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The aim of this paper is to prove the existence and qualitative property of random attractors for a stochastic
non-local delayed reaction–diffusion equation (SNDRDE) on a semi-infinite interval with a Dirichlet
boundary condition at the finite end. This equation models the spatial–temporal evolution of the mature
individuals for a two-stage species whose juvenile and adults both diffuse that lives on a semi-infinite
domain and subject to random perturbations. By transforming the SNDRDE into a random evolution
equation with delay, by means of a stationary conjugate transformation, we first establish the global
existence and uniqueness of solutions to the equation, after which we show the solutions generate a random
dynamical system. Then, we deduce uniform a priori estimates of the solutions and show the existence
of bounded random absorbing sets. Subsequently, we prove the pullback asymptotic compactness of
the random dynamical system generated by the SNDRDE with respect to the compact open topology,
and hence obtain the existence of random attractors. At last, it is proved that the random attractor is
an exponentially attracting stationary solution under appropriate conditions. The theoretical results are
illustrated by application to the stochastic non-local delayed Nicholson’s blowfly equation.

Keywords: Random attractor; stochastic delayed reaction–diffusion equations; semi-infinite interval; non-
local; age-structured population model.

1. Introduction

When modelling the growth of mature population of a two-stage species (juvenile and adult, with a
fixed maturation time τ ) whose mature individuals and immature individuals both diffuse, one faces the
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RANDOM ATTRACTORS FOR AN SNDRDE ON A SEMI-INFINITE INTERVAL 577

following delayed reaction–diffusion equation with spatial non-locality derived in So et al. (2001):

∂u(t, x)

∂t
= Δu(t, x) − μu(t, x) + ε

∫
O

Γ (α, x, y)f (u(t − τ , y))dy, (t, x) ∈ (0, ∞) × D. (1.1)

Here, O ⊆ R
N is the spatial domain, and u(t, x) stands for the total mature population at location x and

time t. The positive constant μ represents the death rate of the mature population. ε and the immature
mobility constant α are defined by ε = e− ∫ r

0 dI(a)da and α = ∫ r
0 DI(a)da, where dI(a) and DI(a), a ∈

[0, τ ], are the age-dependent death rate and diffusion rate of the immature population of the species,
respectively. The diffuse kernel Γ (α, x, y) is obtained by integrating along the characteristic based on
the general model in Metz & Diekmann (1986), representing the probability of the new-born individuals
located at y that can survive to be matured and moved to location x. Generally speaking, explicit forms of
Γ (α, x, y) can only be obtained for some special cases, see Liang et al. (2003). When the spatial domainO
is bounded with a Dirichlet boundary value condition (DBVC), existence, uniqueness and attractiveness
of the positive steady state and threshold dynamics are important and have been explored by Yi & Zou
(2013). When a Neumann boundary value condition (NBVC) is imposed, Zhao (2009) established the
global attractiveness of the positive steady state of (1.1) by adopting a fluctuation method.

In the real world, there are also species whose individuals live in the whole space, such as the fishes
in the infinite ocean. In the situation O = R, the lack of compactness of the infinite domains and the
complexity of non-local delayed term cause the global dynamics analysis of (1.1) becomes quite difficult
and hence, the existing works mainly focus on the travelling wave solutions. See, for instance, So et al.
(2001); Wu & Zou (2001); Yi & Zou (2015). To circumvent this difficulty, Yi et al. (2012) made a
first attempt to describe the global dynamics of model (1.1) by adopting the compact open topology
combined with delicate analysis of the asymptotic properties of the non-local term and the diffusion
operator. Moreover, there are also species whose individuals live in a semi-infinite domain which is
neither bounded nor is the whole space. For example, animals living in a big land that has the shore of an
ocean or a lake at one side of the land provides such a scenario. For the species whose individuals live in
a semi-infinite domain, the kernel function and the spatial domain are neither symmetric nor compact,
implying the problem becomes more challenging. Recently, Yi & Zou (2016) derived the kernel

Γ (α, x, y) = 1√
4πα

e− (x−y)2

4α − 1√
4πα

e− (x+y)2

4α (1.2)

in the scenario O = R+ = [0, ∞) with the homogeneous DBVC at the finite end, and investigated global
dynamics of Eq. (1.1). The results have been extended to the half plane case, which are more realistic in
real world modelings by Hu & Duan (2018), Hu et al. (2018) and Wang (2014).

However, the evolution of the mature population is inevitably affected by random perturbations,
including the noise generated by the internal self-excitation of the system and the random interference
of the external environment. Consequently, for the species living on O = R+ that are perturbed by
some random effects, a more accurate mathematical model should be the following stochastic non-local
delayed reaction–diffusion equation (SNDRDE):

∂u

∂t
(t, x) = Δu(t, x) − μu(t, x) + ε

∫
O

Γ (α, x, y)f (u(t − τ , y))dy +
m∑

j=1

gj(x)
dwj

dt
, (t, x) ∈ (0, ∞) × R+,

(1.3)

which is obtained by adding an additive noise
∑m

j=1 gj(x)
dwj
dt to (1.1). Here, Γ (α, x, y) is defined by

(1.2), {gj(x)}m
j=1 are twice continuously differentiable on (0, ∞), standing for the intensity and the shape
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578 W. HU ET AL.

of noise and {wj}m
j=1 are mutually independent two-sided real-valued Wiener process on an appropriate

probability space to be specified later. For presentation simplicity, here we only consider R+ = [0, ∞)

in the one-dimensional space as earlier works (So et al., 2001; Wu & Zou, 2001; Yi et al., 2012; Yi &
Zou, 2015) did. Indeed, the results can also be extended to half plane case or even three dimensions by
similar techniques in Hu & Duan (2018), Hu et al. (2018) and Wang (2014).

In order to obtain the global complex dynamics and non-local analysis of the qualitative properties
of random dynamical systems (RDSs), Crauel and Flandoli proposed the concept of random attractors
for infinite dimensional random system in Crauel & Flandoli (1994); Flandoli & Schmalfuss (1996);
Crauel (2002), by generalizing the theory of global attractors of infinite-dimensional dissipative systems.
Since then, the existence, finite dimensionality and structure of random attractors for various stochastic
nonlinear evolution equations or stochastic functional differential equations have been extensively and
intensively investigated by adopting the framework in Crauel & Flandoli (1994); Crauel (2002). For
example, for the stochastic reaction–diffusion equation without time delay, Caraballo et al. (2000), Gao
et al. (2014) and Li & Guo (2008) explored the existence of global attractors on bounded domains. For the
stochastic delayed reaction–diffusion equation on bounded domains, the existence of random attractors
and their structure have been studied in Caraballo et al. (2007); Bessaih et al. (2014); Chueshov et al.
(2014); Wang et al. (2015); Li & Guo (2020).

In our recent works Hu & Zhu (2021) and Hu & Zhu (2022), we have obtained the existence,
uniqueness and stability of solutions to (1.1) as well as the existence of random attractors when the
domain O is bounded with a DBVC. Therefore, similar questions arise naturally, i.e. under what
conditions does (1.3) admit a unique global solution? Under what conditions does (1.3) generate an
RDS ? Under what conditions does (1.3) possess random attractors? Moreover, under what conditions is
the attractor of (1.3) a random fixed point? In the recent works (Bates et al., 2009), Wang et al. (2018)
and Zhou (2017), the authors obtained the existence of global attractors for stochastic reaction–diffusion
equations on unbounded domains. The unboundedness of the domain causes the Sobolev embedding
to no longer be compact and the asymptotic compactness of solutions cannot be obtained by a standard
method. Therefore, in order to overcome the difficulty caused by the unboundedness of the domain, Bates
et al. (2009) established uniform estimates on the far-field values of solutions. Nevertheless, it follows
from (1.2) that the kernel Γ (α, x, y) is asymmetric and the domain is non-symmetric and non-compact,
which together with the time delay imply that the analysis of the long time behaviour of solutions to
(1.3) on the semi-infinite interval R+ = [0, ∞) is more difficult. This motivates us to establish a new
method to analyse the asymptotic behaviour of the following stochastic initial boundary value problem:

⎧⎨
⎩

∂u
∂t (t, x) = Δu(t, x) − μu(t, x) + ε

∫
R+ Γ (α, x, y)f (u(t − τ , y))dy + ∑m

j=1 gj(x)
dwj
dt ,

u(t, 0) = 0, t > 0,
u(t, x) = φ(t, x), (t, x) ∈ [−τ , 0] × R+.

(1.4)

In the case of deterministic equations, to obtain the global dynamics of (1.1), Yi & Zou (2016)
established a priori estimates for non-trivial solutions by exploring the asymptotic properties of the non-
local delayed effect and the diffusion operator. This method has also been adopted by Hu et al. (Hu
& Duan, 2018; Hu et al., 2018) to explore the global dynamics of some non-local delayed differential
equations on different half spaces with various boundary conditions. Introducing random factors makes
the analysis of the asymptotic behaviour of (1.4) quite different from the deterministic case, since
the existence and uniqueness of global solution to SNDRDE (1.4) and whether it generates a random
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RANDOM ATTRACTORS FOR AN SNDRDE ON A SEMI-INFINITE INTERVAL 579

dynamic system are not so natural as in the deterministic case. Moreover, the framework to deal with
random attractors is also quite different from that of the deterministic case. In this paper, we carry
out a first attempt to extend the method of exploring the asymptotic properties of the deterministic
non-local delayed effect and the diffusion operator to the random case, and prove the existence and
qualitative property of random attractors for the SNDRDE (1.4) on the unbounded domain R+. Unlike
the previous works (Caraballo et al., 2007; Bessaih et al., 2014; Chueshov et al., 2014; Wang et
al., 2015; Li & Guo, 2020), where the phase space is a Hilbert space, we need to work here with
a Banach space as natural phase space. Due to the lack of an inner product, we prove the existence
of a global solution and obtain uniform a priori estimates of the solution by using the semigroup
approach together with a careful analysis of the diffusion operator instead of taking inner product.
Moreover, to overcome the difficulty caused by the non-compactness of the spatial domain, we also
adopt the compact open topology to describe the asymptotic behaviour. It is clear that our method
can be used for a variety of other equations on half spaces, as it was done for the deterministic case
(Hu et al., 2018).

The remaining part of this paper is structured as follows. In Section 2, we recall some basic results
from the theory of RDSs and random attractors as well as some notation and preliminary lemmas needed
for the proof of our main results. In Section 3, by means of the Ornstein–Uhlenbeck (O-U) process,
we first transform SNDRDE (1.4) into a random partial differential equation with delay, and we then
show that SNDRDE (1.4) has global solutions by the Banach fixed point theorem together with the
properties of the semigroup generated by the linear part of (1.4). Furthermore, we show that solutions to
(1.4) generate RDSs. To prove the existence of random attractors for SNDRDE (1.4), we first establish
uniform a priori estimates of the solutions in Section 4, and we then show the asymptotic compactness of
RDSs generated by (1.2) with respect to the compact open topology, implying the existence of random
attractors by the results in Crauel & Flandoli (1994); Crauel (2002). In Section 5, we derive sufficient
conditions ensuring the random attractor becomes an exponentially attracting stationary solution. In
Section 6, the theoretical results are applied to the stochastic non-local delayed Nicholson’s blowfly
equation. At last, we summarize the paper by pointing out some potential directions deserving further
research.

2. Preliminaries

We first recall some notation to be used throughout this paper, and then we introduce the theory of RDSs
as well as random attractors. We denote by BUC

(
R+,R

)
the set of all bounded and uniformly continuous

functions from R+ to R, and by C = C([−τ , 0], X) the set of all continuously functions from [−τ , 0] to
X equipped with the usual supremum norm ‖ϕ‖C = sup{‖ϕ(ξ)‖X : ξ ∈ [−τ , 0]} for any ϕ ∈ C. For any
real interval J ⊆ R, set J + [−τ , 0] = {t + ξ : t ∈ I and ξ ∈ [−τ , 0]}. For any u : (J + [−τ , 0]) → X
and t ∈ J, we define ut(·) ∈ C by ut(ξ) = u(t + ξ) for all ξ ∈ [−τ , 0].

In the sequel, we introduce the concept of random attractor and RDS following Arnold (1998) and
Crauel & Flandoli (1994); Flandoli & Schmalfuss (1996); Crauel (2002).

Definition 2.1. Let
{
θt : Ω → Ω , t ∈ R

}
be a family of measure preserving transformations such that

(t, ω) 	→ θtω is measurable and θ0 = id, θt+s = θtθs, for all s, t ∈ R. The flow θt together with the
probability space

(
Ω ,F , P,

(
θt

)
t∈R

)
is called a metric dynamical system.

For a given complete separable metric space (X, d), denote by B(X) the Borel-algebra of open subsets
in X.
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580 W. HU ET AL.

Definition 2.2. A mapping Φ : R+ ×Ω ×X → X is said to be an RDS on a complete separable metric
space (X, d) with Borel σ -algebra B(X) over the metric dynamical system

(
Ω ,F , P,

(
θt

)
t∈R

)
if

(i) Φ(·, ·, ·) : R+ × Ω × X → X is (B(R+) × F × B(X),B(X))-measurable;

(ii) Φ(0, ω, ·) is the identity on X for P-a.e. ω ∈ Ω;

(iii) Φ(t + s, ω, ·) = Φ(t, θsω, ·) ◦ Φ(s, ω, ·), for all t, s ∈ R
+ and P-a.e. ω ∈ Ω .

An RDS Φ is continuous or differentiable if Φ(t, ω, ·) : X → X is continuous or differentiable for all
t ∈ R

+ and P-a.e. ω ∈ Ω .

Definition 2.3. A set-valued map Ω � ω 	→ D(ω) ∈ 2X is said to be a random set in X if the mapping
ω 	→ d(x, D(ω)) is (F ,B(R))-measurable for any x ∈ X, where d(x, D(ω)) � infy∈D(ω) d(x, y) is the
distance in X between the element x and the set D(ω) ⊂ X.

Definition 2.4. A random set {D(ω)}ω∈Ω of X is called tempered with respect to {θt}t∈R if for P-a.e.
ω ∈ Ω ,

lim
t→∞ e−βtd

(
D
(
θ−tω

)) = 0, for all β > 0,

where d(D) = supx∈D ‖x‖X .

Definition 2.5. Let D = {D(ω) ⊂ X, ω ∈ Ω} be a family of random set. A random set K(ω) ∈ D
is said to be a D-pullback absorbing set for Φ if for P-a.e. ω ∈ Ω and for every B ∈ D, there exists
T = T(B, ω) > 0 such that

Φ
(
t, θ−tω, B

(
θ−tω

)) ⊆ K(ω) for all t ≥ T .

If, in addition, for all ω ∈ Ω , K(ω) is a closed non-empty subset of X and K(ω) is measurable in Ω with
respect to F , then we say K is a closed measurable D-pullback absorbing set for Φ.

Definition 2.6. An RDS Φ is said to be D-pullback asymptotically compact in X if for P-a.e. ω ∈ Ω ,{
Φ
(
tn, θ−tnω, xn

)}
n≥1

has a convergent subsequence in X whenever tn → ∞ and xn ∈ D
(
θ−tnω

)
for

any given D ∈ D.

Definition 2.7. A compact random set A(ω) is said to be a D-pullback random attractor associated
with the RDS Φ if it satisfies the invariance property

Φ(t, ω)A(ω) = A
(
θtω

)
, for all t ≥ 0,

and the pullback attracting property

lim
t→∞ dist

(
Φ
(
t, θ−tω

)
D
(
θ−tω

)
,A(ω)

) = 0, for all t ≥ 0, D ∈ D, P − a.e. ω ∈ Ω ,

where dist(·, ·) denotes the Hausdorff semidistance

dist(A, B) = sup
x∈A

inf
y∈B

d(x, y), A, B ⊂ X.
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RANDOM ATTRACTORS FOR AN SNDRDE ON A SEMI-INFINITE INTERVAL 581

Lemma 2.1. Let (θ , Φ) be a continuous RDS. Suppose that Φ is D-pullback asymptotically compact
and has a closed pullback D-absorbing set K = {K(ω)}ω∈Ω ∈ D. Then it possesses a random attractor
{A(ω)}ω∈Ω , where

A(ω) = ∩τ≥0∪t≥τΦ
(
t, θ−tω, K

(
θ−tω

))
.

For convenience, we introduce the following Gronwall inequality in Bessaih et al. (2014) that will
be frequently used in our subsequent proofs.

Lemma 2.2. Let T > 0 and u, α, f and g be non-negative continuous functions defined on [0, T] such
that

u(t) ≤ α(t) + f (t)
∫ t

0
g(r)u(r)dr, for t ∈ [0, T].

Then

u(t) ≤ α(t) + f (t)
∫ t

0
g(r)α(r)e

∫ t
r f (τ )g(τ )dτ dr, for t ∈ [0, T].

3. Global solutions and RDSs

In this section, we will prove the existence of global solutions to SNDRDE (1.4) under the given initial
condition, and then show that the solutions generate an RDS. By the Fourier sine transform defined by
Eq. (10.5.39) in Haberman (2004), we can obtain that the semigroup S(t) generated by the linear system

⎧⎨
⎩

∂u
∂t = Δu − μu, t > 0
u(t, 0) = 0, t ≥ 0
u(0, x) = φ(x), x ∈ R+

(3.1)

is {
S(0)[φ](x) = φ(x),

S(t)[φ](x) = exp(−μt)√
4π t

∫∞
0 φ(y)

[
exp

(
− (x−y)2

4t

)
− exp

(
− (x+y)2

4t

)]
dy, t > 0,

(3.2)

for (x, φ) ∈ R+ × X. Let Z = BUC(R,R) be the set of all bounded and uniformly continuous functions
from R to R equipped with the usual supremum norm ‖ · ‖Z . Then, the Fourier transformation method
indicates that the semigroup U(t) : Z → Z generated by Δ − μI is defined as

{
U(0)[φ](x) = φ(x),

U(t)[φ](x) = exp(−μt)√
4π t

∫∞
−∞ φ(y) exp

(
− (x−y)2

4t

)
dy for all t ∈ (0, ∞),

(3.3)

for (x, φ) ∈ R × Z, which is analytic and strongly continuous on Z.
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582 W. HU ET AL.

We introduce the following results concerning the properties of semigroup S(t), which is frequently
used thorough the whole paper. The details of the proof can be found in Yi & Zou (2016) Lemma 2.1.

Lemma 3.1. Let S(t) and U(t) be defined in (3.2) and (3.3), respectively, then we have the following
results.

(i) S(t)[φ](x) = e−μtU(t)[φ̃](x) for all φ ∈ X, t ∈ R+ and x ∈ R+, where φ̃ represents the odd
extension of φ.

(ii) S(t) is an analytic and strongly continuous semigroup on X.

(iii) For all t ∈ (0, ∞) and (x, φ) ∈ (0, ∞) × X, there hold

‖S(t)[φ]‖ ≤ e−μt‖φ‖,
∣∣∣ ∂S(t)[φ](x)

∂t

∣∣∣ ≤ (1+μt) exp(−μt)‖φ‖
t ,∣∣∣ ∂S(t)[φ](x)

∂x

∣∣∣ ≤ exp(−μt)‖φ‖√
π t

,
∣∣∣ ∂2S(t)[φ](x)

∂x2

∣∣∣ ≤ exp(−μt)‖φ‖
t .

(iv) For any t1, t2 ∈ (0, ∞), x1, x2 ∈ R+ and φ ∈ X, there holds

∣∣S (t1) [φ]
(
x1

) − S
(
t2
)

[φ]
(
x2

)∣∣ ≤
(
1 + μmin

{
t1, t2

})
exp

(−μmin
{
t1, t2

}) ||φ||
min

{
t1, t2

} ∣∣t2 − t1
∣∣

+ exp
(−μmin

{
t1, t2

}) ||φ||√
π min

{
t1, t2

} ∣∣x2 − x1

∣∣ .

For the purpose of later use, we prove the following property on the non-local diffusion operator
of (1.4).

Lemma 3.2. Define K : X → X by

K(φ)(·) =
∫
R+

Γ (α, ·, y)φ(y)dy

for all φ ∈ X. Then, ‖K‖ � sup{ ‖K(φ)‖
‖φ‖ : ‖φ‖ �= 0} ≤ 1.

Proof. For any x ∈ R+, we have

|K(φ)(x)| =
∣∣∣∣
∫
R+

1√
4πα

e− (x−y)2

4α φ(y)dy −
∫
R+

1√
4πα

e− (x+y)2

4α φ(y)dy

∣∣∣∣
=

∣∣∣∣
∫ x

−∞
1√
4πα

e− u2
4α φ(x − u)du −

∫ ∞

x

1√
4πα

e− u2
4α φ(u − x)du

∣∣∣∣
≤ ‖φ‖

∫ ∞

−∞
1√
4πα

e− u2
4α du = ‖φ‖.

(3.4)

Therefore, we have ‖K‖ � sup
‖φ‖�=0

‖K(φ)‖
‖φ‖ ≤ 1. �

In the sequel, we always impose the following assumptions on the nonlinear drift term f .
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RANDOM ATTRACTORS FOR AN SNDRDE ON A SEMI-INFINITE INTERVAL 583

(H) f (·) : R → R is continuously differentiable, f (0) = 0, and
∣∣∣ df (s)

ds

∣∣∣ ≤ Lf .

Here, Lf is a positive constant, representing the bound of the derivation. Hence, it is clear that for all
s1, s2 ∈ R ∣∣f (s1

) − f
(
s2

)∣∣ ≤ Lf

∣∣s1 − s2

∣∣ , (3.5)

In this paper, we consider the canonical probability space (Ω ,F , P) with

Ω = {
ω = (

ω1, ω2, . . . , ωm

) ∈ C
(
R;Rm) : ωi(0) = 0

}

and F is the Borel σ -algebra induced by the compact open topology of Ω , while P is the corresponding
Wiener measure on (Ω ,F). Then, we identify W with

W(t, ω) = (
w1(t), w2(t), . . . , wm(t)

)
for t ∈ R.

Moreover, we define the time shift by

θtω(·) = ω(· + t) − ω(t), t ∈ R.

Then,
(
Ω ,F , P,

{
θt

}
t∈R

)
is a metric dynamical system.

In order to construct the conjugate transformation, we consider the stochastic stationary solution of
the one dimensional Ornstein–Uhlenbeck equation

dzj + μzjdt = dwj(t), j = 1, . . . , m. (3.6)

The solution to (3.6) is given by

zj(t) � zj

(
θtωj

)
= −μ

∫ 0

−∞
eμs

(
θtωj

)
(s)ds, t ∈ R, (3.7)

By Definition 2.4, one can see that the random variable
∣∣∣zj

(
ωj

)∣∣∣ is tempered and zj

(
θtωj

)
is P-a.e. ω

continuous. Therefore, Proposition 4.3.3 in Arnold (1998) implies that there exists a tempered function
0 < r(ω) < ∞ such that

m∑
j=1

∣∣∣zj

(
ωj

)∣∣∣2 ≤ r(ω), (3.8)

where r(ω) satisfies, for P-a.e. ω ∈ Ω ,

r
(
θtω

) ≤ e
μ
2 |t|r(ω), t ∈ R. (3.9)

Combining (3.8) with (3.9), we obtain that for P-a.e. ω ∈ Ω ,

m∑
j=1

∣∣∣zj

(
θtωj

)∣∣∣2 ≤ e
μ
2 |t|r(ω), t ∈ R (3.10)
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Putting z
(
θtω

)
(x) = ∑m

j=1 gj(x)zj

(
θtωj

)
, by (3.6), we have

dz + μzdt =
m∑

j=1

gj(x)dwj.

To prove that (1.4) possesses a global solution that generates an RDS, we consider the transformation
v(t) = u(t)−z

(
θtω

)
, where u is a solution of (1.4), and show that v is a global solution of the transformed

equation and generates an RDS. Then, we show that (1.4) also has a global solution and generates a
conjugated RDS due to the inverse transformation. This method has also been adopted by Hu & Zhu
(2022), Li & Guo (2020) and Wang et al. (2015) to deal with random attractors as well as Duan et
al. (2003, 2004); Lu & Schmalfuß (2007) and Lu & Schmalfuß (2008) to tackle invariant manifolds of
stochastic partial differential equations with or without delay. Apparently, v satisfies

∂v(t, x)

∂t
= Δv(t, x) − μv(t, x) + F

( (
vt + z

(
θt+·ω

)) )
(x) + Δz

(
θtω

)
(x), t > 0, x ∈ (0, ∞) (3.11)

with boundary condition
v(t, 0) = 0, for t ∈ (0, ∞), (3.12)

and initial condition

v(ξ , x, ω) = ψ(ξ , x, ω) � φ(x, ξ) − z
(
θξω

)
(x) for (x, ξ) ∈ R+ × [−τ , 0]. (3.13)

Here, F : C → X is defined by

F(ϕt + z
(
θt+·ω

)
)(x) = ε

∫
R+

Γ (α, x, y)f
(
ϕ(t − τ , y) + z

(
θt−τω

) )
(y)dy

= εK[ f
(
ϕ(t − τ , ·) + z

(
θt−τω, ·) )](x),

for any ϕ ∈ C.
We now show that the pathwise deterministic problem (3.11)–(3.13) has a global mild solution under

assumption (H). We aim at solving the following integral equation:

v(t, ω, ψ) =
{

S(t)ψ(0) + ∫ t
0 S(t − r)F

(
vr + z

(
θr+·ω

))
dr + ∫ t

0 S(t − r)Δz
(
θrω

)
dr,

ψ(t), t ∈ [−τ , 0],
(3.14)

for the initial data ψ ∈ C. We have the following results.

Theorem 3.1. Assume that f satisfies (H). Then, for any ψ ∈ C and for P-a.e. ω ∈ Ω , there exists
a global mild solution to (3.11)–(3.13). Moreover, if f : C → X is globally bounded, i.e. there exists
M > 0 such that ‖f (ϕ)‖ ≤ M for all ϕ ∈ C, then the solution is pullback bounded, i.e., there exists
C(ω) > 0 such that ‖v(t, θ−tω, ψ)‖ ≤ C(ω) for P-a.e. ω ∈ Ω .

Proof. We first prove that (3.11)–(3.13) has a local mild solution and then show it can be extended to a
global one by an argument of steps. For any ψ ∈ C and P-a.e. ω ∈ Ω , we show in the following that
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there exist T(ω) > 0 and v ∈ C([−τ , T(ω)]; X) satisfying (3.14) on [−τ , T(ω)] due to the Banach fixed
point theorem. For a fixed ω, we consider the complete metric subset XT

ψ of C([−τ , T], X) defined by

XT
ψ = {v ∈ C([−τ , T]; X) : u(s) = ψ(s), s ∈ [−τ , 0]}.

For such a T > 0 to be determined later, and t ∈ [−τ , T], we define the following operator Λ : Xψ → Xψ

(where we omit T since no confusion is possible)

Λ(ζ)(t) =
{

S(t)ψ(0) + ∫ t
0 S(t − r)F

(
ζr + z

(
θr+·ω

))
dr + ∫ t

0 S(t − r)Δz
(
θrω

)
dr, t ∈ (0, T]

ψ(t), t ∈ [−τ , 0].
(3.15)

We show in the sequel that Λ is well defined, maps Xψ into itself and is a contraction on C([−τ , T]; X),
leading to the existence of a unique fixed point in Xψ with T being determined according to the Banach
fixed point theorem. It follows from Lemma 3.1 (ii) and (iii), F : C → X and gj is twice continuously
differentiable that we have Λ(ζ)(t) ∈ X for any fixed t ∈ [−τ , T]. Now we prove the continuity. If t1, t2 ∈
[−τ , 0], the result is obvious. Let us then pick t1, t2 ∈ (0, T], and assume without loss of generality, that
t1 < t2. Therefore, we have

‖Λ(ζ)(t1) − Λ(ζ)(t2)‖ = ‖[S(t1) − S(t2)]ψ(0)‖ + ‖
∫ t1

0
S(t1 − r)F

(
ζr + z

(
θr+·ω

))
dr

−
∫ t2

0
S(t2 − r)F

(
ζr + z

(
θr+·ω

))
dr‖ + ‖

∫ t1

0
S(t1 − r)Δz

(
θrω

)
dr

−
∫ t2

0
S(t2 − r)Δz

(
θrω

) ‖dr � I1 + I2 + I3.

(3.16)

We estimate each term on the right-hand side of (3.16) due to Lemmas 3.1 and 3.2.

I1 = ‖S(t1) − S(t2)]ψ(0)‖ ≤
(
1 + t1

)
exp

(−μt1
) ||ψ(0)||

t1

∣∣t2 − t1
∣∣ . (3.17)

I2 = ‖
∫ t1

0
[S(t1 − r) − S(t2 − r)]F

(
ζr + z

(
θr+·ω

))
dr −

∫ t2

t1
S(t2 − r)F

(
ζr + z

(
θr+·ω

))
dr‖

≤
∫ t1−

√
δ

0
[S(t1 − r) − S(t2 − r)]F

(
ζr + z

(
θr+·ω

))
dr

+
∫ t1

t1−
√

δ

[S(t1 − r) − S(t2 − r)]F
(
ζr + z

(
θr+·ω

))
dr

+ ‖
∫ t2

t1
S(t2 − r)F

(
ζr + z

(
θr+·ω

))
dr‖

≤ ε
∣∣t2 − t1

∣∣ ∫ t1−
√

δ

0

(
1 + μ(t1 − r)

)
exp

(−μ(t1 − r)
)

M

t1 − r
dr + 2εM

√
δ + εM|t2 − t1|

≤ εM
∣∣t2 − t1

∣∣ ( 1√
δ

+ μ

)
+ 2εM

√
δ + εM|t2 − t1|.

(3.18)
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I3 = ‖
∫ t1

0
[S(t1 − r) − S(t2 − r)]Δz

(
θrω

)
dr −

∫ t2

t1
S(t2 − r)Δz

(
θrω

)
dr]‖

≤
∫ t1−

√
δ

0
[S(t1 − r) − S(t2 − r)]||Δz

(
θrω

) ||dr +
∫ t1

t1−
√

δ

[S(t1 − r) − S(t2 − r)]||Δz
(
θrω

) ||dr

+ ‖
∫ t2

t1
S(t2 − r)||Δz

(
θrω

) ||dr‖

≤ ∣∣t2 − t1
∣∣ ∫ t1−

√
δ

0

(
1 + μ(t1 − r)

)
exp

(−μ(t1 − r)
) ||Δz

(
θrω

) ||
t1 − r

dr

+ δ||Δz
(
θrω

) || + ||Δz
(
θrω

) |||t2 − t1|

≤ ||Δz
(
θrω

) ||[∣∣t2 − t1
∣∣ ( 1√

δ
+ 1 + μ

)
+ δ]. (3.19)

In equations (3.18) and (3.19), δ satisfies δ ∈ (0, 1) and t1 < t2 < t1 + δ with δ → 0, then I1 ≤
εM(

√
δ + μδ) + 2εM

√
δ + εMδ, I3 ≤ ||Δz

(
θrω

) ||[√δ + (2 + μ)δ]. Hence, when δ → 0, it holds that
t2 → t1, I1 + I2 + I3 → 0, implying the continuity of Λ(ζ)(t) ∈ H with respect to t ∈ [−τ , T]. Thus,
we have obtained that Λ is well defined in Xψ .

In the sequel, we show the contraction property of Λ on Xψ . Let ζ 1, ζ 2 ∈ Xψ , then for t ∈ [−τ , 0],

it holds ζ 1(t) = ζ 2(t). Owing to (H), for t ∈ [0, T) we have

∥∥∥(Λ (
ζ 1
)

(t) − Λ
(
ζ 2
))

(t)
∥∥∥ = ‖

∫ t

0
S(t − r)[F

(
ζ 1

r + z
(
θr+·ω

)) − F
(
ζ 2

r + z
(
θr+·ω

))
]dr‖.

≤ εLf

∫ t

0
e−μ(t−r)

∥∥∥ζ 1
r − ζ 2

r

∥∥∥
C

dr

≤ εLf

μ
(1 − e−μt)

∥∥∥ζ 1
r − ζ 2

r

∥∥∥
C

.

(3.20)

Hence, if
εLf
μ

≤ 1, then for any t ≥ 0, Λ is a contraction on Xψ . However, in the scenario
εLf
μ

> 1, we

can choose T = 1
2μ

ln(
εLf

εLf −μ
), and therefore Λ is a contraction on Xψ , which indicates the existence of

a unique local mild solution to (3.14).
In the following text, we will derive the existence of a global mild solution by an argument of steps.

Denote T1(ω) = 1
2μ

ln(
εLf

εLf −μ
) and let us build the solution in the next time interval, say

[
T1(ω), T2(ω)

]
.

It suffices to find T2(ω) such that (3.14) also admits a local mild solution in the last interval. We only
need to solve

v(t, ω, ψ) =

⎧⎪⎪⎨
⎪⎪⎩

S(t − T1(ω))ψ(0) + ∫ t−T1(ω)

0 S(t − T1(ω) − r)F
(
vr + z

(
θr+·ω

))
dr

+ ∫ t
0 S(t − T1(ω) − r)Δz

(
θrω

)
dr,

v1(t), t − T1(ω) ∈ [−τ , 0],

(3.21)
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where v1 denotes the solution obtained on
[−τ , T1(ω)

]
. Taking s := t−T1, the above system is equivalent

to solve the problem for y(s) = v
(
s + T1(ω)

)

y(s, ω, ψ) =
{

S(s)ψ̂(0) + ∫ s
0 S(s − r)F

(
vr + z

(
θr+·ω

))
dr + ∫ s

0 S(s − r)Δz
(
θrω

)
dr,

ψ̂(s) � u1(s + T1(ω)), s ∈ [−τ , 0],
(3.22)

which is the same as the previous step, but with initial condition ψ̂ . Taking the same steps as before,
we can obtain a new piece given by a local solution defined now in the interval

[
T1 − τ , T2

]
. Thus, by

repeating the same procedure, one can obtain a sequence of time Tn. We prove in the sequel that Tn → ∞.
We only need to show that for any given t > 0, there exist i ∈ N such that Ti > t. If T(ω) := T1(ω) ≥ t
there is nothing to show. If this is not case, let s∗ be the unique solution of the equation

εLf

μ
(1 − e−μt) = 1/2,

which is trivially a positive lower bound of T(ω). If T2(ω) ≥ t we are done. Otherwise, t > T2(ω) =
T(ω) + T

(
θT(ω)ω

)
, i.e. T

(
θT(ω)ω

)
< t − T(ω), and therefore the previous inequality implies that t∗ ≤

T
(
θT(ω)ω

)
, and in particular that T2(ω) ≥ 2t∗. Repeating this method it turns out that there exists i ∈ N

such that Ti(ω) ≥ it∗ > t.
In what follows, we prove the pullback boundedness of the solution provided f is bounded. Since

gj is twice continuously differentiable, by (3.9) and (3.10), there must exist a constant c > 0 such that

‖Δz(θ−tω)‖ ≤ ce
μt
2 r(ω). It follows from (3.14) and the boundedness of f that, for P-a.e. ω ∈ Ω ,

∥∥v(t, θ−tω, ψ)
∥∥ = |S(t)|‖ψ(0)‖ + M

∫ t

0
e−μ(t−r)dr + c

∫ t

0
e−μ(t−r)e

μ(t−r)
2 r(ω)dr

≤ e−μt‖ψ(0)‖ + M
1

μ
(1 − e−μt) + cr(ω)

2

μ
(1 − e−μt/2)

≤ ‖ψ(0)‖ + (M + cr(ω))
2

μ
.

(3.23)

Therefore, the pullback boundedness of v is clear by taking C(ω) = ‖ψ(0)‖ + (M + cr(ω)) 2
μ

. �

Remark 3.1. By Corollary 2.2.5 in Wu (1996) and the analyticity of the semigroup S(t) given in Lemma
3.1 (ii), we know that a mild solution of problem (3.11)–(3.13) is also a classical solution of problem
(3.11)–(3.13) for all t > τ . Hence, u(t, ω, φ) = v(t, ω, ψ) + z

(
θtω

)
is a global solution to (1.4).

In the sequel, we show that the solution of (3.14) generates an RDS. To this end we will prove that
the cocycle property in Definition 2.2 holds.

Theorem 3.2. The global mild solution v of (3.11)–(3.13) generates an RDS Φ : R+ × Ω × C → C
defined by Φ(t, ω, ψ)(·) = vt(·), i.e.,

Φ(t, ω, ψ)(·) =
{

S(t + ·)ψ(0) + ∫ t+·
0 S(t + · − r)F (vr + z (θr−τ+·ω)) dr + ∫ t+·

0 S(t − r + ·)Δz (θrω) dr,

ψ(t + ·), t + · ∈ [−τ , 0].
(3.24)
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Proof. We prove the result in three cases. In the situation t, ρ ≥ τ so that t + s, ρ + s ≥ 0, for all
s ∈ [−τ , 0], we have

Φ(t + ρ, ω, ψ)(ζ ) = S(t + ζ + ρ)ψ(0) +
∫ t+ζ+ρ

0
S(t + ζ + ρ − r)[F

(
vr + z

(
θr+·ω

)) + Δz
(
θrω

)
]dr

= S(t + ζ )S(ρ)ψ(0) + S(t + ζ )

∫ ρ

0
S(ρ − r)[F

(
vr + z

(
θr+·ω

)) + Δz
(
θrω

)
]dr

+
∫ t+ζ+ρ

ρ

S(t + ζ + ρ − r)[F
(
vr + z

(
θr+·ω

)) + Δz
(
θrω

)
]dr

= S(t + ζ )[S(ρ)ψ(0) +
∫ ρ

0
S(ρ − r)F

(
vr + z

(
θr+·ω

))
dr +

∫ ρ

0
S(ρ − r)Δz

(
θrω

)
dr]

+
∫ t+ζ

0
S(t + ζ − r)F

(
vρ+r + z

(
θr+·+ρω

))
dr +

∫ t+ζ

0
S(t + ζ − r)Δz

(
θr+ρω

)
dr

= S(t + ζ )Φ(ρ, ω, ψ)(0) +
∫ t+ζ

0
S(t + ζ − r)F

(
vζ+r + z

(
θr+·θρω

))
dr

+
∫ t+ζ

0
S(t + ζ − r)Δz

(
θrθρω

)
dr

= Φ(t, θρω, ·)Φ(ρ, ω, ψ)(ζ ), (3.25)

which indicates the cocycle property in this situation.
In the scenario t + ρ + ζ ≤ 0, for ζ ∈ [−τ , 0]. Then, it is straightforward to see that

Φ(t + ρ, ω, ψ)(ζ ) = ψ(t + ρ + ζ ) = Φ(ρ, ω, ψ)(t + ζ ) = Φ
(

t, θρω, ·
)

◦ Φ(ρ, ω, ψ)(ζ )

When t + ρ + ζ > 0 but ρ + ζ ≤ 0 for ζ ∈ [−τ , 0], we have

ψ(ρ + ζ )(0) = vρ+ζ (0) = Φ(ζ + ρ, ω, ψ)(0) = Φ (ρ, ω, ψ) (ζ )

Moreover, by (3.24), one can easily check that

Φ(t + ρ, ω, ψ)(ζ ) = Φ
(

t, θρω, ψ(ρ + ζ )
)

(0).

Therefore, we have

Φ(t + ρ, ω, ψ)(ζ ) = Φ(t, θρω, ψ)(ρ + ζ ) = Φ(t, θρω, ψ(ρ + ζ ))(0) = Φ
(
t, θρω, ·) ◦ Φ(ρ, ω, ψ)(ζ ).

�
By Remark 3.1, u(t, ω, φ) = v(t, ω, ψ) + z

(
θtω

)
is the global solution to (1.4) with initial condition

φ. We now define a mapping Ψ : R+ ×Ω ×C → C by Ψ (t, ω, φ) = ut(·, ω, φ) = vt(·, ω, ψ)+z
(
θt+.ω

)
,

where ut(ζ , ω, φ) = u(t + ζ , ω, φ) for ζ ∈ [−τ , 0]. By Theorem 3.2 and the cocycle property of z, Ψ is
an RDS on C generated by (1.4).
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4. Existence of random attractors

In this section, we are concerned with the existence of tempered pullback attractors for the SNDRDE
(1.4) by first establishing a uniform estimation for the solution and then proving that Ψ is D-pullback
asymptotically compact. Nevertheless, due to the non-compactness of the spatial domain, it is quite
difficult to prove the asymptotically compact of Ψ with respect to the usual supreme norm. Hence,
similar to Yi et al. (2012), we introduce another more suitable topology called the compact open topology
induced by the norms ‖ϕ‖X

co = ∑
n≥1 2−n sup{|ϕ(x)| : x ∈ [0, n], n ∈ N} for all ϕ ∈ X and ‖φ‖Cco =

sup{‖φ(θ)‖X
co : θ ∈ [−τ , 0]} for all φ ∈ C, respectively, to describe the pullback asymptotic compactness

of the RDS Ψ generated by (1.4). Moreover, we use Xco and Cco to denote the spaces (X, ‖ · ‖X
co) and

(C, ‖ · ‖Cco), respectively.
In order to adopt compact open topology to describe the global dynamics of (1.4), we first introduce

without proof the following lemma, which gives sufficient and necessary condition for a sequence to
be convergent and pre-compact with respect to the compact open topology. For details of the proof, the
readers are referred to Lemma 2.1 in Wu (1996).

Lemma 4.1. Given r > 0. Let Br = {φ ∈ ∗ : ‖φ‖∗ ≤ r} and dr(φ, ψ) = ‖φ − ψ‖∗
co, where ∗ stands for

X or C. Then the following statements are true:
(i) For any φn, φ ∈ Br with n ∈ N, limn→∞ dr(φn, φ) = 0 if and only if

lim
n→∞ sup{|φn(ζ , x) − φ(ζ , x)| : ζ ∈ [−τ , 0], x ∈ I} = 0

for any bounded domain I = [0, i] ⊂ R+ for all i ∈ R+.
(ii) Let A ⊆ Br. Then A is pre-compact if and only if AI = {ϕ|I : ϕ ∈ A} is a family of equicontinuous
functions for any domain I = [0, i] ⊂ R+.

Throughout the rest of this paper, we always use D to denote the collection of all families of tempered
non-empty subsets of Cco. The letters c and ci, (i = 1, 2, · · · ) are general positive constants whose values
are not significant. Moreover, as for the asymptotic behaviour, we always assume that t > τ in the
remaining part of this paper for convenience. The following lemma shows that the RDS Ψ has a random
absorbing set respect to the compact open topology.

Lemma 4.2. Assume that (H) is satisfied and εLf eμτ − μ < 0, then there exists {K(ω)}ω∈Ω ∈ D
satisfying that, for any B = {B(ω)}ω∈Ω ∈ D and P-a.e. ω ∈ Ω , there is TB(ω) > 0 such that

Ψ
(
t, θ−tω, B

(
θ−tω

)) ⊆ K(ω) for all t � TB(ω),

i.e. {K(ω)}ω∈Ω is a random absorbing set for Ψ in D.

Proof. We first derive uniform estimate on v by (3.14) and then obtain the existence of absorbing set of
u by u(t, ω, φ) = v(t, ω, ψ) + z

(
θtω

)
. It follows from (3.14) and Lemma 3.1 (i) that for any t > τ , we

have

v(t, ω, ψ) = S(t)ψ(0) +
∫ t

0
S(t − s)F

(
vs + z

(
θs+·ω

))
ds +

∫ t

0
S(t − s)Δz

(
θsω

)
ds

= e−μtU(t)ψ̃(0) +
∫ t

0
e−μ(t−s)U(t − s)F̃

(
vs + z

(
θs+·ω

))
ds +

∫ t

0
e−μ(t−s)U(t − s)Δz̃

(
θsω

)
dr,

(4.1)
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where ψ̃ , F̃ and z̃ represent the odd extension of ψ , F, z with respect to the spatial variable, respectively.
Therefore, by Lemma 3.1(iii) and lemma 3.2, for any ζ ∈ [−τ , 0], n ∈ N, x ∈ [0, n] and all ψ ∈ C we
have

|v(t + ζ , ω, ψ)(x)| ≤ e−μ(t−τ)|ψ(0)(x)| + ε

∫ t+ζ

0
eμ(s−t−ζ )|K[v(s − τ , ω, ψ) + z(θs−τω)](x)|ds

+
∫ t+ζ

0
eμ(s−t−ζ )|Δz

(
θsω

)
(x)|ds

≤ e−μ(t−τ)|ψ(0)(x)| + εLf eμτ

∫ t

0
eμ(s−t)(|v(s − τ , ω, ψ)(x)| + |z (θs−τω

)
(x)|)ds

+ eμτ

∫ t

0
eμ(s−t)|Δz

(
θsω

)
(x)|ds, (4.2)

which implies that∑
n≥1

2−n sup
x∈[0,n]

|v(t + ζ , ω, ψ)(x)| ≤ e−μ(t−τ)
∑
n≥1

2−n sup
x∈[0,n]

|ψ(0)(x)|

+ ε

∫ t+ζ

0
eμ(s−t−ζ )

∑
n≥1

2−n sup
x∈[0,n]

|K[v(s − τ , ω, ψ) + z(θs−τω)](x)|ds

+
∫ t+ζ

0
eμ(s−t−ζ )

∑
n≥1

2−n sup
x∈[0,n]

|Δz
(
θsω

)
(x)|ds

≤ e−μ(t−τ)
∑
n≥1

2−n sup
x∈[0,n]

|ψ(0)(x)| + εLf eμτ

∫ t

0
eμ(s−t)

⎛
⎝∑

n≥1

2−n sup
x∈[0,n]

|v(s − τ , ω, ψ)(x)| +
∑
n≥1

2−n sup
x∈[0,n]

|z (θs−τω
)
(x)|

⎞
⎠ ds

+
∫ t

0
eμ(s−t)

∑
n≥1

2−n sup
x∈[0,n]

|Δz
(
θsω

)
(x)|ds. (4.3)

Therefore, by the definition of compact open topology, we have

‖v(t + ζ , ω, ψ)‖X
co ≤ e−μ(t−τ)‖ψ(0)‖X

co + ε

∫ t+ζ

0
eμ(s−t−ζ )‖K[v(s − τ , ω, ψ) + z(θs−τω)]‖X

cods

+
∫ t+ζ

0
eμ(s−t−ζ )‖Δz

(
θsω

) ‖X
cods

≤ e−μ(t−τ)‖ψ(0)‖X
co + εLf eμτ

∫ t

0
eμ(s−t)(‖v(s − τ , ω, ψ)‖X

co + ‖z
(
θs−τω

) ‖X
co)ds

+ eμτ

∫ t

0
eμ(s−t)‖Δz

(
θsω

) ‖X
cods, (4.4)
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for P-a.e. ω ∈ Ω . Keep in mind that
∥∥vt

∥∥C
co = sup

{‖v(t + ζ )‖X
co : ζ ∈ [−τ , 0]

}
. Hence, we can obtain

∥∥vt(·, ω, ψ)
∥∥C

co ≤ eμτ [e−μt‖ψ‖Cco + εLf

∫ t

0
eμ(s−t)

∥∥vs(·, ω, ψ)
∥∥C

co ds

+
∫ t

0
eμ(s−t)(‖Δz

(
θsω

) ‖X
co + εLf ‖z

(
θs−τω

) ‖X
co)ds.

(4.5)

By replacing ω by θ−tω, we derive from (4.5) that, for all t ≥ τ ,

∥∥vt

(·, θ−tω, ψ
(
θ−tω

))∥∥C
co ≤ eμτ [e−μt

∥∥ψ (
θ−tω

)∥∥C
co

+
∫ t

0
eμ(s−t)(‖Δz

(
θs−tω

) ‖X
co + εLf ‖z

(
θs−t−τω

) ‖X
co

)
ds

+ εLf

∫ t

0
eμ(s−t)

∥∥vs

(·, θ−tω, ψ
(
θ−tω

))∥∥C
co ds].

(4.6)

Since gj are twice continuously differentiable and z (ω) (x) = ∑m
j=1 gj(x)zj

(
ωj

)
, there exists constant c

such that p1(ω) � ‖Δz (ω) ‖X
co + εLf ‖z

(
θ−τω

) ‖X
co ≤ c

∑m
j=1

∣∣∣zj

(
ωj

)∣∣∣2. Therefore, it follows from (3.9)

and (3.10) that

∫ t

0
eμ(s−t)p1

(
θs−tω

)
ds ≤ c

∫ t

0
e

μ
2 (s−t)r(ω)ds ≤ cr(ω). (4.7)

Incorporating (4.7) into (4.6) gives rise to

∥∥vt

(·, θ−tω, ψ
(
θ−tω

))∥∥C
co ≤ eμτ [e−μt

∥∥ψ (
θ−tω

)∥∥C
co

+ εLf

∫ t

0
eμ(s−t)

∥∥vs

(·, θ−sω, ψ
(
θ−sω

))∥∥C
co ds + cr(ω)].

(4.8)

Multiply the both sides of (4.8) by eμt and adopt the Grönwall inequality, we have

eμt
∥∥vt

(·, θ−tω, ψ
(
θ−tω

))∥∥C
co ≤ eμτ

( ∥∥ψ (
θ−tω

)∥∥C
co + ceμtr(ω)) + εeμτ Lf

∫ t

0
(
∥∥ψ (

θ−tω
)∥∥C

co

+ ceμsr(ω))eεLf eμτ (t−s)ds

≤ ceμτ eμtr(ω) + eμτ
∥∥ψ (

θ−tω
)∥∥C

co + εeμτ Lf

∥∥ψ (
θ−tω

)∥∥C
co

∫ t

0
eεLf eμτ (t−s)ds

+ cεeμτ Lf r(ω)

∫ t

0
eεLf eμτ (t−s)eμsds. (4.9)
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Therefore, we have

∥∥vt

(·, θ−tω, ψ
(
θ−tω

))∥∥C
co ≤ ceμτ r(ω) + e−μteμτ

∥∥ψ (
θ−tω

)∥∥C
co + ∥∥ψ (

θ−tω
)∥∥C

co (e(εLf eμτ −μ)t − 1)

+ cεeμτ Lf

μ − εeμτ Lf
[e−εeμτ Lf − e−μt]r(ω).

(4.10)
Note that ψ(ω) = φ − z(θt+·ω). The above estimate (5.1) implies that, for all t ≥ τ ,

∥∥ut

(·, θ−tω, φ
)∥∥C

co ≤ ∥∥vt

(·, θ−tω, ψ
(
θ−tω

))∥∥C
co + ‖z(θ−tθt+·ω)‖Cco

≤ceμτ r(ω) + e−μteμτ
∥∥ψ (

θ−tω
)∥∥C

co + ∥∥ψ (
θ−tω

)∥∥C
co (e(εLf eμτ −μ)t − 1)

+ cεeμτ Lf

μ − εeμτ Lf
[e−εeμτ Lf − e−μt]r(ω) + ce

μτ
2 r(ω).

(4.11)

Therefore, if φ ∈ D
(
θ−tω

)
and εLf eμτ −μ < 0, then there exists a TD > τ such that, for all t ≥ TD(ω),

e−μteμτ
∥∥ψ (

θ−tω
)∥∥C

co + ∥∥ψ (
θ−tω

)∥∥C
co (e(εLf eμτ −μ)t − 1) − cεeμτ Lf

μ − εeμτ Lf
e−μtr(ω) ≤ c1(ω), (4.12)

which, along with (4.11), shows that, for all t ≥ TD(ω)

∥∥ut

(·, θ−tω, φ
)∥∥C

co ≤ 2ceμτ r(ω) + cεeμτ Lf

μ − εeμτ Lf
e−εeμτ Lf r(ω) + c1(ω). (4.13)

Given ω ∈ Ω , define

K(ω) = {ϕ ∈ C : ‖ϕ‖Cco ≤ 2ceμτ r(ω) + cεeμτ Lf

μ − εeμτ Lf
e−εeμτ Lf r(ω) + c1(ω)}. (4.14)

Then, K = {K(ω)}ω∈Ω ∈ D. Furthermore, (4.13) implies that K is a random absorbing set for the RDS
Φ in D. �

In the sequel, we first show that Ψ is a continuous random semiflow with respect to ‖ · ‖Cco.

Lemma 4.3. Assume (H) is satisfied and f is globally bounded, then Φ
(
t, θ−tω, φ

)
is a continuous

random semiflow with respect to the compact open topology induced by the norm ‖ · ‖Cco.

Proof. It suffices to prove that for any given φn ∈ D
(
θ−tnω

)
and φ ∈ D

(
θ−tω

)
such that tn → t, φn → φ

then the sequence Ψ
(
tn, θ−tnω, φn

)
convergent to Ψ

(
t, θ−tω, φ

)
with respect to ‖ · ‖Cco. Here, for

convenience, we assume that tn ≥ t since the case tn < t can be proved similarly.
To prove the continuity, define P : R+ × Ω × C → Xco by P(t, θ−tω, φ)(x) = Ψ (t, θ−tω, φ)(0)(x)

for all (t, φ) ∈ R+ × C. By Theorem 3.2 and the cocycle property of z, we only need to
prove that P(t, θ−tω, φ)(x) is a random semiflow. Take

{(
tn, φn

)}
n∈N ⊂ R+ × D

(
θ−tnω

)
such
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that limn→∞
∣∣tn − t

∣∣ = 0 and limn→∞ dr

(
φn, φ

) = 0. Denote by Gn � |P(tn, θ−tnω, φn)(x) −
P(t, θ−tω, φ)(x)|. For any given a bounded closed interval I and any x ∈ I, we have

Gn = ∣∣Ψ (tn, θ−tnω, φn)(0)(x) − Ψ
(
t, θ−tω, φ

)
(0)(x)

∣∣
≤ ∣∣Φ(tn, θ−tnω, ψn)(0)(x) − Φ

(
t, θ−tω, ψ

)
(0)(x)

∣∣ + |z(θtω)(x) − z(θtnω)(x)|

≤ |S(tn)ψn(0, x) − S(t)ψ(0, x)| + |
∫ tn

0
S(tn − r)F

(
vn

r + z
(
θ−tnθr+·ω

))
(x)

−
∫ t

0
S(t − r)F

(
vr + z

(
θ−tθr+·ω

))
(x)dr| + |

∫ tn

0
S(tn − r)Δz

(
θ−tnθrω

)
(x)dr

−
∫ t

0
S(t − r)Δz

(
θ−tθrω

)
(x)dr| + |z(θtω)(x) − z(θtnω)(x)|

� I1 + I2 + I3 + I4,

(4.15)

for P-a.e. ω ∈ Ω . Now, we estimate each term on the right-hand side of (4.15).

I1 � |[S(tn) − S(t)]ψn(0, x)| + |S(t)[ψn(0, x) − ψ(0, x)]|

≤
(
1 + tn

)
exp

(−μtn
) |ψn(0, x)|

tn

∣∣t − tn
∣∣ + e−μt|ψn(0, x) − ψ(0, x)|

� I11 + I12.

(4.16)

It follows from limn→∞ dr

(
φn, φ

) = 0, the continuity of z(θtω) with respect to t and limn→∞
∣∣tn − t

∣∣ =
0 that limn→∞ I12 = 0. Clearly, I11 → 0 because of tn → t.

I2 � |
∫ tn

0
S(tn − r)F

(
vn

r + z
(
θ−tnθr+·ω

))
(x)dr −

∫ t

0
S(tn − r)F

(
vn

r + z
(
θ−tnθr+·ω

))
(x)dr|

+ |
∫ t

0
S(tn − r)F

(
vn

r + z
(
θ−tnθr+·ω

))
(x)dr −

∫ t

0
S(tn − r)F

(
vr + z

(
θ−tnθr+·ω

))
(x)dr|

+ |
∫ t

0
S(tn − r)F

(
vr + z

(
θ−tnθr+·ω

))
(x)dr −

∫ t

0
S(t − r)F

(
vr + z

(
θ−tnθr+·ω

))
(x)dr|

+ |
∫ t

0
S(tn − r)F

(
vr + z

(
θ−tnθr+·ω

))
(x)dr −

∫ t

0
S(t − r)F

(
vr + z

(
θ−tθr+·ω

))
(x)dr|

� I21 + I22 + I23 + I24.

(4.17)

By Lemmas 3.1 and 3.2 and the boundedness of f , we have for any x ∈ I and P-a.e. ω ∈ Ω

I21 ≤ ε

∫ tn

t
e−μ(tn−r)f

(
vn

r + z
(
θr+·ω

))
(x)dr ≤ εM

∫ tn

t
e−μ(tn−r)dr. (4.18)
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Since tn → t, we can see I21 → 0.

I22 ≤ εLf

∫ t

0
e−μ(tn−r)‖vn

r − vr‖Cco
dr ≤ εLf |vr(·, θ−tnω, ψn)(x) − vr(·, θ−tnω, ψ)(x)|

∫ tn

t
e−μ(tn−r)dr.

(4.19)

By similar procedure as the proof of Theorem 2.8-(i) in Yi et al. (2012), we have I22 → 0 provided
ψn → ψ .

I23 ≤
∫ t

0
[S(tn − r) − S(t − r)]F

(
vr + z

(
θr+·ω

))
dr

=
∫ tn−

√
δ

0
[S(tn − r) − S(t − r)]F

(
vr + z

(
θr+·ω

))
dr

+
∫ t

tn−
√

δ

[S(tn − r) − S(t − r)]F
(
vr + z

(
θr+·ω

))
dr

≤ εM
∫ tn−

√
δ

0

(
1 + μ(tn − r)

)
exp

(−μ(tn − r)
)

tn − r
(tn − t)dr + 2M|t − tn + √

δ|

≤ εM
∣∣t − tn

∣∣ ( 1√
δ

+ μ

)
+ 2M|t − tn + √

δ|,

(4.20)

where δ ∈ (0, 1) and t < tn < t + δ with δ → 0. Hence, we have I23 → 0 when tn → t. Therefore,
limn→∞ I2 = 0, as tn → t, φn → φ. In the following, we estimate I3.

I3 � |
∫ tn

0
S(tn − r)Δz

(
θ−tnθrω

)
(x) −

∫ t

0
S(t − r)Δz

(
θ−tnθrω

)
(x)dr|

� |
∫ tn

0
S(tn − r)Δz

(
θ−tnθrω

)
(x)dr −

∫ t

0
S(tn − r)Δz

(
θ−tnθrω

)
(x)dr|

+ |
∫ t

0
S(tn − r)Δz

(
θ−tnθrω

)
(x)dr −

∫ t

0
S(t − r)Δz

(
θ−tnθrω

)
(x)dr|

+ |
∫ t

0
S(t − r)Δz

(
θ−tnθrω

)
(x)dr −

∫ t

0
S(t − r)Δz

(
θ−tθrω

)
(x)dr| � I31 + I32 + I33.

(4.21)

I31 ≤ c|Δz
(
θrω

)
(x)|

∫ tn

t
e−μ(tn−r)eμ(tn−r)/2r(ω)dr. (4.22)

Since {gj(x)}m
j=1 are twice continuously differentiable, there exists M > 0 such that for any x ∈ I and

P-a.e. ω, |Δz
(
θrω

)
(x)| � M. Thus, limn→∞ I31 = 0 and limn→∞ I31 = 0 in the case tn → t. It

follows from Δz
(
θtω

)
is continuous with respect to t that limn→∞ I33 = 0. By the same arguments as

the estimation of I23 in (4.20), we have limn→∞ I32 = 0, indicating that limn→∞ I3 = 0. Moreover,
since zj

(
θtωj

)
is P-a.e. ω continuous, we have that limn→∞ I4 = 0. Summing up the above computation
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together with Lemma 4.1, we can see that Φ
(
t, θ−tω, φ

)
is a continuous random semiflow with respect

to the compact open topology induced by the norm ‖ · ‖co. �
Now, we are in the position to prove the D-pullback asymptotically compact in D with respect to

‖ · ‖co
C .

Lemma 4.4. Assume that (H) holds and f is bounded. Then, the RDS Ψ generated by SNDRDE
(1.4) is D-pullback asymptotically compact in Cco for t > τ , i.e., for P-a.e. ω ∈ Ω , the sequence
{Ψ (tn, θ−tnω, φn

(
θ−tnω

)
)} has a convergent subsequence in Cco provided tn → ∞, B = {B(ω)}ω∈Ω ∈ D

and φn

(
θ−tnω

) ∈ B
(
θ−tnω

)
.

Proof. Take an arbitrary random set {B(ω)}ω∈Ω ∈ D, a sequence tn → +∞ and φn ∈ B
(
θ−tnω

)
. We

have to prove that
{
Ψ
(
tn, θ−tnω, φn

)}
is precompact. Since {K(ω)} is a random absorbing for Ψ , then

there exists T > 0 such that, for all ω ∈ Ω ,

Ψ
(
t, θ−tω

)
B
(
θ−tω

) ⊂ K(ω) (4.23)

for all t ≥ T . Because tn → +∞, we can choose n1 ≥ 1 such that tn1
− 1 ≥ T . Applying (4.23) for

t = tn1
− 1 and ω = θ−1ω, we find that

η1 � Ψ
(

tn1
− 1, θ−tn1

ω, φn1

)
∈ K

(
θ−1ω

)
. (4.24)

Similarly, we can choose a subsequence
{
nk

}
of {n} such that n1 < n2 < · · · < nk → +∞ such that

ηk � Ψ
(

tnk
− k, θ−tnk

ω, φnk

)
∈ K

(
θ−kω

)
. (4.25)

Hence, by the assumption we conclude that the sequence

{
Ψ
(
k, θ−kω, ηk

)}
(4.26)

is precompact. On the other hand by (4.25), we have

Ψ (k, θ−kω, ηk) = Ψ (k, θ−kω, Ψ (tnk
− k, θ−tnk

ω, φnk
) = Ψ

(
tnk

, θ−tnk
ω, φnk

)
, (4.27)

for all k ≥ 1. Combining (4.26) and (4.27), we obtain that the sequence
{
Ψ
(
tnk

, θ−tnk
ω, φnk

)}
is

precompact. Therefore,
{
Ψ
(
tn, θtnω, φnk

)}
is precompact, which completes the proof. �

Lemma (4.2) says that the continuous RDS Ψ has a random absorbing set while Lemma (4.1) tells
us that (θ , Ψ ) is pullback asymptotically compact in Cco. Thus, it follows from Lemma 2.1 that the
continuous RDS (θ , Ψ ) possesses a random attractor. Namely, we obtain the following result.

Theorem 4.1. Assume that (H) holds, εLf eμτ − μ < 0 and f is bounded, then the continuous RDS Ψ

generated by (1.4) admits a unique D-pullback attractor in Cco belonging to the class D.
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5. Existence of exponentially attracting stationary solutions

In this section, we are devoted to deriving sufficient conditions that guarantee the random attractor being
an exponentially attracting random fixed point ξ∗ by adopting the general Banach fixed point theorem.
We first introduce the general Banach fixed point theorem, which was established in Schmalfus (1998)
and extended in Duan et al. (2003) to infinite case in the following.

Lemma 5.1. Let (Y , dY) be a complete metric space with bounded metric. Suppose that

Φ(t, ω, Y) ⊂ Y

for ω ∈ Ω , t ≥ 0, and that x → Φ(t, ω, x) is continuous. In addition, we assume the contraction
condition: There exists a constant k < 0 such that, for ω ∈ Ω ,

sup
x �=y∈Y

log
dY(Φ(1, ω, x), Φ(1, ω, y))

dY(x, y)
≤ k

Then Φ has a unique generalized fixed point γ ∗ in Y . Moreover, the following convergence property
holds:

lim
t→∞ Φ

(
t, θ−tω, x

) = γ ∗(ω)

for any ω ∈ Ω and x ∈ Y .

Theorem 5.1. Assume that f is bounded and satisfies (H). Moreover, assume that 0 < τ < 1 and
μ > max{ εLf

1−τ
, εLf eμτ }. Then the RDS Ψ generated by SNDRDE (1.4) possess a tempered random

fixed point ξ∗, which is unique under all tempered random variables in Cco and attracts exponentially
fast every random variable in Cco.

Proof. If μ > εLf eμτ , then the conditions of Theorem 4.1 hold and hence (1.4) possess random
attractors in Cco. We will prove that (1.4) admits a unique globally exponentially attracting random
stationary solution in Cco, which immediately implies the random attractor in Cco obtained in Theorem
4.1 is the random fixed point. If suffices to prove that the RDS Φ generated by (3.11) has a unique
exponentially attracting generalized fixed point χ∗. Since the transformation v(t) = u(t) − z

(
θtω

)
and

u(t) = v(t) + z
(
θtω

)
are conjugation, one can see that ξ∗ = χ∗ + z

(
θtω

)
is a unique exponentially

attracting generalized fixed point of (1.4) by conjugation technique.
By (4.5) and the Grönwall inequality, one can see that for any ψ ∈ Cco

∥∥vt (·, ω, ψ (ω))
∥∥C

co ≤ ceμτ r(ω) + e−μteμτ ‖ψ (ω)‖Cco + ‖ψ (ω)‖Cco (e(εLf eμτ −μ)t − 1)

+ cεeμτ Lf

μ − εeμτ Lf
[e−εeμτ Lf − e−μt]r(ω),

(5.1)

which implies that for any ψ ∈ Cco, Φ(t, ω, ψ) ∈ Cco, i.e. Cco is invariant under the random semiflow
Φ. Moreover, it follows from Lemma 4.3 that Φ is continuous in C. Therefore, we only need to prove
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the contraction property. That is, there exists k < 0 such that

sup
ϕ �=ψ∈Cco

‖Φ(1, ω, ϕ) − Φ(1, ω, ψ)‖Cco ≤ ek‖ϕ − ψ‖Cco. (5.2)

Hence, it suffices to prove that for any ϕ, ψ ∈ C

‖Φ(1, ω, ϕ) − Φ(1, ω, ψ)‖Cco = ‖v1(·, ω, ϕ) − v1(·, ω, ψ)‖Cco ≤ ek‖ϕ(ζ , x) − ψ(ζ , x)‖Cco. (5.3)

By Eq. (3.14), we have for any ϕ, ψ ∈ C

‖v1(·, ω, ϕ) − v1(·, ω, ψ)‖Cco ≤ ‖S(1)[ϕ(0) − ψ(0)]‖

+ sup
ζ∈[−τ ,0]

∫ 1+ζ

0
S(1 + ζ − r)

[
F
(
vϕ

r + z
(
θr+·ω

)) − F
(
vφ

r + z
(
θr+·ω

))]
dr

≤ eμτ

[
e−μ‖φ − ψ‖Cco + εLf

∫ 1

0
e−μ(1−r)

∥∥vr(·, ω, φ) − vr(·, ω, ψ)
∥∥C

co dr

]
.

(5.4)

Multiply both sides of (6.3) by eμ leads to

eu‖v1(·, ω, ϕ) − v1(·, ω, ψ)‖Cco ≤ eμτ [‖ϕ − ψ‖Cco + εLf

∫ 1

0
eμr

∥∥vr(·, ω, ϕ) − vr(·, ω, ψ)
∥∥C

co dr].

(5.5)

Again, the Grönwall inequality gives rise to

eu‖v1(·, ω, ϕ) − v1(·, ω, ψ)‖Cco ≤ eμτ+εLf ‖ϕ − ψ‖Cco, (5.6)

implying that ‖vϕ − vψ‖Cco ≤ eμ(τ−1)+εLf ‖φ − ψ‖Cco. Thus, μ >
εLf
1−τ

means that μ(τ − 1) + εLf < 0,
indicating that (6.1) satisfies. Therefore, Φ(t, ω, ·) admits a random exponentially attracting generalized
fixed point χ∗ and ξ∗ = χ∗ + z

(
θtω

)
is a unique exponentially attracting generalized fixed point of

(1.4). This completes the proof.
�

6. Applications

In this section, we will apply our main results to the stochastic non-local delayed Nicholson’s blowfly
equation. As pointed before, we consider the ideal case, i.e. the one-dimensional domain. The results
can be extended to half planes similarly to the deterministic case Wang (2014); Hu & Duan (2018); Hu
et al. (2018).

We consider equation (1.4) with the birth function being Ricker’s function b(u) = pue−qu, which
was first employed by Gurney et al. (1980) to fit the Nicholson’s blowfly experiment data and has been
widely used as a prototype of birth function for many species such as blowfly and fish. Here, p is the
maximum per capita egg production, τ is the maturation time rate and 1/q is the size at which the
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population reproduces at its maximum rate. Thus, (1.4) can be written as

⎧⎨
⎩

∂u
∂t (t, x) = Δu(t, x) − μu(t, x) + ε

∫
R+ Γ (α, x, y)pu(t − τ , y)e−qu(t−τ ,y)dy + ∑m

j=1 gj(x)
dwj
dt ,

u(t, 0) = 0, t > 0,
u(t, x) = φ(t, x), (t, x) ∈ [−τ , 0] × R+.

(6.1)

Theorem 6.1. For (6.1), the following statements are true:
(i) If q > e2, and μ > εpqe−2eμτ , then (6.1) admits a random attractor. Furthermore, if the delay

τ satisfies 0 < τ < 1 and μ > max{ εpqe−2

1−τ
, εpqe−2eμτ }, then the random attractor is a random

exponentially attracting generalized fixed point.
(ii) If 0 < q ≤ e2 and μ > εpeμτ , then (6.1) admits a random attractor. Furthermore, if the delay τ

satisfies 0 < τ < 1 and μ > max{ εp
1−τ

, εpeμτ }, then the random attractor is a random exponentially
attracting generalized fixed point.

Proof. Differentiating f twice gives
f ′(u) = p(1 − qu)e−qu, (6.2)

f ′′(u) = −qp(2 − qu)e−qu. (6.3)

Hence, f (u) ≤ f ( 1
q ) = p

q e−1, i.e. f is bounded by p
q e−1. Moreover, by (6.3), we can see f ′(u) is

decreasing on [0, 2
q ) and increasing on ( 2

q , +∞). Moreover, f ′(u) < 0 on ( 1
q , +∞) and f ′(u) > 0 on

[0, 1
q ). Therefore, we have |f ′(u)| ≤ max{f ′(0), |f ′( 2

q )|} = max{p, pqe−2}. In the case q > e2, we have

|f (u) − f (v)| ≤ pqe−2|u − v|, (6.4)

i.e. we can take Lf = pqe−2. Thus, by Theorem 4.1, we have if

μ > εpqe−2eμτ , (6.5)

then (6.1) admits a random attractor. Furthermore, if the delay τ satisfies 0 < τ < 1 and μ >

max{ εpqe−2

1−τ
, pqεe−2eμτ }, then the random attractor is a random exponentially attracting generalized

fixed point.
In the scenario q ≤ e2, we can take Lf = p. Thus, by Theorem 4.1, we have if

μ > εpeμτ , (6.6)

then (6.1) admits a random attractor. Furthermore, if the delay τ satisfies 0 < τ < 1 and μ >

max{ εp
1−τ

, εpeμτ }, then the random attractor is a random exponentially attracting generalized fixed
point. �

In the following text, we give some comments of Theorem 6.1 from the biological point of view.

Remark 6.1. Since 1/q is the size at which the population reproduces at its maximum rate, Theorem 6.1
says that if the mature population arrives its maximum reproduction rate at a small size, say 0 < u < 1

e2 ,
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the parameter q affects the existence and the structure of random attractors, while in the case the mature
population arrives its maximum reproduction rate at a large size, say more than 1

e2 , then the existence
and the structure of random attractors do not depend on the parameter q.

Remark 6.2. For simplicity, we use Theorem 6.1 (ii) to explain the influence of other parameters
on the existence and the structure of random attractors since it is the same for (i). If we fix the
maximum birth rate p, the death rate μ of mature population and ε of immature population such that
μ > max{ εp

1−τ
, εpeμτ }, then the increase of maturation time τ may destroy the existence of attractors

and the attractors being a random exponentially attracting fixed point, i.e. the long maturation time may
make the population unstable. It is clear that if we fix other parameters such that the inequalities hold,
then the increase of p, ε and τ will all destroy the random attractor. At last, if p, ε and τ are fixed, the left
of μ > εpeμτ increases at a linear rate, while the right increases at an exponential rate and hence with
the increase of μ, the right will at last be larger than the left, which destroys the condition. In summary,
when we fix other parameters, each single parameter in (6.1) may destabilize the system when it becomes
large enough.

7. Summary

In this paper, we have obtained the existence and qualitative property of random attractors for (1.4) on
a semi-infinite interval R+. We show that under certain conditions, the random attractor is a globally
exponentially attracting random stationary solution. From dynamical system theory, the conditions for
the attractors being fixed point are so strong that they could be hardly met in the real world applications.
Indeed, from the dissipative system theory, if some estimates on the dimension of random attractors can
be given, it will benefit the researchers a lot in studying the structure of the random attractor. Nevertheless,
the lack of inner product of the phase space and the asymmetry as well as non-compactness of spatial
domain made this problem quite challenging, requiring further studies. Furthermore, in order to obtain the
global complex dynamics and non-local analysis of the qualitative properties of the system, existence and
structure of the associated invariant manifolds of the stationary solutions, and the existence of connecting
orbits (including the heteroclinic orbits or homoclinic orbits) are all of great significance and deserve
much attention.
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