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Abstract

The main objective of this paper is to obtain estimations of Hausdorff dimension as well as fractal

dimension of global attractors and pullback attractors for both autonomous and nonautonomous

functional differential equations (FDEs) in Banach spaces. New criterions for the finite Hausdorff

dimension and fractal dimension of attractors in Banach spaces are firslty proposed by combining

the squeezing property and the covering of finite subspace of Banach spaces, which generalize the

method established in Hilbert spaces. In order to surmount the barrier caused by the lack of orthog-

onal projectors with finite rank, which is the key tool for proving the squeezing property of partial

differential equations in Hilbert spaces, we adopt the state decomposition of phase space based on the

exponential dichotomy of the studied FDEs to obtain similar squeezing property. The theoretical re-

sults are applied to a retarded nonlinear reaction-diffusion equation and a non-autonomous retarded

functional differential equation in the natural phase space, for which explicit bounds of dimensions

that do not depend on the entropy number but only depend on the spectrum of the linear parts and

Lipschitz constants of the nonlinear parts are obtained.
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1 Introduction

For infinite dimensional dynamical systems generated by partial differential equations or delay differ-

ential equations, the phase spaces are generally not locally compact, while the existence of attractors

can reduce the essential parts of the flows to compact sets. Furthermore, if the attractors have finite

topological dimensions (including Hausdorff dimension and fractal dimension), then the attractors can

be described by a finite number of parameters and hence the dynamics of the infinite dynamical systems

are likely to be studied by the concepts and methods of finite dimensional dynamical systems. Owing

to this, the study of attractors as well as their topological dimensions estimation have received much

attention from pure and applied mathematics community during the past decades.

The theory of existence of attractors for deterministic infinite dimensional dynamical systems,

especially for a large class of parabolic partial differential equations and delay differential equations, is

now well developed. See, for instance, the monographs by Babin and Vishik [4], Hale [23], Ladyzhenskaya

[26], Robinson [33] and Temam [36]. With respect to the dimensions estimation of attractors for infinite

dimensional dynamical systems, there are several methods. The first one is the squeeze method in Hilbert

spaces, which dates back to the pioneering work of Foias and Temam [22], where they showed that under

some circumstances a three dimensional flow depends indeed on a finite number of parameters. Then,

the idea was adopted in [3] and [25] to show the finite Hausdorff dimensionality of the global attractor

for the Navier-Stokes equations, which was then extended to the random case by Debussche in [15]. The

idea has also been extended to investigate the exponential attractors of deterministic partial differential

equations in [1, 17, 18, 31] and stochastic partial differential equations in [41, 42], which implies the

finite fractal dimensions of attractors.

The second method is to compute traces of some linear operators generated by the linearization of

the equations, requiring quasi-differentials of the underlying systems, which originates from the early

work [16] with an emphasise on the Hausdorff dimension. It was then further extended by Foias and

Temam in their later work [12], where they also investigated fractal dimension and the relationship

between the Hausdorff dimension of attractors and Lyapunov exponents and Lyapunov numbers. The

method has also been adopted to study the dimensions of attractors for a variety of evolution equations.

See, for instance, the nonautonomous PDEs in bounded domain [10] and unbounded domain [9], the

retarded semilinear partial differential equations in [35] and retarded Navier-Stokes-Voight equation in

[32]. More examples can be found in Babin and Vishik [4] and Temam [36] and the references therein.

The above mentioned dimensions estimation methods are mainly obtained in Hilbert spaces, i.e.,

the phase space endowed with a smooth inner product geometrical structure. Nevertheless, there are

many evolution equations arising from real world modelings defined in Banach spaces, such as the delay

differential equations [24], delay partial differential equations [38] and the non-autonomous Chafee-

Infante equation [5] and so on. Although, in [29, 32, 35], the authors studied dimensions of global

attractors for ordinary or partial functional differential equations, they recast the equations into Hilbert
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spaces. Therefore, one natural question arises, what can we say about the dimensions of attractors for

FDEs in the natural phase space, i.e., the Banach spaces? Málek, Ruzicka and Thäter [28] established a

third method for estimating fractal dimension based on a smoothing property of the system, which allows

the phase space to be Banach spaces, but requires an auxiliary space that is compactly embedded into

the phase space. The method was then extended by Efendiev, Miranville and Zelik [14, 19] to construct

pullback and uniform exponential attractors for systems in Banach spaces, which has also been widely

used in estimating the fractal dimension and construct exponential attractors of deterministic systems

[8, 13, 20, 21] and random systems [6, 34, 40].

Although, the third method is effective for systems in Banach spaces, the estimation of the fractal

dimension depends on the choice of another embedding space which may vary from space to space.

Furthermore, the dimension estimation depends on the entropy number between two spaces for which

is generally quite difficult to obtain an explicit bound. Hence, one naturally wonders whether we can

give explicit bounds of topological dimensions of attractors for systems in Banach spaces that only

depend on the inner characteristic of the system. The only works tackling topological dimensions

estimation of invariant sets for nonlinear maps or attractors for infinite dimensional dynamical systems

in Banach spaces that we can find are [30] and [7]. In [30], Mañé showed that negative invariant sets

for certain nonlinear maps in Banach spaces have finite fractal dimension, which also imply the finite

dimensionality of Hausdorff dimension and was then improved by [7]. Nevertheless, in [30], the results

are obtained under the assumption that the derivatives of map are bounded. In this paper, we establish

a new method by combining the squeezing property obtained by exponential dichotomy and the covering

lemma of the finite dimensional subspace of Banach space established in [30]. We do not need the strict

restriction of the boundedness of derivatives and we also provide explicit bounds of the dimensions of

the invariant sets in Banach spaces that only depend on the spectrum of the linearized system and state

decomposition of the phase space while not relate to the entropy number as [8, 13, 14, 19, 20, 21, 28]

did.

We organize the remaining part of this paper as follows. In Section 2, we establish the criteria

for both Hausdorff and fractal dimensions estimation for autonomous systems. The corresponding

results for nonautonomous systems are obtained in Section 3 followed by applications to a retarded

nonlinear reaction-diffusion equations and a non-autonomous retarded functional differential equations

which depend only on the spectrum of the linear part and Lipschitz constants of the nonlinear terms

are given in Section 4. At last, we summarize the paper and point out some potential directions for

future research in Section 5.

2 Dimensions of attractors for autonomous systems

In this section, we study the Hausdorff and fractal dimensions of the attractors for autonomous dynam-

ical systems. Let X be a Banach space with norm ‖ · ‖X and S(t) : X → X, t ≥ 0 be a semigroup. A set
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A is said to be invariant, if S(t)A = A. Moreover, the invariant set A is said to be a global attractor if A
is a maximal compact invariant set which attracts each bounded set B ⊂ X. The Hausdorff dimension

of the compact set A ⊂ X is

dH(A) = inf {d : µH(A, d) = 0}

where, for d ≥ 0,

µH(A, d) = lim
ε→0

µH(A, d, ε)

denotes the d-dimensional Hausdorff measure of the set A ⊂ X, where

µH(A, d, ε) = inf
∑
i

rdi

and the infimum is taken over all coverings of A by balls of radius ri 6 ε. It can be shown that there

exists dH(A) ∈ [0,+∞] such that µH(A, d) = 0 for d > dH(A) and µH(A, d) = ∞ for d < dH(A).

dH(A) is called the Hausdorff dimension of A.

For a finite dimensional subspace F of a Banach space X, denote by BF
r (x) the ball in F of center

x and radius r, that is BF
r (x) = {y ∈ F |‖y − x‖ ≤ r}. It is proved in [30] that the following covering

lemma of balls in finite dimensional Banach spaces is true.

Lemma 2.1. For every finite dimensional subspace F of a Banach space X, we have

N
(
r1, B

F
r2

)
≤ m2m

(
1 +

r1

r2

)m
, (2.1)

for all r1 > r2 > 0, where m = dimF and N
(
r1, B

F
r2(0)

)
is the minimum number of balls needed to

cover the ball of radius r1 by balls BF
r2(0) of radius r2 calculated in the metric space X.

To prove the existence of finite Hausdorff dimension of the attractors for a semigroup {S(t)}t≥0 in

a Banach space, we impose the following additional assumptions on its attractor A.

Hypothesis A1 There is a finite dimensional projection P : X → PX with a finite dimension

Λ = dim{PX}, (2.2)

and there exist three positive numbers t0,M1,M2,M3 and two constants λ0 and λ1 such that

‖PS(t0)ϕ− PS(t0)ψ‖ ≤M1e
λ0t0 ‖ϕ− ψ‖ (2.3)

and

‖(I − P )S(t0)ϕ− (I − P )S(t0)ψ‖ ≤ (M2e
λ1t0 +M3e

λ0t0) ‖ϕ− ψ‖ , (2.4)

for any ϕ,ψ in A.

We can now prove an upper bound for the Hausdorff dimension of the attractors for a semigroup

S(t) in a Banach space under Hypothesis A1.

4



Theorem 2.1. Assume that {S(t)}t≥0 is a continuous semigroup with global attractor A, Hypothesis A1

holds and there exists 0 < α < 2 such that

αM1e
λ0t0 + 2M2e

λ1t0 + 2M3e
λ0t0 < 1. (2.5)

Then, the Hausdorff dimension of the global attractor A satisfies

dH <
− ln Λ− Λ ln(2 + 4

α)

ln(αM1eλ0t0 + 2M2eλ1t0 + 2M3eλ0t0)
, (2.6)

where Λ is the dimension of PX defined by (2.2) and M1,M2,M3, λ0 and λ1 are given in Hypothesis A1.

Proof. Since A is a compact subset of X, for any 0 < ε < 1, there exist r1, . . . , rN in (0, ε] and ũ1, . . . , ũN

in X such that

A ⊂
N⋃
i=1

B (ũi, ri) , (2.7)

where B(ũi, ri) represents the ball in X of center ũi and radius ri. Without loss of generality, we can

assume that for any i

B (ũi, ri) ∩ A 6= ∅, (2.8)

otherwise, it can be deleted from the sequence ũ1, . . . , ũN . Therefore, we can choose ui, i = 1, 2, · · · , N
such that

ui ∈ B (ũi, ri) ∩ A, (2.9)

and

A ⊂
N⋃
i=1

(B (ui, 2ri) ∩ A) . (2.10)

It follows from (2.3) and (2.4) that for any u ∈ B (ui, 2ri) ∩ A, we have

‖PS (t0)u− PS (t0)ui‖ ≤ 2M1e
λ0t0ri, (2.11)

and

‖(I − P )S (t0)u− (I − P )S (t0)ui‖ ≤ 2(M2e
λ1t0 +M3e

λ0t0)ri. (2.12)

By Lemma 2.1, for any α > 0, we can find y1
i , . . . , y

ni
i such that

BPX

(
PS (t0)ui, 2M1e

λ0t0ri

)
⊂

ni⋃
j=1

BPX

(
yji , αM1e

λ0t0ri

)
(2.13)

with

ni ≤ Λ2Λ

(
1 +

2

α

)Λ

, (2.14)

where Λ is the dimension of PX and we have denoted by BPX(y, r) the ball in PX of radius r and

center y.
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Set

uji = yji + (I − P )S (t0)ui (2.15)

for i = 1, . . . , N, j = 1, . . . , ni. Then, for any u ∈ B (ui, 2ri) ∩ A, there exists a j such that∥∥∥S (t0)u− uji
∥∥∥ ≤ ∥∥∥PS (t0)u− yji

∥∥∥+ ‖(I − P )S (t0)u− (I − P )S (t0)ui‖

≤
(
αM1e

λ0t0 + 2M2e
λ1t0 + 2M3e

λ0t0
)
ri

(2.16)

with

ni ≤ Λ(2 +
4

α
)Λ (2.17)

Denote by η = αM1e
λ0t0 + 2M2e

λ1t0 + 2M3e
λ0t0 , then we have

S (t0) (B (ui, 2ri) ∩ A) ⊂
ni⋃
j=1

B
(
uji , ηri

)
. (2.18)

Thanks to the invariance of A, i.e., A = S (t0)A, we have

A ⊂
N⋃
i=1

ni⋃
j=1

B
(
uji , ηri

)
. (2.19)

This implies that, for any d ≥ 0,

µH (A, d, ηε) ≤
N∑
i=1

ni∑
j=1

ηdrdi ≤ Λ(2 +
4

α
)Ληd

N∑
i=1

rdi , (2.20)

we deduce, by taking the infimum over all the coverings of A by balls of radii less than ε,

µH (A, d, ηε) ≤ Λ(2 +
4

α
)ΛηdµH(A, d, ε). (2.21)

Applying the formula recursively for k times yields

µH

(
A, d, (ηε)k

)
≤ [Λ(2 +

4

α
)Ληd]kµH(A, d, ε). (2.22)

Therefore, if

d <
− ln Λ− Λ ln(2 + 4

α)

ln(αM1eλ0t0 + 2M2eλ1t0 + 2M3eλ0t0)
, (2.23)

then

Λ(2 +
4

α
)Ληd < 1. (2.24)

Thus, by taking k →∞, we have (ηε)k → 0 and (2.22) leads to

µH(A, d, (ηε)k)→ 0. (2.25)

This completes the proof.
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Remark 2.1. By (2.6), we can see estimation of dH depends on the parameter α. It would be convenient

to know what is the optimal bound for this dimension. In other words, what is the value of α such

that the right hand side of (2.6) attains its minimum value. By doing some simulations with some

specific values of the parameters involved in (2.6), one can check that when M1e
λ0t0 becomes smaller

and smaller the value of α at which the minimum is achieved is closer and closer to 2, and from one

threshold on this minimum is achieved when α = 2. In conclusion, in these particular situations, if

we take α ↑ 2 and assume 2M1e
λ0t0 + 2M2e

λ1t0 + 2M3e
λ0t0 < 1, then for all α ∈ (0, 2), we have

αM1e
λ0t0 + 2M2e

λ1t0 + 2M3e
λ0t0 < 1 and hence we obtain the estimation

dH ≤
− ln Λ− Λ ln 4

ln(2eλ0t0 + 2M2eλ1t0 + 2M3eλ0t0)
, (2.26)

which is independent of α. But this works only in those mentioned cases in which M1e
λ0t0 is smaller

than some threshold (which depends on all the parameters involved in the problem.

Next, we study the fractal dimension of attractors for the semigroup {S(t)}t≥0 based on the state

space decomposition and squeeze property Hypothesis A1 following the idea of [15, 22] and [42]. Here,

we extend the method to Banach spaces. The fractal dimension (or capacity) of A is defined as

dimf A = lim sup
ε→0

lnNε(A)

− ln ε
, (2.27)

where Nε(A) is the minimum number of balls of radius less than ε which is necessary to cover A.

Theorem 2.2. Let A be the global attractor of {S(t)}t≥0 with finite diameter RA, that is RA :=

supu∈A ‖u‖X < ∞. Assume that Hypothesis A1 holds and there exists 0 < α < M1 such that

ζ := αeλ0t0 + M2e
λ1t0 + M3e

λ0t0 < 1. Then, the fractal dimension of global attractor A has an upper

bound

dimf A ≤
ln Λ + Λ ln(2 + 2M1

α )

− ln ζ
<∞, (2.28)

where Λ is the dimension of PX defined by (2.2) and M1,M2,M3, λ0 and λ1 are given in Hypothesis A1.

Proof. Since A is a global attractor, then it is compact and hence the number RA is well defined. Thus,

for any u0 ∈ A, we have

A ⊆ B (u0, RA) , (2.29)

where B (u0, RA) is the ball with center u0 and radius RA. For any u ∈ A∩B (u0, RA), it follows from

Hypothesis A1 that

‖PS (t0)u− PS (t0)u0‖ ≤M1e
λ0t0RA, (2.30)

and

‖(I − P )S (t0)u− (I − P )S (t0)u0‖ ≤M2e
λ1t0 +M3e

λ0t0RA. (2.31)

7



By Lemma 2.1, we can find y1
0, . . . , y

n0
0 such that

BPX

(
PS (t0)u0, e

λ0t0M1RA

)
⊂

n0⋃
j=1

BPX

(
yj0, αe

λ0t0RA

)
(2.32)

with

n0 ≤ Λ2Λ

(
1 +

M1

α

)Λ

, (2.33)

where Λ is the dimension of PX.

Set

uj0 = yj0 + (I − P )S (t0)u0 (2.34)

for j = 1, . . . , n0. Then, for any u ∈ A ∩B (u0, RA), there exists j such that∥∥∥S (t0)u− uj0
∥∥∥ ≤ ∥∥∥PS (t0)u− yj0

∥∥∥+ ‖(I − P )S (t0)u− (I − P )S (t0)u0‖

≤
(
αeλ0t0 +M2e

λ1t0 +M3e
λ0t0
)
RA.

(2.35)

Since A is invariant, i.e., A = S (t0)A, we have

A = S (t0) (A ∩B (u0, RA)) ⊆
n0⋃
j=1

B
(
uj0,
(
αeλ0t0 +M2e

λ1t0 +M3e
λ0t0
)
RA

)
. (2.36)

Denote by ζ = (αeλ0t0 +M2e
λ1t0 +M3e

λ0t0). Applying the formula recursively for k times gives

A = S (kt0) (A ∩B (u0, RA)) ⊆
n0,n1,··· ,nk−1⋃

j=1

B
(
ujk−1, ζ

kRA

)
, (2.37)

implying that the minimal number Nrk (A) of balls with radius rk = ζkRA covering A in X satisfies

Nrk (A) ≤ n0 · . . . · nk−1 ≤ [Λ2Λ

(
1 +

M1

α

)Λ

]k. (2.38)

Since we have assumed that ζ < 1, then rk → 0 as k →∞. Then it follows from (2.38) that

dimf A = lim sup
rk→0

lnNrk(A)

− ln rk

≤ lim sup
k→∞

ln[Λ2Λ
(
1 + M1

α

)Λ
]k

− ln(ζkRA)

=
ln Λ + Λ ln(2 + 2M1

α )

− ln ζ
<∞.

(2.39)

Remark 2.2. As noticed in Remark 2.1, the estimation of df (A) depends on the parameter α. The

same arguments described there are also valid here and, therefore, in some situations in which M1e
λ0t0 is

small enough we can deduce a bound for the fractal dimension which is independent of α. Namely, if we
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assume M1e
λ0t0+M2e

λ1t0+M3e
λ0t0 < 1, then for all α ∈ (0,M1), we have αeλ0t0+M2e

λ1t0+M3e
λ0t0 < 1

and hence we deduce, taking α ↑M1, that

dimf A ≤
ln Λ + Λ ln 4

− ln(M1eλ0t0 +M2eλ1t0 +M3eλ0t0)
<∞, (2.40)

which is independent of α.

3 Dimensions of pullback attractors for non-autonomous evolution

process

This section is devoted to the investigation of Hausdorff and fractal dimensions of pullback attractors.

We first introduce some definitions and preliminaries about evolution processes, pullback attractors as

well as their existence criteria.

Definition 3.1. A family of two-parameter mappings {S(t, s) : t, s ∈ R, t > s} acting on X is said to

be an evolution process on X if it satisfies

S(t, τ)S(τ, s) = S(t, s), ∀t, τ, s ∈ R, t > τ > s,

S(s, s) = IdX , ∀s ∈ R,
(3.1)

where IdX : X → X represents the identity map on X.

For notation simplicity, we will write {S(t, s) : t, s ∈ R, t > s} simply as {S(t, s)} in the following.

The notion of a pullback attractor is closely related to the following definition of a pullback absorbing

set.

Definition 3.2. The family {B(t)}t∈R is said to be pullback absorbing with respect to the process {S(t, s)}
if, for all t ∈ R and all D ⊂ X bounded, there exists TD(t) > 0 such that for all s > TD(t)

S(t, t− s)D ⊂ B(t). (3.2)

The absorption is said to be uniform if TD(t) does not depend on the time variable t.

Definition 3.3. Let {S(t, s)} be a process on a Banach space X. A family of compact sets {A(t)}t∈R
is said to be a pullback attractor for S if, for all τ ∈ R, it satisfies

(i) S(t, τ)A(τ) = A(t) for all t > τ ;

(ii) lims→∞ dist(S(t, t− s)D,A(t)) = 0 for all bounded subsets D of X.

The pullback attractor is said to be uniform if the attraction property is uniform in time, i.e.

lim
s→∞

sup
t∈R

dist(S(t, t− s)D,A(t)) = 0

for all bounded subsets D ⊂ X.
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In the definition, dist(A,B) is the Hausdorff semidistance between A and B, defined as

dist(A,B) = sup
a∈A

inf
b∈B

d(a, b), for A,B ⊆ X, (3.3)

where d(a, b) = ‖b− a‖X .

Indeed, just as in the autonomous case, the existence of compact absorbing sets is the crucial

property in order to obtain pullback attractors. For the following result, see Babin and Vishik [4] or

Temam [36].

Lemma 3.1. Let {S(t, τ)} be a two-parameter process, and suppose S(t, τ) : X → X is continuous

for all t > τ . If there exists a family of compact pullback absorbing sets {B(t)}t∈R, then there exists a

pullback attractor {A(t)}t∈R, and A(t) ⊂ B(t) for all t ∈ R. Furthermore,

A(t) =
⋃
D⊂X

ΛD(t),

where

ΛD(t) =
⋂
n∈N

⋃
s>n

S(t, t− s)D

and D is bounded.

We first study the Hausdorff dimension. Similar to Hypothesis A1, we impose the following

conditions on {S(t, s)}.
Hypothesis A2 There is a finite dimensional projection P (t) : X → PX with a finite dimension

Λ = dim{P (t)X} (3.4)

and there are three positive numbers M1,M2,M3 and two constants λ0 and λ1 such that

‖P (t)S(t, t− s0)ϕ− P (t)S(t, t− s0)ψ‖ ≤M1e
λ0s0 ‖ϕ− ψ‖ (3.5)

and

‖(I − P (t))S(t, t− s0)ϕ− (I − P (t))S(t, t− s0)ψ‖ ≤ (M2e
λ1s0 +M3e

λ0s0) ‖ϕ− ψ‖ (3.6)

for any t ∈ R and some s0 ≥ 0 and ϕ,ψ in A(t).

Theorem 3.1. Assume that {S(t, s)} is a continuous evolution process with a pullback attractor {A(t)}t∈R
, Hypothesis A2 holds and there exist 0 < α < 2 such that

αM1e
λ0s0 + 2M2e

λ1s0 + 2M3e
λ0s0 < 1. (3.7)

Then, the Hausdorff dimension of the global attractor A(t) satisfies

dH <
− ln Λ− Λ ln(2 + 4

α)

ln(αM1eλ0s0 + 2M2eλ1s + 2M3eλ0s0)
, (3.8)

where Λ is the dimension of P (t)X defined by (3.4) and M1,M2,M3, λ0 and λ1 are given in Hypothesis A1.
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Proof. Replacing A and S(t) in the proof of Theorem 2.1 by A(t− s0) and S(t, t− s0) respectively till

(2.10). For any t ∈ R and the s0 ∈ R+ in Hypothesis A2. It follows from (3.5) and (3.6) that for any

u ∈ B (ui, 2ri) ∩ A(t− s0), we have

‖P (t)S(t, t− s0)u− P (t)S(t, t− s0)ui‖ ≤ 2M1e
λ0s0ri, (3.9)

and

‖(I − P (t))S(t, t− s0)u− (I − P (t))S(t, t− s0)ui‖ ≤ 2(M2e
λ1s0 +M3e

λ0s0)ri. (3.10)

By Lemma 2.1, for any α > 0, we can find y1
i , . . . , y

ni
i such that

BP (t)X

(
P (t)S(t, t− s0)ui, 2M1e

λ0s0ri

)
⊂

ni⋃
j=1

BP (t)X

(
yji , αM1e

λ0s0ri

)
(3.11)

with

ni ≤ Λ2Λ

(
1 +

2

α

)Λ

, (3.12)

where Λ is the dimension of P (t)X.

Set

uji = yji + (I − P (t))S(t, t− s0)ui (3.13)

for i = 1, . . . , N, j = 1, . . . , ni. Then, for any u ∈ B (ui, 2ri) ∩ A(t0 − s), there exists j such that∥∥∥S(t, t− s0)u− uji
∥∥∥ ≤ ∥∥∥P (t)S(t, t− s0)u− yji

∥∥∥+ ‖(I − P (t))S(t, t− s0)u− (I − P (t))S(t, t− s0)ui‖

≤
(
αM1e

λ0s0 + 2M2e
λ1s + 2M3e

λ0s0
)
ri

(3.14)

with

ni ≤ Λ(2 +
4

α
)Λ. (3.15)

Denote by η = (αM1e
λ0s0 + 2M2e

λ1s0 + 2M3e
λ0s0). Then we have

S(t, t− s0) (B (ui, 2ri) ∩ A) ⊂
ni⋃
j=1

B
(
uji , ηri

)
. (3.16)

By the invariance property (i) in the definition 3.3, i.e., A(t) = S(t, t− s0)A(t− s0), we have

A(t) ⊂
N⋃
i=1

ni⋃
j=1

B
(
uji , ηri

)
. (3.17)

This gives rise to, for any d ≥ 0,

µH (A(t), d, ηε) ≤
N∑
i=1

ni∑
j=1

ηdrdi ≤ Λ(2 +
4

α
)Ληd

N∑
i=1

rdi , (3.18)
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we deduce by taking the infimum over all the coverings of A(t) by balls of radii less than ε:

µH (A(t), d, ηε) ≤ Λ(2 +
4

α
)ΛηdµH(A(t− s0), d, ε). (3.19)

Applying the formula recursively for k times and it follows from the fact that A(t) = S(t, t− s0)S(t, t−
s0) · · ·S(t, t− ks0)A(t− ks0) we have

µH (A(t), d, ηε) ≤ [Λ(2 +
4

α
)Ληd]kµH(A(t− ks0), d, ε). (3.20)

Therefore, if

dH <
− ln Λ− Λ ln(2 + 4

α)

ln(αM1eλ0s0 + 2M2eλ1s0 + 2M3eλ0s0)
, (3.21)

then

Λ(2 +
4

α
)Ληd < 1, (3.22)

and (3.20) leads to

µH(A(t), d, ε)→ 0, (3.23)

when k →∞. This completes the proof.

Remark 3.1. Taking into account the content of Remark 2.1 we can obtain some estimation for the

dimension which is independent on α. Indeed, if we take α ↑ 2 and assume 2M1e
λ0s0 + 2M2e

λ1s0 +

2M3e
λ0s0 < 1, then for all α ∈ (0, 2), we have αM1e

λ0s0 + 2M2e
λ1s0 + 2M3e

λ0s0 < 1 and hence we

deduce

dH ≤
− ln Λ− Λ ln 4

ln(2M1eλ0s0 + 2M2eλ1s0 + 2M3eλ0s0)
, (3.24)

which is independent of α, although it may only be optimal for small values of M1e
λ0s0.

Subsequently, we study the fractal dimension of pullback attractors for the evolution process

{S(t, s)}.

Theorem 3.2. Let {A(t)}t∈R be the pullback attractor of {S(t, s)} with uniform finite diameter RA :=

supt∈R supu∈A(t) ‖u‖X < ∞. Assume that Hypothesis A2 holds and there exists 0 < α < M1 such

that ζ := αeλ0s0 +M2e
λ1s0 +M3e

λ0s0 < 1. Then, the fractal dimension of global attractor A(t) has an

upper bound

dimf A(t) ≤
ln Λ + Λ ln(2 + 2M1

α )

− ln ζ
<∞, (3.25)

where Λ is the dimension of PX defined by (2.2) and M1,M2,M3, λ0 and λ1 are given in Hypothesis A2.

Proof. Since {A(t)}t∈R is a pullback attractor, then it is compact and hence the number RA is well

defined. Thus, for any t ∈ R and u0 ∈ A(t), we have

A(t) ⊆ B (u0, RA) , (3.26)
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where B (u0, RA) is the ball with center u0 and radius RA. For any u ∈ A(t−s0)∩B (u0, RA), it follows

from Hypothesis A2 that

‖P (t)S (t, t− s0)u− P (t)S(t, t− s0)u0‖ ≤M1e
λ0s0RA, (3.27)

and

‖(I − P (t))S(t, t− s0)u− (I − P (t))S(t, t− s0)u0‖ ≤M2e
λ1s0 +M3e

λ0s0RA. (3.28)

By Lemma 2.1, we can find y1
0, . . . , y

n0
0 such that

BP (t)X

(
P (t)S(t, t− s0)u0, e

λ0s0M1RA

)
⊂

n0⋃
j=1

BP (t)X

(
yj0, αe

λ0s0RA

)
(3.29)

with

n0 ≤ Λ2Λ

(
1 +

M1

α

)Λ

, (3.30)

where Λ is the dimension of P (t)X. Set

uj0 = yj0 + (I − P (t))S(t, t− s0)u0 (3.31)

for j = 1, . . . , n0. Then, any u ∈ A(t− s0) ∩B (u0, RA), there exists j such that∥∥∥S(t, t− s0)u− uj0
∥∥∥ ≤ ∥∥∥P (t)S(t, t− s0)u− yj0

∥∥∥+ ‖(I − P (t))S(t, t− s0)u− (I − P (t))S(t, t− s0)u0‖

≤
(
αeλ0s0 +M2e

λ1s0 +M3e
λ0s0

)
RA.

(3.32)

Since A(t) is invariant, i.e., A(t) = S(t, t− s0)A(t− s0), we have

A(t) = S(t, t− s0) (A(t− s0) ∩B (u0, RA)) ⊆
n0⋃
j=1

B
(
uj0,
(
αeλ0s0 +M2e

λ1s0 +M3e
λ0s0

)
RA

)
. (3.33)

Denote by ζ = (αeλ0s0 +M2e
λ1s0 +M3e

λ0s0). Applying the formula recursively for k times,

A(t) = S (t, t− s0) · · ·S (t− (k − 1)s0, t− ks0) (A(t− ks0) ∩B (u0, RA)) ⊆
n0,n1,··· ,nk−1⋃

j=1

B
(
ujk−1, ζ

kRA

)
,

(3.34)

implying that the minimal number Nrk (A(t)) of balls with radius rk = ζkRA covering A(t) in X satisfies

Nrk (A(t)) ≤ n1 · . . . · nk ≤

[
Λ2Λ

(
1 +

M1

α

)Λ
]k
. (3.35)

Since we have assumed that ζ < 1, then rk → 0 as k →∞. Then it follows from (3.35) that

dimf A(t) = lim sup
rk→0

lnNrk(A(t))

− ln rk

≤ lim sup
k→∞

ln[Λ2Λ
(
1 + M1

α

)Λ
]k

− ln ζkRA

=
ln Λ + Λ ln(2 + 2M1

α )

− ln ζ
<∞.

(3.36)
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Remark 3.2. Again, at light of Remark 2.2, if we take α ↑ M1 and assume M1e
λ0s0 + M2e

λ1s0 +

M3e
λ0s0 < 1, then for all α ∈ (0,M1), we have αeλ0s0 + M2e

λ1s0 + M3e
λ0s0 < 1 and hence we get an

estimation

dimf A ≤
ln Λ + Λ ln 4

− ln(M1eλ0s0 +M2eλ1s0 +M3eλ0s0)
<∞, (3.37)

which is independent of α, although it may be only optimal for small values of M1e
λ0s0.

4 Applications

In this section, we are concerned about applications of the above established theoretical results to the

retarded reaction-diffusion equation and the non-autonomous retarded functional differential equations.

4.1 Retarded reaction-diffusion equation

This subsection is devoted to the Hausdorff and fractal dimensions of global attractors for an autonomous

retarded reaction-diffusion equation on the bounded domain [0, π] with a Dirichlet boundary condition.
∂
∂tu(x, t) = ∂2

∂x2
u(x, t)− au(x, t)− bu(x, t− r) + f(u(x, t− r)), 0 ≤ x ≤ π, t ≥ 0,

u(0, t) = u(π, t) = 0, t ≥ 0,

u(x, t) = φ(t)(x), 0 ≤ x ≤ π,−r ≤ t ≤ 0,

(4.1)

where a, b and r are positive constants. Denote by H = L2(0, π) with inner product (ξ, η) =∫ π
0 ξ(x)η(x)dx, norm ‖ξ‖H = [

∫ π
0 ξ2(x)dx]1/2 for any ξ, η ∈ H and X = C([−r, 0], H) the space of

continuous functions from [−r, 0] to H endowed with the supremum norm ‖φ‖ = supθ∈[−r,0] ‖φ(θ)‖H for

any φ ∈ X. In order to set the solution in the abstract semigroup framework, we define A : H → H by

Ay = ÿ (4.2)

with domain Dom (A) =
{
y ∈ C2([0, π]); y(0) = y(π) = 0

}
, L : X → H by

Lφ , −aφ(0)− bφ(−r) (4.3)

for any φ ∈ C and AU : X → X by

AUφ = Aφ(0) + Lφ (4.4)

for any φ ∈ X. It is well known that A− aI generates an analytic compact semigroup {T (t)}t≥0 on H

and [38] that AU generates a semigroup {U(t)}t≥0. Moreover, we assume that f satisfies the following

global Lipschitz condition.

Hypothesis A3 ‖f (φ1)− f (φ2)‖H ≤ L ‖φ1 − φ2‖ for any φ1, φ2 ∈ X.
It follows from [38] Theorem 2.6 that (4.1) admits a global solution uφ(·) : [−r,∞] → H such that

uφ(t) = φ(t) for t ∈ [−r, 0] and

uφ(t) = T (t)φ(0) +

∫ t

0
T (t− s)

[
L
(
uφs

)
+ f

(
uφs

)]
ds, (4.5)
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for t > 0.

Define Φ : R×X → X by Φ(t)φ = uφt (·), then it generates an infinite dimensional dynamical system

due to the uniqueness of the solution. The existence of attractor for semilinear or nonlinear partial

functional differential equations including (4.1) as special case have been reported in much literature.

See, for instance, [39] tackles the autonomous case with a nondensely defined linear part. Apparently,

(4.1) satisfies other assumptions in [39] and hence it follows from Proposition 3.1 and Theorem 3.1 in

[39] that (4.1) admits a global attractor which is stated as follows.

Lemma 4.1. Assume that Hypothesis A3 holds. Then, for any φ ∈ X, there exists a constant δ > a

such that the integral solution uφt (·) of Eq. (4.1) satisfies the following inequality

‖ut‖ ≤
c1eδr

a− Lfeδr
+ eδr

(
‖φ‖ − c1

a− Lfeδr

)
e(Lf eδr−a)t, t ≥ 0, (4.6)

where c1 = ‖f(0)‖, a 6= Lfe
δr. If a > Lfe

δr, then Eq. (4.1) has a nonempty global attractor A.

We now estimate the dimensions of the global attractor in Lemma 4.1. We first introduce the

following state decomposition results of the linear part AU of (4.4) established in [38]. It follows from

[38] that the characteristic values of the linear part AU are the roots of the following characteristic

equation

n2 −
(
λ+ a+ be−λr

)
= 0, n = 1, 2, · · · . (4.7)

Since AU is compact, it follows from Theorem 1.2 (i) in [38] that the spectrum of AU are point spectra,

which we denote by %1 > %2 > · · · with multiplicity n1, n2, · · · , where %1 is defined as

%1 = max
{

Reλ : n2 −
(
λ+ a+ be−λr

)
= 0
}
, n = 1, 2, · · · . (4.8)

In the following, we always assume that b− a < 1 and it follows from Lemma 1.13 on P73 in [38] that

if a > 0, b > 0 and b− a < 1, then %1 < 0. For any given %m < 0, m ≥ 1, there is a

km = n1 + n2 + · · ·+ nm (4.9)

dimensional subspace XU
km

such that

X = XU
km

⊕
XS
km

is the decomposition of X by %m. Let Pkm and Qkm be the projection of X onto XU
km

and XS
km

respectively, that is XU
km

= PkmX, XS
km

= (I − Pkm)X = QkmX. It follows from the definition of Pkm

and Qkm that

‖U(t)Qkmx‖ ≤ Ke%mt‖x‖, t ≥ 0, (4.10)

where K is a positive constant.

To show the squeezing property, we extend the domain of U(t) to the following space of some

discontinuous functions

Ĉ =

{
φ : [−r, 0]→ X; φ‖[−r,0) is continuous and lim

θ→0−
φ(θ) ∈ X exists

}
(4.11)
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and introduce the following informal variation of constant formula established in [38]

u(t) = U(t)φ+

∫ t

0
[U(t− s)X0f(us)] (0)ds, t ≥ 0. (4.12)

It is proved by Theorem 2.1. in [38] that the function u : [−r,∞)→ X defined by (4.5) satisfies (4.12)

with u0 = φ ∈ X, where X0 : [−r, 0]→ B(X,X) is given by X0(θ) = 0 if −r ≤ θ < 0 and X0(0) = Id.

Remark 4.1. In general, the solution semigroup defined by (4.12) have no definition at discontinuous

functions and the integral in the formula is undefined as an integral in the phase space. However, if

interpreted correctly, (4.12) does make sense. Details can be found in [11] Pages 144 and 145.

We can now prove the squeezing property from which it is clear that the global attractors of (4.1)

have finite Hausdorff and fractal dimensions by Theorems 2.1 and 2.2.

Theorem 4.1. Let P be the finite dimension projection Pkm defined by (4.10), %1, %m and K being

defined in (4.8) and (4.10) respectively, then we have

‖PΦ(t)ϕ− PΦ(t)ψ‖ ≤ 2e(Lf+%1)t ‖ϕ− ψ‖ (4.13)

and

‖(I − P )Φ(t)ϕ− (I − P )Φ(t)ψ‖ ≤ (Ke%mt +
KLf

%1 + Lf − %m
e(Lf+%1)t) ‖ϕ− ψ‖ (4.14)

for any t ≥ 0 and ϕ,ψ ∈ A.

Proof. For any ϕ,ψ ∈ X, denote by y = ϕ − ψ and wt = Φ(t)ϕ − Φ(t)ψ = uϕt − u
ψ
t . Then it follows

from (4.12) that

wt = U(t)y +

∫ t

0
U(t− s)X0[f(uϕs )− f(uψs )]ds, t ≥ 0. (4.15)

Taking projection I − P on both sides of (4.15) leads to

‖(I − P )wt‖X =‖(I − P )U(t)y +

∫ t

0
(I − P )U(t− s)X0[f(uϕs )− f(uψs )]ds‖

≤Ke%mt‖y‖+ Lf

∫ t

0
e%1(t−s)‖(I − P )ws‖ds.

(4.16)

Multiplying both sides of (4.16) by e−%1t,

e−%1t‖(I − P )wt‖ ≤Ke(%m−%1)t‖y‖+ Lf

∫ t

0
e−%1s‖(I − P )wt‖ds. (4.17)

By applying the Gronwall inequality, we have

e−%1t‖(I − P )wt‖ ≤‖y‖[Ke(%m−%1)t +
KLf

%m − %1 − Lf
(e(%m−%1)t − eLf )], (4.18)
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indicating that

‖(I − P )wt‖ ≤‖y‖[Ke%mt +
KLf

%m − %1 − Lf
(e%mt − e(Lf+%1)t)]

≤‖y‖[Ke%mt +
KLf

%1 + Lf − %m
e(Lf+%1)t].

(4.19)

Hence, the second part holds with λ0 = Lf + %1, λ1 = %m, M2 = K and M3 =
KLf

−%m+%1+Lf
.

Subsequently, we prove the first part. Since U(t)y = PU(t)y + (I − P )U(t)y, we have

‖PU(t)y‖ ≤‖U(t)y‖+ ‖(I − P )U(t)y‖. (4.20)

Taking projection of P on both sides of (4.15) gives

‖Pwt‖ ≤‖PU(t)y‖+

∫ t

0
‖PU(t− s)X0[f(uϕs )− f(uψs )]ds‖

≤ ‖P‖
‖I − P‖

‖(I − P )U(t)y‖‖U(t)y‖+ Lf

∫ t

0
e%1(t−s)‖Pwt‖ds

≤ |%m|
|%m+1|

e%1t‖y‖+ Lf

∫ t

0
e%1(t−s)‖Pwt‖ds.

(4.21)

Multiplying both sides of (4.21) by e−%1t implies

e−%1t‖Pwt‖ ≤
|%m|
|%m+1|

‖y‖+ Lf

∫ t

0
e−%1s‖Pwt‖ds. (4.22)

By applying the Gronwall inequality, we have

e−%1t‖Pwt‖ ≤
|%m|
|%m+1|

‖y‖eLf t, (4.23)

which means that

‖Pwt‖ ≤
|%m|
|%m+1|

‖y‖e(Lf+%1)t. (4.24)

Hence, the first part holds by taking M1 = |%m|
|%m+1| and λ0 = Lf + %1.

It follows from Theorem 2.1 that we have the following results about dimension of attractor

{A(t)}t∈R for (4.1).

Theorem 4.2. Let km, %1, %m and K be defined in (4.8), (4.9) and (4.10) respectively, P be the finite

dimensional projection Pkm defined by (4.10). Assume that conditions of Lemma 4.1 are satisfied.

Moreover, assume there exist 0 < α < 2 and t0 > 0 such that

α
|%m|
|%m+1|

e(Lf+%1)t0 + 2Ke%mt0 + 2
KLf

%1 + Lf − %m
e(Lf+%1)t0 < 1. (4.25)

Then, the Hausdorff dimension of the global attractor A satisfies

dH <
− ln km − km ln(2 + 4

α)

ln(α |%m|
|%m+1|e

(Lf+%1)t0 + 2Ke%mt0 + 2
KLf

%1+Lf−%m e
(Lf+%1)t0)

. (4.26)
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Remark 4.2. Since %1 and %m represent the first and the m-th eigenvalues of the linear part AU of

Eq. (4.1), which depends on the delay effect, we can see the Hausdorff dimension of global attractor A
of Eq. (4.1) depends on the time delay via the distribution of eigenvalues of the linear part AU of Eq.

(4.1). Furthermore, it follows from (4.26) that the Hausdorff dimension depends on the constants of

exponential dichotomy, the Lipschitz constant of the nonlinear term and the spectrum gap of the linear

part AU , indicating that the Hausdorff dimension of global attractor A is very flexible to be tuned by

a variety of parameters. If we take α ↑ 2 and impose conditions as Remark 2.1, we can derive an

estimation independent of α.

Particularly, we can see from (4.26) that the Hausdorff dimension of global attractor A is monotone

increasing with respect to m. Thus, in the case m = 1, we can obtain the minimum Hausdorff dimension

of global attractor A, which is given in the following corollary.

Corollary 4.1. Let %1 and K be defined by (4.8) and (4.10) respectively and P be the finite dimensional

projection Pk1 defined by (4.10). Assume that the conditions of Theorem 4.1 are satisfied a, b, r are

appropriately chosen such that k1 = 1. Moreover, assume there exist 0 < α < 2 and t0 > 0 such that

α
|%1|
|%2|

e(Lf+%1)t0 + 2Ke%1t0 + 2Ke(Lf+%1)t0 < 1. (4.27)

Then, the Hausdorff dimension of global attractor A satisfies

d <
− ln(2 + 4

α)

ln(α |%1||%2|e
(Lf+%1)t0 + 2Ke%1t0 + 2Ke(Lf+%1)t0)

. (4.28)

By Theorem 2.2, we have the following results about the fractal dimension of Eq. (4.1).

Theorem 4.3. Let km, %1, %m, γ and K be defined in (4.8), (4.9) and (4.10) respectively, P be the

finite dimensional projection Pkm defined by (4.10). Assume that the conditions of Lemma 4.1 are

satisfied. Moreover, assume there exist 0 < α < |%m|
|%m+1| and t0 > 0 such that ζ := αe(Lf+%1)t0 +Ke%mt0 +

KLf
%1+Lf−%m e

(Lf+%1)t0 < 1, then, the fractal dimension of global attractor A has an upper bound

dimf A ≤
ln km + km ln(2 + 2|%m|

α|%m+1|)

− ln ζ
<∞. (4.29)

Similar to Remark 4.2 and Corollary 4.4, we have the following corollary about the fractal dimension

of global attractor A in the case %m = %1.

Corollary 4.2. Let %1 and K be defined in (4.8), (4.9) and (4.10) respectively and P be the finite

dimensional projection Pk1 defined by (4.10). Assume that the conditions of Lemma 4.1 are satisfied

and a, b, r are appropriately chosen such that k1 = 1. Moreover, assume there exists 0 < α < t0 such

that αe(Lf+%1)t0 +Ke%1t0 +Ke(Lf+%1)t0 < 1, then, the fractal dimension of global attractor A satisfies

dimf A ≤
ln(2 + 2|%1|

α|%2|)

− ln[(α+K)e(Lf+%1)t0 +Ke%1t0 ]
<∞. (4.30)
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4.2 Non-autonomous retarded functional differential equation

Consider the following typical non-autonomous RFDE arising in real world applications

u̇(t) =
N∑
k=1

Aku (t− ωk) +

∫ 0

−r
A(t, θ)u(t+ θ)dθ + f(ut), t ≥ σ,

xσ = φ,

(4.31)

where 0 ≤ ω1 < ω2 < · · · < ωN ≤ r, u(t) ∈ Rn, Ak ∈ Rn×n, r stands for the delay. The initial condition

φ ∈ X , C([−r, 0],Rn), with X being the Banach space of continuous functions from [−r, 0] to Rn

equipped with the supremum norm ‖φ‖X = supθ∈[−r,0] |φ(θ)| for any φ ∈ X and | · | is the usual norm

of Rn. A(t, θ) is integrable in θ for each t and there is a function a ∈ Lloc
1 ((−∞,∞),R) such that∣∣∣∣∫ 0

−r
A(t, θ)φ(θ)dθ

∣∣∣∣ ≤ a(t)|φ| (4.32)

for all t ≥ σ and φ ∈ X. f is a continuous nonlinear mapping from X into Rn

For notation simplicity, define the linear part of (4.31) as a linear mapping L(t) from X into Rn

given by

L(t)ϕ =
N∑
k=1

Akϕ (−ωk) +

∫ 0

−r
A(t, θ)ϕ(θ)dθ (4.33)

for any ϕ ∈ X. Following Chapter 6 in [24], assume that there is an n × n matrix function η(t, θ),

measurable in (t, θ) ∈ R× R, normalized so that

η(t, θ) = 0 for θ ≥ 0, η(t, θ) = η(t,−r) for θ ≤ −r,

η(t, θ) is continuous from the left in θ on (−r, 0) and has bounded variation in θ on [−r, 0] for each t.

Further, there is an m ∈ Lloc
1 ((−∞,∞),R) such that

Var[−r,0] η(t, ·) ≤ m(t)

and the linear mapping L(t) : X → Rn is given by

L(t)ϕ =

∫ 0

−r
d[η(t, θ)]ϕ(θ)

for all t ∈ (−∞,∞) and φ ∈ X. Obviously, the norm of L(t) satisfies |L(t)φ| ≤ m(t)|φ|. It follows

from Theorem 1.1 of Chapter 6 in [24] that under the above assumptions the following non-autonomous

linear equation
˙̃u(t) = L(t)ũt,

ũσ = φ
(4.34)

admits a unique global solution ũφ(·, σ) : [σ− r,∞)→ Rn and hence the two parameters process S(t, σ)

on X defined by S(t, σ)φ = ũφt (·, σ) is a continuous process. We always assume the trivial equilibrium
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ũ = 0 of (4.34) is uniformly asymptotically stable and hence by Lemma 5.3 of Chapter 6 in [24], there

exist positive constants γ and K0 such that

‖S(t, σ)φ‖ < K0e−γ(t−σ)‖φ‖ (4.35)

for all t ≥ σ.

We also assume the nonlinear term f satisfies Hypothesis A3 and impose the following assumption

similar to the exponential dichotomy on the process S(t, σ) generated by (4.34).

Hypothesis A4 There exist a positive constants K and a negative constant β < −γ, and an m

dimensional projection operator P (t) : X → Xm, s ∈ R and Q(s) = I−P (t) : X → X⊥m, s ∈ R such that

‖Q(t)S(t, s)‖ = ‖S(t, s)Q(s)‖ ≤ Keβ(t−s), t ≥ s (4.36)

Remark 4.3. The Hypothesis A4 is an intermediate and standard assumption in the study of dy-

namics of non-autonomous RFDEs, such as the boundary problem, the existence of almost periodic

solutions [24] and invariant manifolds [37]. In the autonomous case, it degenerates to a fact that the

phase space X can be decomposed into a finite dimensional unstable subspace and an infinite dimen-

sional stable subspace, which is guaranteed by imposing some conditions on spectrum distribution of the

linear operator. The details can be found in Chapter 7 of [24] and similar results for retarded reaction

diffusion equations in Subsection 4.1. For non-autonomous operators, the spectrum condition under

which Hypothesis A4 holds have been studied in the Appendix A of the very recent work [27].

It follows from Theorem 1.2 of Chapter 6 in [24] and some standard contraction techniques, that

under assumption Hypothesis A3, the non-autonomous nonlinear equation (4.31) admits a solution

uφ(t, σ) for any t ∈ [σ− r,∞), which is also continuous with respect to the initial condition. Define the

non-autonomous evolution process generated by (2.1) by Φ(t, σ)φ = uφt (·, σ) for any φ ∈ X, which is

continuous for any t ≥ σ. In the following, we construct exponential attractors for of Φ(t, σ). We first

show that Φ(t, σ) admits a family of positive invariant pullback absorbing sets B(σ) for any σ ∈ R.

Theorem 4.4. Assume that Hypothesis A4 as well as Hypothesis A3 hold, K0 < 1 and K0Lf−γ <
0. Then the dynamical system Φ admits an invariant pullback absorbing set B defined by

B = {φ ∈ C|‖φ‖ ≤ 1

1−K0
[
K0f(0)

γ
+

1

γ −K0Lf
]}. (4.37)

Proof. By the following informal variation of constant formula established in [11]

uφt (·, t− s) = S(t, t− s)φ+

∫ t

t−s
S(t, t− s− ρ)X0f(uφρ(·, t− ρ))dρ, t ≥ 0, (4.38)
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where X0 : [−r, 0]→ B(X,X) is given by X0(θ) = 0 if −r ≤ θ < 0 and X0(0) = Id, we have∥∥∥uφt (·, t− s)
∥∥∥ ≤‖(S(t, t− s)φ)‖+ ‖

∫ t

t−s
S(t, t− (s− ρ))X0f(uφρ(·, t− ρ))dρ‖

≤K0e
−γs ‖φ‖+K0Lf

∫ t

t−s
e−γ(s−ρ)(‖uφρ(·, t− ρ)‖+ f(0))dρ

≤K0e
−γs ‖φ‖+K0Lf

∫ t

t−s
e−γ(s−ρ)‖uφρ(·, t− ρ)‖dρ+

K0f(0)(1− e−γs)
γ

.

(4.39)

Multiplying both sides of (4.39) by eγs,

eγs
∥∥∥uφt (·, t− s)

∥∥∥ ≤K0 ‖φ‖+K0Lf

∫ t

t−s
eγ%‖uφρ(·, t− ρ)‖dρ+

K0f(0)eγs

γ
. (4.40)

Applying the Gronwall inequality yields

eγs
∥∥∥uφt (·, t− s)

∥∥∥ ≤K0 ‖φ‖ eK0Lf s +
K0f(0)eγs

γ
+
e(γ−K0Lf )s

γ −K0Lf
, (4.41)

and hence ∥∥∥uφt (·, t− s)
∥∥∥ ≤K0 ‖φ‖ e(K0Lf−γ)s +

K0f(0)

γ
+

e−K0Lf s

γ −K0Lf

≤K0 ‖φ‖ e(K0Lf−γ)s +
K0f(0)

γ
+

1

γ −K0Lf
.

(4.42)

Therefore, in the case K0Lf − γ < 0, for any φ ∈ X, there exists a s‖φ‖ > 0 such that, for all s ≥ s‖φ‖,∥∥∥uφt (·, t− s)
∥∥∥ ≤ 1

1−K0
[
K0f(0)

γ
+

1

γ −K0Lf
]. (4.43)

That is, B(t) is an absorbing set for Φ(t, t − s). Indeed, for any bounded subset D ⊂ X, denote by

rD = supu∈D ‖u‖, if we take TD = 1
γ ln

rDγ(1−K0)(γ−K0Lf )
K0f(0)(γ−K0Lf )+γ , then we have

Φ(t, t− s)D ⊂ B

for all s ≥ TD.

The invariance property clearly follows since for any φ ∈ B, by (4.42) and (4.43), we have

‖Φ(t, t− s)φ‖ =
∥∥∥uφt (·, t− s)

∥∥∥ ≤ K0 ‖φ‖ e(K0Lf−γ)s +
K0f(0)

γ
+

e−K0Lf s

γ −K0Lf

≤(
K0

1−K0
+ 1)[

K0f(0)

γ
+

1

γ −K0Lf
]

≤ 1

1−K0
[
K0f(0)

γ
+

1

γ −K0Lf
].

(4.44)

This completes the proof.

Remark 4.4. Theorem 4.4 together with continuity and compactness of the evolution process Φ(t, σ)

implies it admits a pullback attractor {A(t)}t∈R. In the sequel, we give upper bounds of Hausdorff and

fractal dimensions of the evolution process Φ(t, σ) generated by (4.31).
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Subsequently, we prove the squeezing property of Φ, i.e., (H3) holds.

Theorem 4.5. Let P be the finite dimensional projection Pkm defined by (4.35), K,β, γ and K0 being

defined by (4.35) and (4.36) respectively and assumptions of Theorem 4.4 hold, then we have

‖P (t)Φ(t, σ)ϕ− P (t)Φ(t, σ)ψ‖ ≤ 2e(K0Lf−γ)(t−σ) ‖ϕ− ψ‖ (4.45)

and

‖(I − P (t))Φ(t, σ)ϕ− (I − P (t))Φ(t, σ)ψ‖ ≤ (Keβ(t−σ) +
KLfK0

−γ + Lf − β
e(Lf−γ)(t−σ)) ‖ϕ− ψ‖ (4.46)

for any t ≥ 0 and ϕ,ψ ∈ B.

Proof. For any ϕ,ψ ∈ X, denote by y = ϕ− ψ and wt(·, σ) = Φ(t, σ)ϕ− Φ(t, σ)ψ = uϕt (·, σ)− uψt (·, σ).

Then it follows from (4.38) that

wt(·, σ) = S(t, σ)y +

∫ t

t−s
S(t, s)X0[f(uϕs )− f(uψs )]ds, t ≥ 0. (4.47)

Taking projection I − P (t) on both sides of (4.47) leads to

‖(I − P (t))wt(·, σ)‖ =‖(I − P (t))S(t, t− s)y +

∫ t

t−s
(I − P (t))S(t, s)X0[f(uϕs )− f(uψs )]ds‖

≤Keβ(t−σ)‖y‖+ LfK0

∫ t

t−s
e−γ(t−s)‖(I − P (t))ws‖ds.

(4.48)

Multiplying both sides of (4.48) by eγ(t−σ),

eγ(t−σ)‖(I − P (t))wt(·, σ)‖ ≤Ke(β+γ)(t−σ)‖y‖+ LfK0

∫ t

t−s
eγ(s−σ)‖(I − P (t))wt(·, σ)‖ds. (4.49)

By applying the Gronwall inequality, we have

eγ(t−σ)‖(I − P (t))wt(·, σ)‖ ≤‖y‖[Ke(β+γ)(t−σ) +
KLfK0

β + γ − LfK0
(e(β+γ)(t−σ) − eLfK0)], (4.50)

indicating that

‖(I − P (t))wt(·, σ)‖ ≤‖y‖[Keβ(t−σ) +
KLfK0

β + γ − LfK0
(eβ(t−σ) − e(K0Lf−γ)(t−σ))]

≤‖y‖[Keβ(t−σ) +
KLfK0

−γ + LfK0 − β
e(K0Lf−γ)(t−σ)].

(4.51)

Hence, the second part holds with λ0 = LfK0 − γ, λ1 = β, M2 = K and M3 =
KLfK0

−β−γ+LfK0
.

Subsequently, we prove the first part. Since S(t, σ)y = P (t)S(t, σ)y + (I − P (t))S(t, σ)y, we have

‖P (t)S(t, σ)y‖ ≤‖S(t, σ)y‖+ ‖(I − P (t))S(t, σ)y‖. (4.52)
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Taking projection of P (t) on both sides of (4.38) and on account of (4.52),

‖P (t)wt(·, σ)‖ =‖S(t, σ)y‖+ ‖(I − P (t))S(t, σ)y‖+

∫ t

t−s
‖P (t)S(t, s)X0[f(uϕs )− f(uψs )]ds‖

≤(K0e
−γs +Keβ(t−σ))‖y‖+ LfK0

∫ t

t−s
e−γ(t−s)‖Pwt(·, σ)‖ds

≤(K0 +K)e−γs‖y‖+ LfK0

∫ t

t−s
e−γ(t−s)‖Pwt(·, σ)‖ds.

(4.53)

Multiplying both sides of (4.54) by eγ(t−σ),

eγ(t−σ)‖Pwt(·, σ)‖ ≤(K0 +K)‖y‖+ LfK0

∫ t

t−s
eγ(s−σ)‖Pwt(·, σ)‖ds. (4.54)

By applying the Gronwall inequality, we have

eγ(t−σ)‖Pwt(·, σ)‖ ≤(K0 +K)‖y‖eLfK0(t−σ), (4.55)

indicating that

‖Pwt(·, σ)‖ ≤(K0 +K)‖y‖e(LfK0−γ)(t−σ). (4.56)

Hence, the first part holds by taking M1 = (K0 +K) and λ0 = LfK0 − γ.

Apparently, λ1 = β < −γ < LfK0 − γ = λ0 in Theorem 2.1. Hence, it follows from Theorem 2.1

that we have the following results about the dimension of pullback attractor {A(t)}t∈R of (4.1).

Theorem 4.6. Let K0, γ, β, K and P (t) be defined in (4.35) and (4.36) respectively. Assume that the

conditions of Theorems 4.4 and 4.5 are satisfied. Moreover, assume there exist 0 < α < 2 and t0 > 0

such that

α(K0 +K)e(LfK0−γ)t0 + 2Keβt0 + 2
LfK0 − γ

(LfK0 − γ + β)
e(LfK0−γ)t0 < 1. (4.57)

Then, the Hausdorff dimension of the global attractor A satisfies

dH <
− ln km − km ln(2 + 4

α)

ln(α(K0 +K)e(LfK0−γ)t0 + 2Keβt0 + 2
LfK0−γ

(LfK0−γ+β)e
(LfK0−γ)t0)

. (4.58)

Particularly, we can see from (4.58) the Hausdorff dimension of pullback attractor {A(t)}t∈R is

monotone increasing with respect to m. Thus, in the case m = 1, we can obtain the minimum Hausdorff

dimension of pullback attractor {A(t)}t∈R, which is given in the following corollary.

Corollary 4.3. Let K0, γ, β, K and P (t) be defined in (4.35) and (4.36) respectively. Assume that the

conditions of Theorems 4.4 and 4.5 are satisfied. Moreover, assume there exist 0 < α < 2 and t0 > 0

such that

α(K0 +K)e(LfK0−γ)t0 + 2Keβt0 + 2
LfK0 − γ

(LfK0 − γ + β)
e(LfK0−γ)t0 < 1. (4.59)

Then, the Hausdorff dimension of the global attractor A satisfies

dH <
− ln(2 + 4

α)

ln(α(K0 +K)e(LfK0−γ)t0 + 2Keβt0 + 2
LfK0−γ

(LfK0−γ+β)e
(LfK0−γ)t0)

. (4.60)
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By Theorem 2.2, we have the following results about the fractal dimension of Eq. (4.1).

Theorem 4.7. Let K0, γ, β, K and P (t) be defined in (4.35) and (4.36) respectively. Assume that the

conditions of Theorems 4.4 and 4.5 are satisfied. Moreover, assume there exist 0 < α < K0 + K such

that ζ := αe(LfK0−γ)t0 + Keβt0 +
KLf

LfK0−γ+β e
(LfK0−γ)t0 < 1. Then, the fractal dimension of pullback

attractor A(t) has an upper bound

dimf A(t) ≤
lnm+m ln(2 + 2K0+K

α )

− ln ζ
<∞. (4.61)

Similar to Remark 4.2 and Corollary 4.4, we have the following corollary about the fractal dimension

of pullback attractor A(t) in the case m = 1.

Corollary 4.4. Let K0, γ, β, K and P (t) be defined in (4.35) and (4.36) respectively. Assume that the

conditions of Theorems 4.4 and 4.5 are satisfied. Moreover, assume there exist 0 < α < K0 + K such

that ζ := αe(LfK0−γ)t0 + Keβt0 +
KLf

LfK0−γ+β e
(LfK0−γ)t0 < 1. Then, the fractal dimension of pullback

attractor A(t) satisfies

dimf A(t) ≤
ln(2 + 2K0+K

α )

− ln ζ
<∞. (4.62)

Remark 4.5. In [29], the author proved that the negative invariant sets of an autonomous retarded

functional differential equation have finite fractal dimension by requiring differentiability of the solution

semiflow. Furthermore, they recast the equation into a Hilbert space and did not provide explicit bounds

of the dimension. Here, we directly investigate the problem in the natural phase space, i.e., a Banach

space and do not require the smooth condition. Moreover, we consider the non-autonomous case and

establish an explicit estimation that only depends on the inner characteristic of the studied equation.

Apparently, if we take α ↑ K0 +K and impose conditions as Remark 3.2, we can deduce an estimation

independent of α.

5 Conclusions

In this paper, we have established some new criterions for the upper bounds of Hausdorff and frac-

tal dimensions of global attractors and pullback attractors for both autonomous and nonautonomous

dynamical systems in Banach spaces. The methods show a wide applicability to infinite dimensional

dynamical systems generated by functional differential equations, especially the ones of which the linear

parts admit exponential dichotomies with decomposition of state spaces. They may be also available to

investigate topological dimensions of attractors for neutral partial functional differential equations, the

infinite delay case as well as some other evolution equations with certain squeeze properties in Banach

spaces.

In the applications, we only consider partial functional differential equations on bounded domain.

Actually, there are many real world process evolution on infinite domain, such as the mature population
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of species living in an infinite habitat. In such a scenario, the Laplace operator has a continuous

spectrum, H1(Rn) is not compactly embedded in L2(Rn) and the solution semiflow do not have absorbing

sets that are compact in the original topology, causing the method developed here no longer effective

and new techniques should be established. This will be studied in an upcoming paper. Generally,

random effects are omnipresent in mathematical modelings. Therefore, anther question is, what can we

say about the topological dimensions of random attractors for partial functional differential equations

perturbed by random effects, i.e. the stochastic functional differential equations(SFDEs). Indeed, even

under what conditions do SFDEs generate random dynamical systems have not been perfectly tackled.

This problem also deserves much efforts in the future.
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