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In this paper, we investigate the classical chemostat model where the consumption function
of the species, in both cases Monod and Haldane, is perturbed by real random fluctuations.
Once the existence and uniqueness of non-negative global solution of the corresponding
random systems is ensured, we prove the existence of a deterministic compact attracting set,
whence we are able to find conditions to guarantee either the extinction or the persistence
of the species, the most important aim in real applications. In addition, we depict several
numerical simulations to illustrate the theoretical framework, standing out our contributions,
providing the biological interpretation of every result and comparing with similar works in
the literature.
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1. Introduction

The chemostat is a type of bioreactor commonly used for the growth of microorganisms
in culture environments. It was invented by Monod (see [1]) and Novick and Szilard
(see [2]) in the 1950s and possesses many applications in real life and industry (see, for
instance, [3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14] and references therein). Moreover, it is
worth mentioning that the chemostat is also very interesting as a mathematical object,
in fact, there is a recent framework called the theory of the chemostat (see [15, 16]) where
many researchers from different areas of knowledge are involved since some decades ago.

The chemostat consists of three tanks, the feed bottle, the culture vessel and the collection
vessel. A nutrient (or substrate) is stored in the feed bootle and (at least) one population
of microorganisms (or species or microbial biomass) reside in the culture vessel. Thus,
the nutrient is pumped from the first tank to the second one, where it is consumed by
the species and the biological process starts. Finally, another flow of material is removed
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from the culture vessel to the collection vessel to keep the volume of the culture vessel
constant during the experiment.

Hence, the main goal is to understand how the concentrations of nutrient and microor-
ganisms evolve in the culture vessel. To this end, we use the chemostat model (see [15]),
which is given by

dn

dt
= D(nin − n) − c(n)m, (1)

dm

dt
= −Dm + c(n)m, (2)

where n = n(t) and m = m(t) denote the concentrations of nutrient and microorganisms
at time t, respectively, nin > 0 represents the concentration of nutrient in the feed
bottle, D > 0 is the dilution rate and c is the function that describes how the nutrient
is consumed by the microorganisms.

Among the different reasons why the chemostat device possesses such a high interest,
we point out that it allows us to describe real phenomena with a very good accuracy
(see [15] and references therein).

The classical consumption function considered by many authors when dealing with
chemostat models is the Monod one

c(n) = c0n

d + n
, (3)

where c0 > 0 denotes the maximum specific growth rate of the microorganisms and
d > 0 is the half-saturation constant. However, it is very well known from practitioners
that certain populations of microorganisms reduce their consumption of substrate if it
is at large concentration in the culture vessel. In such a case, another consumption
function must be considered, which is called Haldane (see [15, 17, 18]) and is given by

c(n) = c0n

d + n + n2

di

, (4)

where di > 0 represents the inhibition constant and the rest of the parameters are
defined as in the case of the Monod function.

The chemostat model (1)-(2) has been widely investigated in the literature, specially
the case when considering the Monod consumption function. Nevertheless, it is a deter-
ministic system and then it assumes restrictions that are very strong, particularly when
taking into consideration that real life is often subject to suffer random disturbances
(see, for instance, [17, 18, 19, 20, 21, 22, 23]).

In order to set up more realistic chemostat models, we propose in this paper to in-
troduce real noise on the consumption function of the species (in both cases, Monod
and Haldane) in the deterministic chemostat model (1)-(2). More precisely, the idea
is to replace the maximum specific growth rate of the species c0 by the random term
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c0 + ϕ(ξ∗(θtω)), where ϕ(ξ∗(θtω)) denotes a bounded noise (see details in Section 2)
which has been proved to be a good tool when modeling real random fluctuations not
only in the chemostat model but also in other models arising in population dynamics
(see [17, 18, 19, 20, 21, 22, 23, 24]).

For instance, in our last paper [24] we studied the influence of the environmental noise
in the classical chemostat model (1)-(2) with both Monod and Haldane consumption
function, i.e., we added the noisy terms ϕ(ξ∗(θtω))n and ϕ(ξ∗(θtω))m at the end of the
equations (1) and (2), respectively, but we kept the consumption function (in both cases,
Monod and Haldane) as the purely deterministic expressions (3) and (4).

However, it is worth mentioning that typically the smooth deterministic consumption
functions (3) and (4) are derived as approximations of dotted lines obtained from ex-
perimental data in the laboratory thanks to measurements in real devices. This means
that the value c(n) cannot be totally determined in real life (in a deterministic way)
for every value n. Then, the idea of perturbing randomly such consumption functions,
which is the main innovation in this paper, makes sense completely from the practical
point of view, since it allows us to obtain much more realistic models. In fact, this is the
main reason that encouraged us to work on this paper and the key difference between
this paper and our last work [24].

Having a look at the existing literature, the authors in [25] investigated the chemostat
model (1)-(2) with Monod consumption function and they replace c0 by c0 + αẆ (t),
where Ẇ (t) denotes the white noise and α > 0 is the amount of noise. Let us summarize
in the following paragraphs the main differences between the work in [25] and our paper.

On the one hand, the extinction of the microorganisms is obtained in [25] as long as
D > c(nin) is fulfilled, whereas the condition to have extinction in our paper is D > c0,
as we prove in Section 3. Notice that our condition is less restrictive, since c(nin) < c0.

On the other hand, the authors in [25] provide conditions to ensure the persistence of
the microorganisms in the mean, i.e.,

lim inf
t→+∞

1
t

∫ t

0
m(τ)dτ ≥ κ > 0,

whilst we prove the persistence of the microorganisms in the stronger sense

lim
t→+∞

m(t) ≥ κ > 0.

In addition, we would like to highlight that the authors in [25] use the standard Wiener
process to model random disturbances. Nevertheless, this way of modeling randomness
can produce important drawbacks from the biological point of view, as we proved in
[19, 26]. That is the reason why we consider in this paper another way which has been
proved to be much more realistic (see [17, 18, 19, 20, 21, 22, 23, 24]).

Our paper is organized as follows. In Section 2 we introduce some preliminaries regard-
ing the real noise. After that, in Section 3, we investigate the chemostat model (1)-(2)
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with Monod consumption function, where the maximum specific growth rate of the mi-
croorganisms c0 is subject to random bounded fluctuations. Later, in Section 4, we study
the chemostat model (1)-(2) with Haldane consumption function, where c0 is subject
to random bounded fluctuations as well. In both cases we ensure the well-posedness
of the corresponding random system, we prove the existence of deterministic compact
attracting sets and we provide conditions to guarantee the extinction and persistence
of the microorganisms. In addition, we depict numerical simulations to illustrate the
theoretical work. Finally, in Section 5 we sum up our contribution in this paper and we
provide detailed biological interpretations of the results proved along the paper.

2. Preliminaries

We include in this section some basic preliminaries needed to understand this paper.
Details and proofs related to the results in this section can be found in [19, 27, 28] and
references therein.

Let W be a two sided standard Wiener process. From Kolmogorov’s theorem, W has
a continuous version, that we usually denote by ω, whose canonical interpretation is as
follows. Define Ω as the set of every continuous function ω : R → R such that ω(0) = 0.
Then, consider F the Borel σ−algebra of measurable subsets of Ω generated by the
compact open topology (see [29]) and P the Wiener measure on F .

Define now the family {θt}t∈R, where θt is a mapping from Ω to itself (see [28]) defined
as θtω(·) = ω(· + t) − ω(t). Thus, the Ornstein-Uhlenbeck process is defined as

(t, ω) 7→ ξ(t, ω) := ξ∗(θtω) = −
0∫

−∞

esθtω(r)dr, (5)

for all t ∈ R and ω ∈ Ω.

The following proposition collects the most importante properties needed in this paper
concerning the Ornstein-Uhlenbeck process.

Proposition 2.1 (See [30]). There exists a θt-invariant set Ω0 ⊂ F of Ω of full measure
such that, for almost every ω ∈ Ω0, the mapping (5) is a stationary solution of the
Langevin equation dξ + ξdt = dω with continuous trajectories and

lim
t→+∞

1
t

∫ t

0
ξ∗(θrω)dr = 0. (6)

is also fulfilled.

Let us now introduce the mapping ϕ : R →
[
−επ

2 ,
επ

2

]
, where ε > 0 is fixed, given by

ϕ(ξ) = ε arctan(ξ). (7)

Hence, we consider the stochastic process ϕ(ξ∗(θtω)), known as real noise, which is
bounded, i.e.,

− επ

2 < ϕ(ξ∗(θtω)) <
επ

2 (8)
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for any t ∈ R and ω ∈ Ω.

In addition, the ergodic property (6), which is very useful when making calculations, as
we will see later, is also satisfied by the stochastic process ϕ(ξ∗(θtω)), i.e.,

lim
t→+∞

1
t

∫ t

0
ϕ(ξ∗(θrω))dr = 0 (9)

holds true almost surely in Ω (see [17] for the proof).

3. The random chemostat model with Monod consumption function

As explained in the introduction of the paper, in this section we are interested in in-
vestigating the chemostat model (1)-(2) with Monod consumption function, where the
maximum specific growth rate of the species c0 is subject to random bounded fluctua-
tions modeled by the real noise. The resulting random chemostat is given by

dn

dt
= D(nin − n) − (c0 + ϕ(ξ∗(θtω)))n

d + n
m, (10)

dm

dt
= −Dm + (c0 + ϕ(ξ∗(θtω)))n

d + n
m, (11)

where we recall that n = n(t) and m = m(t) denote the nutrient and the microorganisms
concentrations, respectively, nin > 0 represents the concentration of nutrient in the feed
bottle, D > 0 is the dilution rate, c0 > 0 denotes the maximum specific growth rate of
the species and d > 0 is the half-saturation constant.

3.1. Well-posedness of the random chemostat

From now on, we define R2
+ := {(n, m) ∈ R2 : n, m ≥ 0}.

Theorem 3.1. For any given initial condition u0 = (n0, m0) ∈ R2
+ and ω ∈ Ω, the

random chemostat (10)-(11) possesses a unique solution

u(t; 0, ω, u0) := (n(t; 0, ω, u0), m(t; 0, ω, u0)) ∈ C1([0, +∞);R2
+),

where u(t; 0, ω, u0) denotes the value at time t of the solution that starts with initial
condition u0 at time 0 and depends on ω. Both n(t; 0, ω, u0) and m(t; 0, ω, u0) are
defined equivalently and we recall that n0 = n(0; 0, ω, u0) and m0 = m(0; 0, ω, u0).

Proof. From the second statement in Proposition 2.1, we have that ξ∗(θtω) is continuous
with respect to t. Since ϕ is also continuous, the vector field of (10)-(11) is continuous
with respect to t. In addition, the vector field of (10)-(11) is differentiable with respect
to both n and m, hence it is locally Lipschitz with respect to n and m. Thus, we obtain
the existence and uniqueness of local solution of the random chemostat (10)-(11).

Next, we prove that the unique local solution of (10)-(11) remains in R2
+ for every initial

condition in R2
+. To this end, it enough to notice that m ≡ 0 solves (11) and

dn

dt

∣∣∣∣
n=0

= Dnin > 0.
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Now, we prove that the unique local solution of (10)-(11) is defined for every t ≥ 0. Let
us introduce the new state variable b = n + m. It is easy to check that b satisfies

db

dt
= Dnin − Db, (12)

whence we obtain that

b(t; 0, ω, b0) = b0e−Dt +
[
1 − e−Dt

]
nin (13)

for every t ≥ 0, ω ∈ Ω and b0 := n0 + m0 > 0.

Finally, thanks to (13), it follows that n and m do not blow up at any finite time, whence
the unique local solution of (10)-(11) is defined for every t ≥ 0. □

3.2. Absorbing and attracting sets

Now, we are interested in proving that there exists a compact set that attracts the
solutions of the random chemostat (10)-(11) forwards in time.

Theorem 3.2. For any δ > 0, the deterministic compact set

Dδ :=
{

(n, m) ∈ R2
+ : nin − δ ≤ n + m ≤ nin + δ

}
(14)

is absorbing for the solutions of the random chemostat (10)-(11), i.e., for every bounded
set E ⊂ R2

+ and ω ∈ Ω, there exists a time TE(δ, ω) > 0 such that the solution
u(t; 0, ω, u0) of (10)-(11) is contained in Dδ for every u0 ∈ E and t ≥ TE(δ, ω).

Proof. From (13), it yields that

nin(1 − e−Dt) ≤ b(t; 0, ω, b0) ≤ nin + b0e−Dt (15)

for every t ≥ 0, ω ∈ Ω and b0 = n0 + m0 > 0.

Hence, for every δ > 0, ω ∈ Ω and E ⊂ R2
+ bounded, there exists TE(δ, ω) > 0 such that

nin − δ ≤ b(t; 0, ω, b0) ≤ nin + δ

for all u0 ∈ E and t ≥ TE(δ, ω), whence the compact set Dδ is absorbing for the solutions
of the random chemostat (10)-(11) for every given δ > 0. In addition, Dδ is independent
of the noise. □

The next corollary follows trivially thanks to Theorem 3.2.

Corollary 3.1. The deterministic compact set

D0 :=
{

(n, m) ∈ R2
+ : n + m = nin

}
(16)

attracts the solutions of the random chemostat (10)-(11), i.e.,

lim
t→+∞

sup
u0∈E

inf
d0∈D0

∥u(t; 0, ω, u0) − d0∥R2
+

= 0. (17)
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Remark 3.1. Notice that the compact absorbing set Dδ and the compact attracting set
D0 defined in (14) and (16), respectively, are both independent of the noise, even though
the chemostat model (10)-(11) is subject to randomness.

3.3. Extinction and persistence of the microorganisms

In this subsection we aim to supply conditions that ensure the extinction of the microor-
ganisms in the random chemostat (10)-(11) as well as conditions that guarantee that
they survive, which is the most interesting result (at least, from the biological point of
view) in the paper.

Theorem 3.3. The singleton point

Dext
0 := {(nin, 0)} ⊂ D0 (18)

is attracting for the solutions of the random chemostat (10)-(11) whether

D > c0 + επ

2 (19)

fulfills.

Proof. From (11) and thanks to (8), we obtain

dm

dt
≤ −Dm +

(
c0 + επ

2

)
m =

(
−D + c0 + επ

2

)
m. (20)

Then, from (20), it follows that

m(t; 0, ω, m0) ≤ m0e
−
(

D − c0 − επ

2

)
t

(21)

for every t ≥ 0, ω ∈ Ω and m0 > 0.

Finally, assuming that (19) holds true, it yields that lim
t→+∞

m(t; 0, ω, m0) = 0 for every
ω ∈ Ω and m0 > 0, whence Dext

0 attracts the solutions of the random chemostat (10)-
(11). □

Remark 3.2. Note that Theorem 3.3 holds also true when replacing condition (19) by
D > c0, which is quite finer. To prove this, it is enough to use the ergodic property (9).
Indeed, from (11), we have that

dm

dt
≤ −Dm + (c0 + ϕ(ξ∗(θtω))) m = (−D + c0 + ϕ(ξ∗(θtω))) m, (22)

whence
m(t; 0, ω, m0) ≤ m0e

−(D−c0)t+
∫ t

0
ϕ(ξ∗(θrω))dr (23)

for every t ≥ 0, ω ∈ Ω and m0 > 0.

Now, thanks to the property (9), provided D > c0, we have that lim
t→+∞

m(t; 0, ω, m0) = 0
for any ω ∈ Ω and m0 > 0.
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Remark 3.3. From Theorem 3.3 and Remark 3.2, we conclude that the microorganisms
in the random chemostat (10)-(11) become extinct as long as condition (19) holds true,
as we will also observe in the numerical simulations displayed in Section 3.4.

Next theorem focuses on the case when the microorganisms survive.

Theorem 3.4. The set

Dpers
0 :=

{
(n, m) ∈ R2

+ : n + m = nin, m ≥ mb, n ≥ nb

}
⊂ D0, (24)

which is compact and does not depend on the noise, attracts the solutions of the random
chemostat (10)-(11) as long as(

c0 − επ

2

)
nin > D(d + nin) (25)

is satisfied, where mb > 0 and nb > 0 are given inside the proof.

Proof. Thanks to (11) and Theorem 3.2, we have that

dm

dt
≥

−D +

(
c0 − επ

2

)
(nin − δ − m)

d + nin + δ − m

m (26)

for every t > 0 large enough, ω ∈ Ω and x0 > 0.

Notice that the expression in brackets in (26) is positive, negative or zero when the
polynomial p(m) = p2m + p1(δ) is positive, negative or zero, respectively, where

p1(δ) := nin

(
c0 − επ

2

)
− D(d + nin) − δ

(
D + c0 − επ

2

)
, (27)

p2 := D − c0 + επ

2 . (28)

Now, thanks to (25), p1(δ) > 0 for every δ > 0 small enough. On the other hand,
provided (25), it follows that

D <

(
c0 − επ

2

)
nin

d + nin
< c0 − επ

2 ,

whence we obtain that p2 < 0. Thus, the polynomial p vanishes at 0 and m(δ), where

m(δ) :=
D(d + nin) − nin

(
c0 − επ

2

)
+ δ

(
D + c0 − επ

2

)
D − c0 + επ

2
> 0. (29)

Then, p(m) > 0 on (0, m(δ)). Therefore, from (26), we have that

dm

dt

∣∣∣∣
m=m̄

> 0

8



Chemostats with real noise on different consumption functions

for every m̄ ∈ (0, m(δ)). This reasoning proves that the concentration of the microor-
ganisms in the random chemostat (10)-(11) is above m(δ) for every t large enough and
any δ > 0 small enough.

Hence, it is enough to take limit when δ → 0 in (29) to obtain

mb :=
D(d + nin) − nin

(
c0 − επ

2

)
D − c0 + επ

2
> 0, (30)

which does not depend on δ > 0.

Now, thanks to Theorem 3.2, it yields from (10) that

dn

dt
≥ D(nin − n) −

(
c0 + επ

2

)
n (nin + δ − n)

d + n
(31)

for every t > 0 large enough, ω ∈ Ω and n0 > 0.

It is not difficult to check that the right-hand term in (31) is positive, negative or zero
when the polynomial q(n) = q2n2 +q1(δ)n+q0 is positive, negative or zero, respectively,
where

q2 := c0 + επ

2 − D, (32)

q1(δ) := nin

(
D − c0 − επ

2

)
− Dd − δ

(
c0 + επ

2

)
, (33)

q0 := Dnind. (34)

It is trivial that q0 > 0. Moreover, from (25), it follows that

D < c0 − επ

2 < c0 + επ

2 ,

whence q2 > 0. In addition, q1(δ) < 0 for every δ > 0, since all its addends are negative.

From the previous reasoning, it follows that q vanishes at nb(δ) and na(δ), with

nb(δ) := −q1(δ) −
√

q1(δ)2 − 4q2q0

2q2
and na(δ) := −q1(δ) +

√
q1(δ)2 − 4q2q0

2q2
.

Hence, q(n) > 0 for every n ∈ (0, nb(δ)) and then

dn

dt

∣∣∣∣
n=n̄

> 0

for every n̄ ∈ (0, nb(δ)), whence we deduce that the concentration of the substrate in
the random chemostat (10)-(11) is greater than nb(δ) for every t large enough and any
δ > 0 small enough.
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Thus, by taking limit when δ → 0 in the expression that defines nb(δ), we have

nb :=
−q1 −

√
q2

1 − 4q2q0

2q2
> 0, (35)

where
q1 := nin

(
D − c0 − επ

2

)
− Dd.

As a consequence, the set Dpers
0 , which is compact and independent of the noise, attracts

the solutions of the random chemostat (10)-(11). □

Remark 3.4. Notice that Theorem 3.4 ensures that the microorganisms in the random
chemostat (10)-(11) persist if condition (25) holds true, which is the most interesting
result in real applications.

3.4. Numerical simulations and comments

In this subsection we depict numerical simulations to illustrate the theoretical results in-
volving the random chemostat (10)-(11). In every figure the discontinuous lines represent
the solution of the chemostat (1)-(2) with Monod consumption function without noise,
whereas the continuous lines are different realizations of the random system (10)-(11).

In Figure 1 we display two panels to illustrate the evolution on time of the concentration
of the nutrient and the microorganisms in the random chemostat (10)-(11). In this case
we set nin = 4, d = 0.8, c0 = 1.7, D = 1.9 and ε = 0.19. In addition, we consider the
initial condition (n0, m0) = (5, 4). Since D > c0, the microorganisms become extinct,
as proved in Theorem 3.3 and Remark 3.2.

0 5 10 15
2

3

4

0 5 10 15
0

2

4

6

Figure 1: Extinction of the microorganisms where nin = 4, d = 0.8, c0 = 1.7,
D = 1.9 and ε = 0.19 with initial condition (n0, m0) = (5, 4).
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Now, we show in Figure 2 the phase plane associated to the numerical simulations in
Figure 1, where the arrow points at the initial condition (n0, m0) = (5, 4). As we
explained above, we can observe how the concentration of the microorganisms vanishes.

1.5 2 2.5 3 3.5 4 4.5
0

1

2

3

4

5

Figure 2: Extinction of the microorganisms where nin = 4, d = 0.8, c0 = 1.7,
D = 1.9 and ε = 0.19 with initial condition (n0, m0) = (5, 4).

Next, in Figure 3 we include two panels again to illustrate the evolution on time of the
concentration of the nutrient and the microorganisms in the random chemostat (10)-
(11), where now we take D = 1.1. In this case condition (25) fulfills and then the
microorganisms survive, as proved in Theorem 3.4.

0 5 10 15
0

2

4

0 5 10 15
0

2

4

6

Figure 3: Persistence of the microorganisms where nin = 4, d = 0.8, c0 = 1.7,
D = 1.1 and ε = 0.19 with initial condition (n0, m0) = (5, 4).

Finally, we depict in Figure 4 the phase plane associated to the numerical simulations in
Figure 3, where the arrow points at the initial condition (n0, m0) = (5, 4). As explained
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above, where the persistence of the microorganisms is observed.

0.5 1 1.5 2 2.5 3 3.5 4
1

2

3

4

5

6

Figure 4: Persistence of the microorganisms where nin = 4, d = 0.8, c0 = 1.7,
D = 1.1 and ε = 0.19 with initial condition (n0, m0) = (5, 4).

4. The random chemostat model with Haldane consumption function

In this section we study the chemostat model (1)-(2) with Haldane consumption function,
where the maximum specific growth rate of the species c0 is subject to random bounded
fluctuations modeled by means of the real noise. The corresponding random chemostat
is given by

dn

dt
= D(nin − n) − (c0 + ϕ(ξ∗(θtω)))n

d + n + n2

di

m, (36)

dm

dt
= −Dm + (c0 + ϕ(ξ∗(θtω)))n

d + n + n2

di

m, (37)

where n = n(t) and m = m(t) denote the concentration of the nutrient and the mi-
croorganisms, respectively, nin > 0 represents the concentration of nutrient in the feed
bottle, D > 0 is the dilution rate, c0 > 0 denotes the maximum specific growth rate of
the species, d > 0 is the half-saturation constant and di > 0 describes the inhibition.

4.1. Well-posedness of the random chemostat

Again, R2
+ = {(n, m) ∈ R2 : n, m ≥ 0} in this section.

Theorem 4.1. For any given initial condition u0 = (n0, m0) ∈ R2
+ and ω ∈ Ω, the

random chemostat (36)-(37) possesses a unique solution

u(t; 0, ω, u0) := (n(t; 0, ω, u0), m(t; 0, ω, u0)) ∈ C1([0, +∞);R2
+),
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where u(t; 0, ω, u0) denotes the value at time t of the solution that starts with initial
condition u0 at time 0 and depends on ω. Both n(t; 0, ω, u0) and m(t; 0, ω, u0) are
defined equivalently and we recall that n0 = n(0; 0, ω, u0) and m0 = m(0; 0, ω, u0).

The proof of Theorem 4.1 is analogous to the proof of Theorem 3.1 in the previous
section, then we decided to skip it here in order not to be redundant.

4.2. Absorbing and attracting sets

In this subsection, our aim is to prove that there exists a compact set that attracts the
solutions of the random chemostat (36)-(37) forwards in time.

Theorem 4.2. For any given δ > 0, the deterministic compact set

Hδ :=
{

(n, m) ∈ R2
+ : nin − δ ≤ n + m ≤ nin + δ

}
(38)

is absorbing for the solutions of the random chemostat (36)-(37), i.e., for every bounded
set E ⊂ R2

+ and ω ∈ Ω, there exists a time TE(δ, ω) > 0 such that the solution
u(t; 0, ω, u0) of (36)-(37) is contained in Hδ for every u0 ∈ E and t ≥ TE(δ, ω).

The proof of Theorem 4.2 coincides with the proof of the Theorem 3.2 in the previous
section, then it is omitted here.

Remark 4.1. We would like to highlight that the set Hδ is the same that the one
obtained in Theorem 3.2 in Section 3 when considering the Monod consumption function
rather than the Haldane one. This simply means that the consumption function (or,
more precisely, the inhibition constant di) does not play any relevant role to ensure the
existence of an absorbing set for the solutions of the corresponding random chemostat.
Moreover, we can find in this case a set Hδ which is independent of the noise, even
though the corresponding model is affected by randomness.

Now, the next corollary follows trivially from Theorem 4.2.

Corollary 4.1. The deterministic compact set

H0 :=
{

(n, m) ∈ R2
+ : n + m = nin

}
(39)

attracts the solutions of the random chemostat (36)-(37), i.e.,

lim
t→+∞

sup
u0∈E

inf
d0∈D0

∥u(t; 0, ω, u0) − d0∥R2
+

= 0.

Remark 4.2. Note that, since the absorbing set Hδ obtained in Theorem 4.2 and the
absorbing set Dδ obtained in Theorem 3.2 are the same, it is quite logical that the attract-
ing sets H0 and D0 obtained in Corollary 4.1 and Corollary 3.1, respectively, coincide
as well. As we explained previously, this indicates that the differences between both
consumption functions Monod and Haldane are not relevant to ensure the existence of
absorbing and attracting sets for the corresponding random chemostat. Nevertheless,
this will not be the case when providing conditions to ensure the extinction or, what is
more important, the persistence of the microorganisms, as we will see in Section 4.3.
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4.3. Extinction and persistence of the microorganisms

This subsection is dedicated to supply conditions under which either the extinction or
the survival of the microorganisms in the random chemostat (36)-(37) is obtained.

Theorem 4.3. The singleton point

Hext
0 := {(nin, 0)} ⊂ H0 (40)

attracts the solutions of the random chemostat (36)-(37) when

D >
(

c0 + επ

2

) √
ddi

2d +
√

ddi

(41)

fulfills.

Proof. Define the mapping f : [0, +∞) → R as

f(n) = n

d + n + n2

di

,

which is non-monotonic and attains its maximum on [0, +∞) at n̂ =
√

ddi, with

f(n̂) =
√

ddi

2d +
√

ddi

.

Thus, from (37), it yields that

dm

dt
≤ −Dm +

(
c0 + επ

2

)
f(n̂)m =

(
−D +

(
c0 + επ

2

) √
ddi

2d +
√

ddi

)
m, (42)

whence

m(t; 0, ω, m0) ≤ m0e

−

(
D −

(
c0 + επ

2

) √
ddi

2d +
√

ddi

)
t

(43)

for every t ≥ 0, ω ∈ Ω and m0 > 0.

Hence, given that (9) holds true, from (43) we deduce that lim
t→+∞

m(t; 0, ω, m0) = 0 for
every ω ∈ Ω and m0 > 0, provided that (41) is fulfilled, and the proof finishes. □

Remark 4.3. We note that Theorem 4.3 can be also proved when replacing (41) by

D > c0

√
ddi

2d +
√

ddi

, (44)

14
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which is less restrictive. The proof is as follows. From (37), it follows that

dm

dt
≤

(
−D + (c0 + ϕ(ξ∗(θtω)))

√
ddi

2d +
√

ddi

)
m. (45)

Then, it easy to check that

m(t; 0, ω, m0) ≤ m0e

−

(
D − c0

√
ddi

2d +
√

ddi

)
t +

√
ddi

2d +
√

ddi

∫ t

0
ϕ(ξ∗(θrω))dr

(46)

for every t ≥ 0, ω ∈ Ω and m0 > 0.

Now, thanks to (9), provided that (44) fulfills, we have that lim
t→+∞

m(t; 0, ω, m0) = 0 for
any ω ∈ Ω and m0 > 0.

Remark 4.4. We would like to highlight that, in spite of the fact that the attracting
sets H0 and D0 obtained in Corollary 4.1 and Corollary 3.1, respectively, coincide, the
conditions under which the microorganisms go to extinction are completely different. As
we can observe, both (41) and (44) depend now on the inhibition constant di, whence
we deduce that the differences between the consumption functions Monod and Haldane
are relevant for the asymptotic dynamics of the corresponding random chemostat, even
though these differences were not important to ensure the existence of the absorbing and
the attracting sets.

Remark 4.5. Thanks to Theorem 4.3, we found conditions under which the microor-
ganisms in the random chemostat (36)-(37) become extinct.

Finally, we focus on the survival of the microorganisms, the main goal in real applica-
tions.

Theorem 4.4. The set

Hper
0 :=

{
(n, m) ∈ R2

+ : n + m = nin, m ≥ mb, n ≥ nb

}
⊂ H0, (47)

which is compact and does not depend on the noise, attracts the solutions of the random
chemostat (36)-(37) as long as(

c0 − επ

2

)
nin > D

(
d + nin + n2

in
di

)
(48)

is fulfilled, where mb > 0 and nb > 0 are given in the proof.

Proof. Thanks to (37) and Theorem 4.2, it follows that

dm

dt
≥

−D +

(
c0 − επ

2

)
(nin − δ − m)

d + (nin + δ − m) + (nin + δ − m)2

di

m (49)
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for every t > 0 large enough, ω ∈ Ω and m0 > 0.

Notice that the expression in brackets in (49) is positive, negative or zero when the
polynomial p(m) = p2m2 + p1(δ)m + p0(δ) is positive, negative or zero, respectively,
with

p0(δ) =
(

c0 − επ

2

)
nin + δ

(
−D − 2Dnin

di
− Dδ

di
− c0 + επ

2

)
− D

(
d + nin + n2

in
di

)
,

(50)

p1(δ) = D − c0 + επ

2 + 2D

di
(δ + nin), (51)

p2 = −D

di
. (52)

Observe that p2 < 0 and p0(δ) > 0 for every δ > 0 provided that condition (48) holds
true. Therefore, since p is continuous on R, there exists m(δ) > 0 such that

dm

dt

∣∣∣∣
m=m̄

> 0

for every m̄ ∈ (0, m(δ)) or, in other words, the concentration of microorganisms in the
random chemostat (36)-(37) is greater than m(δ) > 0 for every t large enough and any
δ > 0. Then, it suffices to consider mb = lim

δ→0
m(δ) > 0, which is independent of δ, to

finish the first part of the proof.

On the other hand, from (36) and thanks to Theorem 4.2, we have that

dn

dt
≥ D(nin − n) −

(
c0 + επ

2

)
n (nin + δ − n)

d + n + n2

di

(53)

for every t > 0 large enough, ω ∈ Ω and n0 > 0.

It is not difficult to check that the right-hand term in (53) is positive, negative or zero
when the polynomial q(n) = q3n3 + q2n2 + q1(δ)n + q0 is positive, negative or zero,
respectively, where

q0 = Ddnin, (54)

q1(δ) = Dnin − Dd − nin

(
c0 + επ

2

)
− δ

(
c0 + επ

2

)
, (55)

q2 = Dnin

di
− D + c0 + επ

2 , (56)

q3 = −D

di
. (57)
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It is obvious that q0 > 0 and q3 < 0. Moreover, since q is continuous and q(0) = q0 > 0,
it follows that there exists n(δ) > 0 such that

dn

dt

∣∣∣∣
n=n̄

> 0

for every n̄ ∈ (0, n(δ)). In other words, the concentration of the substrate in the random
chemostat (36)-(37) is over n(δ) > 0 for every t large enough and any δ > 0. Thus, it
suffices to consider nb = lim

δ→0
n∗(δ) > 0, which is independent of δ, to finish the proof. □

Remark 4.6. Notice that Theorem 4.4 provides condition (48), under which the mi-
croorganisms persist in the random chemostat (36)-(37). This is, no doubt at all, the
most important goal in practice.

4.4. Numerical simulations and comments

In this last subsection we present several numerical simulations to illustrate the theoret-
ical results involving the random chemostat (36)-(37). In every figure the discontinuous
lines represent the solution of the chemostat (1)-(2) with Haldane consumption function
without noise, whereas the continuous lines are different realizations of the solutions of
the random system (36)-(37).

In Figure 5 we display two panels to depict the evolution on time of the concentration
of substrate and microorganisms in the random chemostat (36)-(37). To this end, we
set nin = 4, d = 0.8, c0 = 1.7, D = 1.9, di = 5, ε = 0.19 and the initial condition
(n0, m0) = (5, 4). In this case, condition D > c0 is fulfilled, whence the microorganisms
vanishes, as proved in Theorem 4.3 and Remark 4.3.

0 5 10 15

3

3.5

4

0 5 10 15
0

2

4

6

Figure 5: Extinction of the microorganisms where nin = 4, d = 0.8, c0 = 1.7,
D = 1.9, di = 5 and ε = 0.19 with initial condition (n0, m0) = (5, 4).

We depict now in Figure 6 the phase plane associated to the numerical simulations
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in Figure 5, where the arrow points at the initial condition (n0, m0) = (5, 4). As we
explained above, it is easy to observe how the species become extinct.

2.6 2.8 3 3.2 3.4 3.6 3.8 4 4.2 4.4 4.6
0

1

2

3

4

5

Figure 6: Extinction of the microorganisms where nin = 4, d = 0.8, c0 = 1.7,
D = 1.9, di = 5 and ε = 0.19 with initial condition (n0, m0) = (5, 4).

In Figure 7 we show again two panels with the evolution on time of the concentration
of substrate and microorganisms in the random chemostat (36)-(37). Nevertheless, in
this case we consider D = 0.65. As a consequence, condition (48) holds true and then
the microorganisms survive, as proved in Theorem 4.4.

0 5 10 15
0

2

4

0 5 10 15
0

2

4

6

8

Figure 7: Persistence of the microorganisms where nin = 4, d = 0.8, c0 = 1.7,
D = 0.65, di = 5 and ε = 0.19 with initial condition (n0, m0) = (5, 4).

Finally, we plot in Figure 8 the phase plane associated to the numerical simulations in
Figure 7, where the arrow points at the initial condition (n0, m0) = (5, 4) again. The
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persistence of the microorganisms can be observed clearly in this figure, as we already
pointed out.
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Figure 8: Persistence of the microorganisms where nin = 4, d = 0.8, c0 = 1.7,
D = 0.65, di = 5 and ε = 0.19 with initial condition (n0, m0) = (5, 4).

5. Conclusions

In this last section, we sum up the results proved along this work, providing biological
interpretations and comparing with related works in the literature as well.

Our aim in this paper is to investigate the long-time dynamics of the chemostat model
(1)-(2) with both Monod and Haldane consumption functions, where the maximum
specific growth rate of the species c0 is randomly perturbed by means of the real noise
ϕ(ξ∗(θtω)), which is a bounded function of the well-known Ornstein-Uhlenbeck process.

Firstly, we ensured the well-posedness of both random chemostat models (10)-(11)
(with Monod consumption function) and (36)-(37) (with Haldane consumption func-
tion). Moreover, we proved the existence of compact absorbing and attracting sets
which, in addition, are independent of the noise, even though the original systems are
subject to randomness.

Later, we provided conditions under which the microorganisms vanishes and, what is
much more important from the point of view of the applications, conditions to ensure
the survival of the microorganisms. Such conditions are summarized in the sequel.

5.1. Random chemostat with Monod consumption function

Concerning the random chemostat model (10)-(11), we proved in Theorem 3.3 and
Remark 3.2 that the extinction of the microorganisms cannot be avoided when

D > c0
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holds true, whereas they survive if

(
c0 − επ

2

)
nin > D(d + nin) (58)

fulfills (see Theorem 3.4).

Notice that (58) can be rewritten as D < cb(nin), where the function cb is given as

cb(n) =

(
c0 − επ

2

)
n

d + n
. (59)

Summing up, the microorganisms in the random chemostat (10)-(11) become extinct as
long as D > c0 and persists if D < cb(nin). Otherwise, we cannot derive more infor-
mation about the extinction or persistence. This means that the dilution rate cannot
be large compared with the input concentration of the species nin and the consumption
function cb.

In order to help the readers, in Figure 9 we can observe a diagram where we represent
the input concentration of the species nin (in the x−axis) versus the dilution rate D (in
the y−axis). In addition, we also include the graph of the Monod consumption function
c given by (3) and the “limiting” consumption functions cb and ca, where cb is defined
as in (59) and ca is given by

ca(n) =

(
c0 + επ

2

)
n

d + n
. (60)

The diagram in Figure 9 must be interpreted as follows. Every point (nin, D) in the red
zone corresponds to the case D > c0 and then the microorganisms extinguish. Never-
theless, if the point (nin, D) is in the green zone, it means that D < cb(nin), whence the
microorganisms persist. Finally, as long as the point (nin, D) is in the white zone, we
cannot ensure neither the persistence nor the extinction of the microorganisms.
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Figure 9: Diagram in the case of Monod consumption function.

From the previous discussion, we can notice that it is possible for practitioners to increase
or decrease the input concentration of the substrate nin in order to have a more or
less broad branch of values for the dilution rate D such that the persistence of the
microorganisms can be ensured. In addition, we can deduce the relevance of the dilution
rate D when trying to keep persistence of the microorganisms in the chemostat.

As we pointed out in the introduction, in this paper we improve the results in [25], where
the authors study the chemostat model (1)-(2) with Monod consumption function but
they replace c0 by c0 + αẆ (t), where Ẇ (t) denotes the white noise and α > 0 is the
amount of noise. In [25], the conditions for the extinction of the species is D > c(nin)
(which is more restrictive than our condition D > c0) and the persistence of the species
is ensured (under certain conditions) in the mean, i.e.,

lim inf
t→+∞

1
t

∫ t

0
x(τ)dτ ≥ κ > 0,

whilst we prove the persistence of the species in the stronger sense

lim
t→+∞

x(t) ≥ κ > 0.

5.2. Random chemostat with Haldane consumption function

Regarding the random chemostat (36)-(37), we proved in Theorem 4.3 and Remark 4.3
that the microorganisms become extinct as long as

D > c(n̂)

fulfills, where we recall that n̂ is the point at which the Haldane consumption function
given by (4) attains its maximum (see Figure 11).
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In addition, thanks to Theorem 4.4, it is possible to guarantee the survival of the mi-
croorganisms when

(
c0 − επ

2

)
nin > D

(
d + nin + n2

in
di

)
(61)

is fulfilled.

It is easy to check that condition (61) can be rewritten equivalently as D < cb(nin),
where the function cb in this case is given as

cb(n) =

(
c0 − επ

2

)
n

d + n + n2
in

di

. (62)

In conclusion, the microorganisms extinguishes provided that condition D > c(n̂) and
persist when D < cb(nin) holds true. This means that the dilution rate need to be
small enough compared with the input concentration of the microorganisms nin and the
consumption function cb, where the parameter n̂ plays also an important role now.

To help the reader, in Figure 9 we provide a diagram where we represent the input
concentration of the microorganisms nin (in the x−axis) and the dilution rate D (in the
y−axis). Moreover, we also include the graph of the Haldane consumption function c
given by (4) and the “limiting” consumption functions cb and ca, where cb is defined as
in (62) and ca is given by

ca(n) =

(
c0 + επ

2

)
n

d + n + n2
in

di

. (63)

The diagram in Figure 11 must be interpreted as follows. Each point (nin, D) in the
red zone corresponds to the case D > c0 and then the microorganisms extinguish.
Nevertheless, if the point (nin, D) is in the green zone, then D < cb(nin), whence the
microorganisms persist.
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Figure 10: Diagram in the case of Haldane consumption function.

One could wonder what happens when D ∈ [cb(nin), c(n̂)] (the white zone in Figure
11). In such a case, we can observe both extinction and persistence of the species
depending on the initial condition that we consider. To illustrate this phenomenon,
we depict in Figure 11 the phase plane of the random chemostat (36)-(37), where we
set nin = 4, d = 0.8, c0 = 1.7, D = 0.91, di = 5, ε = 0.19 and we consider the
initial conditions (next

0 , mext
0 ) = (4, 1) (red realization corresponding to extinction) and

(npers
0 , mpers

0 ) = (4, 1.25) (green realization corresponding to persistence).

0.5 1 1.5 2 2.5 3 3.5 4 4.5
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Figure 11: Extinction and persistence in the random chemostat (36)-(37) where
nin = 4, d = 0.8, c0 = 1.7, D = 0.91, di = 5 and ε = 0.19 with initial conditions
(next

0 , mext
0 ) = (4, 1) (red) and (npers

0 , mpers
0 ) = (4, 1.25) (green).

From the previous discussion, we deduce that practitioners can increase or decrease the
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input concentration of the substrate nin in order to have a more or less broad branch
of values for the dilution rate D such that the persistence of the microorganisms can
be ensured. In addition, it is worth pointing out the relevance of the dilution rate D
when trying to keep persistence of the microorganisms in the chemostat, apart from
the inhibition parameter di, which plays also an essential role in the dynamics of the
corresponding random chemostat (36)-(37).
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