∣∣∣ ∫ t∧τnR

τ

(K(n)(u(n))−K(u), u(n) − u)ds
∣∣∣) (5.7)

≤(1 + ρ
1
2

Σκ
1
2Lφ)

∫ t

τ

E
(

sup
τ≤r≤s

‖u(n)(r ∧ τnR, ϕ)− u(r ∧ τnR, ϕ)‖2ρ
)
ds+

1

2
(ερ2

Σb
2
φ + 2ρΣκb

2
φε)T.

The last two terms on the right-hand side of (5.1) can be bounded by∑
i∈Zd

E
(∫ t∧τnR

τ

‖Λi(u(n))− Λi(u)‖2ρds
)

(5.8)

≤L2
λ(2R

√
ρΣ)

∫ t

τ

E
(

sup
τ≤r≤s

‖u(n)(r ∧ τnR, ϕ)− u(r ∧ τnR, ϕ)‖2ρ
)
ds

and

εE
(

sup
τ≤r≤t

∣∣∣ ∑
i∈Zd

∫ r∧τnR

τ

(Λi(u
(n))− Λi(u), u(n) − u)dWi(s)

∣∣∣) (5.9)

≤1

4
E
(

sup
τ≤r≤t

‖u(n)(r ∧ τnR, ϕ)− u(r ∧ τnR, ϕ)‖2ρ
)

+ ε2C5

∫ t

τ

E
(

sup
τ≤r≤s

‖u(n)(r ∧ τnR, ϕ)− u(r ∧ τnR, ϕ)‖2ρ
)
ds.

By (5.1)-(5.9), we obtain for all t ∈ [τ, τ + T ],

E
(

sup
τ≤r≤t

‖u(n)(r ∧ τnR, ϕ)− u(r ∧ τnR, ϕ)‖2ρ
)

≤
[
4Lf (2R

√
ρΣ) + 4(ρ

1
2

Σκ
1
2Lφ + 1) + 2ε2L2

λ(2R
√
ρΣ) + 4ε2C5

]
·
∫ t

τ

E
(

sup
τ≤r≤s

‖u(n)(r ∧ τnR, ϕ)− u(r ∧ τnR, ϕ)‖2ρ
)
ds+ 2(ερ2

Σb
2
φ + 2ρΣκb

2
φε)T.

Thanks to this and the Gronwall inequality, we obtain for all n > max{N1(ε), N2(ε)},

sup
ϕ∈E

P
({
ω ∈ Ω | sup

τ≤t≤τ+T
‖u(n) (t ∧ τnR, ϕ)− u (t ∧ τnR, ϕ) ‖ρ ≥ σ

})
≤ 2

σ2
εb2φ
(
ρ2

Σ + 2ρΣκ
)
Te[4Lf (2R

√
ρΣ)+4(ρ

1
2
Σ κ

1
2 Lφ+1)+2ε2L2

λ(2R
√
ρΣ)+4ε2C5]T .

The proof is complete.265

Now we present a proof of Theorem 3.2.266

Proof of Theorem 3.2. Since
⋃
n∈Z+

S(n) is tight by Lemma 5.2, it follows from {µ(n)}+∞n=1 ⊆
⋃
n∈Z+

S(n) that267

there exist a subsequence {nk}+∞k=1 and a probability measure µ such that µ(nk) → µ weakly.268

For every ε > 0, we find by the tightness of {µ(nk)}+∞n=1 that there exists a compact set E = E(ε) ⊂ l2ρ
such that for all nk ∈ Z+, µ(nk)(E) ≥ 1− ε. For any t ≥ τ and ϕ ∈ UCb(l2ρ), where UCb(l2ρ) is the Banach
space of all bounded uniformly continuous functions defined on l2ρ, we deduce∣∣∣ ∫

l2ρ

E (ϕ(u(t, uτ )))µ(nk)(duτ )−
∫
l2ρ

ϕ(uτ )µ(nk)(duτ )
∣∣∣ (5.10)
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≤
∫
E

E
(
|ϕ(u(t, uτ ))− ϕ(u(nk)(t, uτ ))|

)
µ(nk)(duτ ) + 2ε sup

x∈l2ρ
|ϕ(x)|.

Since ϕ ∈ UCb(l2ρ), for every ε > 0, there exists η > 0 such that for all y, z ∈ l2ρ with ‖y − z‖2ρ < η, we
have |ϕ(y)− ϕ(z)| < ε. Thus∫

E

E
(
|ϕ(u(t, uτ ))− ϕ(u(nk)(t, uτ ))|

)
µ(nk)(duτ ) (5.11)

≤2 sup
x∈l2ρ
|ϕ(x)| sup

uτ∈E
P
(

sup
t∈[τ,τ+T ]

‖u(nk)(t, uτ )− u(t, uτ )‖2ρ ≥ η
)

+ ε.

From Lemma 5.3 and (5.10)-(5.11), it follows that

lim
k→+∞

∣∣∣ ∫
l2ρ

E (ϕ(u(t, uτ )))µ(nk)(duτ )−
∫
l2ρ

ϕ(uτ )µ(nk)(duτ )
∣∣∣ ≤ 2ε sup

x∈l2ρ
|ϕ(x)|+ ε.

Since µ(nk) → µ weakly and ε > 0 is arbitrary, we obtain∫
l2ρ

E (ϕ(u(t, uτ )))µ(duτ ) =

∫
l2ρ

ϕ(uτ )µ(duτ ),

which means µ is an invariant measure of (2.1).269

5.2 Proof of Theorem 3.3270

In this subsection, we will prove Theorem 3.3 to show the relationship of invariant measures between271

(2.2) and (2.3).272

Similar to Lemma 5.2, we obtain the following lemma.273

Lemma 5.4. Let (H1)-(H7) hold, and denote by SN,n the collection of all invariant probability measures274

of (2.3), then
⋃

N∈Z+

SN,n is tight.275

The next result is concerned with the convergence of solutions to (2.3) as N → +∞.276

Lemma 5.5. Let (H1)-(H6), (H8) and (H9) hold. Then for any T > τ , σ > 0 and every bounded
subset E in l2ρ,

lim
N→+∞

sup
ϕ∈E

P
({
ω ∈ Ω | sup

τ≤t≤τ+T
‖u(n)(t, ϕ)− uN,n(t, ϕ)‖ρ ≥ σ

})
= 0.

Proof. Denote τNR = inf
{
t ≥ τ, ‖uN,n(t, ϕ)‖ρ ∨ ‖u(n)(t, ϕ)‖ρ > R

}
. Using Itô’s formula to u(n)(t, ϕ) −

uN,n(t, ϕ) and then taking expectation, we have

E
(

sup
τ≤r≤t

‖u(n)(t ∧ τNR , ϕ)− uN,n(t ∧ τNR , ϕ)‖2ρ
)

(5.12)

≤2E
(∣∣∣ ∫ t∧τNR

τ

(F (u(n))− FN (uN,n), u(n) − uN,n)ds
∣∣∣)+ 2E

(∣∣∣ ∫ t∧τNR

τ

(K(n)(u(n))−KN (uN,n), u(n) − uN,n)ds
∣∣∣)

+ 2E
(∣∣∣ ∫ t∧τNR

τ

(G−GN , u(n) − uN,n)ds
∣∣∣)+ ε2

∑
i∈Zd

E
(

sup
τ≤r≤t

∫ r∧τNR

τ

‖Λi(u(n)) +Hi‖2ρds
)

+ 2εE
(

sup
τ≤r≤t

∣∣∣ ∫ r∧τNR

τ

(∑
i∈Zd

(Λi(u
(n)) +Hi)−

∑
i∈ZdN

(Λi(u
N,n) +Hi), u

(n) − uN,n
)
dWi(s)

∣∣∣).
By (5.2), the first term on the right-hand side of (5.12) can be bounded by

2E
(∣∣∣ ∫ t∧τNR

τ

(F (u(n))− FN (uN,n), u(n) − uN,n)ds
∣∣∣) (5.13)
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≤2Lf (2R
√
ρΣ)

∫ t

τ

E
(

sup
τ≤r≤s

‖u(n)(r ∧ τNR , ϕ)− uN,n(r ∧ τNR , ϕ)‖2ρ
)
ds

+
1

8
E
(

sup
τ≤r≤t

‖u(n)(r ∧ τNR , ϕ)− uN,n(r ∧ τNR , ϕ)‖2ρ
)

+ C1E
(∫ t∧τNR

τ

∑
i∈Zd\ZdN

ρiu
(n)
i

2
ds
)
.

Similar to inequality (5.4), the second term on the right-hand side of (5.12) can be bounded by

2E
(∣∣∣ ∫ t∧τNR

τ

(K(n)(u(n))−KN (uN,n), u(n) − uN,n)ds
∣∣∣) (5.14)

≤2
√
ρΣκLφ

∫ t

τ

E
(

sup
τ≤r≤s

‖u(n)(r ∧ τNR , ϕ)− uN,n(r ∧ τNR , ϕ)‖2ρ
)
ds

+
1

8
E
(

sup
τ≤r≤t

‖u(n)(r ∧ τNR , ϕ)− uN,n(r ∧ τNR , ϕ)‖2ρ
)

+ C2

∑
i∈Zd\ZdN

ρi.

For the third term on the right-hand side of (5.12), we find

2E
(∣∣∣ ∫ t∧τNR

τ

(G−GN , u(n) − uN,n)ds
∣∣∣) (5.15)

≤
∫ t

τ

E
(

sup
τ≤r≤s

‖u(n)(r ∧ τNR , ϕ)− uN,n(r ∧ τNR , ϕ)‖2ρ
)
ds+ E

(∫ t∧τNR

τ

∑
i∈Zd\ZdN

ρig
2
i ds
)
.

For the fourth term on the right-hand side of (5.12), we have

ε2
∑
i∈Zd

∫ t∧τNR

τ

‖
∑
i∈Zd

(Λi(u
(n)) +Hi)−

∑
i∈ZdN

(Λi(u
N,n) +Hi)‖2ρds (5.16)

≤ε2L2
λ(2R

√
ρΣ)

∫ t

τ

E
(

sup
τ≤r≤s

‖u(n)(r ∧ τNR , ϕ)− uN,n(r ∧ τNR , ϕ)‖2ρ
)
ds

+ ε2E
( ∑
i∈Zd\ZdN

∫ t∧τNR

τ

‖Λi(u(n))‖2ρds
)

+ E
( ∑
i∈Zd\ZdN

∫ t∧τNR

τ

‖Hi‖2ρds
)
.

Similar to (5.9), by the Burkholder-Davis-Gundy inequality, the last term on the right-hand side of (5.12)
can be estimated by

2εE
(

sup
τ≤r≤t

∣∣∣ ∫ r∧τNR

τ

(∑
i∈Zd

(Λi(u
(n)) +Hi)−

∑
i∈ZdN

(Λi(u
N,n) +Hi), u

(n) − uN,n
)
dWi(s)

∣∣∣)

≤1

8
E
(

sup
τ≤r≤t

‖u(n)(r ∧ τNR , ϕ)− uN,n(r ∧ τNR , ϕ)‖2ρ
)

+ C4

(
E
( ∑
i∈Zd\ZdN

∫ t∧τNR

τ

‖Λi(u(n))‖2ρds
)

+ C3

∫ t

τ

E
(

sup
τ≤r≤s

‖u(n)(r ∧ τNR , ϕ)− uN,n(r ∧ τNR , ϕ)‖2ρ
)
ds+ E

( ∑
i∈Zd\ZdN

∫ t∧τNR

τ

‖Hi‖2ρds
))
.

By (5.12)-(5.17), we obtain for all t ∈ [τ, τ + T ],

E
(

sup
τ≤r≤t

‖u(n)(r ∧ τNR , ϕ)− uN,n(r ∧ τNR , ϕ)‖2ρ
)

(5.17)

≤[4Lf (2R
√
ρΣ) + 4

√
ρΣκLφ + 2ε2L2

λ(2R
√
ρΣ) + 2C3 + 2]

·
∫ t

τ

E
(

sup
τ≤r≤s

‖u(n)(r ∧ τNR , ϕ)− uN,n(r ∧ τNR , ϕ)‖2ρ
)
ds

+ C1E
(∫ t∧τNR

τ

∑
i∈Zd\ZdN

ρiu
(n)
i

2
ds
)

+ (ε2 + C4)E
( ∑
i∈Zd\ZdN

∫ t∧τNR

τ

‖Λi(u(n))‖2ρds
)
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+ (ε2 + C4)E
( ∑
i∈Zd\ZdN

∫ t∧τNR

τ

‖Hi‖2ρds
)

+ E
(∫ t∧τNR

τ

∑
i∈Zd\ZdN

ρig
2
i ds
)

+ C2

∑
i∈Zd\ZdN

ρi.

Due to the fact u(n) ∈ L2
(
Ω, C

(
[τ, τ + T ], l2ρ

))
, G = (gi)i∈Zd ∈ l2ρ, H = (hi)i∈Zd ∈ l2ρ, ‖Λ(u)‖2ρ ≤

2‖a‖2∞‖u‖2ρ + 2‖b‖2ρ and (H1), we deduce by Gronwall’s inequality that

sup
ϕ∈E

P
({
ω ∈ Ω | sup

τ≤t≤τ+T
‖u(n)

(
t ∧ τNR , ϕ

)
− uN,n

(
t ∧ τNR , ϕ

)
‖ρ ≥ σ

})
≤ 1

σ2

[
C1E

(∫ t∧τNR

τ

∑
i∈Zd\ZdN

ρiu
(n)
i

2
ds
)

+ C2

∑
i∈Zd\ZdN

ρiE
(∫ t∧τNR

τ

‖u(n)‖2ρds
)

+ (ε2 + C4)E
( ∑
i∈Zd\ZdN

∫ t∧τNR

τ

(‖Λi(u(n))‖2ρ + ‖Hi‖2ρ)ds
)

+ E
(∫ t∧τNR

τ

∑
i∈Zd\ZdN

ρig
2
i ds
)]

· e[4Lf (2R
√
ρΣ)+4

√
ρΣκLφ+2ε2L2

λ(2R
√
ρΣ)+2C3+2]T → 0

as N → +∞, hence the proof is therefore complete.277

Now we present a proof of Theorem 3.3.278

Proof of Theorem 3.3. Similarly to the proof of Theorem 3.2, we can conclude by Lemmas 5.4 and 5.5279

that any limit of a sequence of invariant measures of (2.3) must be an invariant measure of (2.2) as280

N → +∞.281

5.3 Proof of Theorems 3.4 and 3.5282

Denote η(t) := tk, as t ∈ [tk, tk+1), and η+(t) := tk+1, as t ∈ [tk, tk+1) for k ≥ 0. Then the continuous283

version of the BEM approximate solution satisfies284

X(t) =Xt0 +

∫ t

τ

(
FN (Xη+(s)) +KN (Xη+(s)) +GN

)
ds+ ε

∑
i∈ZdN

∫ t

τ

(
Λi(Xη(s)) +Hi

)
dWi(s),

which will be used in the proof of Theorem 3.4.285

Following [?, Lemma 3.3], we establish the existence and uniqueness of solutions to the BEM scheme286

(3.1). Next, we provide moment estimates of solutions.287

Lemma 5.6. (Moment estimates) Let (H1)-(H4), (H6) and (H9)-(H11) hold. There exists a
constant ~ such that the numerical solution of the BEM scheme with any initial value x ∈ L2

(
Ω,R2N+1

)
satisfies

sup
k≥0

E
(
|Xk|2

)
≤ C(1 + E

(
|x|2
)
).

Proof. By (3.1) and the properties of FN ,KN , GN in Section 2, we obtain

|Xk+1|2 =
( (
FN (Xk+1) +KN (Xk+1) +GN

)
~, Xk+1

)
+
(
Xk + ε

∑
i∈ZdN

(Λi(Xk) +Hi) ∆Wik, Xk+1

)
≤
[1
2
− (α− 2

√
2ρΣκaφ)~

]
|Xk+1|2 + (2κρ2

Σb
2
φ + ‖β‖2ρ + C‖GN‖2ρ)~

+
1

2
|Xk + ε

∑
i∈ZdN

(Λi(Xk) +Hi) ∆Wik|2,

where C is a constant which depends on k. Then we have

1 + |Xk+1|2 ≤
1 + |Xk|2

1− (4
√

2ρΣκaφ − 2α)~
(1 + vk), (5.18)
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where vk =

∑
i∈ZdN

ρiXik(Λi(Xk) +Hi)∆Wik + ε2|
∑
i∈ZdN

(Λi(Xk) +Hi) ∆Wik|2 + C1~

1 + |Xk|2
,288

and C1 = 4κρ2
Σb

2
φ + 2‖β‖2ρ + 2C‖GN‖2ρ − 4

√
2ρΣκaφ + 2α.289

Since ∆Wik is independent of Ftk , we have E (∆Wik|Ftk) = 0 and E
(
|A∆Wik|2|Ftk

)
= |A|2~, from

which we find E (vk|Ftk) =
1

1 + |Xk|2
(
ε2
∑
i∈ZdN

|Λi(Xk) +Hi|2~ + C1~
)
.

Taking conditional expectation on (5.18), it yields that

E
(
1 + |Xk+1|2|Ftk

)
≤ 1 + |Xk|2

1− (4
√

2ρΣκaφ − 2α)~
(1 + 4ε2‖a‖2∞~) + C2~, (5.19)

where C2 = 4ε2‖b‖2ρ + 2ε2
∑
i∈ZdN

|Hi|2 + 2C1.

On the other hand, for any 0 < ~ <
−1

8(2
√

2ρΣκaφ − α)
, we obtain

[
1− (4

√
2ρΣκaφ − 2α)~

]−1

≤ 1 + (2
√

2ρΣκaφ − α)~. (5.20)

From (5.19) and (5.20), we have

E
(
1 + |Xk+1|2|Ftk

)
≤
[
1 + (2

√
2ρΣκaφ − α)~

]
(1 + |Xk|2) + C2~. (5.21)

Then by induction, it follows from (5.21) that

E
(
1 + |Xk+1|2|Ft0

)
(5.22)

≤
[
1 + (2

√
2ρΣκaφ − α)~

]k+1

(1 + |x|2) + C2~
k∑
l=1

[
1 + (2

√
2ρΣκaφ − α)~

]l
+ C2~.

Taking expectation on each side of (5.22), we deduce

E
(
1 + |Xk+1|2

)
≤
[
1 + (2

√
2ρΣκaφ − α)~

]k+1 (
1 + E

(
|x|2
) )

+ C2~
k∑
l=1

[
1 + (2

√
2ρΣκaφ − α)~

]l
+ C2~,

which implies the desired result.290

The following theorem follows directly from Lemma 5.6 proving the tightness of the family of proba-291

bility distributions.292

Lemma 5.7. (Tightness) Let (H1)-(H4), (H6) and (H9)-(H11) hold. Then for every compact subset293

K of R2N+1, the family of probability distribution for solutions of BEM scheme (3.1) is tight.294

Proof. By the moment estimates in Lemma 5.6, there exists a constant C > 0 such that E
(
|Xk|2

)
≤ C.

Define Y = {Xk ∈ R2N+1| |Xk| ≤
√
C

ε
}, then Y is a bounded and closed subset of R2N+1. Thanks to

the Chebyshev inequality we find that, for all t > 0 and x ∈ K ,

P ({ω ∈ Ω : Xk (t, x) ∈ Y}) = 1− P

({
ω ∈ Ω : |Xk| >

√
C

ε

})
≥ 1− ε,

which means {P(t, x)}t≥τ is tight.295

Next, the existence and uniqueness of the numerical invariant measure of (2.3) by BEM scheme is296

proved.297
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Lemma 5.8. Let (H1)-(H11) hold and βi = 0 for i ∈ ZdN , N ∈ Z+. Then there is a unique invariant298

probability measure µ~,N,n to the BEM scheme (3.1) which exponentially converges in the Wasserstein299

distance as ~→ 0.300

Proof. Denote by P ~
k~ the probability distribution of Xk, by Lemma 5.7, one can extract a subsequence

which converges weakly to an invariant measure denoted by µ~,N,n ∈ P(R2N+1). Now, it remains to verify
the uniqueness of invariant measures. Assume µ~,N,n

1 , µ~,N,n
2 ∈ P(R2N+1) are the invariant measures of

(3.1), respectively, then we have W 2
2 (µ~,N,n

1 , µ~,N,n
2 ) ≤

∫
R2N+1×R2N+1

W 2
2 (δxP

~
k~, δyP

~
k~)π(dx, dy).

Note that

|Xx
k+1 −X

y
k+1|

2 ≤ [−α+
√
ρΣκLφ] ~|Xx

k+1 −X
y
k+1|

2 +
1

2
|Xx

k+1 −X
y
k+1|

2

+
1

2
|Xx

k −X
y
k + ε

∑
i∈ZdN

(Λi(X
x
k )− Λi(X

y
k )) ∆Wik|2 + ‖β‖2ρ~.

Hence we obtain |Xx
k+1 −X

y
k+1|

2 ≤
|Xx

k −X
y
k |2

1− 2(−α+
√
ρΣκLφ)~

(1 + v′k), where

v′k =



ε
∑
j∈Zd

ρj(X
x
jk −X

y
jk)

∑
i∈ZdN

(Λi(X
x
jk)− Λi(X

y
jk))∆Wik

|Xx
k −X

y
k |2

+

ε2|
∑
i∈ZdN

(Λi(X
x
k )− Λi(X

y
k )) ∆Wik|2 + 2‖β‖2ρ~

|Xx
k −X

y
k |2

, |Xx
k −X

y
k |

2 6= 0;

−1, |Xx
k −X

y
k |

2 = 0.

Similar to discussions in Lemma 5.6, for any 0 < ~ <
−1

4(
√
ρΣκLφ − α)

, we have the following result

E
(
|Xx

k+1 −X
y
k+1|

2|Ftk
)
≤
[
1 + 2(ε2L2

λ + 2
√
ρΣκLφ − 2α)~

]
|Xx

k −X
y
k |

2.

And hence

W 2
2 (δxP

~
k~, δyP

~
k~) ≤ E

(
|Xx

k −X
y
k |

2
)
≤ e2(ε2L2

λ+2
√
ρΣκLφ−2α)k~|x− y|2,

which together with the (H11) completes the proof.301

Now we present a proof of Theorem 3.4.302

Proof of Theorem 3.4. By the Kolmogorov-Chapman equation, Lemma 5.8 and Lemma 5.6, we have that
for any k, l > 0,

W 2
2 (δxP

~
k~, δxP

~
(k+l)~) ≤

∫
l2ρ

W 2
2 (δxP

~
k~, δyP

~
k~)P ~

l~(x, dy) ≤ 2Ce(ε2L2
λ+2
√
ρΣκLφ−2α)k~(1 + 2|x|2). (5.23)

Let l→ +∞ in (5.23), then we have

W 2
2 (δxP

~
k~, µ

~,N,n) ≤ 2Ce(ε2L2
λ+2
√
ρΣκLφ−2α)k~(1 + 2|x|2).

Let ~1 = min{ −1

8(2
√

2ρΣκaφ − α)
,

−1

4(
√
ρΣκLφ − α)

}, then for any ε > 0, there exists T1 > 0 such that for

~ ∈ (0, ~1] and k~ ≥ T1,

W2(δxP
~
k~, µ

~,N,n) <
ε

4
. (5.24)

In addition, by Itô’s formula for uN,nx (t)− uN,ny (t) and using similar estimates in Lemma 4.3 and Lemma
5.6, we obtain

E
(
‖uN,nx (t)− uN,ny (t)‖2ρ

)
≤ (‖x− y‖2ρ + ‖β‖2ρ)e(−2α+2

√
ρΣκLφ+ε2L2

λ)(t−τ).
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Let Pk~ be the probability distribution of uN,n, there is a T2 > 0 such that for any ~ ∈ (0, 1) and k~ ≥ T2,

W2(δxPk~, µ
N,n) <

ε

4
. (5.25)

Let T = max{T1, T2} + τ and k = [
T + 1

~
] for any ~ ∈ (0, 1), then τ < T < k~ ≤ T + 1. Following [?,

Theorem 5.3], for any given ε > 0, there exists a constant ~∗ > 0 such that for any ~ ∈ (0, ~∗),

W2(δxPk~, δxP
~
k~) ≤ E(‖X(k~)− uN,n(k~)‖2ρ) <

ε

2
. (5.26)

Combining with (5.24)-(5.26), the result is proved.303

Finally, we present a proof of Theorem 3.5.304

Proof of Theorem 3.5. By Assumptions (H1)-(H11) and βi = 0 for i ∈ Zd, we have E(‖u(t, τ, u1
τ ) −305

u(t, τ, u2
τ )‖2ρ) ≤ E(‖u1

τ − u2
τ‖2ρ)e(−2α+2

√
ρΣκLφ+ε2L2

λ)(t−τ), from which we obtain the uniqueness of the306

invariant measure of (1.1). Similarly, we can prove the uniqueness of the invariant measure of (1.3)307

and (1.4). Then by Theorem 3.2, it follows that µ(n) → µ weakly, which implies that for any ε >308

0, there exists a n0 = n0(ε) ∈ Z+ such that for any n ≥ n0 and for any bounded and continuous309

function ϕ : l2ρ → R, |
∫
l2ρ

ϕ(u)dµ(n)(u) −
∫
l2ρ

ϕ(u)dµ(u) |< ε

3
. Fix n, by the uniqueness of the invariant310

measure of (1.4) and Theorem 3.3, we find there exists a N∗ = N∗(n, ε) ≥ n such that for any N ≥311

N∗, |
∫
l2ρ

ϕ(u)dµN,n(u) −
∫
l2ρ

ϕ(u)dµ(n)(u) |< ε

3
. For every n and N , we infer from Theorem 3.4 that312

µ~,N,n → µN,n weakly, so there exists a constant ~∗ = ~∗(N,n, ε) > 0 such that for any 0 < ~ < ~∗,313

|
∫
l2ρ

ϕ(u)dµ~,N,n(u) −
∫
l2ρ

ϕ(u)dµN,n(u) |< ε

3
. Then |

∫
l2ρ

ϕ(u)dµ~,N,n(u) −
∫
l2ρ

ϕ(u)dµ(u) |< ε for any314

n ≥ n0, N ≥ N∗ and ~ ∈ (0, ~∗). Therefore, lim
n→+∞

lim
N→+∞

lim
~→0

µ~,N,n = µ weakly.315
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