
March 14, 2023 22:54 WSPC/INSTRUCTION FILE liu˙wang˙caraballo

Stochastics and Dynamics
c© World Scientific Publishing Company

THE ASYMPTOTIC BEHAVIOUR OF SOLUTIONS FOR

STOCHASTIC EVOLUTION EQUATIONS WITH PANTOGRAPH

DELAY

YARONG LIU

School of Mathematics and Statistics, Gansu Key Laboratory of Applied Mathematics and

Complex Systems, Lanzhou University, Lanzhou 730000, China

liuyr19@lzu.edu.cn

YEJUAN WANG∗

School of Mathematics and Statistics, Gansu Key Laboratory of Applied Mathematics and

Complex Systems, Lanzhou University, Lanzhou 730000, China

wangyj@lzu.edu.cn

TOMAS CARABALLO

Depto. de Ecuaciones Diferenciales y Análisis Numérico, Facultad de Matemáticas, Universidad
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stability, in the pth moment and almost sure senses, of the nontrivial equilibrium solution
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1. Introduction

The stochastic delay differential equations (SDDEs) take into account the per-

turbations and delays often present in the real world. The stochastic pantograph-

delay differential equations are a kind of SDDEs with unbounded delays. Pantograph

equations arise in a wide range of applications such as small vertical displacements

of a stretched string under gravity [6, 20]. In recent years, stochastic evolution e-

quations have received a great deal of attention. However, there is little work on

stochastic evolution equations with pantograph delay.

In this work, Our purpose is to investigate the long time behavior of the following

stochastic pantograph delay evolution equations with nonlinear multiplicative noise

du(t) = −Au(t)dt+ f(t, u(ηt))dt+ g(t, u(ηt))dBQ(t), t ≥ 0, η ∈ (0, 1), (1.1)

satisfying the initial condition

u(0) = u0. (1.2)

Here −A is a closed, densely defined linear operator generating an analytic semi-

group S(t), t ≥ 0 on the space H and BQ is a K-valued Brownian motion. In

what follows, we assume that the mappings [0,∞) 3 t 7→ f(t, µ) ∈ H and

[0,∞) 3 t 7→ g(t, µ) ∈ L0
Q(K,H) are measurable for any µ ∈ Lp(Ω;Hλ), where

H, K, L0
Q(K,H) and Lp(Ω;Hλ) will be introduced later.

Firstly, we are interested in the existence, uniqueness, pth moment general sta-

bility and almost sure general stability of mild solutions for problem (1.1)-(1.2). The

analysis is based on the Banach fixed point theorem and various estimates involving

the gamma function. Note that many existing works are concerned with the poly-

nomial and exponential stability of SDEs with delay or without delay by using the

Razumikhin technique and Lyapunov functions; see for example, [7,11,17,22,24,25]

and the references therein. For some related works on stability of stochastic differ-

ential equations, we mention the interesting papers [2, 10, 12, 16, 18] and references

therein. However, there are some systems which are not exponentially stable or

polynomially stable, but the solutions do tend to zero asymptotically. Therefore,

it is necessary to study general stability. Authors in [8] have considered almost

sure stability with general decay rate of the exact solutions for stochastic panto-

graph differential equations. The moment general stability of exact solutions of the

stochastic pantograph differential equation has been investigated in [9].

Moreover, we construct a unique solution u∗, defined for all t ∈ R, for problem

(1.1)-(1.2). In particular, the mean-p Hölder regularity, pth moment general stability

and mean-p almost sure general stability of u∗ are also established. The existence

and uniqueness of u∗ follow from constructing a Cauchy convergent sequence of

linear versions and using the generalized version of the factorization formula and

convergence analysis. Then the Banach fixed theorem allows us to show that the

limit u∗ has pth moment and almost sure stability with general decay rate. To the

best of our knowledge, there are no results on the construction and stability of the
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nontrivial equilibrium solution for stochastic differential equations with delay. The

mean-square exponential stability of the nontrivial equilibrium solution on t ∈ R
has been established for stochastic reaction-diffusion equations in [19]. It is worth

mentioning that, because of the difficulties caused by pantograph delays, we cannot

prove the stability with the exponential decay as in [19, Theorem 3]. The presence

of pantograph delays also makes the analysis more complicated. Here by using

the Banach fixed theorem, we obtain the pth moment stability of the nontrivial

equilibrium solution on t ∈ R with general decay rate (including the polynomial

rate and the logarithmic rate). Furthermore, the almost sure general stability of the

nontrivial equilibrium solution is also addressed. In addition, Hölder regularity in

time of the nontrivial equilibrium solution is given.

The paper is organized as follows. In Section 2, we present some notations and

technical lemmas. The results of pth moment and almost sure α-type stability are

considered in Section 3 for stochastic pantograph delay evolution equations with

nonlinear multiplicative noise. In Section 4, we shall show the existence and u-

niqueness of the nontrivial equilibrium solution by constructing the stochastic pro-

cess u∗. Furthermore, pth moment and almost sure stability with a general decay

function α(t) are established for stochastic pantograph delay evolution equations

with nonlinear multiplicative noise. We also establish Hölder regularity in time of

the nontrivial equilibrium solution. A summary of this work is provided in Section

5. In the end the proof of Theorem 2.1 and a technical proposition are given in the

appendix.

Throughout this paper, we denote by C and C real positive constants which can

vary from a line to another and even in the same line. Moreover, let constants Cs
and C(s) denote C and C depend on some variable s, respectively.

2. Preliminaries

We define the Banach space Hλ = D(Aλ), where D(Aλ) denotes the domain of

the fractional power operator Aλ : H→ H. The norm is given by

‖g‖λ := ‖Aλg‖ for g ∈ Hλ.

Denote by Lp(Ω;Hλ) = Lp(Ω,F ,P;Hλ) the set of all strongly-measurable, Lp in-

tegrable Hλ-valued random variable. For any g ∈ Lp(Ω;Hλ) define its norm by

‖g(·)‖Lp(Ω;Hλ) =
(
E‖g(·)‖pλ

) 1
p . Let C

(
c, d;Lp(Ω;Hλ)

)
denote the Banach space of

all continuous functions from (c, d) into Lp(Ω;Hλ) equipped with the sup norm(
supt∈[c,d]E‖g(t)‖pλ

) 1
p .

Let K be a separable Hilbert space endowed with a complete orthonormal basis

{ei}i∈N. We denote by H another Hilbert space with norm ‖ · ‖ and inner product

(·, ·). Denote by L(K,H) the space of all bounded linear operators from K into H.

We use the same notation ‖ · ‖ for the norms of K and L(K,H), and use (·, ·) to

denote the inner product of K for convenience. Let Q ∈ L(K,K) be an operator
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defined by Qei = λiei with finite trace trQ =
∑∞
i=1 λi < ∞. Let φ ∈ L(K,H) and

define

‖φ‖2Q := Tr(φQφ∗) =

∞∑
i=1

∥∥√λiφei∥∥2
, (2.1)

where φ∗ is the adjoint of the operator φ. If ‖φ‖2Q <∞, then φ is called a Q-Hilbert-

Schmidt operator. Here L0
Q(K,H) denotes the space of all Q-Hilbert-Schmidt oper-

ators from K into H.

Let (Ω,F , (Ft)t≥0,P) be a complete probability space where F is the σ-algebra

of measurable subsets of Ω, P is the probability measure and Ft is a right-continuous

filtration. Here {Ft}t≥0 denotes the filtration generated by Bi(t), that is,

Ft := σ{Bi(s) : 0 ≤ s ≤ t; i ≥ 1}. (2.2)

Denote by BQ(t) the Brownian motion adapted to the filtration (Ft)t≥0. We assume

that

BQ(t) =

∞∑
i=1

√
λiBi(t)ei, t ≥ 0,

where {Bi(t); t ≥ 0}i≥1 is a sequence of one-dimensional standard Brownian motions

mutually independent over (Ω,F ,P).

The following lemma is needed in this paper.

Lemma 2.1. (See [3, Theorem 4.36]) If φ : [0, T ]×Ω→ L0
Q(K,H) is a progressively

measurable function satisfying E
( ∫ T

0
‖φ(s)‖2Qds

) p
2 <∞, then for any t ∈ [0, T ],

E
∥∥∥∫ t

0

φ(s)dBQ(s)
∥∥∥p ≤ CpE(∫ t

0

‖φ(s)‖2Qds
) p

2

, (2.3)

where Cp > 0 is a positive constant depending on p and p ≥ 2.

We will also need the following theorem which is a corollary of the stochastic

Fubini theorem (see, e.g. [4, Theorem 5.2.5]). For the convenience of the reader the

proof is given in Appendix A. This result is often referred to as the factorization

formula.

Theorem 2.1. Assume that for some α∗ ∈ (0, 1) and all t ∈ [t0, T ],∫ t

t0

(t− s)α
∗−1
[
E
(∫ s

t0

(s− r)−2α∗
∥∥S(t− r)φ(r)

∥∥2

Q
dr
) p

2
] 1
p

ds < +∞. (2.4)

Then

BA(t) =
sinα∗π

π

∫ t

t0

(t− s)α
∗−1S(t− s)Yα∗(s)ds, t ∈ [t0, T ], (2.5)

where t0 ∈ R, p ≥ 2 and

BA(t) =

∫ t

t0

S(t− s)φ(s)dBQ(s), Yα∗(s) =

∫ s

t0

(s− r)−α
∗
S(s− r)φ(r)dBQ(r).
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3. General stability of mild solutions for PDEs with nonlinear

multiplicative noise

This section mainly focuses on pth moment and almost sure stability with gen-

eral decay rate α(t). First we introduce the following α-type function:

(S0) (1) α ∈ C(R+,R+) is increasing;

(2) α(0) > 0 and limt→∞ α(t) =∞;

(3) α(t) satisfies that

lim sup
t→∞

e−
δpt
4

∫ t
2

0

e−δ(
t
2−τ)(α(ητ))−1dτ → 0

and lim sup
t→∞

e−
δpt
4 α(t)→ 0,

where η and δ are given in (1.1) and the assumption (S1) below, respectively.

(4) There exists a positive constant c∗ such that

lim sup
t→∞

α(t)

α(ηt/2)
= c∗,

where η ∈ (0, 1) is given in (1.1).

It is clear that α(t) = 1 + tξ
∗
(0 < ξ∗ < 1) and α(t) = log(2 + t) satisfy the above

requirements.

To study the stability of mild solutions with general decay rate α(t), we need

the following assumptions:

(S1) There exist a real number δ > 0 and positive constants C0, Cλ,0 ≥ 1 such

that for any x ∈ H, ∥∥AλS(t)x
∥∥ ≤ Cλ,0e−δtt−λ‖x‖, t > 0,∥∥S(t)x
∥∥ ≤ C0e

−δt‖x‖, t ≥ 0.

(S2) There exist nonnegative functions L1, L2 ∈ L∞(R+) such that for any u, v ∈
Lp(Ω;Hλ) and t ≥ 0,

E
∥∥f(t, u)− f(t, v)

∥∥p ≤ L1(t)E‖u− v‖pλ,
E
∥∥g(t, u)− g(t, v)

∥∥p
Q
≤ L2(t)E‖u− v‖pλ.

(S3) There exist nonnegative functions l1, l2 ∈ L∞(R+) such that for any t ≥ 0,

‖f(t, 0)‖p ≤ l1(t), ‖g(t, 0)‖pQ ≤ l2(t),

and (∫ ∞
0

(
α(τ)l1(τ)

)q
dτ
) 1
q

:= Ξ1 <∞,(∫ ∞
0

(
α(τ)l2(τ)

)q1
dτ
) 1
q1

:= Ξ2 <∞,

where 1/p+ 1/q = 1 and 1/q1 = 1− 1/p1 with p1 ∈ (1, 1
2λ ) and λ ∈ (0, 1

p ).
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Let us state the following definition of mild solution to problem (1.1)-(1.2).

Definition 3.1. Let T > 0 and u0 be an F0-measurable initial process satisfying

E‖u0‖pλ <∞. An Ft-measurable stochastic process u(t) is called a mild solution of

problem (1.1)-(1.2) on [0, T ] if u ∈ C(0, T ;Lp(Ω;Hλ)) and for t ∈ [0, T ],

u(t) = S(t)u0+

∫ t

0

S(t−τ)f(τ, u(ητ))dτ+

∫ t

0

S(t−τ)g(τ, u(ητ))dBQ(τ), P-a.s.(3.1)

Remark 3.1. In fact, by similar arguments in Section 4, the solution u(t) defined

by Eq. (3.1) has continuous trajectories with probability 1.

The following theorem shows that mild solutions to Eq. (1.1)-(1.2) are pth mo-

ment α-type stable.

Theorem 3.1. Let p ≥ 2, λ ∈ (0, 1
p ) and u0 ∈ Lp(Ω;Hλ). Suppose that assumptions

(S0)-(S3) hold. Let ‖L1‖L∞(R+) and ‖L2‖L∞(R+) be sufficiently small such that

2pCpλ,0
(
δλ−1Γ(1− λ)

)p‖L1‖L∞(R+) < 1,

2pCpC
p
λ,0

(
(2δ)2λ−1Γ(1− 2λ)

) p
2 ‖L2‖L∞(R+) < 1,

22pc∗Cpλ,0
(
δλ−1Γ(1− λ)

)p‖L1‖L∞(R+) < 1,

22pc∗CpC
p
λ,0

(
(2δ)2λ−1Γ(1− 2λ)

) p
2 ‖L2‖L∞(R+) < 1,

(3.2)

where c∗, δ, Cλ,0 and Cp are given in the assumptions (S0)-(S1) and Lemma 2.1,

respectively. Then problem (1.1)-(1.2) has a unique global mild solution u satisfying

sup
r∈[0,∞)

α(r)E‖u(r)‖pλ <∞. (3.3)

Proof. We consider the abstract phase space Cp,λϑ = Cϑ
(
0,∞;Lp(Ω;Hλ)

)
e-

quipped with the norm

‖u‖ϑ = sup
t∈[0,∞)

ϑ(t)E‖u(t)‖pλ, u ∈ C
(
0,∞;Lp(Ω;Hλ)

)
,

where

ϑ(t) =

{
α(T ), t ∈ [0, T ],

α(t), t ≥ T,
(3.4)

with T > 0 given later. Then
(
Cp,λϑ , ‖ · ‖ϑ

)
is a Banach space. In order to apply the

Banach fixed point theorem, we shall prove that the mapping T̃ defined by

(T̃ u)(t) = S(t)u0 +

∫ t

0

S(t− τ)f(τ, u(ητ))dτ +

∫ t

0

S(t− τ)g(τ, u(ητ))dBQ(τ),(3.5)

is contractive and bounded on Cp,λϑ .

Step 1. It follows immediately from (3.5) that

ϑ(t)E
∥∥(T̃ u)(t)− (T̃ v)(t)

∥∥p
λ
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≤ 2p−1ϑ(t)E
(∫ t

0

∥∥S(t− τ)
(
f(τ, u(ητ))− f(τ, v(ητ))

)∥∥
λ
dτ
)p

+ 2p−1ϑ(t)E
∥∥∥∫ t

0

AλS(t− τ)
(
g(τ, u(ητ))− g(τ, v(ητ))

)
dBQ(τ)

∥∥∥p
:= R1 +R2. (3.6)

In view of assumptions (S1)-(S2) and Hölder’s inequality, we deduce that for t ∈
[0, T ] and any u, v ∈ Cp,λϑ ,

R1 ≤ 2p−1α(T )Cpλ,0E
(∫ t

0

e−δ(t−τ)(t− τ)−λ
∥∥f(τ, u(ητ))− f(τ, v(ητ))

∥∥dτ)p
≤ 2p−1α(T )Cpλ,0

(∫ t

0

e−δ(t−τ)(t− τ)−λdτ
)p−1

×
∫ t

0

e−δ(t−τ)(t− τ)−λE
∥∥f(τ, u(ητ))− f(τ, v(ητ))

∥∥pdτ
≤ 2p−1Cpλ,0

(
δλ−1Γ(1− λ)

)p‖L1‖L∞(R+)‖u− v‖ϑ. (3.7)

On the other hand, for t ≥ T and any u, v ∈ Cp,λϑ ,

R1 ≤ 22p−2α(t)E
(∫ t

2

0

∥∥S(t− τ)
(
f(τ, u(ητ))− f(τ, v(ητ))

)∥∥
λ
dτ
)p

+ 22p−2α(t)E
(∫ t

t
2

∥∥S(t− τ)
(
f(τ, u(ητ))− f(τ, v(ητ))

)∥∥
λ
dτ
)p

:= R1
1 +R2

1. (3.8)

Applying Hölder’s inequality and assumptions (S1)-(S2) results in

R1
1 ≤ 22p−2α(t)Cpλ,0E

(∫ t
2

0

e−δ(t−τ)(t− τ)−λ
∥∥f(τ, u(ητ))− f(τ, v(ητ))

∥∥dτ)p
≤ 22p−2α(t)Cpλ,0

( t
2

)−pλ(∫ t
2

0

e−δ(t−τ)dτ
)p−1

×
∫ t

2

0

e−δ(t−τ)E
∥∥f(τ, u(ητ))− f(τ, v(ητ))

∥∥pdτ (3.9)

≤ 22p−2α(t)Cpλ,0‖u− v‖ϑ‖L1‖L∞(R+)

( t
2

)−pλ e−δpt/2
δp−1

∫ t
2

0

e−δ(t/2−τ)(α(ητ))−1dτ

and

R2
1 ≤ 22p−2Cpλ,0α(t)E

(∫ t

t
2

e−δ(t−τ)(t− τ)−λ
∥∥f(τ, u(ητ))− f(τ, v(ητ))

∥∥dτ)p
≤ 22p−2Cpλ,0α(t)

(∫ t

t
2

e−δ(t−τ)(t− τ)−λdτ
)p−1

×
∫ t

t
2

e−δ(t−τ)(t− τ)−λE
∥∥f(τ, u(ητ))− f(τ, v(ητ))

∥∥pdτ
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≤ 22p−2Cpλ,0
(
δλ−1Γ(1− λ)

)p‖u− v‖ϑ‖L1‖L∞(R+)
α(t)

α(ηt/2)
. (3.10)

Combining (3.7) and (3.8)-(3.10), we can find T large enough such that for all t ≥ 0,

R1 <
1

2
‖u− v‖ϑ, (3.11)

thanks to assumptions (3.2) and (S0).

Now it remains to estimate the stochastic term. In view of Lemma 2.1, Hölder’s

inequality and assumptions (S1)-(S2), we find that for t ∈ [0, T ],

R2 ≤ 2p−1α(T )CpE
(∫ t

0

∥∥AλS(t− τ)
(
g(τ, u(ητ))− g(τ, v(ητ))

)∥∥2

Q
dτ
) p

2

≤ 2p−1α(T )CpC
p
λ,0E

(∫ t

0

e−2δ(t−τ)(t− τ)−2λ
∥∥g(τ, u(ητ))− g(τ, v(ητ))

∥∥2

Q
dτ
) p

2

≤ 2p−1α(T )CpC
p
λ,0

(∫ t

0

e−2δ(t−τ)(t− τ)−2λdτ
) p−2

2

×
∫ t

0

e−2δ(t−τ)(t− τ)−2λE
∥∥g(τ, u(ητ))− g(τ, v(ητ))

∥∥p
Q
dτ

≤ 2p−1CpC
p
λ,0

(
(2δ)2λ−1Γ(1− 2λ)

) p
2 ‖L2‖L∞(R+)‖u− v‖ϑ, (3.12)

and for t ≥ T ,

R2 ≤ 22p−2α(t)E
∥∥∥∫ t

2

0

S(t− τ)
(
g(τ, u(ητ))− g(τ, v(ητ))

)
dBQ(τ)

∥∥∥p
λ

+ 22p−2α(t)E
∥∥∥∫ t

t
2

S(t− τ)
(
g(τ, u(ητ))− g(τ, v(ητ))

)
dBQ(τ)

∥∥∥p
λ

:= R1
2 +R2

2. (3.13)

It follows from Lemma 2.1, Hölder’s inequality and assumptions (S1)-(S2) that

R1
2 ≤ 22p−2α(t)CpE

(∫ t
2

0

∥∥AλS(t− τ)
(
g(τ, u(ητ))− g(τ, v(ητ))

)∥∥2

Q
dτ
) p

2

≤ 22p−2α(t)CpC
p
λ,0

( t
2

)−pλ
× E

(∫ t
2

0

e−
2(p−2)
p δ(t−τ)e−

4
p δ(t−τ)

∥∥g(τ, u(ητ))− g(τ, v(ητ))
∥∥2

Q
dτ
) p

2

(3.14)

≤ 22p−2α(t)CpC
p
λ,0‖u− v‖ϑ‖L2‖L∞(R+)

×
( t

2

)−pλ e−δpt/2
(2δ)

p−2
2

∫ t
2

0

e−δ(t−2τ)(α(ητ))−1dτ,
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and

R2
2 ≤ 22p−2α(t)CpE

(∫ t

t
2

∥∥AλS(t− τ)
(
g(τ, u(ητ))− g(τ, v(ητ))

)∥∥2

Q
dτ
) p

2

≤ 22p−2α(t)CpC
p
λ,0

(∫ t

t
2

(t− τ)−2λe−2δ(t−τ)dτ
) p−2

2

×
∫ t

t
2

(t− τ)−2λe−2δ(t−τ)E
∥∥g(τ, u(ητ))− g(τ, v(ητ))

∥∥p
Q
dτ

≤ 22p−2CpC
p
λ,0

(
(2δ)2λ−1Γ(1− 2λ)

) p
2 ‖u− v‖ϑ‖L2‖L∞(R+)

α(t)

α(ηt/2)
.

(3.15)

Inserting (3.14)-(3.15) into (3.13) gives

R2 ≤ 22p−2CpC
p
λ,0

(( t
2

)−pλ e−δpt/2
(2δ)

p−2
2

∫ t
2

0

e−δ(t−2τ)(α(ητ))−1dτ

+
(
(2δ)2λ−1Γ(1− 2λ)

) p
2

α(t)

α(ηt/2)

)
‖L2‖L∞(R+)‖u− v‖ϑ.

(3.16)

Then, by assumptions (3.2) and (S0), in view of (3.12) and (3.16), we can take T

sufficiently large such that for any t ≥ 0,

R2 <
1

2
‖u− v‖ϑ. (3.17)

This together with (3.11) and (3.6) implies that T̃ is contractive on the space Cp,λϑ .

Step 2. By (3.5) we have

ϑ(t)E
∥∥(T̃ u)(t)

∥∥p
λ

≤ 3p−1ϑ(t)Cp0e
−δptE‖u0‖pλ + 6p−1ϑ(t)E

(∫ t

0

∥∥S(t− τ)f(τ, 0)
∥∥
λ
dτ
)p

+ 6p−1ϑ(t)E
∥∥∥∫ t

0

AλS(t− τ)g(τ, 0)dBQ(τ)
∥∥∥p

+ 6p−1ϑ(t)E
(∫ t

0

∥∥S(t− τ)
(
f(τ, u(ητ))− f(τ, 0)

)∥∥
λ
dτ
)p

+ 6p−1ϑ(t)E
∥∥∥∫ t

0

AλS(t− τ)
(
g(τ, u(ητ))− g(τ, 0)

)
dBQ(τ)

∥∥∥p
:= 3p−1ϑ(t)Cp0e

−δptE‖u0‖pλ +R3 +R4 +R5 +R6.

(3.18)

Following similar calculations as in (3.8)-(3.10) and (3.13)-(3.15), we conclude that

R5 +R6 ≤ 3p−1‖u‖ϑ, for t ≥ T, (3.19)
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where T is sufficiently large. By using assumptions (S0), (S3), and Hölder’s inequal-

ity, we can find T large enough such that

R3 ≤ C(λ, p)ϑ(t)
(∫ t

0

e−δ(t−τ)(t− τ)−λ‖f(τ, 0)‖dτ
)p

≤ C(λ, p)‖l1‖L∞(R+)α(t)e−
δpt
2

(∫ t
2

0

e−δ(t/2−τ)(t/2− τ)−λdτ
)p

+ C(p, λ, δ)
α(t)

α(t/2)

∫ t

t
2

e−δ(t−τ)(t− τ)−λl1(τ)α(τ)dτ

≤ C(p, λ, δ)
( α(t)

α(t/2)
Ξ1 + ‖l1‖L∞(R+)α(t)e−

δpt
2

)
<∞,

(3.20)

and

R4 ≤ C(λ, p)ϑ(t)
(∫ t

0

e−2δ(t−τ)(t− τ)−2λ‖g(τ, 0)‖2Qdτ
) p

2

≤ C(λ, p)‖l2‖L∞(R+)α(t)e−
δpt
2

(∫ t
2

0

e−2δ(t/2−τ)(t/2− τ)−2λdτ
) p

2

+ C(p, λ, δ)
α(t)

α(t/2)

∫ t

t
2

e−2δ(t−τ)(t− τ)−2λl2(τ)α(τ)dτ

≤ C(p, λ, δ)
( α(t)

α(t/2)
Ξ2 + ‖l2‖L∞(R+)α(t)e−

δpt
2

)
<∞.

(3.21)

Arguing as in (3.7) and (3.12), we deduce that

R3 +R4 +R5 +R6 < C(p, λ, δ, L1, L2, l1, l2)
(
α(T ) + ‖u‖ϑ

)
, t ∈ [0, T ]. (3.22)

The assertion of this theorem follows immediately by applying the Banach fixed

point theorem.

Remark 3.2. If we do not consider the α-type stability, then the global existence

and uniqueness of mild solutions to problem (1.1)-(1.2) can be established by using

the assumptions (S1)-(S2), and the simplified assumption of f and g, i.e.,

‖f(t, 0)‖p + ‖g(t, 0)‖pQ ≤ `(t), t ≥ 0, ` ∈ L∞(R+).

Remark 3.3. In particular, for the case α(τ) = 1 + τ ξ
∗
(0 < ξ∗ < 1), we can find

some examples of the function l1, satisfying the assumption (S3), such that∫ ∞
0

(
1 + τ ξ

∗)q(
τ ξ
∗−1/q(1 + τ ξ

∗
)−3
)q
dτ <∞, (3.23)

or ∫ ∞
0

(
1 + τ ξ

∗)q
e−qc̃τdτ <∞, (c̃ > 0). (3.24)

The assertion for the function l2 follows similarly.
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Based on the result in Theorem 3.1, we further establish almost surely α-type

stability of problem (1.1)-(1.2). To this end, let us recall the following Burkholder-

Davis-Gundy inequality

E
(

sup
t∈[0,T ]

∥∥∥∫ t

0

Φ(τ)dBQ(τ)
∥∥∥p∗) ≤ c′E∣∣∣ ∫ T

0

‖Φ(τ)‖2Qdτ
∣∣∣ p∗2 , for any p∗ > 0,(3.25)

where c′ is a positive constant depending on p∗.

Theorem 3.2. Let γ ∈ (0, 1). Suppose that all the assumptions of Theorem 3.1 are

satisfied. Then the solution of Eq. (1.1)-(1.2) is almost surely α-type stable, that is,

lim
t→∞

log ‖u(t)‖λ
logα(t)

< −1− γ
p

, a.s. (3.26)

Proof. Let s > 0 be given arbitrarily. Note that N ≥ 1

u(t) = S
(
t− η−(N−1)s

)
u(η−(N−1)s) +

∫ t

η−(N−1)s

S(t− τ)f(τ, u(ητ))dτ

+

∫ t

η−(N−1)s

S(t− τ)g(τ, u(ητ))dBQ(τ).

(3.27)

In view of Markov’s inequality, we have that

P
(

sup
η−Ns≤t≤η−(N+1)s

‖u(t)‖pλ ≥
(
α(η−(N−1)s)

)−(1−γ)
)

≤
(
α(η−(N−1)s)

)1−γ
E
(

sup
η−Ns≤t≤η−(N+1)s

‖u(t)‖pλ
)

≤ 3p−1
(
α(η−(N−1)s)

)1−γ
E
(

sup
η−Ns≤t≤η−(N+1)s

∥∥S(t− η−(N−1)s
)
u(η−(N−1)s)

∥∥p
λ

)
+ 6p−1

(
α(η−(N−1)s)

)1−γ
E
(

sup
η−Ns≤t≤η−(N+1)s

∥∥∥∫ t

η−(N−1)s

S(t− τ)f(τ, 0)dτ
∥∥∥p
λ

)
+ 6p−1

(
α(η−(N−1)s)

)1−γ
E
(

sup
η−Ns≤t≤η−(N+1)s

∥∥∥∫ t

η−(N−1)s

S(t− τ)g(τ, 0)dBQ(τ)
∥∥∥p
λ

)
+ 6p−1

(
α(η−(N−1)s)

)1−γ
E
(

sup
η−Ns≤t≤η−(N+1)s

∥∥∥∫ t

η−(N−1)s

S(t− τ)

×
(
f(τ, u(ητ))− f(τ, 0)

)
dτ
∥∥∥p
λ

)
+

6p−1(
α(η−(N−1)s)

)γ−1E
(

sup
η−Ns≤t≤η−(N+1)s

∥∥∥∫ t

η−(N−1)s

S(t− τ)

×
(
g(τ, u(ητ))− g(τ, 0)

)
dBQ(τ)

∥∥∥p
λ

)
:= R7 +R8 +R9 +R10 +R11. (3.28)
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Thanks to assumption (S1), we obtain

R7 ≤ 3p−1Cp0
(
α(η−(N−1)s)

)1−γ
× E

(
sup

η−Ns≤t≤η−(N+1)s

e−pδ(t−η
−(N−1)s)‖u(η−(N−1)s)‖pλ

)
≤ 3p−1Cp0

(
α(η−(N−1)s)

)−γ(
α(η−(N−1)s)

)
E‖u(η−(N−1)s)‖pλ. (3.29)

By Hölder’s inequality and assumptions (S1)-(S2), we deduce that

R10 ≤ 6p−1Cpλ,0
(
α(η−(N−1)s)

)1−γ(∫ η−(N+1)s

η−(N−1)s

e−δ(t−τ)(t− τ)−λdτ
)p−1

×
∫ η−(N+1)s

η−(N−1)s

e−δ(t−τ)(t− τ)−λE
∥∥f(τ, u(ητ))− f(τ, 0)

∥∥pdτ
≤ 6p−1Cpλ,0

(
δλ−1Γ(1− λ)

)p−1(
α(η−(N−1)s)

)−γ
×
∫ η−(N+1)s

η−(N−1)s

e−δ(t−τ)(t− τ)−λα(τ)L1(τ)E‖u(ητ)‖pλdτ

≤ 6p−1Cpλ,0
(
δλ−1Γ(1− λ)

)p(
α(η−(N−1)s)

)−γ‖L1‖L∞(R+)

× sup
τ∈[0,∞)

α(τ)/α(ητ) sup
τ∈[0,∞)

α(τ)E‖u(τ)‖pλ, (3.30)

and

R8 ≤ 6p−1Cpλ,0
(
α(η−(N−1)s)

)−γ(∫ η−(N+1)s

η−(N−1)s

e−δ(t−τ)(t− τ)−λdτ
)p−1

×
∫ η−(N+1)s

η−(N−1)s

e−δ(t−τ)(t− τ)−λα(τ)‖f(τ, 0)‖pdτ

≤ 6p−1Cpλ,0Ξ1

(
δλ−1Γ(1− λ)

)p−1(
(δp)pλ−1Γ(1− pλ)

) 1
p
(
α(η−(N−1)s)

)−γ
.

(3.31)

It follows from the Burkholder-Davis-Gundy inequality, Hölder’s inequality and

assumptions (S1)-(S2) that

R11 ≤ 6p−1c′
(
α(η−(N−1)s)

)1−γ
× E

(∫ η−(N+1)s

η−(N−1)s

∥∥AλS(t− τ)
(
g(τ, u(ητ))− g(τ, 0)

)∥∥2

Q
dτ
) p

2

≤ 6p−1c′Cpλ,0
(
α(η−(N−1)s)

)1−γ(∫ η−(N+1)s

η−(N−1)s

e−2δ(t−τ)(t− τ)−2λdτ
) p−2

2

×
∫ η−(N+1)s

η−(N−1)s

e−2δ(t−τ)(t− τ)−2λE
∥∥g(τ, u(ητ))− g(τ, 0)

∥∥p
Q
dτ

≤ 6p−1c′Cpλ,0
(
α(η−(N−1)s)

)−γ(
(2δ)2λ−1Γ(1− 2λ)

) p−2
2

+

∫ η−(N+1)s

η−(N−1)s

e−2δ(t−τ)(t− τ)−2λL2(τ)α(τ)E‖u(ητ)‖pλdτ
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≤ 6p−1c′Cpλ,0
(
α(η−(N−1)s)

)−γ(
(2δ)2λ−1Γ(1− 2λ)

) p
2 ‖L2‖L∞(R+)

× sup
τ∈[0,∞)

α(τ)/α(ητ) sup
τ∈[0,∞)

α(τ)E‖u(τ)‖pλ. (3.32)

Following similar computations as in (3.32), we can derive from assumption (S3)

and Hölder’s inequality that

R9 ≤ 6p−1c′Cpλ,0
(
α(η−(N−1)s)

)−γ(∫ η−(N+1)s

η−(N−1)s

e−2δ(t−τ)(t− τ)−2λdτ
) p−2

2

×
∫ η−(N+1)s

η−(N−1)s

e−2δ(t−τ)(t− τ)−2λα(τ)l2(τ)dτ

≤ 6p−1c′Ξ2C
p
λ,0

(
α(η−(N−1)s)

)−γ(
(2δ)2λ−1Γ(1− 2λ)

) p−2
2

×
(
(2p1δ)

2p1λ−1Γ(1− 2p1λ)
) 1
p1 .

(3.33)

Substituting (3.29)-(3.33) into (3.28) yields

P
(

sup
η−Ns≤t≤η−(N+1)s

‖u(t)‖pλ ≥
(
α(η−(N−1)s)

)−(1−γ)
)

≤
(
α(η−(N−1)s)

)−γC(1 + sup
τ∈[0,∞)

α(τ)E‖u(τ)‖pλ
)
,

(3.34)

where C is a positive constant independent of η, s. Then it follows immediately from

(3.34) that
∞∑
N=1

P
(

sup
η−Ns≤t≤η−(N+1)s

‖u(t)‖pλ ≥
(
α(η−(N−1)s)

)−(1−γ)
)
<∞. (3.35)

In view of the Borel-Cantelli lemma, we conclude that there exists Ω̃ ⊂ Ω with

P(Ω̃) = 1 such that for any ω ∈ Ω̃, there exists an integer Ñ = Ñ(ω) > 0, such

that, for N ≥ Ñ and η−Ns ≤ t ≤ η−(N+1)s,

‖u(t)‖pλ ≤
(
α(η−(N−1)s)

)−(1−γ)
,

which implies the assertion in this theorem.

4. Nontrivial equilibrium solution for PDEs with nonlinear

multiplicative noise

We shall construct a stochastic process u∗, defined for all t ∈ R, and analyze

the α-type stability of u∗ for the following stochastic differential equation

du(t) = −Au(t)dt+ f(t, u(ηt))dt+ g(t, u(ηt))dBQ(t), t ∈ R, η ∈ (0, 1). (4.1)

Recall that the cylindrical Brownian motion BQ(t) in Section 2 is defined only for

t ∈ R+. In order to consider the mild solution u∗(t) defined for t ∈ R, we introduce

the following infinite-dimensional Brownian motion:

BQ(t) =

∞∑
i=1

√
λiB

?
i (t)ei, t ∈ R, (4.2)
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where sequences {λi}i∈N, {ei}i∈N have been given in Section 2 and B?i (t) is defined

by

B?i (t) =

{
B1
i (t), for t ≥ 0,

B2
i (−t), for t ≤ 0.

(4.3)

Here B1
i and B2

i are independent standard one-dimensional Brownian motions. Let

Ft := σ
(⋃{

B?i (s)−B?i (r) : r ≤ s ≤ t, i ≥ 1
})

, (4.4)

be the σ-algebra generated by
{
B?i (s)−B?i (r) : r ≤ s ≤ t, i ≥ 1

}
.

Definition 4.1. A Hλ-valued stochastic process u(t) is called a mild solution to

problem (4.1) on R if

1) u(t) is Ft-measurable for each t ∈ R;

2) supt∈R ‖u(t)‖Lp(Ω;Hλ) <∞;

3) u(t) is continuous almost surely in t ∈ R with respect to Hλ norm;

4) it holds that for all −∞ < t0 < t <∞,

u(t) = S(t− t0)u(t0) +

∫ t

t0

S(t− τ)f(τ, u(ητ))dτ

+

∫ t

t0

S(t− τ)g(τ, u(ητ))dBQ(τ), P-a.s. (4.5)

4.1. Linear version

To construct and analyze solutions of problem (4.1), first we consider the fol-

lowing linear equation:

du = −Audt+ ζ(t)dt+ ψ(t)dBQ(t), t ∈ R. (4.6)

Theorem 4.1. Let p ≥ 2, λ ∈ (0, 1
p ) and the assumption (S1) be satisfied. Assume

that ζ(t) and ψ(t) in (4.6) are Ft-measurable and satisfy

sup
t∈R

E‖ζ(t)‖p <∞ and sup
t∈R

E‖ψ(t)‖pQ <∞. (4.7)

Then the linear equation (4.6) has a unique solution ũ∗ in the sense of Definition

4.1 which is mean-p Hölder continuous in t ∈ R, i.e.,

sup
t∈R
‖ũ∗(t+ h)− ũ∗(t)‖Lp(Ω;Hλ) ≤ Ch

1
2−λ, for each h > 0.

Furthermore, the solution ũ∗ is exponentially stable, i.e., for any t0 ∈ R and any

solution %̃(t) of Eq. (4.6) in the sense of Definition 3.1, with Ft0-measurable %̃(t0)

and E‖%̃(t0)‖pλ <∞,

E
∥∥ũ∗(t)− %̃(t)

∥∥p
λ
≤ Ce−C(t−t0)E

∥∥ũ∗(t0)− %̃(t0)
∥∥p
λ
.
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Proof. Let

ũ∗(t) =

∫ t

−∞
S(t− τ)ζ(τ)dτ +

∫ t

−∞
S(t− τ)ψ(τ)dBQ(τ). (4.8)

Step 1. The process ũ∗(t) given by (4.8) is well defined.

We define Π1
n(t) and Π2

n(t) by

Π1
n(t) :=

∫ t

−n
S(t− τ)ζ(τ)dτ, (4.9)

and

Π2
n(t) :=

∫ t

−n
S(t− τ)ψ(τ)dBQ(τ), (4.10)

respectively. In view of Lemma 2.1, assumption (S1) and Hölder’s inequality, we

find that for n > m,

E
∥∥Π2

n(t)−Π2
m(t)

∥∥p
λ
≤ CpE

(∫ −m
−n

∥∥AλS(t− τ)ψ(τ)
∥∥2

Q
dτ
) p

2

≤ CpCpλ,0
(∫ −m
−n

e−2δ(t−τ)(t− τ)−2λdτ
) p−2

2

∫ −m
−n

e−2δ(t−τ)(t− τ)−2λE‖ψ(τ)‖pQdτ

≤ CpCpλ,0 sup
t∈R

E‖ψ(t)‖pQ
(∫ −m
−n

e−δ(t−τ)(t− τ)−2λe−δ(t−τ)dτ
) p

2

(4.11)

≤ CpCpλ,0
(
(δp0)2p0λ−1Γ(1− 2p0λ)

) p
2p0

(e−δq0t(e−δq0m − e−δq0n)

δq0

) p
2q0

sup
t∈R

E‖ψ(t)‖pQ,

where we choose p0 > 1 such that λp0 <
1
2 and 1/p0 + 1/q0 = 1. Similar to the

above arguments, we deduce that for n > m,

E
∥∥Π1

n(t)−Π1
m(t)

∥∥p
λ

≤ Cpλ,0
(∫ −m
−n

e−
pδ

2(p−1)
(t−τ)dτ

)p−1
∫ −m
−n

e−
pδ
2 (t−τ)(t− τ)−pλE‖ζ(τ)‖pdτ (4.12)

≤ Cpλ,0(pδ/2)pλ−1Γ(1− pλ)

×
(2(p− 1)e−

pδt
2(p−1) (e−

pδm
2(p−1) − e−

pδn
2(p−1) )

pδ

)p−1

sup
t∈R

E‖ζ(t)‖p.

Note that the terms on the right-hand side of (4.11) and (4.12) are as small as

possible as n,m → ∞. Then {Π1
n(t)} and {Π2

n(t)} are Cauchy sequences for each

t ∈ R. Therefore, the process ũ∗(t) is well defined.

Step 2. The process ũ∗ defined by (4.8) is a solution in the sense of Definition 4.1.

(I) The measurability and continuity of ũ∗(t) in time.

Since ζ(t) and ψ(t) are Ft-measurable, by (4.4), we obtain that the process

ũ∗(t) is Ft-measurable. Moreover, by using the factorization formula for

the stochastic integrals (2.5) and Proposition 6.1, we can derive that the

process ũ∗(t) has continuous trajectories with probability 1.
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(II) supt∈RE‖ũ∗(t)‖
p
λ <∞.

On account of assumption (S1), we have

E
∥∥∥∫ t

−∞
S(t− τ)ζ(τ)dτ

∥∥∥p
λ

≤ Cpλ,0E
(∫ t

−∞
e−

p−1
p δ(t−τ)(t− τ)−

p−1
p λζ(τ)e−

1
p δ(t−τ)(t− τ)−

1
pλdτ

)p
≤ Cpλ,0

(
δλ−1Γ(1− λ)

)p
sup
t∈R

E‖ζ(t)‖p. (4.13)

Thanks to Lemma 2.1, by a similar reasoning as in (4.13), we obtain that

E
∥∥∥∫ t

−∞
S(t− τ)ψ(τ)dBQ(τ)

∥∥∥p
λ

≤ CpCpλ,0
(
(2δ)2λ−1Γ(1− 2λ)

) p
2 sup
t∈R

E‖ψ(t)‖pQ. (4.14)

By (4.13) and (4.14), the assertion follows from (4.8).

(III) The process ũ∗(t) satisfies (4.5).

ũ∗(t) =

∫ t0

−∞
S(t− t0)S(t0 − τ)ζ(τ)dτ

+

∫ t0

−∞
S(t− t0)S(t0 − τ)ψ(τ)dBQ(τ)

+

∫ t

t0

S(t− τ)ζ(τ)dτ +

∫ t

t0

S(t− τ)ψ(τ)dBQ(τ) (4.15)

= S(t− t0)ũ∗(t0) +

∫ t

t0

S(t− τ)ζ(τ)dτ +

∫ t

t0

S(t− τ)ψ(τ)dBQ(τ).

Step 3. The Hölder regularity, exponential stability and uniqueness of ũ∗(t).

Now we show that ũ∗(t) is continuous in time. It follows from (4.8) that, for

each h > 0, ∥∥ũ∗(t+ h)− ũ∗(t)
∥∥
Lp(Ω;Hλ)

≤
∥∥∥ ∫ t

−∞

(
S(t+ h− τ)− S(t− τ)

)
ζ(τ)dτ

∥∥∥
Lp(Ω;Hλ)

+
∥∥∥∫ t

−∞

(
S(t+ h− τ)− S(t− τ)

)
ψ(τ)dBQ(τ)

∥∥∥
Lp(Ω;Hλ)

+
∥∥∥∫ t+h

t

S(t+ h− τ)ζ(τ)dτ
∥∥∥
Lp(Ω;Hλ)

+
∥∥∥∫ t+h

t

S(t+ h− τ)ψ(τ)dBQ(τ)
∥∥∥
Lp(Ω;Hλ)

:= R12 +R13 +R14 +R15. (4.16)
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To deal with the term R13, let us consider∫ t+h

t

∥∥∥∫ t

−∞
AS(s− τ)ψ(τ)dBQ(τ)

∥∥∥
Lp(Ω;Hλ)

ds.

Thanks to Lemma 2.1, in view of assumption (S1) and Hölder’s inequality, we

deduce that∫ t+h

t

∥∥∥∫ t

−∞
AS(s− τ)ψ(τ)dBQ(τ)

∥∥∥
Lp(Ω;Hλ)

ds

=

∫ t+h

t

(
E
∥∥∥∫ t

−∞
A1+λS(s− τ)ψ(τ)dBQ(τ)

∥∥∥p) 1
p

ds

≤ (Cp)
1
p

∫ t+h

t

[
E
(∫ t

−∞

∥∥A1+λS(s− τ)ψ(τ)
∥∥2

Q
dτ
) p

2

] 1
p

ds

≤ (Cp)
1
pC1+λ,0

∫ t+h

t

[
E
(∫ t

−∞
e−2δ(s−τ)(s− τ)−2(λ+1)‖ψ(τ)‖2Qdτ

) p
2

] 1
p

ds

≤ C(p, λ)

∫ t+h

t

(∫ t

−∞
e−2δ(s−τ)(s− τ)−2(λ+1)dτ

) p−2
2p

×
(∫ t

−∞
e−2δ(s−τ)(s− τ)−2(λ+1)E‖ψ(τ)‖pQdτ

) 1
p

ds

≤ C(p, λ)
(

sup
t∈R

E‖ψ(t)‖pQ
) 1
p

∫ t+h

t

(s− t)−λ− 1
2 ds

= C(p, λ)
(

sup
t∈R

E‖ψ(t)‖pQ
) 1
ph

1
2−λ. (4.17)

Then, applying the stochastic Fubini theorem to R13 gives

R13 ≤
∥∥∥∫ t

−∞

∫ t+h

t

AS(s− τ)ψ(τ)dsdBQ(τ)
∥∥∥
Lp(Ω;Hλ)

=
∥∥∥∫ t+h

t

∫ t

−∞
AS(s− τ)ψ(τ)dBQ(τ)ds

∥∥∥
Lp(Ω;Hλ)

≤ C(p, λ)
(

sup
t∈R

E‖ψ(t)‖pQ
) 1
ph

1
2−λ. (4.18)

By making use of Lemma 2.1, assumption (S1) and Hölder’s inequality, we deduce

that

R15 =
(
E
∥∥∥ ∫ t+h

t

AλS(t+ h− τ)ψ(τ)dBQ(τ)
∥∥∥p) 1

p

≤ (Cp)
1
pCλ,0

[
E
(∫ t+h

t

∥∥AλS(t+ h− τ)ψ(τ)
∥∥2

Q
dτ
) p

2

] 1
p

≤ C(p, λ)
(∫ t+h

t

e−2δ(t+h−τ)(t+ h− τ)−2λdτ
) p−2

2p

×
(∫ t+h

t

e−2δ(t+h−τ)(t+ h− τ)−2λE‖ψ(τ)‖pQdτ
) 1
p
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≤ C(p, λ)
(

sup
t∈R

E‖ψ(t)‖pQ
) 1
ph

1
2−λ. (4.19)

In view of assumption (S1) and Hölder’s inequality, we have

R12 =
∥∥∥∫ t+h

t

∫ t

−∞
AS(s− τ)ζ(τ)dτds

∥∥∥
Lp(Ω;Hλ)

≤
∫ t+h

t

∫ t

−∞

(
E
∥∥A1+λS(s− τ)ζ(τ)

∥∥p) 1
p

dτds

≤ C1+λ,0

(
sup
t∈R

E‖ζ(t)‖p
) 1
p

∫ t+h

t

∫ t

−∞
e−δ(s−τ)(s− τ)−(λ+1)dτds

≤ C(λ)
(

sup
t∈R

E‖ζ(t)‖p
) 1
ph1−λ, (4.20)

and

R14 ≤
∫ t+h

t

∥∥S(t+ h− τ)ζ(τ)
∥∥
Lp(Ω;Hλ)

dτ

≤ Cλ,0
(∫ t+h

t

e−δ(t+h−τ)(t+ h− τ)−λdτ
) p−1

p

×
(∫ t+h

t

e−δ(t+h−τ)(t+ h− τ)−λE‖ζ(τ)‖pdτ
) 1
p

≤ C(λ)
(

sup
t∈R

E‖ζ(t)‖p
) 1
ph1−λ. (4.21)

Substituting (4.18)-(4.21) into (4.16) yields that ũ∗(t) is mean-p Hölder continuous.

If %̃(t) is any solution of (4.6) satisfying E‖%̃(t0)‖pλ <∞, then

%̃(t) = S(t− t0)%̃(t0) +

∫ t

t0

S(t− τ)ζ(τ)dτ +

∫ t

t0

S(t− τ)ψ(τ)dBQ(τ). (4.22)

It follows immediately from (4.15), (4.22) and assumption (S1) that

E
∥∥ũ∗(t)− %̃(t)

∥∥p
λ
≤ Cp0e−pδ(t−t0)E

∥∥ũ∗(t0)− %̃(t0)
∥∥p
λ
, (4.23)

which implies that ũ∗ is exponentially stable.

Finally, we show that ũ∗(t) is unique. Let v(t) be another solution such that

supt∈RE‖v(t)‖pλ < ∞. By Definition 4.1 and the assumption (S1), we obtain that

for arbitrary r ≤ t,

E
∥∥ũ∗(t)− v(t)

∥∥p
λ
≤ Cp0e−pδ(t−r)E

∥∥ũ∗(r)− v(r)
∥∥p
λ
≤ Ce−pδ(t−r). (4.24)

Letting r → −∞, we have

E
∥∥ũ∗(t)− v(t)

∥∥p
λ

= 0 for all t ∈ R. (4.25)

Using Markov’s inequality, we deduce that for each t ∈ R and any ε > 0,

P
(
‖v(t)− ũ∗(t)‖λ > ε

)
≤ 1

εp
E‖v(t)− ũ∗(t)‖pλ, (4.26)
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and consequently

P
(
‖v(t)− ũ∗(t)‖λ = 0 for all t ∈ Q∗ ∩ R

)
= 1, (4.27)

where Q∗ denotes the rational numbers. Since the mapping t → ‖v(t) − ũ∗(t)‖λ is

continuous with probability 1, we conclude that

P
(
‖v(t)− ũ∗(t)‖λ = 0 for all t ∈ R

)
= 1. (4.28)

Therefore, the uniqueness of ũ∗(t) is confirmed. The proof of this theorem is com-

plete.

4.2. Nonlinear version

The following theorem shows the existence, uniqueness and α-type stability of

the solution u∗ to problem (4.1).

Theorem 4.2. Suppose that p ≥ 2, λ ∈ (0, 1
p ) and assumptions (S2)-(S3) hold for

t ∈ R. Let us further assume that assumptions (S0)-(S1) hold, and the Lipschitz

constants L1, L2 in assumption (S2) are sufficiently small such that

22p−2Cpλ,0

((
δλ−1Γ(1− λ)

)p‖L1‖L∞(R)

+ Cp
(
(2δ)2λ−1Γ(1− 2λ)

) p
2 ‖L2‖L∞(R)

)
:= K1 < 1,

2p−1Cpλ,0

(
Cp
(
(2δ)2λ−1Γ(1− 2λ)

) p
2 ‖L2‖L∞(R)

+
(
δλ−1Γ(1− λ)

)p‖L1‖L∞(R)

)
:= K2 < 1, (4.29)

and

2pCpλ,0
(
δλ−1Γ(1− λ)

)p‖L1‖L∞(R) < 1,

2pCpC
p
λ,0

(
(2δ)2λ−1Γ(1− 2λ)

) p
2 ‖L2‖L∞(R) < 1,

6pc∗Cpλ,0
(
δλ−1Γ(1− λ)

)p‖L1‖L∞(R) < 1,

6pc∗CpC
p
λ,0

(
(2δ)2λ−1Γ(1− 2λ)

) p
2 ‖L2‖L∞(R) < 1.

(4.30)

Then, problem (4.1) has a unique solution u∗(t) in the sense of Definition 4.1 which

is mean-p Hölder continuous in t ∈ R, i.e.,

sup
t∈R
‖u∗(t+ h)− u∗(t)‖Lp(Ω;Hλ) ≤ Ch

1
2−λ, for each h > 0.

Moreover, the solution u∗(t) is α-type stable, that is,

lim
t→∞

logE‖u∗(t)− %(t)‖pλ
logα(t)

< 0, (4.31)

where %(t) is any solution of problem (1.1)-(1.2) in the sense of Definition 3.1.

Proof.
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Let us construct a sequence of stochastic processes {un} which converges to the

solution u∗. Let u0 ≡ 0. For n ≥ 0, define un+1(t) as

dun+1(t) = −Aun+1(t)dt+ f(t, un(ηt))dt+ g(t, un(ηt))dBQ(t). (4.32)

Notice that

sup
t∈R

E
∥∥f(t, un(ηt))

∥∥p ≤ 2p−1‖l1‖L∞(R) + 2p−1‖L1‖L∞(R) sup
t∈R

E‖un(t)‖pλ,

sup
t∈R

E
∥∥g(t, un(ηt))

∥∥p
Q
≤ 2p−1‖l2‖L∞(R) + 2p−1‖L2‖L∞(R) sup

t∈R
E‖un(t)‖pλ.

(4.33)

By using Theorem 4.1, we obtain the unique solution un+1(t) satisfying

sup
t∈R

E‖un+1(t)‖pλ <∞, (4.34)

and

un+1(t) =

∫ t

−∞
S(t− τ)f(τ, un(ητ))dτ +

∫ t

−∞
S(t− τ)g(τ, un(ητ))dBQ(τ). (4.35)

Step 1. The sequence {un(t)} converges to the process u∗(t) and the process u∗(t)

is a solution in the sense of Definition 4.1.

(1) supt∈R ‖un‖Lp(Ω;Hλ) is bounded which is independent of n.

It follows directly from (4.35) that

E‖un+1(t)‖pλ ≤ 2p−1E
∥∥∥∫ t

−∞
S(t− τ)f(τ, un(ητ))dτ

∥∥∥p
λ

+ 2p−1E
∥∥∥∫ t

−∞
S(t− τ)g(τ, un(ητ))dBQ(τ)

∥∥∥p
λ

:= R16 +R17. (4.36)

By applying Lemma 2.1, assumptions (S1)-(S3), Hölder’s inequality and

(4.33), we obtain

R17 ≤ 2p−1CpE
(∫ t

−∞

∥∥AλS(t− τ)g(τ, un(ητ))
∥∥2

Q
dτ
) p

2

≤ 2p−1CpC
p
λ,0E

(∫ t

−∞
e−2δ(t−τ)(t− τ)−2λ‖g(τ, un(ητ))‖2Qdτ

) p
2

≤ 2p−1CpC
p
λ,0

(∫ t

−∞
e−2δ(t−τ)(t− τ)−2λdτ

) p−2
2

×
∫ t

−∞
e−2δ(t−τ)(t− τ)−2λE‖g(τ, un(ητ))‖pQdτ

≤ 22p−2CpC
p
λ,0

(
(2δ)2λ−1Γ(1− 2λ)

) p
2

×
(
‖l2‖L∞(R) + ‖L2‖L∞(R) sup

t∈R
E‖un(t)‖pλ

)
. (4.37)



March 14, 2023 22:54 WSPC/INSTRUCTION FILE liu˙wang˙caraballo

Stochastic pantograph delay evolution equations 21

Similar to (4.13), we deduce that

R16 ≤ 22p−2Cpλ,0
(
δλ−1Γ(1− λ)

)p
×
(
‖l1‖L∞(R) + ‖L1‖L∞(R) sup

t∈R
E‖un(t)‖pλ

)
. (4.38)

Inserting (4.37)-(4.38) into (4.36) gives

sup
t∈R

E‖un+1(t)‖pλ ≤ K0 +K1 sup
t∈R

E‖un(t)‖pλ. (4.39)

Then we derive from (4.39), assumption (4.29) and the recursive method

that

sup
t∈R

E‖un(t)‖pλ ≤
K0

1−K1
, (4.40)

where we have used the notation

K0 := 22p−2Cpλ,0

((
δλ−1Γ(1− λ)

)p‖l1‖L∞(R)

+ Cp
(
(2δ)2λ−1Γ(1− 2λ)

) p
2 ‖l2‖L∞(R)

)
.

(2) The sequence {un} is convergent.

Arguing as in (3.7) and (3.12), it follows from (4.35) that

E‖un+1(t)− un(t)‖pλ

≤ 2p−1E
∥∥∥∫ t

−∞
S(t− τ)

(
f(τ, un(ητ))− f(τ, un−1(ητ))

)
dτ
∥∥∥p
λ

+ 2p−1E
∥∥∥ ∫ t

−∞
S(t− τ)

(
g(τ, un(ητ))− g(τ, un−1(ητ))

)
dBQ(τ)

∥∥∥p
λ

≤ 2p−1CpC
p
λ,0

(
(2δ)2λ−1Γ(1− 2λ)

) p
2 ‖L2‖L∞(R)

× sup
t∈R

E‖un(t)− un−1(t)‖pλ (4.41)

+ 2p−1Cpλ,0
(
δλ−1Γ(1− λ)

)p‖L1‖L∞(R) sup
t∈R

E‖un(t)− un−1(t)‖pλ,

which implies that

sup
t∈R

E‖un+1(t)− un(t)‖pλ ≤ K2 sup
t∈R

E‖un(t)− un−1(t)‖pλ. (4.42)

Using the recursive method again, in view of (4.40) and the assumption

K2 < 1, we obtain that

sup
t∈R
‖un(t)− um(t)‖Lp(Ω;Hλ)

≤
n−1∑
j=m

sup
t∈R
‖uj+1(t)− uj(t)‖Lp(Ω;Hλ) =

n−1∑
j=m

sup
t∈R

(
E‖uj+1(t)− uj(t)‖pλ

) 1
p

≤
n−1∑
j=m

(
sup
t∈R

E‖uj+1(t)− uj(t)‖pλ
) 1
p ≤

(
sup
t∈R

E‖u1(t)‖pλ
) 1
p

n−1∑
j=m

(K2)
j
p
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≤
( K0

1−K1

) 1
p

n−1∑
j=m

1

2
j
p

→ 0, as n,m→∞. (4.43)

This means that un(t) is a Cauchy sequence, and thus there exists a limiting

function u∗(t) such that

sup
t∈R

E‖un(t)− u∗(t)‖pλ → 0, as n→∞. (4.44)

Combining (4.40) and (4.44) results in

E‖u∗(t)‖pλ ≤
K0

1−K1
, for each t ∈ R. (4.45)

Since the sequence {un} is Ft-measurable for each t ∈ R, the process u∗(t)

is Ft-measurable as a limit of {un}.
(3) The process u∗(t) satisfies (4.5) and has continuous trajectories with prob-

ability 1.

By similar calculations as in (4.15), it follows from (4.35) that

un+1(t) = S(t− t0)un+1(t0) +

∫ t

t0

S(t− τ)f(τ, un(ητ))dτ

+

∫ t

t0

S(t− τ)g(τ, un(ητ))dBQ(τ).

(4.46)

To show that u∗(t) satisfies (4.5), we need to pass to the limit in the above

identity.

It follows from Markov’s inequality and (4.44) that, for each ε > 0,

P
(
‖un+1(t)− u∗(t)‖λ > ε

)
≤ 1

εp
E‖un+1(t)− u∗(t)‖pλ

n→∞−→ 0, (4.47)

which implies that, for each t ∈ R,

un+1(t)→ u∗(t) in probability, as n→∞. (4.48)

Due to the fact that S(t− t0) is a bounded operator, we obtain that

S(t− t0)un+1(t0) −→ S(t− t0)u∗(t0) in probability, as n→∞. (4.49)

Arguing as in (3.12), in view of Markov’s inequality, we deduce that

P
(∥∥∥∫ t

t0

S(t− τ)
(
g(τ, un(ητ))− g(τ, u∗(ητ))

)
dBQ(τ)

∥∥∥
λ
> ε
)

≤ 1

εp
E
∥∥∥∫ t

t0

S(t− τ)
(
g(τ, un(ητ))− g(τ, u∗(ητ))

)
dBQ(τ)

∥∥∥p
λ

(4.50)

≤ 1

εp
CpC

p
λ,0

(
(2δ)2λ−1Γ(1− 2λ)

) p
2 ‖L2‖L∞(R) sup

t∈R
E‖un(t)− u∗(t)‖pλ,

which together with (4.44) implies∫ t

t0

S(t− τ)g(τ, un(ητ))dBQ(τ)
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n→∞−→
∫ t

t0

S(t− τ)g(τ, u∗(ητ))dBQ(τ), in probability. (4.51)

In a similar way as in (4.50), we find that∫ t

t0

S(t− τ)f(τ, un(ητ))dτ

n→∞−→
∫ t

t0

S(t− τ)f(τ, u∗(ητ))dτ, in probability. (4.52)

Finally, by (4.48), (4.49) and (4.51)-(4.52), we can conclude that for all

t ∈ R,

u∗(t) = S(t− t0)u∗(t0) +

∫ t

t0

S(t− τ)f(τ, u∗(ητ))dτ

+

∫ t

t0

S(t− τ)g(τ, u∗(ητ))dBQ(τ) a.s. (4.53)

i.e. u∗(t) satisfies (4.5). The continuity of the first two terms can be checked

straightforwardly, and the continuity of the third term follows from the

factorization formula (2.5) and Proposition 6.1. Hence the process u∗(t),

defined by (4.2), has continuous trajectories with probability 1.

Step 2. The process u∗ is Hölder continuous in t ∈ R.

By similar arguments as in (4.16)-(4.21) and (4.33), we obtain that for each

h > 0,∥∥u∗(t+ h)− u∗(t)
∥∥
Lp(Ω;Hλ)

≤
∥∥∥∫ t

−∞

(
S(t+ h− τ)− S(t− τ)

)
f(τ, u∗(ητ))dτ

∥∥∥
Lp(Ω;Hλ)

+
∥∥∥∫ t

−∞

(
S(t+ h− τ)− S(t− τ)

)
g(τ, u∗(ητ))dBQ(τ)

∥∥∥
Lp(Ω;Hλ)

+
∥∥∥∫ t+h

t

S(t+ h− τ)f(τ, u∗(ητ))dτ
∥∥∥
Lp(Ω;Hλ)

+
∥∥∥∫ t+h

t

S(t+ h− τ)g(τ, u∗(ητ))dBQ(τ)
∥∥∥
Lp(Ω;Hλ)

≤ C(λ)
(

sup
τ∈R

E‖f(τ, u∗(ητ))‖p
) 1
ph1−λ + C(p, λ)

(
sup
τ∈R

E‖g(τ, u∗(ητ))‖pQ
) 1
ph

1
2−λ

≤ C(λ)
(
‖l1‖

1
p

L∞(R) + ‖L1‖
1
p

L∞(R)

(
sup
t∈R

E‖u∗(t)‖pλ
) 1
p

)
h1−λ

+ C(λ, p)
(
‖l2‖

1
p

L∞(R) + ‖L2‖
1
p

L∞(R)

(
sup
t∈R

E‖u∗(t)‖pλ
) 1
p

)
h

1
2−λ, (4.54)

which means that u∗ is Hölder continuous in time.

Step 3. The process u∗ is α-type stable in the sense of pth moment.
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The assertion of this step can be proved by applying the Banach fixed point the-

orem. Since the proofs of the case t0 ≥ 0 is simpler than the case t0 < 0, we assume

that t0 < 0. Consider the abstract phase space Cp,λϑ∗ = Cϑ∗
(
t0,∞;Lp(Ω;Hλ)

)
with

the norm

‖u‖ϑ∗ = sup
t∈[t0,∞)

ϑ∗(t)E‖u(t)‖pλ, u ∈ C
(
t0,∞;Lp(Ω;Hλ)

)
,

where

ϑ∗(t) =

{
α(T ), t ∈ [t0, T ],

α(t), t ≥ T,

with T > 0 given later. Then
(
Cp,λϑ∗ , ‖ · ‖ϑ∗

)
is a Banach space. Put

%̂(t) = %(t)− u∗(t), (4.55)

where %(t) is any solution of problem (1.1)-(1.2) in the sense of Definition 3.1. Define

the mapping T ∗ by

(T ∗%̂)(t) = S(t− t0)%̂(t0)

+

∫ t

t0

S(t− τ)
(
f(τ, %̂(ητ) + u∗(ητ))− f(τ, u∗(ητ))

)
dτ

+

∫ t

t0

S(t− τ)
(
g(τ, %̂(ητ) + u∗(ητ))− g(τ, u∗(ητ))

)
dBQ(τ).

(4.56)

Now we show that T ∗ is contractive and bounded on Cp,λϑ∗ .

(I) T ∗ is a contraction mapping.

Due to (4.56), we have that for any %̂1, %̂2 ∈ Cp,λϑ∗ ,

ϑ∗(t)E
∥∥(T ∗%̂1)(t)− (T ∗%̂2)(t)

∥∥p
λ

≤ 2p−1ϑ∗(t)E
∥∥∥ ∫ t

t0

S(t− τ)
(
f(τ, %̂1(ητ) + u∗(ητ))− f(τ, %̂2(ητ) + u∗(ητ))

)
dτ
∥∥∥p
λ

+ 2p−1ϑ∗(t)E
∥∥∥ ∫ t

t0

S(t− τ)
(
g(τ, %̂1(ητ) + u∗(ητ))

− g(τ, %̂2(ητ) + u∗(ητ))
)
dBQ(τ)

∥∥∥p
λ

:= R28 +R29. (4.57)

It follows from the assumptions (S1)-(S2), Hölder’s inequality and (4.55) that for

t ∈ [t0, T ],

R28 ≤ 2p−1α(T )Cpλ,0E
(∫ t

t0

e−δ(t−τ)(t− τ)−λ

×
∥∥f(τ, %̂1(ητ) + u∗(ητ))− f(τ, %̂2(ητ) + u∗(ητ))

∥∥dτ)p
≤ 2p−1α(T )Cpλ,0

(∫ t

t0

e−δ(t−τ)(t− τ)−λdτ
)p−1
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×
∫ t

t0

e−δ(t−τ)(t− τ)−λE
∥∥f(τ, %̂1(ητ) + u∗(ητ))− f(τ, %̂2(ητ) + u∗(ητ))

∥∥pdτ
≤ 2p−1Cpλ,0

(
δλ−1Γ(1− λ)

)p‖L1‖L∞(R)‖%̂1 − %̂2‖ϑ∗ . (4.58)

For t ≥ T ,

R28 ≤ 6p−1α(t)E
(∫ 0

t0

∥∥S(t− τ)
(
f(τ, %̂1(ητ) + u∗(ητ))

− f(τ, %̂2(ητ) + u∗(ητ))
)∥∥
λ
dτ
)p

+ 6p−1α(t)E
(∫ t

2

0

∥∥S(t− τ)
(
f(τ, %̂1(ητ) + u∗(ητ))− f(τ, %̂2(ητ) + u∗(ητ))

)∥∥
λ
dτ
)p

+ 6p−1α(t)E
(∫ t

t
2

∥∥S(t− τ)
(
f(τ, %̂1(ητ) + u∗(ητ))− f(τ, %̂2(ητ) + u∗(ητ))

)∥∥
λ
dτ
)p

:= R1
28 +R2

28 +R3
28. (4.59)

Using again the assumptions (S1)-(S2), Hölder’s inequality and (4.55), we deduce

that

R1
28 ≤ 6p−1Cpλ,0α(t)

(∫ 0

t0

e−δ(t−τ)(t− τ)−λ

×
∥∥f(τ, %̂1(ητ) + u∗(ητ))− f(τ, %̂2(ητ) + u∗(ητ))

∥∥dτ)p
≤ 6p−1Cpλ,0α(t)t−pλ

(∫ 0

t0

e−δ(t−τ)dτ
)p−1

×
∫ 0

t0

e−δ(t−τ)E
∥∥f(τ, %̂1(ητ) + u∗(ητ))− f(τ, %̂2(ητ) + u∗(ητ))

∥∥pdτ
≤ 6p−1Cpλ,0

1

δp−1
‖L1‖L∞(R)α(t)t−pλe−pδt

∫ 0

t0

eδτE
∥∥%̂1(ητ)− %̂2(ητ)

∥∥p
λ
dτ

≤ 6p−1Cpλ,0
(α(T ))−1

δp
‖L1‖L∞(R)‖%̂1 − %̂2‖ϑ∗α(t)t−pλe−pδt. (4.60)

For terms R2
28 and R3

28, by a similar way as in (3.9) and (3.10), we obtain that

R2
28 ≤ 6p−1α(t)Cpλ,0‖%̂1 − %̂2‖ϑ∗‖L1‖L∞(R)

×
( t

2

)−pλ e−δpt/2
δp−1

∫ t
2

0

e−δ(t/2−τ)(α(ητ))−1dτ, (4.61)

and

R3
28 ≤ 6p−1Cpλ,0

(
δλ−1Γ(1− λ)

)p‖%̂1 − %̂2‖ϑ∗‖L1‖L∞(R)
α(t)

α(ηt/2)
. (4.62)

Hence by (4.58) and (4.59)-(4.62), in view of the assumption (4.30), we can take T

sufficiently large such that for any t ≥ t0,

R28 <
1

2
‖%̂1 − %̂2‖ϑ∗ . (4.63)
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Thanks to Lemma 2.1, in view of assumptions (S1)-(S2), Hölder’s inequality and

(4.55), we deduce that for t ∈ [t0, T ],

R29 ≤ 2p−1α(T )CpE
(∫ t

t0

∥∥AλS(t− τ)
(
g(τ, %̂1(ητ) + u∗(ητ))

− g(τ, %̂2(ητ) + u∗(ητ))
)∥∥2

Q
dτ
) p

2

≤ 2p−1α(T )CpC
p
λ,0E

(∫ t

t0

e−2δ(t−τ)(t− τ)−2λ

×
∥∥g(τ, %̂1(ητ) + u∗(ητ))− g(τ, %̂2(ητ) + u∗(ητ))

∥∥2

Q
dτ
) p

2

≤ 2p−1α(T )CpC
p
λ,0

(∫ t

t0

e−2δ(t−τ)(t− τ)−2λdτ
) p−2

2

×
∫ t

t0

e−2δ(t−τ)(t− τ)−2λL2(τ)E
∥∥%̂1(ητ)− %̂2(ητ)

∥∥p
λ
dτ

≤ 2p−1CpC
p
λ,0

(
(2δ)2λ−1Γ(1− 2λ)

) p
2 ‖L2‖L∞(R)‖%̂1 − %̂2‖ϑ∗ .

(4.64)

We see that for t ≥ T ,

R29 ≤ 6p−1α(t)E
∥∥∥∫ 0

t0

S(t− τ)
(
g(τ, %̂1(ητ) + u∗(ητ))

− g(τ, %̂2(ητ) + u∗(ητ))
)
dBQ(τ)

∥∥∥p
λ

+ 6p−1α(t)E
∥∥∥∫ t

2

0

S(t− τ)
(
g(τ, %̂1(ητ) + u∗(ητ))− g(τ, %̂2(ητ) + u∗(ητ))

)
dBQ(τ)

∥∥∥p
λ

+ 6p−1α(t)E
∥∥∥∫ t

t
2

S(t− τ)
(
g(τ, %̂1(ητ) + u∗(ητ))− g(τ, %̂2(ητ) + u∗(ητ))

)
dBQ(τ)

∥∥∥p
λ

:= R1
29 +R2

29 +R3
29. (4.65)

Using Lemma 2.1, assumptions (S1)-(S2), Hölder’s inequality and (4.55) again, it

follows that

R1
29 ≤ 6p−1α(t)CpC

p
λ,0E

(∫ 0

t0

e−2δ(t−τ)(t− τ)−2λ

×
∥∥g(τ, %̂1(ητ) + u∗(ητ))− g(τ, %̂2(ητ) + u∗(ητ))

∥∥2

Q
dτ
) p

2

≤ 6p−1CpC
p
λ,0α(t)t−pλ

(∫ 0

t0

e−2δ(t−τ)dτ
) p−2

2

(α(T ))−1

×
∫ 0

t0

e−2δ(t−τ)L2(τ)α(T )E
∥∥%̂1(ητ)− %̂2(ητ)

∥∥p
λ
dτ

≤ 6p−1CpC
p
λ,0

(α(T ))−1

(2δ)
p
2

‖L2‖L∞(R)‖%̂1 − %̂2‖ϑ∗t−pλα(t)e−pδt. (4.66)
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In a similar way as in (3.14) and (3.15), we arrive at

R2
29 ≤ 6p−1α(t)CpC

p
λ,0‖%̂1 − %̂2‖ϑ∗‖L2‖L∞(R)

×
( t

2

)−pλ e−δpt/2
(2δ)

p−2
2

∫ t
2

0

e−δ(t−2τ)(α(ητ))−1dτ, (4.67)

and

R3
29 ≤ 6p−1CpC

p
λ,0

(
(2δ)2λ−1Γ(1− 2λ)

) p
2 ‖%̂1 − %̂2‖ϑ∗‖L2‖L∞(R)

α(t)

α(ηt/2)
. (4.68)

Collecting (4.65)-(4.68) and (4.64) together, in view of assumptions (S0) and (4.30),

we choose T large enough such that for all t ≥ t0,

R29 <
1

2
‖%̂1 − %̂2‖ϑ∗ . (4.69)

Consequently, inserting (4.63) and (4.69) into (4.57) yields that the mapping T ∗ is

contractive on the space Cp,λϑ∗ .

(II) T ∗ maps Cp,λϑ∗ into itself.

By (4.56) we derive that for any %̂ ∈ Cp,λϑ∗ ,

ϑ∗(t)E
∥∥(T ∗%̂)(t)

∥∥p
λ

≤ 3p−1ϑ∗(t)E
∥∥S(t− t0)

(
%(t0)− u∗(t0)

)∥∥p
λ

+ 3p−1ϑ∗(t)E
∥∥∥ ∫ t

t0

S(t− τ)
(
f(τ, %̂(ητ) + u∗(ητ))− f(τ, u∗(ητ))

)
dτ
∥∥∥p
λ

+ 3p−1ϑ∗(t)E
∥∥∥ ∫ t

t0

S(t− τ)
(
g(τ, %̂(ητ) + u∗(ητ))− g(τ, u∗(ητ))

)
dBQ(τ)

∥∥∥p
λ

≤ 3p−1Cp0ϑ
∗(t)e−δp(t−t0)E‖%̂(t0)‖pλ +R30 +R31. (4.70)

By similar arguments as in (4.59)-(4.62) and (4.65)-(4.68), we deduce that for t ≥ T ,

R30 +R31 ≤ C‖%̂‖ϑ∗(α(T ))−1α(t)t−pλe−pδt

+ C‖%̂‖ϑ∗
( t

2

)−pλ
α(t)e−

pδt
2

∫ t
2

0

e−δ(
t
2−τ)(α(ητ))−1dτ

+ C‖%̂‖ϑ∗
α(t)

α(ηt/2)
. (4.71)

This implies that R30+R31 ≤ C‖%̂‖ϑ∗ when T is sufficiently large. Following similar

computations as in (4.58) and (4.64), we obtain that R30 +R31 ≤ C‖%̂‖ϑ∗ for any

t ∈ [t0, T ]. Therefore, the desired assertion follows immediately by the Banach fixed

point theorem.

Remark 4.1. For the case t0 ≥ 0 in Step 3, in order to deal with the dif-

ficulty caused by pantograph delay, we shall consider the phase space Cp,λϑ∗η
=

Cϑ∗
(
ηt0,∞;Lp(Ω;Hλ)

)
with the norm

‖u‖ϑ∗η = sup
t∈[ηt0,∞)

ϑ∗η(t)E‖u(t)‖pλ, u ∈ C
(
ηt0,∞;Lp(Ω;Hλ)

)
,
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and define the mapping T ∗η by

(T ∗η %̂)(t) =



S(t− t0)%̂(t0) +

∫ t

t0

S(t− τ)
(
f(τ, %̂(ητ) + u∗(ητ))

− f(τ, u∗(ητ))
)
dτ +

∫ t

t0

S(t− τ)
(
g(τ, %̂(ητ) + u∗(ητ))

− g(τ, u∗(ητ))
)
dBQ(τ), t ≥ t0,

%̂(t), t ∈ [ηt0, t0],

(4.72)

where %̂(t) and %(t) are given in Theorem 4.2, and

ϑ∗η(t) =

{
α(T ), t ∈ [ηt0, T ],

α(t), t ≥ T.

The following result gives almost surely α-type stability of u∗ to problem (4.1).

Theorem 4.3. Let γ ∈ (0, 1). Suppose that all the assumptions of Theorem 4.2

are satisfied. Then the solution u∗ of Eq. (4.1) defined on R is almost surely α-type

stable, that is,

lim
t→∞

log ‖u∗(t)− %(t)‖λ
logα(t)

< −1− γ
p

, a.s. (4.73)

where %(t) is any solution of problem (1.1)-(1.2) in the sense of Definition 3.1.

Proof. The proofs are still concerned with the case any t0 < 0. We find that for

N ≥ 1 and any given s > 0 > t0,

u∗(t)− %(t) = S
(
t− η−(N−1)s

)(
u∗(η−(N−1)s)− %(η−(N−1)s)

)
+

∫ t

η−(N−1)s

S(t− τ)
(
f(τ, u∗(ητ))− f(τ, %(ητ))

)
dτ

+

∫ t

η−(N−1)s

S(t− τ)
(
g(τ, u∗(ητ))− g(τ, %(ητ))

)
dBQ(τ).

(4.74)

Thanks to Markov’s inequality, by a similar way as in (3.29), (3.30) and (3.32), we

derive that

P
(

sup
η−Ns≤t≤η−(N+1)s

‖u∗(t)− %(t)‖pλ ≥
(
α(η−(N−1)s)

)−(1−γ)
)

≤
(
α(η−(N−1)s)

)1−γ
E
(

sup
η−Ns≤t≤η−(N+1)s

‖u∗(t)− %(t)‖pλ
)

≤ 3p−1
(
α(η−(N−1)s)

)1−γ
E
(

sup
η−Ns≤t≤η−(N+1)s

∥∥S(t− η−(N−1)s
)(
u∗(η−(N−1)s)

− %(η−(N−1)s)
)∥∥p
λ

)
+ 3p−1

(
α(η−(N−1)s)

)1−γ
E
(

sup
η−Ns≤t≤η−(N+1)s

∥∥∥∫ t

η−(N−1)s

S(t− τ)
(
f(τ, u∗(ητ))
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− f(τ, %(ητ))
)
dτ
∥∥∥p
λ

)
+ 3p−1

(
α(η−(N−1)s)

)1−γ
E
(

sup
η−Ns≤t≤η−(N+1)s

∥∥∥∫ t

η−(N−1)s

S(t− τ)
(
g(τ, u∗(ητ))

− g(τ, %(ητ))
)
dBQ(τ)

∥∥∥p
λ

)
≤ C

(
α(η−(N−1)s)

)−γ(
α(η−(N−1)s)

)
E‖u∗(η−(N−1)s)− %(η−(N−1)s)‖pλ

+ C
(
α(η−(N−1)s)

)−γ
sup

τ∈[0,∞)

α(τ)/α(ητ) sup
τ∈[t0,∞)

α(τ)E‖u∗(τ)− %(τ)‖pλ. (4.75)

This, together with (4.31) given in Theorem 4.2 and assumption (S0), yields

P
(

sup
η−Ns≤t≤η−(N+1)s

‖u∗(t)− %(t)‖pλ ≥
(
α(η−(N−1)s)

)−(1−γ)
)

≤ C
(
α(η−(N−1)s)

)−γ
, (4.76)

where C is a positive constant independent of η, s. Hence,
∞∑
N=1

P
(

sup
η−Ns≤t≤η−(N+1)s

‖u∗(t)− %(t)‖pλ ≥
(
α(η−(N−1)s)

)−(1−γ)
)
<∞. (4.77)

Thanks to the Borel-Cantelli lemma, we conclude that there exists Ω̃ ⊂ Ω with

P(Ω̃) = 1 such that for any ω ∈ Ω̃, there exists an integer Ñ = Ñ(ω) > 0, when

N ≥ Ñ and η−Ns ≤ t ≤ η−(N+1)s,

‖u∗(t)− %(t)‖pλ ≤
(
α(η−(N−1)s)

)−(1−γ)
,

which implies that assertion (4.73) holds.

5. Conclusions

In this work we studied stochastic evolution equations with pantograph delay

and nonlinear multiplicative noise. First we established the pth moment general de-

cay stability and almost sure general decay stability (including both polynomial and

logarithmic rates) of mild solutions. We then constructed the nontrivial equilibrium

solution defined for t ∈ R by using the generalized version of the factorization formu-

la and an approximation technique. Moreover, we established the Hölder regularity

and general stability of the nontrivial equilibrium solution in the pth moment and

almost sure senses. It is worth mentioning that the stability analysis here is based

on the Banach fixed point theorem and various estimates involving the gamma

function, which are quite different from the Razumikhin technique and Lyapunov

functions usually used in stochastic differential equations with pantograph delay.

One technical challenge is that the presence of pantograph delay makes the anal-

ysis more complicated. Another highlight of the work is the construction and the

general stability of the nontrivial equilibrium solution, which can be used to study

stochastic evolution equations with discrete and distributed delays in the bounded

and unbounded cases.
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6. Appendix

Proof. [Proof of Theorem 2.1] Thanks to condition (2.4), it follows that

sinα∗π

π

∫ t

t0

(t− s)α
∗−1S(t− s)Yα∗(s)ds

=
sinα∗π

π

∫ t

t0

(t− s)α
∗−1S(t− s)

∫ s

t0

(s− r)−α
∗
S(s− r)φ(r)dBQ(r)ds

=
sinα∗π

π

∫ t

t0

[ ∫ t

r

(t− s)α
∗−1(s− r)−α

∗
ds
]
S(t− r)φ(r)dBQ(r).

(6.1)

Since ∫ t

r

(t− s)α
∗−1(s− r)−α

∗
ds =

π

sinα∗π
, t0 ≤ r ≤ t, α∗ ∈ (0, 1), (6.2)

the result follows.

Proposition 6.1. Assume that 0 > 1, 1 ≥ 0, δ > 0, α∗ > 1
0

+ 1, 1 − α∗ <
ς < 1 − (1/0 + 1) and that E1, E2 are Banach spaces such that for t ∈ [0, T ] and

x ∈ E2,

‖S(t)x‖E1
≤ Ct−1e−δt‖x‖E2

, ‖S(t)x− x‖E2
≤ Ctς‖Aςx‖E2

. (6.3)

Then Gα∗ defined by

Gα∗f(t) =

∫ t

−∞
(t− s)α

∗−1S(t− s)f(s)ds, t ∈ [−∞, T ], (6.4)

is a bounded linear operator from L0(−∞, T ;E2) =: L0 into C([−∞, T ];E1).

Proof. Following the similar arguments of [3, Proposition 5.9], in view of the con-

ditions (6.3) and α∗ > 1
0

+ 1, we deduce that∥∥∥ ∫ t

−∞
(t− s)α

∗−1S(t− s)f(s)ds
∥∥∥
E1

≤ C
∫ t

−∞
(t− s)α

∗−1−1e−δ(t−s)‖f‖E2
ds

≤ C
(∫ t

−∞
(t− s)(α∗−1−1)

0
0−1 e−

0δ(t−s)
0−1 ds

) 0−1
0 ‖f‖L0 ,

(6.5)

which means

sup
−∞≤t≤T

‖Gα∗f(t)‖E1 ≤ C‖f‖L0 . (6.6)

By (6.4), we have

‖Gα∗f(t)−Gα∗f(s)‖E1

≤
∥∥∥∫ s

−∞
(t− σ)α

∗−1S(t− σ)f(σ)dσ −
∫ s

−∞
(s− σ)α

∗−1S(s− σ)f(σ)dσ
∥∥∥
E1
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+
∥∥∥∫ t

s

(t− σ)α
∗−1S(t− σ)f(σ)dσ

∥∥∥
E1

≤
∫ s

−∞
(t− σ)α

∗−1
∥∥(S(t− s)− I

)
S(s− σ)f(σ)

∥∥
E1
dσ

+

∫ s

−∞

(
(t− σ)α

∗−1 − (s− σ)α
∗−1
)∥∥S(s− σ)f(σ)

∥∥
E1
dσ

+

∫ t

s

(t− σ)α
∗−1
∥∥S(t− σ)f(σ)

∥∥
E1
dσ

:= A1 +A2 +A3. (6.7)

It follows from (6.3) and Hölder’s inequality that

A1 ≤ C
∫ s

−∞
(t− σ)α

∗−1(t− s)ς
∥∥∥AςS(s− σ

2

)
S
(s− σ

2

)
f(σ)

∥∥∥
E1

dσ

≤ C(t− s)ς
∫ s

−∞
(t− σ)α

∗−1e−
δ(s−σ)

2

(s− σ
2

)−ς
e−

δ(s−σ)
2

(s− σ
2

)−1‖f(σ)‖E2
dσ

≤ C(t− s)ς+α
∗−1
(∫ s

−∞
(s− σ)−

0(1+ς)
0−1 e−

0δ(s−σ)
0−1 dσ

) 0−1
0
(∫ s

−∞
‖f(σ)‖0E2

dσ
) 1
0

≤ C(t− s)ς+α
∗−1‖f‖L0 (−∞,T ;E2). (6.8)

Noting that 1− α∗ < ς < 1− (1/0 + 1), we have A1 → 0 as t→ s.

For A2, in view of (6.3), we arrive at

A2 ≤ C
∫ s

−∞

(
(t− σ)α

∗−1 − (s− σ)α
∗−1
)
(s− σ)−1‖f(σ)‖E2dσ. (6.9)

Applying the dominated convergence theorem to (6.9) results in A2 → 0 as t→ s.

For A3, by (6.3) and Hölder’s inequality we obtain

A3 ≤ C
∫ t

s

(t− σ)α
∗−1−1‖f(σ)‖E2

dσ

≤ C(t− s)1+
0(α∗−1−1)

0−1 ‖f‖L0 (−∞,T ;E2) → 0 as t→ s.

(6.10)
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