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Abstract

In this paper, we establish theoretical results on the stability of random regular attractors.
First, we introduce a backward regular attractor, which is a new type of attractor defined by
a minimal backward pullback attracting set. We then establish an existence theorem for such
an attractor, and prove it is long time stable. Eventually, we prove the long time stability of
regular pullback random attractors. As an application, we consider stochastic non-autonomous
Newton-Boussinesq equations with variable and distributed delays. Since solutions of the equa-
tions have no higher regularity, we prove their regular asymptotic compactness via the spectrum
decomposition technique.
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1. Introduction

As we know, a random dynamical system can be generated by an evolution equation with
stochastic perturbations (see [2, 5, 15] and the references therein). When such an equation
has a time-dependent external force, we usually investigate its asymptotic behavior by non-
autonomous random dynamical systems (NRDSs). A pullback random attractor (PRA) A =
{A(τ, ω) : τ ∈ R, ω ∈ Ω} plays a crucial role in dealing with dynamics of NRDSs. Hence, the
existence of PRA for NRDSs has been extensively studied, see, e.g., [1, 8, 12, 18, 21, 22, 25, 26]
and the references therein. Note that a PRA is a bi-parametric set depending on time and
sample parameters. Then it is natural that we study the time-dependent or sample-dependent
properties of PRA.

Let (Ω,F, P ) be a probability space, then we claim that (Ω,F, P, {θt}t∈R) is a metric dy-
namical system if θ·(·) : R×Ω→ Ω is a (B(R)×F,F)-measurable mapping, θ0(·) is the identity
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on Ω, θt+s(·) = θtθs(·) for all t, s ∈ R and P (θt(·)) = P for all t ∈ R. Very recently, the authors
in [9] studied the finite time stability of the PRA A:

lim
τ→τ0

distX(A(τ, ω),A(τ0, ω)) = 0, for all ω ∈ Ω,

where X is a Banach space with norm ‖ ·‖X and distX(·, ·) denotes the Hausdorff semi-distance
under the topology of X. In [28], Wang and Li established the long time stability of the PRA
A:

lim
τ→−∞

distX(A(τ, ω), A(ω)) = 0, for all ω ∈ Ω,

where A(ω) is a nonempty compact set. Besides, they proved in [29] the probabilistic continuity
of the PRA A:

lim
s→s0

P{ω ∈ Ω : disthX(A(τ, θsω),A(τ, θs0ω)) ≥ δ} = 0, for all τ ∈ R, δ > 0,

and

lim
τ→τ0

P{ω ∈ Ω : disthX(A(τ, ω),A(τ0, ω)) ≥ δ} = 0, for all δ > 0,

where disthX(·, ·) denotes the Hausdorff distance under the topology of X.
Let Y be a Banach space with norm ‖ · ‖Y and Y ↪→ X. Assume that A = {A(τ, ω) :

τ ∈ R, ω ∈ Ω} is an (X, Y )-regular PRA (see Definition 2.4). To our knowledge, its long time
stability has not been considered. In this paper, we will study that via an (X, Y )-backward
regular attractor E = {E(τ, ω) : τ ∈ R, ω ∈ Ω} in the sense of Definition 2.6. Such an attractor
is defined by a compact set in X and Y , dividedly invariant (see Definition 2.5) and backward
pullback attracting under the topology of Y .

Then, we establish an existence theorem of the (X, Y )-backward regular attractors E by
regular backward pullback asymptotic compactness of NRDSs defined in Definition 2.8 (see
Theorem 2.9). In addition, we also prove its long time stability, that is, there exists a nonempty
compact set B(ω) such that

lim
τ→−∞

distY (E(τ, ω), B(ω)) = 0, for all ω ∈ Ω, (1.1)

where B(ω) is minimal with respect to satisfying (1.1). Using the definition of E , (1.1) is
deduced easily (see Theorem 2.10). Finally, we use the existence of backward regular attractor
to establish the long time stability of the (X, Y )-regular PRA A:

lim
τ→−∞

distY (A(τ, ω), B1(ω)) = 0, for all ω ∈ Ω, (1.2)

where B1(ω) is the minimal nonempty compact set satisfying (1.2). Furthermore, we also prove
B(ω) = B1(ω) for all ω ∈ Ω (see Theorem 2.11).

It is worth mentioning that the study of delay partial differential equations (PDEs) has
drawn much attention on account of the importance of delay effects in physics, chemistry,
engineering, biology, economics and in other real world applications. In addition, due to the
presence of uncertainty and noise almost everywhere in our real life, it is sensible to consider a
model with stochasticity or randomness to solve problems. The authors in references [16, 19, 20,
30, 31, 32, 33] have widely investigated the asymptotic behavior of stochastic delay PDEs. As an
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application, we consider the following stochastic non-autonomous retarded Newton-Boussinesq
equations:

dξ̃ − (∆ξ̃ − u ∂ξ̃
∂x
− v ∂ξ̃

∂y
− Ra

Pa
∂ϑ̃
∂x

)dt = (h1(ξ̃(t− ρ(t)), x, y) + f(t, x, y))dt+ ξ̃ ◦ dW,
∆Ψ = ξ̃, u = ∂Ψ

∂y
, v = −∂Ψ

∂x
,

dϑ̃− ( 1
Pa

∆ϑ̃− u∂ϑ̃
∂x
− v ∂ϑ̃

∂y
)dt = (

∫ 0

−% h2(η, ϑ̃(t+ η))dη + g(t, x, y))dt+ ϑ̃ ◦ dW,
ξ̃|∂O = 0, ϑ̃|∂O = 0,Ψ|∂O = 0,

ξ̃(τ + η, x, y) := φ̃(η, x, y), ϑ̃(τ + η, x, y) := ϕ̃(η, x, y), η ∈ [−%, 0],

(1.3)

where t > τ , τ ∈ R, (x, y) ∈ O, O is a bounded domain in R2 with a smooth boundary ∂O.
The positive constants Ra and Pa stand for the Rayleigh and Prandtl numbers, respectively.
(u, v), ξ̃, ϑ̃ and Ψ are the velocity vector of the fluid, the vortex, the flow temperature and
the flow function, respectively. W is a two-sided real-valued Wiener process on a probability
space (Ω,F, P ), f, g are given non-autonomous forcings, % > 0 denotes the delay time of (1.3)
h1 and h2 stand for variable delay and distributed delay, respectively. The Newton-Boussinesq
equation was introduced in [7, 10] as a model for Benard flow. The deterministic and non-
delay version of (1.3), i.e. ξ̃ = ϑ̃ = % = 0, has been studied in [11, 23, 24, 27]. As for the
stochastic Newton-Boussinesq equations (1.3), no results have been reported on the asymptotic
behavior of solutions, this issue remains open even for the stochastic model (1.3) without delay.
Hence the aim of this work is to deal with stability of backward regular attractors for NRDSs.
Since solutions to such equations have no higher regularity, we use the spectrum decomposition
technique to overcome the difficulty.

We organize the rest of this paper as follows. In Section 2, we introduce some concepts
related to two kinds of regular attractors, including (X, Y )-regular D-pullback random attrac-
tors and (X, Y )-backward regular attractors, then establish their abstract stability results. In
Section 3, we apply the theoretical results to the stochastic Newton-Boussinesq equations with
delay (1.3).

2. Theoretical results: stability of regular attractors for non-autonomous random
dynamical systems

2.1. Concept and properties of backward regular attractors

In this subsection, we introduce a concept of a new type of attractors called a backward
regular attractor and discuss its properties. For this purpose, we first recall some concepts
related to pullback random attractors, see [25] for more details. Suppose that X is a separa-
ble Banach space with Borel σ-algebra B(X) and norm ‖ · ‖X , (Ω,F, P, {θt}t∈R) is a metric
dynamical system.

Definition 2.1. A mapping Φ : R+×R×Ω×X → X is called a continuous NRDS on X over
(Ω,F, P, {θt}t∈R) if for all t, s ∈ R+, τ ∈ R and ω ∈ Ω,

(i) Φ(t, τ, ω, ·) : X → X is continuous;

(ii) Φ(0, τ, ω, ·) is the identity operator on X;

(iii) Φ(t+ s, τ, ω, ·) = Φ(t, τ + s, θsω,Φ(s, τ, ω, ·));
(iv) Φ(·, τ, ·, ·) : R+ × Ω×X → X is (B(R+)× F×B(X),B(X))-measurable.

Let D = {D|D = {D(τ, ω) : τ ∈ R, ω ∈ Ω}}, where D(τ, ω) is a nonempty subset of
X. Let D be inclusion-closed (resp. backward-closed) if D̂ ∈ D(resp. D̃ ∈ D) whenever
D̂(τ, ω) ⊂ D(τ, ω)(resp. D̃(τ, ω) =

⋃
s≤τ D(s, ω)) and D ∈ D.
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Definition 2.2. A family K = {K(τ, ω) : τ ∈ R, ω ∈ Ω} ∈ D is called a closed measurable
D-pullback absorbing set for Φ if K is measurable in ω w.r.t. F and for all τ ∈ R, ω ∈ Ω and
D ∈ D, K(τ, ω) is a closed nonempty subset of X and there exists a T := T (τ, ω,D) such that
for all t ≥ T ,

Φ(t, τ − t, θ−tω,D(τ − t, θ−tω)) ⊆ K(τ, ω).

Assume that Y is a separable Banach space with norm ‖ · ‖Y , and Y ↪→ X. Then we recall
the following definitions related to the (X, Y )-regular D-pullback random attractor. Inspired
by [17], we introduce the following two definitions.

Definition 2.3. An NRDS Φ is said to be regular D-pullback asymptotically compact if for
all τ ∈ R, ω ∈ Ω and D ∈ D, {Φ(tn, τ − tn, θ−tnω, xn)}n∈N has a convergence subsequence in Y
whenever tn → +∞ and xn ∈ D(τ − tn, θ−tnω).

Definition 2.4. A family A = {A(τ, ω) : τ ∈ R, ω ∈ Ω} ∈ D is called an (X, Y )-regular
D-pullback random attractor for Φ if for all τ ∈ R and ω ∈ Ω,

(i) A(·, ·) is a random set in X;
(ii) A(·, ·) is compact in X and Y ;

(iii) A(·, ·) is invariant, that is, Φ(t, τ, ω,A(τ, ω)) = A(t+ τ, θtω);
(iv) A(·, ·) is D-pullback attracting under the topology of Y , that is, for every D ∈ D,

lim
t→+∞

distY (Φ(t, τ − t, θ−tω,D(τ − t, θ−tω)),A(τ, ω)) = 0,

where distY (·, ·) denotes the Hausdorff semi-distance on Y .

Next, we introduce the definition of an (X, Y )-backward regular attractor.

Definition 2.5. A family B = {B(τ, ω) : τ ∈ R, ω ∈ Ω} ∈ D is called dividedly invariant if
there exists an invariant set E = {E(τ, ω) : τ ∈ R, ω ∈ Ω} such that B(τ, ω) =

⋃
s≤τ E(s, ω)

for all τ ∈ R and ω ∈ Ω.

Definition 2.6. A family E = {E(τ, ω) : τ ∈ R, ω ∈ Ω} ∈ D is said to be an (X, Y )-backward
regular attractor if for all τ ∈ R and ω ∈ Ω,

(i) E(·, ·) is compact in X and Y ;
(ii) E(·, ·) is dividedly invariant;
(iii) E(·, ·) is backward D-pullback attracting under the topology of Y , that is, for every D ∈ D

and s ≤ τ ,

lim
t→+∞

distY (Φ(t, s− t, θ−tω,D(s− t, θ−tω)), E(τ, ω)) = 0.

Finally, we discuss the minimality of (X, Y )-backward regular attractors.

Theorem 2.7. An (X, Y )-backward regular attractor E = {E(τ, ω) : τ ∈ R, ω ∈ Ω} ∈ D is a
minimal backward D-pullback attracting set.

Proof. Suppose that B = {B(τ, ω) : τ ∈ R, ω ∈ Ω} ∈ D is compact and backward D-pullback
attracting. We now show that B(τ, ω) ⊇ E(τ, ω). It follows from the divided invariance of
E(·, ·) that there exists an invariant set E = {E(τ, ω) : τ ∈ R, ω ∈ Ω} ∈ D such that E(τ, ω) =⋃
s≤τ E(s, ω). By the invariance of E(·, ·) and the backward D-pullback attractiveness of B(·, ·),

we obtain that

distY (E(s, ω),B(τ, ω)) = distY (Φ(t, s− t, θ−tω,E(s− t, θ−tω)),B(τ, ω))→ 0,

as t→ +∞. It follows from the compactness of B(·, ·) that E(s, ω) ⊆ B(τ, ω) for all s ≤ τ , and
therefore we have E(·, ·) ⊆ B(·, ·). This completes the proof.
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2.2. Existence and stability of (X, Y )-backward regular attractors

This subsection is concerned with the existence and stability of (X, Y )-backward regular
attractors. We start with the following definition with respect to regular backward D-pullback
asymptotically compact for Φ.

Definition 2.8. An NRDS Φ is said to be regular backward D-pullback asymptotically compact
if for all τ ∈ R, ω ∈ Ω and D ∈ D, {Φ(tn, sn− tn, θ−tnω, xn)}n∈N has a convergence subsequence
in Y whenever sn ≤ τ , tn → +∞ and xn ∈ D(sn − tn, θ−tnω).

Let us now present an important result on an existence theorem of backward regular at-
tractors.

Theorem 2.9. Suppose that an NRDS Φ is regular backward D-pullback asymptotically compact
and has a closed measurable D-pullback absorbing set B ∈ D in X, where D is backward closed.
Then Φ has an (X, Y )-backward regular attractor E ∈ D.

Proof. Since Φ is regular backward D-pullback asymptotically compact, by Definition 2.8 we
obtain Φ is D-pullback asymptotically compact. Since D is backward closed, then D is inclusion
closed, which combined with the fact that Φ has a closed measurable D-pullback absorbing set
B ∈ D in X implies all conditions of [25, Lemma 2.21] are satisfied. Hence we obtain Φ has a
D-pullback random attractor A = {A(τ, ω) : τ ∈ R, ω ∈ Ω} ∈ D.

We now show that A is an (X, Y )-regular D-pullback random attractor. Based on Definition
2.4, we first prove A is compact in Y . Let {un}n∈N ⊂ A(τ, ω). By the invariance of A, there
exists a vn ∈ A(τ−tn, θ−tnω) such that Φ(tn, τ−tn, θ−tnω)vn = un. Since Φ is regular backward
D-pullback asymptotically compact, we obtain {un}n∈N has a convergent subsequence (not
relabeled) in Y , and so there is a u ∈ Y such that ‖un − u‖Y → 0 as n → ∞. To prove A is
compact in Y , we need to show that u ∈ A(τ, ω). Since A(τ, ω) is compact in X, then there
exists a ũ ∈ A(τ, ω) such that ‖un − ũ‖X → 0 as n→∞. Since Y ↪→ X, we have

‖u− ũ‖X ≤ ‖un − u‖X + ‖un − ũ‖X ≤ ‖un − u‖Y + ‖un − ũ‖X → 0, as n→∞, (2.1)

which implies u = ũ, and so u ∈ A(τ, ω). Then we have A is compact in Y . Next we prove A
is D-pullback attracting under the topology of Y , that is, for each D ∈ D, we show that

lim
t→+∞

distY (Φ(t, τ − t, θ−tω,D(τ − t, θ−tω)),A(τ, ω)) = 0. (2.2)

If (2.2) is not right, then there are δ > 0, tn → +∞ and {un}n∈N ⊆ D(τ − tn, θ−tnω) satisfying

distY (Φ(tn, τ − tn, θ−tnω, un),A(τ, ω)) ≥ 3δ. (2.3)

Note that A is a D-pullback random attractor in X, it follows

lim
n→∞

distX(Φ(tn, τ − tn, θ−tnω, un),A(τ, ω)) = 0, (2.4)

for every D ∈ D. By (2.4) and the compactness of A in X, we can find a ū ∈ A(τ, ω) such
that ‖Φ(tn, τ − tn, θ−tnω, un) − ū‖X = 0 as n → ∞. Since Φ is regular backward D-pullback
asymptotically compact, there is û ∈ Y such that ‖Φ(tn, τ − tn, θ−tnω, un) − û‖Y = 0. By the
same method as in (2.1), we obtain û = ū ∈ A(τ, ω). Then we have

distY (Φ(tn, τ − tn, θ−tnω, un),A(τ, ω))

≤ ‖Φ(tn, τ − tn, θ−tnω, un)− û‖Y + distY (û,A(τ, ω))→ 0, as n→∞,
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which contradicts (2.3). Hence (2.2) holds. Then we obtain A = {A(τ, ω) : τ ∈ R, ω ∈ Ω} ∈ D
is an (X, Y )-regular D-pullback random attractor.

Let E(τ, ω) =
⋃
s≤τ A(s, ω). By the invariance of A, we obtain E is dividedly invariant. To

prove that E is an (X, Y )-backward regular attractor, we first show that E is compact in X
and Y . Since Y ↪→ X, we only need to prove E is compact in Y . Let {un}n∈N ⊂

⋃
s≤τ A(s, ω),

then for each un, there exists a sn ≤ τ such that un ∈ A(sn, ω). By the invariance of A, there
is a vn ∈ A(sn − tn, θ−tnω) such that Φ(tn, sn − tn, θ−tnω, vn) = un. It follows from the regular
backward D-pullback asymptotic compactness of Φ that {un}n∈N has a convergent subsequence.
Hence we obtain

⋃
s≤τ A(s, ω) is pre-compact in Y , and therefore E is compact in Y . Next, we

show that E is backward D-pullback attracting under the topology of Y . For each D ∈ D and
s ≤ τ , we have

distY (Φ(t, s− t, θ−tω,D(s− t, θ−tω)), E(τ, ω))

≤ distY (Φ(t, s− t, θ−tω,D(s− t, θ−tω)),A(s, ω)).

Then, since A is D-pullback attracting under the topology of Y , we have

lim
t→+∞

distY (Φ(t, s− t, θ−tω,D(s− t, θ−tω)), E(τ, ω)) = 0.

Hence we obtain E is backward D-pullback attracting under the topology of Y . Since D is
backward closed, we have E ∈ D. Then Φ has an (X, Y )-backward regular attractor E ∈ D.
This proof is concluded.

The following theorem is concerned with the stability of (X, Y )-backward regular attractors,
which is deduced easily.

Theorem 2.10. Suppose that Φ has an (X, Y )-backward regular attractor E ∈ D, then E is
long time stable, that is, there is a non-empty compact set B(ω) such that

lim
τ→−∞

distY (E(τ, ω), B(ω)) = 0, for each ω ∈ Ω, (2.5)

where B(ω) is minimal satisfying (2.5).

Proof. Let B(ω) =
⋂
τ≤0

⋃
s≤τ E(s, ω). By the divide invariance of E(·, ·), we obtain τ 7→ E(τ, ω)

is increasing, which along with the compactness of E(τ, ω) implies B(ω) =
⋂
τ≤0 E(τ, ω). Hence,

by the theorem of nested compact sets, we obtain B(ω) is non-empty compact in Y . We now
prove that (2.5) holds. If (2.5) is false, then there are δ > 0 and xn ∈ E(τn, ω) with τn → −∞
such that for all n ∈ N,

distY (xn, B(ω)) ≥ δ. (2.6)

Without loss of generality, we assume that τn ≤ 0 for all n ∈ N. Using the monotonicity of
τ 7→ E(τ, ω), we have {xn}n∈N ⊂ E(0, ω). Then there is an x ∈ E(0, ω) ⊆ B(ω) such that
xn → x in Y . Consequently,

distY (xn, B(ω)) ≤ ‖xn − x‖Y + distY (x,B(ω))→ 0, as n→∞,

which contradicts (2.6).
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Next, we show the minimality of B(ω). If there is a non-empty compact set A(ω) such that
(2.5) holds, then we deduce

lim
τ→−∞

distY (E(τ, ω), A(ω)) = 0, for each ω ∈ Ω. (2.7)

Let x ∈ B(ω). Note that B(ω) is an α-limit set of E(·, ·). Then there are xn ∈ E(τn, ω) and
τn → −∞ such that xn → x in Y . By the definition of Hausdorff semi-distance and (2.7), we
can find yn ∈ A(ω) such that

‖xn − yn‖Y = distY (xn, A(ω)) ≤ distY (E(τn, ω), A(ω))→ 0, as n→∞. (2.8)

Since A(ω) is compact, there exists y ∈ A(ω) such that yn → y in Y , which together with xn → x
in Y and (2.8) implies x = y. Thus we obtain B(ω) ⊂ A(ω). The proof is complete.

2.3. Relationship of (X, Y )-backward regular attractors and (X, Y )-regular pullback random
attractors

This subsection is devoted to the stability of (X, Y )-backward regular attractors, which
implies that of (X, Y )-regular pullback random attractors.

Theorem 2.11. Suppose that Φ possesses an (X, Y )-backward regular attractor E ∈ D and an
(X, Y )-regular D-pullback random attractor A = {A(τ, ω) : τ ∈ R, ω ∈ Ω} ∈ D. Then A is
long time stable, that is, there is a non-empty compact set A(ω) such that

lim
τ→−∞

distY (A(τ, ω), A(ω)) = 0, for each ω ∈ Ω, (2.9)

where A(ω) is minimum that satisfying (2.9). In addition, A(ω) = B(ω), where B(ω) is given
in Theorem 2.10.

Proof. It follows from the definition of (X, Y )-backward regular attractors, Theorems 2.7 and
2.9 that A(τ, ω) ⊆ E(τ, ω). Let A(ω) =

⋂
τ≤0

⋃
s≤τ A(s, ω). Since A(τ, ω) ⊆ E(τ, ω), we have⋃

s≤τ A(s, ω) ⊆
⋃
s≤τ E(s, ω). By the monotonicity of τ 7→ E(τ, ω), we derive

⋃
s≤τ A(τ, ω) ⊆

E(τ, ω), and, consequently,
⋃
s≤τ A(τ, ω) is compact in Y . Applying the theorem of nested

compact sets we have A(ω) is non-empty compact in Y . We now check if (2.9) holds. If it does
not hold, then there are δ > 0 and xn ∈ A(τn, ω) with τn → −∞ such that

distY (xn, A(ω)) ≥ δ. (2.10)

Note that {xn}n∈N ⊂
⋃
s≤0A(s, ω) ⊆ E(0, ω). By the compactness of E , there exists x ∈ Y such

that xn → x in Y . Since A(ω) is an α-limit set of E(·, ·), we have x ∈ A(ω). Then we obtain

distY (xn, A(ω)) ≤ ‖xn − x‖Y + distY (x,A(ω))→ 0, as n→∞,

which contradicts (2.10). Hence (2.9) holds. As for the minimality of A(ω), it is similar to
Theorem 2.10.

Next, we prove A(ω) = B(ω). Using the definition of (X, Y )-backward regular attractors,
Theorems 2.7 and 2.9, we obtain E(τ, ω) =

⋃
s≤τ A(s, ω). By the monotonicity of τ 7→ E(τ, ω),

we have

B(ω) =
⋂
τ≤0

⋃
s≤τ

E(s, ω) =
⋂
τ≤0

E(τ, ω) =
⋂
τ≤0

⋃
s≤τ

A(s, ω) = A(ω).

This completes the proof.
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3. Application: Stochastic Newton-Boussinesq equations with delays

In the section, we apply our theoretical results to (1.3). To this end, we need to define a
continuous NRDS for (1.3) and derive the backward uniform estimates of the solution for (1.3).
In this paper, we use ‖ · ‖ and (·, ·) stand for the norm and the inner product of L2(O) := H,
respectively. ‖·‖V and ‖·‖p (p > 2) represent the norm of H1

0 (O) := V and Lp(O), respectively.

3.1. Continuous non-autonomous random dynamical systems

We first identify the Wiener process W (·) with ω(·) on a probability space (Ω,F, P ), where
Ω = {ω ∈ C(R;R) : ω(0) = 0}, F is the Borel σ-algebra induced by the compact-open topology
of Ω and P is the Wiener measure. Define a group of measure-preserving transformation {θt}t∈R
on Ω by θtω(·) = ω(·+ t)−ω(t) for (ω, t) ∈ Ω×R, then (Ω,F, P, {θt}t∈R) is a metric dynamical
system. Next, we transform the stochastic equation (1.3) into the corresponding random one.
For this purpose, let

ξ(t, τ, ω, φ) = e−z(θtω)ξ̃(t, τ, ω, φ̃), ϑ(t, τ, ω, ϕ) = e−z(θtω)ϑ̃(t, τ, ω, ϕ̃), t ≥ τ, τ ∈ R, (3.1)

where z(θtω) = −
∫ 0

−∞ e
s(θtω)(s)ds is the one-dimensional Ornstein-Uhlenbeck process, which

is a stationary solution of the Langevin equation: dz+ zdt = dW (t). As usual [2, 3, 4], there is
a {θt}t∈R-invariant subset Ω0 ⊂ Ω of full measure such that t 7→ z(θtω) is pathwise continuous
on Ω0 and

lim
t→±∞

|z(θtω)|
|t|

= 0, lim
t→±∞

1

t

∫ t

0

z(θsω)ds = 0, ∀ω ∈ Ω0, (3.2)

lim
t→±∞

1

t

∫ t

0

|z(θsω)|ds = E(|z|) =
1√
π
, ∀ω ∈ Ω0. (3.3)

For convenience, we do not distinguish the spaces Ω0 and Ω in this paper. In addition, we
define a function J(·, ·) by

J(u, v) =
∂u

∂y

∂v

∂x
− ∂u

∂x

∂v

∂y
, (3.4)

which satisfies: {
(J(u, v), v) = 0, for all u ∈ H1(Ω), v ∈ H2(Ω) ∩H1

0 (Ω),
‖J(u, v)‖ ≤ c‖u‖H2‖v‖H2 , for all u ∈ H2(Ω), v ∈ H2(Ω).

(3.5)

It follows from (3.1) and (3.5) that (1.3) can be rewritten as the following random equation:

∂ξ
∂t
−∆ξ + e−z(θtω)J(Ψ, ez(θtω)ξ) + Ra

Pa
∂ϑ
∂x

= e−z(θtω)(h1(ez(θt−ρ(t)ω)ξ(t− ρ(t)), x, y) + f(t, x, y)) + z(θtω)ξ,
∆Ψ = ez(θtω)ξ,
∂ϑ
∂t
− 1

Pr
∆ϑ+ e−z(θtω)J(Ψ, ez(θtω)ϑ)

= e−z(θtω)(
∫ 0

−% h2(η, e−z(θt+ηω)ϑ(t+ η))dη + g(t, x, y)) + z(θtω)ϑ,

ξ|∂O = 0, ϑ|∂O = 0,Ψ|∂O = 0,

ξ(τ + η, x, y) = e−z(θτ+ηω)ξ̃(τ + η, τ, ω, φ̃) := φ(η, x, y),

ϑ(τ + η, x, y) = e−z(θτ+ηω)ϑ̃(τ + η, τ, ω, ϕ̃) := ϕ(θ, x, y), η ∈ [−%, 0].

(3.6)
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We now prove the existence of a continuous NRDS for (1.3) over (Ω,F, P, {θt}t∈R). To this
end, we need to impose the following assumptions.

(D) ρ(·) ∈ C1(R) satisfies

0 ≤ ρ(t) ≤ %, ∀t ∈ R and %∗ = sup
t∈R

ρ′(t) < 1. (3.7)

(H1) h1: R× R2 → R satisfies h1(0, ·, ·) = 0 and there exists a positive constant Lh1 such
that

|h1(s1, x, y)− h1(s2, x, y)| ≤ Lh1|s1 − s2|, ∀s1, s2 ∈ R, (x, y) ∈ R2. (3.8)

(H2) h2: [−%, 0]× R2 → R satisfies h2(·, 0) = 0 and there exists a positive function Lh2(·)
such that

|h2(η, s1)− h2(η, s2)| ≤ Lh2(η)|s1 − s2|, ∀η ∈ [−%, 0], s1, s2 ∈ R, (3.9)

where Lh2(·) : [−%, 0]→ R+ satisfies Lh2(·) ∈ L2(−%, 0).
We denote by CH := C([−%, 0];H) and CV := C([−%, 0];V ) equipped with norms:

‖u‖CH = sup
η∈[−%,0]

‖u(η)‖, ‖u‖CV = sup
η∈[−%,0]

‖u(η)‖V .

Since (3.6) can be regarded as a deterministic equation parameterized by ω ∈ Ω, by the same
method as in [13, 14] we derive the well-posedness of (3.6):

Lemma 3.1. Suppose that (D), (H1) and (H2) hold and f, g ∈ L2
loc(R, H). Then, for all

τ ∈ R, ω ∈ Ω and (φ, ϕ) ∈ CH × CH , (3.6) has a unique weak solution

(ξ, ϑ) ∈ C([τ − %,+∞);H ×H) ∩ L2
loc(τ,+∞;V × V ),

such that (ξ(τ + η, τ, ω, φ), ϑ(τ + η, τ, ω, ϕ)) = (φ(η), ϕ(η)) for all η ∈ [−%, 0].

Consider a mapping Φ : R+ × R× Ω× (CH × CH)→ (CH × CH) by

Φ(t, τ, ω, (φ, ϕ)) = (ξt+τ (·, τ, θ−τω, φ), ϑt+τ (·, τ, θ−τω, ϕ)), t ∈ R+, τ ∈ R, ω ∈ Ω, (3.10)

for all (φ, ϕ) ∈ CH × CH , where (ξ, ϑ) is the solution of (3.6). Then, by Lemma 3.1 it is easy
to check that Φ is a continuous NRDS for (3.6) in the sense of [25]. By (3.10), we obtain (1.3)
has a continuous NRDS Φ̃. Notice that Φ and Φ̃ are equivalent (see [6, Theorem 3.4]), so we
only consider Φ in this paper.

3.2. Backward uniform estimates of solutions

To derive backward uniform estimates of solutions, we need to assume that the non-
autonomous terms f, g are backward tempered:

(G) f, g ∈ L2
loc(R, H) are backward limitable:

lim
β→+∞

sup
s≤τ

∫ s

−∞
eβ(r−s)(‖f(r)‖2 + ‖g(r)‖2)dr = 0, ∀τ ∈ R, (3.11)

which implies f, g ∈ L2
loc(R, H) are backward tempered:

sup
s≤τ

∫ s

−∞
eβ(r−s)(‖f(r)‖2 + ‖g(r)‖2)dr < +∞, ∀τ ∈ R, β > 0. (3.12)
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By (3.3) we define a positive constant γ̄:

γ̄ :=
λ

2(1 + Pa)
− 2E|z| −

(
Lh1

(1− %∗)
1
2

+ %
1
2‖Lh2(·)‖L2(−%,0)

)
e

λ%
4(1+Pa) (E(e−2z) + E(e2z)), (3.13)

where λ denotes the Poincaré constant. Define a random variable γ(ω):

γ(ω) =
λ

2(1 + Pa)
− 2|z(ω)| −

(
Lh1

(1− %∗)
1
2

+ %
1
2‖Lh2(·)‖L2(−%,0)

)
e

λ%
4(1+Pa) (e−2z(ω) + e2z(ω)),

(3.14)

for all ω ∈ Ω. By the ergodic theorem [4, Theorem 2.1] we have

lim
t→±∞

1

t

∫ t

0

γ(θlω)dl = E(γ) = γ̄. (3.15)

For the backward compactness and measurability of attractors for (3.6), we need to consider
two attraction universes. Let D = {D(τ, ω) : τ ∈ R, ω ∈ Ω} be a family of bounded nonempty
subsets of CH × CH , we claim that D is tempered if

lim
t→+∞

e−βt‖D(τ − t, θ−tω)‖2
CH×CH = 0, ∀τ ∈ R, ω ∈ Ω, β > 0, (3.16)

and D is backward tempered if

lim
t→+∞

e−βt sup
s≤τ
‖D(s− t, θ−tω)‖2

CH×CH = 0, ∀τ ∈ R, ω ∈ Ω, β > 0. (3.17)

Denote by D the universe formed by the collection of all tempered families in CH × CH :

D = {D = {D(τ, ω) : τ ∈ R, ω ∈ Ω} : D satisfies (3.16)}.

Then D is inclusion-closed. Another universe B is composed of all backward tempered
families in CH × CH :

B = {B = {B(τ, ω) : τ ∈ R, ω ∈ Ω} : B satisfies (3.17)}.

Then B is backward-closed: B ∈ B, then B̃ ∈ B with B̃(τ, ω) =
⋃
s≤τ B(s, ω). It is simple

to deduce that B ⊂ D and B is inclusion-closed.

3.2.1. Pullback absorbing sets

From now on, the c and C(ω) denote a positive constant and an intrinsic positive random
variable, respectively.

Lemma 3.2. Suppose that (D), (H1), (H2) and (G) hold. The following conclusions are
true:

(i) For each τ ∈ R, ω ∈ Ω and D ∈ D, there exists Td := Td(D, τ, ω) ≥ 2%+ 2 such that

sup
η̃∈[−2%−2,0]

(‖ξ(τ + η̃, τ − t, θ−τω, φ)‖2 + ‖ϑ(τ + η̃, τ − t, θ−τω, ϕ)‖2) ≤ c(1 +Rd(τ, ω)), (3.18)
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for all t ≥ Td and (φ, ϕ) ∈ D(τ − t, θ−tω), where

Rd(τ, ω) =

∫ 0

−∞
e
∫ r
0 γ(θlω)dle−2z(θrω)(‖f(r + τ)‖2 + ‖g(r + τ)‖2)dr. (3.19)

(ii) For each B ∈ B, there exists Tb := Tb(B, τ, ω) ≥ 2%+ 2 such that

sup
s≤τ

sup
η̃∈[−2%−2,0]

(‖ξ(s+ η̃, s− t, θ−sω, φ)‖2 + ‖ϑ(s+ η̃, s− t, θ−sω, ϕ)‖2) ≤ c(1 +Rb(τ, ω)),

(3.20)

for all t ≥ Tb and (φ, ϕ) ∈ B(s− t, θ−tω) with s ≤ τ , where

Rb(τ, ω) = sup
s≤τ

Rd(s, ω). (3.21)

Proof. Taking the inner product of the third equation of (3.6) with ϑ(r, s − t, θ−sω, ϕ) in H
yields

1

2

d

dr
‖ϑ(r)‖2 +

1

Pa
‖∇ϑ(r)‖2 + e−z(θr−sω)(J(Ψ, ez(θr−sω)ϑ(r)), ϑ(r))

= e−z(θr−sω)(

∫ 0

−%
h2(η, ez(θr+η−sω)ϑ(r + η))dη, ϑ(r)) + e−z(θr−sω)(g(r), θ(r)) + z(θr−sω)‖ϑ(r)‖2.

Using the Poincaré inequality we have

‖∇ϑ(r)‖2 ≥ λ

2
‖ϑ(r)‖2 +

1

2
‖∇ϑ(r)‖2.

By the first equality of (3.5) we obtain

(J(Ψ, ez(θr−sω)ϑ(r)), ϑ(r)) = 0.

The Young inequality implies

e−z(θr−sω)(g(r), ϑ(r)) ≤ λ

4Pa
‖ϑ(r)‖2 +

Pa
λ
e−2z(θr−sω)‖g(r)‖2.

Hence, we deduce

d

dr
‖ϑ(r)‖2 +

1

Pa
‖∇ϑ(r)‖2 ≤ 2e−z(θr−sω)(

∫ 0

−%
h2(η, ez(θr+η−sω)ϑ(r + η))dη, ϑ(r))

+
2Pa
λ
e−2z(θr−sω)‖g(r)‖2 + (2z(θr−sω)− λ

2Pa
)‖ϑ(r)‖2. (3.22)

Multiplying (3.22) by e
∫ r
s−t γ(θl−sω)dl, and then integrating this result over [s − t, s + η̃] with

η̃ ∈ [−2%− 2, 0] and t ≥ 2%+ 2 we have

e
∫ s+η̃
s−t γ(θl−sω)dl‖ϑ(s+ η̃, s− t, θ−sω, ϕ)‖2 +

1

Pa

∫ s+η̃

s−t
e
∫ r
s−t γ(θl−sω)dl‖∇ϑ(r)‖2dr

≤ ‖ϕ‖2
CH

+ c

∫ s+η̃

s−t
e
∫ r
s−t γ(θl−sω)dle−2z(θr−sω)‖g(r)‖2dr

+

∫ s+η̃

s−t
(2z(θr−sω) + γ(θr−sω)− λ

2Pa
)e

∫ r
s−t γ(θl−sω)dl‖ϑ(r)‖2dr

+ 2

∫ s+η̃

s−t
e
∫ r
s−t γ(θl−sω)dle−z(θr−sω)(

∫ 0

−%
h2(η, ez(θr+η−sω)ϑ(r + η))dη, ϑ(r))dr. (3.23)
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The Young inequality implies

2

∫ s+η̃

s−t
e
∫ r
s−t γ(θl−sω)dle−z(θr−sω)(

∫ 0

−%
h2(η, ez(θr+η−sω)ϑ(r + η))dη, ϑ(r))dr

≤ %
1
2 e

λ%
4(1+Pa)‖Lh2(·)‖L2(−%,0)

∫ s+η̃

s−t
e
∫ r
s−t γ(θl−sω)dle−2z(θr−sω)‖ϑ(r)‖2dr

+

∫ s+η̃
s−t e

∫ r
s−t γ(θl−sω)dl‖

∫ 0

−% h2(η, ez(θr+η−sω)ϑ(r + η))dη‖2dr

%
1
2 e

λ%
4(1+Pa)‖Lh2(·)‖L2(−%,0)

.

By (3.9), h2(·, 0) = 0 and the Hölder inequality we derive∫ s+η̃

s−t
e
∫ r
s−t γ(θl−sω)dl‖

∫ 0

−%
h2(η, ez(θr+η−sω)ϑ(r + η))dη‖2dr

≤ ‖Lh2(·)‖2
L2(−%,0)

∫ 0

−%

∫ s+η̃

s−t
e
∫ r
s−t γ(θl−sω)dle2z(θr+η−sω)‖ϑ(r + η)‖2drdη

≤ e
λ%

2(1+Pa)‖Lh2(·)‖2
L2(−%,0)

∫ 0

−%

∫ s+η̃

s−t
e
∫ r+η
s−t γ(θl−sω)dle2z(θr+η−sω)‖ϑ(r + η)‖2drdη

≤ %e
λ%

2(1+Pa)‖Lh2(·)‖2
L2(−%,0)‖ϕ‖2

CH

∫ s−t

s−t−%
e
∫ r
s−t γ(θl−sω)dle2z(θr−sω)dr

+ %e
λ%

2(1+Pa)‖Lh2(·)‖2
L2(−%,0)

∫ s+η̃

s−t
e
∫ r
s−t γ(θl−sω)dle2z(θr−sω)‖ϑ(r)‖2dr,

where we use γ(θlω) ≤ λ
2(1+Pa)

in (3.14). Then, we have

2

∫ s+η̃

s−t
e
∫ r
s−t γ(θl−sω)dle−z(θr−sω)(

∫ 0

−%
h2(η, ez(θr+η−sω)ϑ(r + η))dη, ϑ(r))dr

≤ %
1
2 e

λ%
4(1+Pa)‖Lh2(·)‖L2(−%,0)

∫ s+η̃

s−t
e
∫ r
s−t γ(θl−sω)dl(e−2z(θr−sω) + e2z(θr−sω))‖ϑ(r)‖2dr

+ %e
λ%

2(1+Pa)‖Lh2(·)‖2
L2(−%,0)‖ϕ‖2

CH

∫ s−t

s−t−%
e
∫ r
s−t γ(θl−sω)dle2z(θr−sω)dr. (3.24)

Inserting (3.24) into (3.23), by (3.14) we deduce

‖ϑ(s+ η̃, s− t, θ−sω, ϕ)‖2 +
1

Pa

∫ s+η̃

s−t
e
∫ r
s+η̃ γ(θl−sω)dl‖∇ϑ(r)‖2dr

≤ ce
λ(%+1)
1+Pa ‖ϕ‖2

CH
(e

∫−t
0 γ(θlω)dl +

∫ −t
−t−%

e
∫ r
0 γ(θlω)dle2z(θrω)dr)

+ ce
λ(%+1)
1+Pa

∫ 0

−t
e
∫ r
0 γ(θlω)dle−2z(θrω)‖g(r + s)‖2dr. (3.25)

Taking the inner product of the first equation of (3.6) with ξ(r, s− t, θ−sω, φ) in H yields

1

2

d

dr
‖ξ(r)‖2 + ‖∇ξ(r)‖2 + e−z(θr−sω)(J(Ψ, ez(θr−sω)ξ(r)), ξ(r)) +

Ra

Pa
(
∂ϑ

∂x
, ξ(r))

= e−z(θr−sω)(h1(ez(θr−ρ(r)−sω)ξ(r − ρ(r))) + f(r), ξ(r)) + z(θr−sω)‖ξ(r)‖2. (3.26)
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Similarly to (3.25), we have

‖ξ(s+ η̃, s− t, θ−sω, φ)‖2

≤ c

∫ s+η̃

s−t
e
∫ r
s+η̃ γ(θl−sω)dl‖∇ϑ(r)‖2dr + ce

λ(%+1)
1+Pa ‖φ‖2

CH
(e

∫−t
0 γ(θlω)dl +

∫ −t
−t−%

e
∫ r
0 γ(θlω)dle2z(θrω)dr)

+ ce
λ(%+1)
1+Pa

∫ 0

−t
e
∫ r
0 γ(θlω)dle−2z(θrω)‖f(r + s)‖2dr,

which along with (3.25) implies

‖ξ(s+ η̃, s− t, θ−sω, φ)‖2 ≤ ce
λ(%+1)
1+Pa (e

∫−t
0 γ(θlω)dl +

∫ −t
−t−%

e
∫ r
0 γ(θlω)dle2z(θrω)dr)(‖φ‖2

CH
+ ‖ϕ‖2

CH
)

+ ce
λ(%+1)
1+Pa

∫ 0

−t
e
∫ r
0 γ(θlω)dle−2z(θrω)(‖f(r + s)‖2 + ‖g(r + s)‖2)dr.

(3.27)

Combining (3.25) and (3.27), for all η̃ ∈ [−2%− 2, 0],

‖ξ(s+ η̃, s− t, θ−sω, φ)‖2 + ‖ϑ(s+ η̃, s− t, θ−sω, ϕ)‖2

≤ c(e
∫−t
0 γ(θlω)dl +

∫ −t
−t−%

e
∫ r
0 γ(θlω)dle2z(θrω)dr)(‖φ‖2

CH
+ ‖ϕ‖2

CH
)

+ c

∫ 0

−t
e
∫ r
0 γ(θlω)dle−2z(θrω)(‖f(r + s)‖2 + ‖g(r + s)‖2)dr. (3.28)

It follows from (3.2) and (3.15) that there exists T := T (γ̄, ω) ≥ 2%+ 2 such that

|z(θrω)| ≤ γ̄

8
|r|,

∣∣∣∣∫ r

0

(γ(θlω)− γ̄)dl

∣∣∣∣ ≤ γ̄

2
|r|, for all |r| ≥ T. (3.29)

(i) Let s = τ in (3.28). If (φ, ϕ) ∈ D(τ − t, θ−tω) in (3.28). By (3.16) and (3.29) we have

(e
∫−t
0 γ(θlω)dl +

∫ −t
−t−%

e
∫ r
0 γ(θlω)dle2z(θrω)dr)(‖φ‖2

CH
+ ‖ϕ‖2

CH
)

≤ c(e−
γ̄
2
t + e−

γ̄
4
t)‖D(τ − t, θ−tω)‖2

CH×CH → 0, as t→ +∞.

Hence, there exists Td = Td(D, τ, ω) > T such that for all t ≥ Td,

(e
∫−t
0 γ(θlω)dl +

∫ −t
−t−%

e
∫ r
0 γ(θlω)dle2z(θrω)dr)(‖φ‖2

CH
+ ‖ϕ‖2

CH
) ≤ 1,

which implies (3.18) holds.
(ii) If φ ∈ B(s− t, θ−tω) with s ≤ τ in (3.28). Thanks to (3.17) and (3.29) we obtain

(e
∫−t
0 γ(θlω)dl +

∫ −t
−t−%

e
∫ r
0 γ(θlω)dle2z(θrω)dr) sup

s≤τ
(‖φ‖2

CH
+ ‖ϕ‖2

CH
)

≤ (e−
γ̄
2
t + e−

γ̄
4
t) sup

s≤τ
‖B(s− t, θ−tω)‖2

CH×CH → 0, as t→ +∞.
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Then, there exists a Tb := Tb(B, τ, ω) ≥ T such that for all t ≥ Tb,

(e
∫−t
0 γ(θlω)dl +

∫ −t
−t−%

e
∫ r
0 γ(θlω)dle2z(θrω)dr) sup

s≤τ
(‖φ‖2

CH
+ ‖ϕ‖2

CH
) ≤ 1.

Taking the supremum of (3.5) over s ∈ [−∞, τ) yields (3.3) as desired.

Based on Lemma 3.2, Φ possesses two pullback absorbing sets Kd ∈ D and Kb ∈ B.

Lemma 3.3. Suppose that (D), (H1), (H2) and (G) hold. The following results hold true:
(i) Φ has a closed measurable D-pullback absorbing set Kd = {Kd(τ, ω) : τ ∈ R, ω ∈ Ω} ∈ D,

defined by

Kd(τ, ω) = {(φ, ϕ) ∈ CH × CH : ‖(φ, ϕ)‖2
CH×CH ≤ c(1 +Rd(τ, ω))}. (3.30)

(ii) Φ has a closed B-pullback absorbing set Kb = {Kb(τ, ω) : τ ∈ R, ω ∈ Ω} ∈ B, given by

Kb(τ, ω) = {(φ, ϕ) ∈ CH × CH : ‖(φ, ϕ)‖2
CH×CH ≤ c(1 +Rb(τ, ω))} =

⋃
s≤τ

Kd(s, ω), (3.31)

where Rd(τ, ω) and Rb(τ, ω) are given in (3.19) and (3.21) respectively.

Proof. By (3.18) and (3.20), we obtain Kd is a D-pullback absorbing set and Kb is a B-pullback
absorbing set. In addition, it is straightforward to derive that ω → Rd(τ, ω) is measurable since
it is the integral of some random variables. Hence, Kd is a measurable set.

Now, we prove Kd ∈ D and Kb ∈ B. Given β > 0 and let δ = min{ γ̄
3
, β

5
}. Then, by (3.2)

and (3.15), there exists T1 := T1(δ, ω) > 0 such that

e2|z(θtω)| ≤ eδ|t|,

∣∣∣∣∫ t

0

(γ(θrω)− γ̄)dr

∣∣∣∣ ≤ δ|t|, for all |t| ≥ T1. (3.32)

Hence, thanks to (3.12) and (3.32) we obtain, for all t ≥ T1 and r ≤ 0,

e
∫ r
0 γ(θl−tω)dl = e

∫ r−t
−t γ(θlω)dl

≤ e
∫ r−t
0 (γ(θlω)−γ̄)dl+γ̄(r−t)−

∫−t
0 (γ(θlω)−γ̄)dl+γ̄t

≤ e|
∫ r−t
0 (γ(θlω)−γ̄)dl|+|∫−t

0 (γ(θlω)−γ̄)dl|+γ̄r

≤ e2δte(γ̄−δ)r

≤ e2δte2δr.

Note that Kb is increasing (Kb(τ1, ω) ⊂ Kb(τ2, ω) if τ1 ≤ τ2). Then, we have, for all t ≥ T1 and
r ≤ 0,

e−βt sup
s≤τ
‖Kb(s− t, θ−tω)‖2

CH×CH

= e−βt‖Kb(τ − t, θ−tω)‖2
CH×CH

≤ ce−βt(1 +Rb(τ − t, θ−tω)) = ce−βt(1 + sup
s≤τ

Rd(s− t, θ−tω))

= ce−βt + ce−βt sup
s≤τ

∫ 0

−∞
e
∫ r
0 γ(θl−tω)dle−2z(θr−tω)(‖f(r + s− t)‖2 + ‖g(r + s− t)‖2)dr

≤ ce−βt + ce−(β−3δ)t sup
s≤τ

∫ 0

−∞
eδr(‖f(r + s− t)‖2 + ‖g(r + s− t)‖2)dr

≤ ce−βt + ce−(β−4δ)t sup
s≤τ

∫ 0

−∞
eδr(‖f(r + s)‖2 + ‖g(r + s)‖2)dr → 0, as t→ +∞.
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Then by (3.17) we obtain that Kb ∈ B. By Rd(τ − t, θ−tω) ≤ Rb(τ − t, θ−tω) and (3.16) we
imply that Kd ∈ D. The proof is concluded.

3.2.2. Backward pullback asymptotic compactness

Lemma 3.4. Suppose that (D), (H1)-(H2) and (G) hold. For each B ∈ B, τ ∈ R and ω ∈ Ω
we have

sup
s≤τ

sup
η̃∈[−%−1,0]

(‖∇ξ(s+ η̃, s− t, θ−sω, φ)‖2 + ‖∇ϑ(s+ η̃, s− t, θ−sω, ϕ)‖2)

≤ C(ω)(1 +Rb(τ, ω))2(1 +Rb(τ, ω) + F (τ)), (3.33)

for all t ≥ Tb (the same number as in Lemma 3.2) and (φ, ϕ) ∈ B(s− t, θ−tω) with s ≤ τ , where

F (τ) := sup
s≤τ

∫ s

−∞
eβ(r−s)(‖F (r)‖2 + ‖g(r)‖2)dr.

Proof. Integrating (3.22) over [s−%−2, s], by the Young inequality, (3.9) and (3.20) we deduce

sup
s≤τ

∫ s

s−%−2

‖∇ϑ(r)‖2dr ≤ C(ω)(1 +Rb(τ, ω)) + C(ω) sup
s≤τ

∫ s

s−%−2

‖g(r)‖2dr

≤ C(ω)(1 +Rb(τ, ω)) + C(ω)eβ(%+2) sup
s≤τ

∫ s

s−%−2

eβ(r−s)‖g(r)‖2dr

≤ C(ω)(1 +Rb(τ, ω) + F (τ)). (3.34)

Integrating (3.26) over [s−%−2, s], by the Young inequality, (3.8), (3.20) and (3.34) we obtain

sup
s≤τ

∫ s

s−%−2

‖∇ξ(r)‖2dr ≤ C(ω)(1 +Rb(τ, ω) + F (τ)). (3.35)

Multiplying the first equation of (3.6) by −∆ξ(r, s− t, θ−sω, φ) we have

1

2

d

dr
‖∇ξ(r)‖2 + ‖∆ξ(r)‖2 + e−z(θr−sω)(J(Ψ, ez(θr−sω)ξ),−∆ξ(r)) +

Ra

Pa
(
∂ϑ

∂x
,−∆ξ(r))

= e−z(θr−sω)(h1(ez(θr−ρ(r)−sω)ξ(r − ρ(r))),−∆ξ(r)) + e−z(θr−sω)(f(r),−∆ξ(r)) + z(θr−sω)‖∇ξ(r)‖2.

It follows from (3.4), ∆Ψ = ez(θr−sω)ξ and the Ladyzhenskaya inequality that

− e−z(θr−sω)(J(Ψ, ez(θr−sω)ξ),−∆ξ(r))

=

∫
O

∂Ψ

∂y

∂ξ

∂x
∆ξdxdy −

∫
O

∂Ψ

∂x

∂ξ

∂y
∆ξdxdy

≤ ‖∂Ψ

∂y
‖4‖

∂ξ

∂x
‖4‖∆ξ‖+ ‖∂Ψ

∂x
‖4‖

∂ξ

∂y
‖4‖∆ξ‖

≤ 1

21/4
‖∂Ψ

∂y
‖

1
2‖∂Ψ

∂y
‖

1
2
V ‖
∂ξ

∂x
‖

1
2‖∂ξ
∂x
‖

1
2
V ‖∆ξ‖+

1

21/4
‖∂Ψ

∂x
‖

1
2‖∂Ψ

∂x
‖

1
2
V ‖
∂ξ

∂y
‖

1
2‖∂ξ
∂y
‖

1
2
V ‖∆ξ‖

≤ c‖∆Ψ‖‖∇ξ‖
1
2‖∆ξ‖

3
2 ≤ 1

6
‖∆ξ(r)‖2 + ce4z(θr−sω)‖ξ(r)‖4‖∇ξ(r)‖2.

The Young inequality implies

− Ra

Pa
(
∂ϑ

∂x
,−∆ξ(r)) + e−z(θr−sω)(f(r),−∆ξ(r))

≤ 1

6
‖∆ξ(r)‖2 + c‖∇ϑ(r)‖2 + ce−2z(θr−sω)‖f(r)‖2.
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By (3.8), h1(0, ·, ·) = 0 and the Young inequality we derive

e−z(θr−sω)(h1(ez(θr−ρ(r)−sω)ξ(r − ρ(r))),−∆ξ(r))

≤ 1

6
‖∆ξ(r)‖2 + ce−2z(θr−sω)‖h1(ez(θr−ρ(r)−sω)ξ(r − ρ(r)))‖2

≤ 1

6
‖∆ξ(r)‖2 + ce−2z(θr−sω)e2z(θr−ρ(r)−sω)‖ξ(r − ρ(r))‖2.

Hence we obtain

d

dr
‖∇ξ(r)‖2 + ‖∆ξ(r)‖2 ≤ ce4z(θr−sω)‖ξ(r)‖4‖∇ξ(r)‖2 + c‖∇ϑ(r)‖2 + ce−2z(θr−sω)‖f(r)‖2

+ ce−2z(θr−sω)e2z(θr−ρ(r)−sω)‖ξ(r − ρ(r))‖2 + z(θr−sω)‖∇ξ(r)‖2. (3.36)

Integrating (3.36) on [ζ, s+ η̃] with ζ ∈ [s+ η̃−1, s+ η̃] and η̃ ∈ [−%−1, 0], and then integrating
the result on [s+ η̃ − 1, s+ η̃] w.r.t. ζ, we obtain for all η̃ ∈ [−%− 1, 0],

‖∇ξ(s+ η̃)‖2 ≤ C(ω)

∫ s

s−%−2

(‖ξ(r)‖4‖∇ξ(r)‖2 + ‖∇ϑ(r)‖2 + ‖f(r)‖2)dr

+ C(ω)

∫ s

s−%−2

(‖ξ(r − ρ(r))‖2 + ‖∇ξ(r)‖2)dr. (3.37)

It follows from (3.20), (3.34) and (3.35) that

sup
s≤τ

∫ s

s−%−2

(‖ξ(r)‖4‖∇ξ(r)‖2 + ‖∇ϑ(r)‖2 + ‖ξ(r − ρ(r))‖2 + ‖∇ξ(r)‖2)dr

≤ c sup
s≤τ

sup
η̃∈[−2%−2,0]

(1 + ‖ξ(s+ η̃)‖4)

∫ s

s−%−2

(‖∇ξ(r)‖2 + ‖∇ϑ(r)‖2)dr

≤ C(ω)(1 +Rb(τ, ω))2(1 +Rb(τ, ω) + F (τ)). (3.38)

Notice that

sup
s≤τ

∫ s

s−%−2

‖f(r)‖2dr ≤ sup
s≤τ

eβ(%+2)

∫ s

s−%−2

eβ(r−s)‖f(r)‖2dr ≤ cF (τ). (3.39)

Substituting (3.38) and (3.39) into (3.37) we obtain

sup
s≤τ

sup
η̃∈[−2%−2,0]

‖∇ξ(s+ η̃)‖2 ≤ C(ω)(1 +Rb(τ, ω))2(1 +Rb(τ, ω) + F (τ)). (3.40)

Similarly to (3.40), we have

sup
s≤τ

sup
η̃∈[−%−1,0]

‖∇ϑ(s+ η̃)‖2 ≤ C(ω)(1 +Rb(τ, ω))2(1 +Rb(τ, ω) + F (τ)),

which along with (3.40) implies (3.33). The proof is complete.

Lemma 3.5. Suppose that (D), (H1)-(H2) and (G) hold. For each B ∈ B, τ ∈ R and ω ∈ Ω
we have

sup
s≤τ

∫ s

s−%
(‖∂ξ
∂r

(r, s− t, θ−sω, φ)‖2 + ‖∂ϑ
∂r

(r, s− t, θ−sω, ϕ)‖2)dr

≤ C(ω)(1 +Rb(τ, ω))3(1 +Rb(τ, ω) + F (τ)), (3.41)

for all t ≥ Tb and (φ, ϕ) ∈ B(s− t, θ−tω) with s ≤ τ .
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Proof. Integrating (3.36) on [s− %− 1, s], by (3.33) and (3.38) we obtain

sup
s≤τ

∫ s

s−%−1

‖∆ξ(r)‖2 ≤ C(ω)(1 +Rb(τ, ω))2(1 +Rb(τ, ω) + F (τ)). (3.42)

Similarly to (3.42) we have

sup
s≤τ

∫ s

s−%−1

‖∆ϑ(r)‖2 ≤ C(ω)(1 +Rb(τ, ω))2(1 +Rb(τ, ω) + F (τ)). (3.43)

Multiplying the first equation of (3.6) by ∂ξ
∂r

, by the Young inequality, the second inequality of
(3.5) and (3.8) we deduce

‖∂ξ
∂r
‖2 ≤ c‖∆ξ(r)‖2 + c‖∆Ψ(r)‖2‖∆ξ(r)‖2 + c‖∇ϑ(r)‖2 + c|z(θr−sω)|2‖ξ(r)‖2

+ ce−2z(θr−sω)(e−2z(θr−ρ(r)−sω)‖ξ(r − ρ(r))‖2 + ‖f(r)‖2).

Integrating the above inequality over [s− %, s] yields∫ s

s−%
‖∂ξ
∂r
‖2dr ≤ C(ω)

∫ s

s−%
(‖∆ξ(r)‖2 + ‖ξ(r)‖2‖∆ξ(r)‖2 + ‖∇ϑ(r)‖2 + ‖ξ(r)‖2)dr

+ C(ω)

∫ s

s−%
(‖ξ(r − ρ(r))‖2 + ‖f(r)‖2)dr. (3.44)

Inserting (3.20), (3.34) and (3.42) into (3.44) yields

sup
s≤τ

∫ s

s−%
‖∂ξ
∂r
‖2dr ≤ C(ω)(1 +Rb(τ, ω))3(1 +Rb(τ, ω) + F (τ)). (3.45)

By the same method as in (3.45) we derive

sup
s≤τ

∫ s

s−%
‖∂ϑ
∂r
‖2dr ≤ C(ω)(1 +Rb(τ, ω))3(1 +Rb(τ, ω) + F (τ)),

which together with (3.45) implies (3.41) holds.

Lemma 3.6. Suppose that (D), (H1)-(H2) and (G) hold. Then, Φ defined by (3.10) is
backward pullback asymptotically compact, that is, for each B ∈ B, τ ∈ R and ω ∈ Ω,
{Φ(tn, sn−tn, θ−tnω, (φn, ϕn))}n∈N has a convergence subsequence in CH×CH whenever sn ≤ τ ,
tn → +∞ and (φn, ϕn) ∈ B(sn − tn, θ−tnω).

Proof. Based on the Ascoli-Arzelà theorem, we need to prove {Φ(tn, sn−tn, θ−tnω, (φn, ϕn))(η̃)}n∈N
is pre-compact in CH ×CH for each η̃ ∈ [−%, 0] and {Φ(tn, sn− tn, θ−tnω, (φn, ϕn))}n∈N is equi-
continuous.

By Lemmas 3.2, 3.4 and the Sobolev embedding V × V ↪→ H × H is compact, we have
{Φ(tn, sn − tn, θ−tnω, (φn, ϕn)(η̃)}n∈N is pre-compact in CH × CH for each η̃ ∈ [−%, 0].
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Now, we show that {Φ(tn, sn− tn, θ−tnω, (φn, ϕn))}n∈N is equi-continuous. For each η̃1, η̃2 ∈
[−%, 0] with η̃1 < η̃2, by (3.41) we have

‖Φ(tn, sn − tn, θ−tnω, (φn, ϕn))(η̃1)− Φ(tn, sn − tn, θ−tnω, (φn, ϕn))(η̃2)‖
= ‖ξ(sn + η̃1, sn − tn, θ−tnω, φn)− ξ(sn + η̃2, sn − tn, θ−tnω, φn)‖

+ ‖ϑ(sn + η̃1, sn − tn, θ−tnω, ϕn)− ϑ(sn + η̃2, sn − tn, θ−tnω, ϕn)‖

≤
∫ s+η̃2

s+η̃1

(‖∂ξ
∂r
‖+ ‖∂θ

∂r
‖)dr

≤

((∫ s

s−%
‖∂ξ
∂r
‖2dr

) 1
2

+

(∫ s

s−%
‖∂ϑ
∂r
‖2dr

) 1
2

)
|η̃1 − η̃2|

1
2

≤ C(ω)(1 +Rb(τ, ω))3(1 +Rb(τ, ω) + F (τ))|η̃1 − η̃2|
1
2 ,

which implies {Φ(tn, sn− tn, θ−tnω, (φn, ϕn))}n∈N is equi-continuous. The proof is complete.

3.2.3. Regular backward pullback asymptotic compactness

Note that −∆ is a self-adjoint operator in H, and so −∆ has a corresponding eigenvalue
sequence {λi}∞i=1 and a complete orthonormal basis {ei}∞i=1 of H, where λi > 0 with i = 1, 2, · · · ,
λi ≤ λj when i < j and λi → +∞ as i → +∞. Let Pj : H → span{e1, e2, · · · , ej} be the
projection operator, and so v ∈ V has the following decomposition:

v = Pjv + (I − Pj)v = vj,1 + vj,2, j ∈ N. (3.46)

Lemma 3.7. Suppose that (D), (H1), (H2) and (G) hold. For each B ∈ B, τ ∈ R, ω ∈ Ω
and any ε > 0, there exists δ := δ(ε, τ, ω) > 0 with η̃1, η̃2 ∈ [−%, 0] and |η̃1 − η̃2| < δ such that

sup
s≤τ

(‖∇ξj,1(s+ η̃1, s− t, θ−sω, φ)−∇ξj,1(s+ η̃2, s− t, θ−sω, φ)‖2

+ ‖∇ϑj,1(s+ η̃1, s− t, θ−sω, ϕ)−∇ϑj,1(s+ η̃2, s− t, θ−sω, ϕ)‖2) < ε, (3.47)

for all t ≥ Tb and (φ, ϕ) ∈ B(s− t, θ−tω) with s ≤ τ .

Proof. By ‖∇ξj,1‖ ≤ λ
1
2
j ‖ξj,1‖ and (3.41) we derive

sup
s≤τ
‖∇ξj,1(s+ η̃1, s− t, θ−sω, φ)−∇ξj,1(s+ η̃2, s− t, θ−sω, φ)‖

≤ λ
1
2
j sup
s≤τ
‖ξj,1(s+ η̃1, s− t, θ−sω, φ)− ξj,1(s+ η̃2, s− t, θ−sω, φ)‖

≤ λ
1
2
j sup
s≤τ
‖ξ(s+ η̃1, s− t, θ−sω, φ)− ξ(s+ η̃2, s− t, θ−sω, φ)‖

≤ λ
1
2
j

∫ s+η̃2

s+η̃1

‖∂ξ
∂r
‖dr ≤ λ

1
2
j

(∫ s

s−%
‖∂ξ
∂r
‖2dr

) 1
2

|η̃1 − η̃2|
1
2

≤ C(ω)λ
1
2
j (1 +Rb(τ, ω))3(1 +Rb(τ, ω) + F (τ))|η̃1 − η̃2|

1
2 ,

which implies there exists δ := δ(ε, τ, ω, j) > 0 such that, when |η̃1 − η̃2| < δ,

sup
s≤τ
‖∇ξj,1(s+ η̃1, s− t, θ−sω, φ)−∇ξj,1(s+ η̃2, s− t, θ−sω, φ)‖ < ε

2
.
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Similarly, we have

sup
s≤τ
‖∇ϑj,1(s+ η̃1, s− t, θ−sω, ϕ)−∇ϑj,1(s+ η̃2, s− t, θ−sω, ϕ)‖ < ε

2
.

Hence (3.47) holds. The proof is complete.

Lemma 3.8. Suppose that (D), (H1), (H2) and (G) hold. For each B ∈ B, τ ∈ R, ω ∈ Ω
and any ε > 0, there exists a j0 := j0(ε, τ, ω) ∈ N > 0 such that

sup
s≤τ

sup
η̃∈[−%,0]

(‖∇ξj,2(s+ η̃, s− t, θ−sω, φ)‖2 + ‖∇ϑj,2(s+ η̃, s− t, θ−sω, ϕ)‖2) < ε, (3.48)

for all j ≥ j0 and φ ∈ B(s− t, θ−tω) with s ≤ τ .

Proof. Taking the inner product of the first equation of (3.6) with −∆ξi,2(r, s − t, θ−sω, φ) in
H, by the same method as in (3.36) we deduce

d

dr
‖∇ξj,2(r)‖2 + ‖∆ξj,2(r)‖2 ≤ ce4z(θr−sω)‖ξ(r)‖4‖∇ξ(r)‖2 + c‖∇ϑ(r)‖2 + ce−2z(θr−sω)‖f(r)‖2

+ ce−2z(θr−sω)e2z(θr−ρ(r)−sω)‖ξ(r − ρ(r))‖2 + z(θr−sω)‖∇ξj,2(r)‖2.

By ‖∆ξj,2(r)‖2 ≤ λj‖∇ξj,2(r)‖2, we have

d

dr
eλjr‖∇ξj,2(r)‖2 ≤ ceλjre4z(θr−sω)‖ξ(r)‖4‖∇ξ(r)‖2 + c‖∇ϑ(r)‖2 + ceλjre−2z(θr−sω)‖f(r)‖2

+ ceλjre−2z(θr−sω)e2z(θr−ρ(r)−sω)‖ξ(r − ρ(r))‖2 + z(θr−sω)eλjr‖∇ξj,2(r)‖2.

Integrating the above inequality on [ζ, s + η̃] with ζ ∈ [s + η̃ − 1, s + η̃] and η̃ ∈ [−%, 0], and
then integrating this result on [s+ η̃ − 1, s+ η̃] with respect to ζ, we obtain

eλj(s+η̃)‖∇ξj,2(s+ η̃)‖2

≤ C(ω)

∫ s+η̃

s+η̃−1

eλjr(‖ξ(r)‖4‖∇ξ(r)‖2 + ‖∇ϑ(r)‖2 + ‖f(r)‖2)dr

+ C(ω)

∫ s+η̃

s+η̃−1

eλjr(‖ξ(r − ρ(r))‖2 + ‖∇ξj,2(r)‖2)dr

≤ C(ω)

∫ s

s−1

eλj(r+η̃)(‖ξ(r + η̃)‖4‖∇ξ(r + η̃)‖2 + ‖∇ϑ(r + η̃)‖2 + ‖f(r + η̃)‖2)dr

+ C(ω)

∫ s

s−1

eλj(r+η̃)(‖ξ(r + η̃ − ρ(r + η̃))‖2 + ‖∇ξ(r + η̃)‖2)dr,

which implies

‖∇ξj,2(s+ η̃)‖2

≤ C(ω)

∫ s

s−1

eλj(r−s)(‖ξ(r + η̃)‖4‖∇ξ(r + η̃)‖2 + ‖∇ϑ(r + η̃)‖2 + ‖f(r + η̃)‖2)dr

+ C(ω)

∫ s

s−1

eλj(r−s)(‖ξ(r + η̃ − ρ(r + η̃))‖2 + ‖∇ξ(r + η̃)‖2)dr. (3.49)
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We now estimate every term of (3.49). By (3.20) and (3.33) we derive

sup
s≤τ

sup
η̃∈[−%,0]

∫ s

s−1

eλj(r−s)(‖ξ(r + η̃)‖4‖∇ξ(r + η̃)‖2 + ‖∇ϑ(r + η̃)‖2)dr

≤ sup
s≤τ

sup
η̃∈[−%−1,0]

(‖ξ(s+ η̃)‖4‖∇ξ(s+ η̃)‖2 + ‖∇ϑ(r + η̃)‖2)

∫ s

s−1

eλj(r−s)dr

≤ C(ω)

λj
(1 +Rb(τ, ω))3(1 +Rb(τ, ω) + F (τ))→ 0 as k → +∞, (3.50)

and

sup
s≤τ

sup
η̃∈[−%,0]

∫ s

s−1

eλj(r−s)(‖ξ(r + η̃ − ρ(r + η̃))‖2 + ‖∇ξ(r + η̃)‖2)dr

≤ (sup
s≤τ

sup
η̃∈[−2%−1,0]

‖ξ(s+ η̃)‖2 + sup
s≤τ

sup
η̃∈[−%−1,0]

‖∇ξ(s+ η̃)‖2)

∫ s

s−1

eλj(r−s)dr

≤ C(ω)

λj
(1 +Rb(τ, ω))3(1 +Rb(τ, ω) + F (τ))→ 0 as k → +∞. (3.51)

By (3.11) we imply

sup
s≤τ

sup
η̃∈[−%,0]

∫ s

s−1

eλj(r−s)‖f(r + η̃)‖2dr ≤ sup
s≤τ

sup
η̃∈[−%,0]

∫ s+η̃

s+η̃−1

eλj(r−(s+η̃))‖f(r)‖2dr

= sup
η̃∈[−%,0]

sup
s≤τ+η̃

∫ s

s−1

eλj(r−s)‖f(r)‖2dr

≤ sup
s≤τ

∫ s

s−1

eλj(r−s)‖f(r)‖2dr → 0 as j → +∞. (3.52)

Substituting (3.50)-(3.52) into (3.49) yields

lim
j→+∞

sup
s≤τ

sup
η̃∈[−%,0]

‖∇ξj,2(s+ η̃)‖2 = 0. (3.53)

Similarly to (3.53), we have

lim
j→+∞

sup
s≤τ

sup
η̃∈[−%,0]

‖∇ϑj,2(s+ η̃)‖2 = 0,

which along with (3.53) implies (3.48) holds. This completes the proof.

Lemma 3.9. Suppose that (D), (H1), (H2) and (G) hold. Then Φ in (3.10) is regular
backward B-pullback asymptotically compact, more precisely, for each τ ∈ R, ω ∈ Ω and B ∈ B,
the sequence {Φ(tn, sn − tn, θ−tnω, (φn, ϕn)}n∈N is pre-compact in CV × CV , whenever sn ≤ τ ,
tn → +∞ and (φn, ϕn) ∈ B(sn − tn, θ−tnω).

Proof. Based on the Ascoli-Arzelà theorem, we prove the conclusion in the following two steps.
Step 1. We prove {Φ(tn, sn − tn, θ−tnω, (φn, ϕn))}n∈N in CV × CV is equi-continuous from

[−%, 0] to V × V .
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Without loss of generality, we assume that tn ≥ Tb for all n ∈ N because of tn → +∞.
Assuming η̃1, η̃2 ∈ [−%, 0] with ξ2 > ξ1. Let j1 > j0 (j0 is given in Lemma 3.8), by (3.47) and
(3.48) we obtain

‖Φ(tn, sn − tn, θ−tnω, (φn, ϕn))(η̃1)− Φ(tn, sn − tn, θ−tnω, (φn, ϕn))(η̃2)‖V×V
≤ ‖ξ(sn + η̃1, sn − tn, θ−snω, φn)− ξ(sn + η̃2, sn − tn, θ−snω, φn)‖V

+ ‖ϑ(sn + η̃1, sn − tn, θ−snω, ϕn)− ϑ(sn + η̃2, sn − tn, θ−snω, ϕn)‖V
≤ ‖ξj1,1(sn + η̃1, sn − tn, θ−snω, φn)− ξj1,1(sn + η̃2, sn − tn, θ−snω, φn)‖V

+ ‖ϑj1,1(sn + η̃1, sn − tn, θ−snω, ϕn)− ϑj1,1(sn + η̃2, sn − tn, θ−snω, ϕn)‖V
+ ‖(ξj1,2(sn + η̃1, sn − tn, θ−snω, φn), ϑj1,2(sn + η̃1, sn − tn, θ−snω, ϕn))‖V×V
+ ‖(ξj1,2(sn + η̃2, sn − tn, θ−snω, φn), ϑj1,2(sn + η̃2, sn − tn, θ−snω, ϕn))‖V×V
≤ c‖∇ξj1,1(sn + η̃1, sn − tn, θ−snω, φn)−∇ξj1,1(sn + η̃2, sn − tn, θ−snω, φn)‖

+ c‖∇ϑj1,1(sn + η̃1, sn − tn, θ−snω, ϕn)−∇ϑj1,1(sn + η̃2, sn − tn, θ−snω, ϕn)‖
+ c‖(∇ξj1,2(sn + η̃1, sn − tn, θ−snω, φn),∇ϑj1,2(sn + η̃1, sn − tn, θ−snω, ϕn))‖H×H
+ c‖(∇ξj1,2(sn + η̃2, sn − tn, θ−snω, φn),∇ϑj1,2(sn + η̃2, sn − tn, θ−snω, ϕn))‖H×H

< c
√
ε,

which implies {Φ(tn, sn − tn, θ−tnω, (φn, ϕn))}n∈N is equi-continuous.
Step 2. For each fixed η̃ ∈ [−%, 0], we prove Φ(tn, sn− tn, θ−tnω, (φn, ϕn))(η̃) is pre-compact

in V × V .
By (3.3) we obtain {(ξj1,1(sn + η̃, sn − tn, θ−snω, φn), ϑj1,1(sn + η̃, sn − tn, θ−snω, ϕn))} is

bounded in V × V and thus it is pre-compact in the j1-dimensional subspace Vj1 × Vj1 . Then,
there is an index subsequence n∗ of n such that {(ξj1,1(sn∗ + η̃, sn∗− tn∗ , θ−sn∗ω, φn∗), ϑj1,1(sn∗ +
η̃, sn∗− tn∗ , θ−sn∗ω, ϕn∗))} is a Cauchy sequence in Vj1×Vj1 . Let n∗, m∗ enough large, by (3.48)
we have

‖ξ(sn∗ + η̃, sn∗ − tn∗ , θ−sn∗ω, φn∗)− ξ(sm∗ + η̃, sm∗ − tm∗ , θ−sm∗ω, φm∗)‖V
+ ‖ϑ(sn∗ + η̃, sn∗ − tn∗ , θ−sn∗ω, ϕn∗)− ϑ(sm∗ + η̃, sm∗ − tm∗ , θ−sm∗ω, ϕm∗)‖V
≤ ‖ξj1,1(sn∗ + η̃, sn∗ − tn∗ , θ−sn∗ω, φn∗)− ξj1,1(sm∗ + η̃, sm∗ − tm∗ , θ−sm∗ω, φm∗)‖V

+ ‖ϑj1,1(sn∗ + η̃, sn∗ − tn∗ , θ−sn∗ω, ϕn∗)− ϑj1,1(sm∗ + η̃, sm∗ − tm∗ , θ−sm∗ω, ϕm∗)‖V
+ ‖(ξj1,2(sn∗ + η̃, sn∗ − tn∗ , θ−sn∗ω, φn∗), ϑj1,2(sn∗ + η̃, sn∗ − tn∗ , θ−sn∗ω, ϕn∗)‖V×V
+ ‖(ξj1,2(sm∗ + η̃, sm∗ − tm∗ , θ−sm∗ω, φm∗), ϑj1,2(sm∗ + η̃, sm∗ − tm∗ , θ−sm∗ω, ϕm∗)‖V×V

< c
√
ε.

Then we obtain the sequence {(ξ(sn∗+η̃, sn∗−tn∗ , θ−sn∗ω, φn∗), ϑ(sn∗+η̃, sn∗−tn∗ , θ−sn∗ω, ϕn∗))}
is a Cauchy sequence in V × V , and so it is convergent.

Hence, all conditions of the Ascoli-Arzelà theorem are satisfied. The proof is complete.

3.2.4. Existence, long time stability of (X, Y )-regular pullback random attractors and (X, Y )-
backward regular attractors

Theorem 3.10. Suppose that (D), (H1), (H2) and (G) hold. The following results are true.
(1) Φ in (3.10) has a unique D-pullback random attractor Ad ∈ D, defined by

Ad(τ, ω) :=
⋂
T>0

⋃
t≥T

Φ(t, τ − t, θ−tω)Kd(τ − t, θ−tω). (3.54)
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(2) Φ in (3.10) has a unique backward compact B-pullback bi-parametric attractor Ab ∈ B,
defined by

Ab(τ, ω) :=
⋂
T>0

⋃
t≥T

Φ(t, τ − t, θ−tω)Kb(τ − t, θ−tω). (3.55)

(3) Ad = Ab, that is, Ad is backward compact and Ab is measurable.

Proof. (1) By the same method as in Lemma 3.6, we have Φ is D-pullback asymptotically
compact, which along with the (i) of Lemma 3.2 implies all conditions of [25, Lemma 2.21]
are fulfilled, and so Φ in (3.10) has a unique D-pullback random attractor Ad ∈ D, defined by
(3.54).

(2) It follows from the (ii) of Lemmas 3.2 and 3.6 that all conditions of [28, Theorem 3.9]
are satisfied, and so (2) holds.

(3) By (3.31), (3.54) and (3.55) we obtain Ad ⊂ Ab. We also need to prove Ab ⊂ Ad. Note
that B ⊂ D. Hence, we have Ab ∈ D. By the invariance of Ab and the D-pullback attraction
of Ad we have, for all τ ∈ R and ω ∈ Ω,

distCH×CH (Ab(τ, ω),Ad(τ, ω)) = distCH×CH (Φ(t, τ − t, θ−tω)Ab(τ − t, θ−tω),Ad(τ, ω))→ 0,

as t→ +∞, which implies Ab(τ, ω) ⊂ Ad(τ, ω) and so Ab ⊂ Ad. Then we have Ad = Ab.

Theorem 3.11. Suppose that (D), (H1), (H2) and (G) hold. Then, Ab derived in Theorem
3.10 is a backward compact regular pullback random attractor and Φ in (3.10) has an (X, Y )-
backward regular attractor A. Moreover, Ab and A are long time stable.

Proof. Using the method of proof of Theorem 2.9, by Lemma 3.9 we obtain Ab is a backward
compact regular pullback random attractor. It follows from Lemmas 3.2 and 3.9 that all
conditions of Theorem 2.9 are satisfied, and so Φ in (3.10) has an (X, Y )-backward regular
attractor A. By Theorems 2.10 and 2.11, we obtain Ab and A are long time stable. The proof
is complete.
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